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Abstract  

Correlation analysis between MRI brain image and gene expression using ADNI data 

By Yajie Liu 

Background: With the development of medical imaging studies, numerous studies investigated 

the correlations with brain-related disease status, age, and the prognostic or diagnostic 

biomarkers for brain disease diagnosis [1]. There was a kind of regression called the image-on-

scalar model applied in this area. called image-on-scalar model aims to delineate the 

relationship between voxels or areas of interest (ROI) and a set of covariates of interest, such 

as demographic data, clinical features, and gene expression data, in which images were treated 

as a functional response variable [2]. 

Objectives: Examine the ability of elastic net regression in identifying genes that have an 

impact on brain MRI and examine whether there is any detectable correlation between age and 

MRI images. 

Methods: Elastic net regression model was applied to examine the correlation. We built one 

model for each gene. In each model, we treated gene expression as dependent variable and 

image data as the independent variable, gender was tested as an independent variable. MRI 

image data, gene expression data, and age were from ADNI. And MRI image data were 

converted into 4232-dimension arrays by the auto-encoder method. 

Results: We have selected the top 1000 genes with the highest variances to build elastic net 

regression models, and the top 25 models with the highest R-squares were analyzed. There 

were 12 of 25 models identified genes that were brain-related with the R-square of the model 

greater than 0.4. Models including gender had better performance than models that didn’t 

include gender. The R-square of examining the correlation between age and MRI image data 

had an R-square of about 0.45 and considered gender as a cofounder couldn’t improve the 

model performance. 

Conclusions:  In this study, we introduced an application of elastic net regression in identifying 

genes that have an impact on brain MRI, or in detecting correlation between age and MRI 

images. We found that the elastic net regression had relatively good in identifying genes that 

have an impact on brain MRI when considering gender effects. And the elastic net regression 

didn’t have a good performance in detecting the correlation between age and MRI image data. 
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1. Introduction 

With the development of medical imaging studies, numerous studies investigated the 

correlations with brain-related disease status, age, and the prognostic or diagnostic biomarkers 

for brain disease diagnosis [1]. There is a kind of regression called the image-on-scalar model 

applied in this area. Image-on-scalar model aims to delineate the relationship between voxels or 

areas of interest (ROI) and a set of covariates of interest, such as demographic data, clinical 

features, and gene expression data, in which images are treated as a functional response 

variable [2]. 

Previous studies have developed several methods for fitting the image-on-scalar regression. 

Univariate analysis such as using the general linear model (GLM) with pre-smoothed imaging 

data through a kernel convolution is a traditional method. However, GLM usually has low power, 

low efficiency, low accuracy, and a high false-positive rate [3]. Another kind of model considers 

all the voxels of the interested variables as a tensor, such as parsimonious tensor response 

regression [4]. One of the challenges for this model is how to reduce dimensions in an efficient 

and accurate way. Additional, deep neural networks models, such as the neural network-based 

image-on-scalar regression model was applied in imaging studies.  

In our study, we aimed to examine the ability of elastic net regression in identifying genes that 

have an impact on brain MRI and examine whether there is any detectable correlation between 

age and MRI images. A machine learning method elastic net, which can achieve multivariate 

analysis and automatically select associated covariates, was applied to build the image-on-

scalar regression to identify the correlation between AD and age or gene expression. 

  



2. Methods 

2.1 Data 

2.1.1 Data source 

All data were obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI is a 

National Instituted of Health (NIH) funded project launched in 2004. ADNI unites researchers 

between academia and industry to determine the biomarker of AD in clinical, cognitive, imaging, 

genetic and biochemical areas. ADNI researchers collected and shared and utilized those data 

as predictors to predict and prevent AD.  

Amyloid Beta (A𝛽), phosphorylated tau, synaptic loss, and neurodegeneration are hallmark 

lesions of AD. However, Clinical/cognitive evaluations are ineffective at detecting pathologic 

changes in Alzheimer's disease due to a lack of sensitivity and specificity. Biomarkers, on the 

other hand, are more consistently utilized to identify people who are at risk of cognitive decline 

and to track illness progression. To determine the relationship of biomarkers to baseline clinical 

status and cognitive decline, ADNI collected MRI (anatomic, diffusion, perfusion, and resting-

state images), amyloid PET (18F-FDG-PET (FDG PET)), CSF (A𝛽, total tau, phosphorylated 

tau, and other proteins), AV-1451 PET, and genetic and autopsy data. 

In our study, MRI data, gene expression data from blood samples, and the basic demographic 

data (gender and age) were used.  

2.1.2 Image data 

Image data were from ADNI project, which enrolled participants from 59 clinical sites and 

collected data from 57 imaging centers. Coronal plane slices extracted from ADNI MRI data 

post-processed using FreeSurfer were the raw data. Although there were follow-ups for each 



participant, only the image data collected at baseline were used. To analyze the image data, 

auto-encoder methods were used to convert image data into a 4232-dimension array data. 

After matching with gene expression data, there were total 445 images (samples) to do the 

analyses, and 336 images (samples) to identify the relationships between participant’s age and 

image signal after matching with age. 

2.1.3 Gene data 

Gene data were obtained from ADNI. 811 blood samples from the ADNI WGS cohort were 

collected and performed by Bristol-Myers Squibb (BMS). Microarray (the Affymetrix Human 

Genome U219 Array, Affymetrix, Santa Clara, CA) was used for expression profiling. The raw 

gene expression data have then been normalized by RMA (Robust Multi-chip Average) 

methods[5].  

After matching with MRI image data, there were 445 samples that could be used. For each 

subject, 49386 genes were measured. We selected the top 1000 genes with the greatest 

variances as our outcome variables. Both the gene expression data and the data after removing 

gender-effect were used to build the elastic net.  

2.2 Statistical analysis 

2.2.1 Elastic Net Regression 

Considering a linear regression model: 

�̂� =  𝛽0̂ +  𝛽1̂𝑥1 + ⋯ + 𝛽�̂�  𝑥𝑛 

For a usual linear regression model, the loss function is residual sum squares (RSS) between 

the predicted value and true value. However, models fitted by RSS can be sensitive and 

unstable when coefficients are large, or the number of samples is less than the number of 

predictors. 



To enhance the stability of the regression model, there is penalized linear regression called 

penalized linear regression. Penalized linear regression models include magnitudes of 

coefficients as the penalty in the loss function. Two popular penalties are L1 and L2 penalties. 

The L1 penalty is based on the absolute value of coefficients. Models using L1 penalty called the 

Lasso model, which can achieve variate selection simultaneously by minimizing the size of all 

coefficients to zero[6].   

𝐿1 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  ∑|𝛽𝑖|

𝑛

0

, 𝐿𝑎𝑠𝑠𝑜 𝐿𝑜𝑠𝑠 = 𝑅𝑆𝑆 +  𝐿1 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

Another popular penalty is the L2 penalty, which is based on the squares of coefficients. Models 

using L2 penalty called Ridge model, which minimizes the magnitudes of all coefficients, but 

keep all coefficients in the model[7]. 

𝐿2 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  ∑|𝛽𝑖|2

𝑛

0

, 𝑅𝑖𝑑𝑔𝑒 𝐿𝑜𝑠𝑠 = 𝑅𝑆𝑆 + 𝐿2 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

However, both Lasso and Ridge models have limitations in the scenarios when the number of 

predictors (p) is greater than the sample sizes (n), and when the predictors are correlated. 

Lasso allows at most n coefficients and selects only one predictor when the predictors are 

correlated. And Ridge has a poor performance than Lasso in the scenario when 𝑛 > 𝑝 and there 

exist high correlations among predictors[8]. 

Therefore, we applied elastic net regression, which included both are L1 and L2 penalties. The 

elastic net penalty is a combination of L1 and L2 penalties with a hyperparameter 𝛼 to assign the 

weight. 𝛼 is the weight of L1 ranging from 0 to 1, when 𝛼 = 0, the elastic net regression becomes 

a lasso regression, and when 𝛼 = 1, the model becomes a Ridges regression. There is another 

hyperparameter called 𝜆, which assigns the weight of elastic net penalty in the loss function. 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =  𝛼 ×  𝐿1 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + (1 − 𝛼) ×  𝐿2 𝑝𝑒𝑛𝑎𝑙𝑡𝑦,   



𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 𝐿𝑜𝑠𝑠 = 𝑅𝑆𝑆 +  𝜆 ×  𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

The elastic net regression balanced both Lasso and Ridge, which would have a better 

performance identifying the relationship between the MRI data of Alzheimer’s disease and gene 

expression or demographic data. 

We built one elastic net regression model for each gene, with the gene expression as the 

dependent variable and the 4232-dimension MRI image data as the independent variable. 

2.2.2 gender effect 

Gender differences have been reported in brain function, and Xi Zhang’s research indicated that 

gender differences are encoded in brain structure which can be revealed by MRI[9]. This finding 

is consistent with our results that most of top genes with great performance in elastic net 

regression (with largest R-squares) are gender-related. Since gender became a confounder in 

our regression model, we then removed the gender effect on our covariates of interest. 

As shown below, for each outcome of interest (expression data of genes or age), we build a 

linear regression model with gender as the covariate, the residuals of the model then became 

the outcome of interests. 

𝑌𝑖 =  𝛽0 + 𝛽1𝐺𝑒𝑛𝑑𝑒𝑟 + 𝜀𝑖 

3. Results 

3.1 Correlation between gene expression and MRI image data 

Our interest was to examine the ability of elastic net regression in identifying genes that have an 

impact on brain MRI. The top 1000 genes with the greatest variances were selected to test the 

relationships with MRI data using the elastic net model, we built one model for each gene. R-



squares were used to select good models, top 25 models with the highest R-squares were 

shown below:  

Table 3.1.1 Top 25 elastic net models in predicting gene expression 

Index Gene Symbol 𝜶 𝝀 
Number of 

coefficients 
R-square RMSE MAE 

1 ALOX15 0.55 0.01 388 0.45 1.04 0.84 

2 ALOX15 0.1 0.05 611 0.43 1.01 0.83 

3 
LOC100653057 

|| CES1 
0.1 0.02 662 0.42 0.91 0.71 

4 TXLNG2P 1 0.02 299 0.42 1.31 1.00 

5 CLCN4 0.1 0.04 617 0.41 0.82 0.65 

6 KIAA1324 0.1 0.01 683 0.41 1.06 0.83 

7 KIAA1324 0.1 0.09 522 0.40 0.80 0.62 

8 SERPING1 0.1 0.01 682 0.40 1.01 0.79 

9 TMEM176B 0.1 0.03 707 0.40 1.78 1.55 

10 KLRC3 0.1 0.04 659 0.40 1.03 0.84 

11 IFIT3 0.1 0.10 515 0.39 0.79 0.61 

12 ADAMTS5 0.1 0.01 673 0.39 0.86 0.70 

13 VNN1 0.55 0.01 376 0.39 0.90 0.63 

14 ETV7 0.1 0.05 659 0.39 1.14 0.89 

15 PZP 0.1 0.03 664 0.39 0.79 0.63 

16 S100B 0.1 0.04 624 0.39 1.14 0.91 

17 FAM3C 0.1 0.09 542 0.39 0.89 0.72 

18 PIGR 0.1 0.02 667 0.38 1.52 1.04 

19 
APOBEC3A_B || 

APOBEC3B 
1 0.03 319 0.38 2.63 1.97 

20 ORM1 0.1 0.01 702 0.38 1.11 0.89 

21 HIP1 0.55 0.01 396 0.38 0.78 0.64 

22 PDK4 0.1 0.01 739 0.38 0.81 0.62 

23 FAM3C 0.1 0.03 670 0.38 0.98 0.78 

24 APOBEC3B 1 0.02 315 0.38 1.74 1.34 

25 
COMMD3-BMI1 

|| BMI1 
0.1 0.01 692 0.38 0.78 0.63 

Related diseases or biological functions of selected genes were summarized in table 3.1.2. 

  



Table 3.1.2 Related diseases for the genes 

Index 
Gene  

Symbol 
Related Diseases or biological functions * 

Tissues with high-
level of gene 

expression  ** 

1 ALOX15 
Asthma, Nasal Polyps, And Aspirin Intolerance and 

Periventricular Leukomalacia 
Adipose  

2 ALOX15 
Asthma, Nasal Polyps, And Aspirin Intolerance and 

Periventricular Leukomalacia 
Adipose 

3 CES1 Drug Metabolism, Altered, Ces1-Related and Egasyn. Liver 

4 TXLNG Enable syntaxin binding activity, in chromosome Y Adipose, Brain, Ovary 

5 CLCN4  
Raynaud-Claes Syndrome and Non-Syndromic X-Linked 

Intellectual Disability, in chromosome X 
Brain, Muscle 

6 KIAA1324 
Baastrup's Syndrome and Endometrial Serous 

Adenocarcinoma 
Minor Salivary Gland 

7 KIAA1324 
Baastrup's Syndrome and Endometrial Serous 

Adenocarcinoma 
Minor Salivary Gland 

8 SERPING1 Angioedema 
Adipose, Artery, 

Breast, Liver, Lung 

9 TMEM176B Spinocerebellar Ataxia Liver 

10 KLRC3 Nasal Type Extranodal Nk/T-Cell Lymphoma and Monkeypox 
Brain, Lung, Spleen, 

Whole Blood 

11 IFIT3 Lupus Erythematosus and Systemic Lupus Erythematosus 
Brain, EBV-
transformed 

lymphocytes, Nerve 

12 ADAMTS5 Osteoarthritis and Bone Deterioration Disease 
Adipose, Breast, 

Ovary, Uterus 

13 VNN1 
Obstructive Nephropathy and Methylmalonic Aciduria, Cblb 

Type 
Whole Blood, Liver 

14 ETV7 Ewing Sarcoma and Fetishism 
EBV-transformed 

lymphocytes 

15 PZP Cumulated in serum in AD patients[10] Liver, Brain 

16 S100B Malignant Peripheral Nerve Sheath Tumor and Neurofibroma Brain 

17 FAM3C Pancreatic Cancer and Breast Cancer All Tissues 

18 PIGR Iga Glomerulonephritis and Protein-Energy Malnutrition 
Colon, Minor Salivary 
Gland, Small Intestine 

19 
APOBEC3A_B 
|| APOBEC3B 

Immunity 
EBV-transformed 

lymphocytes, Cultured 
fibroblasts 

20 ORM1 Appendicitis and Dry Eye Syndrome Liver 

21 HIP1 Chronic Myelomonocytic Leukemia and Huntington Disease 
Adipose, Artery, Brain, 

Lung 

22 PDK4 Type 2 Diabetes Mellitus and Rhabdomyosarcoma 
Breast, Muscle - 

Skeletal 

23 FAM3C Pancreatic Cancer and Breast Cancer Brain, Thyroid 

24 APOBEC3B Hepatitis B and Bone Leiomyosarcoma 
EBV-transformed 

lymphocytes, Cultured 
fibroblasts 

25 
COMMD3-

BMI1 || BMI1 
Mantle Cell Lymphoma and Erythroplakia All Tissues 

* Related Diseases or biological functions for each gene was gotten from GeneCards websit  

** Distribution of genes were based on the expression level reported by GTEx websit, high-level expression was 

defined as the medium TPM greater than 10. 



From table 3.1.2, there were only 6 genes either had high-level expression in brain (genes with 

bolden gene symbol) or had brain-related functions (genes with bolden index). Since we were 

using the MRI data to do the gene expression prediction, the results were not satisfying.  Most 

of the genes we selected were inflammatory- / immuno- related or gender-related. 

Interestingly, we found that there was cluster distribution for some genes caused by gender 

(Figure 3.1.1), which consisted of the fact that most of the genes we found were at chromosome 

X or Y, or distributed in tissues like virginal, Uterus, or Testis. 

   

Figure 3.1.1 Distribution of gene expression data by gender 

Therefore, for the next step, we built models using gene expression data considering gender as 

a confounder. 

3.2 Correlation between gene expression and MRI image data considering 

gender 

From section 3.1, we found that the distributions of gene expression data were extremely 

different among gender, especially for gender-related genes in chromosome Y which typically 

with greatest variances among the samples. Therefore, we then removed gender effects for 

gene expression data, and then re-selected the top 1000 genes with the greatest variances to 

build the elastic net model. Models with better performances (high R-square) revealed a good 

ability to detect the correlation between gene expression and MRI image data.  The top 25 



models with the highest R-squares were shown in table 3.2.1. These model performances were 

better than models in section 3.1, which proved that gender had affected gene expression 

prediction ability.  

Table 3.2.1 Top 25 elastic net models in predicting gene expression 

Index Gene Symbol 𝜶 𝝀 
Number of 
coefficients 

R-square RMSE MAE 

1 MPO 0.1 0.01 620 0.50 0.84 0.63 

2 IGHV4-31 0.1 0.12 531 0.47 1.14 0.89 

3 BCL11A 0.1 0.01 670 0.45 0.75 0.59 

4 C19ORF33 0.55 0.01 394 0.44 0.99 0.63 

5 CEACAM6 0.1 0.05 646 0.43 1.07 0.87 

6 GSTM1 0.1 0.05 607 0.42 1.05 0.92 

7 FMOD 0.1 0.02 610 0.42 0.70 0.31 

8 FCRL5 0.1 0.01 654 0.42 1.08 0.81 

9 ITGAV 1 0.01 331 0.42 0.94 0.69 

10 CRISP3 0.55 0.02 384 0.42 1.18 0.96 

11 TUBB2A 0.1 0.09 504 0.41 0.94 0.63 

12 IFI44L 0.1 0.02 681 0.41 1.25 0.96 

13 IGKV3-11 0.1 0.04 613 0.41 0.88 0.66 

14 CHURC1 0.1 0.01 682 0.41 0.79 0.70 

15 REEP3 0.1 0.03 679 0.40 0.80 0.61 

16 EFNA5 0.1 0.01 720 0.40 0.74 0.56 

17 SH3BGRL2 1 0.01 307 0.40 0.86 0.64 

18 PZP 0.1 0.04 637 0.40 0.81 0.64 

19 OAS3 0.55 0.01 393 0.40 1.64 0.74 

20 PDK4 0.1 0.01 721 0.40 0.80 0.62 

21 HERC5 0.1 0.03 646 0.40 0.89 0.69 

22 HPGD 0.1 0.01 684 0.40 0.76 0.60 

23 ABLIM3 0.1 0.12 466 0.40 1.89 0.73 

24 MFAP3L 0.1 0.10 531 0.39 0.82 0.65 

25 GBP1 0.55 0.01 391 0.39 0.81 0.61 

Next, we summarized the functions and related diseases of the selected genes (table 3.2.2) to 

examine the correlation detection ability of the elastic net.  

  



Table 3.2.2 Related diseases for the biomarker genes 

Index 
Gene  

Symbol 
Related Diseases or biological functions * 

Tissues with high-
level of gene 

expression  ** 

1 MPO Myeloperoxidase Deficiency and Alzheimer Disease Whole Blood 

2 IGHV4-31 Activation of immune response 
EBV-transformed 

lymphocytes 

3 BCL11A 
Intellectual Developmental Disorder With Persistence Of Fetal 

Hemoglobin and Intellectual Disability - Hypoplastic Corpus 
Callosum 

Brain, Blood 

4 C19ORF33 Pre-eclampsia, which could trigger Alzheimer's disease 
Muscularis, Vagina, 

skin 

5 CEACAM6 Crohn's Disease and Cystic Fibrosis Mucosa, Lung 

6 GSTM1 Asbestosis and Oral Leukoplakia Bladder, Vagina 

7 FMOD Pseudo achondroplasia and Myopia Artery 

8 FCRL5 Hairy Cell Leukemia and Lymphoma 
EBV-transformed 

lymphocytes, Spleen 

9 ITGAV West Nile Virus and Herpes Simplex Artery, Heart 

10 CRISP3 Ectopic Pregnancy and Prostate Cancer. Minor Salivary Gland 

11 TUBB2A 
Cortical Dysplasia, Complex, With Other Brain Malformations 

and Tubulin, Beta 
Brain 

12 IFI44L 
Multisystem Inflammatory Syndrome In Children and 

Orofaciodigital Syndrome V 
EBV-transformed 

lymphocytes 

13 IGKV3-11 Immune response 
EBV-transformed 

lymphocytes 

14 CHURC1 
Hypoglycemia, Leucine-Induced and Polycystic Kidney 

Disease 1 With or Without Polycystic Liver Disease 
Brain, Artery 

15 REEP3 
Played roles in GPCR signals, which been studied as 

therapeutic target for AD[11] 
Brain, Artery 

16 EFNA5 Cortical Senile Cataract and Septal Myocardial Infarction 
Skin, Minor Salivary 

Gland, Brain 

17 SH3BGRL2 Leber Congenital Amaurosis 
Adipose, Brain, 

Esophagus 

18 PZP Cumulated in serum in AD patients[10] Liver, Brain 

19 OAS3 Chikungunya and Tick-Borne Encephalitis 
EBV-transformed 

lymphocytes 

20 PDK4 Type 2 Diabetes Mellitus and Rhabdomyosarcoma 
Breast, Muscle - 

Skeletal 

21 HERC5 Influenza 
EBV-transformed 

lymphocytes, Testis 

22 HPGD 
Digital Clubbing, Isolated Congenital and Hypertrophic 

Osteoarthropathy, Primary, Autosomal Recessive 
Bladder, Vagina  

23 ABLIM3 
Aromatic L-Amino Acid Decarboxylase Deficiency and Fetal 

Erythroblastosis 
Adipose, Brain, Breast 

24 MFAP3L 
Played roles in EGFR and MAPK1/ERK2 signals, which been 

identified as target for treating Amyloid-β–induced memory 
loss[12] 

Brain, Testis 

25 GBP1 
Chronic Active Epstein-Barr Virus Infection and Aneurysmal 

Bone Cysts 
Whole body 

* Related Diseases or biological functions for each gene was gotten from GeneCards websit  

** Distribution of genes were based on the expression level reported by GTEx websit, high-level expression was 

defined as the medium TPM greater than 10. 

 



a) b)  

c) d)  

e) f)  

g) h)  

Figure 3.2.1 Distributions of the brain-related genes. a) BCL11A, b) TUBB2A, c) CHURC1, d)REEP3, 

e)SH3BGRL2, f) PZP, g) ABLIM3, h) MFAP3L 

Table 3.2.2 showed that among the top 25 models with the highest R-squares, 10 of them 

identified genes (genes with bolden index) had reported playing a role in AD. And 8 genes (with 

bolden gene symbols in table 3.2.2) had high-level expression in brain based on figure 3.2.1. 



Together, there were about half (12 of 25) genes we identified were either mainly distributed in 

brain or had AD-related functions. These correlation detection results were way better than that 

using raw gene expression data, suggesting that taking gender effects into consideration could 

greatly improve the ability to identify the biomarkers of AD for our model.  

It’s interesting that among other non-brain-related genes, almost half of them were either 

inflammatory- / immuno- related or gender-related. Immune-related genes were more likely to 

be detected as feature genes because expression varied widely among individuals[13]. Also, the 

gender-related genes we detected were mainly distributed in the vagina or testis, indicating that 

there were still gender effects in our models.  

3.3 Correlation between age and MRI image data  

Many machine learning approaches are applied in building brain age prediction models. 

Convolutional methods of artificial neural network, support vector machine method, and deep 

learning methods such as convolutional neural network which doesn’t rely on manual designs in 

feature extraction had been studied in this area [14]. 

We tested the age prediction efficiencies in MRI image data using the elastic net regression 

model. There were total of 336 samples after matching the age and MRI image data, and when 

𝛼 = 0.55 and 𝜆 = 1.34, the model could achieve the detection of the correlation between age 

and MRI image data with the result of 𝑅 𝑠𝑞𝑢𝑎𝑟𝑒 =  0.45, 𝑅𝑀𝑆𝐸 =  5.23 and 𝑀𝐴𝐸 =  3.30. In this 

model, 233 dimensions of 4232 dimensions of the image data were selected.  



 

Figure 3.3.1 Distribution of age in ADNI data. 

 

 

Figure 3.3.2 Results of elastic net on correlation between age and MRI image data. 

Based on the gender differences discovered in brain structure and our previous findings of 

gender effects in gene expression prediction, we then take gender into consideration in building 

models. The distribution of age among gender was shown below: 



 

Figure 3.3.3 Distribution of age in ADNI data among gender. 

 

Figure 3.3.4 Results of elastic net on predicting age considering gender. 

Age was evenly distributed among gender, and the elastic net model achieve the detection of 

the correlation between age and MRI image data with the result of 𝑅 𝑠𝑞𝑢𝑎𝑟𝑒 =  0.41, 𝑅𝑀𝑆𝐸 =

 5.04 and 𝑀𝐴𝐸 =  3.78 when 𝛼 = 0.55 and 𝜆 = 0.42.  In this model, 169 dimensions of 4232 

dimensions of the image data were selected. The results were similar to the model that didn’t 

consider gender, suggesting that gender was not a confounder in predicting age by MRI data. 

This result consisted of the age distribution by gender. 



4. Discussion 

In our study, we tried to use elastic net regression to identify the correlation between gene 

expression and MRI image data. From our results, we can see that brain-related genes had 

better performances in elastic net (with larger R-square values), which indicated that our model 

had the ability to identify AD biomarkers.  

Comparing the gene expression prediction models in sections 3.1 and 3.2, models built on gene 

expression data that removed gender effects had better performances. These results indicated 

that gender was a confounder when analyzing the MRI data of AD patients. However, based on 

the results in section 3.2, we still identified genes, which were gender-related or immune-related 

but not brain-related, even after removing gender effect. To get more accurate results, more 

methods in gene selection were needed, especially to remove the gender-related or immune-

related genes. Also, the clustered distributions discovered in some (15 out of 1000) of the genes 

reflecting that there were other confounders in our models. In the further study, the stage of AD 

might also be considered in predicting gene expression progress. 

For most of the models the best 𝛼𝑠 were 0.11, this suggested the Lasso model had more weight 

in the model. Less number of coefficients were preferred. This was understandable since most 

of the dimensions of the MRI data after being converted by auto-encoder methods were similar, 

Lasso regression could remove useless dimensions in model selection. 

In section 3.3, when predicting patients’ age by MRI data, it could be found that the number of 

coefficients was reduced from 233 to 169. This phenomenon can be explained after removing 

gender effects, brain structure differences caused by gender would not be considered in the 

models, therefore, the number of coefficients would be reduced. Additionally, even though the 

R-squares in models with or without removing gender effects were similar, the number of 

coefficients in the model removed gender effects, which would make the calculation easier. 



There were limitations in our study. The R-squares for models were relatively low even after 

removing gender effects, most of the R-squares were 0.4 - 0.5, which might suggest a poor 

prediction ability. However, this can be explained that the gene expression data were from blood 

samples while the MRI data captured brain features, the relationships between those two 

datasets were not expected to be strong. Since our models could select brain-related genes as 

biomarkers, we revealed the potential of the elastic net in dealing with MRI data to identify 

biomarkers. 
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