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Abstract

Efficient implementations of quantum chemistry methods for strongly
correlated electrons

By Kevin P. Hannon

Strong correlation presents a big challenge in modern day quan-
tum chemistry. In many chemical systems such as open-shell
species, excited states, and transition metal complexes, one elec-
tron configuration is not flexible enough to describe these sys-
tems. This thesis is concerned with two topics: developing a
parallel algorithm for a zeroth order description of strong corre-
lation and developing a fast multireference perturbation theory
for acheving quantitative accuracy. We aim to develop theories
that are computationally efficient, widely applicable to various
areas of chemistry, and acheive quantitative accuracy. In chapter
II, we report an implementation of the atomic orbital complete
active space self consistent field (AO-CASSCF) method on a
massively parallel computer using a combination of distributed
and multicore computing. We demonstrate the scalability of the
AO-CASSCF algorithm with a benchmark set of systems. In
chapter III, we report an efficient implementation of a second-
order multireference perturbation theory based on the driven
similarity renormalization group (DSRG-MRPT2) [C. Li and
F. A. Evangelista, J. Chem. Theory Comput. 11, 2097 (2015)].
Our implementation employs factorized two-electron integrals to
avoid storage of large four-index intermediates. It also exploits
the block structure of the reference density matrices to reduce
the computational cost to that of second-order Møller–Plesset
perturbation theory. Our new DSRG-MRPT2 implementation
is benchmarked on ten naphthyne isomers using basis sets up to
quintuple-ζ quality. We find that the singlet-triplet splittings
(∆ST) of the naphthyne isomers strongly depend on the equi-
librium structures. For a consistent set of geometries, the ∆ST

values predicted by the DSRG-MRPT2 are in good agreements
with those computed by the reduced multireference coupled clus-
ter theory with singles, doubles, and perturbative triples.
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Chapter 1 Introduction

1.1 Introduction

In the past 20 years, density functional theory (DFT) has become the most com-

monly used quantum chemistry method. [1, 2] Among the factors that have con-

tributed to the success of DFT, the most important ones are: (i) a good balance

between cost and accuracy and (ii) the fact that DFT is a black-box approach that

requires little input from the user. However, DFT can perform poorly for transition

metal complexes, excited states, and bond-breaking.[1] Two major problems of DFT

is the reliance on a single electron configuration and a poor description of electron

correlation .[3–5] In order to extend quantum chemistry to systems that require more

than one electron configuration, one needs to develop methods that are widely appli-

cable to various areas of chemistry, able to simulate larger chemical systems, and are

quantitatively accurate

In this thesis, we are concerned with developing theories that satisfy those three

criteria. Widely applicable methods rely on going beyond a single electron configura-

tion. Typically, the correlation of electrons between a selected few electron configu-

rations is called static correlation.[6] Achieving quantitative accuracy and computa-

tional efficiency require the use of economical theories to describe dynamic correlation,

that is, weak correlation effects that are complementary to static correlation. [7]

1.1.1 Static correlation

Strong correlation can be captured (or described) using a linear combinations of

Slater determinants,

|Φ〉 =
∑

i

ci|φi〉, (1.1)
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where Φ is the overall wavefunction, φi represent Slater determinants and ci represents

a weight of the Slater determinant.

Typically, the first step of describing strong correlation is to optimize both the

orbitals (φi) and the electron configuration coefficients (ci). To do both tasks, quan-

tum chemists actually use similar ideas from Hartree-Fock theory.[8] The basic idea

of Hartree-Fock is to find a basis where the Fock matrix is either diagonal or block-

diagonal. In most cases, the solution is to build and diagonalize the Fock matrix.

Building the Fock matrix can be done through the use of one electron integrals (hpq)

and two-electron integrals [(pq|rs)]. In Hartree-Fock theory, the Fock matrix is simply,

Fpq = hpq +
∑

rs

2 [(pq|rs)− (pr|qs)] (1.2)

Building the Fock matrix scales as O(N4), where N is the number of basis functions.

The O(N4) scaling becomes quite expensive for larger systems. There exists two

ways to scale to larger systems: Screening of the non-zero integrals[9, 10] and parallel

computing.[11, 12]

Chapter II discusses how to implement a fast algorithm for computing Fock

matrices through the use of integral screening and parallel computing. Integral

screening is the ability to screen out near zero integrals via the use of some esti-

mate for the magnitude. In this work, we will use the Cauchy-Schwartz inequality

[(pq|rs) ≤ |(pq|pq)(1/2)|(rs|rs)(1/2)]. The Cauchy-Schwartz inequality provides a cri-

terion to screen out out many integrals and allows the building of the Fock matrix

to scale only as O(N2). Algorithms that can take advantage of this reduced scaling

can potentially expand the reach of quantum chemistry to much larger systems.[9, 13]

Chapter 2 provides a more extensive background of how integral screening is applied

for the complete active space self consistent field theory(CASSCF).

Parallel computing is a massive field of computer science. The simplest descrip-

tion of a parallel computer is a set of computers that communicate with each other by

passing messages. The main scientific programming tool for communicating between
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Figure 1.1: A basic description of the difference between static (nondynamical) cor-
relation and dynamic correlation. Static correlation is the correlation gained via
CASSCF and dynamic correlation is typically gained through more approximate
means. This figure is reprinted with permission from Ref 14.

computers is the message passing interface (MPI).[12] Within each computer, there

exists multiple threads that are capable of executing a series of instructors simul-

taneously. A popular library for expressing this parallelism with code is OpenMP.

Chapter 2 is concerned with implementing the Fock builds with the use of both MPI

and OpenMP. This means that we are using the parallelism of the different computers

and the parallelism within each computer. The performance of a parallel algorithm is

usually defined by Speed-up ( S(1)
S(N)

), where S represents the overall time to solution. If

you have N computers, you should have a program that is N times faster. This is an

ideal speed-up, but usually the performance is measured relative to this metric. The

other metric for measuring performance is parallel efficiency (Efficiency = S(1)
S(N)N

).
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1.1.2 Dynamic Correlation

Both Hartree-Fock and CASSCF rely on selecting a single reference determinant or

multiple determinants. CASSCF involves the distribution of electrons in orbitals and

performing a matrix diagonalization. This diagonalization is expensive and can only

be performed for a small subset of the total number of orbitals. Limiting the diago-

nalization to a subset of orbitals provides the ability to describe the relevant electron

configurations (think bond-breaking, excited states, etc). However, the neglected

orbitals are necessary to achieve quantitative accuracy. These orbitals are usually

described via techniques such as coupled cluster theory or perturbation theory.[7]

Figure 1.1 shows a basic description of a quantum chemical method. CASSCF de-

scribes the static (or nondynamical) correlation while a dynamic correlation method

such as perturbation theory can describe the correlation between the active orbitals

and the external orbitals.

In single reference quantum chemistry, Møller-Plesset perturbation theory of sec-

ond order (MP2) is a popular technique for describing dynamic correlation. Pertur-

bation theory needs orbital energy denominators (∆ijab) and two electron integrals

(〈ij|ab〉),

EMP2 =
1

4

∑

ijab

〈ij||ab〉〈ab||ij〉
∆ijab

. (1.3)

(1.4)

The main computational bottleneck of perturbation theory is the transformation of

the integrals from the atomic orbital basis to the molecular orbital basis. This step

scales as O(N5) and has O(N4) memory storage. Both of these characteristics cause

MP2 to be expensive. One step that we use in this thesis to approximate the integrals
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via matrix factorizations,

〈ij|ab〉 =
∑

Q

BQ
iaB

Q
jb, (1.5)

BQ
ia = (ia|Q). (1.6)

(1.7)

These matrix factorizations reduce the memory storage of the two electron integrals.

It is important to mention that these matrix factorizations do not reduce the overall

scaling of MP2, but reduce the prefactor due to the cheaper computation of the inte-

grals. In Chapter 3 of this thesis, we present a computationally efficient perturbation

theory for describing dynamic correlation on top of a CASSCF reference. We achieve

a computationally efficient method via the use of both parallelism within a node and

through the use of integral factorizations.

1.2 Layout of the thesis

Chapter II is concerned with the development of a parallel algorithm for generating

orbitals for the multireference wavefunction. We demonstrate the use of parallel

algorithms for computing Fock matrices can enable CASSCF to compute much larger

systems than presently done.

Chapter III is concerned with the development of an computationally efficient

way of describing dynamic correlation on top of a multireference wavefunction. My

contribution to this work is through the use of integral factorization techniques to

greatly increase the range of systems that we can study with this multireference

perturbation theory. Chapter III is published with permission from Ref. 15.
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Chapter 2 A MPI/OpenMP implementa-
tion of Atomic-Orbital Complete Active Space
Self Consistent Field Method

2.1 Introduction

Computational quantum chemistry has greatly expanded the understanding of

the electronic structure of closed shell molecules.[8, 16] However, there is a great

interest in studying strongly correlated molecules such as transition metal present in

molecular magnets[17–20] or excited states.[21–23] Many of these molecules can be

quite large and it is imperative to develop new algorithms that can both simulate

larger molecules and accurately describe strong correlation.

The first step of a description of strongly correlated molecules is the use of the

complete active space self consistent field (CASSCF) method.[6, 24–31] CASSCF

allows a description of open-shell systems and excited states by providing a zeroth-

order description. However, many implementations of the CASSCF algorithm do not

extend to larger systems. Recently, there has been a resurgence in applying CASSCF

to larger systems via the use of integral factorizations[28, 32] or parallelization.[33–35]

A major limitation of integral factorizations is that they do not reduce the overall

scaling. For example, a Fock build using Cholesky decomposition[36–39] or density-

fitting[40, 41] scales as O(N4), where N is the size of the system. Without any

approximations, it is very difficult to reduce the scaling to O(N) or even O(N2).[42]

Direct SCF, where direct means that the integrals are computed when needed, has

played an important role in extending mean-field theories to larger molecules.[9, 13]

Direct SCF avoids the asymptotic computation of all of the two electron integrals by

performing screenings of the magnitude of the two electron integrals and neglecting
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integrals that are below this threshold. This screening reduces the asymptotic cost

of the two-electron integrals from O(N4) to O(N2). [16]

A complementary way to extend quantum chemistry to larger molecules is to

use parallelization.[12, 43] Quantum chemical implementations need some type of

parallelization in order to scale both to larger systems and to reduce the time to

solution. Modern supercomputer architectures take advantage of at least two levels

of parallelism: message passing (MPI) and accelerators. Message passing is used to

communicate among different nodes in a supercomputer system while accelerators are

used to speedup the computation within a node. In recent years, there has been an

increase in the use of accelerators such as Graphic Processing Units (GPUs)[44, 44–

46] or the Intel Many Integrated Core Architecture.[47] A model of programming

for accelerators can involve the use of both MPI and an accelerator programming

language such as OpenMP or a GPU-specific language.

We intend to show that CASSCF can easily be extended to large systems via

the use of MPI/OpenMP direct Fock builder. Hohenstein and coworkers recently

showed the benefits of formulating a CASSCF algorithm in the atomic orbital basis

while taking advantage of graphic processing units for parallelization.[33, 34] They

showed that they can easily study systems up to 10000 basis functions for use in

photochemistry. GPUs are of great benefit to the computational quantum chemistry

community, but many of the supercomputers rely on MPI/OpenMP parallelization

so it is important to have algorithms that use MPI/OpenMP parallelization. In fact,

as of June 2016,[48] only two of the top 10 supercomputers use GPU architecture.

In order to achieve MPI/OpenMP parallelization in the Fock builds, we adapt the

Fock builder by Chow and Liu, denoted as GTFock,[49–51] for use in the algorithm

developed by Hohenstein and coworkers.[33, 34]

With this new algorithm, we demonstrate the scability of this CASSCF algorithm

on two chemically relevant systems: ethylene solvated by 115 waters and an open-shell
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transition metal complex. We also introduce a new algorithm that greatly reduces

communication in the integral transformation when larger active spaces are used.

2.2 AO-CASSCF

The notation for CASSCF is presented in the supplementary information. We

choose to present the major difference in this algorithm as opposed to a common

CASSCF implementation. The CASSCF algorithm is summarized in Ref. 52.

The computational expensive steps of this CASSCF algorithm are the full config-

uration interaction (FCI) step in a limited subset of active orbitals, transforming the

integrals, and forming the Fock matrices present in the orbital optimization proce-

dure. Fletcher[35] noticed that the FCI step only starts to benefit from parallelization

when there are more than ten active orbitals. For this work, we never found a case

where the FCI starts to become a bottleneck. Due to this, we choose to replicate the

CI on every processor. Both the integral transformation[33, 34] and the formation of

the Fock matrices can be formulated in the AO basis. Formulating the Fock builds in

the AO basis allows one to take advantage of the sparsity of the two electron integrals.

We will denote a Fock build as J and K for a generalized Coulomb and a generalized

exchange,

Jµν(D) =
∑

ρσ

(µν|ρσ)Dρσ, (2.1)

Kµν(D) =
∑

ρσ

(µσ|ρν)Dρσ, (2.2)

where D is a AO-based quantity that is to be contracted with the two electron inte-

grals, and (µν|ρσ) are the two electron integrals.

In this work, we use the parallel direct Fock builder (GTFock) developed by Chow

and coworkers.[49–51] GTFock relies on the use of fine grained tasks to balance the

computational among large number of cores while also using another scheme to assign

tasks to processes to reduce communication. GTFock relies on the Cauchy-Schwartz
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screening, ((µν|ρσ) ≤ (µν|µν)1/2(ρσ|ρσ)1/2), to avoid the computation of negligibily

small integrals. GTFock is designed for heterogeneous architecture and has been

demonstrated to scale to tens of thousands of cores. In this work, we choose to use

the MPI/OpenMP parallelization.

The inactive Fock operator (IF ) can be easily formulated as a Fock build,

IFpq =
AO∑

µν

CµpCνq [hµν + 2Jµν(D
core)−Kµν(D

core)] , (2.3)

Dcore
µν =

Core∑

m

CµmCνm, (2.4)

(2.5)

where Cµp is the molecule orbital coefficient matrix. By back-transforming the one

particle density matrix in the AO basis,

γ(active)
µν =

Active∑

tu

CµtCνuγtu, (2.6)

(2.7)

the active Fock operator (AFpq) can be formed by the Fock builder,

AFpq =
∑

µν

CµpCνq

[
Jµν(γ

(active))− 1

2
Kµν(γ

(active))

]
. (2.8)

(2.9)

The last step to formulate as a Fock build is the transformation of the integrals.

Following Hohenstein and co-workers,[34] we form a psuedo-density for each pair tu

of active orbitals,

P (tu)
µν = CµtCνu. (2.10)

With this psuedo-density, we can form the half transformed integrals using a Coulomb

build,

(px|tu) =
AO∑

µν

CµpCνxJ(P (tu)
µν ). (2.11)



10

As pointed out by previous researchers,[53] without screening, this integral transfor-

mation scales as O(N4A2), where A is the number of active orbitals. However, the

Cauchy-Schwartz screening of the integrals lowers the scaling to be between O(A2N)

and O(A2N2).[34] A major problem with this algorithm is the strict O(A2) scaling

with respect to the number of active orbitals. With the combination of post FCI meth-

ods with CASSCF, [28, 54–60] there is a resurgence in the application of CASSCF

with larger active spaces than usually accessible by FCI. Extending AO-CASSCF for

use with post FCI methods requires reducing the time of the integral transformation.

One approach to speed-up the integral transformation is to process the number of A2

densities in parallel. We choose to use a processor subgroup algorithm where we split

the MPI communicators to compute multiple densities at once and still benefit from

the parallelism of GTFock. Splitting the MPI communicators lowers the amount of

communication, so this allows the integral transformation to scale to more cores. Our

algorithm is given below:

1. Split the processors (Np) into G groups.

2. Call GTFock on each G group and use NG processors.

3. Gather the Fock matrices that were computed on each G group among the NG

processors.

4. Communicate all the Fock matrices to all the processors

2.3 Results

In this section, we will demonstrate the performance of our parallel CASSCF

program for a transition metal complex, ethylene solvated by 115 waters, and a poly-

carbene complex. Tests were performed using 1 to 256 nodes (8 to 2048 cores) on

the Cascade supercomputer located at the Environmental Molecular Sciences Labo-

ratory in Pacific Northwest National Laboratory. Each node is composed of two Intel
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Table 2.1: Speed-ups, efficiencies, and overall for CASSCF computation

Molecule Cores Overall Timing Speed-up Efficiency

Ethylene

64 99658 1.00 1.00
128 49522 2.01 1.01
256 25791 3.86 0.97
512 14581 6.83 0.85
1024 8749 11.39 0.71
2048 5963 16.71 0.52

Xeon E5-2670 processors (8 cores each at 2.6 GHz) that share 128 GB of RAM. We

compiled our code with icpc v 16.0.3 and linked to threaded Intel MKL. We use Intel

MPI v 5.1.3. Global Arrays uses ARMCI over InfiniBand on the CASCADE machine.

Our algorithm is implemented in a developer version of PSI4.[61]

2.3.1 Ethylene and Water

Another important area of CASSCF applications is the study of excited state spec-

tra through the use of a state-averaged CASSCF and a dynamic correlation method.

Since the goal of this paper is to demonstrate the scalability of the CASSCF algorithm,

we choose to compute the ground state of a ethylene solvated by 115 waters. All of

these computations use the cc-pVTZ basis set.[62] Figure 2.2 and Table 2.1 show the

overall performance for ethylene with 115 waters (6787 basis functions and 351 atoms).

For this larger molecule, the major limitation of the scability of CASSCF is related

to the integral transformation. The integral transformation involves transforming the

integrals, computing the inactive Fock build, and various reordering procedures so

we can use our FCI code. Only 60 percent of the time in the integral transformation

actually involves the computing the Fock matrices. In fact, more time is spent doing

the various linear algebra operations than the time spent computing the Fock matrix.

By neglecting this linear algebra, our parallel performance of the Fock builds is 75 %

as opposed to 55 %.
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Figure 2.1: Ethylene solvated by 115 waters. The structures were generated using
TIP3P waters with a solvation shell of 1.5 Å

500 1000 1500 2000
Number of Cores

0

5

10

15

20

25

30

S
p
e
e
d
-u

p
  
( S(N

)

S
(6

4)

)

5963 s

Ideal

Integral Transformation

Orbital Gradient

Overall

Figure 2.2: Ethylene solvated by 115 waters. Speed-ups are done to relative to 64
cores. We show the speed-ups for the integral transformation, the orbital gradient,and
the overall timings for AO-CASSCF.
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2.3.2 Spin splittings in TM complexes

Spin splittings provide an interesting challenge for CASSCF. Unlike many other

methods, CASSCF provides a flexibility to describe the open-shell singlet species.

In recent years, an accurate description of spin splittings and exchange couplings

has become an important area in molecular magnetism. For systems with only two

spin centers and one electron per center, we can model the exchange coupling as a

singlet-triplet splitting (J = ES - ET ). We perform computations on a copper oxylate

compound denoted as CuOC and shown in Fig. 2.3[63]. Geometries were obtained

via the supplementary information of Ref 63. We used both the def2-SVP and the

def2-TZVP basis sets.[64] The two singly occupied orbitals were used for our active

space. We used 8 OpenMP threads per MPI process.

For def2-SVP, we performed a series of computations from 8 cores to 1024 cores.

We notice that the timings for def2-SVP become too small to get reliable speedups

once you reach 1024 cores. This is mainly due to the size of the problem. However,

we still show 66 percent efficiency with 1024 cores. Fig. 2.4 shows the speed-ups

from 8 cores to 1024 cores and Table 2.2 shows the overall timings for the CASSCF

procedure. At 1024 cores, the entire CASSCF procedure takes about 222 s of wall

time. With the def2-TZVP, we can still attain 56 percent efficiency with 2048 cores.

A major limitation of our program is that only the Fock build is parallel, so we are

not able to speed-up any of the linear algebra and other potentially computational

expensive steps. This leads to some limitation on the scalability. However, the entire

CASSCF procedure requires 1253 s of wall time. The spin splittings of CuOC are

obtained in less than an hour with both the def2-SVP and def-TZVP basis sets. We

obtained J values of −8.2 cm−1 and −8.7 cm−1 for the def2-SVP and def2-TZVP

basis sets and the experimentally value is −37.0 cm−1.
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H C N O Cu

Figure 2.3: A large transition metal complex used as a test set for computing spin
splittings. The molecule is a Copper oxalate compound.
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Figure 2.4: Speed-ups for the integral transformation, orbital gradient, and the overall
iteration for CuOC. A def2-SVP basis set with 970 basis functions was used. All
speed-ups of were done relative to 8 cores. The value on the graph represents the
overall time for 1024 cores.
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Figure 2.5: Speed-ups for the integral transformation, orbital gradient, and the overall
iteration for CuOC. A def2-TZVP basis set with 1726 basis functions was used. All
speed-ups of computed relative to 16 cores. The value on the graph represents the
overall time for 2048 cores.
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Table 2.2: Speed-ups, efficiencies, and overall for CASSCF computation with both
the def2-SVP and def2-TZVP basis sets. Overall timing corresponds to the the entire
CASSCF procedure. Speed-up is defined as S(N)

S(8)
for def2-SVP and S(N)

S(16)
for def2-

TZVP.

Basis Cores Overall Timing Speed-up Efficiency

Def-SVP

8 18143.00 1.00 1.00
16 8443 2.15 1.07
32 4279 4.24 1.06
64 2319 7.82 0.98
128 1350 13.44 0.84
256 711 25.52 0.80
512 386 47.00 0.73
1024 222 81.73 0.64

Def-TZVP

16 90418 1.00 1.00
32 45271 2.00 1.00
64 25235 3.58 0.90
128 15189 5.95 0.74
256 7534 12.00 0.75
512 3864 23.40 0.73
1024 2165 41.76 0.65
2048 1253 73.45 0.56

2.3.3 Polycarbene

In this section, we demonstrate the scability of the subgroup algorithm on a poly-

carbene molecule with a STO-3G basis set. We used this basis set as it demonstrates

what will happen to our algorithm once communication becomes a bottleneck. Our

algorithm requires a user defined entry of how many densities will be given to each

subgroup or processors. A density group number of 5 corresponds to 11 densities

per processor group. The number of densities is computed as NA(NA + 1)/2, so for

10 active orbitals, we have 55 densities. We test a density group number of both

5 and 11. We choose to use 440, 880, 1320, 1760, and 2220 cores as a test. These

cores were chosen to make it possible to compare results between the different size

density groups. For a density group of 5, the number of processors per density group

is defined as the number of processors divided by the density group. We also compare

the against the normal algorithm which is denoted as DG 1.
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Table 2.3 presents timings for the various different density subgroups. For the

normal algorithm, the communication of GTFock starts to become the major bottle-

neck. At 880 cores, the integral transform reaches a minimum of 1.56 seconds, but as

the number of cores increases, the integral transformation starts to increase. This is

primarily due to the increase of communication. By allowing multiple densities to be

processed in parallel, we notice that the integral transformation decreases thus allow-

ing our integral transformation to scale with more cores. For 2220 cores, we achieve

nearly 4 times the speed-up relative to the normal algorithm. The major reason for

this speed-up is due to the reduced communication by using processor subgroups.

Processor subgroups allow one to split the MPI communicators into separate groups.

By splitting the communicators, the number of cores present in each communicator

decreases leading to lower communication time. This algorithm benefits from this re-

duced communication only when communication starts to become a bottleneck. The

lower basis set allows this behavior to appear when using much fewer cores. A larger

basis set would scale for more cores, but eventually, communication would start to

dominate.

Table 2.3: The performance of the DG algorithm for polycarbene with a density group
of 1, 5, and 11, respectively. The timings are for one integral transformation.

Cores Density Groups timings (s)
1 5 11

440 1.70 1.34 1.73
880 1.56 0.79 0.94
1320 1.61 0.63 0.72
1760 1.87 0.54 0.55
2220 2.25 0.52 0.49

2.4 Conclusion

In this work, we introduce an MPI/OpenMP implementation of the AO-CASSCF.

The major bottlenecks of CASSCF can be formulated as a series of generalized

Coulomb- and exchange-like builds. By using the Fock builder, GTFock, we were
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able to implement a parallel CASSCF algorithm. We also demonstrate that we are

able to run up to 2048 cores with at least 60 percent efficiency in some cases. We

also introduced a new algorithm for potential benefit for use in developing Parallel

CASSCF algorithms for large active spaces.

2.5 Acknowledgments

This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Workforce Development for Teachers and Scientists, Office

of Science Graduate Student Research (SCGSR) program. The SCGSR program is

administered by the Oak Ridge Institute for Science and Education for the DOE under

contract number DESC0014664. This work was also partially supported via Emory

start up funds. (A portion of) The research was performed using EMSL, a DOE Office

of Science User Facility sponsored by the Office of Biological and Environmental

Research. (Part of ) The work described in this article was performed by Pacific

Northwest National Laboratory, which is operated by Battelle for the United States

Department of Energy under Contract DE-AC05-76RL01830.

2.6 Appendix

In this section, for the MO indexing, we will use the following notation: i, j for

core orbitals; a, b for virtual orbitals; u, v, x, y for active orbitals; and p, q, r for

general molecular orbitals. The notation µ, ρ, σ, and τ correspond to atomic orbitals.

Φ corresponds to a slater determinant indexed with I. Ê corresponds to a spin-free

excitation operator.

The wavefunction for CASSCF is parameterized as follows,

|ΨCASSCF〉 =
∑

I

e−κ̂cI |ΦI〉 , (2.12)

where cI is the CI coefficients obtained via solution of the CI step and κ̂ is the orbital
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rotation operator,

κ̂ =
∑

p<q

κpq(Êpq − Êqp), (2.13)

and Êpq are the spin-free excitation operators. Solving both the CI coefficients and

orbital rotations is done via a Newton-Rhapson approach,

E(2) = E0 + κTpqgpq + κTpqhpq,rsκpq (2.14)

gpq = 〈0|[Ĥ, Êpq − Êqp]|0〉 (2.15)

hpq,rs = 〈0|[ [Êpq − Êqp, Ĥ], Êpq − Êqp]|0〉 (2.16)

κipq = κi−1
pq − h−1

pq,rsgrs (2.17)

At convergence, the orbital gradient must be equal to zero. The computation of the

orbital gradient is directly related to the computation of the CASSCF Fock matrix,

gpq = Fpq − Fqp, (2.18)

Fpq = γpmhqm + Γpuxy(qu|xy). (2.19)

Obtaining efficient implementations of CASSCF involves taking advantage of the

sparsity of both the one particle density matrix (γ and Γ),

γpq =
∑

IJ

cIcJ 〈ΦI |Êpq|ΦJ〉 , (2.20)

Γpqrs =
1

2

∑

I

∑

J

〈ΦI |ÊpqÊrs − δqrÊps|ΦJ〉 . (2.21)

The orbital gradient can be computed from the inactive Fock matrix (IFpq) and the

active Fock matrix (AFpq),

IFpq = hpq + 2(pq|rs)− (ps|rq), (2.22)

AFpq = γux

[
(pq|ux)− 1

2
(px|uq)

]
. (2.23)

Using these intermediates, the CASSCF Fock matrix can be computed quite effi-
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ciently,

Fmp = 2IFpm + 2AFpm (2.24)

Fup =
∑

w

IFpwγuw +
∑

uxy

Γtuxy(pu|xy) (2.25)

Fen = 0 (2.26)

The nonredundant contributions to the diagonal hessian approximation is,[52]

hmm,ee = 4(IFee + AFee − IFii − AFee) (2.27)

huu,ee = 2γuu(
IFee + AFaa) (2.28)

−2.0(
∑

p

IFp,uγtu +
∑

p

(pu|xy)Γtuxy)

hii,uu = 4.0(IFuu + AFuu) + 2γuu
IFii + 2γuu

AFii (2.29)

−4(IFii + AFii) + 2(
∑

p

IFp,uγtu +
∑

p

(pu|xy)Γtuxy)

With both the orbital gradient and the diagonal hessian formed, the rotation operator

can be formed.

K̂pq = e−κ̂ (2.30)

Ci+1
σp = C(0)

σq K̂pq (2.31)

Evaulating the matrix exponential is done via taylor expansion and through a

scaling and squaring method.[65, 66] The taylor expansion is expanded to third order

and then the columns are reorthogonalized via a gram-schmidt procedure. We found

that the gram-schmidt procedure became a bottleneck for large number of basis func-

tions, so we also implemented the scaling and squaring method. We found that the

scaling and squaring method was faster than the Taylor series, so all of our timings

are presented with the scaling and squaring method. It is important to state that for

a truly scalable CASSCF algorithm one would need to implement a parallel algorithm

for the evaulating of this matrix exponential.
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Chapter 3 An integral-factorized implemen-
tation of the driven similarity renormal-
ization group second-order multireference
perturbation theory

3.1 Introduction

Second-order Møller–Plesset perturbation theory (MP2) is perhaps one of the

simplest approach to treat dynamic electron correlation in atoms and molecules.[67]

Efficient implementations of MP2 may be achieved via techniques that factorize the

two-electron integrals such as density fitting (DF)[68, 69] or Cholesky decomposition

(CD).[70–75] Due to lower storage requirements, integral factorization techniques sig-

nificantly reduce the cost of MP2 calculations and easily permit to target systems

with 2000–3000 basis functions.[76] Linear scaling[76–79] and stochastic[80–82] im-

plementations of MP2 can further reduce the asymptotic computational scaling of

MP2 from O(N5) to O(N), where N is the number of basis functions.

However, when MP2 is applied to study open-shell species, the buildup of static

correlation due to near-degenerate exd configurations can lead to the divergence of the

correlation energy. In this case, it is necessary to use a multireference generalization

of perturbation theory (MRPT) that can handle both dynamic and static correlation

effects. In practice, the distinction between dynamic and static correlation is enforced

by dividing the full configuration interaction space into a reference space and its

orthogonal complement. The reference space consists of determinants generated by

varying the occupation of the close-lying active orbitals, and consequently captures

static correlation effects. Numerous multireference perturbation theories have been

proposed,[83–89] many of which have been conveniently reviewed and compared in
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Refs. 87 and 88.

A troubling aspect of several multireference perturbation theories is the well-

known intruder-state problem.[90] Intruder states are encountered when determinants

that lie within the reference space become near-degenerate with determinants that

lie in the orthogonal complement. In perturbative theories, intruders lead to diver-

gences in the first-order amplitudes, and the corresponding potential energy curves

show characteristic spikes.[91–93] A popular solution to remove intruders is shifting

the energy denominators.[94] However, level shifting can significantly affect computed

spectroscopic constants[95] and the order of electronic states.[96] In the second-order

n-electron valence state perturbation theory (NEVPT2),[86, 97, 98] intruders are re-

moved by using Dyall’s modified zeroth-order Hamiltonian.[99] Nevertheless, Zgid et

al.[100] noticed that if the three- and four-particle density cumulants are approxi-

mated then “false intruders” may also appear in NEVPT2.

The importance of the intruder-state problem is not limited to multireference per-

turbation theories. In the case of multireference coupled cluster theories (MRCC)[101–

110] and other nonperturbative theories of dynamical correlation,[111–113] intruders

cause numerical instability problems. In this case, however, it is more appropriate talk

of intruder solutions, which arise from existence of multiple solutions to the MRCC

equations.[92] Unfortunately, it is still not clear whether or not traditional techniques

used to remove intruders in MRPT can be extended to the case of nonperturbative

multireference methods. Therefore, finding a solution to the problem of intruders

in MRPT might also shed light on how to create highly-accurate multireference ap-

proaches that are numerically stable.

Recently, we have proposed the driven similarity renormalization group (DSRG),[114]

a many-body formalism inspired by flow renormalization group methods.[115–121]

The DSRG was used to formulate a theory of dynamic electron correlation that is

free from divergences due to vanishing denominators. In the unitary DSRG ansatz,
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the bare Hamiltonian (Ĥ) is progressively brought to a block-diagonal form (renor-

malized) via a continuous unitary transformation [Û(s)] controlled by the so-called

flow variable s:

Ĥ → H̄(s) = Û(s)ĤÛ †(s), s ∈ [0,∞). (3.1)

In the limit s→∞ the DSRG unitary operator Û(s) is required to block-diagonalize

the Hamiltonian. More specifically, if we indicate the non-diagonal part of H̄(s) with

[H̄(s)]N,[122, 123] then we require that in the limit of s that goes to infinity, the DSRG

transformation must zero the nondiagonal parts of H̄(s), that is lims→∞[H̄(s)]N =

0. For intermediate values of s, the DSRG transformation achieves a partial block-

diagonalization of the Hamiltonian, leaving states that differ in energy by less than

the energy cutoff Λ = s−1/2 mostly unchanged.[115, 124–126] Consequently, in the

DSRG the mixing of reference-space determinants with close-lying determinants in

the orthogonal complement is suppressed and intruder states are avoided.

Another distinctive aspect of the DSRG is that it employs a Fock-space many-body

formalism,[127, 128] such that Eq. (3.1) should be interpreted as a set of operator

equations. Nooijen and coworkers[107] recently pointed out that a many-body for-

mulation of multireference theories is advantageous because it removes the need to

orthogonalize the excitation manifold. The orthogonalization step is often a bottle-

neck that prevents computations with large active spaces. For example, in a study

of the complete active space perturbation theory (CASPT2)[83, 129–131] coupled

with the density matrix renormalization group (DMRG),[54, 58, 132, 133] Yanai and

Kurashige [134] found that the perturbation theory is limited to approximately 30

active orbitals per irreducible representation due to the required diagonalization of

the overlap metric between internally-contracted configurations.

In a previous work,[135] we formally extended the DSRG to multireference cases

(MR-DSRG) by employing the generalized Wick theorem of Mukherjee and Kutzelnigg.[136]

To study the viability of the MR-DSRG approach we performed a perturbative anal-



23

ysis and derived a second-order MR-DSRG perturbation theory (DSRG-MRPT2).

The DSRG-MRPT2 energy and amplitude equations are surprisingly simple and lead

to a computational approach that requires at most the three-body cumulant of the

reference wave function. Benchmark computations on small systems (HF, N2, and

p-benzyne) showed that the DSRG-MRPT2 has an accuracy comparable to that of

other second-order MRPTs. The DSRG-MRPT2 method avoids the intruder-state

problem without the use of level-shifting or increasing the size of the active space.

In addition, it is rigorously size consistent,[137, 138] and thus applicable to large

systems.

The present work focuses on the efficient implementation of the DSRG-MRPT2

theory to extend its applicability to chemically interesting systems. We carefully an-

alyze each energy contribution, and realize the possibility to factorize some terms by

taking advantage of the structure of the one-particle and one-hole density matrices.

In most common applications, the cost of the improved algorithm is comparable to

that of MP2. The simplicity of the DSRG-MRPT2 equations allows us to utilize

common integral factorization techniques,[139] including density fitting and Cholesky

decomposition, to reduce the memory and disk requirements. In addition to MP2,

various electronic structure methods have benefited from these integral factorization

tactics.[76, 140–145] For instance, the Cholesky-decomposed CASPT2 has been ap-

plied to systems with up to 1500 basis functions[146, 147] and the density-fitted

NEVPT2 has been used in applications with up to 2000 basis functions.[97, 148]

This paper proceeds as follow. In Sec. II, we start with an overview of the DSRG-

MRPT2 theory and integral factorization techniques. Then, in Sec. III we analyze the

computational complexity of each energy term and detail our current implementation.

Section V presents applications of DSRG-MRPT2 to evaluate the singlet-triplet split-

tings of naphthynes. Finally, we discuss future developments of the DSRG-MRPT2.
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3.2 Theory

3.2.1 The MR-DSRG formalism

In this section we briefly summarize the MR-DSRG approach.[135] We assume

that the reference is defined by a set of spin orbitals φp partitioned into core (C),

active (A), and virtual (V) subsets of size NC, NA, and NV, respectively. Core

orbitals are designated by indices m,n, active orbitals by indices u, v, w, x, y, z, and

virtual orbitals by indices e, f . We also introduce two composite orbital subsets:

hole (H = C ∪ A) and particle (P = V ∪ A) of dimension NH = NC + NA and

NP = NV + NA, respectively. Orbitals belonging to hole set are associated with the

labels i, j, k, l, while particle orbitals are labeled with a, b, c, d. General orbitals (hole

or particle) are labeled as p, q, r, s.

We consider the case of a complete active space (CAS) self-consistent field (CASSCF)

or a CAS configuration interaction (CASCI) reference wave function Φ obtained by

doubly occupying the core orbitals and distributing a given number of active electrons

(nact) in the active orbitals [CAS(nact, NA)]. The reference Φ defines the Fermi vac-

uum with respect to which all operators are normal ordered according to Mukherjee

and Kutzelnigg’s generalized Wick theorem.[136, 149–153] From the reference wave

function we also extract the one-particle density matrix (γpq ) as well as the two- and

three-body cumulants (λxyuv, λ
xyz
uvw),[136, 154, 155] defined as:

γpq = 〈Φ|â†pâq|Φ〉 , (3.2)

λxyuv = γxyuv − γxuγyv + γyuγ
x
v , (3.3)

λxyzuvw = γxyzuvw −
∑

π

(−1)πγxuλ
yz
vw − det(γxuγ

y
vγ

z
w), (3.4)

where â†p (âq) is a second-quantized creation (annihilation) operator, while γxyuv =

〈Φ|â†xâ†yâvâu|Φ〉 and γxyzuvw = 〈Φ|â†xâ†yâ†zâwâvâu|Φ〉 are the reference two- and three-

particle density matrices, respectively. In Eq. (3.4) det(·) indicates the sum of all

permutations of lower labels with a sign factor corresponding to the parity of permu-
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tations and
∑

(−1)π indicates a sum over all permutations of the lower and upper

labels with a sign factor corresponding to the parity of a given permutation. Note

that for a CASSCF/CASCI reference the cumulant are null unless all indices belong

to the active space. For convenience we also define the one-body cumulant as λvu = γvu,

with u, v ∈ A. The MR-DSRG equations for the amplitude and energy [E(s)] are

given by:

E(s) = 〈Φ|H̄(s)|Φ〉 , (3.5)

[H̄(s)]N = R̂(s), (3.6)

where R̂(s) is the source operator, a s-dependent Hermitian operator that drives the

transformation of the Hamiltonian. Thus, the unitary operator, Û(s), is implicitly

defined by R̂(s). The unitary operator Û(s) that controls the DSRG transformation

is expressed as the exponential of an anti-Hermitian operator Â(s), that is, Û(s) =

exp[Â(s)]. The operator Â(s) is conveniently expressed in terms of the coupled cluster

excitation operator T̂ (s), so that Â(s) = T̂ (s)− T̂ †(s). Note that internal amplitudes

that involve only active-orbital indices are excluded from T̂ (s), that is txy...uv...(s) = 0

∀u, v, x, y · · · ∈ A.

3.2.2 The DSRG-MRPT2 method

The starting point of the DSRG-MRPT2 approach is the partitioning of the

normal-ordered Hamiltonian into a zeroth-order part [Ĥ(0)] plus a first-order per-

turbation [Ĥ(1)]. The zeroth-order Hamiltonian is chosen to contain the reference

energy (E0) and the diagonal block of the one-body operator [F̂ (0)]:[135]

Ĥ(0) = E0 + F̂ (0), (3.7)

F̂ (0) =
∑

p

εp{âpp}, (3.8)



26

where the orbital energies εp = fpp are the diagonal elements of the generalized Fock

matrix:

f qp = hqp +
∑

rs

vqsprγ
r
s . (3.9)

The quantities hqp = 〈φp|ĥ|φq〉 and vrspq = 〈φpφq||φrφs〉 are respectively one-electron

and antisymmetrized two-electron integrals in the molecular orbital (MO) basis.

As is the case for other perturbation theories, we find it advantageous to formulate

the DSRG-MRPT2 in a basis of semicanonical molecular orbitals[156] so that the core,

active, and virtual blocks of the generalized Fock matrix are diagonal. This choice

implies that F̂ (1) only contains contributions from the off-diagonal blocks of the Fock

matrix.

The DSRG-MRPT2 equations may be obtained from Eqs.(3.5) and (3.6) by per-

forming a order-by-order expansion.[157] The zeroth-, first-, and second-order energy

expressions are given by:[135]

E(0)(s) = E0, (3.10)

E(1)(s) = 0, (3.11)

E(2)(s) = 〈[H̃(1)(s), T̂ (1)(s)]〉 , (3.12)

where H̃(1) is an effective first-order Hamiltonian with modified non-diagonal compo-

nents:

H̃(1)(s) = Ĥ(1)(s) + [R̂(1)(s)]N, (3.13)

while the diagonal components of H̃(1) are identical to those of Ĥ(1).

A first-order expansion of the MR-DSRG amplitude equations leads to the equa-

tion:

[Ĥ(1)]N + [Ĥ(0), T̂ (1)]N = [R̂(1)(s)]N, (3.14)
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from which explicit equations for the first-order amplitudes can be derived:[135]

ti,(1)
a (s) = [f i,(1)

a +
A∑

ux

∆x
ut
iu,(1)
ax (s)γxu ]

1− e−s(∆i
a)2

∆i
a

, (3.15)

t
ij,(1)
ab (s) = v

ij,(1)
ab

1− e−s(∆ij
ab)2

∆ij
ab

. (3.16)

Here we have introduced the Møller–Plesset denominators ∆ij···
ab···, defined as ∆ij···

ab··· =

εi + εj + . . . − εa − εb − . . .. In the derivation of Eqs. (3.15) and (3.16) we used the

source operator introduced in Ref. 114, which is designed to reproduce the energy of

the second-order similarity renormalization group.[158]

Once the first-order amplitudes are solved, the second-order energy E(2)(s) can

be obtained via an efficient non-iterative procedure that requires at most three-body

density cumulants. For convenience, we list all DSRG-MRPT2 energy contributions

in Table 3.1. These quantities are expressed in terms of the modified first-order Fock

matrix:

f̃ i,(1)
a (s) =f i,(1)

a [1 + e−s(∆
i
a)2 ]

+ [
∑

ux

∆x
ut
iu,(1)
ax (s)γxu ]e−s(∆

i
a)2 , (3.17)

the modified two-electron integrals:

ṽ
ij,(1)
ab (s) =v

ij,(1)
ab [1 + e−s(∆

ij
ab)2 ], (3.18)

the one-particle and one-hole density matrix elements (γpq , η
p
q = δpq −γpq ), and the two-

and three-body density cumulants (λuvxy, λ
uvw
xyz ) of the reference Φ. Eqs. (3.15)–(3.18)

and the equations reported in Table 3.1 define the DSRG-MRPT2 method.

To highlight the mechanism by which the DSRG-MRPT2 avoids intruders, we

perform a Maclaurin expansion of the first-order amplitudes as a function of the

energy denominators. For example, the t2 amplitude [Eq. (3.16)] can be rewritten as:

t
ij,(1)
ab (s) = v

ij,(1)
ab

(
s∆ij

ab +O[s3/2(∆ij
ab)

3]
)
, (3.19)
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Table 3.1: DSRG-MRPT2 energy contributions. Following the Einstein convention,
summation over repeated indices is assumed. Asymptotic cost scalings are given in
big O notation.

Term Energy Expression Cost

〈[F̃ (1)(s), T̂
(1)
1 (s)]〉

A +f̃
b,(1)
j (s)t

i,(1)
a (s)γji η

a
b N2

PN
2
H

〈[Ṽ (1)(s), T̂
(1)
1 (s)]〉

B +1
2
ṽ
ev,(1)
xy (s)t

u,(1)
e (s)λxyuv N4

ANV

C −1
2
ṽ
uv,(1)
my (s)t

m,(1)
x (s)λxyuv N4

ANC

〈[F̃ (1)(s), T̂
(1)
2 (s)]〉

D +1
2
f̃
e,(1)
x (s)t

uv,(1)
ey (s)λxyuv N4

ANV

E −1
2
f̃
v,(1)
m (s)t

um,(1)
xy (s)λxyuv N4

ANC

〈[Ṽ (1)(s), T̂
(1)
2 (s)]〉

F +1
4
ṽ
cd,(1)
kl (s)t

ij,(1)
ab (s)γki γ

l
jη
a
c η

b
d N3

PN
2
H

G +1
8
ṽ
cd,(1)
xy (s)t

uv,(1)
ab (s)ηac η

b
dλ

xy
uv N4

AN
2
P

H +1
8
ṽ
uv,(1)
kl (s)t

ij,(1)
xy (s)γki γ

l
jλ

xy
uv N4

AN
2
H

I +ṽ
bu,(1)
jx (s)t

iv,(1)
ay (s)γji η

a
bλ

xy
uv N4

ANPNH

J +1
4
ṽ
uv,(1)
mz (s)t

mw,(1)
xy (s)λxyzuvw N6

ANC

K +1
4
ṽ
we,(1)
xy (s)t

uv,(1)
ez (s)λxyzuvw N6

ANV

which approaches zero in the limit of |∆ij
ab| → 0. Thus for finite values of s, the

second-order energy, E(2)(s), is well-behaved and free from divergences due to small

energy denominators. One of the drawbacks of the DSRG-MRPT2 renormalization

procedure is that the final energy shows a dependence on the value of s used in a

computation. In our previous work,[135] we analyzed the s-dependence of the DSRG-

MRPT2 energy and found that the range s ∈ [0.1, 1.0] E−2
h gives the best agreement

with full configuration interaction results. Values of s that fall out of this “Goldilocks

zone” either lead to recovering too little correlation energy (when s� 0.1) or expose

the theory to intruders (when s� 1).

3.2.3 Integral factorizations

The simple structure of the MR-DSRG amplitude and energy equations (Table 3.1)

allows the use of integral factorization techniques such as DF and/or Cholesky de-
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composition to improve the efficiency of the DSRG-MRPT2. Integral factorization

techniques seek to approximate the electron repulsion integrals as a contraction of

two three-index tensors. The two-electron integrals written in chemist’s notation can

be factorized as:

(pq|rs) ≈
M∑

Q

BQ
pqB

Q
rs, (3.20)

where M is the size of the auxiliary basis set (χP (r)). In the DF approach, the factors

BQ
pq are given by:[41]

BQ
pq =

∑

P

(pq|P )[J−1/2]PQ, (3.21)

where (pq|P ) and JPQ are three- and two-center integrals defined as:

(pq|P ) =

∫
dr1

∫
dr2 φp(r1)φq(r1) r−1

12 χP (r2), (3.22)

JPQ =

∫
dr1

∫
dr2 χP (r1) r−1

12 χQ(r2). (3.23)

In this work we evaluate the DSRG-MRPT2 energy using the resolution of the identity

(RI) basis sets of Weigend and co-workers.[159] We note, however, that there is no

consensus on the most appropriate auxiliary basis set for multireference perturbation

theories.

In the CD approach, the factors BQ
pq are obtained directly via numerical Cholesky

decomposition[65] of the four-index two-electron integrals.[72–74] The upper bound

of the summation M in Eq. (3.20) is determined by a CD threshold, which measures

the error introduced by the Cholesky decomposition.[73, 74]

3.3 Implementation

An efficient implementation of the DSRG-MRPT2 is achieved by taking advantage

of the structure of the density matrices and integral factorization. In most practically

relevant cases, the number of active orbitals is negligible compared to the number of
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γp
q =





δpq p, q ∈ C

λp
q p, q ∈ A

0 otherwise

ηpq =





0 otherwise

− p, q ∈ A

δpq p, q ∈ V

δpq λp
q

A

C

V

A

C

V

Figure 3.1: The structures of one-particle density matrix γpq and one-hole density
matrix ηpq Non-zero elements of the one-particle and one-hole density matrices are
indicated respectively in red and blue.

core and virtual orbitals, that is we may assume that:

NA � NC < NV. (3.24)

Under this assumption, the most expensive term in the evaluation of the DSRG-

MRPT2 energy is term F of Table 3.1. This term originates from the contraction

〈[Ṽ (1)(s), T̂
(1)
2 (s)]〉 and is given by:

F =
1

4

H∑

ijkl

P∑

abcd

ṽ
cd,(1)
kl (s) t

ij,(1)
ab (s) γki γ

l
jη
a
c η

b
d. (3.25)

After factorization into intermediate tensors, the computational cost required to eval-

uate term F scales as O(N3
PN

2
H).

For a CASSCF/CASCI reference, we can reduce the cost of evaluating term F by

taking advantage of the structure of the one-particle and one-hole density matrices.

As illustrated in Fig. 3.1, γpq is diagonal in the core-core block and in the active-active

block it is equal to the one-body cumulant λpq . Upon explicit replacement of the one-

body density and hole density matrices into Eq. (3.25) we obtain eight contributions

(F1–F8) that are reported in Table 3.2. Each term is also represented as a diagram

in which one or more lines pass through a one-particle (red circle) or one-hole (blue

circle) vertex. The most expensive contributions to term F [Eq. (3.25)] is diagram F1,
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Table 3.2: DSRG-MRPT2 energy terms that arise from diagram F after taking into
account the block structure of the one-hole and one-particle density matrices. Con-
tractions involving the one-particle density matrix (γij) and hole indices are indicated
with a red circle, while contractions of the one-hole density matrix (ηab ) and particle
indices are indicated with a blue circle.

Term Diagram Expression

F1 e fm n
1
4

∑
mnef

ṽ
ef,(1)
mn (s)t

mn,(1)
ef (s)

F2 u

v
e fm

1
2

∑
mefuv

ṽ
ef,(1)
mu (s)t

mv,(1)
ef (s)γuv

F3
u

v
e m n

1
2

∑
mneuv

ṽ
ev,(1)
mn (s)t

mn,(1)
eu (s)ηuv

F4
y

x u

v
e f

1
4

∑
ef

∑
uvxy

ṽ
ef,(1)
xu (s)t

yv,(1)
ef (s)γxyγ

u
v

F5
u x

v y
m n

1
4

∑
mn

∑
uvxy

ṽ
vy,(1)
mn (s)t

mn,(1)
ux (s)ηuvη

x
y

F6
u

v x

y
e m

∑
me

∑
uvxy

ṽ
ve,(1)
mx (s)t

my,(1)
ue (s)γxyη

u
v

F7
x u

z v y

w
e

1
2

∑
wxyz

∑
euv

ṽ
ve,(1)
yz (s)t

wx,(1)
ue (s)γywγ

z
xη

u
v

F8
u x

v y w

z
m

1
2

∑
mwz

∑
uvxy

ṽ
vy,(1)
mw (s)t

mz,(1)
ux (s)γwz η

u
vη

x
y

i

j
γij

a

b ηab

which has a computation scaling of O(N2
VN

2
C), followed by F2 and F3, which scale

as O(N2
VNANC) and O(NVNAN

2
C), respectively. The remaining diagrams shown in

Table 3.2 (F4–F8) carry at least two active indices and are significantly less expensive

to evaluate.

Diagram F1 may be written in a form that is reminiscent of the MP2 correlation

energy:

1

4

C∑

mn

V∑

ef

|vefmn|2
1− e−2s(∆mn

ef )2

∆mn
ef

. (3.26)

Eq. (3.26) can be implemented in an efficient way by an outer loop over pairs of

occupied orbitals m and n. For each pair (m,n) we compute all the antisymmetrized
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Figure 3.2: The scaling of diagram F1 of Table 3.2 for (2, 3)-naphthyne using a cc-

pVTZ basis set. The speed up is determined as S(1)
S(N)

where S(i) is the total time
required to evaluate this term using i threads. Results are for up to 8 threads on an
Intel Xeon E5-2650 v2 processor.

two electron integrals (vefmn,∀e, f) using the DF or CD factors. The integrals squared

are then contracted with the renormalized denominators [1−e−2s(∆mn
ef )2 ]/∆mn

ef through

a dot-product operation to give a pair energy for every m and n.[160] The loop over

the (m,n) pairs is parallelized using OpenMP for shared memory architectures. The

scaling of the implementation of Eq. (3.26) on a eight-core processor is demonstrated

in Fig. 3.2. Our implementation is also optimized for the evaluation of diagrams F2

and F3 so that no storage of large four-index intermediate quantities is necessary.

The DSRG-MRPT2 equations are implemented in our code Forte,[161] a suite of

multireference methods written as a plugin to the Psi4 quantum chemistry package.[162]

All tensor contractions were coded using the open-source library Ambit.[163] Ambit

provides shared memory parallelization and performs tensor contractions using BLAS

operations. A very convenient feature of Ambit is its ability to deal with compos-

ite orbital spaces. Figure 3.3 gives an example of a tensor contraction encountered

in the DSRG-MRPT2 equations and how it is implemented via Ambit. Compos-

ite spaces are defined from “primitive” spaces (for example, the sets of core, active,

virtual molecular orbitals) and arise naturally in all multireference theories based on

a CASCI/CASSCF reference. Ambit is aware of composite orbital spaces and can
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I[”ja”] = gamma[”ji”] * t1[”ia”];

Ija =
H

i

γj
i t

i
a

=A

C

V

Tensor contraction

C++ code

Contractions between block-sparse tensors

Figure 3.3: This figure illustrates the ability of the Ambit tensor library to deal with
block-sparse tensors that span composite orbital space. The tensor contraction shown
at the top involves a summation over the index j that spans the generalized orbitals
space (H), which is the union of the core (C) and active (A) orbitals. The tensors γji
and tia are defined over subsets (shown in orange) of the full orbital indices and are
block sparse. For example, the A-A block of tia is zero because internal amplitudes
are not defined in the DSRG-MRPT2. Ambit allows to write contractions over
block-sparse tensors as contractions over composite index tensors, thus, reducing the
number of equations required to include in the source code.

perform contractions over block-sparse tensors. This feature greatly simplifies the

implementation of multireference theories since it allows the user to directly encode

tensor contractions that involve composite orbital indices.

In summary, the following procedure was used for computing the DSRG-MRPT2

energy using DF or CD integrals:

1. Compute γqp, η
q
p, λ

xy
uv, and λxyzuvw for the CASSCF/CASCI reference.

2. Compute the Fock matrix from γqp and the DF/CD tensors.

3. Canonicalize the core, active, and virtual MOs.

4. Form the antisymmetrized two electron integrals with at least two active index

from the DF/CD tensors.

5. Transform all the density matrices, cumulants, and integrals to the semi-canonical

basis.

6. Compute the second order energy terms A–E, G–K, and F4–F8 using the Ambit
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library.

7. Compute the energy terms F1–F3 with an optimized algorithm that does not

require storage of four-index intermediates.

We note that the use of DF/CD factorized integrals does not change the computa-

tional scaling of the DSRG-MRPT2 algorithm. However, there is a significant reduc-

tion in computational, memory, and I/O costs from avoiding the transformation of

the four-index two-electron integrals necessary in a conventional implementation.[76]

3.4 Computational Details

In this work, we studied the singlet-triplet splittings (∆EST = ES − ET) of ten

naphthyne isomers. Each isomer is designated as (i, j)-naphthyne, and it is formally

obtained by removing two hydrogens from the carbons at i and j positions of a

naphthalene. Figure 3.4 shows the numbering scheme of naphthalene used in this

work.

8

7

6

5
10

4

3

2

1
9

Figure 3.4: Naphthalene numbering scheme used in this study. The notation (i, j)-
naphthyne indicates that two hydrogen atoms were removed from positions i and
j.

Following Ref. 164, we optimized the geometry of singlet (1,3)-, (2,6)-, and (1,6)-

naphthyne isomers at the CASSCF/cc-pVDZ level of theory with a CAS(4,4), CAS(2,2),

and CAS(2,2) active space, respectively. All other naphthyne isomers were optimized

using Becke’s three-parameter exchange[165] and Lee-Yang-Parr correlation[166] (B3LYP)

functional and the cc-pVDZ[167] basis set. Unrestricted Kohn-Sham orbitals were

used for both singlet and triplet states. Geometry optimizations were performed
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using the NWChem [168] software package.

Table 3.3: Point group symmetries for all naphthyne isomers along with the cor-
responding minimal active spaces in Cotton’s ordering.[169] We use the following
ordering for Cs, C2v and C2h: (a′,a′′), (a1, a2, b1, b2), and (ag, bg, au, bu). For exam-
ple, the notation (2, 10) means that the active space is composed of two a′ orbitals
and ten a′′ orbitals. For (1,4)-, (1,8)-, (2,3)-, and (2,7)-naphthynes, the molecules are
placed in the xz plane, where z is the C2 rotation axis. All other naphthynes are
placed in the xy plane.

Active Space
Isomer Sym. States CAS(2,2) CAS(12,12)

1,2 Cs
1A′, 3A′ (2, 0) (2, 10)

1,3 Cs
1A′, 3A′ (2, 0) (2, 10)

1,4 C2v
1A1, 3B1 (1, 0, 1, 0) (1, 5, 1, 5)

1,5 C2h
1Ag,

3Bu (1, 0, 0, 1) (1, 5, 5, 1)
1,6 Cs

1A′, 3A′ (2, 0) (2, 10)
1,7 Cs

1A′, 3A′ (2, 0) (2, 10)
1,8 C2v

1A1, 3B1 (1, 0, 1, 0) (1, 5, 1, 5)
2,3 C2v

1A1, 3B1 (1, 0, 1, 0) (1, 5, 1, 5)
2,6 C2h

1Ag,
3Bu (1, 0, 0, 1) (1, 5, 5, 1)

2,7 C2v
1A1, 3B1 (1, 0, 1, 0) (1, 5, 1, 5)

State-specific DSRG-MRPT2 computations used a CASCI reference. The active

spaces for different naphthyne isomers are reported in Table 3.3. Since at the mo-

ment we do not have access to a DF/CD CASSCF implementation, we opted for

evaluating the energy of both the singlet and triplet states using restricted open-

shell Hartree–Fock (ROHF) orbitals. This choice of orbitals is certainly not optimal,

and may lead to an imbalanced treatment of singlet and triplet states. Dunning’s

correlation-consistent cc-pVXZ (X = D, T, Q, 5) basis sets[167, 170] were used

to deduce basis set effects, and the corresponding auxiliary basis sets were chosen

as cc-pVXZ-JKFIT basis sets[171] for ROHF computations and cc-pVXZ-RI basis

sets[159, 172] for DSRG-MRPT2 computations. We used a value of s = 0.5 E−2
h , and

kept the 1s-like orbitals on carbon atoms frozen for all DSRG-MRPT2 computations.
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3.5 Results

3.5.1 Singlet-triplet splittings of naphthyne diradicals

In this section we will demonstrate how our efficient implementation of the DSRG-

MRPT2 can be used to obtain the singlet-triplet splitting of naphthynes with fairly

large basis sets. Among arynes,[173–175] the electronic structure of ortho, meta, and

para benzyne has been well characterized from the point of view of both experiment

and theory.[164, 176–182] However, in the case of naphthynes, singlet-triplet splittings

have been investigated mostly by theoretical studies[164, 177, 183, 184] and, to the

best of our knowledge, no experimental values have been reported.

Table 3.4: Analysis of the DSRG-MRPT2 energy error (in kcal mol−1) introduced
by density fitting (DF) and Cholesky decomposition (CD). Statistics were computed
from the singlet-triplet splittings of the ten naphthyne isomers. Density fitting results
were obtained using the cc-pVDZ-RI auxiliary basis set, while Cholesky vectors were
generated using a threshold of 10−5 Eh.

Factorization Statistics VDZ*a cc-pVDZ

DF
MAXb 0.017 0.017
MAEc 0.007 0.007
σd 0.005 0.005

CD
MAXb 0.003 0.004
MAEc 0.002 0.002
σd 0.001 0.001

a The VDZ* basis set is constructed from the cc-pVDZ basis set by removing the p
functions for hydrogen atoms.

b Maximum absolute error: MAX = max(|∆i|).
c Mean absolute error: MAE = 1

10

∑10
i=1 |∆i|.

d Standard deviation: σ = [ 1
10

∑10
i=1(∆i − ∆̄)2]1/2, where ∆̄ = 1

10

∑10
i=1 ∆i.

We first verify the accuracy of the integral factorization techniques by performing

DSRG-MRPT2 computations with DF, CD, and conventional integrals. Table 3.4

reports an analysis of the errors introduced by the DF and CD approximations when

applied to compute ∆ST. These results show that both approximations introduce

errors that are well within chemical accuracy: the maximum absolute error for DF

and CD is only 0.017 and 0.003 kcal mol−1, respectively.
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Table 3.5: Adibatic singlet-triplet splittings (∆EST = ES−ET) of naphthyne
diradicals computed with the DF-DSRG-MRPT2 approach and a variety of
basis sets. All computations utilized ROHF triplet orbitals. Carbon 1s-
like orbitals were excluded from the DSRG-MRPT2 treatment of correlation
energy.

Naphthyne Isomers
Group I Group II Group III

Active Space Basis 1,2 2,3 1,3 1,5 1,6 1,4 2,7 2,6 1,7 1,8

CAS(2,2)

cc-pVDZ −30.2 −24.9 −11.7 1.3 1.4 6.4 0.9 1.3 5.2 3.7
cc-pVTZ −33.5 −28.3 −14.1 0.3 −0.8 5.3 0.3 −0.8 4.2 3.0
cc-pVQZ −34.4 −29.2 −14.4 0.0 −1.1 5.1 0.1 −1.1 4.1 2.9
cc-pV5Z −34.7 −29.5 −14.5 0.0 −1.2 5.1 0.0 −1.1 4.0 2.9

CAS(12,12)
cc-pVDZ −29.0 −24.3 −11.0 0.8 2.0 5.3 1.3 1.3 5.2 4.3
cc-pVTZ −32.6 −27.8 −13.7 −0.4 −0.2 4.2 0.6 −0.8 4.2 3.4
cc-pVQZ −33.6 −28.9 −14.2 −0.6 −0.5 4.1 0.3 −1.0 4.0 3.3

c1/c2
a 2.6 2.5 1.6 1.3 1.0 1.3 1.1 1.0 1.1 1.2

a The ratio of CI coefficients between the two dominant determinants in a
CAS(2,2). This characteristic was used to separate the naphthynes into
three separate groups.
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Table 3.5 reports adiabatic singlet-triplet splittings of the ten naphthyne isomers

computed with the DSRG-MRPT2 approach using various basis sets (cc-pVXZ, with

X = D, T, Q, 5). These results were computed using two active spaces: 1) CAS(2,2)

which consists of two carbon σ orbitals on radical centers and 2) CAS(12,12), which

augments the CAS(2,2) space with ten carbon π orbitals.

Following the analysis of Squires and Cramer,[177] we separate the naphthyne iso-

mers into three different groups characterized by different magnitudes of the singlet-

triplet splitting.[164] Group I naphthynes, which consists of (1,2) and (2,3)-naphthyne,

have adjacent radical centers and their ∆ST is comparable to that of o-benzyne (−37.5

± 0.3 kcal mol−1, from experiment).[178] For group I naphthynes, through-bond

interactions[176, 177] tend to stabilize the singlet state and are thus responsible for

the relatively large ∆ST value. Our best DSRG-MRPT2 estimates for the ∆EST of

(1,2) and (2,3)-naphthyne are −33.6 and −28.9 kcal mol−1, respectively.

Group II contains (1,3)-naphthyne, the only isomer with the two radical centers

in meta position. Our best estimate for the ∆ST value of this isomer is −14.2 kcal

mol−1, which is comparable to the value for m-benzyne (−21.0 kcal mol−1). Going

from group I to II, there is a buildup of diradical character, which is reflected in

the ratio between the two dominant configurations of the CAS(2,2) reference. This

quantity is reported at the bottom of Table 3.5, and it goes from 2.6–2.5 for group I

to 1.6 for group II naphthynes. Group III naphthynes have singlet-triplet splittings

that range from −1.0 to +4.1 kcal mol−1. This range is comparable to the ∆ST of

p-benzyne (−3.8 kcal mol−1). As indicated by the small c1/c2 ratio, these species are

almost pure diradicals.
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Table 3.6: Adiabatic singlet-triplet splittings (∆EST = ES − ET) of naphthyne diradicals computed with the DSRG-MRPT2,
CASPT2, and RMR-CCSD(T) approaches. All DSRG-MRPT2 computations used triplet ROHF orbitals and the cc-pVDZ-RI
auxiliary basis set. RMR-CCSD(T) results used RHF and ROHF orbitals for singlet and triplet states, respectively. CASPT2
results used CASSCF(12,12) orbitals. RMR-CCSD(T) and DSRG-MRPT2 results are based on the same geometries (from DFT
and CASSCF, see Sec. 3.4), while CASPT2 results are based on CASSCF(12,12) optimized geometries. The VDZ* basis set is
constructed from the cc-pVDZ basis set by removing hydrogen p functions.

Naphthyne Isomers
Group I Group II Group III

CAS/Basis Method 1,2 2,3 1,3 1,5 1,6 1,4 2,7 2,6 1,7 1,8

(2,2)/VDZ*
RMR-CCSD(T)a −35.2 −28.9 −12.7 −0.3 2.1 1.6 2.9 5.7 6.5 6.5
DSRG-MRPT2b −30.2 −25.0 −11.6 1.3 1.5 6.4 0.8 1.5 5.2 3.8

(12,12)/cc-pVDZ
CASPT2c −31.8 −27.7 −17.5 −8.6 −2.2 −6.7 −3.9 −3.0 −2.7 −1.8

DSRG-MRPT2b −31.3 −27.5 −14.7 −3.1 2.3 0.9 1.6 4.1 3.1
DSRG-MRPT2b −29.0 −24.3 −11.0 0.8 2.0 5.3 1.6 4.1 3.1

a From Ref. 164.
b This work.
c From Ref. 177.
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Table 3.6 reports a comparison between our CAS(2,2) DSRG-MRPT2 results and

the reduced multireference coupled cluster with singles, doubles, and perturbative

triples [RMR-CCSD(T)] results of Li and Paldus[164] using the same geometries and

basis set. Our DSRG-MRPT2 results for group I and II isomers agree very well with

those from RMR-CCSD(T): the maximum deviations are respectively 3.8 and 1.1 kcal

mol−1. In the case of group III naphthynes, the disagreement between the DSRG-

MRPT2 and RMR-CCSD(T) results is slightly less favorable. The assignment of the

ground state is consistent among the two methods, except for the (1,5) isomer, and

(1,4)-naphthyne displays the largest absolute error (4.8 kcal mol−1).

Table 3.6 also reports a comparison between our DSRG-MRPT2 results and the

CASPT2 results of Squires and Cramer,[177] both obtained using a CAS(12,12) ref-

erence. Note, that the comparison of these two sets of computations is complicated

by the fact that the naphthynes geometries and orbitals used in these studies are

different: the CASPT2 calculations use CASSCF(12,12) optimized geometries and

orbitals. As a consequence, the DSRG-MRPT2 results show some significant dis-

agreements with the CASPT2 results. For example, the DSRG-MRPT2 results favor

triplet ground states for all the group III isomers, while CASPT2 predicts exactly

the opposite. Notice that the RMR-CCSD(T) approach also predicts triplet ground

states for all group III naphthynes, except for the (1,5) isomer.

To illustrate the importance of the geometry used to compute ∆ST, we optimized

the singlet and triplet state geometry of (1,4)-naphthyne with the Mukherjee multiref-

erence coupled cluster approach with singles and doubles (Mk-MRCCSD) using the

cc-pVDZ basis set and a CASSCF(2,2) reference. At this level of theory, the singlet

state is predicted to be the ground state and the adiabatic ∆ST = −4.98 kcal mol−1.

The Mk-MRCCSD ∆ST of (1,4)-naphthyne agrees well with the experimental ∆ST of

p-benzyne, indicating that the nature of these two diradicals is similar. More impor-

tantly, this result is also in agreement with the ground state assignment of CASPT2
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computations.[177] DSRG-MRPT2 ∆ST computed using the Mk-MRCCSD/cc-pVDZ

geometries also favor a singlet ground state. For example, when using ROHF orbitals,

the DSRG-MRPT2 ∆ST is equal to −0.9 kcal mol−1 [CAS(2,2)] and −1.98 kcal mol−1

[CAS(12,12)]. The use of CASSCF orbitals improves the agreement with the Mk-

MRCCSD data: the corresponding ∆ST are −2.27 kcal mol−1 [CAS(2,2)] and −3.82

kcal mol−1 [CAS(12,12)]. As anticipated, ROHF orbitals tend to favor the triplet

state, shifting ∆ST by ∼1.5 kcal mol−1. Although these results are not conclusive,

they do suggest that to obtain reliable estimates of ∆ST for the naphthynes it is

necessary to employ geometries optimized at a high level of theory.

In addition to adiabatic singlet-triplet splittings, in Table 3.7 we report a compari-

son of the vertical DSRG-MRPT2 splittings with those from highly-accurate multiref-

erence coupled cluster (MRCC) computations by Brabec and coworkers.[183] These

authors reported ∆ST for (2,7)-, (2,6)-, (1,7)- and (1,8)-naphthyne computed with the

Brillouin–Wigner (BW) MRCC approach with the a posteriori correction[104, 185]

and the Mk-MRCCSD approach. To facilitate this comparison, all DSRG-MRPT2

results in Table 3.7 are computed using the same type of orbitals (restricted Hartree–

Fock) and geometries used by Brabec et al.[183] The DSRG-MRPT2 results agree

well with those from BW-MRCCSD: both methods agree in the assignment of the

Table 3.7: A comparison of the vertical singlet-triplet splitting between MRCC and
the DSRG-MRPT2. All of these results use singlet geometries, RHF orbitals, and a
CAS(2,2).

Naphthyne Isomers
Method Basis 2,7 2,6 1,7 1,8

DSRG-MRPT2a cc-pVDZ −3.0 0.2 −1.6 −2.6
cc-pVTZ −3.2 0.2 −1.7 −2.8

BW-MRCCSDb cc-pVDZ −0.46 1.39 −0.34 −1.40
cc-pVTZ −0.78 1.05 −0.50 −1.47

Mk-MRCCSDb cc-pVDZ 6.47 8.48 7.29 3.82
cc-pVTZ 7.16 9.79 6.79 4.43

a This work.
b From Ref. 184
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ground state and the maximum error is only 2.54 kcal mol−1. Note, that there is

a substantial disagreement between the BW- and Mk-MRCCSD results, which was

attributed to the a posteriori corrections used in BW-MRCCSD.[184]

3.5.2 Scaling with respect to basis set and active space size

In this section we illustrate the efficiency of our DSRG-MRPT2 by reporting

timings for the single-point energy computation of singlet (2,3)-naphthyne. DSRG-

MRPT2 timings for basis sets that range from 152 to 1240 orbitals are reported in

Table 3.8. Due to the efficiency of the DF approximation, DSRG-MRPT2 compu-

tations with 1000–1500 may be performed routinely. Indeed, our largest calculation

using a CAS(2,2) reference and the cc-pV5Z basis set takes about 5 minutes with 8

threads on an Intel Xeon E5-2650 v2 processor. This time is only about 5% of the

total time required (110 minutes), with the majority of the remaining part of the

computation spent building the Fock matrix (20 minutes) and the generation of the

MO transformed DF integrals (35 minutes). The timings for the CAS(2,2) compu-

tations as function of the basis set size nicely follow the quadratic scaling expected

from the DSRG-MRPT2 equations when the number of core and active orbitals is

kept fixed. Going from the CAS(2,2) to the CAS(12,12) active space we notice an

increase of a factor 3–4 of the timing for the DSRG-MRPT2 step. This result is sig-

nificant because it suggests that for the active space here considered, terms that scale

as a power of the number of active orbitals have a very small prefactor. Indeed, even

with the CAS(12,12) reference, the most expensive steps in the energy computation

are the generation of the amplitudes tabij and ṽmnef , which require respectively 52% and

27% of the total time.



43

H C N O Cu

Figure 3.5: Example of a transition metal complex, [(Et5dien)2CuII
2 (µ-C2O4)]2+, that

can be treated with the DF-DSRG-MRPT2 approach. Singlet state computed with
a CAS(2,2) active space, ROHF triplet orbitals, and the def2-TZVP basis set (1726
basis functions). The DF-DSRG-MRPT2 computation ran in about 5.2 hours on a
Intel Xeon E5-2650 v2 processor using 8 threads. Geometry taken from Ref. 186.

Table 3.8: Timing of DSRG-MRPT2 naphthyne computations (TPT2, in seconds) as a
function of basis set size (N). The total time (T ) includes the CASCI step, generation
of the DF integrals, and evaluation of the DSRG-MRPT2 energy. These computations
ran on one Intel Xeon E5-2650 v2 processor using 8 threads.

Active Space Basis N TPT2 TPT2/T %

CAS(2,2)

cc-pVDZ 170 3.5 21.0
cc-pVTZ 384 22.6 18.6
cc-pVQZ 730 93.6 7.8
cc-pV5Z 1240 316.5 4.8

CAS(12,12)
cc-pVDZ 170 13.2 9.6
cc-pVTZ 384 72.1 27.8
cc-pVQZ 730 284.3 26.5

In addition to computations on the naphthynes, in Fig. 3.5 we show an example

of a large transition metal complex (108 atoms) taken from the work of Mayhall

and Head-Gordon[186] that can be studied in a reasonable amount of time with our

DF-DSRG-MRPT2 implementation. The DF-DSRG-MRPT2 correlation energy of

the open-shell singlet state of this complex was computed using a CAS(2,2) active

space and a def2-TZVP basis set[187] (1726 basis functions) in about 5.2 hours on

one Intel Xeon E5-2650 v2 processor using 8 threads. This examples shows that our
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DF-DSRG-MRPT2 implementation can be routinely applied to systems with 50–100

atoms using a triple-ζ quality basis set.

3.6 Conclusion

In this work, we presented a new formulation of the DSRG-MRPT2 approach

that takes advantage of two-electron integral factorization and the structure of CAS

density matrices. We propose an algorithm that is similar to the one used to evaluate

the DF-MP2 energy. This algorithm has reduced memory requirements and allows

the routine application of the DSRG-MRPT2 to systems with up to 100 atoms (1500–

2000 basis functions).

To demonstrate the applicability of this novel DSRG-MRPT2 implementation to

medium-sized system we studied the singlet-triplet splittings for the ten isomers of

naphthyne diradicals. We reported computations with CAS(2,2) and CAS(12,12)

active spaces and up to quintuple-ζ quality basis sets (1240 basis functions). Overall,

the DSRG-MRPT2 results are in good agreement with previously reported adiabatic

singlet-triplet splittings computed at the RMR-CCSD(T)/VDZ* level of theory: the

mean absolute deviation between the two approaches in only 2.7 kcal mol−1. We find

that the singlet-triplet splittings of Group III naphthynes are strongly dependent

on the quality of the molecular geometries. This fact makes the comparison with

previously reported CASPT2 results more difficult to analyze. It also suggests that

extra caution is required to interpret highly-correlated results for naphthynes based on

DFT or CASSCF geometries. DSRG-MRPT2 computations with larger bases suggest

that one should at least use a triple-ζ basis set to converge the single-triplet splitting

of Group III naphthynes to 0.4 kcal mol−1, while a quadruple-ζ basis is necessary to

reduce this error to about 0.1 kcal mol−1.

In this work we have showed that the cost of evaluating the DSRG-MRPT2 energy

can be significantly reduced by resorting to integral factorization techniques. Nev-
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ertheless, the computational scaling of integral-factorized DSRG-MRPT2 remains

proportional to the fifth power of the number of electrons. Therefore, to apply this

approach to systems with 100–150 atoms it will be necessary to reduce its computa-

tional scaling. Given the simplicity of the DSRG-MRPT2 equations, an interesting

option is to combine the prescreening of atomic orbital (AO) integrals with Laplace

transformation of the energy denominators.[77, 79, 188–190] One novel issue that

arises in the application of the Laplace transformation to the DSRG-MRPT2 ap-

proach is the fact that the energy denominators are renormalized. However, we think

that this problem may be addressed either by finding a suitable decomposition of the

renormalized denominators, or by redefining the source operator to treat the most

expensive contributions (from diagram F1–F3) as non-renormalized quantities. We

anticipate that the Laplace-transformed AO-DSRG-MRPT2 will be an essential tool

to go beyond the current limit of 2000 basis functions.
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[36] Francesco Aquilante, Per-Åke Malmqvist, Thomas Bondo Pedersen, Abhik

Ghosh, and Björn Olof Roos. Cholesky decomposition-based multiconfiguration

second-order perturbation theory (cd-caspt2): Application to the spin-state en-

ergetics of coiii (diiminato)(nph). J. Chem. Theory Comput., 4(5):694–702,

2008.

[37] Henrik Koch, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Reduced

scaling in electronic structure calculations using cholesky decompositions. J.

Chem. Phys., 118(21):9481–9484, 2003.

[38] Francesco Aquilante, Linus Boman, Jonas Boström, Henrik Koch, Roland

Lindh, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Cholesky

decomposition techniques in electronic structure theory. In Linear-Scaling Tech-

niques in Computational Chemistry and Physics, pages 301–343. Springer, 2011.

[39] Nelson HF Beebe and Jan Linderberg. Simplifications in the generation and

transformation of two-electron integrals in molecular calculations. Int. J. Quant.

Chem., 12(4):683–705, 1977.

[40] Brett I Dunlap, JWD Connolly, and JR Sabin. On some approximations in

applications of xα theory. J. Chem. Phys., 71(8):3396–3402, 1979.



51

[41] Rick A Kendall and Herbert A Früchtl. The impact of the resolution of the iden-

tity approximate integral method on modern ab initio algorithm development.

Theor. Chem. Acc., 97(1-4):158–163, 1997.
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[47] Edoardo Aprà and Karol Kowalski. Implementation of high-order multireference

coupled-cluster methods on intel many integrated core architecture. J. Chem.

Theory Comput., 12(3):1129–1138, 2016.

[48] September 2016. URL https://www.top500.org/lists/2016/06/.

https://www.top500.org/lists/2016/06/


52

[49] Edmond Chow, Xing Liu, Mikhail Smelyanskiy, and Jeff R Hammond. Parallel

scalability of hartree–fock calculations. J. Chem. Phys., 142(10):104103, 2015.

[50] Edmond Chow, Xing Liu, Sanchit Misra, Marat Dukhan, Mikhail Smelyanskiy,

Jeff R Hammond, Yunfei Du, Xiang-Ke Liao, and Pradeep Dubey. Scaling up

hartree–fock calculations on tianhe-2. International Journal of High Perfor-

mance Computing Applications, page 1094342015592960, 2015.

[51] Xing Liu, Aftab Patel, and Edmond Chow. A new scalable parallel algorithm

for fock matrix construction. In Parallel and Distributed Processing Symposium,

2014 IEEE 28th International, pages 902–914. IEEE, 2014.

[52] Galina Chaban, Michael W Schmidt, and Mark S Gordon. Approximate second

order method for orbital optimization of scf and mcscf wavefunctions. Theor.

Chem. Acc., 97(1-4):88–95, 1997.

[53] B Scott Fales and Benjamin G Levine. Nanoscale multireference quantum chem-

istry: Full configuration interaction on graphical processing units. J. Chem.

Theory Comput., 11(10):4708–4716, 2015.

[54] Sebastian Wouters and Dimitri Van Neck. The density matrix renormalization

group for ab initio quantum chemistry. Eur. Phys. J. D, 68(9):1–20, 2014.

[55] Garnet Kin-Lic Chan and Martin Head-Gordon. Highly correlated calculations

with a polynomial cost algorithm: A study of the density matrix renormaliza-

tion group. J. Chem. Phys., 116(11):4462–4476, 2002.

[56] Takeshi Yanai, Yuki Kurashige, Debashree Ghosh, and Garnet Kin Chan. Ac-

celerating convergence in iterative solution for large-scale complete active space

self-consistent-field calculations. Int. J. Quant. Chem., 109(10):2178–2190,

2009.



53

[57] Garnet Kin-Lic Chan, Sandeep Sharma, S. R. Leone, P. S. Cremer, J. T. Groves,

and M. A. Johnson. The density matrix renormalization group in quantum

chemistry. Annu. Rev. Phys. Chem., 62:465–481, 2011. ISSN 0066-426X. doi:

10.1146/annurev-physchem-032210-103338.

[58] Roberto Olivares-Amaya, Weifeng Hu, Naoki Nakatani, Sandeep Sharma, Jun

Yang, and Garnet Kin-Lic Chan. The ab-initio density matrix renormalization

group in practice. J. Chem. Phys., 142(3):034102, 2015.

[59] Giovanni Li Manni, Simon D Smart, and Ali Alavi. Combining the complete

active space self-consistent field method and the full configuration interaction

quantum monte carlo within a super-ci framework, with application to chal-

lenging metal-porphyrins. J. Chem. Theory Comput., 12(3):1245–1258, 2016.

[60] Robert E Thomas, Qiming Sun, Ali Alavi, and George H Booth. Stochastic

multiconfigurational self-consistent field theory. J. Chem. Theory Comput., 11

(11):5316–5325, 2015.

[61] Justin M Turney, Andrew C Simmonett, Robert M Parrish, Edward G Hohen-

stein, Francesco A Evangelista, Justin T Fermann, Benjamin J Mintz, Lori A

Burns, Jeremiah J Wilke, Micah L Abrams, et al. Psi4: an open-source ab initio

electronic structure program. Wiley Interdisciplinary Reviews: Computational

Molecular Science, 2(4):556–565, 2012.

[62] Thom H Dunning Jr. Gaussian basis sets for use in correlated molecular calcu-

lations. i. the atoms boron through neon and hydrogen. J. Chem. Phys., 90(2):

1007–1023, 1989.

[63] Nicholas J Mayhall and Martin Head-Gordon. Increasing spin-flips and decreas-

ing cost: Perturbative corrections for external singles to the complete active



54

space spin flip model for low-lying excited states and strong correlation. J.

Chem. Phys., 141(4):044112, 2014.

[64] Florian Weigend and Reinhart Ahlrichs. Balanced basis sets of split valence,

triple zeta valence and quadruple zeta valence quality for h to rn: design and

assessment of accuracy. Phys. Chem. Chem. Phys., 7(18):3297–3305, 2005.

[65] Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hopkins

University Press, 2012.

[66] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the

exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[67] So Hirata, Xiao He, Matthew R Hermes, and Soohaeng Y Willow. Second-

Order Many-Body Perturbation Theory: An Eternal Frontier. J. Phys. Chem.

A, 118(4):655–672, January 2014.

[68] Jerry L Whitten. Coulombic potential energy integrals and approximations. J.

Chem. Phys., 58(10):4496–4501, 1973.

[69] Brett I Dunlap, JWD Connolly, and JR Sabin. On some approximations in

applications of xα theory. J. Chem. Phys., 71(8):3396–3402, 1979.

[70] Nelson HF Beebe and Jan Linderberg. Simplifications in the generation and

transformation of two-electron integrals in molecular calculations. Int. J. Quan-

tum Chem., 12(4):683–705, 1977.

[71] Henrik Koch, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Reduced

scaling in electronic structure calculations using cholesky decompositions. J.

Chem. Phys., 118(21):9481–9484, 2003.

[72] Francesco Aquilante, Thomas Bondo Pedersen, and Roland Lindh. Low-cost

evaluation of the exchange fock matrix from cholesky and density fitting repre-



55

sentations of the electron repulsion integrals. J. Chem. Phys., 126(19):194106,

2007. doi: http://dx.doi.org/10.1063/1.2736701. URL http://scitation.

aip.org/content/aip/journal/jcp/126/19/10.1063/1.2736701.

[73] Francesco Aquilante, Laura Gagliardi, Thomas Bondo Pedersen, and Roland

Lindh. Atomic cholesky decompositions: A route to unbiased auxiliary ba-

sis sets for density fitting approximation with tunable accuracy and efficiency.

J. Chem. Phys., 130(15):154107, 2009. doi: http://dx.doi.org/10.1063/1.

3116784. URL http://scitation.aip.org/content/aip/journal/jcp/130/

15/10.1063/1.3116784.

[74] Francesco Aquilante, Linus Boman, Jonas Boström, Henrik Koch, Roland

Lindh, Alfredo Sánchez de Merás, and Thomas Bondo Pedersen. Cholesky

decomposition techniques in electronic structure theory. In Robert Za-

lesny, Manthos G. Papadopoulos, Paul G. Mezey, and Jerzy Leszczynski,

editors, Linear-Scaling Techniques in Computational Chemistry and Physics,

volume 13 of Challenges and Advances in Computational Chemistry and

Physics, pages 301–343. Springer Netherlands, 2011. ISBN 978-90-481-2852-

5. doi: 10.1007/978-90-481-2853-2 13. URL http://dx.doi.org/10.1007/

978-90-481-2853-2_13.

[75] Nicholas J Higham. Cholesky factorization. WIREs: Comp. Stat., 1(2):251–254,

September 2009.

[76] Hans-Joachim Werner, Frederick R Manby, and Peter J Knowles. Fast linear

scaling second-order møller-plesset perturbation theory (mp2) using local and

density fitting approximations. J. Chem. Phys., 118(18):8149–8160, 2003.

[77] Philippe Y Ayala and Gustavo E Scuseria. Linear scaling second-order moller–

http://scitation.aip.org/content/aip/journal/jcp/126/19/10.1063/1.2736701
http://scitation.aip.org/content/aip/journal/jcp/126/19/10.1063/1.2736701
http://scitation.aip.org/content/aip/journal/jcp/130/15/10.1063/1.3116784
http://scitation.aip.org/content/aip/journal/jcp/130/15/10.1063/1.3116784
http://dx.doi.org/10.1007/978-90-481-2853-2_13
http://dx.doi.org/10.1007/978-90-481-2853-2_13


56

plesset theory in the atomic orbital basis for large molecular systems. J. Chem.

Phys., 110(8):3660–3671, 1999.

[78] M. Schutz, G. Hetzer, and H. J. Werner. Low-order scaling local electron corre-

lation methods. i. linear scaling local mp2. J. Chem. Phys., 111(13):5691–5705,

October 1999.

[79] Bernd Doser, Daniel S Lambrecht, Jörg Kussmann, and Christian Ochsenfeld.

Linear-scaling atomic orbital-based second-order møller–plesset perturbation

theory by rigorous integral screening criteria. J. Chem. Phys., 130(6):064107,

2009.

[80] Soohaeng Yoo Willow, Kwang S Kim, and So Hirata. Stochastic evaluation

of second-order many-body perturbation energies. J. Chem. Phys., 137(20):

204122, 2012.

[81] Soohaeng Yoo Willow, Matthew R Hermes, Kwang S Kim, and So Hirata.

Convergence acceleration of parallel monte carlo second-order many-body per-

turbation calculations using redundant walkers. J. Chem. Theory Comput., 9

(10):4396–4402, 2013.

[82] Daniel Neuhauser, Eran Rabani, and Roi Baer. Expeditious stochastic approach

for mp2 energies in large electronic systems. J. Chem. Theory Compt., 9(1):

24–27, 2012.
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ison of low-order multireference many-body perturbation theories. J.

Chem. Phys., 122(13):134105, 2005. doi: http://dx.doi.org/10.1063/1.

1863912. URL http://scitation.aip.org/content/aip/journal/jcp/122/

13/10.1063/1.1863912.

[88] Mark R Hoffmann, Dipayan Datta, Sanghamitra Das, Debashis Mukherjee,

Agnes Szabados, Zoltán Rolik, and Péter R Surján. Comparative study of
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ski, and Jǐŕı Pittner. Massively parallel implementation of the multireference

brillouin–wigner ccsd method. Chem. Phys. Lett., 514(4):347–351, 2011.
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