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Abstract

Systematic Evaluation of The Impact of DNA Sequence Variants on The in vivo Binding
Affinity at Transcription Factor Binding Sites

By Yutong Jin

The majority of the single nucleotide variants (SNVs) identified by genome-wide association studies
(GWAS:s) fall outside of the protein-coding regions. Elucidating the functional implications of these
variants has been a major challenge due to the lack of functional annotation in the non-coding part of
the genome. A possible mechanism for some of the functional non-coding variants is that they
disrupted the canonical transcription factor (TF) binding sites which affect the 7z vivo binding affinity
of the TF. However, not all variants located within TF binding sites will impact TF binding since a
substantial proportion of most TF binding motifs is not well conserved. Therefore, simply annotate all
variants located in putative TF binding sites is not ideal. In this project, we conducted a comprehensive
survey to study the effect of SNVs on the TF binding affinity. Using CTCF as an example, we found
that mutations occur at about 30% of positions inside a putative CTCF binding motif sites will likely
to have significant effect on the TF-DNA binding. Our results provide key guidance on annotating
variants in terms of the impact of TF binding.
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1. Introduction

Thousands of genome-wide association studies (GWAS) have been conducted in the past decades
and resulted in tens of thousands of single nucleotide variants (SNVs) being discovered as robustly
associated with a wide array of phenotypes (Welter et al., 2013). The vast majority of disease- and
trait-associated variants detected by these studies lie within the noncoding part of the human
genome (Maurano et al., 2012) and are hypothesized to play a regulatory role to control gene
expression of genes important for disease pathogenesis. In particular, whereas it has been
demonstrated that GWAS-identified variants are enriched in regulatory regions (Cookson et al.,

2009).

A possible mechanism for non-coding GWAS variants is the alteration of short DNA motif
influence the in vivo binding affinity of transcription factors (TFs) to the regulatory elements
(promoters, enhancers, and boundary elements) (Pasquali et al., 2012). A common practice to study
TF binding motif patterns (Hertz & Stormo, 1999; Lawrence et al., 1993) is to use the position
weight matrices (PWMs) to model the aligned short DNA sequences in terms of the frequencies of
the four types of nucleotides at each position. By scanning the genome, such matrices assign a
matching score to each position of the candidate sequences, and only sequences with a score
exceeding a predefined threshold are considered as a putative binding site. Subsequently, all
mutations found within such binding sites are considered detrimental and have strong functional
impacts (Boyle et al., 2012; Ward & Kellis, 2011). However, it is well known that many positions
within TF binding motifs are not well conserved and the impact of a mutation at these positions are
not well understood. It is likely that mutations found within motifs may have various levels of
functional impact (Vaquerizas et al., 2009). Moreover, using the overall PWM probability

difference for a motif instance with or without a mutation may not be a good way to quantify the
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effect of the mutation since the PWMs assume independence among all positions. Hence, we need
more information beyond the PWM level to quantify the impact of variants such as SNVs within

motifs.

In this work, we conducted a comprehensive survey on the TF binding impact of SNVs. We employ
established methodology of gapped k-mer support vector machine (gkm-SVM) to determine the
cell type-dependent binding strength, then quantify the effect of sequence changes between every
pair of motifs by the deltaSVM method (Lee et al., 2015). We believe the affinity scores of each
position in all putative motif sites in the genome can serve as a useful resource to study and quantify

the position-specified impact of a mutation inside a motif site.

Using CTCF chromatin immunoprecipitation and sequencing (ChlP-Seq) (Johnson et al., 2007)
data on the Encyclopedia of DNA Elements project (ENCODE Project Consortium, 2012), we
measure the preference among all the 10-mers for CTCF in GM12878, H1-hESC and K562 cells.
We then conduct a comprehensive survey of the impact of all mutations occurring within all
putative CTCF binding sites across the genome. Our results show that the majority of these
mutations will have limited impact on the binding affinity and suggest more detailed elucidation of
the functional impact of SNVs is needed to more accurately annotate these SNVs. Our findings are

consistent across all three representative cell lines.

2. Materials and Methods

2.1 Overview
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Gkm-SVM classifier (Ghandi et al., 2014) requires a positive training set of putative regulatory
sequences and a negative training set of non-regulatory sequences to produce a scoring function
characterized by weights on a list of all possible 10-mers. Given training sets, gkm-SVM computes
the contribution of each DNA sequence (10-mers) feature to the prediction of regulatory function.
Accordingly, each 10-mer will receive a SVM weight that quantifies its contribution. After training,
the SVM weights can be used to measure the predicted impacts of any possible SNV on the
regularity activity in a particular cell type via the delta-SVM method, which sums the difference in
weights between alleles for each of the TF binding sites-associated 10-mers encompassing the SNV.
(Lee et al., 2015). Here, the delta-SVM score obtained by the delta-SVM method is the difference
between the sum of all 19 10-mers weights in reference alleles and that in alternative alleles across
the affected bases. A significant difference indicates high impact of the SNV in terms of the binding

affinity.

2.2 Statistical Analysis Methods

2.2.1 Comparing correlation between difference in PWM score and weights

We trained a gkm-SVM, proposed by Lee, et al. (2015), by applying their method on ENCODE
ChlP-Seq data. The regions within called peaks were treated as the positive training set and the
regions outside called peaks as the negative training set to estimate 10-mers weights. Different sets

of 10-mers weights were constructed for each human cell line.

We ranked all 10-mers based on their weights and selected 1000 unique 10-mers that have the
highest weights as our study sequences. Since the motif length was 15 base pairs (bps), there were

six possible alignments of the 10-mers inside a motif, we first assessed the probabilities according
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to the PWM and assigned the largest one among all six potential matching alignments as the
probabilistic value of the specific 10-mer, named as PWM scores. Then we used Pearson
correlation to measure the correlation between PWM scores and weights among all 10-mers. The

results were visualized by scatter plots.

We also measured the differences between log-transformed probabilistic values among 10-mers
with the other three variants on each particular position and their corresponding reference 10-mer
sequences, named delta-PWM. To further demonstrate the correlation between probability
difference calculated from the PWM and weights difference, we employed Pearson correlation
between differences in probabilities and differences in weights for the 1000 top ranked 10mers.

The results were visualized by scatter plots.

We visualized the top 100 and 1000 10-mers (based on weight) averaged change in weights among
30 variants for each sequence and their corresponding confidence interval with one standard

deviation.

2.2.2 Using delta-SVM score to determine the impact of variations on each particular
position

Using the CTCF motif PWM (Xu et al., 2015), we scanned the human reference genome GRCh37
(UCSC version: hgl9) to determine all potential positions of binding motifs. There were 139,084

sites in the genome and 48,804 unique motif sequences were identified.
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In the set of all potential 15-bp motifs, we ranked and retrieved the first 20 most frequent motif
sequences for cell line GM12878 and the first ten most frequent motif sequences for cell line H1-
hESC and K562, respectively. To detect the difference between motif sites and their adjacent

regions, we extended each 15-bp motifs by 10-bp on both sides.

By using the set of all 10-mer weights, the delta-SVM was estimated by summing ten 10-mer
weights across 15-bp motif region with one mutated position in the middle. Based on this method
for calculating delta-SVM score, we could then quantify the changes in binding affinity of the motif
sequence due to the variants. Furthermore, we assessed delta-PWM and assigned the mean value

of them as the probabilistic value of each position successively within a particular motif.

2.2.3 Determine the threshold value to identify significant SNPs

In order to determine the threshold value to identify significant SNPs, we generated 10,000 random
sequences and excluded the sequence overlapping with motif regions to be our control set. Repeat
the work using random control sequences to validate the difference above. Since negative delta-
SVM value associated with large impact of binding ability, we used the 5th percentile of the
empirical distribution from the left tail as the threshold to identify significant SNPs. To demonstrate
the difference between delta-SVM and delta-PWM for motif and adjacent region, the results were

visualized at the same scale.

3. Result
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We performed data analysis on three human cell lines: GM12878, H1-hESC and K562, and the
results for GM12878 were shown in this thesis. Results from the other two cell lines were presented

in Supplemental materials.

The correlations between 10-mer PWM scores and weights are 0.620, 0.605 and 0.614 for
GM12878, H1-hESC and K562 respectively. The correlations between probability change and
weights difference are 0.507, 0.505 and 0.512 for GM12878, H1-hESC and K562 respectively.
There is a pronounced positive relationship between weights difference and probability difference.
However, the weak correlation indicates that the purely probabilistic calculation based on PWM is

not well-performed in presenting the importance of 10-mers (Figure 1).

We next surveyed the weights of top-ranked 10-mers and their corresponding one-standard-
deviation confidence intervals. (Figure 2-3) As expected, the mean change in weights among 30
variants of top 100 sequences exceeds our threshold value. The trend of GM12878 shows that SNVs
within high-ranked 10-mers would also lead to a large weight difference, which means the change

within CTCF motif were more likely to indicate a significant impact of its binding ability.

To understand whether SNVs at each particular position affect the binding affinity of the TF
differently, we retrieved the 20 most frequent unique motifs (Figure 4) and extended to flanking
region by 10 bps on each side. We also provided a graphical assessment demonstrating the
distribution of the mean delta-SVM of 35-bp sequences and mean delta-PWM of 15-bp motif
regions (Figure 5). Combining three variants together, mutations at different position lead to
different scores. We find the observed distribution of the mean delta-SVMs are not always

consistent with the distribution of delta-PWMSs, hence our comprehensive annotation method will
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provide more accurate assessment of binding affinity of putative motif sites in the genome. For
example, the 4th most frequent motif sequence “GCACCACCTAGTGGA” shows a highly
conserved performance among all positions within regulatory region. To further shed light to the
prediction on different motifs, we employed “logo plots” (Schneider & Stephens, 1990) to
demonstrate the significant SNVs and found about 30% of positions inside a putative binding motif
site had a large effect on the TF-DNA binding affinity based on our pre-determined threshold.
(Figure 6) For cell line GM12878, the positive prediction rate among top 20 motifs with 300

positions is 29.0%.

4. Discussion

A significant challenge in molecular genetics is to predict the impact of variants on TF binding and
to understand how genetic variation alters genetic regulation. While changes are frequently
observed in binding affinity of the transcription factor for altered variants within the canonical
transcription factor, it is always ignored by adopting classic PWM-based methods to capture the
position-specified traits. Assuming independence for PWM, the simply impact determination based
on purely probability calculation may cause inaccuracy. Our results suggest that positions inside
binding motif sites should be considered when determine the impact on TF-DNA binding. By
embracing flanking region in quantifying the effect of SNV, our method incorporates all alterations

for particular sequence to capture the impact of each positon.

Admittedly, the predictive power of our method is inherently limited. Although the machine
learning approaches learns directly from the determined sequences, any training data sets
constructed on PWM collections will probably be skewed and with many false negatives since the

current incomplete understanding of most TF binding motifs. Future advances in motif
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identification will enhance the liability of the prediction on the TF binding affinity. Besides, we
identify the averaged delta-SVM among all three potential variants to represent the position-
specified impact. However, we find that for some particular positions, the delta-SVM score for
three variants vary significantly. It indicates the impact of different variants for the same position
within the motif may also have disparate impact. In the future, we could expand current simplified
guantification method to a more comprehensive way, such as quantifying variant-specified impact

of all positions within cell-specific motifs.
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6. Tables and Figures

Figure 1 The Correlation Between Probability Difference and Weights Difference - GM12878
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Figure 2 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for Topped
100 10-mers — GM12878

The Mean Change of Weights For Top 100 Motif Sequecnes

Weight Difference

T T T T T T
0 20 40 60 80 100

Sequence Rank



Page |12

Figure 3 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for Topped
1000 10-mers — GM12878
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Figure 4 The 20 Most Frequent Unique Motifs
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Figure 5 Mean Delta-SVM of Each Position for topped 4" motifs - GM 12878
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Figure 6 Prediction on Top 20 15-bp Motifs Using Means of Delta-SVM — GM 12878
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7.Supplementary Materials

Figure 7 The Correlation Between Probability Difference and Weights Difference — H1-hESC
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Figure 8 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for Topped
100 10-mers — H1-hESC
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Figure 9 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for Topped
1000 10-mers — H1-hESC
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Figure 10 Mean Delta-SVM of Each Position for topped 4™ motifs — H1-hESC
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Figure 11 Prediction on Top 10 15-bp Motifs Using Means of Delta-SVM — H1-hESC
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Figure 12 The Correlation Between Probability Difference and Weights Difference — K562
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Figure 13 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for
Topped 100 10-mers — K562
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Figure 14 Average Delta-SVM Scores and One-standard-deviation Confidence Intervals for
Topped 1000 10-mers — K562
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Figure 15 Mean Delta-SVM of Each Position for topped 4" motifs — K562
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Figure 16 Prediction on Top 10 15-bp Motifs Using Means of Delta-SVM — H1-hESC
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