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Abstract 

Statistical Inference Concerning Minimal Mortality of Patients with Congenital Heart 

Defects after Surgical Repair 

 

By Wenhao Mao 

 

Background: Congenital heart defect (CHD) is a defect in the heart's structure and function 

due to abnormal heart development before birth. Survival rate after pediatric cardiac surgery 

has been improved substantially over the last 2-3 decades. Five-year mortality rate reflects the 

survival experience of the surviving patient sub-population. As the estimated 5-year mortality 

function had a sharp decline right after the surgery and then rose gradually, the minimal 

mortality, which is the minimum point of the mortality function and its timing, may 

characterize the pattern of the 5-year mortality function. However, statistical inference for the 

timing and minimum mortality is not a standard problem and warrants investigation. 

Methods: In this project, we used the Pediatric Cardiac Care Consortium (PCCC) data, a 

U.S.-based, multicenter registry of pediatric cardiac surgery, as linked to the National Death 

Index. We tackled two problems. First, we used subsampling method and divide-and-conquer 

method to construct 95% confidence intervals for timing of the minimum mortality, as we 

conjectured that the estimator had a cubic root convergence rate. Our goal was to evaluate the 

feasibility of these confidence intervals. Second, we developed a bias correction procedure for 

the standard nonparametric minimal mortality estimator, which had a downward bias.  

Results: For subsampling method, from simulations with given parameters, the performance 

of new confidence interval we developed is the best among our methods. When it comes to 

simulations mimicking the real dataset, it still had a good performance on coverage when the 

block size is fixed.  

The divide-and-conquer method achieved excellent results on simulated data with parameters 

as obtained by fitting two datasets and performed badly those by fitting single ventricle 

dataset. It seemed not to be an enough reliable method for inference.  

For bias correction for the point estimator of the minimal mortality, our method can reduce 

bias and mean squared error (MSE). Also, the confidence intervals were close to the nominal 

level.  

Conclusion: Both subsampling and divide-and-conquer methods are state-of-the-art methods 

for the challenging statistical problem with cube root asymptotics, and they have different 

assumptions and requirements. Through extensive simulation studies, we found that, 

unfortunately, neither approach had consistently reliable performance. Further investigation is 

warranted. 

Also, we recommend our bias correction method, which helped us achieve the estimator with 

smaller bias and MSE.   
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1. Introduction 

Congenital heart defect (CHD) is a defect in the structure and function of the heart due to 

abnormal heart development before birth (Mendis et al., 2011). In 2017, the global prevalence 

of congenital heart defect at birth was estimated to be nearly 1.8 cases per 100 live births, a 4.2% 

increase since 1990 (Zimmerman et al., 2020). Survival after pediatric cardiac surgery was 

improved substantially even for patients with complex defects (Vinocur et al., 2013; Kempny 

et al., 2017; Jacobs et al., 2018). However, for the high socio-demographic index countries, the 

relative importance of congenital heart disease as a cause of child mortality was rapidly 

increasing, as evidenced by the increase in the proportion of deaths due to congenital heart 

disease from 1990 to 2017 (Zimmerman et al., 2020). Some data on long-term outcomes after 

congenital heart surgery have been reported from some European countries with national health 

systems (Erikssen et al., 2015; Nieminen et al., 2001; Raissadati et al., 2015; Larsen et al., 

2017). In the last few years, investigators linked the Pediatric Cardiac Care Consortium (PCCC) 

data, a large U.S.-based registry of interventions for CHD that has collected patient-level data 

since 1982, to the National Death Index (NDI), creating a cohort describing the long-term 

mortality of patients with repaired CHD more thoroughly than prior studies (Spector et al., 

2016). In 2018, the long-term survival of patients who were operated on for congenital heart 

defects was evaluated, which also showed survival had improved over time but still lagged 

behind the general population (Spector et al., 2018).  

We began to investigate the mortality rate over a 5-year window. The 5-year mortality rate is 

the death rate during the following 5-year period. It can help us better understand the survival 

of patients after surgery. 5-year mortality function is a function of time t, which represents 5-
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year mortality rate at time t. For the CHD dataset, the shape of the nonparametric-estimated 5-

year mortality function had a sharp decline at the beginning and then rose gradually. We defined 

the minimum point of 5-year mortality function as the minimal mortality. The minimal 

mortality and its timing may give us the pattern of the 5-year mortality function. Nevertheless, 

research for the estimated 5-year minimum mortality rate after congenital heart surgery in the 

United States was lacking. How to estimate the minimum mortality became an essential issue.  

In this project, we wanted to solve two problems. First, we wanted to evaluate the feasibility of 

confidence interval estimation for the timing of 5-year minimum mortality. We used Kaplan–

Meier estimator to estimate the survival function, from which a 5-year mortality function could 

be subsequently obtained. The timing and value of the minimum 5-year mortality are then 

estimated via minimization of the mortality function. As the estimator for timing minimizes an 

approximate mean process, which is mean of bounded variables, we conjecture that the 

estimator had a cubic root convergence rate and its limiting distribution is not normal and 

difficult to estimate on the basis of asymptotic theory (Kim & Pollard, 1990). The bootstrap 

method did not consistently estimate the asymptotic distribution for estimators with cube root 

convergence (Ou et al., 2016; Abrevaya et al., 2005), so the bootstrap method was invalid in 

this situation. The subsampling method is a well-known method to construct confidence 

intervals for cubic root asymptotics (Politis et al., 1999). Apart from it, many other methods 

can also be applied for cube root asymptotics. Cattaneo, Jansson, and Nagasawa (2020) 

proposed a generic and easy-to-implement bootstrap-based distributional approximation, in 

which they added a generical estimation into every bootstrap sample and so they could adjust 

the bootstrap method applicable in the context of cube root asymptotics. Lee and Pun (2006) 
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extended the scope of m out of n bootstrap applications to a general class of nonstandard M-

estimation problems which included cube root asymptotics. Some papers showed that the 

divide-and-conquer principle worked well in non-standard problems where rates of 

convergence are typically slower than √𝑛 under some conditions, but this method was often 

used in the analysis of massive data sets (Shi et al., 2018; Banerjee et al., 2019). These methods 

are asymptotically justified, but their finite-sample performance, in particular for our 

application to the PCCC-NDI cohort, is unclear. Our goal is to provide an evaluation for some 

of these methods for confidence interval estimation on the CHD dataset. In the simulation, we 

used mixture Weibull distribution to mimic the survival distribution.  

Second, the minimum mortality was informative. It might give us more information about the 

pattern of the 5-year mortality rate function. So, we also constructed the point estimator and 

95% confidence interval of it. The traditional nonparametric estimator had a downward bias, 

so we used extrapolation to correct this bias. Also, we used simulated data to evaluate the 

feasibility of its confidence interval estimation. 

2. Materials and Method 

2.1 Data Sources 

Recently, investigators linked the Pediatric Cardiac Care Consortium data to the National Death 

Index, creating a cohort describing patients' long-term mortality with repaired CHD, which had 

longer follow-up time than prior studies. Using this linkage, we analyzed the 5-year mortality 

in a large cohort of patients who survived their first CHD operation (1982 to 2003) with NDI 

follow-up through 2014.  
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2.1.1 Pediatric Cardiac Care Consortium data 

The Pediatric Heart Diseases Data Registry Core provided access to rich registry data from 

electrophysiologic, surgical and catheter-based studies and interventions for multiple pediatric 

heart diseases. The data represented over 300,000 event outcomes and had been collected from 

over 140,000 patients since 1982. Investigators queried the PCCC registry for patients who 

were U.S. residents and underwent congenital heart surgery (CHS) in a U.S. center between 

January 1, 1982, and April 15, 2003. All patients <21 years of age were included except isolated 

ductal ligation in pre-term infants weighing <2.5 kg because of the significant morbidity 

associated with prematurity rather than the CHD itself. 

2.1.2 Death Ascertainment  

NDI was a centralized database of death record information compiled from state vital statistics 

offices. Investigators ascertained death from the PCCC and by matching to NDI records through 

December 31, 2014. Records submitted to the NDI included first name, middle initial (when 

available), surname, date of birth, sex, state of last known residence, and state of birth (imputed 

from state of residence for those <1 year of age at first surgery). Investigators could not link 

patients without these identifiers and excluded them from the datasets (Spector et al., 2018). 

2.1.3 Three Datasets 

This project mainly used three datasets, a simple Tetralogy of Fallot dataset, a mild congenital 

heart defect dataset, and a single ventricle dataset. Simple Tetralogy of Fallot dataset contained 

observations from 3283 patients with simple Tetralogy of Fallot. Single ventricle dataset 

consisted of observations from 3818 patients with single ventricle defects and the other dataset 

included observations from 14861 patients with mild congenital heart defects. We regarded the 
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follow-up time to death, which was a continuous variable, as the outcome, and every patient 

also had a censoring indicator (1: dead; 0: censored) . 

2.2 Software and Nominal Level 

All data were analyzed in R version 4.0.3 and C language version 17. The nominal coverage 

probability of confidence interval is set at 0.95. 

2.3 Statistical Model 

2.3.1 Data Setting 

Suppose T1 , T2 ,,, Tn  are i.i.d. nonnegative random variables (failure time) with common 

continuous distribution function F with corresponding survival function S(·) = 1-F(·). Suppose 

C1 , C2 ,,,  Cn  are i.i.d. nonnegative random variables (censoring time) with common 

distribution function G. Assume that failure time and censoring time are independent. In our 

setting of survival analysis data with random right censorship, we observed the bivariate sample 

(X1 , δ1 ), ,, (Xn , δn ), where Xi = min Ti ,  Ci ,,  δi =I Ti ≤ Ci , with I ·, denoting the 

indicator function on a set.  

Let M(·) be the 5-year mortality function, which was 

                         M(t)=1 −
𝑆(𝑡+5)

𝑆(𝑡)
.                        (1) 

We were interested in the 5-year minimal mortality:  

min
𝑡

𝑀(𝑡), 

and its timing: 

argmin
𝑡

𝑀(𝑡). 

2.3.2 Model 

We can use Kaplan–Meier estimator to estimate the survival function, 
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                         �̂�(t)=∏ (1 −
𝑑𝑖

𝑛𝑖
)𝑖: 𝑡𝑖≤𝑡 ,                   (2) 

with 𝑡𝑖 a time when at least one event happened, 𝑑𝑖 the number of events that happened at 

time 𝑡𝑖, and 𝑛𝑖 the individuals known to have survived up to time 𝑡𝑖. 

From this, we can subsequently obtain a nonparametric estimator of the 5-year mortality 

function,  

                          �̂�(t)=1 −
�̂�(𝑡+5)

�̂�(𝑡)
.                        (3) 

The timing of the minimal 5-year mortality was then estimated by the minimizer of the mortality 

function.  

As Kaplan–Meier estimator can be represented as a mean process, with a remainder of order 

𝑛−3 4⁄ (logn)−3 4⁄  (Lo, S. H., & Singh, K., 1986) and its estimated 5-year mortality function 

was 1 minus the ratio of the estimated survival function. Thus we expected that the estimated 

mortality function should also be approximately a mean process. Therefore, as the estimator for 

timing of the minimal 5-year mortality minimizes such a process, we conjectured that the 

estimator had a cubic root convergence rate, as studied in Kim & Pollard (1990). We used the 

subsampling method and divide-and-conquer method to construct the 95% confidence interval 

for the timing. 

So, we obtained the point estimators and 95% confidence intervals for minimal mortality and 

its timing. In this project, we had two goals. The first goal was to evaluate the feasibility of 

confidence interval estimation for the timing. The second goal was to improve the point 

estimator of the minimal mortality as the traditional nonparametric estimator had a downward 

bias.  
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2.4 Inference for the timing – subsampling method 

We first considered using subsampling method to construct the confidence interval since the 

bootstrap didn’t consistently estimate the asymptotic distribution for estimators with cube-root 

convergence (Abrevaya et al., 2005). The subsampling method described below was from 

Politis et al. (1999). They also showed subsampling can produce consistent estimated sampling 

distributions under extremely weak assumptions even when the bootstrap failed and it can be 

used to obtain confidence intervals for parameter estimates.  

2.4.1 Asymmetric Confidence Interval 

To obtain confidence intervals for the minimizer of (3), �̂�, we produced subsamples 𝐾1, 𝐾2, ,, 

𝐾𝑁𝑛
, where 𝐾𝑗’s are the 𝑁𝑛=(

𝑛
𝑏

) distinct subsets of  (Xi, δi), i=1, ⋯, n, of block size b. Let 

𝑡0 denote the true timing and �̂�𝑏,𝑗 denote the estimated minimizer of (3) using the 𝐾𝑗th dataset. 

Define  

𝐿𝑛,𝑏(𝑥)=𝑁𝑛
−1 ∑ 𝐼

𝑁𝑛
𝑗 =1 [𝑏1/3(�̂�𝑏,𝑗  −  �̂�) ≤ 𝑥],      and 𝑐𝑛,𝑏(γ)= inf  𝑥: 𝐿𝑛,𝑏(𝑥)  ≥  γ,. 

From Theorem 2.2.1 of Politis et al. (1999), for any 0 < γ < 1, 

P [𝑛1/3(�̂�  −  𝑡0)  ≤  𝑐𝑛,𝑏(γ)] → γ, 

under the condition that b → ∞ as n → ∞ and b/n → 0, it followed that for any 0 < α < 1, 

P [𝑐𝑛,𝑏(
𝛼

2
)  <  𝑛1/3(�̂�  −  𝑡0)  ≤  𝑐𝑛,𝑏(1 −

𝛼

2
)] → 1 – α. 

Thus an asymptotic 1 – α level confidence interval for 𝑡0 can be constructed with 

                  [�̂� − 𝑛−1/3𝑐𝑛,𝑏(1 −
𝛼

2
), �̂� − 𝑛−1/3𝑐𝑛,𝑏(

𝛼

2
)].                  (4) 

To respect the range of the estimand, which was a positive half line, we did a log transformation 

first and then transformed it back.  

Define  
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𝐿′𝑛,𝑏(𝑥)=𝑁𝑛
−1 ∑ 𝐼

𝑁𝑛
𝑗 =1 [𝑏1/3(𝑙𝑜𝑔(�̂�𝑏,𝑗)  −  𝑙𝑜𝑔(�̂�)) ≤ 𝑥], and 𝑐′𝑛,𝑏(γ)= inf  𝑥: 𝐿′𝑛,𝑏(𝑥)  ≥  γ,. 

Similarly, for any 0 < γ < 1, 

P [𝑛1/3( 𝑙𝑜𝑔(�̂�)  −  𝑙𝑜𝑔(𝑡0))]  ≤  𝑐′𝑛,𝑏(γ)] → γ, 

under the condition that b → ∞ as n → ∞ and b/n → 0. It followed that for any 0 < α < 1, 

P [𝑐′𝑛,𝑏(
𝛼

2
)  <  𝑛1/3( 𝑙𝑜𝑔(�̂�) −  𝑙𝑜𝑔(𝑡0))  ≤  𝑐′𝑛,𝑏(1 −

𝛼

2
)] → 1 – α 

thus an asymptotic 1 – α level confidence interval for 𝑡0 can be constructed with 

            [𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) − 𝑛−1/3𝑐′𝑛,𝑏(1 −
𝛼

2
)}, 𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) − 𝑛−1/3𝑐′𝑛,𝑏(

𝛼

2
)}].       (5) 

2.4.2 Symmetric Confidence Interval 

Symmetric confidence intervals can be obtained by modifying the above approach slightly. 

Define 

�̃�𝑛,𝑏(𝑥)=𝑁𝑛
−1 ∑ 𝐼

𝑁𝑛
𝑗 =1 [𝑏1/3|�̂�𝑏,𝑗  −  �̂�| ≤ 𝑥],      and �̃�𝑛,𝑏(γ)= inf  𝑥: �̃�𝑛,𝑏(𝑥)  ≥  γ,. 

Again, if b → ∞ as n → ∞ and b/n → 0, a symmetric confidence interval for 𝑡0 can be 

constructed as 

                     [�̂� − 𝑛−1/3�̃�𝑛,𝑏(1 − 𝛼), �̂� + 𝑛−1/3�̃�𝑛,𝑏(1 − 𝛼)].             (6) 

To respect the range of the estimand, we also had symmetric confidence intervals after a log 

transformation. 

Define 

�̃�′𝑛,𝑏(𝑥)=𝑁𝑛
−1 ∑ 𝐼

𝑁𝑛
𝑗 =1 [𝑏1/3|𝑙𝑜𝑔(�̂�𝑏,𝑗)  −  𝑙𝑜𝑔(�̂�)| ≤ 𝑥], and 𝑐′̃𝑛,𝑏(γ)= inf  𝑥: �̃�′𝑛,𝑏(𝑥)  ≥  γ,. 

Again, if b → ∞ as n → ∞ and b/n → 0, a confidence interval for 𝑡0 can be constructed as 

        [𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) − 𝑛−1/3�̃�′𝑛,𝑏(1 − 𝛼)}, 𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) + 𝑛−1/3�̃�′𝑛,𝑏(1 − 𝛼)}].      (7) 

2.4.3 Confidence Interval we developed 

In the spirit of bootstrap percentile confidence interval, we can take the empirical 100(
𝛼

2
) and 
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100(1−
𝛼

2
) percentiles from the subsampling replicates as the left and right end points, and 

have another two asymptotic 1 – α level confidence intervals  

                       [�̂� + 𝑛−1/3𝑐𝑛,𝑏(
𝛼

2
), �̂� + 𝑛−1/3𝑐𝑛,𝑏(1 −

𝛼

2
)]                 (8) 

and 

            [𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) + 𝑛−1/3𝑐′𝑛,𝑏(
𝛼

2
)}, 𝑒𝑥𝑝{𝑙𝑜𝑔(�̂�) + 𝑛−1/3𝑐′𝑛,𝑏(1 −

𝛼

2
)}].       (9) 

(4)-(9) are 6 different asymptotic confidence intervals from subsampling method. 

2.4.4 Algorithm 

To avoid large scale computation issues, a stochastic approximation was employed where B 

randomly chosen datasets from  1, 2, ⋯ , Nn, were used in the above calculation, which was 

mentioned in Politis et al. (1999). Furthermore, the block size was chosen and the algorithm for 

choosing block size is described below: 

1. Fix a selection of reasonable block sizes b between limits blow and bup. 

2. Draw M bootstrap samples from the actual dataset. 

3. For each bootstrap sample, construct a subsampling symmetric confidence interval with 

asymptotic coverage 1 - α for each block size b. Let 𝑅𝑚,𝑏 be one if �̂� was within the m-th 

interval based on block size b and zero otherwise. 

4. Compute ℎ̂(𝑏) = 𝑀−1 ∑ 𝑅𝑚,𝑏
𝑀
𝑚=1 . 

5. Find the value �̃� that minimizes |ℎ̂(𝑏)  −  α| and use �̃� as the block size when constructing 

confidence interval for the original data. 

2.5 Inference for the timing – divide-and-conquer method 

2.5.1 Pooled Estimator Based on Mean 

Banerjee et al. (2019) showed that the divide-and-conquer principle worked well in non-
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standard problems where convergence rates were typically slower than √𝑛  under some 

conditions, though this method was often used in the analysis of massive data sets. So, we can 

also use the divide-and-conquer method to construct the confidence interval for the estimator 

with cubic root convergence rate. The algorithm is described below: 

1. Divide the set of samples (X1 , δ1) , ,, (Xn , δn) into m disjoint subsets 𝑆1 , ,, 𝑆𝑚  of 

(approximately) equal size. 

2. For each j = 1, ,, m, compute the estimated minimizer of �̂�𝑗 (3) based on the 𝑆𝑗th dataset 

3. Average together these estimators to obtain the final “pooled” estimator: 

𝑡̅  =  
1

𝑚
 ∑ �̂�𝑗

𝑚
𝑗=1 . 

From Remark 2.2 of Banerjee et al., (2019), we can construct an approximate (1 − α) CI for 𝑡0 

[𝑡̅ −
�̂�

𝑟𝑛√𝑚
𝑡𝛼/2,𝑚−1, 𝑡̅ −

�̂�

𝑟𝑛√𝑚
𝑡𝛼/2,𝑚−1] 

where 𝑡𝛼/2,𝑚−1 denotes the 
𝛼

2
th quantile of the t -distribution with m−1 degrees of freedom, 

𝑟𝑛 =  [
𝑛

𝑚
]1/3, σ̂2  =  

𝑟𝑛
2

𝑚−1
 ∑ (�̂�𝑗 − 𝑡̅)2𝑚

𝑗=1 . 

To respect the range of the estimand, we also did a log transformation first and then transformed 

it back. Let 

𝑙�̅�  =  
1

𝑚
 ∑ 𝑙𝑜𝑔(�̂�𝑗)𝑚

𝑗=1 . 

The corresponding approximate (1 − α) CI for 𝑡0 is: 

            [𝑒𝑥𝑝(𝑙�̅� −
�̂�′

𝑟𝑛√𝑚
𝑡𝛼/2,𝑚−1), 𝑒𝑥𝑝(𝑙�̅� −

�̂�′

𝑟𝑛√𝑚
𝑡𝛼/2,𝑚−1)],       (10) 

where σ̂′2  =  
𝑟𝑛

2

𝑚−1
 ∑ [𝑙𝑜𝑔(�̂�𝑗) − 𝑙𝑜𝑔(𝑡̅)]2𝑚

𝑗=1  

2.5.2 Pooled Estimator Based on Median 

As we found that the empirical distribution of the subsample estimator was skewed, we came 

up with using the median as the “pooled” estimator, which might be more robust to the skewed 
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distribution. So we had another choice for the final “pooled” estimator and that was 

𝑡 ̃ =  𝑚𝑒𝑑𝑖𝑎𝑛{�̂�1, �̂�2, . . . , �̂�𝑚} 

From this, we can construct an approximate (1 − α) exact CI for 𝑡0 based on Clopper–Pearson 

interval (Clopper & Pearson, 1934): 

                           [�̂�(𝐿), �̂�(𝑈)],                         (11) 

where L= sup  k: 2−𝑚 ∑ (
𝑚
𝑖

)𝑘−1
𝑖=0  ≤  

𝛼

2
, and U= inf  k: 2−𝑚 ∑ (

𝑚
𝑖

)𝑚
𝑖=𝑘−1  ≤  

𝛼

2
,. 

2.6 Minimal Mortality 

2.6.1 Bias of the point estimator 

As we can achieve point estimator �̂� for timing of the minimal 5-year mortality from (3), we 

plugged it in and get a point estimator for minimal mortality �̂�(�̂�). 

�̂�(�̂�) − 𝑀(𝑡0) =   �̂�(𝑡0) − 𝑀(𝑡0),+ �̂�(�̂�)− �̂�(𝑡0), 

For the first term, as �̂�(t) had the similar property of �̂�(t) and it was an approximate mean 

process, it was asymptotically normal, of order 𝑂𝑝(𝑛−1/2) (Lo & Singh, 1986), 

�̂�(𝑡0) − 𝑀(𝑡0)= 𝑛−1 ∑ ξ(Xi, δi, 𝑡0)𝑛
𝑖=1 +  𝑟𝑛(𝑡), 

where E[ξ(Xi, δi, 𝑡0)]=0, 𝑟𝑛(𝑡)=𝑂𝑝(𝑛−3 4⁄ (logn)−3 4⁄ ).  

So, E(�̂�(𝑡0) − 𝑀(𝑡0))= 𝑂𝑝(𝑛−3 4⁄ (logn)−3 4⁄ ). 

For the second term, 

�̂�(�̂�)−�̂�(𝑡0) = min
𝑡

�̂�(𝑡) − �̂�(𝑡0), 

where 𝑛2/3 �̂�(�̂�)−�̂�(𝑡0), coverages weakly to a Gaussian process (Kim & Pollard, 1990). 

Therefore, 𝑛2/3 �̂�(�̂�)−�̂�(𝑡0), coverages to a distribution, and the second-order asymptotic 

bias was of order 𝑛−2/3, which meant E[�̂�(�̂�)− �̂�(𝑡0)]= 𝑂(𝑛−2/3). 

So, E[�̂�(�̂�)− �̂�(𝑡0)] was main influence in E[�̂�(�̂�)− 𝑀(𝑡0)].  
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E[�̂�(�̂�)−𝑀(𝑡0)]=𝑂(𝑛−2/3). 

Also, as �̂� = argmin
𝑡

�̂�(t), �̂�(�̂�)− �̂�(𝑡0) ≤ 0, so E[�̂�(�̂�)− �̂�(𝑡0)] ≤ 0.  

Therefore, the estimator had a downward bias and we wanted to do bias correction, which 

actually was a second term bias correction.  

2.6.2 Algorithms 

As E[�̂�(�̂�)−𝑀(𝑡0)]=𝑂(𝑛−2/3), we can use this linear relationship to do extrapolation, which 

was a method of bias correction. The algorithm 2.6.1 is described below: 

1. Draw M random subsamples with size (0.25+0.05i)n from the actual dataset, i = 1, 2, ,, 

14. 

2. From every subsample, we can get the estimated minimal mortality �̂�[�̂�(0.25+0.05i)n,j] , 

j=1, ,, M. 

3. Let �̂�[�̂�((0.25 + 0.05i)n)]= 
1

𝑀
 ∑ �̂�[�̂�(0.25+0.05i)n,j]

𝑀
𝑗=1 . 

4. Fit a simple linear regression from  ((0.25 + 0.05i)n)−2/3, (�̂�[�̂�((0.25 + 0.05i)n)]) and 

point estimator,. 

5. Get lim
𝑥→ ∞

�̂�[�̂�(x)] from this simple linear regression. 

lim
𝑥→ ∞

�̂�[�̂�(x)] was our adjusted estimator for minimal mortality. Also, we can change subsample 

size in Step 1 and get different adjusted estimator. 

Also, we wanted to construct 1-α confidence interval for �̂�(�̂�). 

�̂�(t)=
�̂�(𝑡)−�̂�(𝑡+5)

�̂�(𝑡)
 and �̂�(t)=∏ (1 −

𝑑𝑖

𝑛𝑖
)𝑖: 𝑡𝑖≤𝑡  

Let �̂�(�̂�) = 𝑀�̂�(5), where 1−𝑀�̂�(t)= 
�̂�(�̂�+𝑡)

�̂�(�̂�)
 = ∏  (1 −

𝑑𝑖

𝑛𝑖
)𝑖: �̂�≤𝑡𝑖≤𝑡+ �̂�  

Actually, 1−𝑀�̂�(𝑡) is a Kaplan–Meier estimator based on those people whose observed time > 

�̂� and their adjusted observed time become their original observed time - �̂�. 
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The Greenwood’s formula was used to achieve the variance of 
�̂�(�̂�+𝑡)

�̂�(�̂�)
 (Greenwood 1926): 

𝑉𝑎�̂�{1 − 𝑀�̂�(t)} = {1 − 𝑀�̂�(t)}2 ∑ (
𝑑𝑘

𝑛𝑘(𝑛𝑘−𝑑𝑘) �̂�≤𝑡𝑘≤𝑡+ �̂� ) 

As �̂�(�̂�) = 𝑀�̂�(5), 𝑉𝑎�̂�{M̂(t̂)} = 𝑉𝑎�̂�{1 − 𝑀�̂�(5)} = {1 − 𝑀�̂�(5)}2 ∑ (
𝑑𝑘

𝑛𝑘(𝑛𝑘−𝑑𝑘) �̂�≤𝑡𝑘≤5+ �̂� ). 

As 0 ≤ M̂(t̂) ≤ 1, so we wanted to do a logit transformation first and then transform it back.   

By delta method, we can get 𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))}= 𝑉𝑎�̂�{M̂(t̂)}/ [M̂(t̂) (1 − M̂(t̂))]2. 

An asymptotic 1 – α level confidence interval for 𝑀(𝑡0) can be constructed with 

 [ 
exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))−Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})

1+exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))−Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})
, 

exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))+Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})

1+exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))+Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})
 ].   

where denotes the (1 −
𝛼

2
)th quantile of the standard normal distribution. 

Also, we had another algorithm 2.6.2: 

1. Draw M random subsamples with size 0.5n from the actual dataset. 

2. From every subsample, we can get the estimated minimal mortality �̂�[�̂�0.5n,j], j=1, ,, M. 

3. Let �̂�[�̂�(0.5n)]= 
1

𝑀
 ∑ �̂�[�̂�0.5n,j]

𝑀
𝑗=1 . 

4. As E[�̂� (�̂� )−𝑀 (𝑡0 )]=𝑂𝑝(𝑛−2/3) , Let E[�̂� (�̂� )−𝑀 (𝑡0 )]=𝛼 + 𝛽 · 𝑛−2/3 . By using �̂�(0.5n) 

and point estimator, we estimate the slope �̂� =  M[�̂�(0.5n)]- M(�̂�),/[(0.5n)−2/3 − 𝑛−2/3]. 

Then we can estimate �̂�=�̂�(�̂�) − 𝑛−2/3 · M[�̂�(0.5n)]- M(�̂�),/[ (0.5n)−2/3 − 𝑛−2/3]. 

5. Then we can get lim
𝑥→ ∞

�̂�[�̂�(x)] = �̂�. 

Then we can have the same inference on this estimator. 

An asymptotic 1 – α level confidence interval for 𝑀(𝑡0) can be constructed with 

 [ 
exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))−Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})

1+exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))−Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})
, 

exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))+Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})

1+exp (𝑙𝑜𝑔𝑖𝑡(M̂(t̂))+Z1−𝛼 2⁄ ·𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))})
 ].   

where denotes the (1 −
𝛼

2
)th quantile of the standard normal distribution, and we can calculate 

𝑉𝑎�̂�{𝑙𝑜𝑔𝑖𝑡(M̂(t̂))} with the same form as before. 
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3. Simulation 

3.1 simulation models 

We used mixture Weibull distribution to mimic the survival distribution, combining two 

Weibull distribution with different parameters.  

𝑓(𝑥) = 𝑤 ·
𝑎1

𝑏1
(

𝑥

𝑏1
)(𝑎1−1)𝑒

−(
𝑥

𝑏1
)𝑎1

+ (1 − 𝑤) ·
𝑎2

𝑏2
(

𝑥

𝑏2
)(𝑎2−1)𝑒

−(
𝑥

𝑏2
)𝑎2

 

The shape of the nonparametric-estimated 5-year mortality function had a sharp decline at the 

beginning and then rose gradually. However, we could not get such a 5-year mortality function 

from the exponential distribution or Weibull distribution, which was often used in the survival 

analysis, because 5-year mortality rate functions from them were monotone. The mixture 

Weibull distribution had more parameters and gave us a more flexible choice. Therefore, the 

mixture Weibull distribution was a reasonable assumption.  

First, we used fixed and reasonable parameters to simulate a dataset without censoring, which 

gave us insight into our methods’ performance.  

Second, we used mixture Weibull distribution to fit the real dataset by weibullRMM_SEM 

function in mixtools package in R and got the estimated parameters for the distribution. To fit 

the data better, we artificially censored some data set at a fixed time point and used empirical 

censoring distribution to mimic censoring distribution. With the mixture Weibull distribution 

with different parameters and empirical censoring distribution, we could evaluate confidence 

intervals through their coverages and average lengths.  

3.2 Evaluation of inference for the timing – subsampling method 

As we can achieve 6 different asymptotic confidence intervals from subsampling method. In 

this section, we use different name to call these 6 confidence intervals. Asymmetric standard 
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CI refers to the confidence interval (4) in the method part. Asymmetric log CI refers to the 

confidence interval (5) in the method part. Symmetric standard CI refers to the confidence 

interval (6) in the method part. Symmetric log CI refers to the confidence interval (7) in the 

method part. New standard CI refers to the confidence interval (8) in the method part. New log 

CI refers to the confidence interval (9) in the method part. 

3.2.1 Artificial Data with Given Parameters 

In this simulation, we set 𝑎1 = 1, 𝑏1 = 2, 𝑎2  = 5, 𝑏2  = 75, w = 0.2, in which there is no 

censoring. We chose these values simply because they could give us a similar pattern of the 5-

year mortality rate. We used the procedures in the method part to choose the block size. Also, 

we set the sample size as 200 and run 1000 iterations.  

From Table 1, we could see the coverages of asymmetric standard CI and asymmetric log CI 

were much smaller than the nominal level. Also, the coverages of symmetric standard CI, 

symmetric log CI, and New standard CI were smaller than the nominal level. The coverage of 

new log CI was very close to the nominal level. However, these six confidence intervals’ 

average lengths were large, and the average length of new log CI was the smallest. 

Table 1. The performances of 95% confidence intervals in the simulation with given 

parameters with sample size 200 

Method Coverage Average Length of CI 

Asymmetric Standard CI 0.610 5.64 

Asymmetric log CI 0.580 7.83 

Symmetric Standard CI 0.847 7.41 

Symmetric log CI 0.909 7.86 

New Standard CI 0.831 6.16 

New log CI 0.948 5.41 

Then we set the sample size as 1000 and run 1000 iterations with the same parameters. 
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From Table 2, we could see the coverages of asymmetric standard CI and asymmetric log CI 

were much smaller than the nominal level, but they were better than those in the previous 

simulation. The coverage of new standard CI was smaller than the nominal level. The 

coverages of symmetric standard CI and symmetric log CI were close to the nominal level. 

The coverage of new log CI was a little larger than the nominal level. These six confidence 

intervals’ average lengths became shorter than those in the previous simulation, and the 

average length of new log CI was the smallest. 

Table 2. The performances of 95% confidence intervals in the simulation with given 

parameters with sample size 1000 

Method Coverage Average Length of CI 

Asymmetric Standard CI 0.760 4.91 

Asymmetric log CI 0.804 4.31 

Symmetric Standard CI 0.965 6.24 

Symmetric log CI 0.958 4.18 

New Standard CI 0.864 4.86 

New log CI 0.985 3.80 

Then we set the sample size as 4000 and run 500 iterations with the same parameters. 

Table 3. The performances of 95% confidence intervals in the simulation with given 

parameters with sample size 4000 

Method Coverage Average Length of CI 

Asymmetric Standard CI 0.819 3.13 

Asymmetric log CI 0.861 2.73 

Symmetric Standard CI 0.979 3.81 

Symmetric log CI 0.972 2.67 

New Standard CI 0.889 3.10 

New log CI 0.993 2.53 

From Table 3, we could see the coverages of asymmetric standard CI, asymmetric log CI, and 

new standard CI were still smaller than the nominal level, but they were better than those in 

the previous simulation. The coverages of symmetric standard CI and symmetric log CI were 
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close to the nominal level. However, they were both a little larger than the nominal level. The 

coverage of new log CI was larger than the nominal level. These six confidence intervals’ 

average lengths became shorter than those in the previous simulation, and the average length 

of new log CI was the smallest. 

In summary, the average length of new log CI was always the smallest, and its coverage was 

close to the nominal level, although it was a little larger than the nominal level when the sample 

size was large. As the conservative confidence interval is acceptable and it had the smallest 

length, its performance is the best. The performances of symmetric standard CI and symmetric 

log CI were also good, and their coverage goes to the nominal level as the sample size is larger. 

However, the average length of symmetric standard CI was a little large. 

3.2.2 Artificial Data with Estimated Parameters after Fitting the Real Dataset – Simple 

Tetralogy of Fallot Dataset 

For simple Tetralogy of Fallot dataset, from Figure 1 in Appendix, we could see the curves of 

parametric estimated mortality function and nonparametric estimated mortality function are 

very similar to each other in (0,15), although the parametric estimated timing is a little bit 

different from the nonparametric one. It was an all-right fit and could give us some insight 

into the performance of subsampling method on simple Tetralogy of Fallot dataset. We set the 

sample size as 4000 because the size of the original dataset is 3283 and we ran 500 iterations. 

For the censoring rate, the real censoring rate is 95.31%, and the average censoring rate of the 

artificial data is 94.07 %, which were very close to each other. 

First, we fixed the block size b as 𝑛0.8, where n is the sample size.  
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From Table 4, we could see the coverages of five confidence intervals except new log CI were 

all much smaller than the nominal level. The coverage of new log CI was close to the nominal 

level. Also, the average length of new log CI was the smallest. However, these six confidence 

intervals’ average lengths are very large. 

Table 4. The performances of 95% confidence intervals in the simulation with estimated 

parameters from simple Tetralogy of Fallot dataset with fixed block size 𝒏𝟎.𝟖 

Method Coverage Average Length of CI 

Asymmetric Standard CI 0.548 9.65 

Asymmetric log CI 0.512 12.63 

Symmetric Standard CI 0.795 12.31 

Symmetric log CI 0.847 12.73 

New Standard CI 0.827 9.65 

New log CI 0.943 9.36 

Second, we used the procedures in the method part to choose the block size.  

Table 5. The performances of 95% confidence intervals in the simulation with estimated 

parameters from simple Tetralogy of Fallot dataset after choosing the block size 

Method Coverage Average Length of CI 

Asymmetric Standard CI 0.377 4.20 

Asymmetric log CI 0.465 14.59 

Symmetric Standard CI 0.527 5.53 

Symmetric log CI 0.837 14.81 

New Standard CI 0.563 4.42 

New log CI 0.782 7.06 

From Table 5, we could see the coverages of all confidence intervals were much smaller than 

the nominal level. However, six confidence intervals’ average lengths are large. It meant the 

performances of these six confidence intervals were not good. 

3.2.3 Summary for Subsampling Method 

We gave six types of confidence intervals by the subsampling method. From simulation with 

given parameters, we could see Symmetric log CI and New log CI performed well, and their 
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coverages were close to the nominal level, especially new log CI’s. Although some of their 

coverages were slightly larger than the nominal level when the sample size was large, the 

conservative confidence interval is acceptable. When it comes to the simulation with estimated 

parameters after fitting the real dataset, only new log CI had a good performance on coverage 

when the block size is fixed. All lengths of these confidence intervals were large, which meant 

it was hard to get precise inference for the timing by subsampling method. Also, these six 

confidence intervals all became worse after we chose the block size. It was not a reliable method 

for real dataset at present.  

3.3 Evaluation of inference for the timing – divide-and-conquer method 

The divide-and-conquer method often performs well on massive data. So we only simulated for 

the mild congenital heart defect dataset, whose sample size was nearly 15000. In this section, 

we regarded the confidence interval (10) in the method part as mean confidence interval and 

regarded the confidence interval (11) in the method part as median confidence interval. 

3.3.1 Artificial Data with Estimated Parameters after Fitting the Real Dataset - Mild Congenital 

Heart Defect Dataset 

For mild congenital heart defect dataset, from Figure 2 in Appendix, we could see the curves 

of parametric estimated mortality function and nonparametric estimated mortality function 

were very similar to each other in (0,15), and the parametric estimated timing was also close to 

the nonparametric one. It was a good fit and can give us some insights into the performance of 

subsampling method on mild congenital heart defect dataset. For the censoring rate, the real 

censoring rate was 97.90%, and the average censoring rate of the artificial data was 98.03%, 

which were very close to each other. We artificially censored this data set at year 20. 
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We set the sample size as 16000 and split it into 32 or 16 disjoint subsets. We ran 1000 iterations. 

Table 6. The performances of divide-and-conquer method in the simulation with estimated 

parameters from mild congenital heart defect dataset with sample size 16000 

Method The number of Subsets: m Coverage Average Length of CI 

mean CI 16 0.897 5.44 

 32 0.928 3.64 

median CI* 16* 0.978 9.27 

 32** 0.965 5.91 

* Its exact confidence level is 0.951. 

** Its exact confidence level is 0.9649. 

From Table 6, we could see the coverage of mean CI, whose subsets’ number was 16, was a 

little smaller than the nominal level. The coverages of the other three were close to the nominal 

level. Among these three, the average length of mean CI, whose subsets’ number was 32, was 

the smallest. 

Also, we set the sample size as 4000 and split it into 20 disjoint subsets. We run 1000 iterations. 

Table 7. The performances of divide-and-conquer method in the simulation with estimated 

parameters from mild congenital heart defect dataset with sample size 4000 

Method The number of Subsets: m Coverage Average Length of CI 

mean CI 20 0.928 3.91 

median CI 20* 0.987 6.31 

* Its exact confidence level is 0.9586. 

From Table 7, we could see the coverages of mean CI and median CI were close to the 

nominal level. As the conservative coverage was more acceptable, median CI performed 

better. However, the average length of mean CI was smaller than that of median CI.  

3.3.2 Artificial Data with Estimated Parameters after Fitting the Real Dataset – Simple 

Tetralogy of Fallot Dataset 

We used the mixture Weibull distribution to fit simple Tetralogy of Fallot dataset as by the same 

way in 3.2.2. As this method can only deal with massive data, we set the sample size as 16000 
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and split it into 32 or 16 disjoint subsets. We ran 1000 iterations. 

Table 8. The performances of divide-and-conquer method in the simulation with estimated 

parameters from simple Tetralogy of Fallot dataset with sample size 16000 

Method The number of Subsets: m Coverage Average Length of CI 

mean CI 16 0.917 5.54 

 32 0.939 4.11 

median CI* 16 0.979 9.61 

 32 0.980 7.18 

* Its exact confidence level is 0.951. 

** Its exact confidence level is 0.9649. 

From Table 8, we could see the coverages of all methods were also close to the nominal level, 

especially mean CI whose subsets’ number was 32. Actually, median CI whose subsets’ number 

also perform excellently as its exact confidence level was 0.9649. 

Also, we set the sample size as 4000 and split it into 20 disjoint subsets. We ran 1000 iterations. 

Table 9. The performances of divide-and-conquer method in the simulation with estimated 

parameters from simple Tetralogy of Fallot dataset with sample size 4000 

Method The number of Subsets: m Coverage Average Length of CI 

mean CI 20 0.794 4.83 

median CI 20* 0.969 7.91 

* Its exact confidence level is 0.9586. 

From Table 9, we could see the coverage of median CI was close to the nominal level. However, 

the coverage of mean CI was terrible.  

3.3.3 Artificial Data with Estimated Parameters after Fitting the Real Dataset – Single Ventricle 

Dataset 

For single ventricle dataset, from Figure 3 in Appendix, we could see the curves of parametric 

estimated mortality function and nonparametric estimated mortality function are very similar to each 

other although the parametric estimated timing is a little bit different from the nonparametric one. 

It is an all-right fit and can give us some insight on the performance of subsampling method on 
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single ventricle dataset. As this method can only deal with massive data, we set the sample size 

as 16000 and split it into 32 disjoint subsets. We ran 1000 iterations. 

Table 10. The performances of divide-and-conquer method in the simulation with estimated 

parameters from single ventricle dataset with sample size 16000 

Method The number of Subsets: m Coverage Average Length of CI 

mean CI 32 0.259 3.24 

median CI* 32 0.805 5.93 

* Its exact confidence level is 0.951. 

** Its exact confidence level is 0.9649. 

From Table 10, we could see the coverages of all methods were much smaller than the nominal 

level, which meant this method is not reliable on single ventricle dataset. 

3.3.3 Summary for Divide-and-Conquer Method 

Confidence intervals based on the divide-and-conquer method seemed to have a good 

performance on the first two datasets, especially the method based on the median whose 

coverages were always very close to the nominal level. It meant our inference might be very 

accurate. Surprisingly, the divide-and-conquer method's performances were still outstanding 

when the sample size dropped from 16000 to 4000 for mild congenital heart defect dataset. 

However, I'm still not very confident of this method, as it performed pretty badly on single 

ventricle dataset. In summary, divide-and-conquer method seemed not to be a reliable method 

for inference.  

3.4 Estimator and inference for the Minimal Mortality 

In this section, we regarded the estimator and confidence interval from the algorithm 2.6.1 in 

the method part as method 1 and the estimator and confidence interval from the algorithm 2.6.2 

in the method part as method 2. We also gave a Traditional method to compare. In that method, 

we just used the point estimator as our estimator and used the similar procedures in the method 
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part to get the inference. 

3.4.1 Artificial Data with Given Parameters 

In this simulation, we set 𝑎1= 0.2, 𝑏1= 0.4, 𝑎2 = 3, 𝑏2 = 25, w = 0.5 with the same reason 

as that in 3.2.1. Also, we set the sample size as 400 and run 500 iterations. 

From Table 11, we could see that our methods both performed better than the traditional one. 

They had smaller standardized bias, smaller standardized RMSE, better coverage, and smaller 

average length. The performances of method 1 and method 2 were similar, and method 1 

seemed to be a little better as it had smaller standardized RMSE. However, method 2 needs less 

computation. 

Table 11. The performances of bias correction in the simulation with fixed parameters with 

sample size 400 

True value Method Standardized bias* Standardized 

RMSE* 

Coverage Average 

Length 

0.0752 Traditional -0.290 0.369 0.976 0.0922 

Method 1 -0.058 0.305 0.964 0.0885 

Method 2 -0.045 0.339 0.944 0.0887 

* As the true value is very small, so we use standardized bias and standardized RMSE to evaluate the performance of our estimators. 

Standardized bias is the difference from the true value divided by that true value and Standardized RMSE is RMSE divided by that true 

value. 

3.4.2 Artificial Data with Estimated Parameters after Fitting the Real Dataset – Simple 

Tetralogy of Fallot Dataset 

We used the mixture Weibull distribution to fit simple Tetralogy of Fallot dataset as by the same 

way in 3.2.2. We set the sample size as 4000 and ran 1000 iterations. 

From Table 12, we could see that our methods still both performed better than the traditional 

one, and the most pleasant thing was the significant progress in coverage in both methods. They 

had smaller standardized bias, smaller standardized RMSE, better coverage, and similar 

average length. The performances of method 1 and method 2 were similar, and method 1 
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seemed to be a little better as it had smaller standardized RMSE. However, method 2 needs less 

computation. 

Table 12. The performances of bias correction in the simulation with estimated parameters 

from simple Tetralogy of Fallot dataset with sample size 4000 

True value Method Standardized bias* Standardized 

RMSE* 

Coverage Average 

Length 

0.00687 Traditional -0.2418 0.273 0.869 0.0047 

Method 1 -0.0550 0.170 0.954 0.0047 

Method 2 -0.0338 0.196 0.930 0.0047 

** As the true value is very small, so we use standardized bias and standardized RMSE to evaluate the performance of our estimators. 

Standardized bias is the difference from the true value divided by that true value and Standardized RMSE is RMSE divided by that true 

value. 

3.4.3 Summary 

From our two simulations, we can see both of our methods made bias and MSE smaller, which 

is the goal we want to reach. Also, the confidence intervals for these two methods were still 

close to the nominal level. Therefore, both methods could get better estimation for minimal 

mortality. Method 1 is more reliable for its smaller RMSE. Our bias correction was successful. 

4. Application 

4.1 Subsampling method on Simple Tetralogy of Fallot Dataset 

We applied subsampling method to simple tetralogy of Fallot dataset (N=3283). 

Table 13. The 95% confidence intervals for timing on simple tetralogy of fallot dataset by 

subsampling method with fixed block size 𝒏𝟎.𝟖 

Method 95% CI The Length of CI 

Asymmetric Standard CI (0, 5.59) 5.59 

Asymmetric log CI (1.45,7.90) 6.45 

Symmetric Standard CI (0, 14.79) 14.79 

Symmetric log CI (1.48, 11.01) 9.53 

New Standard CI (2.43, 15.34) 12.91 

New log CI (2.26, 11.26) 9.00 

From Table 13, we could see the confidence intervals for timing with fixed block size 𝑛0.8. 
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Table 14. The 95% confidence intervals for timing on simple tetralogy of fallot dataset by 

subsampling method after choosing the block size 

Method Block Size 95% CI The Length of CI 

Asymmetric Standard CI 57 (0.86, 4.94) 4.08 

Asymmetric log CI 57 (2.82, 6.52) 3.70 

Symmetric Standard CI 57 (1.15, 6.94) 5.79 

Symmetric log CI 57 (2.64, 6.19) 3.55 

New Standard CI 57 (3.08, 7.23) 4.15 

New log CI 57 (2.02, 5.77) 3.74 

From Table 14, we could see the confidence intervals for timing after choosing the block size. 

After choosing the block size, we achieved narrower confidence intervals.  

However, after simulations, I was not very confident about whether they are reliable on real 

data, although the coverage of new log CI with fixed block size was close to the nominal level. 

There are two reasons. First, new log CI became more and more conservative as the sample 

size became larger from the simulation with given parameters, which is weird. As constructing 

this confidence interval need assumptions, we should be more careful. Second, symmetric log 

CI and new log CI were based on the same foundation, and symmetric log CI also performed 

well in the simulation with given parameters. However, symmetric log CI performed badly in 

the simulation with estimated parameters, and the reason why this happens wasn’t clear. 

4.2 Divide-and-conquer method on Mild Congenital Heart Defect Dataset 

Divide-and-conquer method was applied to mild congenital heart defect dataset. 

From Table 15, we can see the confidence intervals for timing by divide-and-conquer method. 

When the number of subsets is 32, the confidence interval had all-right length, and its length 

was similar to that from simulation. However, when the number of subsets is 16, the length of 

the confidence interval was too large, and they were different from those from the simulation. 
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Therefore, for the real dataset, maybe we should choose the number of subsets more carefully. 

Also, as we mentioned before, considering the bad performance on single ventricle dataset, it 

wasn’t an enough reliable method. 

Table 15. The confidence intervals for timing on mild congenital heart defect dataset by 

divide-and-conquer method 

Method The number of 

Subsets: m 

95% CI The Length of CI 

mean CI 16 (4.16, 12.66) 8.50 

32 (3.49, 7.10) 3.61 

median CI 16 (3.26, 22.25) 18.99 

32 (2.88, 8.32) 5.44 

4.3 Bias correction on Simple Tetralogy of Fallot Dataset 

We also applied bias correction to simple tetralogy of Fallot dataset. As method 1 is more 

reliable, we only used method 1 on real data. From Table 16, we could see that our bias 

correction indeed work for original point estimator and confidence interval. 

Table 16. The point estimator and confidence intervals for minimal mortality on simple 

tetralogy of fallot dataset  

Method Point Estimator 95% CI The Length of CI 

Traditional 0.00529 (0.00328, 0.00851) 0.00523 

Method 1 0.00677 (0.00466, 0.00982) 0.00515 

5. Discussion and conclusion 

In this project, we first evaluated the inference for timing by subsampling method and divide-

and-conquer method on CHD dataset. 

For subsampling method, from simulations with given parameters, we used subsampling 

method with block size choosing method and some confidence intervals can achieve the 

coverage that was close to the nominal level and narrow length, which was what we wanted. 

When it comes to the simulation with estimated parameters after fitting the real dataset, only 



27 

 

new log CI had a good performance on coverage when the block size is fixed. However, the 

method after choosing block size was unsatisfactory, with bad coverages from the simulation 

with estimated parameters. Apparently, results from simulations with given parameters and 

those from simulations with estimated parameters are different. We found that after choosing 

the block size, the smaller block size was more likely to be chosen, which may cause the 

inference from simulations with estimated parameters to be more unstable. This could be caused 

by the lower bound of the block size choices is too low. We need to try to get a more appropriate 

lower bound of the block size choices. In addition, we increased the sample size to 16000, and 

the coverages for fixed block sizes were closer to the nominal level. However, the sample size 

of simple tetralogy of Fallot dataset was only 3283. So, maybe the next step would be to try the 

method on the simulations for mild congenital heart defect dataset, whose sample size was 

14861. At present, this method wasn’t reliable. 

For divide-and-conquer method, it performed well from simulations on the first two datasets, 

which can help us achieve confidence intervals with good coverage and narrow length. Median 

CI was more reliable as its coverage seemed to stay close to the nominal level from simulations. 

However, it performed pretty badly on simulated data from single ventricle dataset. It seemed 

not to be an enough credible method for inference. We need more studies on this method. Also, 

the result from the real dataset also showed the number of subsets might be a significant 

decision. When the number of subsets was 16, the lengths of both confidence intervals were too 

large on the real dataset, and they were different from those from the simulation. The reason 

needed further study. 

Second, we used extrapolation to do bias correction for the estimator for the minimal mortality. 
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We could see both of our methods made bias and MSE smaller from our simulation, which was 

the goal we wanted to reach. The confidence intervals for these two methods were still close to 

the nominal level. So, our bias correction was very successful. Also, for the real dataset, we 

could see our estimators both had an increase on point estimator, which may improve downward 

bias.  

In this project, the strength was that we used nonparametric methods to construct confidence 

intervals for timing, and they didn’t need any assumptions on survival distribution. It was a 

design that permits wide use. The limitation was that we tried to evaluate whether a few CI’s 

may perform well in the analysis of PCCC data, by assuming that mixture Weibull distribution 

provides a good fit. 

In the future, several further studies can be done. First, we can prove why the estimated timing 

had a cubic root convergence rate in the future.  

Second, we will investigate whether the block size choosing method can be improved. As we 

can see from the real dataset, block size choosing indeed helped us achieve narrower confidence 

intervals, but from simulation, the cost was lowering its coverage. However, simulation with 

given parameters showed the confidence intervals after choosing block size can also have 

coverage which is close to the nominal level. But how to connect these simulations and real 

datasets and build a confidence interval with good coverage and narrow length is an exciting 

question.  

Besides, we can search for better distribution to mimic the CHD dataset or a better way to fit 

the parameters of mixture Weibull distribution. Because although our curve of parametric 

estimated mortality function was very similar to the nonparametric estimated mortality function, 
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the parametric estimated timing was a little bit different from the nonparametric one, and it was 

always larger by using weibullRMM_SEM to fit the parameters.   



30 

 

Reference 

1. Abrevaya, J., & Huang, J. (2005). On the bootstrap of the maximum score estimator. 

Econometrica, 73(4), 1175-1204. 

2. Banerjee, M., Durot, C., & Sen, B. (2019). Divide and conquer in nonstandard problems 

and the super-efficiency phenomenon. Annals of Statistics, 47(2), 720-757. 

3. Bordes, L., & Chauveau, D. (2016). Stochastic EM algorithms for parametric and 

semiparametric mixture models for right-censored lifetime data. Computational Statistics, 

31(4), 1513-1538. 

4. Cattaneo, M. D., Jansson, M., & Nagasawa, K. (2020). Bootstrap‐Based Inference for Cube 

Root Asymptotics. Econometrica, 88(5), 2203-2219. 

5. Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated 

in the case of the binomial. Biometrika, 26(4), 404-413. 

6. Erikssen, G., Liestøl, K., Seem, E., Birkeland, S., Saatvedt, K. J., Hoel, T. N., ... & Lindberg, 

H. L. (2015). Achievements in congenital heart defect surgery: a prospective, 40-year study 

of 7038 patients. Circulation, 131(4), 337-346. 

7. Greenwood, M. (1926). The natural duration of cancer (report on public health and medical 

subjects no 33). London: Stationery Office. 

8. Jacobs, J. P., Mayer Jr, J. E., Pasquali, S. K., Hill, K. D., Overman, D. M., Louis, J. D. S., ... 

& Jacobs, M. L. (2018). The society of thoracic surgeons congenital heart surgery database: 

2018 update on outcomes and quality. The Annals of thoracic surgery, 105(3), 680-689. 

9. Kempny, A., Dimopoulos, K., Uebing, A., Diller, G. P., Rosendahl, U., Belitsis, G., ... & 

Wort, S. J. (2017). Outcome of cardiac surgery in patients with congenital heart disease in 

England between 1997 and 2015. PLoS One, 12(6), e0178963. 

10. Kim, J., & Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics, 18(1), 191-

219. 

11. Larsen, S. H., Olsen, M., Emmertsen, K., & Hjortdal, V. E. (2017). Interventional treatment 

of patients with congenital heart disease: nationwide Danish experience over 39 years. 

Journal of the American College of Cardiology, 69(22), 2725-2732. 

12. Lee, S. M. S., & Pun, M. C. (2006). On m out of n bootstrapping for nonstandard M-

estimation with nuisance parameters. Journal of the American Statistical Association, 

101(475), 1185-1197. 

13. Lo, S. H., & Singh, K. (1986). The product-limit estimator and the bootstrap: some 

asymptotic representations. Probability Theory and Related Fields, 71(3), 455-465. 

14. Mendis, S., Puska, P., Norrving, B., & World Health Organization. (2011). Global atlas on 

cardiovascular disease prevention and control. World Health Organization. 

15. Nieminen, H. P., Jokinen, E. V., & Sairanen, H. I. (2001). Late results of pediatric cardiac 

surgery in Finland: a population-based study with 96% follow-up. Circulation, 104(5), 570-

575. 

16. Ou, F. S., Zeng, D., & Cai, J. (2016). Quantile regression models for current status data. 

Journal of statistical planning and inference, 178, 112-127. 

17. Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling. Springer Science & 

Business Media. 

18. Raissadati, A., Nieminen, H., Jokinen, E., & Sairanen, H. (2015). Progress in late results 



31 

 

among pediatric cardiac surgery patients: a population-based 6-decade study with 98% 

follow-up. Circulation, 131(4), 347-353. 

19. Shi, C., Lu, W., & Song, R. (2018). A massive data framework for m-estimators with cubic-

rate. Journal of the American Statistical Association, 113(524), 1698-1709. 

20. Spector, L. G., Menk, J. S., Vinocur, J. M., Oster, M. E., Harvey, B. A., St. Louis, J. D., ... 

& Kochilas, L. K. (2016). In‐hospital vital status and heart transplants after intervention for 

congenital heart disease in the Pediatric Cardiac Care Consortium: completeness of 

ascertainment using the National Death Index and United Network for Organ Sharing 

Datasets. Journal of the American Heart Association, 5(8), e003783. 

21. Spector, L. G., Menk, J. S., Knight, J. H., McCracken, C., Thomas, A. S., Vinocur, J. M., ... 

& Kochilas, L. (2018). Trends in long-term mortality after congenital heart surgery. Journal 

of the American College of Cardiology, 71(21), 2434-2446. 

22. Vinocur, J. M., Menk, J. S., Connett, J., Moller, J. H., & Kochilas, L. K. (2013). Surgical 

volume and center effects on early mortality after pediatric cardiac surgery: 25-year North 

American experience from a multi-institutional registry. Pediatric cardiology, 34(5), 1226-

1236. 

23. Zimmerman, M. S., Smith, A. G. C., Sable, C. A., Echko, M. M., Wilner, L. B., Olsen, H. 

E., ... & Kassebaum, N. J. (2020). Global, regional, and national burden of congenital heart 

disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. 

The Lancet Child & Adolescent Health, 4(3), 185-200. 

 

 

 

 

  



32 

 

Appendix 

 

Figure 1: Parametric estimated mortality function and Nonparametric estimated mortality 

function for Simple Tetralogy of Fallot Dataset 

 

Figure 2: Parametric estimated mortality function and Nonparametric estimated mortality 

function for Mild Congenital Heart Defect Dataset 
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Figure 3: Parametric estimated mortality function and Nonparametric estimated mortality 

function for Single Ventricle Dataset 

 


