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Abstract

This thesis introduces a novel approach for transformers that learns hierar-
chical representations in multiparty dialogue. First, three language modeling
tasks are used to pre-train the transformers, token- and utterance-level lan-
guage modeling and utterance order prediction, that learn both token and
utterance embeddings for better understanding in dialogue contexts. Then,
multi-task learning between the utterance prediction and the token span
prediction is applied to fine-tune for span-based question answering (QA).
Our approach is evaluated on the FriendsQA dataset and shows improve-
ments of 3.7% and 1.4% over the two state-of-the-art transformer models,
BERT and RoBERTa, respectively.
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Chapter 1

Introduction

Transformer-based contextualized embedding approaches such as BERT [6],

XLM [5], XLNet [29], RoBERTa [13], and AlBERT [12] have re-established the

state-of-the-art for practically all question answering (QA) tasks on not only general

domain datasets such as SQUAD [20, 21], MS MARCO [17], TRIVIAQA [10],

NEWSQA [26], or NARRATIVEQA [11], but also multi-turn question datasets

such as SQA [8], QUAC [4], COQA [22], or CQA [24]. However, for span-based

QA where the evidence documents are in the form of multiparty dialogue, the

performance is still poor even with the latest transformer models [23, 28] due to

the challenges in representing utterances composed by heterogeneous speakers.

Several limitations can be expected for language models trained on general

domains to process dialogue. First, most of these models are pre-trained on formal

writing, which is notably different from colloquial writing in dialogue; thus, fine-

tuning for the end tasks is often not sufficient enough to build robust dialogue
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models. Second, unlike sentences in a wiki or news article written by one author

with a coherent topic, utterances in a dialogue are from multiple speakers who

may talk about different topics in distinct manners such that they should not be

represented by simply concatenating, but rather as sub-documents interconnected

to one another.

This thesis presents a novel approach to the latest transformers that learns

hierarchical embeddings for tokens and utterances for a better understanding in

dialogue contexts. While fine-tuning for span-based QA, every utterance as well

as the question are separatedly encoded and multi-head attentions and additional

transformers are built on the token and utterance embeddings respectively to

provide a more comprehensive view of the dialogue to the QA model. As a result,

our model achieves a new state-of-the-art result on a span-based QA task where

the evidence documents are multiparty dialogue.

The contributions of this thesis are:

• New pre-training tasks are introduced to improve the quality of both token-

level and utterance-level embeddings generated by the transformers, that

better suit to handle dialogue contexts.

• A new multi-task learning approach is proposed to fine-tune the language

model for span-based QA that takes full advantage of the hierarchical em-
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beddings created from the pre-training.

• Our approach significantly outperforms the previous state-of-the-art models

using BERT and RoBERTa on a span-based QA task using dialogues as

evidence documents.

To begin with, Chapter 2 will introduce current related QA tasks. Transformer

based approaches will also be introduced. Any foundation work prior and related

to this dataset will be discussed. Chapter 3 will give the details of the proposed

approach. Chapter 4 will conduct experiments for the proposed approach and give

out the results. Some other experimental settings are also included. Chapter 5

will give the analysis of the proposed approach based on the ablation studies and

question types analysis. Also, an error analysis will be provided for future insights.

Chapter 6 will conclude the work and propose possible future improvements.

Appendix A includes the model results and analysis for other tasks in the character

mining project.
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Chapter 2

Background

2.1 Language Modeling and Word Embedding

Language modeling and word embeddings have been popular in NLP community

since Google proposed word2vec [15] which introduced the word embedding

vectors to represent words. Currently there are two kinds of word embedding

methods including static word embedding and contextualized word embedding.

Static word embedding includes two language modeling strategies including skip-

gram which is used to predict the context word for a given target word, and

CBOW(The Continuous Bag of Words) which takes the context of each word as

the input and tries to predict the word corresponding to the context. Static word

embeddings fail to capture polysemy. They could only leverage off the vector

outputs from unsupervised models for downstream tasks not the unsupervised

models themselves. They were mostly shallow models to begin with and were
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often discarded after training (e.g. word2vec[15], Glove [18] , FastText

[1]). They generate the same embedding for the same word in different contexts.

Contextualized words embeddings, however, aim at capturing word semantics in

different contexts to address the issue of polysemous and the context-dependent

nature of words. The output of contextualized word embedding training is the

trained model and vectors(e.g. BERT [6], XLM [5], XLNet [29], RoBERTa [13],

and AlBERT [12]).

2.2 Transformers and Muti-head Attention

The Transformer was first proposed by Vaswani et al. [27] to address machine

translation task. It has a encoder and a decoder to translate one language into

another language. In both the encoder and the decoder it has several layers of

following structure: a muti-head attention layer and a feed-forward layer and

batch normalization layers. The layers of this structure shows better modeling the

language context which finally started to be used as the language model encoder

by Radford [19] who proposed GPT and Devlin et al. [6] who proposed BERT.

The muti-head attention layer in the transformer has two perspectives. The first

one is the Scaled Dot-Product Attention and the second one is the muti-head. The

Scaled Dot-Product Attention function can be described as mapping a query and a
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set of key-value pairs to an output, where the query, keys, values, and output are all

vectors. The output is computed as a weighted sum of the values, where the weight

assigned to each value is computed by a compatibility function of the query with

the corresponding key. The muti-head represents linearly project the queries, keys

and values multiple times with different, learned linear projections to dk, dk and dv

dimensions, respectively. Multi-head attention allows the model to jointly attend to

information from different representation subspaces at different positions.

2.3 Related Question Answering Tasks

The community constantly proposes new QA datasets and tasks. There are many

general domain datasets such as SQUAD [20, 21], MS MARCO [17], TRIVIAQA

[10], NEWSQA [26], or NARRATIVEQA [11]. There are another types of dataset

called multi-turn question datasets such as SQA [8], QUAC [4], COQA [22], or

CQA [24]. They gives questions in conversational form but their evidence docu-

ments are still from formal writings such as news, wikipedia, stories, literatures,

etc. The other types of QA dataset called multiple choices QA also in dialogue

setting which is DREAM [23], which uses dialogue as evidence documents, but is

designed for reading comprehension that requires slightly different mechanism.
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2.4 Related Transformer Based Approach

Transformer-based contextualized embedding approaches such as BERT [6], XLM

[5], XLNet [29], RoBERTa [13], and AlBERT [12] have re-established the state-

of-the-art for practically all question answering (QA) tasks. All of them have

two stages of training: pre-training and fine-tuning. For BERT, there are two

combination pre-training tasks which are masked language modeling task, and

next sentence prediction task. RoBERTa, an improvement of BERT, has only

masked language modeling task but with more data and dynamic masked language

modeling technique. For other approaches such as XLNET and AlBERT they all

have improvement of the BERT. For example, AlBERT is a lite version of BERT it

is not only cutting the parameters of BERT but also they change the next sentence

prediction task into sentence order prediction task which can achieve better results

for downstream tasks. In this thesis we only use BERT and RoBERTa as our

baseline models.

2.5 Character Mining Project

The Character Mining 1 dataset provides transcripts of the TV show Friends as

well as annotation for several tasks. Future research could combine this project

1https://github.com/emorynlp/character-mining
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with FriendsQA to generate more meaningful tasks and tools. The first two seasons

are annotated [3] for character identification task, that is an entity linking task

identifying personal mentions with character names. This annotation is extended

to the next two seasons and ambiguous mentions are further annotated[2]. Build-

ing upon that, plural mentions of those four seasons [31] are also annotated for

character identification tasks. Moreover, the first four seasons are annotated [30]

for fine-grained emotion detection tasks. Further more, selected dialogues from

all ten seasons are processed [14] for a cloze-style reading comprehension task.

Besides, a personality detection task was annotated by Jiang et al. [9]. Finally a

span based question answering task was annotated by Yang et al. [29]
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Chapter 3

Approach
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(c) Utterance order prediction

Figure 3.1: The overview of our models for the three pre-training tasks (Sec-
tion 3.2).
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3.1 Transformers for Learning Dialogue

This section introduces a novel approach for pre-training (section 3.2) and fine-

tuning (section 3.3) transformers to effectively learn dialogue contexts. Our ap-

proach has been evaluated with two kinds of transformers, BERT [6] and RoBERTa

[13], and shown significant improvement to a question answering task (QA) on

multiparty dialogue (Chapter 4).

3.2 Pre-training Language Models

Pre-training involves 3 tasks in sequence, the token-level masked language mod-

eling (MLM; Section 3.2.1), the utterance-level MLM (Section 3.2.2), and the

utterance order prediction (Section 3.2.3), where the trained weights from each

task are transferred to the next task. Note that the weights of publicly available

transformer encoders are adapted to train the token-level MLM, which allows our

QA model to handle languages in both dialogues, used as evidence documents, and

questions written in formal writing. Transformers from BERT and RoBERTa are

trained with static and dynamic MLM respectively, as described by Devlin et al.

[6], Liu et al. [13].
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3.2.1 Token-level Masked LM

Figure 3.1(a) illustrates the token-level MLM model. Let D = {U1, . . . , Um}

be a dialogue where Ui = {si, wi1, . . . , win} is the i’th utterance in D, si is the

speaker of Ui, and wij is the j’th token in Ui. All speakers and tokens in D are

appended in order with the special token CLS, representing the entire dialogue,

which creates the input string sequence I = {CLS} ⊕ U1 ⊕ . . .⊕ Un. For every

wij ∈ I , let Iµij = (I \ {wij})∪ {µij}, where µij is the masked token substituted in

place of wij . I
µ
ij is then fed into the transformer encoder (TE), which generates a

sequence of embeddings {ec} ⊕E1 ⊕ . . .⊕ Em where Ei = {esi , ewi1, .., ewin} is the

embedding list for Ui, and (ec, esi , e
w
ij, e

µ
ij) are the embeddings of (CLS, si, wij, µij)

respectively. Finally, eµij is fed into a softmax layer that generates the output vector

oµij ∈ R|V | to predict µij , where V is the set of all vocabularies in the dataset.1

3.2.2 Utterance-level Masked LM

The token-level MLM (t-MLM) learns attentions among all tokens in D regardless

of the utterance boundaries, allowing the model to compare every token to a broad

context; however, it fails to catch unique aspects about individual utterances that

can be important in dialogue. To learn an embedding for each utterance, the

1n: the maximum number of words in every utterance,
m: the maximum number of utterances in every dialogue.
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Figure 3.2: The overview of our fine-tuning model exploiting multi-task learning
(Section 3.3).

utterance-level MLM model is trained (Figure 3.1(b)). Utterance embeddings can

be used independently and/or in sequence to match contexts in the question and

the dialogue beyond the token-level, showing an advantage in finding utterances

with the correct answer spans (section 3.3.1).

For every utterance Ui, the masked input sequence Iµij = {CLSi}⊕{(Ui \{wij})∪

µij} is generated. Note that CLSi now represents Ui instead of D and Iµij is much

shorter than the one used for t-MLM. Iµij is fed into TE, already trained by t-MLM,

and the embedding sequence Ei = {eci , esi , ewi1, .., ewin} is generated. Finally, eci ,

instead of eµij , is fed into a softmax layer that generates oµij to predict µij . The

intuition behind the utterance-level MLM is that once eci learns enough contents to

accurately predict any token in Ui, it consists of most essential features about the
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utterance; thus, eci can be used as the embedding of Ui.

3.2.3 Utterance Order Prediction

The embedding eci from the utterance-level MLM (u-MLM) learns contents within

Ui, but not across other utterances. In dialogue, it is often the case that a context is

completed by multiple utterances; thus, learning attentions among the utterances is

necessary. To create embeddings that contain cross-utterance features, the utterance

order prediction model is trained (Figure 3.1(c)). Let D = D1 ⊕D2 where D1 and

D2 comprise the first and the second halves of the utterances in D, respectively.

Also, let D′ = D1 ⊕ D′2 where D′2 contains the same set of utterances as D2

although the ordering may be different. The task is to determine whether or not D′

preserves the same order of utterances as D.

For each Ui ∈ D′, the input Ii = {CLSi} ⊕ Ui is created and fed into TE,

already trained by u-MLM, to create the embeddings Ei = {eci , esi , ewi1, .., ewin}. The

sequence Ec = {ec1, . . . , ecn} is fed into two transformer layers, TL1 and TL2, that

generate the new utterance embedding list T c = {tc1, . . . , tcn}. Finally, T c is fed

into a softmax layer that generates oν ∈ R2 to predict whether or not D′ is in order.
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3.3 Fine-tuning for QA on Dialogue

Fine-tuning exploits multi-task learning between the utterance ID prediction and

the token span prediction, which allows the model to train both the utterance- and

token-level attentions. The transformer encoder (TE) trained by the utterance order

prediction (UOP) is used for both tasks. Given the question Q = {q1, . . . , qn} (qi

is the i’th token in Q) and the dialogue D = {U1, . . . , Um}, Q and all U∗ are fed

into TE that generates Eq = {ecq, e
q
1, .., e

q
n} and Ei = {eci , esi , ewi1, .., ewin} for Q and

every Ui, respectively.

3.3.1 Utterance ID Prediction

The utterance embedding list Ec = {ecq, ec1, .., ecn} is fed into TL1 and TL2 from

UOP that generate T c = {tcq, tc1, .., tcn}. T c is then fed into a softmax layer that

generates ou ∈ Rm+1 to predict the ID of the utterance containing the answer span

if exists; otherwise, the 0’th label is predicted, implying that the answer span for Q

does not exist in D.

3.3.2 Token Span Prediction

For every Ei, the pair (E ′q, E
′
i) is fed into the multi-head attention layer, MHA,

where E ′q = Eq \ {ecq} and E ′i = Ei \ {eci}. MHA [27] then generates the attended
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embedding sequences, T a1 , . . . , T
a
m, where T ai = {tsi , twi1, .., twin}. Finally, each T ai

is fed into two softmax layers, SL and SR, that generate o`i ∈ Rn+1 and ori ∈ Rn+1

to predict the leftmost and the rightmost tokens in Ui respectively, that yield the

answer span for Q. It is possible that the answer spans are predicted in multiple

utterances, in which case, the span from the utterance that has the highest score

for the utterance ID prediction is selected, which is more efficient than the typical

dynamic programming approach.
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Chapter 4

Experiments

4.1 Corpus

Despite of all great work in QA, only two datasets are publicly available for

machine comprehension that take dialogues as evidence documents. One is DREAM

comprising dialogues for language exams with multiple-choice questions [23].

The other is FRIENDSQA containing transcripts from the TV show Friends with

annotation for span-based question answering [28]. Since DREAM is for a reading

comprehension task that does not need to find the answer contents from the evidence

documents, it is not suitable for our approach; thus, FRIENDSQA is chosen.

Each scene is treated as an independent dialogue in FRIENDSQA. Yang and

Choi [28] randomly split the corpus to generate training, development, and evalua-

tion sets such that scenes from the same episode can be distributed across those

three sets, causing inflated accuracy scores. Thus, we re-split them by episodes
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to prevent such inflation. For fine-tuning (section 3.3), episodes from the first

four seasons are used as described in Table 4.1. For pre-training (section 3.2), all

transcripts from Seasons 5-10 are used as an additional training set.

Set D Q A E
Training 973 9,791 16,352 1 - 20

Development 113 1,189 2,065 21 - 22
Evaluation 136 1,172 1,920 23 - *

Table 4.1: New data split for FriendsQA. D/Q/A: # of dia-
logues/questions/answers, E: episode IDs.

4.2 Models

The weights from the BERTbase and RoBERTabase models [6, 13] are transferred to

all models in our experiments. Four baseline models, BERT, BERTpre, RoBERTa,

and RoBERTapre, are built, where all models are fine-tuned on the datasets in Ta-

ble 4.1 and the *pre models are pre-trained on the same datasets with the additional

training set from Seasons 5-10 (section 4.1). The baseline models are compared to

BERTour and RoBERTAour that are trained by our approach.1

4.3 Results

Table 4.2 shows results achieved by all the models. Following Yang and Choi

[28], exact matching (EM), span matching (SM), and utterance matching (UM)

1Detailed experimental setup are provided in Appendices.
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are used as the evaluation metrics. Each model is developed three times and their

average score as well as the standard deviation are reported. The performance of

RoBERTa* is generally higher than BERT* although RoBERTabase is pre-trained

with larger datasets including CC-NEWS [16], OPENWEBTEXT [7], and STORIES

[25] than BERTbase such that results from those two types of transformers cannot

be directly compared.

Model EM SM UM
BERT 43.3(±0.8) 59.3(±0.6) 70.2(±0.4)
BERTpre 45.3(±0.3) 60.0(±0.5) 70.7(±0.6)
BERTour 46.6(±0.9) 63.0(±0.7) 73.0(±0.5)
RoBERTa 52.6(±0.7) 68.2(±0.3) 80.9(±0.8)
RoBERTapre 52.8(±0.4) 68.6(±0.2) 81.8(±0.7)
RoBERTaour 53.4(±0.5) 69.6(±0.3) 82.7(±0.5)

Table 4.2: Accuracy (±stdev) achieved by all models.

The *pre models show marginal improvement over their base models, implying that

pre-training the language models on FRIENDSQA with the original transformers

does not make much impact on this QA task. The models using our approach

perform noticeably better than the baseline models, showing 3.7% and 1.4%

improvements on SM from BERT and RoBERTa, respectively.

Table 4.3 shows the results achieved by RoBERTaour w.r.t. question types. UM

drops significantly for Why that often spans out to longer sequences and also



19

Type Dist. EM SM UM
Where 18.16 66.1(±0.5) 79.9(±0.7) 89.8(±0.7)
When 13.57 63.3(±1.3) 76.4(±0.6) 88.9(±1.2)
What 18.48 56.4(±1.7) 74.0(±0.5) 87.7(±2.1)
Who 18.82 55.9(±0.8) 66.0(±1.7) 79.9(±1.1)
How 15.32 43.2(±2.3) 63.2(±2.5) 79.4(±0.7)
Why 15.65 33.3(±2.0) 57.3(±0.8) 69.8(±1.8)

Table 4.3: Results from RoBERTaour by question types.

requires deeper inferences to answer correctly than the others. Compared to the

baseline models, our models show more well-around performance regardless the

question types.2

4.4 Other Experimental Details

The BERTbase model and the RoBERTaBASE model use the same configuration.

The two models both have 12 hidden transformer layers and 12 attention heads.

The hidden size of the model is 768 and the intermediate size in the transformer

layers is 3,072. The activation function in the transformer layers is gelu.

Pre-training The batch size of 32 sequences is used for pre-training. Adam with

the learning rate of 5 · 10−5, β1 = 0.9, β2 = 0.999, the L2 weight decay of 0.01,

the learning rate warm up over the first 10% steps, and the linear decay of the

2Question type results for all models are in Appendices.
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learning rate are used. A dropout probability of 0.1 is applied to all layers. The

cross-entropy is used for the training loss of each task. For the masked language

modeling tasks, the model is trained until the perplexity stops decreasing on the

development set. For the other pre-training tasks, the model is trained until both

the loss and the accuracy stop decreasing on the development set.

Fine-tuning For fine-tuning, the batch size and the optimization approach are

the same as the pre-training. The dropout probability is always kept at 0.1. The

training loss is the sum of the cross-entropy of two fine-tuning tasks as in section

3.3.
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Chapter 5

Analysis

5.1 Ablation Studies Analysis

To find out which step is important for the question answering task we did the

ablation studies by experimenting with approaches step by step, Table is the results

of the ablation studies of the experiment. In this ablation studies we add the speaker

name into the vocabulary to enable the speaker representation can be learned better.

From the results From the results, we found that the main improvement is based

on joint learning of utterance id prediction which pre-training tasks help. We

found following conclusions: 1. None of the language modelings in Section 2.1

made much impact without getting coupled with the joint learning of the utterance

ID prediction (UID) in Section 2.2.1. This is indeed encouraging since all the

proposed language modelings are designed to help UID, not the span prediction. 2.

With only the token-level LM (2.1.1), UID still didn’t make much impact. 3. With
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the utterance-level LM (2.1.2), UID gave over 1% boost on both SM and UM for

BERT models and about 0.5% boost on both SM and UM for RoBERTa models. 4.

With the utterance-order prediction (2.1.3), UID gave the rest of the boost, which

was slightly higher than the ones achieved by the utterance-level LM.

Method EM SM UM
BERTpre with uid loss 45.7(±0.8) 61.1(±0.8) 71.5(±0.5)

BERTpre without uid loss 45.6(±0.9) 61.2(±0.7) 71.3(±0.6)
BERTpre+ulm with uid loss 46.2(±1.1) 62.4(±1.2) 72.5(±0.8)

BERTpre+ulm without uid loss 45.7(±0.9) 61.8(±0.9) 71.8(±0.5)
BERTpre+ulm+uop with uid loss 46.8(±1.3) 63.1(±1.1) 73.3(±0.7)

BERTpre+ulm+uop without uid loss 45.6(±0.9) 61.7(±0.7) 71.7(±0.6)
RoBERTapre with uid loss 52.8(±0.9) 68.7(±0.8) 81.9(±0.5)

RoBERTapre without uid loss 52.6(±0.7) 68.6(±0.6) 81.7(±0.7)
RoBERTapre+ulm with uid loss 53.2(±0.6) 69.2(±0.7) 82.4(±0.5)

RoBERTapre+ulm without uid loss 52.9(±0.8) 68.7(±1.1) 81.7(±0.6)
RoBERTapre+ulm+uop with uid loss 53.5(±0.7) 69.6(±0.8) 82.7(±0.5)

RoBERTapre+ulm+uop without uid loss 52.5(±0.8) 68.8(±0.5) 81.9(±0.7)

Table 5.1: Results for the ablation studies:where BERTpre or RoBERTapre is the
first task of the pretraining, ulm is utterance level language model task and uop is
the utterance order prediction task. with uid loss or without uid loss represent if
we use joint learning of two tasks when doing fine-tuning.

5.2 Question Type Analysis

Tables in this section show the results with respect to the question types using

all models (section 4.2) in the order of performance. Our proposed approach can

consistently enhance the performance on both BERT and RoBERTa models and all

evaluation metrics. The table shows the our model performs better on what, how
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and why questions.

Type Dist. EM SM UM
Where 18.16 68.3(±1.3) 78.8(±1.2) 89.2(±1.5)
When 13.57 63.8(±1.6) 75.2(±0.9) 86.0(±1.6)
What 18.48 54.1(±0.8) 72.5(±1.5) 84.0(±0.9)
Who 18.82 56.0(±1.3) 66.1(±1.3) 79.4(±1.2)
How 15.32 38.1(±0.7) 59.2(±1.6) 77.5(±0.7)
Why 15.65 32.0(±1.1) 56.0(±1.7) 68.5(±0.8)

Table 5.2: Results from RoBERTa by question types.

Type Dist. EM SM UM
Where 18.16 67.1(±1.2) 78.9(±0.6) 89.0(±1.1)
When 13.57 62.3(±0.7) 76.3(±1.3) 88.7(±0.9)
What 18.48 55.1(±0.8) 73.1(±0.8) 86.7(±0.8)
Who 18.82 56.2(±1.4) 64.0(±1.7) 77.1(±1.3)
How 15.32 41.2(±1.1) 61.2(±1.5) 79.8(±0.7)
Why 15.65 32.4(±0.7) 57.4(±0.8) 69.1(±1.4)

Table 5.3: Results from RoBERTapre by question types.

5.3 Error Analysis

From the above question type analysis we know that the main error can be found

in three types of questions which are who, how and why questions, so we extract

100 specific error examples of those three question types to analyze the specific
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Type Dist. EM SM UM
Where 18.16 66.1(±0.5) 79.9(±0.7) 89.8(±0.7)
When 13.57 63.3(±1.3) 76.4(±0.6) 88.9(±1.2)
What 18.48 56.4(±1.7) 74.0(±0.5) 87.7(±2.1)
Who 18.82 55.9(±0.8) 66.0(±1.7) 79.9(±1.1)
How 15.32 43.2(±2.3) 63.2(±2.5) 79.4(±0.7)
Why 15.65 33.3(±2.0) 57.3(±0.8) 69.8(±1.8)

Table 5.4: Results from RoBERTaour by question types.

Type Dist. EM SM UM
Where 18.16 57.3(±0.5) 70.2(±1.3) 79.4(±0.9)
When 13.57 56.1(±1.1) 69.7(±1.6) 78.6(±1.7)
What 18.48 45.0(±1.4) 64.4(±0.7) 77.0(±1.0)
Who 18.82 46.9(±1.1) 56.2(±1.4) 67.6(±1.4)
How 15.32 29.3(±0.8) 48.4(±1.2) 60.9(±0.7)
Why 15.65 23.4(±1.6) 46.1(±0.9) 56.4(±1.3)

Table 5.5: Results from BERT by question types.

Type Dist. EM SM UM
Where 18.16 62.8(±1.8) 72.3(±0.8) 82.1(±0.7)
When 13.57 60.7(±1.5) 70.7(±1.8) 80.4(±1.1)
What 18.48 43.2(±1.3) 64.3(±1.7) 75.6(±1.8)
Who 18.82 47.8(±1.1) 56.9(±1.9) 69.7(±0.7)
How 15.32 33.2(±1.3) 48.3(±0.6) 59.8(±1.1)
Why 15.65 22.9(±1.6) 46.6(±0.7) 54.9(±0.9)

Table 5.6: Results from BERTpre by question types.



25

Type Dist. EM SM UM
Where 18.16 63.3(±1.2) 72.9(±1.7) 77.0(±1.2)
When 13.57 48.4(±1.9) 66.5(±0.8) 79.5(±1.5)
What 18.48 52.1(±0.7) 69.2(±1.1) 81.3(±0.7)
Who 18.82 51.3(±1.1) 61.9(±0.9) 67.5(±0.9)
How 15.32 30.9(±0.9) 52.1(±0.7) 65.4(±1.1)
Why 15.65 29.2(±1.6) 53.2(±1.3) 65.7(±0.8)

Table 5.7: Results from BERTour by question types.

error to give some insights for future studies. Table 5.8 shows the errors types

and the ratio of the error happened in these three lowest question types. The

error types are based on Yang et al. [29]’s work which include entity resolution,

paraphrase and partial match, cross-utterance reasoning, question bias, noise in

annotation and miscellaneous. The table shows that the two main problem is the

entity resolution and cross-utterance reasoning. The entity resolution error often

happens when many of the same entities are mentioned in multiple utterances.

This error also occurs when the QA system is asked about a specific person, but

predicts wrong people where there are many people in multiple utterances. So how

to correctly encode the speakers and mentions in the dialogue are one of the major

challenges for future study. The cross-utterance reasoning error always happens in

the why and how questions where the model always only do the pattern matching

and predict the next utterance span of the matched pattern. So how to inference
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among utterances and summarize answers from them can also be one of the major

challenges. Table 5.9, Table 5.10 and Table 5.11 show the examples of those errors.

Error types Who How Why
Entity Resolution 34% 23% 20%

Paraphrase and Partial Match 14% 14% 13%
Cross-Utterance Reasoning 25% 28% 27%

Question Bias 11% 13% 17%
Noise in Annotation 4% 7% 9%

Miscellaneous 12% 15% 14%
Table 5.8: Error types ratio in three lowest question types.

Question Why is Joey planning a big party ?
Context ......

Joey Tribbiani : Oh , we ’re having a big party tomorrow night . Later !
Rachel Green : Whoa ! Hey - hey , you planning on inviting us ?

Joey Tribbiani : Nooo , later .
Phoebe Buffay : Hey !! Get your ass back here , Tribbiani !!

Rachel Green : Hormones !
Monica Geller : What Phoebe meant to say was umm ,

how come you ’re having a party and we ’re not invited ?
Joey Tribbiani : Oh , it ’s Ross ’s bachelor party .

Monica Geller : Sooo ?
......

Gold Answer it ’s Ross ’s bachelor party .
Prediction Answer we ’re having a big party tomorrow night

Table 5.9: Error example for why question
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Question Who opened the vent ?
Context ......

Ross Geller : Ok , got the vent open .
Phoebe Buffay : Hi , I ’m Ben . I ’m hospital worker Ben . It ’s Ben ... to the rescue !

Ross Geller : Ben , you ready ? All right , gim me your foot .
Ok , on three , Ben . One , two , three . Ok , That ’s it , Ben .

note : ( Ross and Susan lift Phoebe up into the vent . )
Susan Bunch : What do you see ?

Phoebe Buffay : Well , Susan , I see what appears to be a dark vent .
Wait . Yes , it is in fact a dark vent .

note : ( A janitor opens the closet door from the outside . )
......

Gold Answer Ross Geller
Prediction Answer A janitor

Table 5.10: Error example for who question

Question How does Joey try to convince the stripper to hang out with him ?
Context ......

Joey Tribbiani : Oh yeah - yeah . And I got the duck totally trained .
Watch this . Stare at the wall . Hardly move . Be white .

The Stripper : You are really good at that . So uh , I had fun tonight , you throw one hell of a party .
Joey Tribbiani : Oh thanks . Thanks . It was great meetin ’ ya .

And listen if any of my friends gets married , or have a birthday , or a Tuesday . . .
The Stripper : Yeah , that would be great . So I guess umm , good night .

Joey Tribbiani : Oh unless you uh , you wan na hang around .
The Stripper : Yeah ?

Joey Tribbiani : Yeah . I ’ll let you play with my duck .
......

Gold Answer I ’ll let you play with my duck .
Prediction Answer Oh unless you uh , you wan na hang around .

Table 5.11: Error example for how question
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

We present a novel transformer approach that effectively interprets hierarchical

contexts in multiparty dialogue by learning utterance embeddings. Our approach is

evaluated on a span-based QA task and outperforms two of the state-of-the-art trans-

former approaches, BERT and RoBERTa. We will further evaluate our approach

on non-dialogue domains using other QA datasets to verify the generalizability.

6.2 Future Directions

There are two main challenges remains to be solved. The first one is that what

is the correct approach to inference in the dialogue. A Dialogue has multiple

utterances and they are always not related to each other, so how to recognize the

logic flow of the dialogue can be a future research direction. The second one is
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that what is the correct way to encode speakers and mentions in the dialogue. A

Dialogue has many speakers and in each utterance they may have difference types

of mentions such as ”I”,”he” or certain nickname, so the other direction is that how

to encoding these mentions to enable the model to know these are the same person

and recognize the relation among them and the event happened to them. After

solving these challenges we can build new version of the dialogue language model

which includes improvement of all tasks not only span QA task.



30

Appendix A

Results for Other Character Mining Tasks

A.1 Friends Reading Comprehension task

A.1.1 Task Description

The reading comprehension task from Ma, Jurczyk, and Choi [2018] consists a

dialogue passage p, a query q which is from plot summary of the dialogue passage

and an answer a. In this task, a query q replaces only one character entity with an

unknown variable x and the machine is asked to infer the replaced character entity

(answer a) from all the possible entities appear in the dialogue passage p. This task

is evaluated by computing the accuracy of predictions.

A.1.2 Results and Analysis

Table A.1 shows the results for friends Reading comprehension task. From the

results we can draw two conclusions: 1. RoBERTa model is indeed better than

BERT model. 2. Our approach does not help the improvement of the task. The
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main reason is that the speakers and mentions in the dialogue are replaced by

label @entxxx which is not in the orignial BERT or RoBERTa training or our

pre-training process.

Method Accuracy
BERTpre 29.9(±0.8)

BERTpre+ulm 29.8(±0.9)
BERTpre+ulm+uop 29.9(±0.7)

RoBERTapre 31.2(±1.1)
RoBERTapre+ulm 31.2(±1.0)

RoBERTapre+ulm+uop 31.1(±0.9)
Table A.1: Results for Friends RC

A.2 Friends Emotion Detection task

A.2.1 Task Description

Emotion Detection aims to classify a fine-grained emotion for each utterance in

multiparty dialogue.Each utterance is annotated with one of the seven emotions,

sad, mad, scared, powerful, peaceful, joyful, and neutral, that are the primary

emotions in the Feeling Wheel.
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A.2.2 Results and Analysis

Table A.2 shows the results for friends emotion detection task. From the results we

can draw two conclusions: 1. RoBERTa model is also indeed better than BERT

model. 2. Our approach still does not help the improvement of the task. The

main reason is that this task is mainly the simple utterance classification and the

utterance level information does not count so much.

Method Accuracy
BERTpre 33.4(±0.3)

BERTpre+ulm 33.2(±0.5)
BERTpre+ulm+uop 33.2(±0.5)

RoBERTapre 34.5(±0.8)
RoBERTapre+ulm 34.2(±0.9)

RoBERTapre+ulm+uop 34.2(±0.7)
Table A.2: Results for Friends ED
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A.3 Friends Personality Detection task

A.3.1 Task Description

Multiparty Personality Recognition requires machines to determine the main

speaker’s personality from a short conversation in binary Big Five personality

traits: Agreeableness (AGR): trustworthy, straightforward, generous vs. unreli-

able, complicated, meager, and boastful; Conscientiousness (CON): efficient and

organized vs. sloppy and careless; Extroversion (EXT): outgoing, talkative, and

energetic vs. reserved and solitary; Openness (OPN): inventive and curious vs.

dogmatic and cautious; Neuroticism (NEU): sensitive and nervous vs. secure and

confident.

A.3.2 Results and Analysis

Table A.3 shows the results for friends personality detection task. From the results

we can draw two conclusions: 1. RoBERTa model is also indeed better than BERT

model. 2. Our approach still does not help the improvement of the task. 3. Here

the state of art results were achieved by pre-training the language model of the

BERT and RoBERTa with friends corpus. The main reason that our approach failed

is similar to the emotion detection task, which is that this task is also mainly the

simple utterance classification and the utterance level information does not count
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so much.

Method AGR CON EXT OPN NEU
BERTpre 58.2(±0.5) 57.7(±0.3) 59.2(±0.6) 61.2(±0.5) 59.3(±0.5)

BERTpre+ulm 58.1(±0.7) 57.5(±0.4) 59.1(±0.8) 61.2(±0.5) 59.3(±0.5)
BERTpre+ulm+uop 58.2(±0.5) 57.7(±0.6) 59.1(±0.5) 61.1(±0.5) 59.2(±0.5)

RoBERTapre 59.7(±0.7) 58.6(±0.5) 60.7(±0.7) 65.9(±0.6) 61.1(±0.5)
RoBERTapre+ulm 59.5(±0.5) 58.5(±0.8) 60.7(±0.8) 65.8(±0.9) 61.1(±0.5)

RoBERTapre+ulm+uop 59.6(±0.8) 58.6(±0.6) 60.6(±0.5) 65.8(±0.7) 61.1(±0.5)

Table A.3: Results for Friends PD
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances

in Neural Information Processing Systems 32, pages 5754–5764. Curran

Associates, Inc., 2019. URL http://papers.nips.cc/paper/

8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.

pdf.

[30] Sayyed Zahiri and Jinho Choi. Emotion detection on tv show transcripts

with sequence-based convolutional neural networks. 2018. URL https://

aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16434.

[31] Ethan Zhou and Jinho D. Choi. They exist! introducing plural mentions to

coreference resolution and entity linking. In Proceedings of the 27th Inter-

national Conference on Computational Linguistics, pages 24–34, Santa Fe,

New Mexico, USA, August 2018. Association for Computational Linguistics.

URL https://www.aclweb.org/anthology/C18-1003.


