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Abstract 
 

Studies on the Vaccine Protection and Transmission of A(H3N2)v viruses in ferrets 
By Katherine Virginia Houser 

 
The emergence of novel influenza A virus subtypes with the capacity to spread 

efficiently among humans can result in a pandemic. Multiple influenza A subtypes of 
zoonotic origin have resulted in human infections, but most do not display the capacity 
for efficient human-to-human transmission. Sustained transmission among humans is a 
critical feature for a pandemic virus and understanding the changes responsible for 
human adaptation of zoonotic influenza viruses is of vital importance for pandemic 
preparedness. To discover the contributions of individual genes towards transmission and 
pathogenesis of avian H5N1 viruses we developed a reverse genetic plasmid system. A 
novel zoonotic influenza virus of the H3N2 subtype with limited human-to-human 
transmission capability began to emerge from the swine population in 2011. 

The swine-origin H3N2 viruses continue to circulate in swine, resulting in 
occasional transmission from infected pigs to humans, referred to as H3N2 variant virus 
[A(H3N2)v] infections. To date, there have been over 300 laboratory-confirmed human 
cases of A(H3N2)v virus infection, however there has been no evidence of sustained 
human-to-human transmission. Conversely, previous studies have shown that A(H3N2)v 
virus transmitted efficiently in the naïve ferret, an animal model that generally 
recapitulates the inherent ability of influenza viruses to transmit among humans. 
Serologic studies have shown that cross-reactive antibodies to A(H3N2)v are present at 
varying levels in most age groups in humans, with young adults displaying the highest 
frequency and young children the lowest. We investigated if the presence of cross-
reactive immunity generated through seasonal influenza virus vaccination or infection 
could account for the limited transmission of A(H3N2)v viruses. We found that 
vaccination failed to substantially reduce A(H3N2)v virus shedding and subsequent 
transmission to naïve ferrets. However, prior seasonal H3N2 virus infection resulted in 
reduced virus shedding following A(H3N2)v virus challenge which blunted transmission 
to naïve ferrets. We also observed an increase in IgG and IgA antibody titers in both the 
sera and respiratory tracts of ferrets after prior seasonal H3N2 virus infection compared 
to vaccination. The data demonstrate in ferrets that the efficiency of A(H3N2)v 
transmission is disrupted by preexisting immunity to seasonal H3N2 virus induced by 
natural infection.   
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1.1 Influenza History and Pathogenesis 

 Influenza viruses have been responsible for illness and death in humans 

throughout history.  Documents dating from 417 BC describe epidemics suggestive of 

influenza, while more recent and detailed accounts indicate that pandemics of influenza 

have been occurring as far back as 1580 (1, 2).  In modern times seasonal outbreaks occur 

on a yearly basis in temperate climates, while the virus is isolated year-round from 

tropical regions (3).  In contrast, pandemic strains emerge sporadically but infect a large 

number of people in a short time span. Seasonal influenza viruses infect about five to 

twenty percent of the population every year, leading an average of 226,000 

hospitalizations (range of 55,000 to 431,000) and 21,600 deaths (range of 3,300 to 

48,600) associated with influenza infections in the US alone (4, 5).  Infection rates are 

typically highest among children under the age of seventeen, but hospitalizations and 

deaths are highest among infants and adults over sixty-five years of age (5, 6). In the 

United States, the influenza vaccine is currently recommended for everyone 6 months or 

older (7, 8).   

The modes of transmission of influenza are not well understood but are believed 

to include spread by inhalation of airborne respiratory droplets that are formed by 

infected persons when coughing or sneezing or by direct or indirect contact with virally 

laden fomites (9, 10). The illness typically consists of sudden onset of high fever, 

malaise, headache, chills, joint pain, coughing, sore throat and/or runny nose (11, 12).  

The incubation period for human influenza viruses is typically two days (with a range of 

one to four days) before symptom onset (11, 13). The acute illness lasts about five to 

seven days before symptoms begin to dissipate (14).  Influenza viruses are capable of 
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causing mild to severe and sometimes fatal illness in humans, most often in the very 

young and older persons, or those with underlying health conditions. The virus continues 

to be a public health burden on society involving losses in productivity, increases in 

hospital and doctor visits, and school closures, with total annual economic burden of 

epidemics estimated to be $87.1 billion (15). More research is needed to better 

understand modes of influenza transmission in epidemics or pandemics, to understand the 

viral and host properties that contribute to severe disease, and to identify improved 

approaches for the control of the virus among human populations. 

 

1.2 Influenza A Virus Subtypes and Host Range 

Influenza viruses are enveloped viruses of the family Orthomyxoviridae that 

contain a genome of single-stranded, negative sense RNA (16). There are five genera of 

Orthomyxoviridae viruses, with three of these genera being influenza A, B, and C 

viruses.  The genomes of Orthomyxoviridae viruses are segmented, with seven to eight 

unique strands (16).  While influenza A viruses are capable of infecting many animal 

species, infection with influenza B and C viruses are mainly restricted to humans (17).  

Influenza A and B viruses are responsible for seasonal epidemics in human populations 

and are both included in the seasonal influenza vaccine.  The research involved here will 

focus entirely on influenza A viruses, and therefore the other genera will not be discussed 

further.   

The genera of influenza A contain eight unique genetic segments (16, 18). The 

viral genes exist in the virion in a panhandle conformation through interactions in the 

terminal untranslated regions of the genes (19).  These segments encode for at least 
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thirteen unique viral proteins (20-22).  Several of the viral genes have the ability to 

produce multiple proteins from the same gene segment through the use of splicing and 

multiple start sites for translation which will be discussed in subsequent sections (16).   

Influenza A viruses are further divided into subtypes based on antigenic 

differences in the hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins 

(16, 23).  Seventeen subtypes of HA and ten subtypes of NA in influenza A viruses have 

been described (24-27). Only a select few subtypes of HA (H1, H2, and H3) have caused 

sustained epidemics of disease in humans to date. There are several additional subtypes 

(H5, H6, H7, H9, and H10) that have resulted in human infections, but have yet to 

display efficient human-to-human transmission. Among these only H5 and H7 subtypes 

have caused outbreaks of human disease. 

Influenza A subtypes are found naturally circulating in wild water birds, the 

reservoir for most influenza viruses. The exception to this involves the most recently 

discovered subtype, H17N10, which has only been identified in bats (26).  Most 

infections are asymptomatic in wild water birds and replication occurs in the intestinal 

tract (28).  The spread of virus between these birds may occur through the fecal-oral route 

as high viral titers are found in fecal samples (25).  Viruses from wild aquatic birds 

frequently spread into domesticated waterfowl or land-based avian species.  Although the 

viruses are relatively genetically stable while within the wild water bird population, they 

may rapidly evolve once they transfer into other avian species.  Stable lineages of 

influenza A viruses have also been documented in canines, horses, and swine (25). 
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1.3 Influenza A Virion Structure 

Influenza virions are enveloped particles enclosed by a host-derived lipid 

membrane with viral glycoproteins present on the surface (16, 25).  These proteins 

include the HA, NA, and one of the membrane splice variants, matrix 2 (M2) protein (see 

Figure 1).  The viral genes are contained in the interior of the envelope, in 

ribonucleoprotein (RNP) complexes composed of the nucleoprotein (NP), the viral 

genomic RNA, and polymerase proteins (29).  The NP proteins bind evenly along the 

inside of the vRNA while allowing the viral polymerases access to the outside of the 

vRNA (30).  One polymerase complex is attached to each RNP and is composed of the 

three polymerase proteins- PB1, PB2, and PA (16).  These RNP complexes are then 

attached to the inner lipid membrane of the virion through an interaction with the matrix 

1 (M1) protein, which is believed to associate with the cytoplasmic tails of the surface 

glycoproteins (31, 32).  The nuclear export protein (NEP) is also a minor part of the 

virion, and associates with the M1 protein (33).  Several additional viral proteins are not 

components of the virions but are synthesized in the infected cell. 

The virions themselves are pleomorphic in appearance, with both spherical and 

filamentous shaped particles (16).  The filamentous forms are mainly found in clinical 

isolates of influenza (16).  The virions are around 100nm in diameter and can be over 

20µm in length when in filamentous form.  The M gene has been shown to play a role in 

determining the shape of the virion particles (34, 35). 
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1.4 The Viral Hemagglutinin 

The HA is the most abundant surface glycoprotein on the virion and is also the 

major antigen recognized by the host immune system during an infection (16).  The HA 

proteins are present on the virion surface in the form of homotrimers.  A single HA 

protein is composed of two distinct sections including a long stalk region at the base and 

a globular head above that contains the receptor-binding site (23). 

The HA protein is originally produced as a single transcript, HA0 (23). The HA0 

subunit is the inactive form of the protein, but contains a cleavage site for further 

processing by cellular proteases.  The protease cleavage generates the active form of the 

protein, composed of the HA1 and HA2 subunits (25).  The type of cleavage site 

available affects the type of protease that is capable of cleaving the HA, as well as the 

location where the cleavage takes place during infection.  A single basic arginine residue 

is susceptible to trypsin-like proteases located in the extracellular environment (23).  A 

multi-basic cleavage site is found in some avian influenza viruses of the H5 and H7 

subtype that are capable of high pathogenicity and is composed of several adjacent basic 

residues in the form of an -RRRKK- sequence.  These multi-basic cleavage sites are 

susceptible to furin-like proteases (36). Unlike trypsin-type proteases which are generally 

restricted to the respiratory tract, furin-like proteases are more ubiquitously expressed in 

multiple organs, enabling systemic replication and disease of highly pathogenic avian 

influenza (HPAI) in infected birds, in particular domestic poultry (37).  The H7 subtype 

have also displayed non-homologous recombination occurring between the HA and other 

viral genes, including M and NP, which introduces additional amino acids into the 
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cleavage site of the HA, creating a larger site and adapting the virus for furin-like 

protease cleavage (38, 39). 

The viral HA is capable of binding to glycoproteins that contain particular 

terminal sialic acid moieties present on the surface of cells.  A subset of the amino acids 

in the receptor binding site of the HA protein determine the binding preference of the 

virus and are a crucial determinant of host range for the viruses (40, 41).  Human-adapted 

influenza viruses generally bind a subset of residues that contain N-acetylneuraminic acid 

attached to the penultimate galactose sugar through an α2,6 linkage (Neu5Acα(2,6)-Gal) 

while avian subtypes typically prefer a subset of α2,3 linked (Neu5Acα(2,3)-Gal) sialic 

acid residues (42).  Human-adapted viruses display a preference for nonciliated cells in 

the human respiratory tract while avian viruses predominantly infect the minor 

population of ciliated cells (43).   

The subtype of terminal sialic acid moieties that the virus binds to also affects the 

transmissibility of the virus among humans (42, 44, 45).  Several influenza viruses are 

capable of binding both α2,3 and α2,6 sialic acid residues, but not all of these viruses 

display efficient transmission in animal models (44).   Both α2,3 and short α2,6 sialic 

acid residues are capable of forming a “cone-like topology” where the terminal end of the 

sialic acid are critical for HA binding.  Long α2,6 sialic acids are capable of forming an 

“umbrella-like topology” with the viral HA that not only includes the terminal sialic 

acids, but also the oligosaccharide length and branches (42).  The ability of viruses to 

bind to long α2,6 linkages at low concentrations appears critical for transmissibility (45). 

A number of conserved amino acid residues on the globular head of the HA 

molecule function as a receptor-binding site and interact with sialic acid residues on the 
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surface of host cells (46).  Mutations that alter the binding preferences of the HA protein 

in H1, H2, and H3 subtypes have been defined.  The amino acids at residues 190 and 225 

(based on H3 numbering) determine the binding preference for the H1 subtype of viruses, 

while the amino acids at 226 and 228 govern binding preference for H2 and H3 viruses 

(16, 47-49).  Recently two papers have described binding mutations involved in creating 

H5N1 viruses with altered binding preferences that resulted in increased α2,6 binding 

(50, 51).  Both studies included mutations in the binding site of the HA from an H5N1 

subtype of virus that allowed for efficient transmission of the virus between ferrets via 

respiratory droplet spread.  This topic will be discussed in more detail in the next chapter. 

 

1.5 Influenza A Replication Cycle 

The infection of a cell by an influenza virus is a multi-step process that takes 

place in both the cytoplasm and the nucleus of a cell (see Figure 2).  The HA proteins are 

responsible for viral binding and entry into susceptible cells. Experiments measuring 

binding strength have shown that the affinity of an individual HA protein for sialosides is 

rather low, indicating that for the strong binding seen during infection a large number of 

HA molecules must bind simultaneously (23, 45).  Once the HA proteins bind their 

preferred sialic acid moieties, the viruses undergo clathrin-mediated endocytosis to enter 

the host cell (52).  Other forms of endocytosis have also been described for viral entry 

(53).  

As the virion-containing endosome moves into the cell, the pH inside begins to 

lower.  This results in two modifications to the virion within.  The M2 channel acts as a 

proton transporter, leading to a flow of H+ ions into the virion (54).  This lower internal 
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pH allows for the separation of the RNP complexes and the M1 proteins from the inner 

membrane surface of the virion, allowing for the release of the viral genomic material 

from the virion once the lipid membrane becomes disrupted (16).  This disruption occurs 

with the second viral modification from the lower internal pH, where the HA proteins 

undergo a conformational change that exposes the fusion peptide of the HA (55).  The 

fusion peptide inserts and anchors itself into the endosomal membrane (56).  This anchor 

allows the virus to pull the viral and endosomal membranes together to form a fusion 

pore.  This pore structure then creates a passage for the contents of the virion to spill into 

the cytoplasm of the host cell (16, 55). 

The next stage of viral replication occurs in the nucleus of the infected cell.  All 

of the viral proteins included in the RNP complex contain nuclear localization signals 

(NLS) that allow the viral gene complexes to become actively imported into the nucleus 

by cellular machinery at nuclear pores (57-59).   Once inside the nucleus the virus is able 

to halt cellular replication and commandeer the cellular machinery for its own uses.  

Several viral proteins are responsible for the hijacking of cellular machinery once the 

viral genes have relocated into the nucleus.  The viral polymerase complex is an RNA-

dependent RNA polymerase (RdRp) which transcribes viral RNA through the use of 

cellular RNA polymerase II (60).  The heterotrimeric complex of the RdRp is formed 

with PB1 in the center interacting with both PB2 and PA (61).  The transcriptional 

activity of the polymerase begins with the 5` end of a viral gene binding to the PB1 

protein.  This binding causes an alteration in the shape of the complex, allowing the PB1 

protein to also bind the 3` end of the gene (62).  Once the gene is held at both ends the 

PB2 protein has the ability to bind to the 5` cap of a cellular pre-mRNA transcript 
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containing a m7GpppXm methylated cap structure (16).  The endonuclease activity of the 

polymerase, located in the PA subunit, allows the complex to “snatch” this 5’ capped 

oligonucleotide from a cellular transcript (63-65). With the cellular 5`cap cleaved, and 

both ends of the viral gene are held in place by the PB1 protein, transcription of the viral 

mRNA can begin (66, 67).  The PB1 protein is responsible for the elongation of the 

newly emerging viral mRNAs by adding the corresponding amino acids to the nascent 

mRNA (16, 68).  As transcription occurs the 3` end of the vRNA detaches from the 

polymerase structure, but the 5` end remains bound (16).  This eventually leads to steric 

hindrance, as the polymerase cannot read through the bound section of vRNA.  The 

structural impediment creates a stuttering effect at a stretch of uridine bases and leads to 

the production of the poly-A tail of the mRNA (69, 70).   

To manufacture viral proteins inside the infected cell, the nascent viral mRNA 

transcripts utilize cellular ribosomal machinery in the cytoplasm or cytoplasmic face of 

the endoplasmic reticulum (in the case of the surface glycoproteins) to translate the 

mRNA into proteins (55).  In the cytoplasm the NS1 protein induces preferential 

translation of viral transcripts over cellular mRNAs through interaction with cellular 

machinery (71).  Once translated and properly glycosylated, the HA and NA proteins 

assemble in lipid raft regions in the apical cellular membrane along with M2 proteins (72, 

73). 

The viral RdRp is also responsible for the replication of the viral genome through 

production of cRNA. The cRNAs exist as complete copies of the viral genome without 

splicing or polyadenylation (16).  The cRNAs differ from viral mRNAs by not requiring 
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a capped primer to begin transcription and are encapsidated by NP.  The positive-sense 

cRNAs then act as transcripts for the negative sense viral genome copies. 

Once the negative sense viral genes are produced in the nucleus they must be 

transported out of the nucleus to the interior side of the lipid membrane at the cell surface 

for assembly into virions.  Two of the viral proteins that are involved with the nuclear 

export of the genes include M1 and NEP. Once an infection is ongoing in a cell the M1 

proteins in the nucleus bind to newly copied viral gene/NP complexes to direct them 

towards nuclear export via NEP (74).  NEP has been shown to directly associate with 

cellular proteins that aid in export of protein complexes from the nucleus (75, 76). 

For an infectious influenza particle to be produced, all eight of the individual 

genes must be included in a progeny virion.  The gene segments contain segment specific 

packaging sequences in their noncoding regions (77).  Electron microscopy has shown 

the viral genes become incorporated in a characteristic pattern of 7 gene segments 

surrounding a central gene (78).  Whether this inclusion occurs randomly or whether the 

genes are added selectively is still unknown.  An argument for the selective addition 

theory includes a study that shows at least PB2 must be included into a virion before any 

other gene becomes added (79).  Within a formed virion, the M1 protein is the most 

abundant viral protein and associates with both the viral genes as well as with the 

cytoplasmic tails of the surface glycoproteins (16). The mechanism of viral budding is 

also not known, although the HA protein displays the ability to affect membrane 

curvature and budding off of membrane in a VLP system (80).  In a virus-infected cell 

however, it does appear additional proteins are required, including NA and M2 (81). 
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Once	
   the	
  virion	
  has	
  successfully	
  budded	
   from	
  the	
   infected	
  cell,	
  virus	
  egress	
  

cannot	
  take	
  place	
  until	
  the	
  sialic	
  acid	
  moieties	
  present	
  on	
  the	
  surface	
  of	
  the	
  infected	
  

cell	
  are	
  removed.	
   In order for the virus to become separated from the initial infected cell 

these sialic acid residues must be removed by the viral NA protein (16, 55).  The 

neuraminidase is a type II glycoprotein present on the cell surface in homotetramers and 

contains a sialidase activity (16).  Viral egress occurs once the sialic acids are no longer 

present and the virions then spread to infect additional cells.   

 

1.6 Viral Strategies for Multiple Protein Production 

As previously mentioned, several of the viral genes from influenza are capable of 

creating multiple vRNAs from the same genetic segment. The virus is adept at utilizing 

the host cellular splicing machinery to accomplish this goal (82). The NS and M genes of 

the virus utilize host cellular proteins in order to produce the NEP and M2 transcripts.  

Splicing of viral transcripts is an inefficient process, and only occurs in about 10% of the 

total viral transcripts for a particular gene (16).  The rate of export of the proteins from 

the nucleus is a large determining factor in the efficiency of splicing for both proteins 

(16, 82). 

Influenza viruses also make use of splicing-independent methods in order to 

produce multiple transcripts from the same gene, including multiple ATG start codons 

and alternative reading frames (16).  As an example, the PB1 segment contains an 

alternate ATG site in the 5’ end of the message in an alternate reading frame (20).  When 

transcription occurs at this alternate start site, the protein PB1-F2 is created. The PB1-F2 

protein has been shown to result in apoptosis of alveolar macrophages and increased viral 
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virulence during infection (83, 84).  There have also been publications involving another 

translated protein in PB1 (N40), which is downstream of the PB1-F2 start site (85, 86).  

The N40 protein appears to affect the regulation of viral gene expression during viral 

replication (85). 

More recently the PA gene has been described as having multiple polypeptides, 

including the full-length PA and PA-X (87).  PA-X is transcribed by the second splicing-

independent method known as ribosomal frameshifting (21).  Ribosomal frameshifting 

occurs when a ribosome moves into an alternate reading frame during the translation 

process, resulting in two proteins with distinct C terminals (82).  The PA-X protein is 

created from the amino-terminal 191aa of the PA protein with an additional 61aa after the 

frameshift occurs, and has been implicated in the modulation of influenza virulence 

during viral infection (21, 88). 

 

1.7 Influenza A Mutation and Host Adaptation 

Influenza viruses continually mutate throughout replication, creating quasispecies 

within an individual during an infection (89).  The viral RdRp encoded by the influenza 

virus lacks any proofreading capacity, which results in an error-prone phenotype and 

helps account for the high mutation rate (25).  The virus has the ability to evolve and 

undergo mutation by two methods.  The first type is antigenic drift, which occurs during 

viral replication as random amino acid changes are inserted into the genome.  These 

alterations can lead to antibody escape variants that are able to avoid neutralization by the 

antibodies produced during a prior infection or vaccination; and occur in H3 viruses at a 

rate of approximately 3 amino acids changes per year (16, 90).  These changes eventually 
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lead to the emergence of variant viruses with mutations accumulated in the HA 

glycoprotein.  The new variants replace viruses against which there is immunity present 

in the human population and cause seasonal epidemics (90).   

Alternatively, a virus can acquire new genetic material when two different 

influenza A viruses infect the same cell, in a process called reassortment (16).  With both 

viruses replicating in the nucleus of a cell the two genomes can reassort to form new 

distinct progeny viruses, with a possibility of 256 unique combinations.  Antigenic shift 

occurs when reassortment leads to the introduction of a novel HA into a human 

population that lacks immunity to this new subtype.  As discussed in a later section, a 

novel subtype is characteristic of pandemic viruses.  Swine serve as a platform for 

reassortment between avian and mammalian influenza viruses as their tracheas contain 

receptors for both, giving them the capacity to act as both a host for the viruses as well as 

a mixing vessel (91).  The three most recent pandemic strains have arisen from 

reassortment, demonstrating the importance of antigenic shift to escape immune pressure 

in the human population. 

Several mutations have been found to allow for influenza virus adaptation and 

alterations in virulence in humans.  While a complete list of mutations is beyond the 

scope of this introduction, several key examples of changes known to affect the 

pathogenicity of an influenza virus are discussed below.  One such change is located in 

the PB2 protein at the amino acid site 627.  The change E627K allows for the virus to 

replicate more efficiently at 33°C in vitro and has been indicated as a virulence factor in 

mice (92, 93).  The ability of a virus to replicate at a lower temperature improves the 

capacity to replicate in the upper respiratory tract (URT) of humans; potentially 
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increasing their ability to transmit (94).  There also appears to be a compensatory 

mutation that can result in the recovery of viral transmissibility at 701D in the PB2 

protein after the introduction of 627E into seasonal strains (95).  Another mutation in the 

influenza virus is located in the PB1-F2 protein at amino acid 66.  The amino acid 

alteration N66S is associated with increased virulence in 1918 and H5N1 viruses, both of 

which have exhibited heightened virulence in humans (96). The total length of the 

translated PB1-F2 protein also contributes to the ability of the protein to affect virulence 

during infection.  The protein exists as an 87 or 90aa protein when full-length, but is 

truncated in some strains to only 57aa and in the 2009 pandemic strain to 11aa (97).  The 

truncated form is inactive, and is present in many human-adapted strains, especially 

H1N1 subtypes. The full-length form is present in avian subtypes of virus.  Full-length 

PB1-F2 has been shown to induce apoptosis in alveolar macrophages (20).  PB1-F2 can 

also inhibit IFN production by binding and inactivating mitochondrial antiviral signaling 

protein (MAVS) (98-100).  As mentioned previously, the cleavage site in the HA protein 

can influence the virulence and extrapulmonary spread of an influenza virus after 

infection.  The extent of glycosylation on the HA can impact the virulence of a virus, 

demonstrated by attenuation of both the A(H1N1)pdm and 1918 strains after the addition 

of sugars to their HA proteins (101, 102). 

 

1.8 Innate Immune Response to Influenza A 

Multiple cell types of the respiratory tract are susceptible to influenza virus 

infection.  However, the respiratory tract contains several innate barriers the virus will 

encounter before reaching cells. Collectins (such as surfactant proteins A and D) are 
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collagen-like lectins secreted from cells that bind and neutralize influenza viruses in the 

airway prior to infection (103).  Mucins are glycoproteins secreted by the mucosal 

epithelial present in the airways that bind and inhibit the virus from infecting cells (104).  

Cilia present on cell surfaces beat and expel the mucin/virus complexes back out of the 

airway, preventing infection. 

Once a virus enters a host cell, the intercellular innate immune system recognizes 

the viral components as foreign and becomes activated.  Cellular pattern recognition 

receptors (PRR) recognize viral pathogen-associated molecular patterns (PAMP) in the 

influenza virus and trigger cellular pathways that lead to the production of antiviral genes 

and molecules (104).  Some of these cellular products activate a local antiviral state to 

help limit the spread of the virus.  Other molecules, such as chemokines, act at a further 

distance, by attracting cells of the immune system to the infected area.   

Once viral infection of cells in the respiratory tract occurs, innate sensors in the 

cells react to the presence of viral RNA in both the endosome and the cytosol.  Toll-like 

recognition protein 3 (TLR3) and TLR7 are located in the endosomes of epithelial cells.  

TLR3 recognizes viral-derived dsRNA while TLR7 recognizes ssRNA (105, 106).  Upon 

activation, TRL3 and TLR7 both signal through MyD88-dependent pathways, leading to 

the production of inflammatory cytokines and type I interferons (105).  Interferons help 

to inhibit viral synthesis and limit replication, and to activate local innate immune cells 

(104).  In the mouse model, animals lacking the interferon (α/β) receptor display more 

morbidity and succumb to infection more rapidly than wildtype mice (107). 

After the virus escapes the endosome, the cell has additional innate immune 

detectors in the cytoplasm.  The cytosolic innate sensor proteins retinoic acid-induced 
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gene I (RIG-I) and melanoma differentiation-associated protein 5 (Mda5), part of the 

RIG-I like receptor (RLR) family, are able to detect viral RNA in the cytosol. RIG-I is 

believed to recognize single-stranded 5’-triphosphate RNA, while Mda5 reacts to longer 

double-stranded RNA (108). Once activated the RIG-I proteins lead to further cytokine 

production and type I interferon expression.   

Interferons are important cytokines for regulation and control of influenza 

infections.  They can act in either an autocrine or paracrine fashion to create an antiviral 

state (109). These cytokines lead to the production of interferon-stimulated genes (ISGs), 

which are involved in creating antiviral conditions. The produced ISGs result in increased 

innate responses, regulating host cell transcription/translation, regulation of apoptosis, 

and attraction of additional immune cells to the site of infection (109).  HPAI H5N1 and 

some A(H1N1)pdm strains viruses display a greater attenuation of the type I interferon 

response compared to seasonal strains, resulting in lower ISG levels in Calu-3 cells and 

may contribute to the greater virulence observed in these infections compared to seasonal 

strains (110-112). 

The NLRP3 inflammasome in the cytoplasm has also shown to be involved in 

viral detection (113, 114).  Recognition of viral components by NLRP3 produces active 

forms of the inflammatory cytokines IL-1β and IL-18.  Additionally, detection of dsRNA 

produced during viral replication activates RNA-dependent protein kinase (PKR) in the 

cytosol on infected cells (115).  PKR expression is induced by interferons, and its 

activation leads to translational arrest in the cell, which prevents both cellular and viral 

protein synthesis. Epithelial cells also recruit additional innate immune cells (monocytes) 

to the site of infection through the production of CCL2 (116). 
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Several resident innate immune cells within the respiratory tract are vital to 

recognition of influenza infection.  These cells initiate the activation of the innate and 

regulation of the adaptive immune response against the virus. Alveolar macrophages are 

one of the first cells of the innate immune system to encounter the viruses during 

infection.  These cells reside in the alveoli of the lungs and act as regulatory cells during 

homeostasis (117). Once activated, alveolar macrophages actively phagocytose infected 

cells and produce inflammatory cytokines, including IL-6 and TNF-α (118).  

Macrophages also display high levels of tumor necrosis factor-related apoptosis-induced 

ligand (TRAIL), leading to apoptosis of infected epithelial cells (119).  They can also 

contribute to immunopathology through production of NOS2 and TNFα (120, 121). 

Natural killer (NK) cells contribute to viral clearance through antibody dependent 

cell-mediated cytotoxicity (ADCC) and cytokine production.  ADCC lyses cells after 

receptors on the surface of the NK cell recognize the Fc portions of antibodies bound to 

the surface of infected cells. Natural cytolytic receptors NKp46 and NKp44 lead to cell 

lysis after detecting viral HA protein present on the surface of infected cells (122, 123). 

NK cells can produce the cytokines IFNγ, TNFα, and MIP-1α to help control an infection 

(124, 125). NK cells are also reported to modulate and enhance both dendritic cell and T 

cell responses (126, 127).   

Dendritic cells (DCs) are resident cells located beneath the epithelial barrier in the 

airway, with dendrites extending into the lumen of the airway through tight junctions 

between cells.  There are multiple types of DCs in the respiratory tract that can contribute 

to an immune response.  Conventional DCs (cDCs) predominantly utilize TLR3 and the 

RLRs for viral detection while plasmacytoid DCs (pDCs) primarily detect antigens 
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through TLR7 and PKR and are the primary producers of type I interferons during 

infection (105, 128, 129). DCs can be activated either through direct infection by the 

virus, or through phagocytosis of viral antigens (130, 131). Activated DCs upregulate 

MHC complexes and costimulatory markers on their surface, and produce multiple 

inflammatory cytokines, including IL-6, IL-12, TNF-α, IL-8, IP-10, RANTES, MIP-1β, 

and type I interferons (132).  After activation the DC displays CCR7 on its surface and 

migrates to the draining lymph node to act as an APC to influenza-specific T cells (133).  

They can present viral antigens through either the MHCI or MHCII pathway based on 

how the antigens were processed after phagocytosis, and can therefore activate either 

CD8 or CD4 cells, respectively (104).   

The levels and location of cytokine expression produced by innate immune 

responses have been shown to correlate with the transmissibility and pathogenicity of 

influenza viruses in the ferret model (134).  Seasonal strains that transmitted efficiently 

displayed a high upregulation of proinflammatory cytokines in the UTR including TNF-

α, IL-6, IFN-α/β compared to avian viruses that failed to transmit.  These results agreed 

with human studies that examined cytokines produced in the UTR after infection with 

seasonal influenza strains (135-137).  Viruses that display a high level of pathogenicity 

display greater upregulation of proinflammatory cytokines and chemokines in the lower 

respiratory tract (LTR) (134).  These higher levels of chemokines can attract a greater 

concentration of immune cells into the infected area and create a larger immune response, 

resulting in greater inflammation and more immunopathology (134, 138, 139). 
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1.9 Adaptive Immune Response to Influenza 

Once antigen-presenting cells (APCs) travel into the draining lymph node, the 

circulating lymphocytes specific to influenza are able to detect their cognate viral antigen 

and become activated.  T cells require both recognition of the specific MHC molecule 

and expression of costimulatory molecules for activation to occur (104).  T cells 

proliferate in the draining lymph node following activation by the APCs.  CD4+ T cells 

move into the germinal center areas to activate B cells and shape the antibody response to 

infection, while CD8+ T cells will migrate to the site of infection for their effector 

functions (140, 141). 

CD4+ T cells activated during an immune response to influenza infection are 

mainly helper T cells, although they can have cytolytic activity (142).  The CD8+ T cells 

act as cytotoxic T lymphocytes (CTLs) after activation by DCs and lyse infected cells 

(141).  Infected cells are recognized by CTLs by the viral antigens displayed in the MHCI 

on the surface of the cell.  CTLs eliminate infected cells to prevent further viral 

replication through several methods.  These methods include the release of granzyme B 

and perforin granules as well as a Fas-FasL mediated apoptosis (141).  They also produce 

cytokines including IFNγ and TNFα and can result in substantial immunopathology 

(143).  The major targets of CTL receptors in human influenza are NP and M1 epitopes 

(144, 145).  These epitopes are more highly conserved and therefore more cross-reactive 

against multiple subtypes compared to epitopes recognized by antibodies (146, 147). 

B cells are also activated through infection to become plasma cells that produce 

large amounts of influenza specific antibodies.  This activation also occurs in the draining 

lymph node through interactions with APCs. B cell activation that is Th-dependent 
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occurs in the germinal centers of the lymph node and creates long-lived immunity (140).  

CD4+ T cell help during B cell activation results in antibody class-switching and affinity 

maturation of the antibodies produced (148).  There are also B cells activated through Th-

independent means in extra-follicular areas, but these cells are short-lived and create an 

inferior memory response (149).   

The main target of antibodies are the surface glycoproteins of the virus, especially 

the HA protein.  The presence of antibodies against the HA is currently the best-known 

correlate of protection against the virus (150, 151).  Antibodies against the globular head 

of HA can be neutralizing by blocking the ability of the virus to bind to and enter 

susceptible cells or by inhibiting virus replication post-entry (151).  There are five known 

antibody recognition sites on the globular head region of the HA (152).  The antibodies 

can also be specific to the stem region of the HA protein.  Antibodies against the stem 

region of HA can inhibit viral fusion during entry and tend to be more broadly reactive 

than those against the head region (151, 153-155).  Antibodies against the NA protein 

inhibit the sialidase activity of the NA and reduce viral spread (25, 151).  While 

antibodies against the M2 protein tend to occur at low concentrations, they are broadly 

cross-reactive and have been the target of recent attempts at creating a universal influenza 

vaccine (156, 157). Antibodies raised against NP have also been shown to induce ADCC, 

although the mechanism is not well understood (158). 

Multiple classes of antibodies are produced during infection with influenza. IgM 

antibodies are produced after a primary infection (104, 159).  These antibodies tend to 

have a lower affinity against their antigen, but their shape allows for a high avidity 

binding to the viral antigens. IgM antibodies are very proficient at inducing complement-
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mediated lysis of infected cells once bound to the surface. IgA antibodies are produced 

quickly after infection (160).  These antibodies are produced locally within the 

respiratory tract, and are transported along the mucus.  They are capable of neutralizing 

virus intracellularly (161).  IgG antibodies are produced systemically, but can transudate 

into the respiratory tract, and can provide long-term protection (162). IgG antibodies 

produced against influenza surface glycoproteins are also capable of facilitating ADCC 

and complement-mediated lysis through the Fc tail portion of the antibody (104, 163). 

 

1.10 Memory Response to Influenza 

After an influenza infection has been cleared, the cells of the immune system 

undergo a massive contraction phase.  Most of the influenza-specific T-cells and B-cells 

die, although a small portion is long-lived and can be reactivated during secondary 

infection.  These cells are present in higher numbers, persist longer, and respond more 

rapidly than naïve cells (104).  Both arms of the adaptive immune system respond more 

rapidly and specifically to a subsequent influenza infection.  With the immune response 

being composed of responses to multiple epitopes and proteins from the virus protection 

can persist even after antigenic drift has occurred. 

Once influenza-specific memory has been established the response to a 

subsequent influenza infection is more effective.  Memory cells respond to lower 

concentrations of viral antigens, are less dependent on costimulatory signaling, and are 

capable of producing a broad range of cytokines once activated (164, 165).  CD4+ T cells 

have been shown to be vital to the production of an effective memory response to 

influenza infection.  Memory CD4+ cells help regulate the innate and adaptive memory 



23	
  
	
  

	
  

responses during subsequent infections.  Memory CD4+ T cells rapidly activate APCs 

and result in enhanced cytokine production (166).  While the primary CD8+ T cell 

response is not strongly affected by the absence of CD4+ T cells, the memory response is 

reduced and delayed (167, 168).  Memory CD8+ T cells exist in two subtypes, classified 

as effector (Tem) and central memory (Tcm) (169).  The Tem cells are a transitory cell 

population while Tcm contain the full memory phenotype of self-renewal and rapid 

reactivation (170).  Memory CD8+ cells can rapidly activate and recover cytolytic 

activities once reintroduced to antigen. 

Two forms of long-lived B cells exist after influenza infection: memory B cells 

and plasma cells (171).  Both of these cell types differ from naïve cells by containing 

high-affinity isotype-switched antibodies (172).  The long-lived plasma cells reside in 

niches of the bone marrow and secrete continuous low-levels of antibody (173). Memory 

B cells preferentially localize in site of antigen entry in the body, and can encounter 

antigen more rapidly than naïve cells located in follicles (174).  After restimulation 

memory B cells are capable of producing large amounts of antibodies much faster than 

naïve cells. 

The influenza virus that causes the first exposure can affect the memory recall 

response to a heterologous influenza virus infection.  This effect on a subsequent 

infection is known as original antigenic sin (OAS).  Even after antigenic drift has 

occurred shared epitopes between two strains can remain.  During the infection with an 

antigenically drifted virus, both memory cells against shared epitopes as well as naïve 

cells against novel epitopes should become activated.  OAS occurs when the memory 

response dominates over the response against novel epitopes in the drifted virus.  This 
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can result in low seroconversion rates to the antigenically drifted virus (175, 176).  OAS 

has been observed in humans as well as in animal models of influenza (177, 178).  

Studies in mice have shown that prior infection creates a much stronger OAS effect 

compared to vaccination (179). 

 

1.11 Influenza A Immune Evasion 

In addition to evading the host adaptive humoral response through antigenic drift 

or shift, influenza viruses have evolved multiple ways to evade the immune system and 

impede the immune response mounted against the virus.  Many of these techniques 

require the viral NS1 protein.  Once produced inside an infected cell, this protein is 

capable of binding multiple cellular proteins to interrupt numerous cellular response 

pathways (180).  NS1 binds to viral RNA to help mask the genetic material from cellular 

TLRs and RIG-I proteins.  NS1 further prevents RIG-I activation by binding tripartite 

motif-containing protein 25 (TRIM25), a protein which ubiquitinylates the CARD 

domain of RIG-I and is required for signaling (181).  NS1 additionally binds to and 

inhibits 2’-5’ oligoadenylate synthase activation (180).  The pathway involving RNA-

dependent protein kinase (PKR) is inhibited by NS1 binding to and sequestering viral 

dsRNA to keep PKR from activating.  NP can further interfere with this pathway by 

binding P58IPK, the inhibitor of PKR (182).  P58IPK is usually present in cells in a 

complex with heat shock protein 40 (hsp40) but NP protein is capable of binding this 

complex and causing dissociation of P58IPK from hsp40, which then allows P58IPK to bind 

with PKR and block its activation. 
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NS1 also interferes with general cell functions and is involved with regulation of 

viral replication.  The viral protein interferes with the splicing of pre-mRNA transcripts 

by blocking 3’ polyadenylation of cellular transcripts by interacting with cleavage- and 

polyadenylation-specific factor (CPSF30) (183, 184).  NS1 interferes with cellular export 

machinery as well, which decreases mRNA transport out of the nucleus and concentrates 

the mRNA for cap-snatching by the viral polymerase (185).   

NS1 and NP are not the only influenza proteins with known immune regulation 

properties. As mentioned previously, PB1-F2 and PA-X proteins can both affect the 

immune response.  PB1-F2 has an effect when in its full-length form by inhibiting IFN 

production and mutation of PA-X creates an exacerbation of the immune response to 

influenza virus (21, 98-100). 

 

1.12 Influenza Vaccines and Antivirals 

Beginning in 2010, the Advisory Committee for Immunization Practices began 

recommending everyone 6 months and older get vaccinated annually with the most recent 

composition of influenza vaccine (7, 8). Populations considered to have high risk of 

complications from influenza infection include young children, persons ≥65 years of age, 

pregnant women, and immunocompromised individuals (8). There are several different 

formulations of the annual vaccine offered, with varying recommended target groups.   

The most widely used formulation of the seasonal influenza vaccine in the US is 

the trivalent inactivated influenza vaccine (TIV).  This vaccine contains antigens from the 

three most widespread forms of influenza currently circulating in humans: H1N1, H3N2, 

and B. A quadrivalent inactivated vaccine is also now available, with the strains of the 



26	
  
	
  

	
  

two antigenically divergent B sub-lineages included.  The makeup of the TIV vaccine is 

reevaluated annually, to include the strains that are expected to be the most prevalent 

during the approaching influenza season.  The vaccine growth strains contain the surface 

glycoproteins of the circulating virus, with the internal genes of A/Puerto Rico/8/34, to 

increase growth ability in eggs (186). They are primarily created by traditional 

reassortment methods and then inactivated through treatment with chemical agents. Once 

inactivated the lipid membranes of the virions are disrupted, or split, by a detergent and 

the surface HA proteins are selectively purified.  This split vaccine has a lower 

immunogenicity than a whole virion version but also has a lower reactogenicity and is 

therefore safer (187).  The HA amounts from each virus is determined by single radial 

immunodiffusion (SRID) and are then diluted to the proper concentration (188).  Higher 

concentration TIV vaccines with four times the normal HA antigen dose are available to 

improve immune responses in older adults (8). Split vaccines developed in cell cultures 

also exist to avoid egg allergies and improve manufacturing capacity (189-191). 

Depending on the purification processes during manufacture, the other viral 

components may be present in the TIV in varying amounts, including NA, M, and NS, as 

well as viral RNA.   This may have a beneficial effect on vaccine immunogenicity, as it’s 

been shown that viral RNA in a vaccine can trigger an immune response through TLR7 

in mice (192). The TIV is effective at eliciting a serum IgG response against the HA 

antigens.  However, intramuscular delivery is not particularly successful at stimulating 

local immune response within the respiratory tract.  The TIV has been shown to be poor 

at stimulating a secretory IgA or CTL response in naïve populations but more effective at 

boosting preexisting memory responses in ferrets and humans (159, 193, 194).  
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The FDA has recently approved a recombinant HA protein vaccine, called 

Flublok, which is produced by baculovirus expression in insect cells (195).  This system 

creates a vaccine that can be produced quickly in the case of another pandemic and 

avoids the use of eggs during manufacturing (196). The vaccine is administered 

intramuscularly like the TIV and has been approved for use in adults. Another recent 

FDA approval involves the Fluzone intradermal vaccine that delivers a much smaller 

amount of HA antigens into the dermis layer of skin through hollow microneedles, 

resulting in seroconversion rates similar to the intramuscular delivery method (197, 198). 

An important addition to the collection of approved influenza vaccines is the live 

attenuated influenza vaccine (LAIV).  The LAIV is delivered through intranasal spray, a 

more natural route of administration than the intramuscular route of the TIV.  This 

vaccine provides much better mucosal IgA antibody and cell-mediated response, 

especially for naïve individuals (199).  The live attenuated vaccine also appears to 

provide better protection against antigenically drifted strains compared to the inactivated 

TIV in ferrets (200).  The currently licensed LAIV use a cold-adapted master donor strain 

as the basis of attenuation.  Strains such as A/Ann Arbor/6/60 have been previously cold-

adapted and grow best at temperatures much lower than 37°C (201).  This adaptation 

includes stable mutations in multiple internal genes (202).  Other unlicensed attenuated 

strains in development contain NS genes with either mutations or truncation (203).  

Without the NS gene to modulate the immune response, the virus is less able to combat 

the human immune response. 

Other experimental vaccines have displayed effectiveness in animal models and 

clinical trials, but have yet to gain approval for human use in the US.  An additional type 



28	
  
	
  

	
  

of vaccination targeting the response against the HA protein involve the use of solid 

microneedles for inoculation (204). Recombinant HA molecules are coated on solid or 

dissolving microneedles that are placed onto the skin and puncture the dermis to place the 

antigen.  Once applied to the skin the coated viral antigen dissolves off the microneedles 

(or with the dissolving microneedles) and diffuses into the dermal layer.  Virus-like 

particles (VLPs) are another promising form of vaccination, with viral surface antigens 

but no internal genetic material.  These VLPs are unable to replicate but appear to create 

a broader immune response than traditional TIV (205, 206).  Techniques that target cell-

mediated immunity are also currently being investigated.  DNA-based vaccines try to 

avoid the antigenic drift that occurs with the surface glycoproteins by targeting conserved 

epitopes in the internal genes, targeting T cell immunity.  These epitopes are preserved 

across subtypes, so these vaccines have the possibility of creating broad heterosubtyptic 

immunity.  The M and NP genes are the current focus for these vaccines since they are 

the major T cell targets during infection (207). These approaches are often referred to as 

universal vaccines.  Another approach at a universal vaccine involves VLP vaccines with 

the HA2 stem-portions of the hemagglutinin proteins (155).  The stem regions of the HA 

proteins are highly conserved and protected mice from a lethal heterologous challenge.  

Adjuvants are additional vaccine components that are known to have stimulatory effects 

on the immune system.  Adjuvants are included in vaccines in several countries around 

the world, but the United States still only licenses unadjuvanted influenza vaccines (191). 

Antiviral drugs have been shown to decrease influenza virus shedding and shorten 

the duration of illness when taken early in the course of infection.  Prescription antivirals 

in use currently target two influenza proteins.  Amantadine and Rimantadine target the 
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M2 transmembrane channel in influenza A viruses to prevent the ion flux into the virus in 

the endosome of the cell.  Zanamivir and Oseltamivir antivirals target the active site of 

the NA protein of both A and B strains of virus, to inhibit viral release from infected 

cells.  Antivirals taken prophylactically can reduce transmission between household 

contacts, as shown with inhaled zanamivir (208, 209).  The drugs differ in routes of 

administration, doses, and recommended age groups.  Also, resistance has developed 

against some of these drugs, especially for the adamantanes, making them less effective 

against some seasonal strains of virus (210).  Mutations resulting in antiviral resistance 

may lead to a decrease in transmissibility and overall fitness in the resulting strain (211, 

212). 

 

1.13 Animal Models for Influenza A Viruses 

Several animal models exist for the study of influenza virus infection.  Each 

model contains both advantages and limitations, and different models are preferred over 

others based on the focus and approach of the research.  The breadth of reagents available 

differs greatly between models.  The cost and space for the housing and care of the 

animals also must be a consideration.  The most frequently utilized models are compared 

and the most common uses for them are discussed in detail below. 

Mice are the most widely used animal model for influenza pathogenesis (213).  

This model has the largest number of reagents available for analysis, as well as the 

availability of transgenic animals for study.  Almost every aspect of the disease can be 

analyzed during the infection, whether it involves morbidity of the disease, immune 

response of the animal, or memory/recall responses to the virus (214).  Mice have also 
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been bred to be genetically homogenous and can be studied in large numbers, making the 

process of showing statistical significance easier (215).  They are also low-cost, and easy 

to care for and house during experiments. However, mice are a relatively poor animal 

model for the study of virus transmission.  Furthermore, seasonal influenza viruses often 

require prior adaptation in order to cause disease in mice (216). 

Guinea pigs can be used in transmission experiments of influenza virus infection, 

and have been shown to transmit virus to naïve contact animals (217).  Influenza viruses 

do not require prior adaptation before causing infection in this animal model (218). 

However, guinea pigs are a poor model when studying pathogenesis, as they fail to 

display many clinical signs of disease during infection and do not recapitulate the 

virulence of some influenza viruses including H5N1 viruses in humans (215).  Guinea 

pigs are also more difficult and expensive to house during experiments than mice. 

Non-human primates are a very useful model for comparison to human infections 

and immune responses to influenza virus.  However, the cost and size of housing, and 

ethical considerations make these animals a less than optimal model for most studies 

(219). Non-human primates display multiple clinical symptoms following infection, 

including coughing, fever, anorexia, and lethargy (220).  H5N1 viral infections are 

typically non-lethal in this animal model and lack extrapulmonary spread for H5N1 

infections in both cynomolgus macaques and rhesus macaques (221-223).  However, this 

species has been utilized for analyzing vaccine efficacy and transcriptomic analyses (224-

226). 

The ferret animal model can be utilized for both transmission and pathogenicity 

studies.  Influenza A viruses do not require prior adaptation in order to cause disease in 
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these animals (215).  The transmissibility of viruses in this model generally corresponds 

to human cases, and the ability of the viruses to transmit appears to correlate with the 

presence of sneezing during infection (134). Ferrets display many of the clinical 

symptoms seen in human cases of infection, including lethargy, fever, nasal discharge, 

and weight loss (227).  While replication of seasonal influenza A viruses is generally 

restricted to the upper respiratory tract following intranasal inoculation, 2009 H1N1 and 

H3N2v viruses can be detected in upper and lower respiratory tract tissues with 

occasional spread to the gastrointestional tract (228, 229). Several HPAI viruses have 

further been shown to have the capacity to spread outside of the respiratory tract in these 

animals, and have been found in systemic organs including the intestines, spleen, and 

brain within three days of inoculation (230).  The reagents available for study of the 

immune response to infection are more restricted in this model, although they are 

becoming the focus of renewed interest and research (215, 218, 231).  The animals in this 

model are outbred, which allows for the study of complex virus-host interactions though 

it increases the chance of genetic variability compared to inbred animals (232).  The cost 

and size of the housing and bio-isolators required for these animals limit the number of 

animals that can be included in an experiment.  These factors make confirmation of 

statistical significance more challenging compared to a mouse model (233).  As the ferret 

represents the most relevant small mammalian model to study both virus pathogenicity 

and transmissibility, the studies contained within this dissertation utilize the ferret animal 

model for all experiments. 
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1.14 Influenza A Pandemic History 

In order to cause a pandemic, a newly emerging virus must be capable of causing 

illness in humans and display sustained human-to-human transmission (234, 235). The 

HA protein must also be antigenically distinct from those recently circulating among 

human populations (236).  The lack of preexisting antibodies in the population increases 

the ability for the virus to infect and spread among humans. 

The influenza pandemic of 1918 (H1N1), the worst pandemic in recent history, 

killed an estimated 675,000 people in the United States and up to 50 million people 

worldwide (237).  Although historical evidence is limited, it has been suggested that all 

of the genes in the pandemic strain came from avian influenza strains that adapted 

directly to human hosts (238, 239).  The pandemic virus in 1957 was of the H2N2 

subtype, and was responsible for the deaths of an estimated 2 million people worldwide.  

This virus contained the HA, NA, and PB1 genes of an avian virus that were introduced 

into a human strain through antigenic shift (240, 241).  The H3N2 subtype pandemic 

virus of 1968 also arose through antigenic shift, where the HA and PB1 genes were 

derived from an avian source (239).  The 1968 outbreak was responsible for the death of 

an estimated 1 million people worldwide.   

The most recent pandemic, also of the H1N1 virus subtype, occurred in early 

2009.  This virus, which emerged from swine, was estimated to have caused over 18,000 

deaths worldwide in over 200 countries from April 2009 to August 2010 (242). The novel 

H1N1 quadruple reassortant virus contained individual gene segments from humans, 

birds, and swine origin (243).  The 2009 H1N1 pandemic virus was a reassortant virus 

with the PB1 gene from a seasonal H3N2 virus, the PB2 and PA genes originating from 
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an avian influenza virus, the HA, NP, and NS genes from the North American swine 

lineage, and the NA and M genes from the Eurasian swine lineage (244).  The 2009 

pandemic strain also lacked all of the known virulence factors and human adaptations 

seen in other influenza A viruses, including the amino acid 627 in PB2 or a functional 

PB1-F2 protein (244). 

The inability to predict this most recent emergence of a pandemic strain highlights 

the need to understand the additional factors involved in the development of pandemic 

strains, as well as a need for improved virologic surveillance in animal species. Although 

this most recent pandemic strain originated from a non-avian source through a swine 

intermediate, it does not negate the importance of studying avian influenza viruses.  Both 

swine and avian populations require constant monitoring and sampling to keep track of 

the contemporary strains circulating in those groups.  They both share the same zoonotic 

origin, and continue to display the capacity to mutate and infect humans.  As such the 

potential of influenza viruses to develop into new pandemic strains remains a constant 

threat. 

 

1.15 Avian Subtypes of Influenza A Virus 

A subset of the H5 and H7 viruses has shown the capability of becoming a highly 

pathogenic virus once the virus is introduced into a land-based domestic avian species 

(245).  HPAI viruses are defined as being capable of causing lethality in six to eight of 

eight experimentally infected chickens within 10 days post-infection with infectious 

virus, and are capable of replicating in cell culture in the absence of trypsin (246).  A key 

molecular signature of H5 and H7 HPAI viruses is the presence of a highly cleavable HA 
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protein as described in a previous section.  The classification of HPAI is separate from 

the pathogenicity observed in mammalian animal models (235, 247).  Detection of 

influenza infections in the domesticated avian population has led to massive cullings in 

facilities to attempt to avoid human outbreaks. 

Since the late 1990s, select avian subtypes (H5, H7, and H9) of influenza A 

viruses have caused documented human disease but do not exhibit the ability for 

sustained human-to-human transmission (25).  Avian influenza virus infections of 

humans occur primarily from direct or indirect contact with infected poultry and have 

resulted in cases of both high and low severity.  Infections with H5N1 viruses can lead to 

severe pathology including respiratory distress syndrome and rarely encephalopathy (248, 

249). Conjunctivitis may also occur, especially in infections caused by H7 subtype 

viruses (250)(251).   

One of the avian subtypes, H5, was first documented in birds in the 1960s.  The 

subtype H5N1 first appeared in humans in Hong Kong in 1997 (252). This outbreak 

represents the first time that avian influenza A viruses were recognized to cause severe 

respiratory disease and death in humans (253).  The initial outbreak led to eighteen 

infections and six deaths in humans; culling of all poultry in Hong Kong eventually 

contained the human outbreak (252).  Isolation of this virus subtype in poultry continued 

between 2000 and 2003 in Hong Kong, but the virus did not reemerge in humans until 

2003 (254). Since then, H5N1 virus has since become endemic in 15 countries, with 628 

cases and 374 deaths in humans reported to date (248).  The H5N1 viruses that have 

reappeared display a higher virulence than those in the original outbreak, with a mortality 

rate of almost 60% (248, 255).  H5N1 virus has been found in extrapulmonary sites such 
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as the blood, neurons, the small intestine, and bone marrow among severe H5N1 cases 

(256, 257).  The higher virulence may be potentially due to the fact the modern H5N1 

viruses contain a different gene constellation than the 1997 isolates, due to further 

reassortments occurring in avian species (258).  These viruses naturally show inefficient 

transmission among humans, although isolated transmission events have occurred within 

familial clusters (259-261).  While fewer in number, human infections with H7 and H9 

viruses have also been documented with only limited evidence for human-to-human 

transmission in the case of H7 viruses (250, 262).  HPAI H7N7 and H7N3 viruses have 

caused human infections, whereas low pathogenic avian influenza (LPAI) H9 viruses 

have been more rarely detected in humans (262, 263).  Recently, the H7N9 subtype 

resulted in over 130 human infections and more than 40 lethal cases in the spring of 2013 

(248).   Some avian subtypes, including H6, have been shown experimentally to gain a 

HPAI phenotype when a multibasic cleavage site is inserted in the HA protein, although 

whether such viruses would arise in nature remains unknown (264).  Nevertheless, this 

HPAI ability further underscores the pandemic potential and risk of human illness with 

all avian virus subtypes.  The continuing evolution of avian influenza viruses and 

frequent infections they cause among the human population highlights the need for 

continued surveillance and characterization of these viruses.  The genetic changes these 

viruses must undergo to become transmissible among humans needs further urgent 

research and the appearance of such genetic changes in natural viral isolates should be 

closely monitored. 

 

1.16 Swine-Origin Influenza A Viruses  
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Influenza viruses were first isolated from the swine population in the 1930s (265, 

266), although a swine influenza-like disease had already been well documented, as far 

back as the 1918 pandemic (267).  Humans were shown to have antibodies that cross-

reacted to the swine isolates, demonstrating the closeness between human and swine 

lineages of virus.  Swine display illness in the respiratory tract during an infection with an 

influenza virus, similar to humans.  They can exhibit symptoms including fever, lethargy, 

weight loss, coughing, dyspnea, and nasal or ocular discharge (17, 267).  Infected swine 

are generally sick for 3-7 days, but illness can also lead to a more severe condition, 

termed porcine respiratory disease complex (267). Cells in swine respiratory tracts 

contain both α2,6- as well as α2,3-linked sialic acid residues.  This allows for an 

increased possibility of production of reassortant viruses between avian and human-

adapted viruses if simultaneous infections were to occur.  For this reason swine have 

been termed a “mixing-vessel” for influenza viruses of various subtypes.  Within the last 

twenty years there have been multiple examples of antigenic shift occurring in the swine 

populations in multiple countries around the world (268, 269). 

Surveillance of swine influenza has been sparse in the 20th century, although it 

was enhanced after the A(H1N1)pdm09 virus emerged from the swine population (244).  

For most of the 1900s, the major subtype that swine contained antibodies against was 

H1N1, with less than 1% of pigs displaying antibodies against the H3 subtype (270, 271).  

This changed in the late 1990s when the incidence of infections with the H3 subtype 

began to appear with higher prevalence, with over 8% of pigs showing antibodies to that 

subtype due to the introduction of HA and NA genes from human viruses (272, 273).  
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Reassortant viruses between the two subtypes also began to emerge with H1N2 isolates 

(274). 

The triple reassortant internal gene (TRIG) cassette emerged in swine from 

reassortment events in the late 1990s.  A variation of this genetic constellation was 

present among the A(H1N1)pdm09 viruses (244).  These genes came from a variety of 

sources, including human, avian, and swine (275).  The internal genes of these viruses 

originated as follows: PB2 and PA genes were of avian origin, the PB1 gene from 

humans, and the M, NP, and NS genes from the classical swine lineage (244).  The 

A(H1N1)pdm09 virus varied slightly from the traditional TRIG cassette, as the NA and 

M genes were from a distinct Eurasian swine lineage. 

In 2011 a new variant of triple-reassortant virus arose from the swine population 

and caused 12 human infections and exhibited some limited human-to-human 

transmission (276).  Some of these transmission events are believed to have occurred in 

familial clusters, although some occurred among children in a daycare setting (276).  

Swine influenza viruses that result in a human infection are termed variant viruses (277).  

These variant viruses of the H3N2 subtype [A(H3N2)v] included a TRIG constellation of 

genes, but also contained the M gene from the A(H1N1)pdm09 virus. In 2012,  

A(H3N2)v virus caused human illness in 309 additional documented cases (8).  The 

majority of these cases appeared to occur from direct contact with swine, primarily at pig 

exhibitions associated with agricultural fairs. Experimentally, these viruses displayed 

efficient replication in human airway epithelial cells, and efficient respiratory droplet 

transmission in the ferret animal model (228).  A(H3N2)v virus was also found to be 

antigenically distinct from the current seasonal H3N2 viruses included in the trivalent 
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seasonal vaccines (278, 279). As of August 5th, 15 additional human cases have been 

confirmed in 2013.  

1.17 Aims of the project 

Novel influenza viruses continue to emerge from animal reservoirs to infect 

humans.  Knowledge of the role of preexisting immunity against seasonal influenza 

viruses in protecting against infection and/or transmission of novel influenza viruses is 

needed to better understand the pandemic potential of these emerging viruses.  Since 

2011, A(H3N2)v viruses containing the M gene from the A(H1N1)pdm09 virus have 

caused a growing number of human infections, as a result of direct or indirect exposure to 

swine primarily at agricultural fairs.  While these viruses have been shown to transmit 

efficiently by respiratory droplets in the ferret animal model, sustained person-to-person 

transmission has not been observed during the human outbreaks. The overall aim of this 

project is to evaluate whether prior seasonal H3N2 influenza vaccination or infection 

affects virus replication and transmission of A(H3N2)v virus in the ferret animal model.  

Such information will provide an understanding of whether the infection/vaccination 

history present in the human population accounts for the limited human-to-human 

transmission of A(H3N2)v viruses. 

 

Aim I: Determine the efficacy of the seasonal (2011-2012) trivalent inactivated 

influenza vaccine (TIV) against A(H3N2)v virus.  Studies have shown A(H3N2)v 

viruses to be antigenically distinct from contemporary seasonal H3N2 viruses, including 

the A/Perth/16/2009-like virus that was included in the 2011-2012 TIV.  Limited 

serological data suggest that only a portion of the population have cross-reactive 
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antibodies against these viruses, mostly in the young adult age group (10-39 yrs) (278-

280).  Little to no cross-reactive antibody has been found in children under the age of 

approximately 10 years and immunization with the 2010-2011 TIV had no impact on 

inducing cross-reactive antibody titers (278).  We hypothesize that the seasonal TIV will 

provide little to no protection against a A(H3N2)v virus infection in vivo.  To study the 

efficacy of recent seasonal vaccines in vivo, we will immunize ferrets with the 2011-2012 

seasonal TIV.  Once the ferrets display sufficient antibody titers against the three 

homologous viruses in the 2011-2012 TIV, we will then compare them to naïve animals 

following viral challenge.  Viral titers and clinical symptoms such as weight loss and 

fever will be evaluated in both groups.  These results will help to determine whether a 

vaccine specific for these A(H3N2)v viruses is required to increase cross-protection in 

the population. 

 

Aim II: Determine if inactivated influenza vaccines limit transmission of A(H3N2)v 

virus.  The H3N2 virus subtype entered into the swine population in the mid 1990’s, 

leading to a divergent evolution from that of the human seasonal H3N2 viruses. It is 

believed that exposure to historical H3N2 viruses and the seasonal influenza vaccines 

from the early 1990’s may explain the cross-reactive antibodies evident in the adult 

population against these recently isolated A(H3N2)v viruses.  These cross-reactive 

antibodies may also be the reason sustained human-to-human transmission has not been 

seen during the reported outbreaks.  The only observed post infection ferret serum that 

displays HI titers against A/Indiana/08/2011 virus is from infection with A/Beijing/32/92, 

a seasonal H3N2 virus included in the TIV for the 1993-1994 season (281).  We 
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hypothesize historical seasonal H3N2 strains will provide greater protection against 

A(H3N2)v viruses compared to contemporary seasonal strains, and that inactivated 

vaccines will decrease transmission of A(H3N2)v in the ferret animal model.  By creating 

whole-virus monovalent vaccines from pertinent timeframes (modern and historical 

seasonal H3N2 viruses, and a homologous A(H3N2)v strain), we will determine the 

effect the various vaccines have on transmission of the A(H3N2)v virus A/Indiana/08/11 

in the respiratory droplet ferret model. Transmission will also be examined following 

vaccination with the 2011-2012 seasonal TIV. Viral transmission to naïve contacts 

through respiratory droplet spread will be verified by detection of viral titers in the 

contacts and seroconversion against the challenge virus. 

 

Aim III: Determine the effect of prior infection with seasonal H3N2 virus on 

transmission of A(H3N2)v virus.  Natural infection with seasonal influenza viruses 

leads to a strong production of cell-mediated responses as well as a robust local mucosal 

immune response. Cell-mediated and mucosal immune responses are not always 

effectively created following immunization with inactivated vaccines in ferrets (193). 

Therefore we wanted to examine the possible difference between vaccination and prior 

infection on a subsequent challenge with A(H3N2)v viruses. We hypothesize that prior 

infection by H3N2 seasonal viruses will limit transmission during a subsequent challenge 

with A(H3N2)v virus, with possibly greater protective efficacy compared to vaccination.  

Ferrets will be infected with A/Perth/16/2009 virus and be allowed to create a memory 

immune response prior to viral challenge with either a homologous seasonal H3N2 or 

A(H3N2)v virus. Viral titers and clinical symptoms will be evaluated and transmission 
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will be studied in the respiratory droplet model.  Furthermore, IgG and IgA antibodies 

titers in the respiratory tract and serum of both vaccinated and previously infected ferrets 

will be analyzed to compare the humoral immune responses generated. 

 

Aim IV: Determine the mutations required for efficient transmission of avian H5N1 

viruses in the ferret animal model.  To date H5N1 viruses have displayed inefficient 

transmission during human infections.   However, the documented cases have a mortality 

rate of almost 60%.  If an HPAI H5N1 virus gained the ability to spread efficiently 

among the human population then a pandemic would most likely occur.  However, the 

mutations that would result in a transmissible phenotype in this subtype in mammals are 

unknown.  We hypothesize both an alteration in the HA binding as well as the addition of 

other human genes will be required for adaptation of the H5N1 viruses towards a 

transmissible phenotype in mammalian populations.  We will establish a reverse genetics 

system to analyze the amino acid changes in the HA protein that will result in an 

alteration from the avian α2,3 binding preference to a human α2,6 preference.  We will 

also examine the contribution of individual genes from both a human seasonal H1N1 and 

an avian H5N1 on transmission and pathogenesis of recombinant viruses in a ferret 

model. 
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Figure 1.  Schematic diagram of an influenza A virus virion. From: Horimoto, T. et al. 

Influenza: lessons from past pandemics, warnings from current incidents. Nature Reviews 

Microbiology 3, 592.  The hemagglutinin (HA) and neuraminidase (NA) glycoproteins 

are located on the surface of the virion, with the membrane (M2) protein protruding 

through the host-derived lipid membrane.  The membrane (M1) proteins are located on 

the internal side of the lipid membrane, providing the link between the lipid membrane 

and viral genetic components.  The viral genes are contained in the virion, bound by viral 

ribonucleoprotein (RNP) complexes.  The RNP complexes are composed of the 

polymerase proteins (PB1, PB2, and PA) and the nucleoprotein (NP). 
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Figure 2. Influenza A virus replication cycle. From: Fields Virology, Ed 5.  Chapter 47-

Orthomyxoviridae: the Viruses and Their Replication.  See text (Section 1.5) for detailed 

description of the model. 
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2.1 Abstract 

The recent increase in human cases with influenza A H3N2 variant virus [A(H3N2)v] 

highlights the need to assess whether seasonal influenza vaccination provides cross-

protection against A(H3N2)v virus. Our data demonstrate that the 2011-2012 trivalent 

inactivated influenza vaccine (TIV) protected ferrets against homologous H3N2 virus 

challenge, but provided minimal to no protection against A(H3N2)v virus. The complete 

absence of specific hemagglutination-inhibition antibody response to A(H3N2)v is 

consistent with the poor cross-protection observed among TIV-immune animals.    
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2.2 Introduction 

Influenza A viruses have been isolated from swine since 1930 (266), and have 

been known to spread and cause disease in this species since the 1918 pandemic (267). 

The classical H1N1 virus was the predominant subtype isolated from U.S. swine until the 

late 1990s when human H3N2 viruses infected this species and subsequently spread 

widely in North American pigs (282). Since that time, multiple reassortment events that 

have presumably occurred in swine have resulted in the emergence of an H3N2 virus 

with a triple reassortant internal gene (TRIG) cassette (283). The TRIG cassette, which 

share host gene-lineage origins with the A(H1N1)pdm09 virus, highlights the public 

health threat posed by swine-origin influenza subtypes (244).  

Until recently, transmission of novel variants of H3N2 [A(H3N2)v] from swine to 

humans was rare, with only 7 confirmed cases documented in 2009-10 (284-286). In 

2011, public health laboratories in the U.S. detected an additional 12 cases of human 

infection (287, 288), caused by a novel A(H3N2)v virus that had acquired the M gene 

from A(H1N1)pdm09 virus (286). Since July 2012, there has been a substantial increase 

of swine to human transmission of A(H3N2)v virus (277). As of October 19, 2012, there 

have been 307 additional confirmed cases (including hospitalizations) among 11 U.S. 

states (289). Clinical characteristics of the A(H3N2)v cases have been generally 

consistent with signs and symptoms of seasonal influenza and there is no evidence at this 

time that sustained human-to-human transmission is occurring. However, rare instances 

of probable human-to-human transmission associated with A(H3N2)v cases have 

occurred	
  and findings from an experimental study suggest that A(H3N2)v viruses have 

the capacity for efficient replication and transmission in mammals (228).	
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Vaccination is the most effective measure to control influenza. The seasonal 

H3N2 vaccine component present in the 2010-2011 and 2011-2012 trivalent inactivated 

influenza vaccine (TIV) are A/Perth/16/2009 (Perth/09; H3N2)-like viruses (290). 

Although serological studies indicate that Perth/09 (H3N2) and A(H3N2)v viruses are 

antigenically distinct from each other (286), the efficacy of seasonal influenza 

vaccination against A(H3N2)v has not been adequately evaluated in vivo.   
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2.3 Materials and Methods 

2.3.1 Viruses.  The stock virus for A/Indiana/08/2011 (IN/11) was grown in Madin-

Darby kidney (MDCK) cells.  The seasonal human H3N2 virus A/Perth/16/2009 

(Perth/09) stock was grown in the allantoic cavities of ten-day-old embryonating hens’ 

eggs at 34°C for 48-72 hrs as previously described (Zeng, 2007 #527). Pooled allantoic 

fluid was clarified by centrifugation and stored at -70°C. Virus stocks were titrated in a 

standard plaque assay and expressed as plaque forming units (pfu).  

2.3.2 Measurement of Antibody Responses by hemagglutination inhibition (HI) 

assay.  HI assays were performed using the WHO influenza reagent kit (according to 

instructions) obtained through the Influenza Reagent Resource, Influenza Division, WHO 

Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers 

for Disease Control and Prevention (Atlanta, GA). All sera were initially diluted in 

receptor-destroying enzyme (RDE) from Vibrio cholerae (Denka Seiken, Tokyo, Japan). 

The enzyme was inactivated by 30 min. incubation at 56oC followed by addition of six 

parts PBS for a final dilution of 1/10. HAI assays were performed in V-bottom 96-well 

plates using four hemagglutinating units (HAU) of virus and 0.5% turkey red blood cells. 

Ferret sera were tested for HI antibody titers against A/California/07/2009, Perth/09, 

B/Brisbane/60 (WHO kit) and IN/11 virus. The HI titer is expressed as the reciprocal of 

the highest dilution which inhibits 4 hemagglutinating units of virus. The HI titers are 

also presented as the geometric mean titers (GMT) from vaccinated or control ferrets. 
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2.3.3 Vaccination and challenge. Adult male Fitch ferrets, five to twelve months of age 

(Triple F Farms, Sayre, PA), serologically negative by hemagglutination inhibition (HI) 

assay for currently circulating influenza viruses, were used in this study. For 

vaccinations, ferrets were each injected 3 times (3-4 weeks between injections) 

intramuscularly (i.m.) with an adult human dose (0.5 ml) of the 2011-2012 seasonal 

inactivated split-product TIV or PBS (controls). To determine viral replication in nasal 

washes as well as clinical signs of infection, ferrets were randomly assigned to be 

challenged with IN/11 virus (6 TIV-inoculated and 6 PBS controls), Perth/09 virus (5 

TIV-inoculated and 6 PBS controls).  

Prior to initial vaccination, vaccine boosts and viral challenge, all ferrets were 

bled for collection of serum. Following anesthesia with an i.m. injection of a ketamine-

xylazine-atropine cocktail, ferrets were challenged intranasally with 106 pfu of virus in a 

total volume of 1 mL (500 µL per nostril) diluted in PBS(Pearce, 2011 #29998). 

Challenge with IN/11 or Perth/09 virus occurred four to five weeks after final vaccine 

boost. Following challenge, ferrets were monitored daily for changes in body weight and 

temperature as well as clinical signs of illness(Maines, 2005 #728). Statistical 

significance of weight loss and virus titers (nasal washes and tissues) between vaccinated 

and control animals were determined by Student’s t-test. All experiments were performed 

in biosafety level 3 laboratories with enhancements (BSL3+) as outlined in the 

Biomedical Microbiological and Biomedical Laboratory(Chosewood, 2009 #30085). 

Animal research was conducted under the guidance of the Centers for Disease Control 

and Prevention’s Institutional Animal Care and Use Committee in an Association for 
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Assessment and Accreditation of Laboratory Animal Care International-accredited 

animal facility.  
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2.4 Results 

In this study, we evaluated whether the 2011-2012 TIV protected ferrets against 

A(H3N2)v A/Indiana/08/2011 (IN/11) virus challenge. Male Fitch ferrets (Triple F 

Farms, Sayre, PA), 8 to 12 months of age and seronegative against currently circulating 

human influenza H1, H3 and type B viruses, were vaccinated and twice boosted (3-4 

weeks between injections) intramuscularly with an adult human dose (0.5 ml) of the 

2011-2012 seasonal inactivated split-product TIV or PBS (controls) (291). Prior to 

vaccine boost and viral challenge, ferret sera were collected to assess hemagglutination-

inhibition (HI) antibody responses against IN/11 virus and the three homologous viruses 

in the 2011-2012 TIV. As shown in Table 1, all TIV vaccinated ferrets displayed HI 

antibody titers of ≥ 80 against all three homologous viruses present in the TIV, however 

cross-reactive HI antibodies to A(H3N2)v IN/11 virus were not observed. 

We first determined the level of protection, induced by seasonal TIV against 

seasonal homologous Perth/09 (H3N2) virus challenge. The Perth/09 virus stock was 

grown in the allantoic cavities of ten-day-old embryonated hens’ eggs at 34°C for 48 hrs 

and titrated in a standard plaque assay expressed as plaque forming units (pfu).  Ferrets 

were challenged intranasally with 106 pfu of virus and vaccine protection was measured 

by reduction in fever, weight loss, and upper respiratory tract virus replication (291). 

Viral challenge with the seasonal Perth/09 virus resulted in minimal morbidity among 

vaccinated and control ferrets, causing 3.4% and 3.9% maximum weight loss, 

respectively (Table 1). No significant differences in body temperatures were detected 

between TIV-immune and unimmunized control ferrets observed for 14 days post-

challenge (p.c.), although there was a trend toward reduced fevers among TIV immune 
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animals. The extent of virus replication in the upper respiratory tract was determined by 

titrating nasal wash samples collected on alternating days p.c. The TIV did not provide 

sterilizing immunity against homologous viral challenge, as seen previously (291), and 

viral titers were observed in all TIV immunized ferrets and control ferrets (Figure 1). 

However, in comparison to control ferrets, TIV immunized ferrets displayed a significant 

reduction in viral titers on every day analyzed (Day 2 p=0.007, Day 4 p=0.03, and Day 6 

p=0.04), until viral clearance was observed in both groups on day 8 p.c.   

Next, we assessed the degree of cross-protection against the A(H3N2)v IN/11 

virus conferred by seasonal TIV.  Ferrets were challenged intranasally with 106 pfu of the 

IN/11 stock virus, which was grown in Madin Darby canine kidney (MDCK) cells.  

Overall, ferrets challenged with IN/11 virus displayed higher temperatures and greater 

weight loss compared to ferrets challenged with Perth/09 virus (Table 2).  On day 2 p.c., 

all unimmunized control ferrets exhibited an early spike in body temperature, ranging 

from 0.5 to 1.8°C over baseline (mean maximum = 1.2°C) (Table 2). Similarly, TIV 

immune animals also displayed an early spike in body temperature, ranging from 0.75 to 

1.8°C over baseline (mean maximum = 1.5°C). Moreover, in comparison to control 

animals, TIV-immune ferrets did not display significant differences in weight loss and 

virus titers on peak days (2 – 6 p.c.) of replication (Table 2 and Figure 1). However, TIV-

immune ferrets showed a modest reduction in viral titers on day 8 (p=0.02), perhaps due 

to a low level of anti-N2 neuraminidase cross-reactive antibodies induced by the TIV 

(292). 
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2.5 Discussion 

The results of this study suggest that previous immunization with the 

commercially available seasonal TIV may provide minimal to no cross-protection against 

A(H3N2)v virus. These data are consistent with human serologic studies demonstrating 

that immunization with the 2010–11 TIV has no impact on the level of cross-reactive 

A(H3N2)v antibodies in immunologically naive children (aged <3 years)	
   and failed to 

substantially improve the level of cross-reactive antibodies in adults (278, 279). Because 

the majority of the population lacks specific immunity against this new virus variant, an 

A(H3N2)v–specific vaccine is needed for optimal protection for all ages.  
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Table 2.1. Serum Hemagglutination Inhibition (HI) antibody responses to TIV immunization in ferrets 
 HI antibody titersa 
 A/California/07/2009 A/Perth/16/2009 B/Brisbane/60/2008 A/Indiana/08/2011 
Pre-Vaccination 
Pre-first Booster Vaccination 
Pre-second Booster Vaccination 
Pre-Challenge 

<10b 
80-1280 (202)c 
160-1280 (453) 
80-2560 (320) 

<10 
80-640 (302) 

80-1280 (761) 
160-1280 (498) 

<10 
80-1280 (453) 

640-1280 (1140) 
160-5120 (823) 

<10 
<10 
<10 
<10 

a Titers generated by HI with 0.5% turkey RBCs, against A/Indiana/08/2011 A(H3N2)v and viruses in the TIV 2011-12 formulation; A/California/07/2009 

(H1N1), Perth/09 (H3N2) and B/Brisbane/60/2008. Assays were performed using the WHO influenza reagent kit (according to instructions) obtained through the 

Influenza Reagent Resource, Influenza Division, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers for Disease 

Control and Prevention (Atlanta, GA). 

b <10, below the limit of detection in this assay. 

c Range of antibody titers shown for each ferret group, geometric mean in parentheses. 11 ferrets per group. All sera were initially diluted in receptor-destroying 

enzyme (RDE) from Vibrio cholerae (Denka Seiken, Tokyo, Japan) for a final dilution of 1/10. 
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Table 2.2.  Clinical symptoms observed in TIV-immune ferrets challenged with 

homologous and A(H3N2)v virus 

Challenge Group Mean % maximum 
weight lossa 

Mean temp increase over 
baseline°Cb 

Mean Peak Viral 
Titerc 

A/Perth/16/2009 
TIV 
PBS 

 
3.4  
3.9  

 
0.9 
1.2 

 
5.5 ± 0.65 
6.7 ± 0.42 

A/Indiana/08/2011 
TIV 
PBS 

 
9.5  
9.6  

 
1.5 
1.2 

 
5.6 ± 0.79 
6.8 ± 0.42 

a Mean maximum weight loss percentage values shown (Day 7 post-challenge) for 6 ferrets per group.  

b Temperature increases over ferret baseline of 38.3 ± 0.5 °C, all maximum temperatures from day 2 p.c. 

c Mean peak titer shown as log10 PFU/ml including standard deviation.  All peak titers from day 2 p.c. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 



56	
  
	
  

	
  

  

Figure 2.1  TIV vaccine efficacy following challenge with A/Perth/16/2009 (Perth/09) 

or A/Indiana/08/2011 (IN/11) virus.  Nasal washes were collected with 1ml of PBS on 

even numbered days post challenge. Titers were determined by standard plaque assay on 

MDCK cells from challenge with A/Perth/16/2009 (A) or A/Indiana/08/2011 (B) virus. 

Bars display average values with standard deviation shown as error bars, with 5-6 ferrets 

per group.  Differences in viral titers were analyzed by the Student’s t-test (* p≤0.05, ** 

p≤0.01).
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3.1 Abstract 

Influenza H3N2 viruses continue to circulate in swine	
  and rarely infect humans, resulting 

in outbreaks of variant influenza A H3N2 [A(H3N2)v]. It has been previously 

demonstrated in ferrets that A(H3N2)v viruses transmit as efficiently as seasonal 

influenza viruses, raising concern over the pandemic potential of these viruses. However, 

A(H3N2)v viruses have not acquired the ability to transmit efficiently among humans, 

which may be due in part to existing cross-reactive immunity to A(H3N2)v viruses. 

Although current seasonal H3N2 and A(H3N2)v viruses are antigenically distinct from 

one another, historical seasonal H3N2 viruses share some antigenic similarity to 

A(H3N2)v viruses and previous exposure to these viruses may provide a measure of 

immune protection sufficient to dampen A(H3N2)v virus transmission. Here, we 

evaluated whether prior seasonal H3N2 influenza vaccination or infection affects virus 

replication and transmission of A(H3N2)v virus in the ferret animal model. We found 

that the seasonal trivalent inactivated influenza vaccine (TIV) or a monovalent vaccine 

prepared from an antigenically related 1992 seasonal influenza H3N2 (A/Beijing/32/92) 

virus failed to substantially reduce A(H3N2)v (A/Indiana/08/2011) virus shedding and 

subsequent transmission to naïve hosts. Conversely, ferrets primed by seasonal H3N2 

virus infection displayed reduced virus shedding following A(H3N2)v virus challenge 

which blunted transmission to ferrets. A higher level of specific IgG and IgA titers 

antibodies detected among infected versus vaccinated ferrets was associated with the 

degree of protection offered by seasonal H3N2 virus infection. The data demonstrate in 

ferrets that the efficiency of A(H3N2)v transmission is disrupted by pre-existing 

immunity induced by seasonal H3N2 virus infection.   
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3.2 Introduction 

Swine-origin influenza A H3N2 variant [A(H3N2)v] viruses have been 

responsible for numerous transmissions from pigs to humans since 2011. To date, there 

have been over 330 laboratory-confirmed human cases of A(H3N2)v virus infection and 

recently the first A(H3N2)v cases of 2013 were reported on June 28, 2013 (293). 

Although A(H3N2)v viruses generally induce mild symptoms similar to those normally 

seen with seasonal influenza, there have been 16 hospitalizations and one death reported 

in the U.S. since July, 2012 (293). An investigation of one of the first A(H3N2)v 

influenza cases detected at a U.S. state agricultural fair in 2011 identified 3 virologically 

confirmed cases, 4 seropositive probable cases and a further 82 suspected cases with 

respiratory illness associated with a fair visit, suggesting that only a minority of 

A(H3N2)v influenza cases are laboratory-confirmed (275, 283). In a retrospective cohort 

study conducted among children of an agricultural club who attended a fair, the risk for 

suspected case status increased with increasing exposure to swine (275).    

The A(H3N2)v viruses that have infected humans originated in pigs following the 

introduction of hemagglutinin (HA) H3 and neuraminidase N2 genes from human 

seasonal H3N2 influenza viruses that circulated globally in the mid-1990s (275). The 

introduction of seasonal H3N2 virus into pigs also contributed to multiple reassortment 

events resulting in the emergence of a swine H3N2 virus with a triple reassortant internal 

gene (TRIG) cassette, containing a combination of avian, swine, and human influenza 

genes (275, 283). The H3 HA of human and swine influenza viruses followed divergent 

evolutionary pathways resulting in antigenically distinct influenza H3N2 viruses (284, 

286, 294). Experimentally, the seasonal 2011-2012 trivalent inactivated influenza vaccine 
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(TIV) failed to generate a cross-reactive antibody response to A(H3N2)v virus in ferrets 

and offered no protection from A(H3N2)v virus challenge (295). However, A(H3N2)v 

viruses retained a low degree of serologic cross-reactivity with human H3N2 viruses that 

circulated in the early 1990’s (284, 286). This is supported by human serology studies 

showing that young adults aged 18-39 years possess substantial levels of pre-existing 

cross-reactive antibodies to A(H3N2)v viruses (278-280).  In contrast, children younger 

than 12 years of age, have little to no pre-existing cross-reactive antibodies to A(H3N2)v 

viruses (280). The observed immunity may exist in this population due to exposure to 

H3N2 influenza virus antigens through natural infection and/or vaccination during the 

1990s.  

The ferret model recapitulates the efficient transmission of seasonal influenza 

viruses and the poor transmission of avian influenza viruses in humans (296). Using this 

model, previous studies have shown that A(H3N2)v virus transmitted efficiently to naïve 

ferrets by respiratory droplets (228). However, there has been no evidence of sustained 

human-to-human transmission of A(H3N2)v virus and most of the rare, limited human-

to-human transmission has occurred between children within familial clusters or within 

daycare settings (276, 297). It is conceivable that the lack of efficient A(H3N2)v virus 

transmission in humans is partly due to the presence of pre-existing cross-reactive 

immunity to this virus in the human population.  

The impact of prior virus infection or vaccination on influenza virus transmission	
  

has been evaluated in only a limited number of studies. The ferret and guinea pig models 

have been used to evaluate the protection against A(H1N1)pdm virus transmission 

conferred by previous exposure to a seasonal influenza virus (298-300). Our laboratory 
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showed that prior immunization with seasonal (2008-2009) live attenuated influenza 

vaccine (LAIV) or infection with former seasonal H1N1 virus provides some cross-

protection against A(H1N1)pdm virus challenge, but had no significant effect on the 

transmission efficiency of A(H1N1)pdm virus in ferrets (301). To date, animal studies 

have not been performed to assess the effect of seasonal H3N2 influenza vaccination or 

infection on the transmission of A(H3N2)v virus. Here, we used the ferret model to 

determine if the degree of protection offered by previous exposure to seasonal human 

viruses (historical or contemporary) could account for the limited capacity of these 

viruses to transmit among the human population. We demonstrate that prior H3N2 virus 

infection, but not immunization with seasonal TIV, substantially reduced A(H3N2)v 

virus shedding and subsequent transmission to naïve ferrets. Specific IgA and IgG 

antibody responses in serum and mucosal secretions were also measured to help explain 

the observed differences in protection induced by prior H3N2 infection versus seasonal 

influenza vaccination. 
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3.3 Materials and Methods 

3.3.1 Viruses.  The seasonal H3N2 viruses, A/Beijing/32/92 (Beijing/92) and 

A/Perth/16/2009 (Perth/09) were propagated in the allantoic cavity of ten-day-old 

embryonated eggs at 34°C for 48 h. The A(H3N2)v virus, A/Indiana/08/2011 (IN/11) 

was grown in Madin-Darby kidney (MDCK) cells for at 37°C for 48 h. IN/11 is a 

representative of H3N2v virus containing the M gene from A(H1N1)pdm09 virus (228). 

All virus stocks were clarified by centrifugation after collection and stored at -80°C. 

Stocks were titrated in a standard plaque assay on MDCK cells and expressed as plaque 

forming units (pfu) (110). 

 

3.3.2 Whole-virus vaccine preparation. Virus was concentrated from large volumes of 

allantoic fluid by ultracentrifugation at 17,000 rpm for 3 h at 4°C. Concentrated viruses 

were purified over 30–60% sucrose cushion as previously described (302). The HA gene 

of each vaccine stock was confirmed by sequencing to ensure no inadvertent mutations 

were introduced during propagation of new vaccine stocks. Concentrated viruses were 

inactivated with 0.025% formalin at 4°C for 3 days. The treatment resulted in the 

complete loss of infectivity of virus, as determined by titration of vaccine preparations in 

eggs. The vaccine doses used are expressed as amount of total protein measured by 

Bradford assay (Bio-Rad Laboratories, Hercules, CA). Evaluation of the HA protein 

content of purified vaccines was determined using Coomassie gel system as previously 

described (303). The HA protein was estimated to make up 40-55% of the total protein of 

purified vaccines. 
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3.3.3 Ferret immunizations. All animal experiments were performed in biosafety level 3 

laboratories with enhancements (BSL3+) as outlined in Biosafety in Microbiological and 

Biomedical Laboratories (304).  Animal research was conducted under the guidance of 

the Centers for Disease Control and Prevention’s Institutional Animal Care and Use 

Committee in an Association for Assessment and Accreditation of Laboratory Animal 

Care International-accredited animal facility. Adult male Fitch ferrets, aged five to eight 

months of age (Triple F Farms, Sayre, PA), serologically negative by hemagglutination-

inhibition (HI) assay (described below) for currently circulating influenza viruses, were 

used in this study. Ferrets were vaccinated twice (3-5 weeks between vaccinations) 

intramuscularly (i.m.) with an adult human dose (0.5 ml prefilled syringe) of the seasonal 

(2011-2012) commercially available split-product TIV. In some experiments, ferrets were 

injected i.m. with 15 µg of inactivated whole-virus vaccine prepared from Beijing/92, 

Perth/09 or IN/11 virus. Prior to initial vaccination, vaccine boost and viral challenge, all 

ferrets were bled for collection of serum and analyzed by HI assay. For pre-challenge 

antibody titers, sera were collected 5 weeks following the final vaccination. For Perth/09 

virus infections, ferrets were first anesthetized with ketamine-xylazine-atropine cocktail, 

given i.m. followed by a 1 ml intranasal (i.n.) inoculation (500µl per nostril) of 106 pfu of 

infectious virus diluted in PBS. Nasal wash titers were collected (described below) at day 

3 post-infection (p.i.), and sera were collected at 6 weeks post-inoculation (p.i.) to 

confirm viral replication and seroconversion, respectively. 

 

3.3.4 Virus challenge and transmission experiments. Baseline serum, temperature, and 

weight measurements were obtained before virus inoculations. Temperatures were 
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measured with a subcutaneous (s.c.) implantable temperature transponder (BioMedic 

Data Systems, Seaford, DE). For A(H3N2)v virus challenges, ferrets were inoculated 

with 106 pfu of virus as described above. Virus challenges occurred 5 weeks after the 

final vaccine boost, and 6 weeks after prior infection. For respiratory droplet transmission 

experiments, naïve contact animals were placed in adjacent cages 24 h after challenge 

using a previously established model (94, 296). Following inoculation, animals were 

monitored daily for changes in body weight and temperature as well as clinical signs of 

illness. Nasal washes were collected on alternate days post challenge (p.c.) with 1 ml 

PBS containing BSA and antibiotics (94, 296). Viral titers of the nasal washes were 

determined by plaque assay and sera were collected from the contact ferrets 

approximately 21 days after contact was established to check for seroconversion via HI. 

 

3.3.5 Hemagglutination-Inhibition. HI assays were performed using infectious virus 

stocks or the World Health Organization (WHO) influenza reagent kit (according to 

instructions) obtained through the Influenza Reagent Resource, Influenza Division, WHO 

Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Centers 

for Disease Control and Prevention (Atlanta, GA). Sera were initially treated with 

receptor-destroying enzyme (RDE) from Vibrio cholerae (Denka Seiken, Tokyo, Japan) 

overnight at 37°C.  The enzyme was then inactivated at 56°C for 30 min, and PBS was 

added to the sera for a final dilution of 1:10. The sera were then absorbed to turkey RBCs 

(tRBCs) for 30 min at 4°C to remove any nonspecific agglutinins. The HI assay was 

performed in V-bottom 96-well plates using 4 HAU of virus and 0.5% tRBCs. Ferret sera 

were tested for HI antibody titers against a selection of the following antigens: 
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Beijing/92, Perth/09, Ind/11, A/California/07/2009 (pH1N1), and B/Brisbane/60/2008	
  

(Influenza B). 

 

3.3.6 Ferret mucosal wash collection. Both upper respiratory tract (URT, sampled by 

tracheal/nasal wash) and lower respiratory tract (LRT, bronchoaveolar (lung) wash 

samples) were collected 5 weeks after prior infection or final vaccination using a novel 

protocol adapted from protocols established for mice (305).  Ferrets were exsanguinated 

by cardiac puncture under ketamine anesthesia to best avoid blood contamination of the 

mucosal samples. The chest cavity was opened to expose the lungs and an incision was 

made to expose the trachea. The trachea was cut just below the larynx and clamped 

before the entire respiratory tract was carefully removed with the heart.  For LRT washes, 

a volume of 10 mL of PBS containing antibiotics was infused slowly down the trachea 

into the lung using a pipette. After filling, the lungs were gently massaged, inverted and 

the fluid was allowed to drip back through the trachea collected in 35-mm petri dishes. 

Approximately 6-8 mL of fluid was retrieved and immediately kept on ice. The URT 

washes from the same animals were collected by flushing 5 ml of PBS with antibiotics 

through the open tracheal incision and forward into the nasal passages 3 times. 

Supernatant from lavage fluid was collected following centrifugation at 200g at 4°C for 

10 min and frozen at -20°C until analyzed by ELISA. Any sample with blood 

contamination was excluded from analysis.  

 

3.3.7 ELISA.  Ferret IgG and IgA antibodies were detected using a modified procedure 

of enzyme-linked immunosorbent assay (ELISA)	
   as previously described (200, 302).  
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Flat-bottom 96-well microtiter plates (Immulon II; Dynatech Laboratories, Chantilly, 

VA) were coated with 100 hemagglutinating units per well of purified Perth/09 

inactivated virus overnight at 4°C. Serum samples were added to the plate in 4-fold serial 

dilutions starting at 1:100 for IgG and 1:20 for IgA. LRT/URT samples were added at 

starting dilutions of 1:10 for IgG and 1:2 for IgA. Bound antibody was detected by IgG 

HRP conjugated antibody (Bethyl Laboratories, Montgomery, TX) or by a goat anti-

ferret IgA followed by a rabbit anti-goat HRP conjugated antibody (Bethyl).  The 

absorbance was measured at 490 nm following addition of OPD in citrate buffer (Sigma).  

Titers are expressed as the highest dilution that yielded an optical density greater than the 

mean plus two standard deviations of similarly diluted PBS control sera. 

 

3.3.8 Statistics. Statistical significance was determined by one of the following methods: 

student’s t-test, 2-way ANOVA with a Bonferroni post-test, or Area Under the Curve 

(AUC) with a Mann-Whitney post-test.   
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3.4 Results 

3.4.1 Transmission of A(H3N2)v and seasonal H3N2 virus.  

To examine whether seasonal H3N2 vaccination or prior infection affects the 

transmission efficiency of A(H3N2)v or homologous seasonal H3N2 viruses, we first 

determined the transmission efficiency of these viruses in naïve ferrets. For respiratory 

droplet transmission, ferrets were housed in adjacent cages with a perforated side wall, 

allowing air exchange between ferrets in the absence of direct or indirect contact (94, 

296). Ferrets were inoculated with 106 pfu of Perth/09, representative of H3N2 viruses 

circulating in the 2011-2012 northern hemisphere season. Nasal washes were collected 

every other day and clinical signs were monitored daily from both inoculated and contact 

ferrets. All Perth/09 virus inoculated ferrets exhibited a spike in temperature over 

baseline (Table 1) and shed high titers of infectious virus as early as day 1 that were 

sustained at titers of  ≥104.0 pfu/ml for 5 days p.i. (Figure 1A). Although viral titers were 

detected in the nasal washes of only 2 of the 3 contact ferrets, all three animals displayed 

body temperature elevation and seroconverted to Perth/09 virus (Table 1). Thus, 

consistent with the experimental transmission data obtained with other seasonal human 

influenza viruses (94, 296), Perth/09 H3N2 virus exhibited efficient respiratory droplet 

transmission.  

Ferrets inoculated with A(H3N2)v (IN/11) virus exhibited modest weight loss and 

a maximum temperature increase of 2.2°C on day 2 p.i. (Table 1). Similar to the results 

described for the seasonal Perth/09 virus, IN/11 virus replicated efficiently in the upper 

respiratory tract of inoculated ferrets and spread efficiently to contact ferrets (Figure 1B). 
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The results are consistent with earlier ferrets studies which found that A(H3N2)v viruses 

isolated since 2010 exhibited efficient respiratory droplet transmission (228).  

 

3.4.2 Transmission of A(H3N2)v virus following seasonal TIV immunization.  

To test whether seasonal influenza vaccination reduces the transmission of 

A(H3N2)v virus to naïve ferrets, experiments were set up in which TIV-immune ferrets 

were challenged with IN/11 virus and the subsequent transmission to naïve animals was 

analyzed. Prior to virus challenge, all six vaccinated ferrets displayed HI titers of ≥40 to 

each of the three influenza HA antigens present in the 2011-2012 TIV, but lacked 

detectable cross-reactive HI antibodies to IN/11 virus antigen (Table 2). Seasonal TIV 

immunization did not protect ferrets from weight loss, fever (Table 1) or virus replication 

(Fig. 2A) following IN/11 virus challenge. As late as 5 days p.i., virus titers of ≥102.6 

PFU/ml were still present in nasal washes of all vaccinated ferrets and A(H3N2)v virus 

spread to six of nine naïve contact ferrets (Fig. 2A). Virus transmission occurred with 

kinetics similar to that observed in naïve ferrets with the majority of contacts displaying 

viral titers in their nasal washes by day 3 p.c.  

A separate group of TIV-immune ferrets were challenged with homologous 

Perth/09 virus for comparison. Similar to IN/11 virus challenge of TIV-immune ferrets, 

the inactivated influenza vaccine did not markedly reduce the level of homologous virus 

replication and all of the Perth/09 inoculated ferrets displayed relatively high viral titers 

(≥102.1 PFU/ml) in their nasal washes for 5 days p.i. (Fig. 2B). Despite the pre-challenge 

HI titers of ≥40 to homologous virus, respiratory droplet transmission of Perth/09 virus 
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still occurred. Of the nine total respiratory droplet pairs, four inoculated ferrets 

transmitted to their naïve contacts resulting in seroconversion to Perth/09 virus (Table 2). 

 

3.4.3 Impact of vaccination of a historical seasonal H3N2 virus on A(H3N2)v virus 

transmission.  

Serologic studies have previously demonstrated that the young adult population 

has the highest percentage of individuals with pre-existing cross-reactive antibodies to 

A(H3N2)v virus (278-280). The individuals within this age range would have 

encountered antigenically related H3N2 viruses through virus infection or vaccination in 

the 1990s. We first performed antigenic analyses of 6 representative seasonal H3N2 

viruses (spanning the years 1990-2013) by HI assay and the use of reference ferret 

antisera. The only seasonal H3N2 virus that displayed limited cross-reactivity with 

antisera to A(H3N2)v virus was A/Beijing/32/92 (Beijing/92) virus,	
  a component in the 

1993-1994 seasonal TIV. Ferret antisera to Beijing/92 virus infection reacted to low titers 

(HAI titer = 20) to IN/11 virus. These results are consistent with previous antigenic 

characterization which demonstrated that A(H3N2)v retain antigenic properties more 

similar to human seasonal viruses from the early 1990s than from currently circulating 

human A(H3N2) viruses (284). 

We next assessed the ability of vaccination with inactivated whole-virus 

monovalent vaccines prepared from Beijing/92, Perth/09 and IN/11 viruses to limit 

infection and transmission of A(H3N2)v. Groups of ferrets were vaccinated i.m. with 15 

µg of formalin-inactivated vaccine and two boosts in order to obtain HI titers of ≥40 

against the homologous viral strain. HI antibody titers of ≥ 40 have been associated with 
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protection from influenza illness in up to 50% in adult populations (306-308). The 

vaccines failed to elicit cross-reactive HI antibodies against heterologous H3N2 or 

A(H3N2)v viruses using the standard starting dilution of 1:10 serum (Table 2). However, 

a repeat of the HI test using a starting dilution of 1:4 revealed that Beijing/92-immune 

sera gave HI titers of 4-8 to IN/11 virus, whereas Perth/09 immune sera had undetectable 

(<4) HI titers to IN/11 virus (not shown). Five weeks after the final vaccine boost, ferrets 

were set up in transmission cages and vaccinated ferrets were challenged with 106 pfu of 

IN/11 virus. As indicated in Fig. 3A, relatively high viral titers were detected in the nasal 

washes of Perth/09-vaccinated ferrets and transmission of IN/11 virus occurred in 2 of 

the 3 contact animals.  Furthermore, Perth/09-vaccinated ferrets displayed weight loss 

and fever consistent with that observed in unimmunized PBS controls (Table 1). Despite 

the low HI cross-reactivity to IN/11 virus, Beijing/92 vaccinated ferrets also shed high 

titers of infectious virus and full transmission of IN/11 virus was observed to naïve 

contacts (Fig. 3B). All three of the contacts began to shed virus by day 3 p.c., and 

seroconverted to A(H3N2)v virus (Table 1). Consistent with immunized controls, 

Beijing/92-vaccinated ferrets displayed a mean maximum weight loss of 7.5% and a 

fever spike of 1.3°C (Table 1). For comparison, the transmission efficiency of IN/11 

virus was performed among homologous IN/11-vaccinated ferrets. In contrast to the lack 

of protection against IN/11 virus transmission conferred by heterologous vaccination, we 

found that homologous virus challenge of IN/11-vaccinated ferrets blunted transmission 

to the naïve contact ferrets (Fig. 3C). Viral titers were only detected in the nasal washes 

of the inoculated ferrets on day 1 p.c. and vaccinated animals displayed marginal weight 

loss (1.6 %) and reduced fever (0.8°C) (Table 1). Taken together, monovalent vaccines 
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prepared from Perth/09 virus or an antigenically related seasonal influenza H3N2 

(Beijing/92) virus failed to substantially reduce A(H3N2)v virus shedding and subsequent 

transmission to naïve hosts. Furthermore, the vaccine prepared from the 1992 seasonal 

H3N2 virus (Beijing/92) offered no added benefit over a contemporary seasonal H3N2 

vaccine.  

 

3.4.4 The effect of prior seasonal H3N2 virus infection on cross-protection and 

transmission of A(H3N2)v virus.  

Next, we evaluated the level of cross-protection that develops from infection with 

a seasonal H3N2 virus. Although contemporary seasonal viruses are antigenically distinct 

from the A(H3N2)v viruses, prior influenza virus infection generally induces an effective 

mucosal immune response and may provide greater cross-protection compared to that 

induced by inactivated influenza vaccines given parenterally (217, 299).  Ferrets were 

inoculated i.n. with 106 pfu of Perth/09 virus, or PBS for controls, and challenged 6 

weeks later with either Perth/09 or IN/11 virus. Following homologous virus challenge 

with Perth/09, prior infection resulted in significantly lower viral titers in their nasal 

washes compared to PBS controls on all days p.c (p=0.004, p=0.004, and p=0.003 for 

days 2, 4, and 6 respectively) (Fig. 4A). Of the six ferrets in the prior infection group, 5 

displayed a complete lack of detectable virus in nasal washes. Immunization with 

Perth/09 virus also significantly lowered viral titers in nasal washes following 

heterologous IN/11 virus infection (p=0.002, p=0.004, and p=0.003 for days 2, 4, and 6 

respectively) (Fig. 4B). Moreover, prior infection lowered the mean maximum weight 
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loss by more than half (5.9% in PBS controls compared to 2.3% for Perth/09 immune 

ferrets) (Table 3).  

Next we assessed the effect of H3N2-immunity on transmission of A(H3N2)v 

(IN/11) virus to naïve animals.  For comparison, a group of H3N2-immune ferrets 

received homologous Perth/09 virus challenge. No virus shedding was detected from any 

of the six Perth/09 challenged animals on any day post challenge. Moreover, Perth/09-

immune ferrets displayed minimal weight loss (maximum weight loss = 2.1%) and fever 

(maximum temperature increase = 0.7°C). Furthermore, none of the contact ferrets shed 

virus or showed a serological response to Perth/09 virus (Fig. 4C) (Table 1). Following 

heterologous virus challenge, IN/11 virus was detected in the nasal washes of Perth/09-

immune ferrets, but only through day 3 p.c. (Figure 4D). Only one of six contact ferrets 

shed infectious virus and seroconverted to IN/11 virus. Taken together, the results show 

that prior seasonal virus infection effectively limited virus growth and blunted 

transmission of A(H3N2v) virus.  

 

3.4.5 IgG and IgA in upper and lower respiratory tracts of vaccinated and 

previously infected ferrets.  

To elucidate the differences observed in transmission efficiency of A(H3N2)v 

virus following virus infection versus vaccination, pre-challenge sera and mucosal 

washes were collected and tested for antiviral IgG and IgA antibodies. Non-immune and 

immunized ferrets were necropsied for collection mucosal washes from the upper 

respiratory tract (URT) and lower (LRT, bronchoaveolar - lung). In general, IgG and IgA 

responses among vaccinated and previously infected ferrets were increased compared to 
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naïve animals. As shown in Table 4, the highest antibody titers were IgG titers observed 

in serum and LRT of ferrets that received prior infection. Lung IgG titers were 

approximately 10,000-fold higher than those induced by TIV immunization. Serum IgA 

titers induced by either mode of immunization were similar, however prior infection 

induced IgA responses in the URT that were 16-fold higher than those elicited by 

vaccination. Taken together, Perth/09 virus infection resulted in consistently higher IgG 

and URT IgA titers compared to TIV immunization.   
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3.5 Discussion 

New reports of human infections with A(H3N2)v in 2013 continue to raise public 

health concerns and highlight the need to better understand the potential of these viruses 

to transmit efficiently among humans (293). A paradox exists with regard to the 

transmission efficiency of A(H3N2)v virus in humans versus that observed in the naïve 

ferret model. Sustained or community-wide transmission of A(H3N2v) has not occurred, 

whereas these viruses transmit efficiently between immunologically naïve ferrets (228). 

We hypothesized that pre-existing immunity to seasonal H3N2 viruses present in the 

general population accounts for the contrasting results. Vaccination is currently the best 

public health measure to prevent influenza infection and human epidemiological studies 

have clearly established that immunization of those who are most likely to acquire and 

transmit influenza (usually children) can reduce the risk of secondary transmission of 

influenza within families (306, 307).  However, the impact of prior seasonal influenza 

vaccination on influenza virus transmission has not been extensively modeled in animals 

(299). In this study, ferrets were used to model transmission of A(H3N2)v virus 

following pre-exposure by seasonal H3N2 virus infection or vaccination. The data 

presented suggest that vaccination with inactivated seasonal influenza vaccines would not 

provide any significant protection against A(H3N2)v virus infection and subsequent 

transmission of the virus. Conversely, prior infection with a contemporary seasonal 

H3N2 virus effectively limited virus shedding and blunted subsequent transmission of 

A(H3N2v) virus. The cross-protective response induced by influenza virus infection was 

associated with higher levels of virus-specific IgG and IgA antibodies compared to ferrets 

that received inactivated influenza vaccines. 
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In inability of seasonal TIV (2011-2012) immunization to block transmission of 

A(H3N2)v virus to naïve contact animals prompted us to prepare a monovalent vaccine 

to a seasonal influenza H3N2 virus, Beijing/92, that showed some, albeit low antigenic 

similarity with A(H3N2)v virus using post-infection ferret antisera (284, 286). For 

comparison, a monovalent Perth/09 vaccine, the H3N2 virus component of the seasonal 

(2011-2012) TIV was similarly tested. Although Beijing/92 virus is more closely related 

antigenically to A(H3N2)v (IN/11) virus, as an inactivated vaccine it failed to provide 

greater protection than that observed in ferrets vaccinated with monovalent Perth/09 

vaccine. Thus, in our hands, a distinction could not be made between the historical and 

contemporary H3N2 inactivated vaccines administered parenterally in ferrets. It is 

conceivable that the H3N2 whole-virus vaccines induced non-HA immune responses that 

masked any differences that would have been observed from vaccinating with HA only.  

A different vaccine formulation, such as virus-like particle (VLP) or recombinant HA 

proteins, in which the HA proteins are the primary antigens, may yield differences in 

protection against A(H3N2)v virus challenge in ferrets. Alternatively, a vaccine dose–

response study would have revealed vaccine efficacy differences between the historical 

and contemporary seasonal H3N2 vaccines.  

In contrast to results obtained with inactivated vaccines, we found that ferrets 

previously exposed to seasonal H3N2 influenza virus exhibited stronger immune 

protection and transmission was blocked following subsequent challenge with 

homologous or heterologous virus. Prior infection with Perth/09 virus dramatically 

reduced transmission rates from 100% in naïve ferrets to 0% following homologous virus 

challenge, and 17% for heterologous challenge.  However, the impact of prior influenza 
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virus infection on limiting transmission appears to be dependent on the transmission 

model and/or the mode of viral transmission. Using a direct contact transmission (co-

housed) model, Ellebedy et al. reported that prior H1N1 virus infection was unable to 

alter transmission in ferrets following challenge with A(H1N1)pdm virus (299). These 

results are consistent with a study by Laurie et al. showing that prior infection with 

A(H1N1)pdm virus did not significantly alter A(H1N1)pdm virus transmission in a direct 

contact ferret model (309). Interestingly, the latter study demonstrated that multiple pre-

infections of seasonal H1N1 virus were required to reduce A(H1N1)pdm virus 

transmission. Using guinea pigs in a direct contact model, two studies found that 

transmission of influenza virus could be disrupted when guinea pigs had prior exposure 

to seasonal virus (299). However, unlike our study, these studies did not assess test the 

impact of prior influenza infection on respiratory droplet (or airborne) transmission.  

More of an effect on transmission may have been observed in our studies since the 

respiratory droplet model is a more stringent test and inhibits any direct or indirect 

contact transmission from occurring between the ferrets. 

To understand the immunologic bases conferring protection by virus infection, we 

compared the IgG and IgA antibody levels present in serum and respiratory tract 

washings. Both routes (vaccination or infection) of immunization induced high and 

similar levels of antibodies in the serum; however virus infection induced consistently 

higher specific IgG and IgA antibody titers in the respiratory tract compared to the 

respiratory tracts of TIV immunized ferrets. The differences in IgA and IgG antibodies 

between the immunization groups were not evident using the standard HI assay. These 

results are consistent with the ability of a live attenuated influenza vaccine to elicit higher 
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levels of nasal wash IgA and greater reduction of virus shedding compared with an 

inactivated influenza vaccine (200, 302). Although the precise immunological 

mechanism(s) involved in viral clearance was not addressed in the current study, it is 

reasonable to speculate that raised antibody levels in the ferret respiratory tract of virus 

infected ferrets would have a greater capacity to neutralize virus infectivity and blunt 

transmission.   

Because of the paucity of immunological reagents for ferrets, the role of T cell 

immunity and cytokines involved in conferring protection by infection was not addressed 

in the current study. Parenterally administered (unadjuvanted) vaccines, such as TIV do 

not effectively induce influenza-specific CD8+ T cells or mucosal immune responses, two 

immune effectors capable of protecting the host (310, 311). CD8+ T-cells responses are 

important in heterologous protection, and children have been shown to have weaker 

heterologous responses following vaccination compared to adults (312). Although non-

HA components in the TIV have been shown previously to contribute to the immune 

response and these components may contain conserved T cell epitopes (192, 313), such 

cross-reactive immunity was not sufficient to provide protection against A(H3N2)v virus 

transmission. The effects of this improved immune response following seasonal H3N2 

infection on subsequent viral transmission need further investigation. 

The potential of A(H3N2)v virus to mutate or undergo additional reassortment 

events, and thus improve its transmissibility is of concern. Determining the level of 

immunity required to blunt transmission of novel influenza viruses, such as A(H3N2)v 

could deepen our understanding of	
  how pandemic influenza subtypes arise and spread in 

humans. It is apparent from this study and others (discussed above) that influenza virus 



78	
  
	
  

	
  

transmission is influenced by the infection history of the host. The current data suggest 

that inactivated vaccines would only be effective at reducing A(H3N2)v virus shedding 

and subsequent transmission if the vaccine were A(H3N2)v-specific. Whereas prior 

infection with infectious virus, capable of inducing protective mucosal immunity, can 

generate heterologous protection in the absence of specific A(H3N2)v antibody. One 

caveat to our studies is that the immune response to vaccination was only studied in naïve 

ferrets, while the TIV has been shown to boost preexisting immunity in humans and 

result in limited mucosal antibody production (314). There are certainly additional 

unknown factors contributing to the poor transmission of A(H3N2)v virus in humans, 

especially in light of the fact that the largest concentration of confirmed A(H3N2)v 

infections have been in children that have the least previous exposure to influenza, and 

the most limited pre-existing serological and heterologous CD8+ T-cell responses against 

these viruses (278, 279).   
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Table 3.1. Clinical symptoms of inoculated and contact ferrets  

Treatment Challenge virus Maximum mean weight 
loss (%)a 

Maximum mean temp 
increase (°C)b 

Contact 
Seroconversionc 

  Inoculated Contacts Inoculated Contacts Contacts 
None      6/6 
 Perth/09 4.3 2.0 1.0 0.9 3/3 (640) 
 IN/11 5.8 2.8 2.2 1.6 3/3 (1015) 
TIV      10/18 
 Perth/09 6.3 3.0 1.3 1.0 4/9 (1076) 
 IN/11 7.3 6.0 1.1 1.5 6/9 (640) 
Monovalent Vaccine      5/9 
Perth/09 Vaccine IN/11 8.1 6.3 1.3 1.1 2/3 (453) 
Beijing/92 Vaccine  IN/11 7.5 6.0 1.3 1.2 3/3 (640) 
IN/11 Vaccine  IN/11 1.6 NA 0.8 NA 0/3 (<10) 
Perth/09 Infection      1/12 
 Perth/09 2.1 NA 0.7 NA 0/6 (<10) 
 IN/11 3.8 3.5 1.1 1.7 1/6 (1280) 
a Percentage of mean maximum weight loss shown for each ferret group.  

b Mean maximum mean increases calculated as rise over ferret baseline of 38.3 ±0.5 °C. All maximum temperatures observed on days 1-2 p.c. 

c Seroconversion measured by HI from sera collected on 21 p.c.  Geometric mean titer of seroconverted contact ferrets in parentheses. <10 is below limit of detection for the HI 

assay. 
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Table 3.2. Pre-challenge Hemagglutination-Inhibition (HI) antibody responses to immunization in ferrets  

Treatment Challenge 
virus 

Challenge 
Experiment a 

Ferrets per 
group 

HI antibody titer b 

TIV  Transmission 18 pH1 H3 B IN/11 
 Perth/09  9 80-640 (235) 40-640 (118) 40-320 (86) <10c 

 IN/11  9 40-640 (127) 40-640 (109) 20-160 (50) <10 
        

Monovalent Vaccine  Transmission 9 Perth/16 Beijing/32 IN/11  
Perth/09 Vaccine IN/11  3 160-320 (254) <10 <10  

Beijing/92 Vaccine IN/11  3 <10 40-80 (50) <10  
IN/11 Vaccine IN/11  3 <10 <10 80-160 (127)  

        
Perth/09 Infection  Protection 12 Perth/16 IN/11   

 Perth/09  6 640-1280 (905) <10   
 IN/11  6 640-2560 (1280) <10   
        

Perth/09 Infection  Transmission 12 Perth/16 IN/11   
 Perth/09  6 320-1280 (507) <10   
 IN/11  6 640-1280 (806) <10   

a Each experiment was divided into groups based on vaccine tested and by challenge virus. 

b HI titers per virus separated by experiment. Antibody titer range within each group of ferrets shown.  Geometric mean included in parentheses.  

c <10, below the limit of detection in this assay 
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Table 3.3. The effect of prior seasonal H3N2 virus infection on protection against homologous and heterologous challenge 

Treatment Challenge 
Virus 

Max. mean weight 
loss (%)a 

Max. mean temp 
increase (°C)b 

Mean Peak 
Viral Titerc 

Perth/09 Protection     
Perth/09 Infection Perth/09 1.7 1.1 1.2±0.6 

PBS controls IN/11 1.9 1.9 5.9±0.7 
Perth/09 Infection Perth/09 2.3 2.0 2.7±0.4 

PBS controls IN/11 5.9 1.8 5.2±0.5 
a Percentage of mean maximum weight loss shown for each ferret group.  

b Mean maximum termperature increases calculated as rise over ferret baseline of 38.3 ±0.5 °C. All maximum temperatures observed on days 1-2 p.c. 

c Mean peak titer shown as log10 PFU/ml including standard deviation.  All peak titers from day 2 p.c. 
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Table 3.4. Antiviral IgG and IgA antibody responses among vaccinated and 

previously infected ferrets 

 Serum URT Wash LRT Wash 

Antibody Infected Vaccinated Infected Vaccinated Infected Vaccinated 

IgG 4096001 102400 160 ND 409600 40 
IgA 1280 1280 128 8 8 2 

1Titers from 4 ferrets per group are expressed as largest dilution of sample having a mean optical density 

greater than the mean plus two standard deviations (SD) of similarly diluted control (unimmunized) 

sample.   

ND= not detected, no dilution read above the mean+2SD of the control sample. 
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Figure 3.1.  Transmissibility of seasonal H3N2 and A(H3N2)v influenza viruses 

among naïve ferrets in the respiratory droplet model. Ferrets were inoculated i.n. with 

106 pfu of virus with 3 transmission pairs per experiment. Contact animals were placed in 

adjacent cages with perforated sidewalls 24 hours post inoculation.  (A)  Transmission of 

seasonal H3N2 virus, Perth/09.  (B) Transmission of A(H3N2)v virus, IN/11. Each bar 

represents the viral titer detected in nasal washes of inoculated ferrets (left half of figure) 

and their corresponding contact animal (right half ).  Limit of virus detection 1 log10 

PFU/ml.   
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Figure 3.2. Transmission of seasonal H3N2 and A(H3N2)v viruses following 

vaccination with the seasonal TIV. Five weeks after final vaccine boost, TIV-immune 

ferrets (were challenged with heterologous IN/11 virus (A) or homologous seasonal 

Perth/09 virus (B). Each bar represents the viral titer detected in nasal washes of 

inoculated ferrets (n =6) and their corresponding contact animal (n =6).  Limit of virus 

detection 1 log10 PFU/ml. 
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Figure 3.3. Impact of vaccination of a historical seasonal H3N2 virus on A(H3N2)v 

virus transmission. Five weeks after final vaccine boost, monovalent vaccinated ferrets 

were placed into transmission cages and challenged with IN/11 virus. Groups of ferrets 

were vaccinated with inactivated vaccines prepared from Perth/09 (A), Beijing/92 (B) or 

IN/11 (C). Transmission from inoculated (vaccinated) ferrets to naïve contacts was 

determined. Limit of virus detection 1 log10 PFU/ml. 
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Figure 3.4. The effect of prior seasonal H3N2 virus infection on cross-protection and 

transmission of A(H3N2)v virus.  Six weeks after prior seasonal H3N2 virus infection, 

Perth/09-immune ferrets were placed into transmission cages and challenged with homologous 

Perth/09 (A and C) or heterologous IN/11 (B and D) virus.  Protection against challenge 

measured (A and B) represent virus titers in nasal wash samples of naïve ferrets (white bars), and 

Perth/09-immune (grey bars).  Error bars correspond to standard deviation.  *** p≤0.005 by 

Mann-Whitney nonparametric t-test. Transmission (C and D) from inoculated (Perth/09-immune) 

ferrets to naïve contacts was determined. Limit of virus detection 1 log10 PFU/ml. 
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4.1 Abstract 

Avian H5N1 influenza viruses continue to pose a pandemic threat. Highly pathogenic 

avian influenza H5N1 viruses can cause severe disease in humans, but do not readily 

transmit from person to person.  If H5N1 viruses acquire the ability to easily spread 

among humans, a new pandemic virus could emerge that is capable of causing high 

mortality rates. To better understand the molecular determinants that could contribute to 

the emergence of a mammalian transmissible H5N1 virus, we used a reverse genetics 

approach to determine the specific contributions of individual influenza genes from both 

a seasonal H1N1 virus and an avian H5N1 virus towards a transmissible phenotype in a 

mammalian model.  Specific mutations of the H5 hemagglutinin (HA) protein that 

facilitates binding to human-type receptors and confers efficient transmission also were 

examined.  Recombinant H5 HA mutant viruses were assessed for their replication ability 

in human airway epithelial cells.   Studies to analyze the pathogenesis and 

transmissibility of these viruses in the ferret animal model were planned; however, a 

moratorium on H5N1 virus “gain-of-function” experiments occurred before the viruses 

that were created could be assessed. 
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4.2 Introduction 

Novel influenza A viruses that arise by genetic reassortment between human and 

avian influenza viruses have the potential to cause a pandemic if they are capable of 

spreading rapidly and causing widespread disease in immunologically naïve populations 

(235, 236).  Each of the pandemic viruses that appeared in the last hundred years 

contained influenza genes of avian origin.  The PB2 and PA genes in the A(H1N1)pdm09 

virus originated from an avian source, as did the HA and PB1 genes in the 1968 H3N2 

pandemic virus, and the HA, NA, and PB1 genes in the 1957 H2N2 pandemic virus (237, 

240, 241, 244).   The 1918 pandemic strain may have been composed entirely of avian 

genes that directly infected the human population without prior adaptation (238, 239).  

Non-pandemic strains of H5, H6, H7, H9, and H10 influenza virus subtypes of avian 

origin have infected humans and are capable of causing severe disease resulting in death, 

but remain unable to transmit efficiently and in a sustained manner among humans (248, 

315, 316).  

The first documented emergence of highly pathogenic avian influenza (HPAI) 

H5N1 viruses in humans occurred in 1997 in Hong Kong, infecting 18 individuals and 

causing 6 deaths (253).  These early H5N1 viruses were eradicated by the mass slaughter 

of poultry in Hong Kong, but in 2001-2004 new genetic lineages of H5N1 emerged in 

domestic and subsequently wild birds, providing an ongoing source for occasional human 

infections.  This subtype has led to 633 confirmed human cases and 377 deaths in 15 

countries since 2003, according to the World Health Organization (248).  Many H5N1 

viruses are highly pathogenic in humans following infection from contact with infected 

poultry or contaminated environments (317-319).  Unlike seasonal influenza viruses, 
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which mainly infect the upper respiratory tract, avian HPAI H5N1 viruses are capable of 

spreading to and replicating in extrapulmonary organs of mammals. This systemic spread 

of infection is due in part to the multibasic cleavage site in HPAI H5 HA proteins, which 

is recognized by a broader range of non-tissue specific proteases (256, 257).  H5N1 

viruses currently lack the ability to spread efficiently from person to person, despite the 

detection of virus in the upper respiratory tract of humans during infection (320). 

However, this subtype continues to cross the species barrier to infect humans, thereby 

increasing the likelihood of adaptation and the subsequent generation of H5N1 viruses 

that transmit efficiently in humans.   

Studies in ferret model revealed that simply replacing the external genes of an 

avian H5N1 strain with the HA and NA genes from an H3N2 virus was not sufficient to 

allow the avian virus to transmit (296).  Previous studies in our laboratory involving non-

H5N1 viruses by Van Hoeven et al have used human H1N1 (A/SC/1/18) and avian H1N1 

(A/Dk/NY/15024-21/96) recombinant viruses to demonstrate that the human HA, NA, 

and PB2 genes (1918HANAPB2:Dk/NY) were sufficient for respiratory droplet (RD) 

transmission of the recombinant avian virus (94). However, this research did not 

investigate whether the human NA gene was necessary for transmission to occur. These 

studies indicate that other alterations (such as point mutations of the HA) and additional 

human influenza virus genes may be required for efficient transmission of avian H5N1 

viruses in mammals. Determination of these genes for the avian H5N1 viruses may shed 

light not only on the pandemic potential of the H5N1 subtype specifically but also 

provide new knowledge on the origins of pandemic viruses in general and help in future 

pandemic responses. 
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One of the molecular changes believed to be necessary for the H5N1 subtype to 

become a pandemic virus is for the HA protein to switch its binding preference from α2,3 

to α2,6 sialic acid residues (235).  Avian influenza viruses display high binding 

preferences to sialic acid glycans containing the α2-3 linkage, whereas human-adapted 

viruses show a preference for α2,6 sialic acids.  Longer α2,6 glycans appear to be 

especially important for transmission of human-adapted influenza viruses, and are present 

in large quantities in the upper airways of the human respiratory tract (42, 45).  

Modification of the binding preference of the 1918 pandemic virus from α2,6 preference 

to a dual α2,3/α2,6 binding with a lower affinity for long α2,6 glycans, greatly decreased 

the capacity of the virus to transmit through respiratory droplets (44, 45). Further 

alteration in the HA protein created a virus that only bound to α2,3 sialic acids and 

completely abolished viral transmission by this route.  These studies show that molecular 

manipulation of the receptor binding capabilities of viruses is an important approach to 

better understand characteristics of transmission. 

Reverse genetics methods were used in this study to characterize virus binding, 

transmission, and pathogenicity of H5N1 mutant viruses (321, 322).  This investigation 

was undertaken to elucidate the contribution of individual viral genes that confer 

transmission and virulence of avian H5N1 influenza viruses.  The mutations required to 

switch the binding properties of the H5 HA protein were explored through site-directed 

mutagenesis.  Once the mutations in H5 HA that resulted in a α2,6 binding preference 

were identified, rescued viruses were generated and compared to wild-type control 

viruses for their ability to replicate in Calu-3 cells, derived from human bronchial 

epithelium.  Additional experiments were planned to assess the transmissibility of the 
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mutant viruses in the ferret model.   However, during the course of these studies two 

other groups reported their work on the gain of transmission function of H5N1 viruses in 

the ferret respiratory droplet model.  This resulted in an international debate on the 

ethical and biosecurity grounds of such studies and led to a voluntary moratorium on 

H5N1 virus “gain of function” research. Described in this Chapter are the studies that 

were performed up until the moratorium took place.   
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4.3 Materials and Methods 

4.3.1 Generation of viral gene plasmids for SI/06 and VN/04.  vRNA was obtained 

from A/Solomon Islands/03/2006 (SI/06) virus.  RT-PCR was performed on the vRNA 

by AccessQuick (Promega) using universal primers encoding the UTR sequences 

corresponding to A/WSN/33 (WSN) virus containing an external SapI restriction enzyme 

digest sequence.  After SapI digestion, the PCR products were inserted into pPol plasmid 

backbones (kindly provided by Adolfo García-Sastre, Mount Sinai School of Medicine, 

New York). The pPol A/Vietnam/1203/2004 (VN/04) plasmids were also obtained from 

Adolfo García-Sastre.  Plasmids were transformed in XL-10 Gold cells and grown in 

maxipreps (Quiagen).  The viral genes were sequenced and compared to the wild-type 

stocks at the Centers for Disease Control and Prevention (CDC).   

Mutations were introduced in the plasmids by QuikChange Site-Directed 

Mutagenesis kit (Stratagene).  Mutagenesis primers were designed with help from the 

QuikChange Primer Design program 

(http://www.genomics.agilent.com/primerDesignProgram.jsp).  Plasmids were sequenced 

after mutagenesis to ensure that no additional mutations had occurred.   

 

4.3.2 Rescue of viruses by reverse genetics (rg).  Viruses (rgSI/06, rgVN/04,  and 

rg1918HAPB2:Dk/NY) were rescued by transfection into 293T cells using 

Lipofectamine 2000 in OPTI-MEM.  pPol transfection required the 8 viral gene plasmids 

with an additional 4 helper plasmids (WSN pCAGGS).  OPTI-MEM was removed after 

overnight incubation and replaced with DMEM media with PenStrep.  Following 

transfection, 1918 and H5N1 rescues were transferred into BSL3+ facilities, where the 
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remaining work was conducted in accordance with the NIH and CDC guidelines and the 

requirements by the USDA/CDC Select Agent program (323). 

To rescue the egg-grown stocks, culture supernatants with positive HAU titers 

were inoculated (200ul) into 9-10 day old eggs, and incubated at 35-37°C for 24 to 48 

hrs. Stocks were grown from rescued viruses with an additional passage in eggs at a 

dilution range of 1:2000 to 1:8000 of allantoic fluid. Virus was clarified by centrifugation 

and stored at -80°C. The 50% egg infectious dose (EID50) titer was determined and 

calculated by the Reed and Muench method (324). 

 

4.3.3 Hemagglutination inhibition (HI) assays.  Sera collected throughout the study 

were treated overnight at 37°C with receptor-destroying enzyme (RDE, Denka Seiken, 

Tokyo, Japan) and then inactivated at 56°C for 30 minutes.  PBS was added to the serum 

for a final dilution of 1:10.   Virus was adjusted to 4 hemagglutination units (HAU) per 

25 µl and incubated with sera for 15 minutes (SI/06) or 30 minutes (VN/04).  Red blood 

cells added to the virus-sera mix for 30 minutes (0.5% turkey RBCs for SI/06) or 1 hour 

(1% horse RBCs for VN/04) before inhibition of viral agglutination was visually 

examined (325). 

 

4.3.4 Resialation assays for determination of viral binding preference. Virus binding 

specificity was examined through the production of altered turkey red blood cells 

(tRBCs).  Natural sialic acids were removed from the surface of tRBCs by a 

neuraminidase enzyme (Roche Molecular Diagnostics, Indianapolis, IN). α2,3 or α2,6 

sialic acids were then added back to the cells by α2,3 or α2,6 specific sialyltransferase 
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enzyme (Sigma Aldrich, St. Louis, MO) (326, 327).  Appropriate controls were also 

examined to determine proper functioning of the enzymes. 

 

4.3.5 Examination of viral kinetics in Calu-3 Cells.  The human bronchial epithelial 

cell line, Calu-3, obtained from American Type Culture (ATCC, Manassas, VA) were 

grown on transwells in Eagle’s minimal essential medium (MEM) supplemented with 

10% FBS (110).  Once confluent with a measured transepithelial resistance of >1,000 

Ω·cm2, cells were inoculated apically with the indicated influenza viruses at a 

multiplicity of infection (MOI) of 0.01 for 1 hr at 37°C in triplicate.  Supernatants were 

collected from apical and basal sides of the transwells at specific time points post-

inoculation (p.i.).  Virus titers from supernatants were determined by a standard plaque 

assay using MDCK cells.  In each experiment, the initial infection rate at 8 h p.i. was 

determined by fixing cells with 2% formaldehyde for 30 min.  Cells were then 

permeabilized with 0.5% Triton X-100 in PBS for 20 min, blocked with 3% BSA, and 

stained with mouse anti- nucleoprotein (NP) monoclonal (A3)	
   antibody	
   (CDC’s 

Influenza Reagent Resources, IRR).  This was followed by a FITC-conjugated secondary 

antibody (Invitrogen, Carlsbad, CA). Immunostained cells were mounted with 

VECTASHIELD mounting medium with 4′,6-Diamidino-2-phenyindole (DAPI; Roche) 

and examined under a Zeiss Axioskop 2 fluorescent microscope (110). 

 

4.3.6 Inoculation of ferrets for pathogenesis and transmission studies.  Male Fitch 

ferrets, 6-10 months old and serologically negative against currently circulating influenza 

viruses were housed in cages within a Duo-Flo BioClean environmental enclosure (Lab 
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Products, Seaford, DE) throughout each experiment.  Ferrets were anesthetized with a 

ketamine-xylazine-atropine cocktail before intranasal (i.n.) inoculation with 106 EID50 of 

virus. In direct contact (DC) transmission experiments the contact animals are placed in 

the same cage as the inoculated animals 24 hours p.i, as described (296).  In respiratory 

droplet (RD) transmission experiments, the ferrets are placed in adjacent modified cages, 

containing perforated sides 24 hours p.i.  While in separate cages, the ferrets share the 

same air while unable to come into contact with each other, or share food and water. 

On alternate days p.i., nasal wash samples were collected in 1ml PBS with 

PenStrep, BSA, and Gent (230).  Virus titers were determined by serial titration in eggs.  

Blood was collected at 21 days post-contact (p.c.) for isolation of serum and confirmation 

of transmission. Seroconversion to the inoculated virus was examined by standard 

hemagglutination-inhibition (HI) assay using tRBCs. 
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4.4 Results 

4.4.1 Transmission of 1918HAPB2:DkNY virus 

Previously our laboratory showed that unlike human H1N1viruses, avian H1N1 

viruses do not transmit efficiently by either respiratory droplets (RD) or direct contact 

(DC) in the ferret model, consistent with the transmission data obtained with 

contemporary avian influenza H5N1 viruses (94).  Furthermore, Van Hoeven et al found 

that the HA, NA, and PB2 genes of the 1918 (H1N1) pandemic virus, A/SC/1/18, was 

sufficient for RD transmission of a virus containing the remaining genes of an avian 

H1N1 virus, A/Duck/NY/15024-21/96 (1918HANAPB2:Dk/NY) (94).  To test if the 

1918 NA was required for RD transmission to occur in the ferret animal model, a 

recombinant virus was rescued that included only the HA and PB2 genes from SC/18 

virus with the remaining genes from Dk/NY (1918HAPB2:Dk/NY) virus.  Transmission 

cages were set up and three ferrets were inoculated i.n. with 106 EID50 of 

1918HAPB2:Dk/NY virus.  The inoculated ferrets all displayed lethargy following 

infection for several days, and had a mean maximum weight loss of 17% and an average 

maximum temperature increase of 2.0°C above baseline (Table 1).  Due to excessive 

weight loss, one of the inoculated ferrets was humanely euthanized on day 6  p.i.  The 

remaining two ferrets cleared infectious virus by day 9 p.i. and recovered.  The 

1918HAPB2:Dk/NY virus transmitted efficiently to all three contact ferrets, which shed 

virus in their nasal wash samples by day 5 p.c. and seroconverted to the virus (Figure 1).  

The contacts exhibited an average weight loss of 6.3% and showed a fever of 1.4°C over 

baseline.  These results suggest that the 1918 HA and PB2 contribute to the 
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transmissibility of the 1918 pandemic influenza virus and that the 1918 NA protein is not 

required for RD transmission of the avian H1N1 virus. 

 

4.4.2 Rescue and replication efficiency of A/Vietnam/1203/2004 (VN/04) virus 

pPol plasmids containing the individual genes from VN/04 were each checked for 

functionality by replacing a single gene from WSN virus (with known function) in the 

transfection protocol with the corresponding gene from the H5N1 virus.  48-72 hrs post-

transfection, culture supernatants were assayed for hemagglutination activity to detect the 

initial presence of rescued virus. Once the plasmids were confirmed as functional, the 

entire set of rescue plasmids for the VN/04 genome was transfected into 293T cells.  An 

HAU titer was detected in the supernatant of the viral transfections within a few days.  

After virus was detected, a virus stock was grown in eggs and harvested 24 hours later.  

The stock was sequenced and compared to wild-type virus prior to further testing to 

ensure that no inadvertent mutations occurred during virus rescue and propagation.   

The replication efficiency of rgVN/04 virus was compared to wild-type VN/04 

virus as previously described (255).  Calu-3 cells grown on transwells were inoculated 

with virus at an MOI of 0.01.  Supernatants were collected from the apical and basal sides 

of the transwells. Additional plates were set up and stained for anti-NP to confirm that 

both VN/04 viruses displayed similar infection rates (data not shown).  Calu-3 cells were 

fixed and compared at 72 hrs p.i. for levels of visual CPE.  No significant difference was 

observed in the replication kinetics of the rescued (rgVN/04) virus compared to the wild-

type VN/04 virus throughout the time course in either the apical or basal sides of the 

transwells (Figure 2A and data not shown). 
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4.4.3 Pathogenesis and transmission of rgVN/04 virus 

Since the rgVN/04 virus matched the wild-type characteristics in human airway 

cells, the virus was further examined for transmission and for its ability to cause severe 

disease in the ferret model. Since avian viruses do not transmit efficiently by respiratory 

droplets, the direct contact (DC) model was utilized for these transmission studies.  The 

DC transmission model was set up and 3 ferrets were inoculated i.n. with 106 PFU of 

rgVN/04 virus.  The next day, contact animals were added into the same cage as the 

inoculated ferrets and nasal washes were collected on alternate days p.i./p.c.   

The rgVN/04 virus caused severe lethargy and replicated to high titers in the three 

inoculated ferrets (Figure 2B, and data not shown).  All of the inoculated ferrets 

succumbed to infection by day 7 p.i. due to neurological symptoms.  Shortly before 

euthanasia rgVN/04-inoculated ferrets displayed mean maximum weight loss of 14.5% 

and a temperature spike of 1.9°C over baseline (Table 1). At day 3 p.i., extrapulmonary 

spread of the virus to organs including the brain, spleen, liver, and intestines was detected 

(Figure 2D), consistent with previous findings (255).  Virus infection with rgVN/04 also 

resulted in a high level of lymphopenia by day 3p.i. (Figure 2C).  

In the DC transmission model, the rgVN/04 virus transmitted to one of three 

contact ferrets, which succumbed to infection on day 8 p.c.  The two remaining contacts 

did not seroconvert to VN/04 virus.  The day 5 p.c. nasal wash of the infected contact 

ferret was sequenced and no detectable mutations were observed.  All euthanized ferrets 

displayed high virus titers in all brain samples collected, including the rgVN/04 positive 

contact (Figure 2E).  This experiment demonstrated the rgVN/04 rescued virus is capable 

of recapitulating the high pathogenicity of the wild-type VN/04 strain. 
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4.4.4. Rescue of A/Solomon Islands/03/2006 virus 

Next, influenza genes of a seasonal H1N1 virus were cloned and a reverse 

genetics system established.  The vRNA from the A/Solomon Islands/03/2006 (SI/06) 

viral stock obtained at the CDC was isolated and incorporated into the pPol plasmid 

backbone.  After cloning and transformation, the plasmids were sequenced. Several 

nucleotide changes were detected in several UTR regions (in NP, M, and NS) that were 

traced back to the universal primers used during the initial PCR cloning reactions.  

Alterations in the UTRs of influenza affect the replication and pathogenesis of the 

resulting virus (328, 329), therefore mutagenesis was initiated to exchange the mutations 

for the correct the H1N1 wild-type UTR sequence. 

Other studies have observed amino acid variations in the receptor-binding site of 

the HA protein in various SI/06 virus sequences available in the public domain.  The 

majority population of our CDC SI/06 virus stock was found to have changes at HA 

residues 190D and 226R that can lead to altered receptor-binding preference of the virus 

from α-2,6-linked to α-2,3-linked sialic acid (102, 330). This virus did not transmit to 

contact animals by means of respiratory droplets (data not shown).  A minority of our 

SI/06 virus stock contained HA residue changes 190A and 226Q, but was purified out 

during the cloning and rescue process so that the initial rgSI/06 virus contained only HA 

190D and 226R.  Site-directed mutagenesis was performed to alter the bases D-190 to A 

and R-226 to Q to confer α2,6 binding preference.  Sequencing confirmed that no 

additional mutations occurred during cloning or following the mutagenesis. 

The gene plasmids were tested individually for function by single replacement in 

the WSN/33 genome.  The entire SI/06 genome was then rescued in 293T cells; 
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hemagglutination activity was detected in the supernatant within the first few days 

following transfection and an egg-grown stock was produced by inoculation of eggs with 

1:2000 dilution of supernatant. 

Replication of the rgSI/06 virus stock was tested and compared to the wild-type 

SI/06 stock utilizing the Calu-3 in vitro cell system.  The Calu-3 cells were inoculated at 

a MOI of 0.01.   No significant difference was observed in the viral titers collected from 

the apical side of rgSI/06 inoculated cultures compared to the wild-type SI/06 virus at any 

time point (Figure 3A).   Similarly no virus was detected in the basal supernatants of 

either virus cultures.  Taken together, these data suggest that no significant differences 

exist between the rescued virus and the wild-type virus in vitro. 

 

4.4.5. Transmission of A/SI/03/2006 virus in ferrets 

The wild-type SI/06 virus has been previously shown to transmit efficiently 

between ferrets during RD transmission (94, 328).  rgSI/06 virus was inoculated into 

three ferrets at 106 EID50 to examine the in vivo characteristics of the rescued virus. Three 

naïve contact ferrets were introduced into adjacent cages 24 hours following inoculation.  

The virus replicated efficiently in the 3 inoculated ferrets, causing an average weight loss 

of 6.4% and a mean temperature increase of 1.0°C (Table 1).  The virus transmitted to 2 

of the 3 contacts resulting in seroconversion (Figure 3B).  The infected contact ferrets 

exhibited an average weight loss of 5.2% and a maximum temperature increase of 0.8°C 

over baseline (Table 1).  The alteration of amino acids at positions 190 and 226 resulted 

in a transmissibility phenotype of the rgSI/06 strain that matches the wild-type strain. 
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4.4.6. Mutagenesis of the receptor-binding site of VN/04 virus 

Once both the complete seasonal H1N1 and avian H5N1 genomes were cloned 

into the pPol backbone and the rescued viruses recapitulated the wild-type virus 

characteristics, mutations could then be introduced into the H5N1 virus genome to alter 

the transmissibility of the avian virus.  Previous studies have focused on mutations 

created in the HA protein in order to increase the ability of the virus to bind human-type 

(α2,6 sialic acids) receptor.   The preferential binding of α2,6 sialic acids appears to be a 

molecular determinant critical for transmission among mammals (44).  The literature has 

highlighted the generation of the following single amino acid changes; S137A, E190D, 

T192I, R216E, S221N, Q226L, S227N, and G228S (based on H3 numbering).  These 

amino acids are located in or around the receptor-binding site, and have been shown to 

affect binding preferences in other influenza viruses (47, 331-334). A study using several 

H5 viruses showed that mutations at residues E190D, K193S, and G225D eliminated 

most α2,3 binding without increasing the α2,6 binding capacity (335).  However, the 

same study also showed increases in α2,6 binding for avian viruses with mutations in 

residues S137A and T192I. It was recently reported that removing a glycosylation site 

that is present on H5 viruses at amino acid 160 which hinders HA binding to α2,6 sialic 

acid residues may improve the binding of these viruses to α2,6 linkages (333). Double 

mutants have also been created to mimic the alterations shown to affect the binding of H1 

and H2/H3 subtype influenza viruses, including E190D G225D and Q226L G228S (LS) 

respectively.  Several mutants were created involving multiple bases, including the 

E190D Q226L G228S (DLS) and E190D K193S Q226L G228S (DSLS) mutants from a 

Maines et al study (336). In that study a VN/04 HA mutant with changes at amino acids 
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193, 226, and 228 displayed binding to both α2,3 and α2,6 sialosides, however the overall 

binding intensity was reduced compared to wild-type virus.  The T160A mutation was 

also added to both the LS and DSLS mutants, as the removal of the glycosylation 

eliminates steric hindrance and was shown to increase the flexibility of the receptor-

binding site (333). 

In the current study, the aforementioned 14 mutant viruses were rescued in the 

rgVN/04 plasmid backbone, made into stocks, and tested for their binding preference in a 

resialation assay (Table 2).  Turkey red blood cells (tRBCs) were stripped of their natural 

surface sialic acids after incubation with a neuraminidase.  Either α2,3 or α2,6 sialic acids 

were preferentially added back to the cells by the use of specific sialyltransferase 

enzymes.  Both sets of altered tRBCs cells were confirmed to function by binding viruses 

of known receptor preferences (Table 2). Several mutations did not have a detectable 

effect on the binding preference of the virus, including: S137A, T192I, and G228S.  

Other mutations, including S227N, LS, and ALS, caused only a two-fold decrease in the 

α2,3 specific binding compared to the normal tRBC binding.  Several mutations resulted 

in a decrease of four-fold or more in α2,3 binding preference: S221N, E190D, RLS, DLS, 

and ADSLS.  A few of the mutations resulted in complete abolishment of binding to any 

of the RBCs, even the normal tRBCs: Q226L, E190D G225D, and DSLS.  Only one of 

the rgVN/04 mutants displayed any detectable α2,6 binding- ALS.  The binding was low 

(HAU titer of 8), and there was still detectable α2,3 binding (HAU=32).  The binding 

effects seen here follow the observations found in other mutational studies (47, 334, 336), 

although more α2,6 binding has been observed for the LS mutant in other studies (334, 

337). 
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4.4.7. Replication of LS and ALS mutant viruses 

Since other publications have shown the LS mutant in a VN/04 background 

results in an increase of α2,6 binding (337), the LS and ALS mutants were studied further 

for possible  alterations in in vitro virus replication before testing in vivo.  Calu-3 cells 

were infected at an MOI of 0.01 and culture supernatants were collected up to 72 hrs p.i.  

Both mutant viruses displayed efficient replication in the bronchial epithelial cell line that 

was comparable to wild-type control viruses (Figure 4A).  Both mutant viruses reached a 

maximum viral titer at 48 hrs with a titer of around 108 log10 PFU/ml, similar to the 

rgVN/04 strain.  The NP staining also displayed similar levels of viral replication in both 

mutants at 24 hours p.i. compared to the non-mutated viruses (Figure 4B-I).  None of the 

amino acid changes introduced into the LS and ALS rgVN/04 mutant viruses appeared to 

alter the replication efficiencies of the rescued viruses in the Calu-3 cells. 

The future research plans included testing these mutants in a respiratory droplet 

model of transmission, as well as serially passaging the viruses from ferret to ferret to 

attempt to allow the replication within the ferrets to result in any additional required 

adaptations.  However, as will be explained in the discussion, these experiments were 

unable to be conducted. 
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4.5 Discussion 

The Van Hoeven et al study demonstrated that the HA protein of the 1918 virus 

was sufficient for direct contact transmission of an avian influenza virus, and the PB2 

allowed for respiratory droplet transmission between ferrets (94).  However, in those 

studies the 1918 NA protein was also rescued among the H1N1 recombinant viruses 

tested.  Data from the study described here demonstrates that the NA protein is not 

necessary for RD transmission of the avian influenza H1N1 virus to occur. 

Currently, while H5N1 virus strains continue to result in human infections, they 

lack the capacity for sustained human-to-human transmission.  For the H5N1 subtype to 

become a pandemic threat, efficient transmission is an essential characteristic (235). The 

ultimate goal for the reverse genetics system developed here was to identify the 

molecular determinants required for transmissibility and severe disease in ferrets, which 

might suggest the viral genetic changes that are required for adaptation of avian H5N1 

viruses in humans.   

In December of 2011, while these studies were ongoing, the NSABB (National 

Science Advisory Board for Biosecurity) reviewed two scientific manuscripts concerning 

similar studies examining H5N1 transmission potential (51, 338).  Initially, the NSABB 

recommended redacting the studies due to bioterror concerns and the risk of an 

unintentional release of the viruses used in the two ferret studies.  Following review of 

the manuscripts influenza researchers worldwide enacted a voluntary moratorium on 

H5N1 research until concerns of information misuse could be addressed (339). 

Ultimately, the manuscripts were published after the authors more fully addressed the 

potential public health benefits to the studies, and described the safety precautions in 
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place to protect the public from the created virus strains.  The moratorium has since been 

lifted and new strict guidelines for H5N1 “gain of function” research are in place. 

Currently, any H5N1 proposed projects that may result in a transmissible virus require 

additional review prior to funding approval.   Due to these new regulations the studies 

described here will remain uncompleted. 

In one of the H5N1 ferret transmission study, Imai et al rescued the H5 HA from 

A/Vietnam/1203/2004 on a virus that contained all other genes from the  A(H1N1)pdm09 

virus backbone (51).  The HA from VN/04 virus contained four mutations (N158D 

N224K Q226L T318I) shown to bind α2,6-linked SA with increased affinity and resulted 

in seroconversion of all six contact animals in a respiratory droplet model.  While virus 

was detected in brain samples of infected ferrets, the transmitting virus was not lethal.  A 

reassortant H5 HA/H1N1 with only three mutations in the HA (N158D N224K Q226L) 

was also shown to seroconvert 5 of 6 contacts without lethality. In the second study, 

Herfst et al used a somewhat different approach to achieve the same goal as Imai et al.; 

they rescued and tested a virus containing all 8 gene segments derived from 

A/Indonesia/5/2005 (H5N1) virus (338).  Ultimately, the group created a virus with 

several targeted mutations (E627K in the PB2, and Q226L G228S in the HA by H3 

numbering) and serially passaged the virus through ferrets, inoculating the animals 

intranasally with supernatant from homogenized nasal turbinates.  Following 10 passages, 

the resulting virus transmitted to respiratory droplet contact animals, and consistently 

contained two additional HA mutations (T160A and H109Y).  The resulting H5N1 virus 

was attenuated in ferrets and did not result in lethality in the contact animals. 
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For the studies described here, the parental viruses were initially characterized 

and compared to the wild-type viruses to demonstrate that no alteration of the viral 

phenotypes occurred during the reverse genetics processes.  Once the parental rescued 

H5N1 and H1N1 viruses were generated, only viruses containing the H5 HA were 

considered for subsequent mutations.  Since mutation of H5 HA alone would not have 

been sufficient for transmission to occur, the addition of internal human genes in the 

recombinant viruses would have been analyzed. The PB2 gene appears to be particularly 

important for transmission potential as a mutation at PB2 residue 627 from E to K alters 

the virus’s ability to replicate at 33°C (94, 340, 341).  This change may increase the 

capacity of the virus to spread efficiently in mammals; coincidentally it is already present 

in A/Vietnam/1203/2004 virus (92).  The entire polymerase complex (PB1, PB2 and PA) 

would have been initially rescued in H5N1 recombinant viruses, and if a transmissible 

phenotype was seen the specific gene responsible would be narrowed down with 

individual polymerase gene replacements. 

Several similarities exist between the findings described in this Chapter and the 

two published studies.  While the Imai et al study had not focused as deeply on the HA 

changes at amino acid position 228, the VN/04 mutant in that study still shared the 

change at 226, as well as the removal of the glycosylation site around amino acid 160 

(the same effect occurs whether the mutation is created at 158 or 160).  Although the 

Herfst et al paper had utilized the A/Indonesia/5/2005 H5N1 virus instead of VN/04, the 

ALS mutant created in this Chapter was only missing one mutation from the 

transmissible Ind/05 virus created during the studies.  VN/04 already contains the E627K 

mutation, and therefore only the amino acid change at HA position 109 was absent.   
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Both the Herst et al and Imai et al studies identified structural features in the HA 

protein that are important for changing the receptor binding properties of the H5N1 

viruses, as well as determining areas of the protein that are important for stabilization.  

Additional studies are needed to determine which mutations with these structural features 

confer RD transmissibility in mammals for different H5N1 virus clades and subclades. 

The possibility exists that a fully avian version of VN/04 virus would never result in a 

transmissible virus.  Although the A/Indonesia/5/2005 (clade 2.1) virus was capable of 

RD transmission, the differences between the clade 2.1 and clade 1 (to which VN/04 

belongs) may be too great to make direct comparisons.   

H5N1 viruses are not alone among avian influenza viruses that have the capacity 

of causing severe or fatal disease in humans requiring close monitoring.  The recent 

H7N9 outbreak in China highlights the ability of this avian subtype to jump the species 

barrier to infect humans. In total, there have been over 130 confirmed illnesses with over 

40 deaths within the span of a few months in 2013.  Influenza viruses have also entered 

into the human population from swine, with recent examples including A(H1N1)pdm09 

and A(H3N2)v viruses.   

Based on the available information, every pandemic virus that has entered into the 

human population has done so with an avian influenza virus component.  The adaptations 

that occur to allow these avian virus genes to thrive within the human populace remain 

largely unknown. The pandemic virus that appeared around the world in the spring of 

2009 did not contain any of the known human adaptations, and highlights the fact that 

many genetic alterations remain undiscovered.  In order for us to fully understand how 
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pandemic viruses emerge, the mutations that allow for human-adaptation must be further 

explored. 
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Table 4.1. Clinical observations following viral challenges 
 

 

 

 

 

 

 

 

a Maximum mean weight loss percentage shown for each ferret group, values found days 6-8 post challenge. 

b Maximum mean temperature increases calculated as rise over ferret baseline of 38.3 ±0.5 °C, all maximum temperatures in inoculated  

animals found on day 2 p.c. 

NA= not applicable.  Data could not be determined without transmission. 

*seroconversion not determined in the contact that was euthanized. 

 Weight Loss (%)a Temperature (°C)b Contacts 
Viruses Inoculated Contacts Inoculated Contacts Sneezing Seroconversion 
1918HAPB2:Dk/NY 17.0 6.3 2.0 1.4 3/3 3/3 
rgVN/04 14.5 18 1.9 1.1 1/3   0/2* 
rgSI/06 6.4 5.2 1.0 0.8 2/3 2/3 
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Table 4.2 Binding preference of rgVN/04 constructs in resialation assay 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a All RBCs were diluted to 0.5% concentration by volume in PBS with 0.5% BSA before use.  Resialated 

cells were made and used on the same day. 

b - indicates no binding was observed.  Limit of detection for HA assay is 10. 

 

 

 

 

 

 Binding Strength (HA titer) 
VN/04 mutant tRBCa Desialated 

tRBCb 
α2,3 α2,6 

α2,3 control (Dk/NY/96) 256 - 256 - 
α2,6 control (Dk/NY/96-DD) 128 - - 128 
wild-type (wtVN/04) 256 - 128 - 
rescued (rg/VN/04) 256 - 256 - 
S221N 256 - 64 - 
Q226L - - - - 
S227N 32 - 16 - 
G228S 64 - 64 - 
S137A 16 - 16 - 
T192I 32 - 32 - 
E190D 256 - 32 - 
R216E 256 - 64 - 
Q226L G228S (LS) 32 - 16 - 
E190D G225D - - - - 
T160A Q226L G228S (ALS) 64 - 32 8 
E190D Q226L G228S (DLS) 64 - 4 - 
E190D K193S Q226L G228S 
(DSLS) - - - - 
T160A E190D K193S Q226L G228S 
(ADSLS) 256 - 64 - 
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Figure 4.1. Transmissibility of 1918HAPB2:DkNY among ferrets in the respiratory 

droplet model.  Three ferrets were inoculated with 106 PFU of virus intranasally.  Each 

bar represents the viral titer isolated from a nasal wash of an individual inoculated ferret 

(left side of graph) and their corresponding contact ferret (right side of graph).  ↓ 

indicates when a ferret succumbed to infection. 
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Figure 4.2. In vitro and in vivo testing of rgVN/04 stock. (A) Replication kinetics of 

rgVN/04 in Calu-3 cells from apical side.  Cells were inoculated with virus at an MOI of 

0.01.  Supernatants were collected at time points up to 72 hours post infection.  The titer 

value represents an average of three independent wells. (B) Transmissibility of rgVN/04 

among ferrets in the direct contact model. Three ferrets were inoculated with 106 PFU of 

virus intranasally.  Each bar represents the viral titer isolated from a nasal wash of an 

individual inoculated ferret (left side of graph) and their corresponding contact ferret 

(right side of graph).  ↓ indicates when a ferret succumbed to infection. (C) Hemavet data 

from infected ferrets, compared to pre-infection baseline. Levels of lymphocytes (LY), 

neutrophils (NE), monocytes (MO), eosinophils (EO), and basophils (BA) measured.  (D) 

Viral titers collected from multiple systemic organs on day 3 p.c. (E) Viral titers from the 

brain sections of all infected ferrets during the transmission experiment. 
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Figure 4.3.  In vitro and in vivo testing of rgSI/06 stock.  (A) Replication kinetics of 

SI/06 influenza viruses in Calu-3 cells from apical side.  Cells were inoculated with virus 

at an MOI of 0.01.  Supernatants were collected at time points up to 72 hours post 

infection.  The titer value represents an average of three independent wells.  (B) 

Transmissibility of rescued SI/06 viruses among ferrets in a respiratory droplet model. 

Three ferrets were inoculated with 106 PFU of virus intranasally.  Each bar represents the 

viral titer isolated from a nasal wash of an individual inoculated ferret (left side of graph) 

and their corresponding contact ferret (right side of graph).
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Figure 4.4. Replication kinetics for VN/04 mutant viruses in Calu-3 cells from apical 

side. Cells were inoculated with virus at an MOI of 0.01.  Supernatants were collected at 

time points up to 72 hours post infection.  The titer value represents an average of three 

independent wells. (A) Viral titers collected from wtVN/04, rgVN/04 and two rgVN/04 

mutants at timepoints up to 72 hours post infection. (B-I) Cells fixed with 3.7% 

formaldehyde, and labeled with antibody against influenza NP virus (green).  Cell nuclei 

labeled with DAPI (blue). (B) wtVN/04, (C) rgVN/04, (D) rgVN/04-LS, or (E) rgVN/04-

ALS at 8hrs post infection and (F-I) corresponding 24 hrs post infection.  Images at 10x.
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An influenza pandemic occurs when an influenza A virus with a novel HA protein 

emerges with the capacity to cause widespread disease in immunologically naïve 

populations.  Influenza viruses from zoonotic (mainly swine and avian) sources have 

been detected in humans with increasing frequency for the last 20 years.  Avian influenza 

subtypes including H5, H6, H7, H9, and H10 have appeared with phenotypes of both low 

and high pathogenicity (246).  These viruses have spread sporadically to humans from 

poultry but continued to display a lack of efficient transmission among humans. The most 

recent example involves the H7N9 subtype that emerged from an avian source to cause 

human infections in China in the spring of 2013.  This subtype had never been previously 

detected in humans but led to over 130 infections with the majority of cases occurring 

during the month of April (248).  Some of the infections were mild, but many led to 

severe respiratory illness within the patient and over 40 cases were fatal (248).  Within 

the ferret animal model these viruses displayed efficient replication within the respiratory 

tracts but inefficient transmission via respiratory droplets (342-344). Several influenza A 

subtypes have also emerged from the swine population to infect humans; including 

H1N1, H1N2, and H3N2 (288).  Although the majority of zoonotic influenza viruses, 

including the recent A(H3N2)v viruses, have displayed only limited human-to-human 

transmission, the A(H1N1)pdm09 virus from swine caused the first pandemic of the 

twenty-first century. These public health events highlight the diversity of pandemic 

threats and the need to understand the steps required for human adaptation to occur for 

different subtypes emerging from animal reservoirs.  

The studies described here utilized the ferret animal model for both transmission 

and pathogenesis studies.  The ferret is the premiere animal model for the study of 
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influenza infection as it recapitulates many features of influenza virus pathogenicity and 

transmissibility observed in humans (227). The transmission studies described here 

focused on the respiratory droplet model, as the ability of influenza viruses to transmit 

through aerosols and respiratory droplets is an important prerequisite of a pandemic strain 

(234).  

A highly virulent H5N1 virus that gained the capacity for efficient spread 

amongst the human population would have devastating consequences for public health. 

Even within countries where H5N1 viruses are endemic, seroprevalence studies suggest 

that there is little to no preexisting antibody to H5 viruses in the population (345).  As a 

consequence, any human transmissible H5N1 virus that emerged would meet little 

immunological resistance from the human population.  Two recent papers described 

mutations that allowed for avian H5N1 viruses from two distinct subclades to transmit 

between ferrets in a respiratory droplet model (51, 338).  One of the transmissible H5N1 

viruses was a reassortant with an A(H1N1)pdm09 strain that is still circulating widely in 

the human population, while the other was composed entirely of H5N1 viral genes.  We 

had been examining similar mutations in Chapter 4 while utilizing the same H5N1 strain 

as the Imai et al study and were close to examining the rescued viruses in vivo before the 

research moratorium was put in place (51).  None of the resulting transmissible strains 

were lethal in the contact ferrets in either publication, although one of the intranasally 

inoculated ferrets died following inoculation in the Herfst et al study (338).  The 

possibility exists that all mutations that confer transmission in HPAI H5N1 viruses will 

attenuate the virulence similarly. This attenuation may be caused by an alteration in the 

tropism of these viruses. The preference for α2,3 sialic acids and preferred tropism of 
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avian viruses for cells located predominately within the lower respiratory tract (LRT) is 

thought to be one reason of the enhanced virulence observed during human infections 

(346).  Changing the binding preference of the viruses to α2,6 would likely alter the 

preferred tropism to the upper respiratory tract (URT) of the infected animals, and may 

cause a reduction in virulence. It is also possible the mutations that confer transmissibility 

and sustain the highly pathogenic phenotype have not yet been identified. The recently 

discovered mutations for H5N1 viruses should be tested further in H7 and H9 viruses to 

see if the adaptations that allow for transmission are universal for avian viruses, or if they 

are H5 subtype or even clade specific.  Understanding the mutations responsible for 

human adaptation of avian influenza viruses is of vital importance for pandemic 

preparedness, and for monitoring of circulating strains for the emergence of such 

mutations. 

While the emergence of H5N1 viruses with genetic changes that result in human 

transmissibility could be devastating to the population, a similar outcome would be 

unlikely for the recent A(H3N2)v viruses.  Several seroprevalence studies showed that 

most age groups have preexisting antibodies that are capable of cross-reacting to the 

A(H3N2)v viruses (278-280). The young adult population contains the highest frequency 

of cross-reactive antibodies titers with a HI titer of ≥40, a threshold serological titer 

generally associated with a reduction in the risk from influenza virus infection in adult 

populations, while children under the age of ten have the lowest frequency. This young 

age group is also accountable for the majority of confirmed cases (276, 278, 289, 347). In 

addition, the seroprevalence studies demonstrated that vaccination with the 2010-2011 

seasonal TIV failed to induce cross-reactive antibody in young children (278).  We show 
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in Chapter 2 that this lack of serologic cross-reactivity also occurs following vaccination 

with the 2011-2012 TIV in ferrets. While the ferrets produced antibodies against the three 

HA antigens contained in the seasonal TIV, no cross-reactive antibodies were detected 

against the A(H3N2)v virus. Although the previously mentioned serological studies 

cannot directly prove if the cross-reactive antibodies in the population correlate with 

protection against infection with A(H3N2)v viruses, our studies are able to directly show 

a lack of protection against A(H3N2)v viruses following vaccination with a seasonal 

2011-2012 TIV. We observed a decrease in viral titers after challenge with the 

homologous H3N2 strain, but the same trend was not seen after challenge with the 

A(H3N2)v virus.  Vaccinated ferrets had viral titers similar to naïve animals throughout 

the days of peak viral replication. Based on these data, no cross-protection against 

A(H3N2)v was observed in ferrets vaccinated with the 2011-2012 seasonal TIV, and a 

vaccine specific for a A(H3N2)v virus will be required to increase the level of protective 

antibodies in the population.  A vaccine strain, A/Minnesota/11/2010, has been created in 

case such a need arises (278, 286). 

While the A(H3N2)v viruses have displayed the capacity for efficient 

transmission among ferrets, only limited person-to-person spread has been observed in 

the documented human cases (228, 276). The ferret model typically recapitulates the 

inherent transmission properties of a virus observed in a naïve human host.  One 

drawback to our system is that the ferrets do not mirror the complex immune history 

present in the human population, but can be a close comparison for younger children who 

tend to be more immunologically naïve against influenza viruses.  Young children are the 

age group that has displayed the most limited human-to-human transmission of the 
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A(H3N2)v viruses (276, 278, 289, 347).  In Chapter 3 we explored the reason behind the 

differences between the ferret model and human cases to determine if the varying levels 

of preexisting immunity found in the various age groups were responsible. The data 

showed that seasonal vaccination failed to substantially reduce A(H3N2)v virus shedding 

and subsequent transmission to naïve ferrets. Unlike vaccination, prior infection resulted 

in a block in transmission following both homologous and heterologous viral challenge. 

No viral titers were obtained from the inoculated ferrets following homologous viral 

challenge.  We also observed a decrease in morbidity in ferrets with prior influenza 

infection, but not prior vaccination.  While the serum HI titers obtained from the 

previously infected ferrets overlapped with the range acquired from the TIV inoculated 

ferrets, the immune response from the previous infection resulted in a more effective and 

protective immune response. This improved response was at least partially provided by 

an enhanced local IgG and IgA response detected within the respiratory tracts of the 

previously infected ferrets compared to the vaccinated animals. 

Influenza-specific antibodies located within the mucosa of the respiratory tract are 

an important primary line of defense against subsequent infections. In mice, IgA 

antibodies provide protection within the URT, while IgG antibodies are more beneficial 

in the LRT (348, 349). Both vaccination and prior infection resulted in increases in IgA 

antibodies in the URT and IgG titers in the LRT of the ferrets.  However, prior infection 

resulted in higher increases in both cases, indicating a possible explanation for the 

superior protection observed in these animals.  Studies in mice have also shown the 

passive transfer of IgG antibodies from the serum into the mucosa can also result in 

protection during a viral infection (350). The vaccinated ferrets displayed high titers of 
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IgG antibodies in the serum, which may have been able to compensate for the low titers 

observed in the respiratory tract samples. The complete lack of detectable IgA in the 

upper respiratory tract of the vaccinated ferrets may explain why transmission still 

occurred in these animals following viral challenge, as mucosal IgA has been shown to 

decrease viral spread in guinea pigs (351). 

Studies investigating prior vaccination or infection in mice have suggested that 

cell-mediated responses also contribute to heterologous protection (352, 353). CD8+ and 

CD4+ cell-mediated responses were associated with heterosubtypic immunity in mice 

(147).  In ferrets prior seasonal H3N2 infection was shown to reduce replication and 

symptoms from H5N1 virus through the development of cross-reactive T-cells (354).  T-

cell responses formed following TIV vaccination are typically weak given that the TIV is 

a split virion vaccine that is incapable of replication.  Without viral replication fewer 

antigens are presented on MHC molecules for CD8+ T-cell activation.  As the A(H3N2)v 

contains an internal mixture of avian, swine, and human genes, the numbers of cross-

reactive T-cell epitopes with seasonal human strains may be low (284, 286). However, a 

recent immuno-informatics study analyzing the HA and M genes of the A(H3N2)v 

viruses show a high conservation of T-cell epitopes with contemporary seasonal H3N2 

and H1N1 viruses (355). However, the M gene from A/PuertoRico/8/34, contained in the 

reassortant viruses in the seasonal TIV was not analyzed for epitope conservation in this 

study for comparison.  While we did not analyze cell-mediated responses for the studies 

described here, they should be investigated in this model during future studies. 

We also examined in Chapter 3 whether vaccination with a historical seasonal 

H3N2 virus resulted in greater protection than a contemporary seasonal influenza 
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vaccine. The H3 HA of human and swine influenza viruses followed divergent 

evolutionary pathways resulting in antigenically distinct influenza H3N2 viruses (286).  

Sequence studies have shown the HA1 region of A(H3N2)v (A/Indiana/08/2011) to be 

most similar to A/Wuhan/359/95 (H3N2) virus, but some antigenic cross-reactivity exists 

between the A(H3N2)v and A/Beijing/32/92 viruses (284).  However, using whole-virus 

inactivated vaccines we observed similar protection following challenge with A(H3N2)v 

virus from both the historical and the contemporary vaccines.  Neither vaccine composed 

of a standard 15µg dose of protein was capable of blocking transmission of A(H3N2)v 

viruses to naïve contacts, and no protection against weight loss or fever was observed.  It 

is conceivable that the H3N2 whole-virus vaccines induced non-HA immune responses 

that masked any differences that would have been observed from vaccinating with HA 

only.  A different vaccine formulation, such as virus-like particle (VLP) or recombinant 

HA proteins, in which the HA proteins are the primary antigens, may yield differences in 

protection against A(H3N2)v virus challenge in ferrets.  

While both H3N2 vaccination and infection of ferrets led to detectable immune 

responses against influenza, prior virus infection appeared to result in a more potent 

protective immune response in our ferret studies. Previous studies in ferrets have 

examined the effects of prior infection or vaccination with a seasonal H1N1 virus on a 

subsequent A(H1N1)pdm09 virus challenge (298, 299).  In one study, H1N1 vaccination 

did not provide protection against viral replication, while prior H1N1 virus infection 

lowered clinical symptoms and improved viral clearance but did not affect transmission 

in the direct contact model (299).  Interestingly, multiple virus infections led to  an 

increase in the production of broadly cross-reacting antibodies in ferrets and resulted in 
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blunting transmission to naïve contacts (309, 356, 357).  The addition of adjuvants into 

vaccines have resulted in more broadly neutralizing antibodies in mice and ferrets, have 

been shown to be effective at preventing infection with A(H1N1)pdm09 viruses in 

humans, and should be studied further for their effect on heterologous virus challenge and 

subsequent transmission (358, 359). 

For the transmission studies conducted, we only tested virus spread in one 

direction; from an animal with preexisting immunity to an immunologically naïve contact 

ferret.  We chose that direction based on a previous study in guinea pigs that found that 

arrangement to result in the largest effect of prior vaccination or infection on 

transmission (360).  Future studies should investigate whether transmission in the 

opposite direction (from a challenged naive ferret to a ferret with preexisting immunity) 

displays similar results, or if transmission remains unaffected by the immune history of 

the animal in that experimental design.  Although less of an effect would be expected, 

such studies should be addressed as an alternative of modeling influenza transmission in 

humans. 

Avian subtypes, such as H5 and H7, have been poorly immunogenic in previous 

human vaccine trials, which further hinder the efforts to create effective pandemic 

responses against these viruses (361).  Multiple doses with high concentrations of HA 

protein are typically required in humans for unadjuvanted inactivated vaccine 

formulations (362).  The addition of adjuvants into H5N1 vaccines have proven effective 

at increasing the seroconversion rate and geometric mean antibody titers, and results in 

moderate cross-reactivity against other H5N1 subclades in both animal models and 

humans (358, 363).  VLP vaccines have shown promising results in mice and ferrets 
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across multiple subclades of H5N1 viruses (364).  Several commercial VLP vaccine 

products have shown the induction of robust HI antibody responses following vaccination 

without serious adverse reactions, the Novavax A(H1N1)pdm09 vaccine being one 

example (365). Studies such as the ones described in this dissertation provide needed 

context and further understanding of the immune responses that are required for a vaccine 

to be optimally effective against novel influenza subtypes emerging in humans. 

The relative lack of vaccine protection against virus shedding and subsequent 

transmission following vaccination with the TIV is likely due to the inability of 

inactivated vaccines to induce potent mucosal or cell-mediated immune responses in 

naïve hosts.  As mentioned above, the TIV is an inactivated split or subunit vaccine, 

which induces a less efficient cell-mediated response compared to the live attenuated 

influenza vaccine (LAIV) (366).  Also, as the vaccination is delivered intramuscularly, 

the antigens are not presented well to cells within the respiratory tract and thus do not 

produce an efficient local immune response (367, 368). We observed this effect (Chapter 

3) as vaccinated ferrets displayed a weaker mucosal IgG and IgA antibody response 

compared to the ferrets with prior infection history.  It should be noted that while TIV is 

less efficient at generating immune responses in naïve ferrets, it has been shown to help 

boost preexisting memory responses in humans (369, 370).   The ability for the TIV to 

affect transmission in ferrets with prior infection history should also be examined in 

future studies, as a greater effect may be observed. 

The human population contains variable levels of preexisting cross-reactive 

immunity against A(H3N2)v viruses, by antibody and predicted cell-mediated responses 

(278-280, 355).   Antibodies cross-reactive to the A(H1N1)pdm09 virus were also present 
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in the population prior to the pandemic, but were limited to the elderly age group (371).  

This resulted in the majority of the population lacking preexisting immunity against the 

virus.  While it is unknown if A(H3N2)v will evolve into a pandemic virus, these studies 

demonstrate the importance of prior H3N2 virus infection on the production of broadly 

cross-reactive immune responses. In ferrets, other modes of vaccination, such as the 

LAIV, have been shown to result in the	
   induction	
   of	
   multiple	
   levels	
   of	
   immune	
  

responses,	
  including	
  systemic	
  and	
  local	
  humoral	
  responses	
  as	
  well	
  as	
  cell-­‐mediated	
  

immunity	
  (301).  Human studies with LAIV have shown heterosubtypic immunity lasts 

through several influenza seasons and protects from drifted strains of seasonal H3N2 

virus (372). Unfortunately, the LAIV vaccine was not available during this study for 

comparison, but should be added for comparison in the future.  Additional vaccine 

formulations that are not yet FDA approved, such as VLPs, have shown strong 

heterosubtypic protection in animal models, but the effect on transmission has not been 

explored (205, 373, 374). These vaccines should also be examined in this model for their 

effect on transmission.  

With the increased detections of novel subtypes infecting the human population, 

universal vaccines that result in protection from multiple subtypes of influenza are a 

necessary public health goal.  The pandemic in 2009 proved that the timeframe required 

for the production of the traditional inactivated vaccine is inefficient during a pandemic 

response.  We have shown here that the seasonal TIV is not capable of producing a strong 

immune response against A(H3N2)v heterologous virus in previously naïve ferrets, and 

does not completely inhibit transmission even against homologous strains.  Vaccines that 
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produce immune responses capable of producing broad protection against heterologous 

viruses and decreased virus transmission warrant future investigation. 
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