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Abstract

Exploring the Genetics and Biological Pathways of Obesity through Computational Biology and
Statistical Approaches

By Hongyue Chen

Background: Obesity is a chronic and complex disease that has become one of the most
serious public health concerns of our time. One significant factor contributing to the
development of obesity is genetics, with the fat mass and obesity-associated (FTO) gene
considered to carry the highest risk of developing the obesity phenotype. Specifically, the
rs1421085 variant of the FTO gene has been shown to have the strongest association with
obesity.

Objectives: In this study, we aim to investigate the rs1421085 associated genotype within 49
specific tissues provided by the GTEXx project to identify potential obesity-associated genes,
tissues, and biological mechanisms. This research will provide valuable insights into the
complex genetic and molecular mechanisms underlying obesity and may lead to new
approaches for preventing and treating this growing public health issue.

Methods: We utilized various data resources in this study, including 49 raw tissue-specific
datasets from the open-access GTEx Analysis version 8, as well as curated gene sets from
BioCarta and KEGG subsets of canonical pathways. We performed differential gene expression
analysis on the normalized TPM gene data to discover quantitative changes in expression levels
between groups with rs1421085. Additionally, we employed Gene Set Enrichment Analysis
(GSEA) to determine whether a previously defined set of genes showed statistically significant,
concordant differences between phenotypes. To carry out these analyses, we utilized the PLINK
1.07 and RStudio Version 4.1.2 software tools.

Results: The "C" allele of the rs1421085 gene variant is a risk allele for obesity, according to
GTEXx statistics. The small intestine was found to be the most rs1421085-associated tissue, with
increased transit time potentially due to effective nutrient absorption and decreased satiety
signals. The valid genes associated with rs1421085 were TBC1D3E, CCL3L3, CSF3, CXCL3,
and IL6, with evidence from various studies. Pathway analysis revealed cytokine-cytokine
receptor interaction and IL-17 signaling pathway as associated pathways, potentially linking
chronic inflammation with obesity.

Conclusions: In the studies, we explored candidate genes, biological pathways, and tissues
associated with obesity through computational biology and statistical methods. The research
given the ideas of obesity is inflammation associated, which give researchers an insight in the
field of future obesity study.
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1.Introduction:

Obesity is a chronic and complex disease that results from various factors with the
presence of abnormal or excessive accumulation of body fat [1], [2]. According to the standards
from the World Health Organization (WHO), an individual who is 20 years of age or older with
the body mass index (BMI) greater than 25 (kg/m”2) is classified as an obese patient [2].
Nowadays, obesity has reached pandemic levels, with the number of global cases nearly tripling
from 1975 to 2016 [3]. In 2022, there were approximately 650 million adults, 340 million
adolescents, and 39 million children who were considered obese. The worldwide prevalence of
obesity continues to increase, despite efforts to combat this health issue [4]. As the number of
people affected by obesity continues to increase, so does the associated financial burden on
healthcare systems. For instance, in the United States, where obesity affects around 100.1
million adults (41.9%) and 14.7 million children (19.7%), the annual healthcare costs are
estimated to be $147 billion by 2023 [5].

Obesity is regarded as one of the serious public health concerns not only for the
enormous health problems and healthcare costs it generates but also for numerous
comorbidities associated with itself. Individuals with obesity have a higher risk of type 2
diabetes, pre-diabetes, hypertension, and cardiovascular disease compared to those who with
lower BMI [6]. Besides these common comorbidities, obesity is also associated with coronavirus
disease 2019 (COVID-19), a disease caused by SARS-CoV-2. Compared with normal weight
patients, obese group had higher risk of COVID-19 related hospitalizations and death in the
previous systematic review and meta-analysis [7]. In addition, there seems to be a correlation
between severe COVID-19 outcomes and excessive visceral adiposity [8]. Given the numerous
health problems associated with obesity, scientists have conducted extensive researches to
understand causation and develop prevention methods to the disease. Various studies on
obesity included lifestyle factors, behavior factors, educational factors, environmental factors [9],

and genetic factors [10] have made progress on prevention treatments. Structured lifestyle,



realistic weight-loss goal, food monitoring, healthy home food environment and higher education
have been proved to be plausible ways to reduce the risk of developing obesity [9]. Focusing on
genetic perspective, obesity is considered as genetic associated traits. Around 250 specific
genetic variants associated with obesity are identified from previous genome-wide association
studies (GWAS) after the Human Genome project. The fat mass and obesity associated (FTO)
gene located on chromosome 16 is considered the most significant gene associated with
obesity, carrying the highest risk of developing the obesity phenotype [10]. The FTO genetic
variant single nucleotide polymorphisms (SNP) rs1421085 is identified to be most associated
SNPs with obesity [11]. SNPs are common genetic variants that occur in the DNA sequence
between genes. These variants can serve as biological markers for locating genes that are
associated with particular diseases, especially useful in complex genetic studies [12]. By
examining rs1421085, more potential obesity associated genes and biological pathways can be
identified.

Gene expression is an indicator of the extent to which a gene is functioning, reflecting
the level of genetic information being expressed. With the development of statistical models and
computational biology techniques conducting on gene expression data, genomic traits and
biological mechanisms underneath are determined [13]. The objective of this paper is to
investigate rs1421085 associated genes expression within 49 specific tissues provided by GTEX
project, unitizing Differential Gene Expression Analysis, and Gene Set Enrichment Analysis

techniques in order determine potential tissues and biological pathways related to obesity.

2.Method:

2.1 Sample resources

The Genotype-tissue Expression (GTEX) project is a comprehensive public resource to
that enabled the study of tissue-specific gene expression and regulation [14]. The GTEx donor

tissues are collected without consideration for any disease state and are a representation of the



overall US population. In the GTEXx project, an extensive amount of molecular data is collected
from various tissues, providing a glimpse into the genetic and genomic diversity of individuals
and tissues in a non-diseased, healthy condition. [15] The 49 raw tissue-specific data utilized in
this paper was derived from the open-access data of GTEx Analysis version 8, including tissue-
specific annotation file, phenotype annotation file, RNA Sequencing (RNA-Seq) data, and gene
count by tissues. The 49 biospeciemens were: Adipose-Subcutaneous, Adipose-Visceral
(Omentum), Adrenal Gland, Artery-Aorta, Artery-Coronary, Artery-Tibial, Brain-Amygdala, Brain-
Anterior cingulate cortex (BA24), Brain-Caudate (basal ganglia), Brain-Cerebellar Hemisphere,
Brain-Cerebellum, Brain-Cortex, Brain-Frontal Cortex (BA9), Brain-Hippocampus, Brain-
Hypothalamus, Brain-Nucleus accumbent (basal ganglia), Brain-Putamen (basal ganglia), Brain-
Spinal cord (cervical c-1), Brain-Substantia nigra, Breast-Mammary Tissue, Cells-Cultured
fibroblasts, Cells-EBV-transformed Ilymphocytes, Colon-Sigmoid, Colon-Transverse,
Esophagus-Gastroesophageal Junction, Esophagus-Mucosa, Esophagus-Muscularis, Heart-
Atrial Appendage, Heart-Left Ventricle, Kidney-Cortex, Liver, Lung, Minor Salivary Gland,
Muscle-Skeletal, Nerve-Tibial, Ovary, Pancreas, Pituitary, Prostate, Skin-Not Sun Exposed
(Suprapubic), Skin-Sun Exposed (Lower leg), Small Intestine-Terminal lleum, Spleen, Stomach,

Testis, Thyroid, Uterus, Vagina, and Whole Blood.

2.2 Differential Gene Expression Analysis (DE analysis)

By exploring the distinctions of gene expression between disease and disease-free
states, it might be possible to identify candidate genes associated with disease. Differential
gene expression analysis toke the normalized read count data and performed statistical analysis
to discover quantitative changes in expression levels between experimental groups [16].

In the DE analysis, the parametric Wald test was conducted through DESeq2. For the
Wald test analysis between genetic groups, the gene count data was used, which was formatted

into two matrices. The first matrix included gene expression data from gene count, while the



other contained allele genotype information. The step includesutilizes shrinkage estimation for
dispersions and fold changes since it was difficult to accurately estimate within-group variance
with a small number of replicates. To estimate the dispersion value for each gene, DESeq2
employs a model fit procedure, which required biological replicates for each experimental
condition to produce reliable results. In cases duplicates were removed, DESeqg2 would
estimate the dispersion value using the tissue samples from different conditions as replicates
[17]. The significance threshold was set for 0.05, and the genes significantly associated with

rs1421085 were then selected based on their p-values.

2.3 Gene Set Enrichment Analysis (GSEA):

Besides differential expression analysis on gene sets, gene set enrichment analysis
(GSEA) was able to interpret the results to the underlying biological processes. It could detect
subtle changes in gene expression through analysis gene sets as a group compared with
traditional single gene exploration [18]. The reference gene sets were established based on
previous biological studies, categorizing in aspects such as biological pathways, cellular
component, chromosome locations, and molecular functions [18]. The reference group of gene
sets used in this paper was BioCarta subset (292 gene sets) and KEGG subset (186 gene sets)
under the Canonical Pathways.

Before the genetic statistical analysis, determine the rank order of all members of the
gene set within the ranked dataset followed by ranking significant gene expression data based
on fold changes. Calculate the enrichment score (ES) to quantify the degrees to which the given
canonical pathway associated gene set was overrepresented at the extreme of the ranked list of
genes, assuming the rank was randomly distributed [18]. Then estimate the significance level of
ES through permutation test, and adjust for multiple hypothesis testing based on false discovery
rate (FDR) [19]. The significance level of the ES played a crucial role in determining the degree

to which the heat map reflects the significance of the pathway and the tissues that were strongly



associated with obesity. After conducting pathway analysis, pathways of interest were
visualized. Pathway visualization helped to gain a more comprehensive understanding of the
interactions and signaling pathways involved in the biological mechanism under investigation. In
this paper, the permutation were set as 1000, and pathways with p-values lower than 0.05 were

considered as to be significant.

Analysis Tools:

The GWAS part was performed through PLINK 1.07 [20] on Linux environment, and the
gene expression data were analyzed and visualized using RStudio [21]. The Packages used
through the analyses were: biomaRT, data.table, DESeq2, dplyr, ggplot2, readr, org.Hs.eg.db,

stringr, and tidyr.

3. Results:

3.1 GTEx Statistics

The GTEx portal provided comprehensive statistics on genes, SNPs, RNA-Seq,
quantitative trait locus (QTL), and tissue histology, serving as the valuable resources for
investigation on the complex relationship between genetics and phenotype traits [14]. As not all
tissues had available RNA-Seq data, all subsequent analysis were conducted on those tissue
samples with valid RNA-Seq information (Table 3.1.1).

According to the eQTL violin plot available on the GTEXx portal, the risk allele associated
with the rs1421085 appeared to be the "C" allele, indicating individuals with C alleles on
rs1421085 were more likely to be affected by obesity (Figure 3.1.1). The statistical results
obtained were consistent with the information presented on the SNPedia, which suggested that
the CC genotype is associated with a 1.7- fold increase in obesity risk, while the CT genotype is
linked with a 1.3-fold increase in risk. In contrast, individuals with the TT genotype were reported

to have a normal obesity risk [22].



The GTEx portal also provided the multi-tissue eQTL Comparison statistical expression
results with rs1421085 on FTO gene. Cumulative results from multiple tissues to identify eQTLs
had been shown to improve accuracy from enhancing statistical power and reducing the risk of
type | and type Il error compared to examining tissues individually. This approach was similar to
the concept of meta-analysis, involving combination of results from multiple GWAS to improve

the statistical power to detect associations [23]. In the eQTL analysis, differentially expressed

Table 3.1.1 Bulk Tissue RNA-Seq Sample Info Figure 3.1.1 rs1421085 eQTL on FTO (muscle-skeletal tissue)
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genes (DEGs) were divided into up-regulated and down-regulated, followed by an investigation

into whether these gene sets are preferentially enriched at either the top or bottom of each

other's ranked transcriptome datasets. The GTEx statistical results provided normalized

enrichment score (NES) in order to indicate the which regulated categories DEGs in the tissues

belonged. A positive NES value in eQTL indicates enrichment of a gene set at the top of the

ranked transcriptome data, while a negative NES value indicates enrichment at the bottom [24].

In GTEx statistics (Figure 3.1.2), the top 5 tissues with significantly expressed gene sets were

muscle-skeletal, small intestine-terminal ileum, pancreas, liver and brain-anterior cingulate

cortex (BA24).

3.2 Differential Gene Expression Analysis Statistics

Table 3.2.1 rs1421085 Associated Genes count

Tissue #Significant Expressed Genes
Adipose - Subcutaneous 3116
Adipose - Visceral (Omentum) 4863
Adrenal Gland 5653
Artery - Aorta 2697
Artery - Coronary 1096
Artery - Tibial 3211
Brain - Amygdala 951
Brain - Anterior cingulate cortex (BA24) 1182
Brain - Caudate (basal ganglia) 1315
Brain - Cerebellar Hemisphere 1807
Brain - Cerebellum 1373
Brain - Cortex 1901
Brain - Frontal Cortex (BA9) 1796
Brain - Hippocampus 1106
Brain - Hypothalamus 3795
Brain - Nucleus accumbens (basal ganglia) 1578
Brain - Putamen (basal ganglia) 1763
Brain - Spinal cord (cervical c-1) 1911
Brain - Substantia nigra 2181
Breast - Mammary Tissue 2573
Cells - Cultured fibroblasts 1006
Cells - EBV-transformed lymphocytes 2166
Colon - Sigmoid 2739
Colon - Transverse 1418
Esophagus - Gastroesophageal Junction 2124
Esophagus - Mucosa 4532
Esophagus - Muscularis 3035
Heart - Atrial Appendage 5694
Heart - Left Ventricle 4011
Kidney - Cortex 980
Liver 3820
Lung 5214
Minor Salivary Gland 1490
Muscle - Skeletal 2484
Nerve - Tibial 2391
Ovary 1928
Pancreas 1505
Pituitary 4218
Prostate 1471
Skin - Not Sun Exposed (Suprapubic) 3641
Skin - Sun Exposed (Lower leg) 2815
Small Intestine - Terminal Ileum 3672
Spleen 2030
Stomach 3018
Testis 2907
Thyroid 4437
Uterus 2925
Vagina 3954
‘Whole Blood 7037

The single-tissue DE analysis on RNA-Seq data were
performed from 49 tissue-specific samples focusing on only
genes on autosomal chromosomes. The numbers of rs1421085
associated genes identified as differentially expressed in each
tissues, with a p-value less than 0.05, were summarized in Table
3.2.1. According to the table, the top 5 tissues with most
significant expressed genes were whole blood, heart-atrial
appendage, adrenal gland, lung and adipose-visceral (omentum).
Among 49 tissues, the top 10 rs1421085 associated genes were
MTND1P23, MTCO1P12, RPL10P6, RPL10P9, SORDZ2P,
TBC1D3E, CCL3L3, CSF3, CXCL3, IL6, and MTATP8P2 (Table
3.2.2). The genes which were not highlighted were confirmed as
pseudogene in GeneCards, the Human Gene Database [25].
Pseudogenes were gene copies that had accumulated mutations
over evolutionary time, rendering them unable to encode
messenger RNA or produce functional proteins due to alterations

in essential regions of the genetic code [26]. With accumulated



CSF3

mutation, the pseudogenes usually showed higher expression level than normal genes.

When the highly expressed gene sets were identified from DE analysis, it was important
to investigate its biological function and determined the pathways that they were involved in and
interacted with. The visualization could be achieved through EnrichR, which provided
information on biological pathways that were related to given gene sets and showed the
interaction within each pathways [27,28,29]. The top 5 rs1421085 associated gene biological
pathways were Cytokine-cytokine receptor interaction, Rheumatoid arthritis, IL-17 signaling
pathway, Viral protein interaction with cytokine and cytokine receptor, and Lipid and

atherosclerosis from KEGG pathway reference (Figure 3.2.1).

Figure 3.2.1 Top candidate rs1421085 associated gene pathway network Table 3.2.2 rs1421085 Associated Genes
Genes #Significant Expressed Genes
MTNDI1P23 47
== MTCO1P12 26
RPL10P6 10
N RPL10P9 10
RhouIrits | i ar erosis
- W ' SORD2P 5
Cytokine-cytoKin@ eeeptor interaction ‘/, B TBCID3E 4
Viral protein interaction @qﬂ,m and cytokine receptor
- CCL3L3 3
CSF3 3
w17 e CXCL3 3
- IL6 3
e MTATPSP2 3

3.3 Gene Set Enrichment Analysis Statistics

The GSEA was performed with gene sets derived from the significant differentially
expressed genes identified in the previous DE analysis among 49 tissue samples. The
reference gene sets used in the analysis were BioCarta subset and KEGG subset under the
Canonical Pathways. In the analysis, the heat map was generated to visualize the both
significant rs1421085 associated pathways with tissues identified in the GSEA analysis. The

heat maps for two different reference gene sets displayed the p-values in negative logarithm



transformation of all pathways and tissues. The heat map also indicated the degree of

enrichment in each pathway and tissue with a color gradient. The most enriched pathways and

tissues were presented by a shade of red, while less enriched pathways and tissues were

presented by lighter shades of orange and yellow. There were four heat maps in total: one

groups for all BioCarta pathway subsets and only significant BioCarta pathway subsets, while

the other groups for all KEGG pathway subsets and only significant KEGG pathway subsets

(Figure 3.3.1, Figure 3.3.2).

Figure 3.3.1 rs1421085 associated pathways (BioCarta)

BIOCARTA Pathways
BIOCARTA Pathways

Tissues

Table 3.3.5 rs1421085 Associated Pathway with tissue (KEGG)

Pathway Log P-value Tissue

KEGG_OLFACTORY_ TRANSDUCTION 58.25117 cells cultured fibroblasts
KEGG_OLFACTORY_TRANSDUCTION 53.95712 uterus

KEGG DRUG _METABOLISM_CYTOCHROME P450 42.40114 whole blood
KEGG_METABOLISM_OF XENOBIOTICS BY CYTOCHROME P450 41.55602 whole blood

KEGG_RIBOSOME 34.88142 adipose visceral omentum
KEGG_RETINOL METABOLISM 33.50327 whole blood

KEGG RIBOSOME 33.35330 nerve tibial
KEGG_OLFACTORY_TRANSDUCTION 27.41691 cells ebv transformed lymphocytes
KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION 26.80357 artery tibial

KEGG NEUROACTIVE LIGAND RECEPTOR INTERACTION 26.65939 cells ebv transformed lymphocytes




10

Figure 3.3.2 rs142108S associated pathways (KEGG)

KEGG Patt
SIOCARTA Pathways

According to the GSEA analysis, the tissues and pathways with most rs1421085
associated genes expressed were determined. The tissues with high expression levels were
colon transverse, heart left ventricle, pituitary, small intestine-terminal ileum, testis, and whole

blood from the summary in BioCarta gene sets and KEGG gene sets (Table 3.3.1 and Table

3.3.2).

Table 3.3.1 rs1421085 Associated Tissues Table 3.3.2 rs1421085 Associated Tissues

(BIOCARTA) (KEGG)

Tissue Frequency Tissue Frequency
testis 72 heart left ventricle 60
artery tibial 50 pituitary 57
pituitary 46 vagina 55
whole blood 45 whole blood 51
heart left ventricle 41 testis 48
esophagus mucosa 35 colon transverse 44
small intestine terminal ileum 34 cells cultured fibroblasts 41
brain hypothalamus 32 small intestine terminal ileum 41
brain cerebellar hemisphere 30 colon sigmoid 37
colon transverse 30 adrenal gland 35

The following lists showed the significantly expressed biological pathways and tissue
combinations associated with rs1421085, as identified using BioCarta and KEGG gene sets

(Table 3.3.3, Table 3.3.4, Table 3.3.5, and Table 3.3.6).



11

Table 3.3.3 rs1421085 Associated Pathway

(BIOCARTA) Table 3.3.4 rs1421085 Associated Pathway (KEGG)

Pathway Frequency Pathway Frequency
BIOCARTA_AHSP_PATHWAY 20 KEGG CYTOKINE CYTOKINE RECEPTOR INTERACTION 36
BIOCARTA NEUTROPHIL PATHWAY 19 KEGG_RIBOSOME 30
BIOCARTA_CTLA4 PATHWAY 18 KEGG OLFACTORY TRANSDUCTION 29
BIOCARTA_FIBRINOLYSIS PATHWAY 17 KEGG_DRUG_METABOLISM_CYTOCHROME_ P450 26
BIOCARTA IL17 PATHWAY 17 KEGG_HEMATOPOIETIC_CELL_LINEAGE 26
BIOCARTA_INFLAM PATHWAY 17 KEGG METABOLISM OF XENOBIOTICS BY CYTOCHROME P450 24
BIOCARTA_LAIR_PATHWAY 17 KEGG_NEUROACTIVE_LIGAND RECEPTOR_INTERACTION 24
BIOCARTA LYMPHOCYTE PATHWAY 17 KEGG NOD LIKE RECEPTOR_SIGNALING PATHWAY 24
BIOCARTA_MONOCYTE_PATHWAY 16 KEGG _PENTOSE_AND GLUCURONATE_INTERCONVERSIONS 24
BIOCARTA_STEM_PATHWAY 16 KEGG LEISHMANIA INFECTION 23

Table 3.3.5 rs1421085 Associated Pathway with tissue (BIOCARTA)

Pathway Log P-value Tissue

BIOCARTA IL17 PATHWAY 16.78579 artery tibial
BIOCARTA IL17 PATHWAY 13.69025 esophagus muscularis
BIOCARTA COMP PATHWAY 13.37424 adrenal gland
BIOCARTA TALL1 PATHWAY 12.98777 colon sigmoid
BIOCARTA CTLA4 PATHWAY 12.44362 pituitary

BIOCARTA CTL PATHWAY 12.09623 artery tibial

BIOCARTA AHSP PATHWAY 11.89515 esophagus muscularis
BIOCARTA IL17 PATHWAY 11.71420 brain hypothalamus
BIOCARTA AHSP PATHWAY 11.31371 adipose visceral omentum

BIOCARTA TCAPOPTOSIS PATHWAY 11.05490 artery tibial

The analysis of gene sets from BioCarta and KEGG pathways revealed significant
pathways from individual and combination analysis. In BioCarta gene sets, the pathways that
showed significance were IL17 pathway (IL-17 signaling pathway), AHSP pathway
(Hemoglobin's Chaperone), and CTLA4 pathway (The Co-Stimulatory Signal During T-cell
Activation) [18]. Similarly, in KEGG gene sets, significant pathways were observed in Olfactory
transduction, Drug metabolism cytochrome p450, Metabolism of xenobiotics by cytochrome
p450, Ribosome, Cytokine Cytokine receptor interaction, and neuroactive ligand receptor

interaction. Additionally, the cytokine cytokine receptor interaction and IL-17 signaling pathway
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were also found to be significantly associated with FTO candidate genes, as determined

through previous EnrichR analysis.

4. Discussion

In the study, the aim was to uncover potential obesity-associated genes and biological
mechanisms with statistical methods and computational biology techniques among 49 tissue
samples from GTEXx portal. From the results, the study revealed some important insights into the
obesity associated tissues, genes and pathways.

According to the GTEx statistics, the "C" allele of the rs1421085 gene variant was
considered a risk allele, indicating that individuals who carried this allele were more susceptible
to obesity. The small intestine was considered as most rs1421085 associated tissued from the
results in eQTL and GSEA analysis. In previous obesity studies from Wisen et al., the obese
patients had a significantly higher rate of absorption in the proximal intestine but a shorter
intestinal transit time compared to individuals with normal weight. The rapid absorption
occurring in the small intestine may lead to a decrease in satiety signals, ultimately impacting
the motility of the small intestine [30]. In obesity, the transit time in the proximal small intestine
appears to be heightened, which may be attributed to effective nutrient absorption and
subsequent absence of satiety signals triggered by nutrients in the small intestine [31].

The rs1421085 associated valid genes were TBC1D3E, CCL3L3, CSF3, CXCL3, and
IL6, and all of them had scientific supports from different studies. The associated pathways were
cytokine cytokine receptor interaction and IL-17 signaling pathway from results in BioCarta,
KEGG, and Enrichr analysis. Some studies indicated the relationship between cytokines and
obesity. Obesity was associated with consistently elevated levels of various cytokines, such as
TNFa, IL6, IL10, and CRP, primarily produced by adipose tissues, that contribute to chronic
inflammatory conditions [32]. The presence of chronic low-grade inflammation symptoms in

obese individuals implies that adipose tissue may be affected by IL-17A from IL-17 signaling
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pathway [33]. The analysis could give the future study directions on inflammation conditions,
which was associated with obesity.

Despite the promising results, the study also had several limitations. One notable
limitation was the inconsistency in the results observed for highly expressed tissues among the
eQTL analysis, DE analysis, and GSEA analysis. This discrepancy may be due to the difference
in methods between DE analysis and eQTL analysis with covariates. Specifically, the DE
analysis did not include all of the phenotypes in the statistical model, while the eQTL analysis
included all phenotypes. Furthermore, the limited phenotype information available from the
GTEX portal resulted in different statistical formulas being used for DESeq and eQTL analyses.
Additionally, the DE analysis only accounted for two genotypes (CC and TT), whereas the eQTL
analysis accounted for all three genotypes (CC, CT, and TT). These limitations suggest that the
observed results may not fully reflect the true association between gene expression and the
phenotype of interest. Another limitation of the study was the sample size used for the analysis,
which may not have been large enough to detect subtle differences in gene expression between
the groups of interest. To address this limitation, future studies could increase the sample size
from the GTEx portal and conduct a more comprehensive analysis of the data to better
understand the underlying mechanisms of gene expression in relation to the phenotype of

interest.
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