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Abstract 

Exploring the Genetics and Biological Pathways of Obesity through Computational Biology and 
Statistical Approaches 

By Hongyue Chen 

Background: Obesity is a chronic and complex disease that has become one of the most 
serious public health concerns of our time. One significant factor contributing to the 
development of obesity is genetics, with the fat mass and obesity-associated (FTO) gene 
considered to carry the highest risk of developing the obesity phenotype. Specifically, the 
rs1421085 variant of the FTO gene has been shown to have the strongest association with 
obesity. 

Objectives: In this study, we aim to investigate the rs1421085 associated genotype within 49 
specific tissues provided by the GTEx project to identify potential obesity-associated genes, 
tissues, and biological mechanisms. This research will provide valuable insights into the 
complex genetic and molecular mechanisms underlying obesity and may lead to new 
approaches for preventing and treating this growing public health issue. 

Methods: We utilized various data resources in this study, including 49 raw tissue-specific 
datasets from the open-access GTEx Analysis version 8, as well as curated gene sets from 
BioCarta and KEGG subsets of canonical pathways. We performed differential gene expression 
analysis on the normalized TPM gene data to discover quantitative changes in expression levels 
between groups with rs1421085. Additionally, we employed Gene Set Enrichment Analysis 
(GSEA) to determine whether a previously defined set of genes showed statistically significant, 
concordant differences between phenotypes. To carry out these analyses, we utilized the PLINK 
1.07 and RStudio Version 4.1.2 software tools. 

Results: The "C" allele of the rs1421085 gene variant is a risk allele for obesity, according to 
GTEx statistics. The small intestine was found to be the most rs1421085-associated tissue, with 
increased transit time potentially due to effective nutrient absorption and decreased satiety 
signals. The valid genes associated with rs1421085 were TBC1D3E, CCL3L3, CSF3, CXCL3, 
and IL6, with evidence from various studies. Pathway analysis revealed cytokine-cytokine 
receptor interaction and IL-17 signaling pathway as associated pathways, potentially linking 
chronic inflammation with obesity. 

Conclusions: In the studies, we explored candidate genes, biological pathways, and tissues 
associated with obesity through computational biology and statistical methods. The research 
given the ideas of obesity is inflammation associated, which give researchers an insight in the 
field of future obesity study. 
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1.Introduction: 

 Obesity is a chronic and complex disease that results from various factors with the 

presence of abnormal or excessive accumulation of body fat [1], [2]. According to the standards 

from the World Health Organization (WHO), an individual who is 20 years of age or older with 

the body mass index (BMI) greater than 25 (kg/m^2) is classified as an obese patient [2]. 

Nowadays, obesity has reached pandemic levels, with the number of global cases nearly tripling 

from 1975 to 2016 [3]. In 2022, there were approximately 650 million adults, 340 million 

adolescents, and 39 million children who were considered obese. The worldwide prevalence of 

obesity continues to increase, despite efforts to combat this health issue [4]. As the number of 

people affected by obesity continues to increase, so does the associated financial burden on 

healthcare systems. For instance, in the United States, where obesity affects around 100.1 

million adults (41.9%) and 14.7 million children (19.7%), the annual healthcare costs are 

estimated to be $147 billion by 2023 [5]. 

 Obesity is regarded as one of the serious public health concerns not only for the 

enormous health problems and healthcare costs it generates but also for numerous 

comorbidities associated with itself. Individuals with obesity have a higher risk of type 2 

diabetes, pre-diabetes, hypertension, and cardiovascular disease compared to those who with 

lower BMI [6]. Besides these common comorbidities, obesity is also associated with coronavirus 

disease 2019 (COVID-19), a disease caused by SARS-CoV-2. Compared with normal weight 

patients, obese group had higher risk of COVID-19 related hospitalizations and death in the 

previous systematic review and meta-analysis [7]. In addition, there seems to be a correlation 

between severe COVID-19 outcomes and excessive visceral adiposity [8]. Given the numerous 

health problems associated with obesity, scientists have conducted extensive researches to 

understand causation and develop prevention methods to the disease. Various studies on 

obesity included lifestyle factors, behavior factors, educational factors, environmental factors [9], 

and genetic factors [10] have made progress on prevention treatments. Structured lifestyle, 
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realistic weight-loss goal, food monitoring, healthy home food environment and higher education 

have been proved to be plausible ways to reduce the risk of developing obesity [9]. Focusing on 

genetic perspective, obesity is considered as genetic associated traits. Around 250 specific 

genetic variants associated with obesity are identified from previous genome-wide association 

studies (GWAS) after the Human Genome project. The fat mass and obesity associated (FTO) 

gene located on chromosome 16 is considered the most significant gene associated with 

obesity, carrying the highest risk of developing the obesity phenotype [10]. The FTO genetic 

variant single nucleotide polymorphisms (SNP) rs1421085 is identified to be most associated 

SNPs with obesity [11]. SNPs are common genetic variants that occur in the DNA sequence 

between genes. These variants can serve as biological markers for locating genes that are 

associated with particular diseases, especially useful in complex genetic studies [12]. By 

examining rs1421085, more potential obesity associated genes and biological pathways can be 

identified.  

 Gene expression is an indicator of the extent to which a gene is functioning, reflecting 

the level of genetic information being expressed. With the development of statistical models and 

computational biology techniques conducting on gene expression data, genomic traits and 

biological mechanisms underneath are determined [13]. The objective of this paper is to 

investigate rs1421085 associated genes expression within 49 specific tissues provided by GTEx 

project, unitizing Differential Gene Expression Analysis, and Gene Set Enrichment Analysis 

techniques in order determine potential tissues and biological pathways related to obesity. 

2.Method:  

2.1 Sample resources


 The Genotype-tissue Expression (GTEx) project is a comprehensive public resource to 

that enabled the study of tissue-specific gene expression and regulation [14]. The GTEx donor 

tissues are collected without consideration for any disease state and are a representation of the 
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overall US population. In the GTEx project,  an extensive amount of molecular data is collected 

from various tissues, providing a glimpse into the genetic and genomic diversity of individuals 

and tissues in a non-diseased, healthy condition. [15] The 49 raw tissue-specific data utilized in 

this paper was derived from the open-access data of GTEx Analysis version 8, including tissue-

specific annotation file, phenotype annotation file, RNA Sequencing (RNA-Seq) data, and gene 

count by tissues. The 49 biospeciemens were: Adipose-Subcutaneous, Adipose-Visceral 

(Omentum), Adrenal Gland, Artery-Aorta, Artery-Coronary, Artery-Tibial, Brain-Amygdala, Brain-

Anterior cingulate cortex (BA24), Brain-Caudate (basal ganglia), Brain-Cerebellar Hemisphere, 

Brain-Cerebellum, Brain-Cortex, Brain-Frontal Cortex (BA9), Brain-Hippocampus, Brain-

Hypothalamus, Brain-Nucleus accumbent (basal ganglia), Brain-Putamen (basal ganglia), Brain-

Spinal cord (cervical c-1), Brain-Substantia nigra, Breast-Mammary Tissue, Cells-Cultured 

fibroblasts, Cells-EBV-transformed lymphocytes, Colon-Sigmoid, Colon-Transverse, 

Esophagus-Gastroesophageal Junction, Esophagus-Mucosa, Esophagus-Muscularis, Heart-

Atrial Appendage, Heart-Left Ventricle, Kidney-Cortex, Liver, Lung, Minor Salivary Gland, 

Muscle-Skeletal, Nerve-Tibial, Ovary, Pancreas, Pituitary, Prostate, Skin-Not Sun Exposed 

(Suprapubic), Skin-Sun Exposed (Lower leg), Small Intestine-Terminal Ileum, Spleen, Stomach, 

Testis, Thyroid, Uterus, Vagina, and Whole Blood.  

2.2 Differential Gene Expression Analysis (DE analysis)


 By exploring the distinctions of gene expression between disease and disease-free 

states,  it might be possible to identify candidate genes associated with disease. Differential 

gene expression analysis toke the normalized read count data and performed statistical analysis 

to discover quantitative changes in expression levels between experimental groups [16].  

 In the DE analysis, the parametric Wald test was conducted through DESeq2. For the 

Wald test analysis between genetic groups, the gene count data was used, which was formatted 

into two matrices. The first matrix included gene expression data from gene count, while the 
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other contained allele genotype information. The step includesutilizes shrinkage estimation for 

dispersions and fold changes since it was difficult to accurately estimate within-group variance 

with a small number of replicates. To estimate the dispersion value for each gene, DESeq2 

employs a model fit procedure, which required biological replicates for each experimental 

condition to produce reliable results. In cases duplicates were removed, DESeq2 would 

estimate the dispersion value using the tissue samples from different conditions as replicates 

[17]. The significance threshold was set for 0.05, and the genes significantly associated with 

rs1421085 were then selected based on their p-values.  

2.3 Gene Set Enrichment Analysis (GSEA):


 Besides differential expression analysis on gene sets, gene set enrichment analysis 

(GSEA) was able to interpret the results to the underlying biological processes. It could detect 

subtle changes in gene expression through analysis gene sets as a group compared with 

traditional single gene exploration [18]. The reference gene sets were established based on 

previous biological studies, categorizing in aspects such as biological pathways, cellular 

component, chromosome locations, and molecular functions [18]. The reference group of gene 

sets used in this paper was BioCarta subset (292 gene sets) and KEGG subset (186 gene sets) 

under the Canonical Pathways.   

 Before the genetic statistical analysis, determine the rank order of all members of the 

gene set within the ranked dataset followed by ranking significant gene expression data based 

on fold changes. Calculate the enrichment score (ES) to quantify the degrees to which the given 

canonical pathway associated gene set was overrepresented at the extreme of the ranked list of 

genes, assuming the rank was randomly distributed [18]. Then estimate the significance level of 

ES through permutation test, and adjust for multiple hypothesis testing based on false discovery 

rate (FDR) [19]. The significance level of the ES played a crucial role in determining the degree 

to which the heat map reflects the significance of the pathway and the tissues that were strongly 
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associated with obesity. After conducting pathway analysis, pathways of interest were 

visualized. Pathway visualization helped to gain a more comprehensive understanding of the 

interactions and signaling pathways involved in the biological mechanism under investigation. In 

this paper, the permutation were set as 1000, and  pathways with p-values lower than 0.05 were 

considered as to be significant. 

Analysis Tools:  

 The GWAS part was performed through PLINK 1.07 [20] on Linux environment, and the 

gene expression data were analyzed and visualized using RStudio [21]. The Packages used 

through the analyses were: biomaRT, data.table, DESeq2, dplyr, ggplot2, readr, org.Hs.eg.db, 

stringr, and tidyr.  

3. Results: 

3.1 GTEx Statistics


 The GTEx portal provided comprehensive statistics on genes, SNPs, RNA-Seq, 

quantitative trait locus (QTL), and tissue histology, serving as the valuable resources for 

investigation on the complex relationship between genetics and phenotype traits [14]. As not all 

tissues had available RNA-Seq data, all subsequent analysis were conducted on those tissue 

samples with valid RNA-Seq information (Table 3.1.1).  

 According to the eQTL violin plot available on the GTEx portal, the risk allele associated 

with the rs1421085 appeared to be the "C" allele, indicating individuals with C alleles on 

rs1421085 were more likely to be affected by obesity (Figure 3.1.1).  The statistical results 

obtained were consistent with the information presented on the SNPedia, which suggested that 

the CC genotype is associated with a 1.7- fold increase in obesity risk, while the CT genotype is 

linked with a 1.3-fold increase in risk. In contrast, individuals with the TT genotype were reported 

to have a normal obesity risk [22].  
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 The GTEx portal also provided the multi-tissue eQTL Comparison statistical expression 

results with rs1421085 on FTO gene. Cumulative results from multiple tissues to identify eQTLs 

had been shown to improve accuracy from enhancing statistical power and reducing the risk of 

type I and type II error compared to examining tissues individually. This approach was similar to 

the concept of meta-analysis, involving combination of  results from multiple GWAS to improve 

the statistical power to detect associations [23]. In the eQTL analysis, differentially expressed 
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genes (DEGs) were divided into up-regulated and down-regulated, followed by an investigation 

into whether these gene sets are preferentially enriched at either the top or bottom of each 

other's ranked transcriptome datasets. The GTEx statistical results provided normalized 

enrichment score (NES) in order to indicate the which regulated categories DEGs in the tissues 

belonged. A positive NES value in eQTL indicates enrichment of a gene set at the top of the 

ranked transcriptome data, while a negative NES value indicates enrichment at the bottom [24]. 

In GTEx statistics (Figure 3.1.2), the top 5 tissues with significantly expressed gene sets were 

muscle-skeletal, small intestine-terminal ileum, pancreas, liver and brain-anterior cingulate 

cortex (BA24).  

3.2 Differential Gene Expression Analysis Statistics 

 The single-tissue DE analysis on RNA-Seq data were 

performed from 49 tissue-specific samples focusing on only 

genes on autosomal chromosomes. The numbers of rs1421085 

associated genes identified as differentially expressed in each 

tissues, with a p-value less than 0.05, were summarized in Table 

3.2.1. According to the table, the top 5 tissues with most 

significant expressed genes were whole blood, heart-atrial 

appendage, adrenal gland, lung and adipose-visceral (omentum). 

Among 49 tissues, the top 10 rs1421085 associated genes were 

MTND1P23, MTCO1P12, RPL10P6, RPL10P9, SORD2P, 

TBC1D3E, CCL3L3, CSF3, CXCL3, IL6, and MTATP8P2 (Table 

3.2.2). The genes which were not highlighted were confirmed as 

pseudogene in GeneCards, the Human Gene Database [25]. 

Pseudogenes were gene copies that had accumulated mutations 

over evolutionary time, rendering them unable to encode 

messenger RNA or produce functional proteins due to alterations 

in essential regions of the genetic code [26]. With accumulated 
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mutation, the pseudogenes usually showed higher expression level than normal genes.  

 When the highly expressed gene sets were identified from DE analysis, it was important 

to investigate its biological function and determined the pathways that they were involved in and 

interacted with. The visualization could be achieved through EnrichR, which provided 

information on biological pathways that were related to given gene sets and showed the 

interaction within each pathways [27,28,29]. The top 5 rs1421085 associated gene biological 

pathways were Cytokine-cytokine receptor interaction, Rheumatoid arthritis, IL-17 signaling 

pathway, Viral protein interaction with cytokine and cytokine receptor, and Lipid and 

atherosclerosis from KEGG pathway reference (Figure 3.2.1).   

3.3 Gene Set Enrichment Analysis Statistics


 The GSEA was performed with gene sets derived from the significant differentially 

expressed genes identified in the previous DE analysis among 49 tissue samples. The 

reference gene sets used in the analysis were BioCarta subset and KEGG subset under the 

Canonical Pathways. In the analysis, the heat map was generated to visualize the both 

significant rs1421085 associated pathways with tissues identified in the GSEA analysis. The 

heat maps for two different reference gene sets displayed the p-values in negative logarithm 
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transformation of all pathways and tissues. The heat map also indicated the degree of 

enrichment in each pathway and tissue with a color gradient. The most enriched pathways and 

tissues were presented by a shade of red, while less enriched pathways and tissues were 

presented by lighter shades of orange and yellow. There were four heat maps in total: one 

groups for all BioCarta pathway subsets and only significant BioCarta pathway subsets, while 

the other groups for all KEGG pathway subsets and only significant KEGG pathway subsets 

(Figure 3.3.1, Figure 3.3.2).  
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 According to the GSEA analysis, the tissues and pathways with most rs1421085 

associated genes expressed were determined. The tissues with high expression levels were 

colon transverse, heart left ventricle, pituitary, small intestine-terminal ileum, testis, and whole 

blood from the summary in BioCarta gene sets and KEGG gene sets (Table 3.3.1 and Table 

3.3.2).  

 The following lists showed the significantly expressed biological pathways and tissue 

combinations associated with rs1421085, as identified using BioCarta and KEGG gene sets 

(Table 3.3.3, Table 3.3.4, Table 3.3.5, and Table 3.3.6).  
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 The analysis of gene sets from BioCarta and KEGG pathways revealed significant 

pathways from individual and combination analysis. In BioCarta gene sets, the pathways that 

showed significance were IL17 pathway (IL-17 signaling pathway), AHSP pathway 

(Hemoglobin's Chaperone), and CTLA4 pathway (The Co-Stimulatory Signal During T-cell 

Activation) [18]. Similarly, in KEGG gene sets, significant pathways were observed in Olfactory 

transduction, Drug metabolism cytochrome p450, Metabolism of xenobiotics by cytochrome 

p450, Ribosome, Cytokine Cytokine receptor interaction, and neuroactive ligand receptor 

interaction. Additionally, the cytokine cytokine receptor interaction and IL-17 signaling pathway 
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were also found to be significantly associated with FTO candidate genes, as determined 

through previous EnrichR analysis. 

4. Discussion 

 In the study, the aim was to uncover potential obesity-associated genes and biological 

mechanisms with statistical methods and computational biology techniques among 49 tissue 

samples from GTEx portal. From the results, the study revealed some important insights into the   

obesity associated tissues, genes and pathways.  

 According to the GTEx statistics, the "C" allele of the rs1421085 gene variant was 

considered a risk allele, indicating that individuals who carried this allele were more susceptible 

to obesity. The small intestine was considered as most rs1421085 associated tissued from the 

results in eQTL and GSEA analysis. In previous obesity studies from Wisen et al., the obese 

patients had a significantly higher rate of absorption in the proximal intestine but a shorter 

intestinal transit time compared to individuals with normal weight. The rapid absorption 

occurring in the small intestine may lead to a decrease in satiety signals, ultimately impacting 

the motility of the small intestine [30]. In obesity, the transit time in the proximal small intestine 

appears to be heightened, which may be attributed to effective nutrient absorption and 

subsequent absence of satiety signals triggered by nutrients in the small intestine [31]. 

 The rs1421085 associated valid genes were TBC1D3E, CCL3L3, CSF3, CXCL3, and 

IL6, and all of them had scientific supports from different studies. The associated pathways were  

cytokine cytokine receptor interaction and IL-17 signaling pathway from results in BioCarta, 

KEGG, and Enrichr analysis. Some studies indicated the relationship between cytokines and 

obesity. Obesity was associated with consistently elevated levels of various cytokines, such as 

TNFα, IL6, IL10, and CRP, primarily produced by adipose tissues, that contribute to chronic 

inflammatory conditions [32]. The presence of chronic low-grade inflammation symptoms in 

obese individuals implies that adipose tissue may be affected by IL-17A from IL-17 signaling 
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pathway [33]. The analysis could give the future study directions on inflammation conditions, 

which was associated with obesity.  

 Despite the promising results, the study also had several limitations. One notable 

limitation was the inconsistency in the results observed for highly expressed tissues among the 

eQTL analysis, DE analysis, and GSEA analysis. This discrepancy may be due to the difference 

in methods between DE analysis and eQTL analysis with covariates. Specifically, the DE 

analysis did not include all of the phenotypes in the statistical model, while the eQTL analysis 

included all phenotypes. Furthermore, the limited phenotype information available from the 

GTEx portal resulted in different statistical formulas being used for DESeq and eQTL analyses. 

Additionally, the DE analysis only accounted for two genotypes (CC and TT), whereas the eQTL 

analysis accounted for all three genotypes (CC, CT, and TT). These limitations suggest that the 

observed results may not fully reflect the true association between gene expression and the 

phenotype of interest. Another limitation of the study was the sample size used for the analysis, 

which may not have been large enough to detect subtle differences in gene expression between 

the groups of interest. To address this limitation, future studies could increase the sample size 

from the GTEx portal and conduct a more comprehensive analysis of the data to better 

understand the underlying mechanisms of gene expression in relation to the phenotype of 

interest. 
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