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Abstract 

 

Allele Frequency Spectra for 1-Dimensional Circular Populations 

By Akash Arani 

 

The natural limit on geographic genetic dispersal given through isolation by 

distance encourages the use of spatial structure to analyze genetic diversity, commonly 

analyzed using allele frequency spectra. This paper aims to analyze the spectra of one of 

the simplest forms of discrete population structure: 1-dimensional circular populations. 

Msprime was used to model the genetic variation of a 1-dimensional circular population 

and create genealogical trees using coalescent theory. As mutations were assumed to have 

no effect on fitness, neutral mutations were applied post coalescent simulation. These 

genealogical trees were then converted to allele frequency spectra by counting the 

number of single nucleotide polymorphisms (SNPS) per branch group.  

The results focused on strong structured 1-dimensional circular populations, where 

the configuration of the demes and the intra-deme migration rate had a significant impact 

on genetic variation. Simulation results showed that the expected allele frequency spectra 

of strong-structured 1-dimensional circular populations matched the predicted allele 

frequency spectra for populations of census size at low frequencies and transitioned to 

match the predicted allele frequency spectra for populations of effective size at higher 

frequencies. These results indicate that 1-dimensional circular populations undergo 

changes in genetic variation at different frequencies and populations need to be deeply 

sampled to analyze a population’s genetic variation. Further research is needed to identify 

if this behavior translates to higher-dimensional structures and continuous space.  
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Introduction 

 

The theory of isolation by distance [1] suggests mating pairs generally tend to live 

not only near to each other but near to their eventual offspring as well. This implies that 

individuals that live near each other are more genetically similar than individuals that live 

further away.  The isolation by distance model has been used to describe the evolutionary 

trends of several organisms, including humans. One such trend was analyzed on human 

inhabitants of the Sanday, Orkney Islands whereby using genealogical data, it was 

concluded that the degree of genetic relatedness declined as geographic distance increased 

[2]. This naturally limited geographical dispersal of genes has allowed scientists to 

discretize natural populations and create spatial structures, such as the stepping stone model 

[3] or the large metapopulation model [4], to make assumptions about the real world. This 

paper analyzes one of simplest forms of spatial structure in 1-dimensional circular 

populations. 

Allele frequency spectra (AFS) are powerful tools used to describe genetic variation 

present in a population. AFS are created by taking sequences of samples within a population 

and comparing their genetic make up to an ancestral reference sequence. Differences 

between the specific sample sequences and the ancestral sequences at specific sites on the 

ancestral genome are noted and referred to as Single Nucleotide Polymorphisms (SNPs). 

The number of SNPs for each site on the ancestral genome is referred to as the allele 

frequency. For example, if only three samples out of 3000 differ from the ancestral sequence 

at a specific site, the allele frequency for that specific site is 3/3000= 0.1%. The distribution 

of these allele frequencies is what is plotted as the allele frequency spectrum. 

https://paperpile.com/c/j5QBjD/15Vu
https://paperpile.com/c/j5QBjD/XGry
https://paperpile.com/c/j5QBjD/cxkJ
https://paperpile.com/c/j5QBjD/M40c


 

One way to model the effect of spatial structure on the evolution of a population is 

to attempt to find an effective population size [5]. The effective population size is the size 

of an idealized population that experiences the same rate of loss in genetic diversity as an 

observed population. In the context of spatially structured populations, the effective 

population size is the size that a well-mixed population would have to match the genetic 

diversity of a spatially structured population. Effective population sizes have been used in 

population biology to understand the behavior of important population biology concepts 

such as heterozygosity through f-statistics [6] and important models such as the Moran 

model [7].  For a one-dimensional circular population, Maruyama [8] found simple 

approximate expressions for the effective population size in the limits of strong and weak 

spatial structure, which will be discussed in the Model section. Finite circular 1-dimensional 

populations, along with their linear offshoots, are popular choices of structure to study as 

they are easy to visualize and yet, are rich with population dynamics [8,9];[10].  

 Coalescent theory is a powerful tool used to model the genealogy of a population. 

Originally created by Kingman[11], coalescent theory looks at the entire gene pool and 

alleles available in a given population and attempts to trace the lineages of these alleles back 

in time. This paper uses the Wright-Fisher model where the population is well-mixed and 

stays constant at size N each generation through immediate replacement of dead individuals 

by their offspring[12]. If we consider a population of N diploid individuals (two alleles per 

individual), the probability that a random allele in the current generation has the same parent 

as another random allele in the previous generation, defined as the probability of 

coalescence one generation ago, is =
1

2N
 [13]. This means that the probability that two alleles 

do not share a parent in the previous generation, or do not coalesce in the previous 

https://paperpile.com/c/j5QBjD/KQ0f
https://paperpile.com/c/j5QBjD/zwUH
https://paperpile.com/c/j5QBjD/opDM
https://paperpile.com/c/j5QBjD/MIBj
https://paperpile.com/c/j5QBjD/NM87+MIBj
https://paperpile.com/c/j5QBjD/lA4F
https://paperpile.com/c/j5QBjD/NEc3
https://paperpile.com/c/j5QBjD/KhOx
https://paperpile.com/c/j5QBjD/DXE7


 

generation, is = 1 −
1

2N
 , implying that the probability of coalescence between two 

inhabitants in t generations is geometrically distributed via P (coalescence t generations ago) 

= (1 −
1

2N
)t−1  

1

2N
 [13]. For large values of N, this probability approximates to P 

(coalescence t generations ago) =  
1

2N
e(1−t)/2N, giving an expected time to coalescence = 

2N [13]. Modelling this distribution on a genealogical tree allows us to trace back ancestry 

and effectively model the genealogy of a population.  

Wakeley’s observation of large metapopulations states that populations structures 

that are subdivided into discrete demes with equal density, coalesce through a scattering-

collecting decomposition. The scattering phase represents the most recent phase, where 

inhabitants either coalesce intra-deme or their lineages moves away from the original demes 

they were sampled in[14]. It is important to note that in the scattering phase, individuals 

sampled from different demes do not coalesce [15]. As the scattering phase is the most 

recent phase and probability of coalescence decreases with time as P (coalescence t 

generations ago) = (1 −
1

2N
)t−1  

1

2N
, the fastest coalescence events happen in the scattering 

phase. Once all the samples have either coalesced intra-deme or the each of the lineages as 

moved to a different deme, the collecting phase begins as seen in Fig 1. The collecting phase 

represents the time frame when pairs of lineages undergo large migration events to 

eventually collect together in a deme to coalesce. The collecting phase ends when the most 

recent common ancestor for the entire sample is found. Genetic diversity in this phase is 

modeled by a well-mixed population of effective size Ne. 

https://paperpile.com/c/j5QBjD/DXE7
https://paperpile.com/c/j5QBjD/Xp6O
https://paperpile.com/c/j5QBjD/LlLm


 

 

Fig 1: This figure represents an example of a coalescent tree for a structured population with four demes, each with three 

inhabitants. The genealogical history of the tree is separated via the scattering-collecting decomposition. The scattering 

phase consists of intra-deme coalescence and lineages moving to different demes. The collecting phase begins when all 

the lineages are in different demes and coalescence only occurs due to inter-deme migration events that bring lineages 

together. In deme 3, all three inhabitants coalesce intra-deme via the two coalescent events indicated by squares, signifying 

the end of its scattering phase. For deme 4 however, the scattering phase ends with one coalescent event and one migration 

event where a sample’s lineage moves to a different deme. The circular nodes signify the two coalescent events that occur 

with respect to the inhabitants in deme 4, where the more recent coalescent happens intra-deme in the scattering phase 

while the more ancient coalescent happens at the end of the collecting phase with the most recent common ancestor for 

the entire population.  

 

This paper aims to combine the concept of scattering-collecting decomposition with 

Maruyama’s work on 1-dimensional circular populations to explain the behavior of said 

populations through an allele frequency spectrum and understand how they conform to a 

census population size (N) vs an effective population size (Ne). 

 

 



 

 

Model 

For this paper, there are three important variables that will be modified to understand 

1-dimensional circular populations: 

1) Migration rate: m, defined as the probability an inhabitant leaves its current deme 

for the neighboring demes per generation. 

2) Deme density: ⍴, defined as the number of diploid inhabitants per deme.  

3) Length of population: L, defined as the total number of demes in the population. 

which define the census population size – defined as the total number of individuals in a 

spatially structured population given by size N= L⍴, and the effective population size – 

defined as the size of an idealized well-mixed population used to describe the genetic 

diversity of a spatially structured population, given by size Ne. 

 

Fig 2: Example of a circular population. There are L=5 demes, each with ⍴=3 diploid inhabitants. Individuals migrate to 

neighboring demes at rate m each generation.   Total number of individuals in the entire population = deme density * 

number of demes -> N= ⍴L 



 

All coalescent simulations were done using msprime [16] with diploid populations. 

Msprime was used as it allowed genealogical trees to be simulated under the spatial structure 

shown in Fig 2. For all populations, we simulate exhaustive sampling, in which the entire 

population is sampled. Mutations were assumed to have no effect on the fitness of the 

individuals in the population; therefore, no actual stochastic mutations were applied; 

however, as the genealogical trees used by msprime are measured in units of branch length, 

the expected mutation rate per generation was set equal to 1 for simplicity’s sake. Therefore, 

the mutation parameter for the effective population is ϴe=4Neμ = 4Ne[4] and 𝛳 =4Nμ =

4N for the census population.  

While the genealogical tree gives information on the parental history of every node 

it does not give us information on the genetic polymorphism of the population. This is why 

expected allele frequency to evaluate genetic variation. To calculate the allele frequency 

spectrum for a well-mixed population of given size N= L⍴ , we use SNP count =
ϴ

i
[13], 

where i is the corresponding allele count. As mutations are applied per branch length, the 

allele frequency spectra produced in this paper are expected allele frequency spectra. 

The allele frequency spectrum for the simulation is calculated from the genealogical 

tree by first realizing that as mutations are applied in units of branch length, the number of 

mutations per branch depends on the length of the branch. Looking at Fig 3, if we want to 

find the number of sites with derived allele count = 1, we look at the length of the branches 

over nodes 0,1,2,3…,9 and as mutations are applied to every unit length of branch, the sum 

of the length of the branches over all the single samples is the count of SNPs for derived 

allele count = 1. If we want to find the number of sites with derived allele count = 2 , we 

look at the sum of the length of the branches over pairs of the nodes: 0,1,2,3…,9 , which 

https://paperpile.com/c/j5QBjD/qjqh
https://paperpile.com/c/j5QBjD/M40c
https://paperpile.com/c/j5QBjD/DXE7


 

would be equivalent to looking at the sum of the length of the branches over nodes: 10,11, 

12, 13, 14. Qualitatively, we can see that the sum of  length of the branches over nodes 

10,11, 12, 13, 14 is far larger than the sum of the length of the branches over nodes 0-9, 

therefore leading to a higher number of mutations and a higher SNP count for derived allele 

count = 2.  

This process is repeated till we get to the final node, which in this case is node 18, 

thereby creating an array of SNP counts for different allele counts. As we want the final 

spectrum to be in terms of allele frequencies rather than allele counts, we divide the allele 

counts by the sample size to get the corresponding allele frequency. As this paper deals with 

exhaustive sampling, the allele frequency will be obtained by dividing the allele count will 

be divided by the census population size. Plotting the SNP counts over their corresponding 

allele frequencies is what creates an allele frequency spectrum. 

 

Fig 3: The sum of the lines labeled by the ovals is the count of the SNPs for derived allele count = 1. The sum of the lines 

labeled by the triangles is the count of the SNPs for derived allele count = 2. 

At high allele frequencies, the intrinsic stochasticity in the coalescent process 

produces noisy allele frequency spectra.  To reduce the number of simulations we needed 



 

to run, we therefore smoothed the simulated spectra at high frequencies. Past a chosen allele 

frequency threshold of f = 100, the smoothing function replaces individual SNP counts with 

the mean count of the neighborhood. The higher the frequency, the larger the neighborhood 

the new count was averaged over, allowing for a drastic improvement in readability. As the 

smoothing function used the mean, the error was calculated to be the standard error of the 

mean. Please refer to  [17] for the full implementation of the smoothing function 

 

Results 

According to Maruyama, there exist weakly structured and strongly structured 1-

dimensional circular populations[8]. If a 1-dimensional circular population satisfies 

m⍴>>L, then structure is weak and the circular structure has little effect on the allele 

frequency spectrum. This weak structural effect is seen in Fig 4, where a circular population 

with variables m⍴>>L has an expected allele frequency spectrum that exactly matches the 

predicted allele frequency spectrum of a well-mixed population with census population size 

N=⍴L. We therefore focus on the opposite limit, m⍴<<L, where structure is said to be strong, 

and the circular population has genetic diversity equivalent to a well-mixed population of 

effective size                                                                                                              

Ne =
L2

2mπ2
                                       (2) 

[10] 

https://paperpile.com/c/j5QBjD/6Ngd
https://paperpile.com/c/j5QBjD/MIBj
https://paperpile.com/c/j5QBjD/lA4F


 

 

Fig 4. Weakly structured populations are approximately well-mixed. The expected allele frequency spectrum found in 

simulations of a circular population with m⍴>>L (green) closely matches that predicted for a well-mixed population with 

the same census size N=L⍴(blue)., m=0.5, ⍴=200, L=5. The simulated coalescent data was averaged over 50 trials, which 

will be replicated for the result of the figures. 

           Strong structure implies that the number of demes and migration between said demes 

should play a significant role in the spread of mutation. N=⍴L and Ne =
L2

2mπ2  will be 

referred to as Maruyama’s limiting expressions for weak and strong structure respectively. 

There are two variations of strong structure where m⍴ << L: 

1) m⍴>>1: Structure is discrete, but the overall structured population behaves similarly 

to a continuous population due to rapid migration between demes 

2) m⍴<<1:  Weak continuity as there are too few migrants per generation for alleles to 

spread inter-deme 

 

 



 

Allele frequency spectra where 1 << m⍴ << L 

Making a circular population comply to the inequality 1 << m⍴ << L makes sure 

that while structure is strong due to L being larger than m⍴ [8], the migration rate and deme 

density are kept high enough for inter-deme dynamics and intra-deme dynamics 

respectively to be apparent as well. Qualitatively, this balance of intra-dynamics and inter-

deme dynamics should lead to behavior that is not entirely well-mixed throughout the 

frequency range.  

This qualitative conclusion is proven to be true as keeping 1 << m⍴ << L allowed 

the simulated circular populations to exhibit transitional behavior between the census and 

effective population. As seen in Fig 5 where m = 0.05, ⍴ = 200 and L=1000, the circular 

population initially conforms to the census population but transitions at a specific transition 

frequency to the effective population from the scattering phase to the collecting phase. The 

same behavior was confirmed with different values of L from 1000 - 2000.  

 In the scattering phase, coalescent events only happen intra-deme and therefore the 

habitat’s genetic diversity is independent on the spatial structure of the population, making 

the expected allele frequency spectra for simulated circular population match the predicted 

allele frequency spectra for the census population. In the collecting phase, coalescent events 

occur by bringing lineages from different demes together to coalesce, making the genetic 

diversity of population highly dependent on spatial structure. Therefore, in the collecting 

phase, the expected allele frequency spectra for simulated circular population match the 

predicted allele frequency spectra for the effective population. 

 This behavior is fascinating as setting 1 << m⍴ << L gives the population strong 

structure and therefore, the population should behave like a well-mixed population with 

https://paperpile.com/c/j5QBjD/MIBj


 

effective size according to Maruyama’s limiting expressions (Maruyama 1971) (Equation 

2). However, the population instead satisfies the census population at low frequencies and 

transitions to satisfy the effective population at higher frequencies (Fig 5). 

 

 

Fig 5: The expected allele frequency spectrum for a one-dimensional circular population with variables L =1000, ⍴ = 200, 

m=0.05 along with the predicted allele frequency spectra for well-mixed populations of census and effective size. Strongly 

structured allele frequency spectrums where  1 << m⍴ << L do not solely behave like a well-mixed population with 

effective size Ne (Equation 2) but instead behave like the census population at lower frequencies, and transition at a 

specific transition frequency to behave like the effective population at higher frequencies.  

 

The transition frequency was calculated by looking at the time scale for one-dimensional 

diffusion  tdiff =
x2

m
 [18]. This time scale was created by stating that during coalescence, a 

https://paperpile.com/c/j5QBjD/kp3w


 

lineage takes a one-dimensional random walk. On average, going backwards in time, a 

lineage can only take one step at a time, where ∆s = ±1 and the sign/direction of the step 

is random. This implies that the average distance the lineage travels after n steps is  

x̅ = ∑ ∆si
n
i=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

but that makes x̅=0 as the probability of a + or – step is ½ and taking the average of all these 

steps should make the steps cancel each other out. Therefore, we instead consider  

x2̅̅ ̅ = ∑ ∆si
n
i=1

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ ∆si
2n

i=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 2 ∑ ∑ ∆si∆sj

̅̅ ̅̅ ̅̅ ̅̅n
j=1

n
i=1   

But in ∆si∆sj, both ∆s terms are independent therefore the average of the sum of steps that 

are ±1 = 0 

∴ ∑ ∆si∆sj
̅̅ ̅̅ ̅̅ ̅̅n

i=1  = 0 

∴ x2̅̅ ̅=∑ ∆si
2n

i=1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = n  

as ∆si
2 = 1. This implies that the average distance the lineage travels is  

√x2̅̅ ̅ = x̅ = √n  

for step size = 1. 

The diffusion time scale corresponds to the entire travel time of the lineage backwards in 

time: 

tdiff~
number of steps

speed at which each step is taken 
 

where on average, the lineage takes a ±1 step every 
1

m
 generations 

∴ tdiff~
number of steps

average speed at which each step is taken 
=

n
magnitude of each step

number of generations per step 

=
n
1
1
m

=
n

m
=

x2̅̅ ̅

m
 

and we can simplify x2̅̅ ̅  to x2 because we are using the expected allele frequency spectra 

for our simulations. 



 

According to Weissman [19], the number of mutants directly correlates to the 

generational age of the mutant via n(t) = t; therefore, by equating n to t, we get the 

following math: 

t =
x2

m
→ x = (mt)

1

2, n = t ∴  
n

x
= (

t

m
)

1

2 = ⍴  ∴  twm = m⍴2                                          (3) 

Where twm is the time at which the well-mixed nature of the circular population breaks.  As 

the allele frequency is simply the fraction of the total population that are mutants, the 

frequency where the well-mixed time scale breaks is defined by 

ftransition =
t

⍴L
=

mp

L
                                                                                       (4) 

The transition frequency represents the point when the purely well-mixed nature of 

the system breaks and the rare mutant allele transitions from the scattering phase to the 

collecting phase.  Once this transition phase finishes, the rare allele now becomes the wild-

type allele, and the simulation behaves like a well-mixed population with an effective 

size Ne =
L2

2mπ2 instead of N=⍴L. 

 

Allele frequency spectra where m⍴ << L and m⍴ < 1 

 Keeping m⍴ << L but allowing m⍴ < 1 keeps structure strong and allows the 

simulated circular populations to similarly exhibit transitional behavior; however, in a 

different format to circular populations that follow 1 << m⍴ << L with notedly different 

transition frequencies. There are two ways to break the inequality  1 << m⍴ << L via 

m⍴ << 1 . The first case is by keeping ⍴ = 200 and L = 1000 from Fig 5 but lowering m 

to 0.00025 to makem⍴ = 0.05<<1 (Fig 6). Lowering the migration rate makes the chance 

https://paperpile.com/c/j5QBjD/7tXh


 

of a mutant migrating intra-deme less likely, making the circular structure less important 

than it is in the original inequality 1 << m⍴ << L.  

While the circular population does transition in Fig 6, the equivalently calculated 

transition frequency from Equation 4, f =
mp

L
= 5 ∗ 10−5, undershoots the actual transition 

phase as it places itself in the scattering phase. The lesser intra-deme movement increases 

the initial frequency range where well-mixed dynamics dominate; invalidating the transition 

frequency calculated via Equation (4). This large well-mixed frequency range implies a 

proportionally higher scattering phase, as the end of the scattering phase is defined as when 

all samples have either coalesced or migrated to a non-birth deme. By keeping ⍴ and L 

constant lowering m, the rate at which all samples either coalesce or migrate to different 

demes is reduced.  

 

 

Fig 6: The expected allele frequency spectrum for a circular population with variables L=1000, ⍴ = 200 m=0.00025 along 

with the predicted allele frequency spectra for well-mixed populations of census and effective size. All variables from Fig 



 

5 are kept constant but m=0.00025 to make 
m⍴

L
= 5 ∗ 10−5<1.  The calculated transition frequency undershoots the 

transition phase as the lower migration rate extends the amount of time that well-mixed dynamics dominate, leading to a 

higher scattering phase that is not described by 
m⍴

L
.  This invalidates 

m⍴

L
 as the transition frequency for this population and 

highlights the need for a new transition frequency. 

 

 Invalidation occurs once again when the inequality is broken by keeping m constant 

and making ⍴ small. This was done by reducing Fig 5 ’s ⍴ = 200 to ⍴=1 while keeping 

m=0.05 and L=1000. As the allele frequency spectrums work within the range of N where 

N=⍴L, reducing ⍴ reduces the domain of frequencies available within the population. In the 

case of Fig 7, reducing ⍴ = 200 to ⍴=1 reduces N =200000 to N=1000. The issue lies in 

that f=m⍴/L does not adjust to this change in N, giving us the same transition frequency as 

in Fig 6; however, N being 1000 instead of 200000 limits the allele frequency domain to 

10−3. This leads to the transition frequency of 5 ∗ 10−5 undershooting the entire spectrum 

as seen in Fig 7. 



 

 

Fig 7: The expected allele frequency spectrum for a circular population with variables L=1000, ⍴ = 2, m=0.05 along with 

the predicted allele frequency spectra for well-mixed populations of census and effective size. All variables from Fig 5 are 

kept constant but ⍴=2 to make m⍴<1. While the transition frequency is the same as it is in Fig 6 and also undershoots the 

transition phase, it does so in a different manner. Reducing ⍴ reduces N which in turn reduces the frequency domain of 

the allele frequency spectrum. This makes the transition frequency of 0.0001 not only undershoots the transition phase but 

even the lowest frequency allele possible. This invalidates 
m⍴

L
 as the transition frequency for this population as well and 

further highlights the need for a new transition frequency. 

 

Calculating transition frequencies  

         It is evident through Fig 6 and Fig 7 that the transition frequency calculated via 

Equation (3) does not work when m⍴ < 1. It is important to note that along with twm , the 

time scale at which a deme fills up with the mutation, 

td~
number of individuals in a deme

 mutation rate
=

⍴

1
=  ⍴       (5) 



 

needs to be considered as well as once a deme fills up with the mutation, inter-deme 

dynamics become irrelevant, and the population dynamics starts to become dependent on 

spatial structure. Time scales twm = m⍴2 and td = ⍴ represent the balance between the 

inter-deme and intra-deme respectively in the spread of the mutation, where once the 

dominant of the two time scales is broken, the genetic diversity of the 1-dimensional circular 

population becomes spatially dependent and the transition occurs. Therefore, to find the 

correct transition frequency, the following adjusted method needs to be applied: 

x = (mt)
1

2 , n = t ∴  
n

x
= (

t

m
)

1

2 = → t = max (⍴, m⍴2)                                 (6)                                

if ⍴ > m⍴2 

fd =
1

L
= transition frequency                                                         (7)     

if m⍴2 > ⍴ 

fwm =
mp

L
= transition frequency    

 In both Fig 6 and Fig 7, ⍴ > m⍴2; therefore, the correct time scale to associate with 

the population’s transition to spatial dependence should be ttd. leading to fd =
1

L
 via 

Equation (7). Fig 8 and Fig 9 depict the exact same simulation data to Fig 6 and 11 

respectively; however, with fd  instead of  fwm. 

 



 

 

Fig 8:  The expected allele frequency spectrum for a circular population with variables L=1000, ⍴ = 200 m=0.00025 along 

with the predicted allele frequency spectra for well-mixed populations of census and effective size. Same data as Fig 6 but 

with the corrected fd =10−3 instead of fwm =  5 ∗ 10−5  . The transition frequency indicates the transition phase with far 

greater accuracy than it did in Fig 6, implying that using the deme-filling time scale is highly effective when m⍴ < 1. 

 

Fig 9 Same data as Fig 7 but with the corrected  fd =10−3 instead of fwm =  5 ∗ 10−5 .  L=1000, ⍴ = 1, m=0.05. The 

transition frequency indicates the transition phase with far greater accuracy than it did in Fig 6. Just like with Fig 8, the 

accurate transition frequency implies that using the deme-filling time scale is highly effective when m⍴ < 1 

 



 

 Comparatively, the threshold frequencies in Fig 8 and Fig 9 perform better than their 

counterparts in Fig 6 and Fig 7. This suggests that it is imperative to consider which of the 

well-mixed or deme-filling time scale dominates the other to define the threshold frequency 

at which the population breaks its spatial independence, leading to f=1/L via Equation (4).   

This logic follows through to the earlier examples as well.  In Fig 10, 1 << m⍴ <

< L itself implies that the well-mixed time scale m⍴2 dominates the deme-filling time scale 

as1 << m⍴ is equivalent to ⍴ << m⍴2; therefore the well-mixed time scale is what 

defines the limit at which spatial independence breaks and fmp                                                                              

becomes the correct transition frequency via Equation (4), which is correctly plotted in Fig 

5. Erroneously applying fd causes the threshold frequency to significantly undershoot the 

actual transition region as the mutant rare type has not begun transitioning from the 

scattering to the collecting phase yet.  

 



 

Fig 10: Erroneously applying fd instead of fwm to Fig 5’s allele frequency spectrum. L =1000, ⍴ = 200, m=0.05. The 

scattering phase is longer than what the deme filling time scale predicts. This shows that it is important to use correct 

time scale when deriving the transition frequency. 

 

Discussion 

This paper showed, using allele frequency spectrums, that 1-dimensional circular 

populations that comply to the inequality mp<<L defy the limiting approximations given by 

Maruyama [8] (Equation 2) but instead behave like well-mixed populations of size N =

⍴L at lower frequencies and transition to behave like well-mixed populations of size Ne =

L2

2mπ2 at higher frequencies. These transitions occur at specific transition frequencies that 

indicate when the population starts to become spatially dependent and move from the space 

independent scattering phase to the space dependent collecting phase. In the scattering 

phase, coalescence events occur very frequently but only happen intra-deme [14], hence the 

space independence. In the collecting phase, coalescence events are much rarer and are the 

product of large inter-deme migration events[14], hence the space dependence.   

The transition frequencies were calculated using Equations (4), (6), and (7) by using 

diffusion time scale tdiff, along with the dominant of the two time scales: the deme-filling 

time scale  td and the well-mixed time scale twm. If the deme-filling time scale dominates 

the well-mixed time scale, the scattering phase ends when the demes of the population fill 

up with mutants and the transition frequency is calculated as fd =
1

L
.  If the well-mixed time 

scale dominates, almost mutant has migrated has taken place for the scattering phase end 

and the transition frequency is calculated as fwm =
mp

L
. 
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The existence of these transition frequencies suggests that when looking at 

structured populations where m⍴ << L , it is important to deeply and accurately sequence 

data as behavior can evidently differ at extremely small allele frequencies. If a 1-

dimensional circular population had variables m=0.01,⍴=100, and L = 104, this would give 

a transition frequency fd =
1

L
 = 10−4, and would require deep enough and accurate enough 

sequencing to correctly notice a rare allele of 0.1% frequency and would imply transitional 

dynamics only present at low frequencies. Rare alleles are becoming prevalent in the study 

of disease control due to the advent of low-error deep sequencing; with recent studies 

showing newly discovered low frequency alleles of 1% or lower having a significant impact 

on the study of common disease [20]. This makes the study of population dynamics at low 

frequencies more important today than ever before.  

While behavior conforming to the consensus population is defined as the scattering 

phase and behavior conforming to the effective population size is defined as the collecting 

phase, the transition phase is not defined by either phase. Coalescence events are defined to 

only happen intra-deme in the scattering phase, while due to large inter-deme migrations in 

the collecting phase[14]. The description of coalescence events in the transition phase 

however are not clear as during the phase, the population does not conform to the census 

population, implying some degree of space dependence; however, it does not conform to a 

calculated effectively sized population as well, making its dynamics hard to comparatively 

analyze. More research needs to be done specifically on the features of the transition phase, 

as the transition from the scattering to collecting phase is clearly not instantaneous.  

An interesting observation for allele frequency spectrums where L>1000 was that at 

very high frequencies, the simulated allele frequency spectrum seems to transition back 

https://paperpile.com/c/j5QBjD/rDS0
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from Maruyama’s Ne to N (Fig 14). This can be attributed to the fixation of the non-mutant 

allele, leading to the loss of other alleles. This should make the circular population lose 

genetic diversity at the same rate as the census population.; however further research is 

needed on much larger L and N values to draw decisive conclusions. 

A continuation to this paper would be to test whether this transitional behavior 

occurs in continuous space. Concepts used such as n(t) = t for any well-mixed population 

and diffusion x~(mt)1/2 are true regardless of dimensionality, while concepts such as 

Maruyama's effective population Ne =
L2

2mπ2  are only true for 1-dimensional circular 

populations.  In reality however, natural phenomena around us takes place in continuous 

space and while the aforementioned isolation by distance does lead to the limited 

geographical dispersal of genetic data, not all studies respond well to discrete generalization. 

Structured population are susceptible in making assumptions about the distribution of 

offspring and migration that are inconsistent with continuous space [21].  

 While the continuation of this paper to continuous space might prove challenging, a 

more obvious next step would be to see whether this transitionary behavior of expected 

allele frequency spectra for 1-dimensional circular populations carries over to 2-dimensions. 

Concepts such as diffusion and deme-filling should crossover while the effective population 

would need to be heavily adjusted to manage the second dimension. Maruyama has already 

done work on the heterozygosity of 2-dimensional circular populations [22], combining his 

results with the concepts put forth in this paper would prove interesting as the limits of 

strong and weak structure should change with demes being arranged in higher dimensions. 
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