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Abstract

Nonnegative and Volume Constrained Image Deblurring
By Lu Lin

In this thesis, we discuss iterative algorithms that can be used for constrained image
deblurring. We mainly focus on the gradient projection method, which combines
gradient descent with projections that implement constraints, such as nonnegative and
volume constraints. Numerical experiments on three test problems using MATLAB
illustrate the effctiveness and the efficiency of these methods.
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Chapter 1

Introduction

1.1 Background on Inverse Problems

An inverse problem is the process of calculating the unknown causes from a set of

observations. It takes the general form

b = G(x)

where b is the observed data, x is the unknown we wish to determine, and G is an

operator describing the relationship between b and x.

In this thesis, we will discuss image deblurring problems, which can be generallly

considered as linear inverse problems. We wish to reconstruct a good approximation

of the true image from the typically blurred and noisy measurements:

g = Kftrue + η

where g is the measured blurred image, ftrue is the true image, η is additive noise,

and K is a matrix that serves as the mapping operator generated from the point

spread function (PSF). We will have further discussion of image deblurring problems

in section 1.3.
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There are mainly two computational challenges for image deblurring:

• The problem is usually large-scale: If the images have m× n pixels (i.e. g, f ∈

Rmn), then the dimension of matrix K would be mn×mn (i.e. K ∈ Rmn×mn).

• The matrix K is extremely ill-conditioned. This implies that regularization and

additional constraints are needed to compute good approximations of ftrue.

1.2 Iterative Methods

Iterative methods have many advantages for solving image deblurring problems. They

can be very efficient for getting solutions, and they can easily incorporate additional

constraints on the solutions, such as nonnegative and volume constraints [1, 9]. The

basic idea of iterative methods is to generate a sequence of approximate solutions

until it converges to a sufficiently good approximation.

Since image deblurring problems are usually ill-conditioned, we focus on iterative

methods that can be applied to solve the following least squares problem.

min
f
‖Kf − g‖22

We notice that if we define the quadratic function ψ(f) = 1
2
fTKTKf − fTKTg, then

the following two minimization problems are equivalent:

min
f
ψ(f) and min

f
‖Kf − g‖22.

Hence, our deblurring problem can be transformed into solving: min
f
ψ(f), which can

be easily implemented by using iterative methods. Here we have the general form of
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the iterative methods:

f (k+1) = f (k) + τkd
(k)

which means in the kth step of the iteration, we approach the solution in the direction

of d(k) by a step size τk.

The general form of an iterative algorithm is represented in the following box.

f0 = initial guess of ftrue

for k = 0, 1, 2, ...

• fk+1 = fk + τkdk

• update dk, τk and other intermediate quantities involved in the computations

• determine if the stoping criteria are satisfied

end

1.3 Image Deblurring

In the image processing application, the data is recorded digitally by the intensity

value at only finite and discrete points on the image, named pixels. This recording

process is modeled as a linear system:

g(x, y) =

∫
R2

k(x, s; y, t)f(s, t)dsdt+ η(x, y)

where, g(x, y) is the observed image, f(s, t) is the original image, η(x, y) is the additive

noise, and the kernel function k represents the blurring phenomena, which is called the

point spread function (PSF). Typically, k is estimated from observations and varies

from case to case. If the kernel function satisfies k(x, s; y, t) = k(x − s, y − t), then
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the blur is called spatially invariant, otherwise the blur is called spatially variant. If

we partition the image into several small regions, and for each region there is a single

PSF that can be used to represent the blurring opertation, then the blur is called

locally spatially invariant.

The integration in the model is called a two-dimensional Fredholm integral equation

of the first kind (IFK) in mathematical literature. Since it is discretely recorded, by

discretizing the IFK and approximating the integration with a quadrature rule, we

obtain the matrix-vector equation that we discussed in section 1.1

g = Kftrue + η.

More details about inverse problems in imaging can be found in [6, 3].

Our goal for image deblurring is to compute an approximated solution f to this

matrix-vector equation. For example in Figure 1.1, the left picture is the true image

of a satellite, which is ftrue in the matrix-vector equation; the middle picture is the

blurred observation, which is g; the right picture is the reconstructed image using 43

iterations of the iterative method conjugate gradient method for least squares problems

(CGLS), which is f that we computed. In the general cases of image deblurring, the

true image is usually unknown and only a blurred observation is given. Our expec-

tation is to get a good image reconstruction from this blurred and noisy observation

with the given point spread function.

In the general form of the unconstrained image deblurring problem, the task can be

expressed as follows:

min
f
‖Kf − g‖2 .
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(a) True Image. (b) Blurred Observation. (c) Reconstructed Image.

Figure 1.1: The left is the true image, which is usually unknown in image deblurring
problems; the middle picture is the given observation, which is extremely blurry and
noisy; the right picture is our reconstructed image after 43 iterations of the CGLS
method.

But this may be too simple for a real life application. We may need to introduce

additional constraints in some problems in order to improve the accuracy of the

solution or to follow the laws of physics. Here are two additional constraints that we

believe are valuable and practical:

• Nonnegative Constraint: The data of the image is recored by the pixel

intensity values, which are in a range of nonnegative values. Thus, the true

image should always be nonnegative. However, because of additional noise,

nonnegativity is not always satisfied in the observed image, as well as in the

reconstructed image based upon it. As represented in Figure 1.2, the true image

in the left is nonnegative everywhere, but the reconstruction at 43th iteration,

using CGLS, has some negative values. Hence, we include a nonnegative con-

straint in the iterative algorithm.

• Volume Constraint: Intuitively, the total volume of the data is not affected

by the blurring operation. It is natural to preserve the volume of data, and to

enforce an additional volume constraint in the iterative algorithm.
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(a) True Image. (b) Reconstructed Image.

Figure 1.2: The true image in the left is nonnegative everywhere, but the recon-
structed image has some negative values in it. Here the reconstructed image is com-
puted at iteration 43 using the CGLS method.

In addition, we also need to incorporate an appropriate boundary condition for de-

blurring problems, since the edges of the blurred image may be affected by information

outside the field of view. For example, in Figure 1.3, the left is an astronomical image,

which has zero boundary condition intuitively; but for the right image, we obviously

need to apply the boundary condition other than zero, since there is information ex-

tending outside the left top corner.

In the following chapters, we will further discuss the unconstrained iterative meth-

ods, such as gradient descent method (GD) and conjugate gradient method for least

squares (CGLS), for image deblurring problems. Based on the unconstrained gradient

descent method, we introduce a nonnegative projection in chapter 2, and a nonneg-

ative and volume projection in chapter 3 for solving more complicated constrained

problems.
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Figure 1.3: It is appropriate to use zero boundary conditions for the left image because
it is all black near the edges (and likely outside) of the field of view. The right image
has to use boundary condition other than zero, because the image is expected to
extend with nonzero pixels outside the left top corner.
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Chapter 2

Gradient Projection Methods

The gradient projection method can be literally understood as a combination of the

gradient descent method, which solves the least squares problem, and a specific pro-

jection, which enforces additional constraints for various problems.

In this chapter, we focus on the least squares problem with nonnegative constraint,

expressed as follows:

min
f
‖Kf − g‖2, s.t. f ≥ 0.

It basically first updates one step of the approximate solution by the gradient descent

method, then projects the approximate solution onto the nonnegative orthant.

2.1 Gradient Descent Method

As we discussed in section 1.2, if we define ψ(f) = 1
2
fTKTKf − fTKTg, then the

least squares problem min
f
‖Kf−g‖2 is equivalent to min

f
ψ(f). The iterative methods

take the form:

f (k+1) = f (k) + τkd
(k)

where d(k) is a step direction, and τk is a step size.

In the gradient descent method, we choose the step direction to be the negative
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gradient of ψ(f), and choose the step size that minimizes ψ(f) in the direction of the

negative gradient. That is:

d(k) = −∇ψ(f (k)) = KT (g −Kf (k))

τk = arg min
τ
ψ(f (k) + τd(k))

To determine the value of τk, we use a line search algorithm [10]:

• Exact line search is for the unconstrained problem, where the step size is

exactly given by minimizing ψ along the ray {f + τd |τ ≥ 0}. We first define

function ρ(τ) = ψ(f + τd), then calculate the critical value, τ , of the first

derivative ρ′(τ) = 0:

ρ(τ) = ψ(f + τd)

=
1

2
(f + τd)TKTK(f + τd)− (f + τd)TKTg

=
1

2

(
fTKTKf + 2τdTKTKf + τ 2dTKTKd

)
−
(
fTKTg + τdTKTg

)
=

1

2
fTKTKf + τdTKTKf +

1

2
τ 2dTKTKd− fTKTg − τdTKTg

=⇒ ρ′(τ) = dTKTKf + τdTKTKd− dTKTg

Let ρ′(τ) = 0, then:

τ =
dTKT

(
g −Kf

)
dTKTKd

=
dTd

dTKTKd
=
‖d‖22
‖Kd‖22

• Inexact (backtracking) line search is for the problems under certain con-

straints, where the step size τ approximately minimizes ψ(f + τd) along {f +

τd |τ ≥ 0}. The backtracking line search starts with a relatively large initial
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guess of the step size τ , and then iteratively shrinks τ by a factor of β ∈ (0, 1)

until the objective function ψ(f) decreases corresponding to a step-wise move-

ment from f to f + τd. The exit condition of the iteration of backtracking line

search is:

ψ(f + τd)− ψ(f) ≤ ατ∇ψ(f)Td

where α is another controlling parameter, such that α ∈ (0, 0.5), and ∇ψT (f)d

is the slope of the function of τ along the searching direction d = −∇ψ(f).

Thus the backtracking line search algorithm can be expressed as follows:

τ=initial guess of step size;

while ψ(f + τd)− ψ(f) > ατ∇ψ(f)Td

τ = βτ ;

return τ

Since the projections are implemented after the line search, we choose step size τk via

the exact line search. That is:

τk = arg min
τ
ψ(f (k) + τd(k)) =

‖d(k)‖22
‖Kd(k)‖22
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Thus, the basic iteration needs to compute:

r(k) = g −Kf (k),

d(k) = KT r(k),

τk = ‖d(k)‖22/‖Kdk‖22,

f (k+1) = fk + τkd
(k).

We notice that r(k+1) can be computed more efficiently by expanding it to:

r(k+1) = g −Kf (k+1) = g −K(fk + τkd
(k)) = r(k) − τkKd(k).

Now, we can write the gradient descent algorithm as follows:

Algorithm: Gradient Descent

given: K, g

choose: initial guess for f

compute:

r = g −Kf

while (not stop) do

d = KT r

w = Kd

τ = ‖d‖22/‖w‖22
f = f + τd

r = r − τw

end while

For more details about the gradient descent methods, we refer [8, 10].
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2.2 Nonnegative Projection

The nonnegative constraint, f ≥ 0, can be easily applied into the iteration by the

projection Pnn(·), such that:

[Pnn(f)]i =

{
fi if fi ≥ 0,

0 if fi < 0.

where the ith entry of a projected vector f will keep the same if it is nonnegative,

otherwise it will become zero. Thus, we can obtain the gradient projection algorithm

by just choosing a nonnegative initial guess and replacing

f = f + τd

with

f = Pnn(f + τd).

We can write the algorithm of gradient descent with nonnegative constraint as follows:
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Algorithm: GDnn

given: K, g

choose: initial guess for f ≥ 0

compute:

r = g −Kf

while (not stop) do

d = KT r

w = Kd

τ = ‖d‖22/‖w‖22
f = Pnn(f + τd)

r = r − τw

end while

2.3 Conjugate Gradient Method for Least Squares

Conjugate gradient methods are usually much more efficient than the gradient descent

method; for more details, see [12, 7]. But incorporating projections into conjugate

gradient methods is not always feasible. In this thesis, we use the conjugate gradient

method for least squares (CGLS) as a comparison to the gradient projection methods.

For the experiments written in chapter 4, we use a naive way to incorporate the

constraints into CGLS, which is simply applying the projection on its approximated

solution following the final iteration step.
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Chapter 3

Projection for Volume and

Nonnegative Constraints

In this chapter, we will extend the gradient projection method discussed in chapter

2, to preserve not only the nonnegativity but also the total volume of the data. The

task can be described as the following optimization problem:

min
f
‖Kf − g‖22,

s.t. f ≥ 0,
n∑
i=1

fi = C

where C is the total volume of the data, and everything else is the same as defined

in chapter 2.

We use exactly the same algorithm as described in section 2.2: first updating one

step of the approximate solution f by the gradient descent method, then projecting

f by the specific projection. But instead of using projection Pnn(·), which only en-

forces nonnegative constraint, we develop a more complicated projection Pnnv(·) in

the following section, so that it enforces both nonnegative and volume constraints on

the approximate solution f .
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The algorithm of gradient descent with nonnegative and volume constraint is depicted

as follows:

Algorithm: GDnnv

given: K, g

choose: initial guess for f ≥ 0

compute:

r = g −Kf

while (not stop) do

d = KT r

w = Kd

τ = ‖d‖22/‖w‖22
f = Pnnv(f + τd)

r = r − τw

end while

3.1 Nonnegative and Volume Projection

In this section, we focus on developing the projection Pnnv(·), which preserves the

volume and the nonnegativity of f (k). Basically, It can be viewed as an optimization

problem:

Pnnv(y) = arg min
w

1

2
‖w − y‖22

s.t. w ≥ 0, ‖w‖1 = C

where vectors y and w respectively corresponds to the given f (k) and the projection

of f (k), and C represents our expectation of the total data volume.

We will solve this optimization problem by the Lagrange multiplier approach [5].
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3.1.1 Lagrange Multiplier Approach

The Lagrangian of the projection problem is

L(w, ρ, z) =
1

2
‖w − y‖22 + ρ

(
‖w‖1 − C

)
− zTw

where ρ is a Lagrange multiplier, and z is a vector of non-negative Lagrange multi-

pliers.

Since the optimality condition occurs when dL
dwi

= 0, and the first order derivative of

the Lagrangian is dL
dwi

= wi − yi + ρ− zi, it implies that:

wi − yi + ρ− zi = 0.

If wi > 0 and zTw = 0, then we must have zi = 0. This means that for all positive

entries wi > 0, we must have that wi = yi − ρ+ zi = yi − ρ. To be more precise:

wi = max(yi − ρ, 0).

Thus, if the Lagrange multiplier ρ is known, the projection problem can be solved

easily as the following equation

[Pnnv(y)]i = max(yi − ρ, 0).

This ρ can be determined by using Newton’s Method, and we will discuss it in the

following section.
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3.1.2 Newton’s Method for finding ρ

For the projection problem, the volume constraint ‖w‖1 = C also needs to be satisfied.

Assume w ∈ Rn, with wi ≥ 0. Then ‖w‖1 =
n∑
i=1

wi = C. Thus for the best-fit solution

of this projection problem, it requires

n∑
i=1

max(yi − ρ, 0) = C.

If we define function φ(ρ) =
n∑
i=1

max(yi − ρ, 0), then the ρ needed in section 3.1.1 is

the exact solution to the equation φ(ρ)− C = 0. We are able to solve φ(ρ)− C = 0

by using Newton’s method [10], which takes the following form:

ρ0=initial guess

for k = 1, 2, ...

• ρk+1 = ρk − φ(ρk)−C
φ’(ρk)

• determine if the stop criteria are satisfied.

end

In order to improve the efficiency of the Newton’s method, it demands a good initial

guess of ρ.

3.1.3 Initial Guess of ρ

In this section, we focus on finding a good initial guess ρ0, such that it takes only a

few iterations in Newton’s method to obtain an accurate enough solution ρ.

We start by sorting the given vector y, so that all of its entries increase monotonically,

such that y1 ≤ y2 ≤ · · · ≤ yn .
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Then if ρ = yj, we get

max(yk − ρ, 0) =

{
0 if k ≤ j

yk − ρ if k > j

Thus,

sj = φ(yj)− C =
n∑

k=j+1

(yk − yj)− C

=
n∑

k=j+1

yk − (n− j)yj − C

Notice that

sj+1 =
n∑

k=j+2

yk −
(
n− (j + 1)

)
yj+1 − C

=
n∑

k=j+1

yk − (n− j)yj+1 − C

= sj − (n− j)(yj+1 − yj)

Therefore, we can generate the sequence of
{
si
}n
i=1

recursively:

Let s1 =
n∑
k=1

yk − ny1 − C

for j = 1 : n− 1

sj+1 = sj − (n− j)(yj+1 − yj)

end

We will use yj as the initial guess ρ0, where j is the largest j such that sj > 0.



19

Chapter 4

Numerical Experiments

In this chapter, we display some numerical results that illustrates the effectiveness and

efficiency of the gradient projection methods described in chapter 2 and chapter 3.

We use three test problems, named Satellite, StarCluster, and Grain in the MATLAB

toolbox Restore Tools [2, 9]. In each one of the test problems, we include the following:

• Comparing the performance of Gradient descent (GD) and CGLS methods when

they are:

1. Unconstrained

2. Nonnegative constrained, named GDnn and CGLSnn.

3. Nonnegative and volume constrained, named GDnnv and CGLSnnv.

Here, we use the CGLS method, which is introduced in section 2.3, as a com-

parison to the GD method. We implement the constraints on CGLS by simply

applying the corresponding projection after its optimal reconstructed solution

is computed.

We use relative error

‖f (k) − ftrue‖2
‖ftrue‖2

as a measure for the accuracy of the reconstructions, and use the number of

iterations, where the relative error reaches the minimum, as an indicator for the
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efficiency of the reconstructions. As for the volume constraint, we set it to be

the total volume in the given observation.

• Testing the efficiency of the nonnegative and volume projection:

Since constrained methods are based on the projections, we need to check the

efficiency of the projections in order to control the total reconstruction time.

Nonnegative projection is very simple to apply, so that we ignore it and only

test the nonnegative and volume projection.

We first plot the graph of φ(ρ)−C, described in section 3.1.3, to show that our

choice of ρ0 in the projection is visually a good initial guess. Then we determine

the number of iterations in Newton’s method. For an efficient projection, we

expect the number to be very small.

4.1 Test Problem: Satellite

This is an example of astronomical image reconstruction. The true image, the blurred

observation, and the point spread function of this test problem are displayed in Figure

4.1, where all images are of size 256× 256. The blur of this test problem is expected

to be spatially invariant. The boundary condition is set to zero.

4.1.1 Methods Comparison

We compare the performance of the unconstrained and constrained CGLS and GD

methods for this example in Figure 4.2 and Figure 4.3, and represent the numerical

results explicitly in the following table. The curves in the graphs represent the con-

vergence history of CGLS and GD methods, and the points in the graphs show the

occurrence of the optimal reconstruction, such that the relative error of the recon-
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(a) True Image. (b) Observation. (c) PSF.

Figure 4.1: (a) is the true image of the test problem Satellite; (b) is the blurred image
that is given as the observation; (c) is the given point spread function that describes
the blurring phenomenon.

struction reaches its minimum through the entire iteration history. For the purpose

of demonstration, we enlarge the partial segment of the left graph, focusing on the

optimal reconstruction, and display it on the right side of Figures 4.2 and 4.3.

Minimum Relative Error Number of Iteration

CGLS 0.3557 43

CGLSnn 0.1446 43

CGLSnnv 0.1499 43

GD 0.3533 1101

GDnn 0.3555 1301

GDnnv 0.3475 1596
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Figure 4.2: Performance of constrained and unconstrained CGLS method for the
example of Satellite. The right graph is an enlarged segment of the left graph.

Iterations

0 200 400 600 800 1000 1200 1400 1600 1800

R
e

la
ti
v
e

 E
rr

o
r

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

GD

GDnn

GDnnv

Iterations

1000 1100 1200 1300 1400 1500 1600 1700

R
e

la
ti
v
e

 E
rr

o
r

0.347

0.348

0.349

0.35

0.351

0.352

0.353

0.354

0.355

0.356

0.357

GD

GDnn

GDnnv

Figure 4.3: Performance of constrained and unconstrained GD method for the exam-
ple of Satellite. The right graph is an enlarged segment of the left graph.
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Here are our observations from the numerical results for this example:

• For CGLS based methods, the two projections of the constrained methods sig-

nificantly improve the accuracy of the reconstruction from the unconstrained

CGLS method. In between the constrained methods, CGLSnn is slightly better

than CGLSnnv.

• For GD based methods, GDnnv generates the best accuracy of the reconstruc-

tion with the largest number of iterations, while GDnn is slightly worse than

the unconstrained GD method and requires more iterations.

• In general, CGLS based methods are much more efficient than GD based meth-

ods.

• It’s interesting to notice that CGLSnn generates the best reconstruction with

the fewest number of iterations.

In Figure 4.4, we show the reconstructed images for each method. We can see that

the two projections significantly improve the sharpness of the reconstructions for both

methods. In general, CLGS based methods generate sharper reconstructed images

than GD based methods. It is also interesting to point out that although CLGS

with nonnegative projection generates the solution with minimum relative error, the

solution actually looks better when also including the volume constraint, achieved by

the nonnegative and volume projection.

4.1.2 Efficiency of the NNV Projection

As the method described in section 3.1.3, we are required to find the solution ρ to the

equation φ(ρ)− C =
n∑
i=1

(yi − ρ)− C = 0. Newton’s method can be used to solve the

problem, but for doing so, we need a good initial guess that decreases the Newton
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(a) CGLS. (b) CGLSnn. (c) CGLSnnv.

(a) GD. (b) GDnn. (c) GDnnv.

Figure 4.4: Reconstructed images for CLGS and GD based methods for the example
of Satellite.
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iterations as much as possible.

We set the initial guess to be ρ0 = yj, where j is the largest j such that, φ(yj)−C > 0.

From Figure 4.5, we notice that our initial guess of ρ0 = yj is very close to the

intersection of the curve φ(ρ) − C and the x-axis. Thus we visually accept it as a

good initial guess.
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Figure 4.5: This is the plot of φ(ρ)−C for the example of Satellite. The blue points
on the graphs represents the values of φ(yj) − C, where yj is the jth entry of the
reconstructed solution at iteration 100 of GDnn. The red point is our initial guess of
ρ. The right graph is the partial enlarged segment of the left graph focusing on our
initial guess.

We also record the number of iterations in Newton’s method when doing the experi-

ment in Figure 4.3. The numerical results are shown in the following table:

Max. # of Iteration Min. # of Iteration Avg. # of Iteration

GDnnv 6 1 4.9937

These results show that our choice of the initial guess ρ0 extremely decreases the

number of the iterations in Newton’s method, and thus allows the NNV projection

to be very efficient.
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4.2 Test Problem: StarCluster

This is another example of astronomical image reconstruction. The true image, the

blurred observation, and the given point spread functions (here we only display one

of them as a representation) of this test problem are displayed in Figure 4.6, where

all of the images are of size 256×256. The blur of this test problem is expected to be

locally spatially invariant. In this experiment, we use a 2 × 2 partitioning (i.e., four

regions), and assume each region of the blurred image is formed with one point spread

function. As in the previous example in section 4.1, we set the boundary condition

to be zero.

(a) True Image. (b) Observation. (c) PSF.

Figure 4.6: (a) is the true image of the test problem StarCluster; (b) is the blurred
image that is given as the observation; (c) is one of the four point spread functions
of this test problem that represents the blurring operator.

4.2.1 Methods Comparison

We compare the performance of the unconstrained and constrained CGLS and GD

methods for this example in Figure 4.7 and Figure 4.8, and represent the numerical

results explicitly in the following table. All the other setups are the same as in the

previous example in section 4.1
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Figure 4.7: Performance of constrained and unconstrained CGLS method for the
example of StarCluster. The right graph is an enlarged segment of the left graph.
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Figure 4.8: Performance of constrained and unconstrained GD method for the exam-
ple of StarCluster. The right graph is an enlarged segment of the left graph.



28

Minimum Relative Error Number of Iteration

CGLS 0.1608 56

CGLSnn 0.0973 56

CGLSnnv 0.0506 56

GD 0.1578 557

GDnn 0.1260 577

GDnnv 0.0650 816

Here are our observations from the numerical results for this example:

• For both CGLS and GD based methods, the two projections of the constrained

methods significantly improve the accuracy of the reconstruction from the un-

constrained methods. In between the constrained methods, CGLSnnv performs

better than CGLSnn. GDnnv also performs better than GDnn, but with an

increase cost of the iteration.

• Although CGLS is not as accurate as GD methods for the unconstrained prob-

lem, when we apply the same projection constraints on the final computed

solution, CGLS based methods generate a more accurate solution with much

fewer number of iterations than GD based methods.

• The reconstruction with the best accuracy and the fewest number of iterations

comes from CGLSnnv.

In Figure 4.9, we show the reconstructed images for each method. For the clarity

purpose, here we only display the data with values in the range of (50, 500). In general,

CGLS based method generate sharper reconstructed images than GD based methods.

We also conclude that for both methods, the volume constraint, incorperated by NNV

projection, further improves the sharpness of the reconstruction on the base of the

nonnegative constraint.
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(a) CGLS. (b) CGLSnn. (c) CGLSnnv.

(a) GD. (b) GDnn. (c) GDnnv.

Figure 4.9: Reconstructed images for CLGS and GD based methods for the example
of StarCluster, displaying the values in the range of (50, 500) for clarity purpose.
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4.2.2 Efficiency of the NNV Projection

From Figure 4.10, we notice that our initial guess of ρ0 = yj, shown as the red dot, is

very close to the intersection of the curve φ(ρ)− C and the x-axis. Thus we visually

accept it as a good initial guess.
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Figure 4.10: This is the plot of φ(ρ) − C for the example of StarCluster. The blue
points on the graphs represents the values of φ(yj) − C, where yj is the jth entry of
the reconstructed solution at iteration 100 of GDnn. The red point is our initial guess
of ρ. The right graph is the partial enlarged segment of the left graph focusing on
our initial guess.

We also record the number of iterations in Newton’s method while doing the previous

experiment in Figure 4.8. The numerical results are shown in the following table:

Max. # of Iteration Min. # of Iteration Avg. # of Iteration

GDnnv 11 4 7.7479

The number of the iterations in Newton’s method for this problem is very small,

which means that the NNV projection is very efficient. Thus, we can say that our

initial guess ρ0 is a really good choice.
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4.3 Test Problem: Grain

The true image, the blurred observation, and the given point spread function of

this test problem are displayed in Figure 4.11, where all of the images are of size

256× 256. The blur of this test problem is expected to be spatially invariant. We set

the boundary condition to be reflective.

(a) True Image. (b) Observation. (c) PSF.

Figure 4.11: (a) is the true image of the test problem Grain; (b) is the blurred image
that is given as the observation; (c) is the given point spread function that represents
the blurring phenomenon

4.3.1 Methods Comparison

We compare the performance of the unconstrained and constrained CGLS and GD

in Figure 4.12 and Figure 4.13. The numerical results are presented in the following

table (we omit the results for the gradient descent methods because they require more

than 5000 iterations):

Minimum Relative Error Number of Iteration

CGLS 0.2266 176

CGLSnn 0.1415 176

CGLSnnv 0.1963 176
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Figure 4.12: Performance of constrained and unconstrained CGLS method for the
example of Grain. The right graph is an enlarged segment of the left graph.
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Figure 4.13: Performance of constrained and unconstrained GD method for the ex-
ample of Grain. The optimal solutions are not reached yet at iteration 5000.
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Here are our observations from the numerical results for this example:

• For CGLS, the 2 projections significantly improve the accuracy of the recon-

struction from the unconstrained method.

• For GD, the 2 projections improve the accuracy of the reconstruction from the

unconstrained method in the first 5000 iterations.

• GD based methods are obviously not very efficient in this case. The optimal

solutions are not reached even after 5000 iterations. We might need other tools

to accelerate the convergence.

In Figure 4.14, we show the reconstructed images for CGLS based methods. We can

see that the two projections significantly improve the sharpness of the reconstruction

from the unconstrained CGLS method. For the two constrained methods, the results

are very similar. In between them, CGLSnn method produce a slightly better looking

reconstructed image.

(a) CGLS. (b) CGLSnn. (c) CGLSnnv.

Figure 4.14: Reconstructed images for CLGS based methods for the example of Grain.
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Chapter 5

Conclusion and Discussion

In the previous chapters, we have discussed the gradient projection method that can

be used for image deblurring, and the two projections that enforce nonnegativity

and volume constraints on the solution. We compared the performance of gradient

projection methods with CGLS methods on three test problems using MATLAB.

The numerical results illustrate the benefits of implementing these constraints and

the effectiveness of our projections. But this is just the beginning of our study. More

things need to be discussed in the future. For example, it would be interesting to use

a projected Newton method instead of projected gradient descent. Because a Newton

method uses second derivative information, it will usually converge much faster than

gradient descent, which uses only first derivative information. However, it is much

more difficult to implement a projected Newton method for large scale problems in

image processing [10]. It would also be interesting to try preconditioned Landweber

methods [11]. This approach requires additional work to define and implement a

preconditioning technique that is beyond the scope of this thesis. Finally we mention

that an important application of the volume constraint is in astronomical imaging,

especially of stellar objects (e.g., binary stars, galaxies, etc.), where scientists want

to preserve photometry [4]. It would be interesting to apply the method in this thesis

to real astronomical imaging applications, and compare with the techniques used by

astronomers.
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