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Abstract	

Deriving	a	Metric	to	Compare	Solutions	of	Malarial	Strain	Identification	Problems	and	
Performing	Network	Analysis	of	Disease	Outbreaks	Across	Time	

By	Safiyah	Bharwani	

	

	

	 This	text	will	build	upon	the	research	conducted	by	Mustonen	et	al.	to	use	a	Bayesian	
method	to	identify	strains	of	the	P.	falciparum	species	of	malaria	from	mixed	diagnostic	
samples.	In	their	StrainRecon	algorithm,	a	single	weight	vector	used	to	measure	the	presence	of	
malaria	in	an	infected	individual	is	utilized	in	order	to	infer	the	quantity	of	strains	of	malaria,	
the	identity	of	each	strain,	and	the	proportion	in	which	each	strain	is	present.	This	information	
is	grouped	into	matrix-vector	combinations,	with	matrices	containing	information	on	the	
identity	of	each	strain	and	the	corresponding	vector	containing	information	on	the	proportion	
in	which	each	strain	is	represented.	Due	to	the	fact	that	this	inference	problem	is	under-
determined,	there	are	multiple	matrix-vector	pairs	presented	as	possible	solutions.	This	work	
will	build	upon	this	prior	research	by	deriving	a	novel	method	to	compare	the	solutions	
produced	by	the	StrainRecon	algorithm.	We	will	rigorously	justify	this	metric	and	find	an	
efficient	implementation	before	performing	hierarchical	clustering	over	real-world	data	from	
the	Centers	for	Disease	Control	and	Prevention	(CDC).	In	particular,	we	will	focus	our	analysis	
on	understanding	how	disease	outbreaks	of	malaria	have	changed	over	time	and	attempt	to	
track	how	the	number	of	strains	of	malaria	has	changed	in	the	field.	This	analysis	is	of	key	
importance	to	researchers	at	the	CDC,	since	there	is	a	sparsity	of	information	on	how	the	
number	of	strains	of	malaria	has	changed	over	time.	Throughout	this	work,	an	emphasis	will	be	
placed	on	making	mathematical	results	consumable	to	practitioners	at	the	CDC.	
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1 Abstract

This text will build upon the research conducted by Mustonen et al. to use

a Bayesian method to identify strains of the P. falciparum species of malaria

from mixed diagnostic samples [19]. In their StrainRecon algorithm, a single

weight vector used to measure the presence of malaria in an infected individ-

ual is utilized in order to infer the quantity of strains of malaria, the identity

of each strain, and the proportion in which each strain is present. This infor-

mation is grouped into matrix-vector combinations, with matrices containing

information on the identity of each strain and the corresponding vector con-

taining information on the proportion in which each strain is represented. Due

to the fact that this inference problem is under-determined, there are multiple

matrix-vector pairs presented as possible solutions. This work will build upon

this prior research by deriving a novel method to compare the solutions pro-

duced by the StrainRecon algorithm. We will rigorously justify this metric and

find an efficient implementation before performing hierarchical clustering over

real-world data from the Centers for Disease Control and Prevention (CDC). In

particular, we will focus our analysis on understanding how disease outbreaks of

malaria have changed over time and attempt to track how the number of strains

of malaria has changed in the field. This analysis is of key importance to re-

searchers at the CDC, since there is a sparsity of information on how the number

of strains of malaria has changed over time. Throughout this work, an emphasis

will be placed on making mathematical results consumable to practitioners at

the CDC.
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2 Introduction

2.1 Background: Malaria

Over the course of human history, the infectious disease that has killed the

most humans is malaria [21]. In 2016, there were an estimated 216 million

cases of malaria in 91 countries, indicating an increase of 5 million cases in one

year. Even more, the malaria parasite caused 445,000 deaths in 2016, with a

disproportionately large percentage of deaths among children under 5 years of

age [20].

Although malaria is curable, the risk posed by the parasite is compounded

since it can hide undetected in the body for days, weeks, months, and in some

cases, even decades [12]. As such, in order to treat the disease effectively upon

diagnosis, the implementation of a targeted treatment as early as possible is

critical to save lives.

However, finding the most effective treatment is made more difficult by the

fact that there are five different parasite species of Plasmodium, the parasite

which causes malaria, that are deadly to humans. Further, each of these species

have multiple strains which can infect humans. In particular, strains of the

species P. falciparum are the deadliest, and it has been shown that most hu-

man deaths due to malaria are caused by infection from P. falciparum [20].

Treatment of malaria is made more difficult due to the fact that P. falciparum

quickly mutates and that infected persons often have more than one strain of

the parasite [3, 13].

5



During a 2016 study conducted by Emory University, researchers drew blood

from 1,300 untreated children with malaria from Angola, Ghana, and Tanzania.

Then, after extracting the DNA of malaria parasites from the blood and using

polymerase chain reaction (PCR), they found that approximately 15 percent of

the blood samples contained mixtures of both drug-sensitive and drug-resistant

strains of malaria [5]. Even more, this study also showed that instead of a general

treatment for malaria, more tailored approaches, such as those based upon the

specific strains present in the infected individual, might be more effective. This

approach could even help prevent parasites from acquiring resistance to malarial

drugs while increasing the benefits from treatment.

However, the most common method to identify the identity of each strain

of malaria and the proportion in which each strain is present—namely, DNA

extraction and amplification using PCR—is expensive both in terms of time

and cost. Even more, this method has even been shown to be susceptible to

“persistent problems” such as “inadvertent contamination of one strain with

another” and “confusion about the identity” of common strains [22]. Further,

another disadvantage with this approach is that PCR-based diagnoses provide

information focused on the species level as opposed to specific genetic patterns

such as strain.

As such, we identify a clear need for a cheaper and more accurate method

to find the number, identity, and proportion of strains of malaria an individual

infected with P. falciparum contains. Such a method would allow for tailored

approaches to malaria treatment in such a way that both increases the upside

6



of treatment and limits the downside of parasites gaining resistance.

2.2 Formalizing the Problem

In the research conducted by Mustonen et al., the StrainRecon algorithm was

developed in response to the problem above [19]. Let us begin by reviewing the

methods of this algorithm.

Suppose that d ∈ Rm represents the given mixed diagnostic sample measure-

ment, which contains information on the proportion of mutations in the sample

at each of the m Single Nucleotide Polymorphism (SNP) sites. We would then

formalize d as:

d = Mw + e, (1)

where M ∈ {0, 1}mxn is a binary matrix that encodes the presence/absence

of a mutation at each SNP site for each strain (as 1 or 0, respectively). Further,

w ∈ Rn represents the relative frequency of each of the n strains (such that∑n
i=1 wi = 1). Lastly, e ∈ Rm represents noise, which we assume is drawn from

a multivariate Gaussian distribution.

The task now is to find M and w, given d. Due to the presence of noise,

the algorithm searches for the solutions to ||Mw–d||2. We can formalize this as

the following Bayesian inverse problem:

π[M,w|d] ≈ exp(−1

2
||Mw–d||2Γ − λ||M||0) · πw. (2)

Then, using Maximum-A-Posteriori (MAP) estimation based block coordi-

nate descent, the algorithm estimates the largest mode of the posterior. Finally,
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using Gibbs sampling, which is a kind of Markov-Chain Monte Carlo (MCMC),

we quantify the uncertainty of the solutions.

Note that the aforementioned StrainRecon algorithm can be generalized to

applications of other diseases, such as E. coli and salmonella.

8



3 Motivation

According to the CDC, it is of vital importance that all treatments of malaria

must be informed by a laboratory diagnosis of the strains of malaria that are

present in the infected individual [8]. From the StrainRecon algorithm, we

see that there exists a potential alternative method to laboratory diagnosis

that would allow for a more resource-efficient method to detect the identity

and proportions of the strains of malaria. However, note that for any given

measurement vector d, the StrainRecon algorithm finds many possible solutions,

since the problem is not injective.

On the other hand, while the StrainRecon algorithm does not produce a

unique solution, we do in fact find that it is effective at detecting the strains

with the highest associated weights. In other words, the algorithm infers the

identity of the dominant strains with the greatest degree of confidence and the

identity of the least dominant strains with the lowest degree of confidence. In

fact, when the StrainRecon algorithm was tested on CDC pilot data, it was

able to find the most likely number of strains n 80% of the time. Further, of

these, the algorithm was able to recover the identities of nearly 100% of the

primary strain (which was present in greater than 80% concentration), 92% of

the secondary strain (which was present in approximately 2-10% concentration),

almost 80% of the tertiary strain (which was present in approximately 0.5-2%

concentration), and approximately 70% of the quaternary strain [19]. Putting

all of this together, we can see that in order to provide the maximum value for

biostatisticians at the CDC, we find that there is a need to derive a method
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to compare the various solutions produced by the StrainRecon algorithm with

the purpose of narrowing the solution set and, if possible, isolating the “most

likely” solution. We expect that this narrowed set of solutions will capture the

information of the dominant strains.

Furthermore, beyond treatment of individuals infected with malaria, the

CDC is also focused on understanding disease outbreaks on a broader population

level in order to control and eventually eradicate the disease [9]. As such, it

would be of interest to conduct a population level analysis of malaria strains

across time in the hope that such an analysis would provide feedback on the

success of past interventions and guide future responses to outbreaks of malaria.

Currently, the CDC responds to outbreaks of malaria by increasing surveil-

lance, conducting case investigations, implementing vector control measures,

and prescribing antimalarial drugs when an outbreak occurs [1]. Researchers

have been able to measure the impact of these interventions through analyzing

patient outcomes. Even more, another important metric for success is analyzing

how the number of strains of malaria has changed across time. In order to con-

trol and eventually eradicate the disease, it is of vital importance to successively

reduce the number of strains of P. falciparum that infects individuals. However,

since the CDC uses a binary test for malaria in the field that simply finds the

presence or absence of the parasite, there is a sparsity of information on the

number of strains of malaria that are prevalent [4]. This piece of information

is particularly important, since the knowledge of strain-level data could help

inform targeted preventative measures such as a vaccine for P. falciparum. In
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fact, the CDC has noted that “the search for a vaccine [for malaria] is considered

to be one of the most important research projects in public health,” since other

methods of treating the disease are not sufficient for elimination [11]. However,

the development of such a vaccine is complicated by the fact that the vaccine

must factor in the genetic diversity of both the parasite and the infected indi-

vidual [10]. As such, it would be of vital interest for researchers to be aware of

the levels of genetic diversity in P. falciparum over time in order to develop an

effective vaccine.

Therefore, we again find the need to develop a method to compare various M,

w solutions, since a population-level analysis of P. falciparum would necessarily

require a comparison of each infected individual’s most likely M, w solution.

Synthesizing all of the above, we summarize the questions of interest as

follows:

• Question 1: How can we facilitate a comparison of various M, w solu-

tions?

• Question 2: Further, given a blood sample from an individual infected

with malaria, what is the most likely M, w diagnosis?

• Question 3: Finally, given population-level data of infected persons

across time, how have the disease outbreaks of malaria changed across

time?

11



3.1 Outline

To address the above questions, we will begin by describing the various types of

data that we will use in our analysis. Next, we will derive the SR metric, which

will allow us to compare multiple M, w solutions. This will be supplemented

by a discussion of how to efficiently implement the SR metric. Subsequently, we

will turn to applying our metric to pilot data in order to attempt to isolate the

most likely solutions provided by the StrainRecon algorithm. Finally, we will

use CDC field data from Asembo, Kenya to perform network analyses that will

characterize how disease outbreaks of P. falciparum have changed since 1996.
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4 Dataset Description

For this research, we work with both real world data from the CDC as well as

synthetic data generated in silico.

4.1 Real World Data

We will work with two sets of data from the CDC. Specifically, we will work

with measurements from 24 reference SNP sites where there tend to be many

mutations specific to P. falciparum. The pilot data contains measurements on

individual blood samples, while the field data contains measurements from a

sample of infected individuals in Kenya in the years 1996, 2001, 2007, and 2012.

4.1.1 Pilot Data

From blood samples which had multiple strains of malaria mixed together, tra-

ditional methods were used to first isolate the malarial strains and then amplify

them using PCR. From this, we acquired our measurement vector d, which was

almost always of R24 dimension (though there were a small minority of samples

which had less than 24 SNP sites).

In addition, we were supplied with an approximation for the true binary

matrix M and weight vector w for each sample. However, it is important to

note that M is only an approximation and in some cases is not fully accurate

due to mutation and/or contamination. Even so, it is useful to work with this

data as it resembles data from real world conditions in the field.

Nine general types of experiments were performed over three categories of
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samples, as seen in the following table:

Experiment True Proportions Number of Strains

A-1, B-1, C-1 0.975, 0.02, 0.005 3

A-2, B-2, C-2 0.95, 0.04, 0.01 3

A-3, B-3, C-3 0.88, 0.1, 0.02 3

Note that each experiment is also tagged with one of the strings BLO

(Blood), DBS (Dried Blood Samples), or DNA. Any of the A-1, A-2, and A-3

experiments that are tagged with BLO or DBS are anticipated to have muta-

tions. As such, there may be the same or more strains as expected, since a

subset of a single strain may have mutated to form a new strain. However,

these mutated strains are expected to be very similar to at least one of the

original strains. We can see that this situation would benefit from the use of

a metric which would cluster together solutions with small differences, such as

those caused by mutations. The development of such a metric will be discussed

later in the paper.

Furthermore, observe that each of the proportions listed above include one

strain that is present in a much smaller amount relative to the others. As such,

as we noted earlier, we will be much less confident about finding the identity

of these less dominant strains since noise during the measurement process may

affect the algorithm’s ability to detect them. Conversely, however, we will have a

much greater confidence in the algorithm’s ability to identify the more dominant

strains, and we will use this key fact during our analysis later in the paper.
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4.1.2 Field Data

To analyze how disease outbreaks of malaria have changed over time, we will

turn to measurements collected by the CDC in Kenya in 1996, 2001, 2007,

and 2012 [13]. This data is valuable because it allows us to draw insights

on the overall changes in P. falciparum over time by studying measurements

from a sample of infected persons. Similarly to the pilot data, we work with

measurements from 24 SNP sites specific to P. falciparum [6]. In each of the

aforementioned four years, we are provided with measurements from 455, 445,

279, and 374 infected individuals, respectively.

However, in contrast to the pilot data, we are not aware of the true number of

strains, the true proportions, or the true identities of the strains in this dataset.

Instead, in order to analyze the quantity and characteristics of the strains that

have infected the population, we must use the StrainRecon algorithm to infer

the number, relative weights, and identities of the strains. Using this output,

we will be able to conduct network analyses on the disease outbreaks over time.

4.2 Synthetic Data

While the pilot data is used to test the StrainRecon algorithm under ‘field’

conditions, the synthetic data is used to fine-tune the algorithm under a variety

of different conditions. In this data generated in silico, we first look to create

our M matrix and w vector by specifying:

- m, the number of SNP sites (typically 24)

- k, the true number of strains

15



- e, the standard deviation of the multivariate Gaussian distribution from

which we randomly sample for noise.

In this way, we are able to create the binary matrix M ∈ {0, 1}mxk, the

weight vector w ∈ Rk where each of the k elements are randomly found under

the constraint that
∑

wi = 1, and the noise vector e ∈ Rk where each of the k

elements are found by sampling from N(0, e). Now, using the same formula for

our measurement vector, we find our synthetic measurement y ∈ Rm:

y = Mw + e. (3)

Note that each of the elements in y satisfies 0 ≤ yi ≤ 1.
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5 Developing the SR Metric

5.1 Motivation

In order to answer our motivating questions, it is clear that a method to com-

pare multiple M, w solutions would be useful. In particular, we are interested

in grouping together solutions that are similar, since this may allow us to both

narrow the set of possible M, w solutions produced by the StrainRecon algo-

rithm as well as identify important changes in malarial strains over time. Thus,

we find the need to define a metric space in order to perform clustering on the

M, w solutions.

Defining Differences in Sets of M, w Solutions

In order to understand how the SR metric should behave, let us analyze the

following sets of M, w solutions.

Example 1 Each of the weight vectors and strains in the M matrices are

sorted (from highest weight to lowest) when they are produced by the StrainRe-

con algorithm. However, it may be the case that the same strain is represented

in slightly different proportions in the M, w pairs we are comparing, as in Figure

1.

In such a case, we would expect the SR metric to reflect only a small level of

difference (i.e., a small distance), since the same strains are present in slightly

different proportions.

Example 2 In the above example, we compared two matrices with the same

strain identities. However, what if we encounter a case such as Figure 2 in which
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Figure 1

the dominant strains are identical but the least dominant strains are different?

Figure 2
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Observe that Strains A and B, the dominant strains, are both present in each

M, w pair, but with slightly different weights. In addition, the least dominant

strain in each M, w pair is different.

From Example 1, we know that we would still expect a high level of similarity

between Strains A and B despite small differences in weights. However, the

question remains, how do we treat the fact that the identities of Strain C and

Strain D are different? Since Strains C and D have the lowest weights in solution

1 and solution 2 respectively, we can intuitively see that the two M, w pairs

are still fairly similar overall. Thus, differences in the least dominant strain are

not significant in determining the distance between the a set of M, w pairs.

Conversely, this also implies that differences in the dominant strains will lead

to a large distance between a set of M, w pairs. We will explore this further in

the next example.

Example 3 Finally, what would we expect to see if there existed a small

number of mutations in a strain that was present in both solutions?

In Figure 3, we see that the dominant strain in the first solution has a small

number of SNP site differences (represented as grey boxes) compared to the

dominant strain of the same identity in the second solution. From Example

2, we know that since these differences are present in a dominant strain, we

would expect a higher level of distance compared to if they were present in less

dominant strains. However, since there exist only a relatively small number

of SNP site differences between the dominant strains in these two otherwise

identical solutions, we would expect that the distance would still be relatively
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Figure 3: Example 3

small. In other words, mutations that are present in the dominant strain will

lead to a higher level of distance compared to mutations present in strains that

are lower weighted. Further, a small number of mutations will lead to a smaller

distance compared to a large number of mutations.

Formulating Distance in Mathematical Terms

Given the above explanation of how we would expect the SR metric to work,

let us now turn to trying to express the SR metric mathematically.

A large challenge encountered with clustering in high dimensional spaces is

that even within clusters, there are often differences on a few dimensions. An

effective way to deal with this problem is to weight the inputs differently, which

as motivated previously, also seems to make intuitive sense for our analysis [7].

In addition, we must find some way to compare each strain of the first M, w
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pair with each strain of the second M, w pair. Finally, the SR metric must

include some method to quantify the number of mutations.

Given these properties, we propose the following formula for the SR metric:

SR =
1

(n1 · n2)
·
n1∑
i=1

n2∑
j=1

[d(si, tj) · f(si, tj)], (4)

where si, 1 ≤ i ≤ n1, represents each strain (i.e. each column) in M1 and

where ti, 1 ≤ i ≤ n2, represents each strain (i.e. each column) in M2. Further,

let us suppose that d(si, tj) = ‖(si − tj)‖1. This would simply count the number

of differences between si and tj . In addition, we define f(si, tj) =
√
si · tj , which

would give us a geometric average of the weights.

Let us check if this form would be valid by verifying that the distance between

M, w and a permutation of M, w would equal to 0. A visualization of this

example is seen in Figure 4.

We can see that this formation of the SR metric would in fact violate this

check, since all of the terms in the summation will be positive, leading to a posi-

tive overall distance. Thus, since the SR metric will not equal 0, this formulation

of the metric is invalid.

However, from this initial formulation, we can draw the following insights:

• Firstly, we can see that any metric that relies upon summing some function

of distance multiplied by some function of weight will give us a nonzero

overall distance in a case such as Figure 4. As such, we instead consider

comparing M1,w1 with the permutations of M2,w2.

• Secondly, although there is value in including the weights to determine
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Figure 4

the distance, including the function of weights as a geometric average

does not have a clear interpretation. Instead, we suggest comparing M1 ·

diag(w1) and M2 · diag(w2). In this way, each strain has been multiplied

by its appropriate weight, and therefore both the weights and the SNP site

differences can be compared by M1·diag(w1)−M2·diag(w2). Additionally,

in order to ensure that the distance between M, w pairs is always positive,

we suggest encompassing the SR metric in the Frobenius norm (also known

as the Euclidean norm), since this norm is commonly used in clustering

[14]. Note that the Frobenius norm is defined as ‖A‖F =

√
m∑
i=1

n∑
j=1

|aij |2.

Therefore, we reformulate the SR metric as the following:

SR = min
P∈P
‖M1 · diag(w1)−M2 · diag(w2) ·P‖F , (5)
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where P represents the permuation matrix that minimizes the distance be-

tween each pair of M, w solutions.

We can see that the SR metric reflects the properties we listed above, since:

1. The metric is invariant to the reordering of columns.

2. The metric is most influenced by strains with a high weight and least

influenced by strains with a low weight.

3. The metric is robust to small changes in the rows. In other words, if

there exists a small number of SNP site differences between the pair of M

matrices, the distance is also relatively small.

One potential drawback of the SR metric is that it is computationally ex-

pensive since we must take the permutation of M2 ·diag(w2)·P. We will address

these efficiency concerns later in the Implementing the Metric section.

5.2 Deriving the SR Metric

SR = min
P∈P
‖M1 · diag(w1)−M2 · diag(w2) · P‖F (6)

Theorem 5.1 SR is a metric if the following conditions are satisfied:

1. d((M1,w1), (M2,w2)) ≥ 0

2. d((M1,w1), (M2,w2)) = 0 iff M1 = M2,w1 = w2

3. d((M1,w1), (M2,w2)) = d((M2,w2), (M1,w1))

4. d((M1,w1), (M2,w2)) ≤ d((M1,w1), (N,v)) + d((N,v), (M2,w2))
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To complete these proofs, let us first prove the following lemmas.

Lemma 5.2 Permutation matrices are always invertible.

Proof: Permutation matrices are by definition square matrices obtained from

permutations of the identity matrix. By the Invertible Matrix Theorem, since

permutation matrices are row-equivalent to the identity matrix, they are always

invertible.

Lemma 5.3 ||A||F = ||AP ||F for permutation matrix P.

Proof:

We perform the proof for a permutation matrix P that permutes over columns.

We will denote π(n) as some permutation of the columns, as specified by the P

matrix that minimizes the metric distance.

||A||2F =
n∑
i=1

m∑
j=1

|a2
ij | =

π(n)∑
i=1

m∑
j=1

|a2
ij | = ||AP ||2F

Thus, the Frobenius norm of a matrix is equivalent to the Frobenius norm

of that matrix multiplied by any permutation matrix. While we performed this

proof for a permutation matrix P that permutes over columns, a nearly equiv-

alent proof can be performed to show that the result is valid for permutation

matrices P that permute over rows.

5.2.1 Proofs for Metric

1. d((M1,w1), (M2,w2)) ≥ 0

This condition is easily satisfied, since the entire SR metric is encompassed

within the Frobenius norm, which is by definition greater than or equal
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to 0.

2. d((M1,w1), (M2,w2)) = 0 iff M1 = M2,w1 = w2

• Forward direction:

If d((M1,w1), (M2,w2)) = 0→M1 = M2,w1 = w2

– Recall that the StrainRecon algorithm outputs solutions such

that the strains in each M,w pair are listed in order of non-

increasing weights. As such, we will consider a M matrix to be

valid only if its strains are arranged in terms of non-increasing

weights. With this assumption, there exists a unique condition

that M matrices that follow this format are equivalent if M1 =

M2.

– In addition, we assume that w1i
, w2i

6= 0, 1. This assumption

holds true in the StrainRecon algorithm.

Let us continue with our proof of the forward direction.

Recall that 0 < w1i ,w2i < 1 and M1i,j ,M2i,j ∈ 0, 1.

We need to prove that: m1i,j
w1i

= m2i,j
w2i

iff m1i,j
= m2i,j

, w1i
=

w2i .

Let us examine each of the possible values:

– m1i,j
w1i

= m2i,j
w2i

= 0 iff m1i,j
= m2i,j

= 0

– m1i,j
w1i

= m2i,j
w2i

= 1 iff m1i,j
= m2i,j

= 1

– m1i,j
w1i

= m2i,j
w2i

, where 0 < c < 1 iff w1i
= w2i
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Each of these must be true given the assumptions we have made, so

the forward direction of this proof is valid.

• Backward direction:

If M1 = M2,w1 = w2 → d((M1,w1), (M2,w2)) = 0

Recall from above that if M1 and M2 are listed in order of non-

increasing weights, M1 and M2 are equivalent if M1 = M2. If M1 =

M2, then the minimizing permutation matrix is the identity matrix.

||



m11,1
m11,2

· · · m11,n

m12,1
m12,2

· · · m12,n

...
...

. . .
...

m1m,1
m1m,2

· · · m1m,n





w11
0 · · · 0

0 w12
· · · 0

...
...

. . .
...

0 0 · · · w1n


−



m21,1 m21,2 · · · m21,n

m22,1
m22,2

· · · m22,n

...
...

. . .
...

m2m,1 m2m,2 · · · m2m,n





w21 0 · · · 0

0 w22
· · · 0

...
...

. . .
...

0 0 · · · w2n





1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


||F

= ||



m11,1
w11

m11,2
w12
· · · m11,n

w1n

m12,1w11
m12,2w12 · · · m12,nw1n

...
...

. . .
...

m1m,1
w11

m1m,2
w12
· · · m1m,n

w1n


−



m21,1
w21

m21,2
w22
· · · m21,n

w2n

m22,1w21
m22,2w22 · · · m22,nw2n

...
...

. . .
...

m2m,1
w21

m2m,2
w22
· · · m2m,n

w2n


||F
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= ||



0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0


||F = 0

Thus, we see that the backward direction of the proof is also valid. As

such, the second condition is also satisfied since both the forward and

backward directions of the proof are true.

3. d((M1,w1), (M2,w2)) = d((M2,w2), (M1,w1))

Let P1 be the minimizer of a such that

a = ‖M1 · diag(w1)−M2 · diag(w2) ·P1‖F , (7)

and let P2 be the minimizer of b such that

b = ‖M2 · diag(w2)−M1 · diag(w1) ·P2‖F . (8)

We will try to show that a = b.

• Forward Direction

a = ‖M1 · diag(w1)−M2 · diag(w2) ·P1‖F

=
∥∥−P1(−P−1

1 M1 · diag(w1) + M2 · diag(w2))
∥∥
F

(By Lemma 5.2, we can factor −P1 as shown above.)

=
∥∥−P1(M2 · diag(w2)−P−1

1 M1 · diag(w1))
∥∥
F

(Rearrange terms algebraically as shown above.)

= | − 1|
∥∥P1(M2 · diag(w2)−P−1

1 M1 · diag(w1))
∥∥
F
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(By the property of the Frobenius norm, we factor out -1 as shown

above.)

= ||P1||F ||M2 · diag(w2)−P−1
1 M1 · diag(w1)||F

(By Lemma 5.3, we can remove P1 from the norm as shown above.)

= ||M2 · diag(w2)−P−1
1 M1 · diag(w1)||F

So, we are left with ||M2 · diag(w2) − P−1
1 M1 · diag(w1)||F , where

P−1
1 is some matrix that permutes the columns of M1 to find the

distance between (M1,w1) and (M2,w2).

By the definition of SR metric, the expression ||M2 · diag(w2) −

P−1
1 M1 · diag(w1)||F is greater than or equal to ||M2 · diag(w2) −

M1 ·diag(w1)P2||F , where P2 is the minimizing permutation matrix

that also permutes the columns of M1.

Therefore, a ≥ ||M2 · diag(w2)−M1 · diag(w1)P2||F = b.

• Backward Direction We can show an equivalent proof for the back-

ward direction, which will demonstrate that b ≥ a.

Therefore, we have satisfied the third criterion, since a = b

4. d((M1,w1), (M2,w2)) ≤ d((M1,w1), (N,v)) + d((N,v), (M2,w2))

We need to prove:

min
P∈P
‖M1 · diag(w1)−M2 · diag(w2) ·P‖F ≤ min

P1∈P
‖M1 · diag(w1)−N · diag(v) ·P1‖F+

minP2∈P ‖N · diag(v)−M1 · diag(w1) · P2‖F .(9)
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Let us begin by examining the left hand side.

d((M1,w1), (M2,w2)) = minP∈P ‖M1 · diag(w1)−M2 · diag(w2) ·P‖F

≤ ‖M1 · diag(w1)−M2 · diag(w2)P2‖F

(Since P is the minimizer, distance calculated with any other permutation

matrix will necessarily be greater than or equal to the distance calculated

with P.)

= ‖M1 · diag(w1)−N · diag(v) + N · diag(v)−M2 · diag(w2)P2‖F

(Add and subtract equivalent terms.)

≤ ‖M1 · diag(w1)−N · diag(v)‖F + ‖N · diag(v)−M2 · diag(w2)P2‖F

(We complete this step using the properties of the Frobenius norm.)

=
∥∥P−1

1 (M1 · diag(w1)−N · diag(v))
∥∥
F

+‖N · diag(v)−M2 · diag(w2)P2‖F

(We complete this step using Lemma 5.3.)

= d((M1,w1), (N,v)) + d((N,v), (M2,w2))

So, we can see that d((M1,w1), (M2,w2)) ≤ d((M1,w1), (N,v))+d((N,v), (M2,w2)).

··· Thus, we have now proved that SR is a metric.
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6 Implementing the Metric

Now that we have defined the SR metric, we move on to the next stage of

finding the pairwise distances between each set of M,w solutions. However,

given that we must compare a matrix with each permutation of another matrix,

we find that coding the SR metric as is would cost O(n!), where n represents

the number of strains. By Stirling’s Approximation, we know that O(n!) is

bounded both above and below by O(nn) [18]. Thus, coding the SR metric

as stated above would have a cost of approximately O(nn). While this is not

extremely prohibitive, since we expect the number of strains to be less than 10,

we still find that this is an inefficient implementation.

As such, we begin by trying to find any redundancies in the computations

that can be eliminated. In the SR metric, we compare the weighted strains of

M1 with all of the permutations of the weighted strains of M2, as shown in

Figure 5.

So, we can see that for each strain in M1 we are simply trying to find the

minimum of the normed differences between itself and each of the strains in M2.

For instance, consider the following example:

A =


1 0 0

0 1 0

0 0 1

 , a =


0.5

0.3

0.2

 and B =


0 1 0

1 0 0

0 0 1

 , b =


0.3

0.5

0.2


.

Let us compute the normed difference between each weighted strain in A
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Figure 5

and each weighted strain in B. We can visualize this as a graph, as seen in

Figure 6.

In the SR metric, we include a permutation matrix that will re-arrange the

columns of M2 in order to find the minimum distance between (M1, w1) and

(M2, w2). We can see that this would be equivalent to finding sum of the mini-

mum normed distances between each weighted strain of M1 and M2. Therefore,

we can now reframe our problem as a minimum cost maximum matching prob-

lem.
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Figure 6

Let us justify this assertion. To begin, define a full bipartite nxn graph G

where each edge (i,j) has weight
√∑nM1

i=1

∑nM2
j=1 (M1[:, i]w1[i]−M2[:, j]w2[j])2.

Every permutation matrix P has a one-to-one correspondence with a maxi-

mum matching B of G. Moreover, the value of

m = minP∈P ‖M1 · diag(w1)−M2 · diag(w2) ·P‖F is equal to the cost of the

corresponding maximum matching B of G.

Proof: Every permutation matrix P can be characterized exactly by one

32



permutation group (p1, p2, .., pn) out of n! possibilities. Let us call this group

sigma(P).

Forward Direction

For each P, look at sigma(P). The value of minP∈P ‖M1 · diag(w1)−M2 · diag(w2) ·P‖F

corresponds to the sum of the values
n!∑
i=1

[M1i · diag(w1i) −M2i · diag(w2i) ·

sigma(P)i]. This is equal to the value of the edges in the matching ((1, sigma(P)1), (2, sigma(P)2), . . . ).

This is a maximum matching B since it contains n edges, and each side of G

has n vertices.

Backward Direction

Each maximum matching B = (1, a1), (2, a2), ..., (n, an) has the property that

the ai’s are all distinct values in 1, 2, . . . , n. They can thought of as a permu-

tation group corresponding to permutation matrix P. The values of these edges

are
n!∑
i=1

[M1i · diag(w1i)−M2i · diag(w2i) · sigma(P)i], which equals

minP∈P ‖M1 · diag(w1)−M2 · diag(w2) ·P‖F , thus showing that B has a cor-

responding permutation matrix P.

··· Consequently, the minimizer P∗ of the norm corresponds exactly to the

minimum cost maximum matching B* of G.

Thus, we have shown that we can reformulate our original problem into a

min-cost max matching problem. As such, we can now solve our problem using

the Hungarian algorithm, which will find the min-cost max matching of G in

O(n3) time [15, 17]. According to the argument above, that exactly equals the

value of the SR metric.

Description of the Hungarian Algorithm We have rigorously shown that
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we can reformulate our original problem as a min cost max matching assign-

ment problem, which is a type of network optimization problem. The assignment

problem is typically used to match n persons with n tasks on a one-to-one ba-

sis such that the person-task pairs are distinct and the total cost is minimized

[15]. In this context, our task is to find the distance between a pair of matrices,

such that the distance between two matrices is equal to the minimum distance

between the first matrix and all of the permutations of the second matrix. As

such, we are trying to match the n strains of the first matrix solution with the

n strains of the second matrix solution such that the each of the strains from

the first matrix are paired uniquely and distinctly with each of the strains from

the second matrix.

In order to find an optimal assignment for a nxn matrix, we complete the

following steps [15]:

1. Subtract the smallest entry in each row from all the entries of its row.

2. Subtract the smallest entry in each column from all the entries

3. Place a line through each of the rows and columns that contain zero entries

such that the minimum number of lines is used.

4. Check if the Optimality Condition is met:

• If the minimum number of lines used in the previous step is n, we have

found an optimal assignment and the algorithm can be terminated.

• If the minimum number of lines used is less than n, find the smallest

entry not covered by a line. Subtract this entry from each uncovered
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row, and then add it to each covered column. Begin again at Step 3,

and continue iterating until the optimality condition has been met.

Example

As an example of how the algorithm works, consider A, a and B, b (described

at the start of the section), which are identical except for the ordering of the

strains.

First, we preprocess our data as shown in Algorithm 1 to form the initial

Hungarian matrix.

Algorithm 1 Transforming Inputs into Hungarian Matrix

for i in 0:nA

for j in 0:nB

Aa = A[:,i] a[i];

Bb = B[:,j] b[j];

dif = Aa-Bb;

norm = norm(dif, 2);

Hungarianmatrix[i][j] = norm;

Thus, we form our initial Hungarian matrix H:
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Now, we begin the process of finding the minimum permutation using the

Hungarian algorithm:

As per Step 1, we first subtract row minima. However, since each row

contains a zero, subtracting row minima has no effect. Similarly for Step 2,

subtracting column minima has no effect since each column also contains a

zero.

Now, we attempt Step 3 and find that we would require 3 lines to cover all

zeros, indicating that we have satisfied the Optimality Condition.

Thus, we have found an optimal assignment. We find the optimal assignment

as the sum of the bolded elements of H as shown below:

Note that the bolded positions correspond to the optimal assignment in the

original cost matrix. Since in this case the Hungarian matrix has not changed,
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the optimal assignment shown is the same as the optimal assignment in the

original cost matrix. To find the optimal value, we simply sum the each of the

bolded positions and find a minimum cost of 0.

Recall that the M, w pair being compared contain the identical strains and

weights, but in a different order. Thus, before we computed the metric distance,

we would expect to see a distance of 0. We can see that both our formation of

the SR metric and our implementation of it are as expected, since we do in fact

find a minimum distance of 0 between the two matrix-vector solutions being

compared.

6.1 Proof of Big-O Complexity of the SR Metric

We now have described two main steps to implement the SR metric. First,

we use the preprocessing algorithm to transform the inputs into the Hungarian

matrix. Secondly, we implement the Hungarian algorithm, which will find an

optimal assignment of the strains and thereby find the distance between two M,

w solutions.

In the preprocessing algorithm, note that our cost is O(n2), since we must

perform nA ·nB computations. Further, the Hungarian algorithm is well known

to have a cost of O(n3) [17].

Thus, we can see that implementing the metric using the steps described

above will now have an overall complexity of O(n3), which is significantly more

efficient than our initial cost of O(n!).
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7 Clustering Methodology

We are now equipped with a metric that will allow us to perform clustering.

In order to best answer our questions of interest, however, we must first try to

understand which method of clustering to use.

Let us begin by describing the properties that our ideal clustering method

will reflect.

1. The clustering method will allow for an arbitrary number of clusters.

The motivating question behind the work conducted by Mustonen et al. is

the following: given a blood sample from an infected person that contains

a measurement of the proportion of mutations from a reference strain of

malarial DNA, can we predict the number of strains of malaria with which

the individual is infected, the identity of those strains, and the proportion

in which those strains are present? Inherent in this question is a level

of uncertainty about the number of different strains of malaria that are

present in an individual’s blood sample. Thus, to answer Question 2, we

find that we cannot use a clustering algorithm that requires the number

of clusters to be specified beforehand.

In addition, we are also unaware of how many strains we expect to see

in the field in each year. In fact, this is one of the questions we hope

to address through our analysis of the field data. Therefore, to answer

Question 3, we similarly find that we must use a clustering algorithm that

accepts an arbitrary number of clusters.
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As such, since we do not have enough knowledge of our data a priori to

state with certainty the correct number of clusters (i.e., the correct number

of strains), we choose not to use centroid clustering algorithms (such as

K-means).

2. The clustering method will be able to describe key differences between mul-

tiple solutions.

In addition, we hope that our ideal clustering algorithm will be able to

effectively describe the key differences between solutions on multiple lev-

els. As previously mentioned, the StrainRecon algorithm is significantly

better at predicting the identity of the strains with the highest weight

compared to the strains with the lowest weight. Therefore, our clustering

method must be able to describe differences in strains on multiple levels

of granularity corresponding to the weight of each strain.

3. The clustering method will be easily interpretable.

Finally, let us recall that the ultimate objective of this research is to

inform biostatisticians at the CDC as they analyze the blood samples of

individuals infected with malaria. As such, we wish to produce a form of

output from our clustering that is both easy to interpret and informative.

Thus, based upon the above criterion, we turn to hierarchical clustering as

our ideal method, since it will allow us to clearly view how different solutions

diverge from one another in a structured and clear manner.

However, let us also note the drawbacks of this approach. Firstly, hierarchi-

39



cal clustering has a time complexity of O(n3) and requires O(n2) memory. As

a result, this method can be inefficient when dealing with large datasets [2]. In

addition, the merges in hierarchical clustering are computed in a greedy man-

ner, which implies that errors that occur when merging clusters are immutable

will affect the final output.

While the aforementioned drawbacks are important to note, we find that the

advantages conferred to us by the use of hierarchical clustering are unique.

In addition, we now address the question of which linkage method to use

in order to conduct the hierarchical clustering. Based on comparisons of the

dendrogram outputs from the various linkage methods, we choose to select the

WPGMA (Weighted Pair Group Method with Arithmetic Mean) method, since

it consistently produces the most easily interpretable and balanced trees. The

WPGMA algorithm merges the nearest two clusters, for instance a and b, into

a higher-level cluster such that a ∪ b has a distance from another cluster c

according to the following formula: d((a ∪ b), c) = d(a,c)+d(b,c)
2 .

Thus, we have now found an ideal clustering method to use with our metric

to understand the data.
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8 Exploring CDC Pilot Data

8.1 Calibrating the SR Metric

Let us begin our analysis by confirming that the SR metric performs as expected.

In order to do this, we must deal with data for which we already know the true

solution. Further, we want to ensure that the SR metric performs well in real

world conditions to ensure the validity of our analysis of the field data later in

this paper. As such, we choose to perform hierarchical clustering upon the pilot

data.

Recall that the pilot data was categorized into nine general types of exper-

iments. There were three different mixes of strains used (i.e., three distinct M

matrices with different strains in each matrix), which were labeled A, B, or C.

In addition, there were three different ratios used to mix the strains (i.e., three

distinct w vectors with different proportions), which were labeled by 1, 2, or

3. Further, a level of background noise was introduced by including blood cells,

dried blood cells, or human DNA into the mixtures.

In an analysis that clusters the pilot data, we would therefore expect to see

three large clusters corresponding to the distinct M matrices. Further, within

these clusters, we would expect to see smaller clusters for each different w vector.

In other words, if the SR metric performs the way we expect, we would expect

to see three large clusters for A, B, and C and three sub-clusters within each of

these for the different proportions.

To perform this analysis, let us begin with the input d vector. For this
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calibration to be most useful given real world conditions, we must only use

the d vector and the StrainRecon algorithm, since in true field conditions we

would not be provided with the true M, w solutions. However, recall that the

StrainRecon algorithm solves an undetermined inverse problem and therefore

outputs multiple possible M, w solutions given a single d vector. As such, we

must develop some method to isolate a representative M, w pair from all of the

possible solutions.

Developing a Heuristic for the “Most Likely” Solution

It is not immediately clear how to select a representative solution from all of

the outputs of the StrainRecon algorithm. We begin approaching this prob-

lem by performing hierarchical clustering on the outputs from the StrainRecon

algorithm’s attempt to solve C-1 (DBS) for 3 strains. (Note that one of the

unknowns is the true number of strains, and therefore the StrainRecon algo-

rithm must attempt to find the true solution for multiple different numbers of

strains. As such, an elbow chart is used to select the correct number of strains

by measuring the marginal returns of the percentage of variance explained.)

We find the dendrogram in Figure 7 from this clustering. We begin with five

possible solutions that are produced by the StrainRecon algorithm, which is a

relatively small amount of possibilities since the algorithm is solving for n=3,

which is the true number of strains. When the algorithm attempts to solve

using a different number of strains, the number of solutions increases. However,

we choose to look at the simplest case in order to extract the “best” possible

solution.
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Figure 7

From Figure 7, we see that there are two main clusters of possible solutions.

Even between these two main clusters, there exists only a small distance, which

suggests that the dominant strain in each cluster is the same and the differences

between the clusters are caused by other discrepancies in the less dominant

strains. We validate this by examining the leaves in each cluster and comparing

them with each other and with the true solution.

In addition, this dendrogram (as well as all the other dendrograms to be

presented later in this paper) is plotted with an optimal leaf ordering, such that

the sum of similarity of adjacent elements is maximized. So, we can see that

solutions 5 and 3 are the most different solutions. Further, solutions 1 and 2
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are the most similar since the height at which they are joined is the lowest.

While all of this information is interesting to note as an analysis of the

accuracy of the StrainRecon algorithm, we do not find any clear method to

translate this information into a single representative solution. We know that

there are two clusters for the true solution and that these clusters have a low

distance between them, but we do not know which cluster is more “correct” or

which element within the cluster is the “most correct.” From the above analysis,

however, we have learned that we must find some way of comparing each M,

w solution to the true d vector, since this would help answer the question of

which element is the “most correct” or most representative solution.

Thus, we turn instead to a different method for identifying the most repre-

sentative solution. We propose using the misfit value suggested by Mustonen et

al., which is calculated by the following formula [19]:

||Mw − d||2. (10)

Using this formula, we can calculate the misfit for each possible solution

and then select the solution with the minimum misfit. We can see immediately

that this method provides us with a clear solution that is representative of

the true solution. (For Figure 7, the minimum misfit solution is represented

by the leaf indexed at 1.) On the other hand, a potential drawback of this

method is that the minimum misfit solution may not be the precise true solution.

However, we find that the benefits of using the heuristic of the minimum misfit

solution outweigh the drawbacks, since in general, the minimum misfit solution

should correctly characterize the StrainRecon’s algorithm best guess for the true
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solution.

Analysis of the Dendrograms for the Pilot Data

Using the minimum misfit solution for each observation, we now perform hi-

erarchical clustering over the entire set of pilot data. Let us first examine the

dendrogram for the minimum misfit solutions when the StrainRecon algorithm

solves for n=3, which is the true number of strains.

Figure 8

In Figure 8, which was also plotted with an optimal leaf ordering, we can

see that the SR metric performs exactly as expected. We see that the A, B,

and C groups are clearly separated. Further, within each group, we have three

clusters for the weights, and the most similar weights are clustered together (for

example, so that A-1 is closer to A-2 rather than to A-3).

Let us now make the analysis more complex by performing hierarchical clus-
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tering over the minimum misfit solutions for the pilot data where the StrainRe-

con algorithm solves for n=4.

Figure 9

Again, we see that the SR metric performs as expected, which implies that

the methods used to perform the hierarchical clustering are robust to some

amounts of noise.

Even further, Figure 8 and Figure 9 motivate an interesting question. Since

the ratios in the pilot data all contain one dominant strain, are the clusters

from above determined mostly due to the emphasis that the SR metric places

upon highly weighted strains? In order to answer this question, we will slightly

modify our analysis such that our M matrix is only composed of the dominant

strain and the w vector only contains a single weight of 1.

We can see from Figure 10 that the SR metric using just the dominant strain

still performs well, since we again observe the expected grouping of A, B, and
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Figure 10

C matrices with similar weights placed more closely together. Furthermore, the

dendrogram in Figure 10 keeps approximately the same shape as in Figure 8 at

the higher levels. On the whole, we observe fewer clusters in this dendrogram,

which is expected because several of the clusters on the lower levels were formed

due to differences in the less dominant strains. Similarly to Figure 8, we do

note that the observations for A-1 strains are clustered with the observations

for the A-2 and A-3 strains at a relatively high height. We can now use our

understanding from Figure 10 to conclude that this high height at which all

the A observations are clustered is caused by differences in the dominant strain

for A-1 compared to the dominant strains for A-2 and A-3. Digging deeper,

however, why would we see such a large distance between the dominant strain

for A-1 compared to the dominant strains for A-2 and A-3? Recall firstly that

we expect the A strains to have more mutations compared to the B or C strains,
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which explains why we see a less clear clustering for the A strains. Even further

though, the least dominant weights in ratio 1 are extremely small, which means

that the StrainRecon algorithm has more difficulty in finding accurate guesses

for the M, w solution. Thus, due to the weights in A-1 and the fact that A

strains are more likely to have mutations, we can understand the clustering

pattern displayed in Figure 10.

Finally, let us use the SR metric on the dominant strain of the minimum

misfit solutions when the StrainRecon algorithm solves for n=4.

Figure 11

Again, we are able to confirm the effectiveness of the SR metric as well as

the influence of the most dominant strain in determining clusters. In addition,

as before, we also see fewer clusters on the lower levels. However, while we do

note two lower level clusters in A, we now also find multiple lower level clusters

in B. Why might this make sense? Going back to Figure 9, we see that just as
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in this dendrogram, all of the B observations were joined at a higher distance

compared to where all of the A observations or all of the C observations were

joined. Therefore, we are again able to explain the comparisons of the full

M, w solutions by analyzing the most dominant strain, since it seems as if

discrepancies in the prediction of the dominant strain in B drove the clustering

pattern in Figure 11.

Thus, through this analysis of the pilot data, we are able to draw the follow-

ing key insights. Firstly, our metric functions as predicted, even in real world

conditions with additional noise added. Secondly, by using a reduced version

of the solution and only comparing the dominant strains, we find that we can

explain most of the significant differences in clusters in the full dendrogram. As

such, even with noise and zero weights for the less dominant strains, we find

that we are able to successfully capture the most significant aspects of the pilot

data through clustering only on the dominant strains.
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9 Analyzing Changes in Malaria Over Time

Recall that one of our primary motivations in this paper was to analyze how

successful the CDC has been at reducing the prevalence of malaria. One method

in which we can do so is by comparing the number of strains of malaria that

are present in disease outbreaks over time. As such, we propose conducting

hierarchical clustering using the minimum misfit solutions over the observations

from the field data for each year in order to compare the number of clusters

between years.

Figure 12

One method to answer the question of the genetic diversity of malaria across

time would be to specify a distance value and find the number of clusters present
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Figure 13

at this threshold in each year. However, as we can see by referencing the den-

drograms for each year, the value we must specify is not clear beforehand. In

fact, depending on the value of distance that is chosen, the true pattern of the

change in number of clusters can be inaccurate. Thus, we turn instead to a

package in R called Dynamic Tree Cut, which was developed for hierarchical

clustering problems in bioinformatics. In this approach, the number of clusters

in the dendrogram is determined by an “adaptive, iterative process of cluster

decomposition and combination” and the algorithm terminates upon finding a

stable number of clusters [16]. By this approach, we are able to more rigorously

find the number of clusters than through a static threshold. Thus, we find that
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Figure 14

there are 8, 8, 4, and 6 clusters for the years 1996, 2001, 2007, and 2012 re-

spectively. In turn, this indicates that the number of strains initially remained

constant, then drastically decreased, and finally slightly increased.

However, it is not immediately clear as to what is driving the changes in the

number of strains between years. One hypothesis is that the implementation of

public health prevention and treatment methods has been inconsistent across

time, owing to the poor infrastructure in Kenya. Alternatively, it could be

the case that medicines to treat malaria led to a reduction in the number of

strains by 2012. Then, due to the rapid evolution of malarial strains in response

to these treatment measures, new strains emerged that were more resistant to
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Figure 15

these drugs. While these theories are certainly plausible, we cannot conclusively

state why this pattern is occurring as of yet.

An interesting question motivated by our analysis of the pilot data is: what

would the clusters of the field data look like using just the dominant strains?

In our previous analysis of the pilot data, we established that the dendrograms

found by comparing the complete M, w solutions and the dendrograms found

by comparing the dominant strain with a weight of one looked extremely similar.

This is because each of the mixing ratios included a highly dominant strain that

drove the pattern for the clustering of the complete M, w solutions. However,

we do not know the true solutions for the field data. As such, we are not aware
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beforehand whether there is some dominant strain that drives the clustering or

if there is another dynamic that drives the process. However, we can set out to

find an answer to this question by conducting a cluster analysis of the field data

using just the dominant strains.

Figure 16

From comparing Figure 12 and Figure 16, we can see that the maximum

distance between solutions is lower in the comparison of the dominant strains

versus the complete solutions. This intuitively makes sense since the comparison

of the complete solutions takes into account differences in the non-dominant

strains as well as differences in the dominant strain. In addition, contrary to

our expectations, we find that the number of clusters of the dominant strain in
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Figure 17

Figure 16 is comparatively large, implying that there is a great deal of variability

between the dominant strains. In fact, when we conduct the dynamic tree

clustering algorithm on Figure 16, we find that the number of clusters is 12.

This suggests that the dominant strain reflects more variability than the overall

M, w solutions.

We observe similar results for each of the hierarchical clusterings of the

dominant strains in 2001, 2007, and 2012. Again, we observe a large number of

clusters for the dominant strains in each of the aforementioned years. Using the

dynamic tree clustering algorithm, we find that there are 8, 8, and 10 clusters

in each respective year.
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Figure 18

On the whole, we find that this analysis has revealed that the nature of the

field data is fundamentally different than that of the pilot data. We find very

weak evidence supporting the claim that the minimum misfit M, w solution

for each field observation is characterized by a clear dominant strain. This has

several implications. Firstly, we expect that the StrainRecon algorithm may

have difficulty finding the true solution in field conditions. Secondly, although

the main focus of our analysis of the field data is centered upon the strain

identities as opposed to the weights, performing our clustering method with the

full M, w solutions (i.e., including weights) seems to most faithfully characterize

the data.
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Figure 19
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10 Conclusion

10.1 Summary of Work

In this paper, we extended the analysis conducted by Mustonen et al. by de-

riving the SR metric to compare the various possible solutions produced by the

StrainRecon algorithm. Next, we provided a rigorous mathematical justification

proving that our measure of distance satisfied the definition of a metric, which

allowed us to perform hierarchical clustering over multiple M, w solutions. We

first applied the SR metric to the pilot data from the CDC and displayed that

it was robust under some amounts of noise. Further, we also provided evidence

that showed that when a clearly dominant strain was present, a hierarchical

clustering of the full M, w solution was approximately equivalent to a hierar-

chical clustering of the dominant strain. Afterwards, we applied the SR metric

to the field data and gathered the novel insight that the number of strains re-

mained equivalent in 1996 and 2001 before dramatically decreasing in 2007 and

subsequently increasing in 2012. Finally, we also developed an argument for the

use of the full M, w solution when clustering the field data, since we did not

find strong evidence to support the assertion that there was a clearly dominant

strain that was driving the dynamic behind the hierarchical clustering of the

full M, w solutions.

However, there are a few limitations in this work. Firstly, although using the

heuristic of the minimum misfit solution provided us with a good approxima-

tion of the true solution, we find that the analysis could be improved upon by
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finding a more sophisticated method to approximate the true solution. This

is particularly important in field conditions, since there does not seem to be

a clearly dominant strain, and the StrainRecon algorithm tends to produce a

large number of possible solutions in this case. Further, while we are able to

find the pattern of how the number of strains has changed across time, we find

our analysis is limited by the fact that we are not able to explain the dynamic

that is driving these changes.

10.2 Future Work

We can extend our analysis in three key ways. Firstly, we anticipate adding

new data for 2017 to our analysis as soon as our collaborators are able to

provide this information. (The receipt of new data has been delayed by volatile

ground conditions in Kenya.) Adding in data for a new time point will allow

us to obtain a more complete picture of how malaria is changing, particularly

since we only currently have data from four time points. Secondly, it would

be interesting to further our analysis of the changes in the number of strains

of malaria over time by further investigating the dynamics that drive these

changes. For instance, an analysis of which strains drop out over time and

which strains re-emerge would be useful information to the CDC. Thirdly, we

propose adding in other dimensions to this analysis, for instance, by factoring

in spatial location through GPS data. This would help provide the CDC with

a more nuanced understanding of how malaria is changing across each region,

which may help inform more targeted treatments or preventative measures.
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