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Abstract

Leveraging Algebraic and Geometric Structures in Optimization
By Alex Dunbar

Mathematical optimization has been a highly active field in recent years. Typically, one seeks
to leverage structure, such as convexity, when studying optimization problems. We focus on
several optimization problems for which structures in the objective function or constraints
are naturally phrased in the language of algebraic geometry.

The first problem we consider is regression over the space of rational functions in tropical
(max-plus) algebra. Such functions form a widely expressive class of function approximators
and have recently proven useful in the theoretical analysis of ReLU neural networks. We de-
velop an alternating heuristic to solve regression problems over tropical rational functions by
leveraging known results from tropical linear systems and polynomial regression. Numerical
experiments show the strengths and weaknesses of the heuristic and we provide a connection
between our method and geometric aspects of the loss function.

The second problem we consider is semidefinite programming in the ‹M tensor-tensor
product framework. We demonstrate that the choice of matrix M corresponds to the rep-
resentation theory of an underlying group action. This connection lends the ˚M product to
be a natural framework for certain invariant semidefinite programs. We demonstrate the
M -SDP framework on certain invariant sums of squares polynomials and low rank tensor
completion problems

The final problem we consider is the expression of the convex hull of a set defined by
three quadratic inequality constraints using nonnegative linear combinations (aggregations)
of the constraints. Our approach relates the problem to the topology of the spectral curve,
defined as the zero set of the determinant of linear combinations of the defining quadratics.
In particular, we characterize the nonexistence of solutions to systems of inequalities in terms
of the hyperbolicity of the spectral curve. Hyperbolic curves are well-studied in real algebraic
geometry, as their zero sets consist of maximally nested ovals, the innermost of which bounds
a convex cone. By studying (non)intersections of polyhedral cones of aggregations with
hyperbolicity cones of the spectral curve, we provide a sufficient condition for the convex
hull to be given by aggregations and characterize when finitely many aggregations suffice for
such a description.
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Chapter 1

Introduction

Many optimization problems have underlying structure in their objective function or con-

straint set. In this dissertation, we explore several optimization problems whose structure is

naturally phrased using a blend of convex and algebraic geometry.

As a starting point, consider linear programming–the problem of maximizing a linear

function over a polyhedron:

max xc, xy s.t. xapiq, xy “ bi for i P rms, x P Rn
`.

All problem data in a linear program is linear, and one can use linear algebraic techniques

to study and solve such programs. A natural generalization of linear programs arises by

replacing the cone Rn
` with another convex cone. An important example is semidefinite

programming–the problem of maximizing a linear function over an affine slice of the cone of

positive semidefinite matrices Sn
`:

max xC,Xy s.t. xApiq, Xy “ bi for i P rms, X P Sn
`.

While solving semidefinite programs is more difficult than solving linear programs, there

are practical interior-point algorithms for their solution. One important application of
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semidefinite programming is in the solution of polynomial optimization problems. Alge-

braic geometry is inseparable from this application. To make this connection, we consider

the set Pn,2d of nonnegative homogeneous real polynomials of degree 2d in n variables and

the set Σn,2d of homogeneous real polynomials of degree 2d in n variables which admit a

decomposition as a sum of squares of polynomials of degree d. Both Pn,2d and Σn,2d are

convex cones in the real vector space of homogeneous polynomials of degree 2d in n vari-

ables. Moreover, Σn,2d Ď Pn,2d. This inner approximation has been leveraged to construct

semidefinite relaxations of polynomial optimization problems. A crucial observation in the

construction of such relaxations is that checking if a degree 2d real multivariate polynomial

ppxq is a sum of squares (SOS) amounts to finding a positive semidefinite matrix Q, called

a Gram matrix for p, such that rxsJ
dQrxsd “ ppxq, where rxsd is a vector of all monomials of

degree d. Moreover,

inftppxq | x P Rn
u “ maxtγ P R | ppxq´γ ě 0 for all x P Rn

u ě maxtγ P R | ppxq´γ is SOSu.

A classical result of Hilbert [Hil88] shows that Σn,2d “ Pn,2d if and only if n “ 2, d “ 1,

or pn, 2dq “ p3, 4q. However, each element of Pn,2d admits a decomposition as a sum of

squares of rational functions, motivating a hierarchy of semidefinite programming problems

with multipliers of increasing degree. This approach, called the Moment-SOS hierarchy, has

found great success in applications [Las01, Par03].

As a further generalization of semidefinite programming, one considers hyperbolic pro-

gramming. A real homogeneous polynomial p is hyperbolic with respect to a point e P Rn if

ppeq ‰ 0 and for all a P Rn, the univariate polynomial ppte´aq P Rrts is real rooted. A canon-

ical example is the polynomial ppx1, x2, . . . , xnq “ detpx1I ` x2A
p2q ` x3A

p3q ` . . . ` xnA
pnqq

for some fixed symmetric matrices Ap2q, Ap3q, . . . , Apnq, which is hyperbolic with respect to

p1, 0, 0, . . . , 0q. A fundamental fact about hyperbolic polynomials is that the connected com-
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ponent of e in RnzVRppq is an (open) convex cone. If Λpp, eq denotes the closure of this cone,

then a hyperbolic program is

max xc, xy s.t. xapiq, xy “ bi for i P rms, x P Λpp, eq.

In this dissertation, we investigate some problems at this interface of algebra, geometry,

and optimization. We will see that a blend of algebraic and convex structure can be leveraged

for new algorithms and analysis for a variety of optimization problems.

Contributions and Organization The contributions of this dissertation are organized

across three distinct projects, each one occupying a chapter. Before presenting the results

of these projects, we provide the relevant preliminaries from optimization and algebraic

geometry needed in the subsequent chapters in Chapter 2.

In Chapter 3, we study regression problems over the space of tropical rational functions,

continuous piecewise linear functions of the form

rpxq “ max
iPrDs

pxwpiq, xy ` piq ´ max
iPrDs

pxwpiq, xy ` qiq,

for fixed wp1q, wp2q, . . . , wpDq P Rn. Such functions are the rational functions over the trop-

ical (max-plus) semiring. A recent line of work, initiated by Zhang, Naitzat, and Lim

[ZNL18] has connected tropical rational functions and ReLU Neural Networks. We study

the optimization aspect of this connection, focusing on the ℓ8 regression problem: For fixed

pxp1q, yp1qq, pxp2q, yp2qq, . . . , pxpNq, ypNqq P Rn ˆ R and fixed wp1q, wp2q, . . . , wpDq P Rn, we study

the problem

arg min
p1,p2,...,pD,q1,q2,...,qD

ˆ

max
jPrNs

ˇ

ˇ

ˇ

ˇ

max
iPrDs

pxwpiq, xpjq
y ` piq ´ max

iPrDs
pxwpiq, xpjq

y ` qiq ´ yj

ˇ

ˇ

ˇ

ˇ

˙

. (1.1)

It is known that the tropical polynomial regression problem has a closed form solution which
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only involves (tropical) matrix vector products and vector additions [MT20]. So, we propose

an alternating heuristic which alternately solves for the pi and the qi. We demonstrate the

heuristic numerically on synthetic datasets.

We then connect the heuristic to the geometry of the loss function, showing that the

iterates are contained in the nondifferentiability locus of the loss function. Additionally, we

discuss a connection between regression with tropical rational functions and tropical linear

programming.

In Chapter 4, we study structured semidefinite programming problems which are con-

nected to the ‹M tensor-tensor product. Specifically, we use the ‹M product structure to

define cones of M-positive semidefinite third-order tensors. These M -PSD cones share many

properties with PSD matrices and allow for familar matrix semidefinite programming prob-

lems, such as minimum nuclear norm matrix completion, to be translated to the third-order

tensor case.

Additionally, we study the algebraic structure of the ‹M product on tubes (tensors of

format 1 ˆ 1 ˆ n3), connecting these products to the representation theory of finite groups.

When the matrixM is chosen compatibly with a representation ρ : G Ñ GLn3pRq, there is an

explicit subspace of tubes a for which the multiplication map b ÞÑ a ‹M b is ρ-equivariant.

Building on this representation theoretic interpretation, we show that there is a natural

connection between semidefinite programming problems over cones of M -PSD tensors and

the invariant semidefinite programs studied by Gaterman and Parrilo [GP04].

In Chapter 5, we study aggregations of quadratic inequalities using algebraic topology.

Given three linearly independent symmetric matrices Q1, Q2, Q3 P Sn`1, we are interested

in two related questions:

1. Let fh
i be the quadratic form associated to Qi for i P r3s. When is the real projective

variety VRpfh
1 , f

h
2 , f

h
3 q Ď RPn empty?

2. Set S “
␣

x P Rn | pxJ, 1qQipx
J, 1qJ ď 0, i P r3s

(

to be the set defined by the (affine)

quadratic inequalities. When is there a finite set Λ Ď R3
` such that
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convpSq “
č

λPΛ

#

x P Rn

ˇ

ˇ

ˇ

ˇ

ˇ

pxJ, 1qp

3
ÿ

i“1

λiQiqpxJ, 1q
J

ď 0

+

?

We take a unified perspective to answer these two questions by studying the topology

of the spectral curve, defined in RP2 by the vanishing of gpλq “ detp
ř3

i“1 λiQiq. Our main

technical tool is a spectral sequence developed in [AL12] which relates the topology of (pro-

jective) solution sets to systems of quadratic inequalities to the topology of combinations of

the defining quadratics with specified number of positive eigenvalues.

As an answer to the first question, we show that, aside from exceptional small n cases,

the projective variety VRpfh
1 , f

h
2 , f

h
3 q is empty if and only if the spectral curve is hyperbolic

and there is a linear combination of the defining quadratics which has n positive and one

negative eigenvalue. We then leverage the hyperbolicity of the polynomial g to provide a

sufficient condition for a description of convpSq in terms of aggregations. Specifically, such a

description exists when the polyhedral cone of aggregations does not intersect a hyperbolicity

cone of g. This condition generalizes conditions based on hidden convexity results derived

in [BDS24, DMnS22].
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Chapter 2

Preliminaries

This chapter provides the mathematical background for the results in subsequent chapters,

focusing on relevant topics in optimization and algebraic geometry. Since the methods

and results in this dissertation involve a broad range of areas of mathematics, we include

thorough reviews in an attempt to keep the dissertation self-contained and accessible to a

wider audience.

2.1 Convex Geometry

A unifying theme throughout this dissertation will be the presence of convexity. We review

the needed ideas here. A complete introduction can be found in [Bar02, BV04].

Definition 2.1.1 (Convex Set). Let V be a real vector space. A subset C Ď V is convex if

for all x, y P C and all t P r0, 1s, we have

tx ` p1 ´ tqy P C.

The set C is called a convex cone if it is convex and in addition, for any x P C and λ ě 0,

we have λx P C.
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Example 2.1.1. An immediate observation is that affine subspaces of a real vector space

are convex. Moreover, it follows from the definition of a convex set that the intersection of

any number of convex sets is convex, leading to the following important examples:

• Half-spaces : Sets of the form tx P Rn|ℓpxq ě bu for some linear functional ℓ P pRnq˚

and b P R.

• Polyhedra: The intersection of finitely many half-spaces.

• Spectrahedra: The intersection of the convex cone of positive definite matrices and an

affine subspace.

˛

A closed convex set comes with distinguished convex subsets, known as faces.

Definition 2.1.2 (Face, Extreme Point, Extreme Ray). Let C Ď Rn be a closed convex set.

A subset F Ď C is a face of C if for all λ P r0, 1s and all x, y P C,

λx ` p1 ´ λqy P F ùñ x, y P F.

A point v P C is an extreme point of C if tvu is a face of C. If C is a convex cone and

v P C satisfies the property that v “ λ1x ` λ2y for λ1, λ2 ě 0 and x, y P C, then v spans an

extreme ray of C.

Given an arbitrary set, we construct the smallest convex set (cone) which contains it.

Definition 2.1.3 (Convex Hull, Conical Hull). Let S Ď Rn. The convex hull of S is the set

convpSq “
č

SĎC convex

C “

#

r
ÿ

i“1

λix
piq

ˇ

ˇ

ˇ

ˇ

ˇ

λi ě 0, xpiq
P S, r P N

+

.

The conical hull of S is the set

conepSq “

#

r
ÿ

i“1

λix
piq

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

i“1

λi “ 1, λi ě 0, xpiq
P S, r P N

+

.



8

Theorem 2.1.4 (Krein-Milman (see e.g.; [Bar02])). Let K Ď Rn be a compact convex set

and expKq be the set of extreme points of K. Then, K “ convpexpKqq.

One important property of convex sets is that it is straightforward to certify nonmem-

bership of an element in a convex set.

Theorem 2.1.5 (Separating Hyperplane Theorem (see e.g. [BPT13, Appendix A.3])). Let

A,B Ď Rn be two convex sets.

• If A X B “ H, then there is a linear functional ℓ P pRnq˚ and a constant γ P R such

that ℓpaq ď γ for all a P A and ℓpbq ě γ for all b P B. In this case, we say that A and

B are separated by an affine hyperplane.

• If A is compact and B is closed, then we can further conclude that there exists ℓ P pRnq˚

and γ P R with ℓpaq ă γ and ℓpbq ą γ for all a P A and b P B. In this case, we say

that A and B are strictly separated by an affine hyperplane.

Remark 2.1.1. Note in particular that if B is a closed convex set and x R B, then since

txu is compact, we can strictly separate x from B using an affine hyperplane.

Many of our applications of convex geometry will come from conic optimization problems–

the optimization of a linear functional over an affine slice of a proper cone.

Definition 2.1.6 (Proper Cone). A convex cone K Ď Rn is proper if it is closed, full

dimensional and contains no lines.

Definition 2.1.7 (Dual Cone). Let K Ď Rn. The dual cone to K is the cone

K˚
“ ty P Rn

| xy, xy ě 0 for all x P Ku.

Note that if K is proper, then so is K˚ and we have that pK˚q˚ “ K, though this last

statement only needs that K is closed.
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Definition 2.1.8 (Conic Optimization Primal-Dual Pair). Let c P Rn be a vector, K Ď Rn

a convex cone, L : Rn Ñ Rm a linear transformation, and b P Rm a vector.

A conic optimization problem has the primal problem

min xc, xy s.t. Lpxq “ b, x P K. (2.1)

and dual problem

max xy, by s.t. c ´ L˚
pyq P K˚ (2.2)

Where L˚ is the adjoint linear transformation of L.

A crucial example of conic optimization for us will be semidefinite programming problems.

Example 2.1.2 (Semidefinite Programming (SDP)). Let Sn » Rpn
2q be the vector space of

symmetric nˆn real matrices, equipped with the inner product xA,By “ tracepABq. Recall

that a matrix X P Sn is called positive semidefinite (PSD) if vJXv ě 0 for all v P Rn, or

equivalently, every eigenvalue of X is nonnegative. The set of PSD matrices is denoted Sn
`

and is a proper cone in Sn. We typically write X ľ 0 if X P Sn
` and X ą 0 if X P intpSn

`q.

Fix matrices C,Ap1q, Ap2q, . . . , Apmq P Sn and a vector b “ pb1, b2, . . . , bmqJ P Rm. A

semidefinite program in primal form is the problem

minxC,Xy s.t. xApiq, Xy “ bi for all i P rms, X ľ 0.

The corresponding dual problem is

maxxy, by s.t. C ´

m
ÿ

i“1

yiA
piq ľ 0.

˛

The conic optimization problem in Definition 2.1.8 is given as a primal-dual pair. It is

always the case that the optimal value to (2.1) is greater than the optimal value to (2.2).
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This property is known as weak duality. The two problems have equal optimal values when

they are both strictly feasible, a property known as strong duality.

Example 2.1.3 (Semidefinite Program with Strong Duality). Consider the SDP

minx2 s.t.

»

—

–

x1 x2

x2 1 ´ x2

fi

ffi

fl

ľ 0.

The feasible set of this problem is the circle in the plane centered at px1, x2q “ p1{2, 0q with

radius 1{2 so that the optimal value is ´1{2.

The dual to this SDP is

max y s.t.

»

—

–

´y 1{2

1{2 ´y

fi

ffi

fl

ľ 0.

Note that this problem is feasible only for y ď ´1{2 and that the optimal value of the dual

is also ´1{2. ˛

We will also need the notion of the polar dual to a convex cone.

Definition 2.1.9 (Polar Cone). Let K Ď Rn be a convex cone. The polar cone to K is

K˝
“ ty P Rn

|xy, xy ď 0 for all x P Ku.

Note that if K is closed, then pK˝q˝ “ K.

2.2 Tropical Algebra

In this section, we provide a brief summary of the necessary results in tropical algebra and

geometry. A more thorough introduction to the subject can be found in [MS15].

The (max-plus) tropical semiring is the set T “ R Y t´8u together with the operations

of tropical addition a ‘ b “ maxpa, bq and tropical multiplication a d b “ a ` b. Tropical
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operations are commutative and associative, and tropical multiplication distributes over

tropical addition. For an integer n, we set adn “ a d a d . . . d a “ na; i.e, tropical

exponentiation is standard multiplication. We can formally adjoin variables to the tropical

semiring to obtain tropical polynomials and tropical rational functions.

Definition 2.2.1 (Tropical polynomial). A tropical polynomial is a function of the form

ppxq “
à

jPrDs

pj d xdwpjq

“ max
jPrDs

ppj ` xwpjq, xyq,

Where pj P R and wpjq P Rn for j P rDs. The set of tropical polynomials in n variables is

denoted Trx1, x2, . . . , xns.

Definition 2.2.2 (Tropical rational function). A tropical rational function is a function of

the form rpxq “ ppxq ´ qpxq for some tropical polynomials p, q P Trx1, x2, . . . , xns. More

explicitly,

rpxq “
à

jPrDs

pj d xdwpjq

´
à

jPrDs

qj d xdwpjq

“ max
jPrDs

ppj ` xwpjq, xyq ´ max
jPrDs

pqj ` xwpjq, xyq

Note that tropical polynomials are continuous piecewise linear convex functions and trop-

ical rational functions are continuous and piecewise linear.

2.2.1 Tropical Hypersurfaces

In this subsection, we discuss the geometric objects associated to tropical algebraic objects.

The theory of tropical geometry is rapidly developing and we provide only the basics we will

need in Chapter 3.

Definition 2.2.3 (Tropical Hypersurface). Let ppxq “
À

jPrDs
pj d xdwpjq

be a tropical poly-

nomial. The tropical hypersurface of p is the set of points where the maximum is achieved

(at least) twice.
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Vppq “ tx P Rn
| ppxq “ pi d xwpiq

“ pj d xwpjq

for some i ‰ ju

“ tx P Rn
| p is not differentiable at xu.

Note that the complement of Vppq in Rn is a union of (open) polyhedra defined by the

inequalities pi ` xwpiq, xy ą pj ` xwpjq, xy for all j ­“ i.

Definition 2.2.4 (Polyhderal Complex). A polyhedral complex Σ is a collection of polyhedra

such that if σ P Σ, then every face of σ is an element of Σ and if σ, τ P Σ, then σ X τ P Σ.

Tropical hypersurfaces are polyhedral complexes where every top-dimensional cell has

dimension n ´ 1 [MS15].

It is a fundamental fact of tropical geometry that the tropical hypersurface of a tropical

polynomial is determined by the polyhedral geometry of the coefficients.

Remark 2.2.1. Let ppxq “
ř

jPrDs
pj ‘ x‘wpjq

be a tropical polynomial in the variables

x “ px1, x2, . . . , xnq. The Newton Polytope of p is the set

N ppq “ convptwpjq
| j P rDsuq.

One obtains a polyhedral subdivision of N ppq by constructing the polyhedral set

convptpwpjq, pjq | j P rDsuq Ď Rn
ˆ R

and projecting the upper faces, those faces whose outward normal vectors have positive last

component, onto N ppq. The tropical hypersurface Vppq is then dual to this subdivision (i.e.

k dimensional regions in the subdivision correspond to n ´ k dimensional polyhedra in the

hypersurface and conversely).

Example 2.2.1 (Some Tropical Hypersurfaces). 1. Consider the tropical line ppx, yq “

0 ‘ x ‘ y. The tropical line Vppq is shown in the first row of Figure 2.1
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Figure 2.1: Newton Polytopes (left) and Tropical Hypersurfaces (right) for Example 2.2.1

2. Consider the tropical quadratic ppx, yq “ 1‘p1dxq‘p1dyq‘p1dxdyq‘pxd2q‘pyd2q.

It’s Newton Polytope and Hypersurface are shown in the second row of Figure 2.1.

˛

Remark 2.2.2. We will also work with with the nondifferentiability locus of tropical rational

functions. Let fpxq “ ppxq´qpxq be a tropical rational function for some tropical polynomials

p, q and set X Ď Rn to be the set of points for which f is nondifferentiable. Then X Ď

Vppq Y Vpqq and this containment can be proper. In particular, the complement RnzX need

not consist of (open) polyhedra.

2.2.2 Tropical Linear Algebra

The set Tn of n-vectors with entries in T carries many properties analogous to linear algebraic

properties of Rn. First, Tn inherits an additive semigroup structure from T and a natural

scalar multiplication.

Definition 2.2.5. (Addition and scalar multiplication in Tn) Let a “ pa1, a2, . . . , anqJ, b “

pb1, b2, . . . , bnqJ P Tn and λ P T. We define vector addition

a ‘ b “ pa1 ‘ b1, a2 ‘ b2, . . . , an ‘ bnq
J

“ pmaxpa1, b1q,maxpa2, b2q, . . . ,maxpan, bnqq
J
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and scalar multiplication

λ d a “ pλ d a1, λ d a2, . . . , λ d anq
J.

Definition 2.2.6 (pmax,`q-linear transformation). A function f : Tn Ñ Tm is pmax,`q-

linear if for all a, b P Tn and λ P T,

fpa ‘ bq “ fpaq ‘ fpbq and fpλ d aq “ λ d fpaq.

Remark 2.2.3. In linear algebra, linear maps Rn Ñ Rm can be represented by matrix-vector

multiplication. Similarly, pmax,`q-linear maps can be represented by pmax,`q-matrix vector

products.

Definition 2.2.7 (pmax,`q and pmin,`q matrix-vector products). Let A “ pai,jq P Tmˆn

be an m ˆ n matrix with entries in T and x P Tn. We define the pmax,`q matrix-vector

product to be

A ‘ x “

˜

n
à

j“1

a1,j d xj,
n
à

j“1

a2,j d xj, . . . ,
n
à

j“1

am,j d xj

¸J

“

ˆ

max
jPrns

pa1,j ` xjq,max
jPrns

pa2,j ` xjq, . . . ,max
jPrns

pam,j ` xjq

˙J

.

The dual notion is pmin,`q matrix-vector multiplication, denoted ‘1:

A ‘1 x “

ˆ

min
jPrns

pa1,j ` xjq,min
jPrns

pa2,j ` xjq, . . . ,min
jPrns

pam,j ` xjq

˙J

.

Theorem 2.2.8 ([CG79]). Let A P Rmˆn and b P Rm and fix p P N. The optimal solution

to the optimization problem

argmin
x

}A ‘ x ´ b}p s.t. A ‘ x ď b

is given by x˚ “ p´AqJ ‘1 b. The solution x˚ is called the principal subsolution to the
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pmax,`q-linear system A ‘ x “ b. The unconstrained 8-norm problem

argmin
x

}A ‘ x ´ b}8

has optimal solution x˚ ` 1
2
}A ‘ x˚ ´ b}8.

Remark 2.2.4. The principal solution x˚ “ p´AqJ ‘1 b in Theorem 2.2.8 is analogous to the

solution of the ordinary least squares problem in standard linear algebra using the normal

equations. However, note that the principal solution x˚ “ p´AqJ ‘1 b can be computed in

time linear in m and n and does not suffer from the ill-conditioning of the normal equations.

2.3 Real Algebraic Geometry

In this section we provide the necessary results from real algebraic geometry, focusing on

plane curves, sums of squares, and hyperbolic polynomials.

2.3.1 Real Plane Curves

Here we give a brief overview of real plane curves.

Definition 2.3.1. A subset C Ď RP2 is a real algebraic plane curve of degree d if there

exists a homogeneous polynomial f P Rrx, y, zsd such that C “ VRpfq.

Even if the polynomial f is irreducible, the corresponding real plane curve C may have

multiple connected components.

Definition 2.3.2 (Oval). Let C1 Ď C be a connected component of a real plane curve.

If RP2
zC1 has two connected components, exactly one of which is contractible, then C1 is

called an oval. If C1 is an oval, then the contractible component of RP2
zC1 is called the

interior of C1. If C1, C2, . . . , Ck are ovals such that Ci is contained in the interior of Cj for

1 ď j ă i ď k, and this is a maximal set of such ovals, then Ck is an oval of depth k and

C1, C2, . . . , Ck is a nest of ovals.
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Remark 2.3.1. There is a body of work in the real algebraic geometry literature which

studies the numbers and arrangements of ovals; see e.g., [DIK12, PSV11]. We will be pri-

marily concerned with the extremal case of degree d curves with td
2
u nested ovals. Such

curves correspond to hyperbolic polynomials (see Section 2.3.3).

We will be particularly interested in cases for which the real plane curve C has a nice

description as the vanishing set of the determinant of linear combinations of matrices.

Definition 2.3.3 (Symmetric Determinantal Representation). A symmetric determinantal

representation of a real algebraic plane curve C of degree d is an expression of C as VRpfq

where f is given by

fpx, y, zq “ detpxA ` yB ` zCq

for A,B,C P Sd. A symmetric determinantal representation is called definite if spanRpA,B,CqX

intpSd
`q ‰ H.

2.3.2 Sums of Squares Polynomials

Central to real algebraic geometry is the theory of sums of squares polynomials. There are

many excellent references for the topic, including [Mar08, Pow21, BPT13].

Definition 2.3.4 (Sum of Squares). A polynomial f P Rrx1, x2, . . . , xnsď2d of degree 2d is a

sum of squares pSOSq if there exist h1, h2, . . . , hr P Rrx1, x2, . . . , xnsďd such that f “
řr

i“1 h
2
i .

Remark 2.3.2. It is often more convenient to work with homogeneous polynomials. Recall

that if f P Rrx1, x2, . . . , xnsď2d is a polynomial of degree 2d, its homogenization is given by

f̂ “ x2d
0 f

ˆ

x1

x0

,
x2

x0

, . . . ,
xn

x0

˙

P Rrx0, x1, . . . , xns2d.

The polynomial f is a sum of squares if and only if its homogenization f̂ is a sum of squares.
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Definition 2.3.5 (Nonnegative and SOS cones). Let Rrx1, x2, . . . , xns2d be the vector space

of homogeneous polynomials of degree 2d in n variables. The cone of nonnegative forms is

Pn,2d “ tf P Rrx1, x2, . . . , xns2d | fpxq ě 0 for all x P Rn
u ,

The cone of sums of squares is

Σn,2d “

#

f P Rrx1, x2, . . . , xns

ˇ

ˇ

ˇ

ˇ

ˇ

f “

r
ÿ

i“1

h2
i for some h1, h2, . . . , hr P Rrx1, x2, . . . , xnsd

+

.

It is clear from the definitions that Σn,2d Ď Pn,2d for all pn, 2dq. Hilbert’s Theorem

resolves the cases where equality holds.

Theorem 2.3.6 (Hilbert). Pn,2d “ Σn,2d if and only if

• d “ 1,

• n “ 2, or

• pn, 2dq “ p3, 4q.

There is also a relative version of nonnegativity and sums of squares. Let X Ď Pn´1 be a

variety defined over the real numbers with homogeneous coordinate ringR “ Rrx1, x2, . . . , xns{I.

Definition 2.3.7 (Nonnegative and SOS cones on a variety). The cone of nonnegative

quadratic forms on a variety X Ď Pn´1 with coordinate ring R is

PX “ tf P R2 | fprxsq ě 0 for all rxs P XpRqu .1

The cone of SOS quadratic forms on X is

ΣX “

#

f P R2

ˇ

ˇ

ˇ

ˇ

ˇ

f “

r
ÿ

i“1

h2
i , for some h1, h2, . . . , hr P R1

+

.

1Note that evaluation of quadratic forms on points rxs P XpRq is well-defined up to sign.
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Remark 2.3.3. Note that it suffices to consider quadratic forms on a variety, as we can

replace the variety X with the d-uple veronese embedding νdpXq if necessary.

Hilbert’s Theorem is generalized to the case of varieties as follows.

Theorem 2.3.8 ([BSV16]). Let X Ď RPn´1 be a nondegenerate totally real variety, that is,

X is not contained in a hyperplane and XpRq is Zariski dense in X. Then, PX “ ΣX if and

only if X is a variety of minimal degree: degpXq “ codimpXq ` 1.

Sums of squares polynomials are intimately related to semidefinite programming. In par-

ticular, the certification that a homoegneous polynomial f P Rrx1, x2, . . . , xns2d is a semidef-

inite programming feasibility question.

Proposition 2.3.9. A homogeneous polynomial f P Rrx1, x2, . . . , xns2d is a sum of squares

if and only if

fpxq “ rxs
J
dQrxsd, (2.3)

for some positive semidefinite matrix Q and rxsd a vector enumerating all monomials of

degree d in the x1, x2, . . . , xn.

Similarly, a form f P R2 is a sum of squares if and only if there is a symmetric matrix

Q and an element gpxq “ xJZx P I2 such that Q ` Z ľ 0 and

fpxq “ xJ
pQ ` Zqx. (2.4)

Remark 2.3.4. Note that the equalities in (2.3) and (2.4) impose affine conditions on the

entries of Q and therefore the existence of such a certificate is a semidefinite feasibility

problem.

We conclude this subsection by connecting the classical S-lemma in optimization theory

(see [PT07] for a survey) to the real algebraic geometry framework of Theorem 2.3.8. The

S-lemma asserts that if Q1 is a quadratic polynomial on Rn such that Q1pxq ą 0 for some
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x P Rn, and if Q2 is a quadratic polynomial on Rn such that Q2pxq is nonnegative for all x

such that Q1pxq ě 0, then there is a positive semidefinite Z and a nonnegative constant c

such that Q2 “ Z ` cQ1. Similarly, if X “ VRpQ1q is the real variety defined by a quadric,

then X is a variety of minimal degree, so that any quadratic Q2 which is nonnegative on X is

a sum of squares modulo the ideal generated by Q1. That is, there is a positive semidefinite

Z such that Q2 “ Z ` cQ1. Note that since we are dealing with the variety defined by

Q1, the constant c is not restricted to be nonnegative. In chapter 5, we will see a similar

situation for statements involving three quadratics.

2.3.3 Hyperbolic Polynomials

An important class of polynomials in real algebraic geometry is the class of hyperbolic

polynomials, which share many geometric features with characteristic polynomials.

Definition 2.3.10 (Hyperbolic Polynomial). A homogeneous polynomial p P Rrx1, x2, . . . , xnsd

is hyperbolic with respect to a point e P Rn if ppeq ‰ 0 and for all a P Rn, the univariate

polynomial ppte ´ aq P Rrts is real-rooted.

Example 2.3.1. The polynomial

ppx1, x2, . . . , xnq “ detpx1I ` x2A
p2q

` x3A
p3q

` . . . ` xnA
pnq

q

for some fixed symmetric matrices Ap2q, Ap3q, . . . , Apnq is hyperbolic with respect to the point

p1, 0, 0, . . . , 0q. ˛

Topologically, the hypersurfaces corresponding to smooth hyperbolic polynomials are

extremal in the sense that they contain the maximum number of nested ovaloids.

Proposition 2.3.11 (See e.g. [KPV15]). If p is a smooth hyperbolic polynomial, then the

real zero set VRppq Ď RPn´1 consists of t
deg p
2

u maximally nested ovaloids.

Additionally, the zero sets of hyperbolic polynomials possess convex structure.
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Theorem 2.3.12 ([G̊ar59]). If p is hyperbolic with respect to e P Rn, then the connected

component of e in RnzVRppq is an (open) convex cone.

We will be particularly interested in the case of hyperbolic plane curves. In this case,

due to a theorem of Helton and Vinnikov [HV07], there is always a definite determinantal

representation for a hyperbolic plane curve.

Theorem 2.3.13 (Helton Vinnikov Theorem [HV07]). Let p P Rrx, y, zs be hyperbolic poly-

nomial of degree d with respect to p1, 0, 0q. Then, there exist symmetric matrices A,B P Sd

such that

ppx, y, zq “ detpxI ` yA ` zBq.

Though the Helton-Vinnikov theorem ensures the existence of a definite determinantal

representation of hyperbolic plane curves, there are three dimensional spaces of symmetric

matrices which do not contain a positive definite matrix but have a hyperbolic determinant.

Example 2.3.2 ([PSV12, Example 5.2]). The polynomial

ppx, y, zq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

–

25x 0 12y ´ 32x ´60z

0 25x 10z 24x ` 16y

12y ´ 32x 10z 6x ` 4y 0

´60z 24x ` 16y 0 6x ` 4y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

is hyperbolic with respect to p1, 0, 0q. However, there are no values of px, y, zq which result

in a positive definite matrix. The real algebraic curve corresponding to p is shown in Figure

2.2 ˛



21

Figure 2.2: Hyperbolic curve from Example 2.3.2

2.4 Algebraic Topology and Homological Algebra

In this section, we review the necessary results from algebraic topology and homological

algebra with a partiuclar emphasis on computations using spectral sequences. A standard

refence text for algebraic topology is [Hat02] and a thorough introduction to the theory of

spectral sequences is [McC01]. In this dissertation, all (co)homology will be taken over Z2.

We begin by recalling the definitions of the primary objects in homological algebra.

Definition 2.4.1 ((co)Chain Complex). A chain complex is a sequence of Z2 vector spaces

Vi indexed by i P Z and differentials di : Vi Ñ Vi´1 such that di´1 ˝ di “ 0.

. . . Vi´1 Vi Vi`1 . . .
di´1 di di`1

0

di`2

A cochain complex is a sequence of Z2 vector spaces Vi indexed by i P Z and differentials

di : Vi Ñ Vi`1 such that di`1 ˝ di “ 0.

. . . Vi´1 Vi Vi`1 . . .
di´2 di´1

0

di di`1

Definition 2.4.2 ((co)homology of a (co)chain complex). The homology groups of a chain

complex are Hi “
kerpdiq
impdi`1q

. The cohomology groups of a cochain complex are H i “
kerpdiq
impdi´1q

.
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A primary motivation for homological algebra is to compute the homology of topological

spaces. Loosely speaking, these are Z2 vector spaces whose dimensions count the number of

“holes” in a topological space with n dimensional boundary.

Example 2.4.1 (Singular (co)homology of a topological space (see e.g. [Hat02])). Let X

be a topological space. For each n ě 0, let ∆n be the standard n-simplex and let Cn be the

Z2 vector space2 generated by continuous maps σ : ∆n Ñ X. Using the Cn, we get a chain

complex by setting

dnp

m
ÿ

i“1

αiσiq “

m
ÿ

i“1

˜

αi

n
ÿ

j“0

σiprv0, v1, . . . , pvj, . . . , vnsq

¸

P Cn´1.

where rv0, v1, . . . , pvj, . . . , vns denotes the n ´ 1 simplex obtained by removing the vertex vj.

The singular homology of the space X is then the homology of the resulting chain complex,

i.e. HnpXq “
kerpdnq

impdn`1q
.

Singular cohomology of a topological space, on the other hand, is constructed from the

cochain complex which is dual to the chain complex which defines singular homology. That

is, the singluar cohomology groups HnpXq are obtained by taking the cohomology of the

cochain complex

. . . HompCn´1,Z2q HompCn,Z2q HompCn`1,Z2q . . .
dJ
n´2 dJ

n´1 dJ
n

dJ
n`1

,

where dJ
i is the dual map to di. It follows by the Universal Coefficient Theorem (see e.g.

[Hat02]) that since we are working over the field Z2, HnpXq » HnpXq. ˛

In Chapter 5, we will make heavy use of a spectral sequence to compute singular homology

groups of topological spaces.

Definition 2.4.3 (Spectral Sequence). A (first quadrant, cohomology) spectral sequnce

2if we were working over Z, then we would take Cn to be the free abelian group generated by the σ
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pEr, drq is a collection of pages Er of Z2-vector spaces E
i,j
r indexed by pi, jq P Z2 and differ-

entials dr : Er Ñ Er satisfying the following:

• Ei,j
r “ 0 if i ă 0 or j ă 0.

• The differentials satisfy d2r “ 0; that is, we have the following cochain complex

... Ei´r,j`r´1
r Ei,j

r Ei`r,j´r`1
r ...

di´r,j`r´1
r

0

di,jr

• The Er`1 page has entries isomorphic to the homology of the differentials dr. That is,

Ei,j
r`1 »

kerpdi,jr q

impdi´r,j`r´1
r q

Spectral sequences are usually displayed graphically in terms of their pages.

Example 2.4.2. The following E2 page depicts the labeling and differential information

for the E2 page of a spectral sequence.

E2

0 1 2

0

1

E0,0
2

E0,1
2

E1,0
2

E1,1
2

E2,0
2

E2,1
2

d0,12d
0,1
2

If the map d0,12 : E0,1
2 Ñ E2,0

2 is an isomporhism, and all other di,j2 are zero, then the E3

page of the sequence would have the form
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E3

0 1 2

0

1

E0,0
2

0

E1,0
2

E1,1
2

0

E2,1
2

˛

Note that for a first quadrant cohomology spectral sequence pEr, drq, and fixed i, j ě 0,

there exists k ě 0 such that i ´ k and j ´ k ` 1 are both negative. In particular, the

differential di,jk will have codomain 0 and the differential di´k,j`k´1
k will have domain 0.

Because Ei,j
k`1 »

kerpdi,jk q

impdi´k,j`k´1
k q

, this implies that Ei,j
r » Ei,j

k for all r ě k. We therefore denote

Ei,j
k “ Ei,j

k`1 “ . . . “: Ei,j
8

Definition 2.4.4 (Convergence of Spectral Sequence). We say that a spectral sequence

pEr, drq converges to some graded Z2 vector space H˚, denoted Er ùñ H˚, if for each

n,

Hn »
à

i`j“n

Ei,j
8 .

Example 2.4.3 ([BD25]). Consider a spectral sequence pEr, drq with Er ùñ such that

Ei,j
2 »

$

’

’

&

’

’

%

Z2 pi, jq “ p0, 1q or p1, 0q

0 otherwise

Suppose that d0,12 is an isomorphism. Then, we have that Ei,j
3 “ 0 for all pi, jq P Z2 and

therefore Ei,j
8 “ 0 for all pi, jq P Z2. So,
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H1 » E0,1
8 ‘ E1,0

8 » 0 ‘ 0 » 0.

Pictorally,

E2

0 1 2

0

1 Z2

Z2

d0,12d
0,1
2

E3

0 1 2

0

1 0

0

˛

2.5 Representation Theory

In this section, we review the necessary standard results about the representation theory of

finite groups. A standard reference with complete proofs is [FH91].

Definition 2.5.1 (Group Representation). A (linear) representation of a group G is a group

homomorphism ρ : G Ñ GLpV q for some finite dimensional complex vector space V . The

representation ρ is said to be faithful if the map ρ is injective.

It is common to drop ρ from the notation and refer to the vector space V as a represen-

tation. Note also that if we fix a basis for the vector space V , then we can instead consider

GLnpCq, the group of invertible n ˆ n matrices with complex entries, as the target of the

map ρ. We can also consider maps between representations:

Definition 2.5.2 (Equivariant Map). Let ρ : G Ñ GLpV q and η : G Ñ GLpW q be two

representations of a group G. A linear map T : V Ñ W is said to be equivariant (or G-

linear) if for all v P V and all g P G, T pρpgqvq “ ηpgqT pvq. That is, the following diagram
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commutes:

V W

V W

T

ρpgq ηpgq

T

An invertible equivariant map whose inverse is also equivariant is called an isomorphism

of representations.

Definition 2.5.3 (Subrepresentation, Irreducible Representation). Let ρ : G Ñ GLpV q be a

representation of G. A vector subspace W Ď V is called a subrepresentation if ρpgqW Ď W

for all g P G. A representation V is called irreducible if there are no nontrivial subrepresen-

taions.

Irreducible representations form the building blocks of representation theory. Precisely,

every representation can be written as the direct sum of irreducible representations V »

Às
i“1 Vi. Note that it may be the case that some irreducible representations appear with

multiplicity greater than one. That is,

V »

s
à

i“1

αs
à

j“1

Vi,j,

where for fixed i, we have Vi,j1 » Vi,j2 for any 1 ď j1, j2 ď αi.

Example 2.5.1 (Decomposition into irreducibles). Consider the symmetric group S3 “

xσ, τ |σ2 “ τ 3 “ 1, στ “ τ´1σy and the representation ρ : S3 Ñ GL3pCq with

ρpσq “

»

—

—

—

—

–

0 1 0

1 0 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

ρpτq “

»

—

—

—

—

–

0 0 1

1 0 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

.

The decomposition of C3 into irreducibles is then given by

C3
» spantp1, 1, 1q

J
u ‘ spantp1,´1, 0q

J, p0, 1,´1q
J

u
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˛

Example 2.5.2 (Decomposition into irreducibles with multiplicity 2). Consider the group

Z2 “ t1, σu, and the representation ρ : Z2 Ñ GL3pCq with

ρpσq “

»

—

—

—

—

–

1 0 0

0 0 1

0 1 0

fi

ffi

ffi

ffi

ffi

fl

Now, the decomposition of C3 into irreducibles is given by

C3
» spantp1, 0, 0q

J
u ‘ spantp0, 1, 1q

J
u ‘ spantp0, 1,´1q

J
u

Note that spantp1, 0, 0qJu and spantp0, 1, 1qJu are both the trivial representation, as σ acts on

the identity on both of these spaces, and spantp0, 1,´1qJu is the alternating representation,

since σ acts as mutliplication by ´1 on this space. ˛

Lemma 2.5.4 (Schur’s Lemma (see e.g., [FH91])). Let V and W be irreducible representa-

tions of a finite group G and T : V Ñ W an equivariant map. Then,

• If V is not isomorphic to W then T is the zero map.

• If V “ W , then T “ λI for some λ P C and I the identity map.

Remark 2.5.1. It follows from Schur’s Lemma and the existence of decompositions into irre-

ducibles that if V is a representation, V “
Às

i“1

Àαi

j“1 Vi,j a decomposition into irreducibles

with Vi,j1 » Vi,j2 for all i P rss and j1, j2 P rαis, and T : V Ñ V is an equivariant map,

then there exists a basis of V such that a matrix representative of T has a block structure.

Moreover, the only nonzero blocks are multiples of the identity and correspond to blocks

Vi,j1 Ñ Vi,j2 .
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2.6 ReLU Neural Networks

As a final preliminary section, we provide a brief overview of and fix notation for fully

connected ReLU neural networks. Loosely speaking, a neural network is a composition of

affine functions and nonlinear activation functions. We will be interested in the piecewise

linear ReLU activation function.

Definition 2.6.1 (ReLU Activation Function). The Rectified Linear Unit (ReLU) activation

function is σ : Rn Ñ Rn given by

σpx1, x2, . . . , xnq “

„

maxpx1, 0q maxpx2, 0q . . . maxpxn, 0q

ȷJ

Definition 2.6.2 (Fully Connected ReLU Neural Network). An L-layer fully connected

ReLU Neural Network is a function ν : Rn Ñ Rn expressed as the composition

ν “ ρpLq
˝ σpL´1q

˝ ρpL´1q
˝ σpL´2q

˝ . . . ˝ σp1q
˝ ρp1q,

where ρpℓq : Rnℓ Ñ Rnℓ`1 is an affine map ρpℓqpxq “ W pℓqx ` bpℓq and σpℓq : Rnℓ`1 Ñ Rnℓ`1

is the ReLU activation functions. The sequence pn1, n2, . . . , nLq is the architecture of the

network representing ν, the matrices W pℓq are called the weights at layer ℓ and the vectors

bpℓq are the biases at layer ℓ.

By construction, fully connected ReLU networks are continuous piecewise linear func-

tions. Conversely, any continuous piecewise linear function can be expressed using a neural

network with a bounded number of layers.

Theorem 2.6.3 ([ABMM18]). Any continuous piecewise linear function ν : Rn Ñ R can be

expressed as a fully connected ReLU neural network with at most rlog2pn ` 1qs ` 1 layers.
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Chapter 3

Regression with Tropical Rational

Functions

The content of this chapter is based on joint work with Lars Ruthotto and appears in [DR24].

Tropical geometry has been connected to the study of fully connected feedforward ReLU

Networks, starting with the work of Zhang, Naitzat, and Lim [ZNL18]. Indeed, the authors

show that the sets of tropical rational functions, ReLU neural networks with integral weights,

and continuous peicewise linear functions with integral slopes are equal. Moreover, the

integrality constraints are not restrictive (from a theoretical point of view), as one can

approximate real weights with rational weights and clear denominators. It has been useful

in the theoretical analysis of such networks, particularly in counting the number of linear

regions of a network. Since the full dimensional regions of the complement of a tropical

hypersurface correspond to vertices of the induced subdivision of the Newton polytope (see

Remark 2.2.1), the number of linear regions of a neural network can be bounded by looking

at the coefficients of the network’s representation as a tropical rational function. More work

using tropical geometry to understand neural networks has appeared in [CM19, MCT21,

SM19, SM20, TPS21, MRZ22]. A survey article from 2021 is [MCT21].

In another direction, researchers have applied the theory of principal solutions to tropical
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linear systems (Theorem 2.2.8) to solve tropical polynomial regression problems [MT19,

MT20]. To formally define the regression problem, let W “ twp1q, wp2q, . . . , wpDqu Ď Rn of

permissible exponents and let D “ tpxp1q, yp1qq, pxp2q,xp2qq, . . . , pxpNq, ypNqqu Ă Rn ˆ R be a

dataset. Then, one can form the Vandermonde matrix X P RNˆD with Xi,j “ xwpjq,xpiqy and

the right-hand side vector y “

„

yp1q yp2q . . . ypNq

ȷJ

. The tropical polynomial regression

problem is then

argmin
p

}X ‘ p ´ y}8. (3.1)

By Theorem 2.2.8, the problem (3.1) has the analytical solution

p˚
“ p´Xq

J ‘1 y `
1

2

›

›X ‘ pp´Xq
J ‘1 yq ´ y

›

›

8
.

Therefore, the 8-norm tropical polynomial regression problem can be solved quickly. Vari-

ants of tropical polynomial regression have been studied in [TM19, TTM22, Hoo19]

In this chapter, we utilize the tools from tropical linear systems and tropical polynomial

regression to develop a heuristic for regression with tropical rational functions (Algorithm 1

below). Specifically, given W,D, and X as above, we consider the problem

argmin
p,q

Lpp,qq “ }X ‘ p ´ X ‘ q ´ y}
8
. (3.2)

Note that problem (3.2) is a continuous piecewise linear regression problem, and that the

class of tropical rational functions is a difference of convex functions [Har59]. Such problems

have received attention in multiple communities; see e.g., [MB09, KL21, TV12]

The proposed heuristic provides a step towards leveraging tropical algebraic structure for

the training problem for fully connected ReLU networks.
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Algorithm 1: Alternating Heuristic for Regression with Tropical Rational Func-
tions
Input: Dataset D Ď Rn ˆ R, Exponents W Ď Zn

Output: Vectors p,q P RD of coefficients of polynomials p, q P Trxs such that
ppxq ´ qpxq « y for px, yq P D.

1 Form X P RNˆ|W | with Xi,j “ xwpjq,xpiqy;
2 p0,q0 Ð ´8, q0

0 Ð ´meanpyq;
3 for k “ 1, 2, . . . , kmax do
4 pk Ð argminp }X ‘ p ´ X ‘ qk´1 ´ y}8;
5 qk Ð argminq }X ‘ pk ´ X ‘ q ´ y}8;

6 end

3.1 Alternating Method

Here we derive the alternating heuristic. Fix q. Then, the problem

min
p

Lpqq “ min
p

}X ‘ p ´ pX ‘ q ` yq }8

is a tropical polynomial regression problem. So, by Theorem 2.2.8, there is an optimal

solution

p˚
pqq “ p´Xq

J ‘1
pX ‘ q ` yq `

1

2

›

›X ‘
`

p´Xq
J ‘1

pX ‘ q ` yq
˘

´ pX ‘ q ` yq
›

›

8
.

This solution can be computed quickly, as it only involves forward pmax,`q and pmin,`q

operations and vector addition. Similarly, for a fixed p, we can compute

q˚
ppq “ min

q
}X ‘ q ´ pX ‘ p ´ yq}8

“ p´Xq
J ‘1

pX ‘ p ´ yq `
1

2

›

›X ‘
`

p´Xq
J ‘1

pX ‘ p ´ yq
˘

´ pX ‘ p ´ yq
›

›

8

.

Therefore, given an initialization q0, one can perform alternating steps pk`1 “ p˚pqkq

and qk`1 “ q˚ppk`1q. The procedure is summarized in Algorithm 1.
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We begin with some immediate observations about the iterates produced by the method.

First, the iterates produced by Algorithm 1 lead to nonincreasing values of the loss function.

Fix ek “ Lppk,qkq to be the residual at iteration k.

Proposition 3.1.1. The residuals ek are nonincreasing. That is, ek`1 ď ek.

Proof. Since pk`1 “ argminp Lpp,qkq and qk`1 “ argminq Lppk`1,qq, it follows immedi-

ately that

ek “ }X ‘ pk
´ X ‘ qk

´ y}8

ě }X ‘ pk`1
´ X ‘ qk

´ y}8

ě }X ‘ pk`1
´ X ‘ qk`1

´ y}8

“ ek.

Additionally, the difference in residual is bounded by a constant multiple of the norm of

the update step. We use this to determine an effective stopping criterion in our experiments,

where we observe that this bound is nonincreasing.

Proposition 3.1.2. Set ηk “

›

›

›

›

›

„

pk`1 qk`1

ȷJ

´

„

pk qk

ȷJ
›

›

›

›

›

8

. Then, ek ´ ek`1 ď 2ηk.

Proof. Note that for each j P rDs and for any k, the inequalities

pkj ´ ηk ď pk`1
j ď pkj ` ηk and qkj ´ ηk ď qk`1

j ď qkj ` ηk

each hold. Moreover, since for each i P rN s,

max
jPrDs

pxwpjq,xpiq
y ` pkj q ˘ ηk “ max

jPrDs
pxwpjq,xpiq

y ` pkj ˘ ηkq

it follows that
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max
jPrDs

pxwpjq,xpiq
y ` pkj q ´ ηk ď max

jPrDs
pxwpjq,xpiq

y ` pk`1
j q ď max

jPrDs
pxwpjq,xpiq

y ` pkj q ` ηk.

The analogous statements hold for qk. Denote by P kpxq and Qkpxq the tropical polynomials

with coefficients pk and qk, respectively. Set ℓ P rN s to be such that the residual ek is

achieved at the datapoint pxpℓq, ypℓqq, i.e, ek “ |P kpxpℓqq ´ Qkpxpℓqq ´ ypℓq|. Then,

ek ´ ek`1
“ |P k

pxℓ
q ´ Qk

pxℓ
q ´ ypℓq

| ´ max
iPrNs

|P k`1
pxpiq

q ´ Qk`1
pxpiq

q ´ ypiq
|

ď |P k
pxℓ

q ´ Qk
pxℓ

q ´ ypℓq
| ´ |P k`1

pxℓ
q ´ Qk`1

pxℓ
q ´ ypℓq

|

ď |P k
pxpℓq

q ´ Qk
pxpℓq

q ´ P k`1
pxpℓq

q ` Qk`1
pxpℓq

q|

ď |P k
pxpℓq

q ´ P k`1
pxpℓq

q| ` |Qk
pxpℓq

q ´ Qk`1
pxpℓq

q|

ď 2ηk.

3.2 Geometric Aspects

The iterates produced by Algorithm 1 have a nice connection to the geometry of the loss

function. Specifically, we show below that the loss function L is a tropical rational function

of the parameters p,q. Moreover, there always exists a minimizer pp˚,q˚q in the nondifferen-

tiability locus of L and the iterates pk,qk produced by Algorithm 1 are such that ∇Lppk,qkq

does not exist.

Proposition 3.2.1. The loss function Lpp,qq is a tropical rational function.

Proof. We can expand

Lpp,qq “ max
iPrNs

ˇ

ˇP pxpiq
q ´ Qpxpiq

q ´ ypiq
ˇ

ˇ

“ max
iPrNs

`

max
`

P pxpiq
q ´ Qpxpiq

q ´ ypiq,´P pxpiq
q ` Qpxpiq

q ` ypiq
˘˘

.



34

Since the set of tropical rational functions form a semifield, it follows that L is a tropical

rational function.

As a tropical rational function, L is continuous and piecewise linear. So, we can study

the optimization problem (3.2) using polyhedral geometry. To start, we show that the

optimization problem (3.2) has a solution in the nondifferentiability locus of L.

Proposition 3.2.2. There is an optimal solution to (3.2). Moreover, there is an optimal

solution pp˚,q˚q to (3.2) such that ∇L does not exist at pp˚,q˚q.

Proof. By Proposition 3.2.1, there are tropical polynomials g, h in 2D indeterminates such

that

Lpp,qq “ gpp,qq ´ hpp,qq.

The nondifferentiability locus of L is then contained in the union Vpgq Y Vphq Ď R2D. The

complement of Σ “ Vpgq Y Vphq in R2D is a collection of open polyhedra. Label these

A1, A2, . . . , As.

For the first claim, note that the restriction of L to the closed polyhedron clpAiq is linear

for each i P rss. Since Lpp,qq ě 0, there is a minimum value zi “ mintLpp,qq | pp,qq P

clpAiqu for each i P rss. So, L achieves the minimum value z “ mintzi | i P rssu.

For the second claim, note that since the restriction to of L to clpAiq is linear for each

i P rss, there must be a minimizer pppiq,qpiqq P BclpAiq with Lpppiq,qpiqq “ zi for each i P rss.

In particular, there is pp̂, q̂q P Σ “
Ťs

i“1 BclpAiq such that Lpp̂, q̂q “ z. If ∇Lpp̂, q̂q does not

exist then we are done. Otherwise, ∇Lpp̂, q̂q “ 0. Relabel the Ai so that pp̂, q̂q P A1 and

pp̂, q̂q P
Şk

i“1 clpAiq. Then, it follows that every point of A “
Ťk

i“1 clpAiq is a minimizer of

L. Set B to be the smallest connected set containing A on which L is minimized. Note that

B ­“ R2D. Indeed if B “ R2D, then L is constant, which is impossible: if wp1q P W , q is

fixed, and pj is fixed for j ě 2, then for sufficiently large values of p1,
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Lpp,qq “ max
iPrNs

ˇ

ˇ

ˇ

ˇ

xwp1q,xpiq
y ` p1 ´ max

jPrDs
pxwpjq,xpiq

` qjq ´ ypjq

ˇ

ˇ

ˇ

ˇ

“ p1 ` C

for some constant C. Since B ­“ R2D, any point pp˚, q˚q on BB ‰ H is a minimizer of L such

that ∇Lpp˚,q˚q does not exist.

To further the connection to the geometry of the loss function, we show that the iterates

produced by Algorithm 1 are located in the nondifferentiability locus of L. Combined with

Propositions 3.1.1 and 3.2.2, this suggests that the alternating heuristic is a reasonable

approach to searching for a global minimizer.

Proposition 3.2.3. Let pk,qk for k ě 1 be iterates produced by Algorithm 1. Then,

∇Lppk,qkq does not exist.

Proof. We prove that if A P Rmˆn and b P Rm, then

u˚
“ p´Aq

J ‘1 b `
1

2
}A ‘ pp´Aq

J ‘1 bq ´ b}8

is a nondifferentiable point of the residual function Rpuq “ }A ‘ u ´ b}8. The claim of the

proposition will then follow since pk “ argminp Lpp,qk´1q and qk “ argminq Lppk,qq have

this form.

Suppose for the sake of a contradiction that ∇Rpu˚q exists. Then, because u˚ is a

minimizer of Rpuq, it must be the case that ∇Rpuq “ 0. Fix indices i, j such that

Rpu˚
q “

ˇ

ˇ

ˇ
max

ℓ
pai,ℓ ` u˚

ℓ q ´ bi

ˇ

ˇ

ˇ
“
ˇ

ˇai,j ` u˚
j ´ bi

ˇ

ˇ ,

and let K “ tk | ai,k ` u˚
k “ maxℓpai,ℓ ` u˚

ℓ qu be the set of indices where the maximum is

attained. Set eK “
ř

kPK ek be the indicator vector with 1 in component k if k P K and 0

otherwise. Note that the previously fixed index j is an element of K. For ϵ ą 0 small enough

that
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ai,k ` u˚
k ´ ϵ ą ai,ℓ ` u˚

ℓ when k P K and ℓ R K,

there exists c P t´1, 1u such that

Rpu˚
` cϵeKq ě

ˇ

ˇai,j ` u˚
j ` cϵ ´ bi

ˇ

ˇ “
ˇ

ˇai,j ` u˚
j ´ bi

ˇ

ˇ ` ϵ “ Rpu˚
q ` ϵ.

That is, perturbing u˚ along either ˘eK will increase the residual by at least ϵ. But then,

ˇ

ˇ

ˇ

ˇ

Rpu˚ ` cϵeKq ´ Rpu˚q

ϵ

ˇ

ˇ

ˇ

ˇ

ě 1.

Since the difference quotient is bounded away from 0 for small ϵ ą 0, this contradicts the

hypothesis that ∇Rpu˚q “ 0.

The geometric properties discussed above lead to concrete conditions on the dataset. In

particular, the sources of nondifferentiability in the loss function are in the infinity norm and

the nondifferentiability of the tropical polynomials P and Q. This allows us to connect the

geometry of the optimization problem to the dataset.

Proposition 3.2.4. There exists a minimizer pp˚,q˚q of L such that at least one of the

following holds:

1. There is an index i P rN s such that xpiq P Vpp˚q Y Vpq˚q.

2. There are i, j P rN s with i ­“ j such that

Lpp˚,q˚
q “

ˇ

ˇP ˚
pxpiq

q ´ Q˚
pxpiq

q ´ ypiq
ˇ

ˇ “
ˇ

ˇP ˚
pxpjq

q ´ Q˚
pxpjq

q ´ ypjq
ˇ

ˇ .

Proof. We will prove the contrapositive. Let pp˚,q˚q be a minimizer of L such that∇Lpp˚,q˚q

does not exist and suppose that neither condition holds. Then, there is i P rN s such that



37

Lpp˚,q˚
q “

ˇ

ˇP ˚
pxpiq

q ´ Q˚
pxpiq

q ´ ypiq
ˇ

ˇ ą
ˇ

ˇP ˚
pxpjq

q ´ Q˚
pxpjq

q ´ ypjq
ˇ

ˇ for all j ‰ i.

There is an open neighborhood U Ď R2D of pp˚,q˚q such that

Lpp,qq “

ˇ

ˇ

ˇ

ˇ

max
jPrDs

ppj ` xwpjq,xpiq
yq ´ max

jPrDs
pqj ` xwpjq,xpiq

yq ´ ypiq

ˇ

ˇ

ˇ

ˇ

for all pp,qq P U . Since Lpp˚,q˚q ą 0, we show that if xpiq R Vpp˚q Y Vpq˚q, then the

evaluation map pp,qq ÞÑ P pxpiqq ´Qpxpiqq is differentiable, contradicting the construction of

pp˚,q˚q. If xpiq R Vpp˚q Y Vpq˚q, then there are j, k P rDs such that

p˚
j ` xwpjq,xpiq

y ą p˚
ℓ ` xwpℓq,xpiq

y for ℓ ­“ j

and

q˚
k ` xwpkq,xpiq

y ą q˚
ℓ ` xwpℓq,xpiq

y for ℓ ­“ k.

So, restricting U to a smaller open neighborhood of pp˚,q˚q if necessary, we see that

L|Upp,qq “ |pj ` xwpjq,xpiq
y ´ qk ` xwpkq,xpiq

y ´ ypiq
|.

Since L ą 0, this is an affine function of pp,qq near pp˚,q˚q, and therefore differentiable.

Additionally, the sublevel sets of the loss function L provide a connection to tropical

convexity.

Proposition 3.2.5. Let δ ą 0. Then, determining the existence of p,q P RD with Lpp,qq ď

δ is a tropical linear programming feasibility problem.

Proof. This is an application of the standard technique of linear programming for solving

minmax problems (see e.g. [BV04, Section 1.2.2]). The problem minp,q Lpp,qq is equivalent
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to the problem

min t

s.t. max
i“1,2,...,D

pxwpiq,xpjq
y ` piq ´ max

i“1,2,...,D
pxwpiq,xpjq

y ` qiq ´ ypjq
ď t @j

´ max
i“1,2,...,D

pxwpiq,xpjq
y ` piq ` max

i“1,2,...,D
pxwpiq,xpjq

y ` qiq ` ypjq
ď t @j.

(3.3)

Now, there is a feasible solution pp,q, tq to (3.3) with t ď δ if and only if the following

system of tropical linear inequalities in the variables p,q has a solution.

$

’

’

&

’

’

%

max
i“1,2,...,D

pxwpiq,xpjq
y ` piq ď max

i“1,2,...,D
pxwpiq,xpjq

y ` qi ` ypjq
` δq @j

max
i“1,2,...,D

pxwpiq,xpjq
y ` qi ` ypjq

q ď max
i“1,2,...,D

pxwpiq,xpjq
y ` pi ` δq @j

3.3 Numerical Results

This section is reproduced from [DR24]. In this section, we use Algorithm 1 for regression

tasks and examine its convergence behavior empirically. We provide univariate, bivariate,

and higher dimensional examples. In the univariate case we analyze the relationship between

the degree hyperparameter and the error in the computed fit. In the bivariate case, we

analyze the effect of precomposition with a scaling parameter c, that is, we study functions

of the form fpcxq “ ppcxq´qpcxq. For six variable functions, we examine the use of Algorithm

1 on data generated from tropical rational functions. We then present the performance of

our approach on the existing datasets used by [KL21, MT20, RK15]. Finally, we present

preliminary experiments using the output of Algorithm 1 to initialize ReLU neural networks.

All Matlab and Python codes to reproduce our experiments can be found at

https://github.com/Alex-Dunbar/Tropical-Data.git.

Throughout this section, we say that an n-variate tropical rational function has degree d

https://github.com/Alex-Dunbar/Tropical-Data.git
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Figure 3.1: Results of applying Algorithm 1 with degree 15 tropical rational functions to
noisy data from a sine curve. Figure 3.1a shows the training data, the approximation by a
tropical rational function, and the function sinx. The approximating function captures the
general behavior of the dataset. Figure 3.1b shows the ℓ8 error ek “ }X‘pk ´X‘qk ´y}8

and the update norm ηk “ }
“

pk`1 qk`1
‰J

´
“

pk qk
‰J

}8. Both the training loss and the
update norm are nonincreasing and contain intervals on which they are nearly constant.

if W “ t0, 1, . . . , dun.

3.3.1 Univariate Data

We apply Algorithm 1 to a dataset consisting of 200 equally spaced points xpiq P r´1, 12s

and corresponding y values ypiq “ sinpxpiqq ` ϵpiq, where ϵpiq is drawn independently from

a Gaussian distribution with mean 0 and standard deviation 0.05. Figure 3.1 shows an

example, with d “ 15. We use a stopping criterion of ηk ď 10´12. The infinity norm of the

error and the infinity norm of the update step at each iteration are plotted in Figure 3.1b.

Both the training loss and the update norm are nonincreasing and have regions on which

they are constant.
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Figure 3.2: Dependence of error and number of iterations on degree of tropical rational
function fit to noisy data from a sine curve. The error decreases monotonoically as a function
of degree with a large drop at degree 5. The number of iterations needed to reach the stopping
criterion of ηk ď 10´12 generally increases with the degree.

Effect of Degree Here, we investigate the relationship between the degree of tropical

rational function and the error in the fit. Specifically, we generate a dataset as in the above

example and use Algorithm 1 to fit a tropical rational function of degree d to the dataset for

d “ 1, 2, . . . , 20. As a stopping criterion in Algorithm 1, we use ηk ď 10´12 or a maximum

kmax “ 10000. Figure 3.2 shows the relationship between the degree of the rational function

and the error in the fit. Note that the error decreases as a function of the degree with a

large decrease in error when the degree is 5. The number of iterations needed to achieve the

stopping criterion is generally increasing but is not monotonic.

3.3.2 Bivariate Data

We use the method to approximate the Matlab peaks dataset using degree 10 and degree

31 tropical rational functions and training until ηk ď 10´12. Explicitly, the peaks dataset

consists of 2401 “ 492 equally spaced px1, x2q pairs in r´3, 3s2 and their evaluations
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peakspx1, x2q “ 3p1 ´ x1q
2e´x2

1´px2`1q2
´ 10

´x1

5
´ x3

1 ´ x5
2

¯

e´x2
1´x2

2 ´
1

3
e´px1`1q2´x2

2 .

The fits and the error are shown below in Figure 3.3. Note that in both cases there is

error in the regions on which the data is nearly constant despite the piecewise linear nature

of the tropical rational functions. As in the univariate case, the training error and the update

norm are nonincreasing and have regions where they are constant over many iterations.

Effect of Scaling Parameter In the above experiments, we directly fit a tropical rational

function to the data. However, the results of [ZNL18] suggest that we should fit a function

of the form fpcxq, where c P R and f is a tropical rational function. To this end, we fit

functions of the form fpcxq for 21 equally spaced values of c P r1, 3s and f a tropical rational

function of degree 35. For each value of c, we use a stopping criterion of ηk ď 10´12 or a

maximum of 500 iterations of the alternating method described in Algorithm 1 to find a

tropical rational function f . The dependence of the training error on c is shown in Figure

3.4 below. Note that the optimal value of c in this range is roughly 1.3. More generally,

for fixed degree d, changing the value of c gives a trade-off between maximum slope and

resolution between slopes. Due to this trade-off, there will, in general, be large errors for

very large c because each affine piece of the tropical polynomials ppcxq and qpcxq will have

large slopes. Conversely, there will be large errors for very small values of c because the

slopes of the affine pieces of the polynomials ppcxq and qpcxq will be bounded.

3.3.3 Higher Dimensional Examples

We test Algorithm 1 on functions with many variables. These experiments suggest that the

alternating minimization method is able to find solutions with low training loss. However,

these solutions do not appear to generalize well, even on data generated from tropical rational

functions.
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Figure 3.3: Results of applying Algorithm 1 with degree 10 and 31 tropical rational functions
to the peaks dataset. The resulting degree 31 function sketches the general behavior of the
dataset (Figure 3.3c), while the degree 10 function fails to approximate the data (Figure
3.3b). Figures 3.3d and 3.3e display the the ℓ8 error ek “ }X ‘ pk ´ X ‘ qk ´ y}8 and

the update norm ηk “ }
“

pk`1 qk`1
‰J

´
“

pk qk
‰J

}8. For both degrees, the training loss
and the update norm are each nonincreasing and contain intervals on which they are nearly
constant.
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Figure 3.4: Error in approximation to the peaks dataset when using a degree p35, 35q tropical
rational function with inputs scaled by c. Here, the optimal value of c in the range 1 ď c ď 3
is roughly 1.3 and gives a much lower training error than the function obtained as the output
of Algorithm 1 with unscaled inputs.

Regression on 6 Variable Function We fit a tropical rational function to the 6 variable

function

gpxq “ x1x2x3 ` 2x4x
2
5 sinpx2

6q

on a training set consisting of N “ 10000 points drawn uniformly at random from r0, 1s6

and then test on a test set generated in the same way. Here, we fix the maximum degree

of the numerator and denominator to be 3 for each variable and train until ηk ď 10´12 or

for a maximum of 500 iterations. There are 8192 trainable parameters. The convergence

behavior during training is shown in Figure 3.5a. The ℓ8 error on the test set is 0.2721,

which is roughly 9.75 times the final training error of 0.0279.

Regression on 10 Variable Function We fit a tropical rational function to the 10

variable function

hpxq “ x1x2x3 ` 2x4x
2
5 sinpx2

6q ´ ex7x8x9x10
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Figure 3.5: Convergence for tropical rational approximation of 6 and 10 variable functions.
The training error and update norm display similar behavior as in the low dimensional cases
with regions on which they remain constant.

on a training set consisting of N “ 10000 points drawn uniformly at random from r0, 1s10

and then test on a test set generated in the same way. Here, we fix the maximum degree of

the numerator and denominator to be 1 for each variable and train until ηk ď 10´12 or for a

maximum of 500 iterations. There are 2048 trainable parameters. The convergence behavior

during training is shown in Figure 3.5b. The ℓ8 error on the test set is 0.6828, which is

roughly 2.9 times the final training error of 0.2342.

Data Generated from Tropical Rational Functions Here, we investigate the use of

Algorithm 1 on data generated by tropical rational functions. Specifically, for n “ 6 we

investigate the use of Algorithm 1 for the recovery of a tropical rational function of degrees

1 through 5 (i.e. Wd “ t0, 1, 2, . . . , du6 for 1 ď d ď 5). For each trial we generate a

tropical rational function with coefficients sampled uniformly at random from r´5, 5s as well

as training and validation datasets of N “ 10000 points sampled uniformly at random from
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Degree Relative Training Error Relative Validation Error

1 2.372 ˆ10´15 0.1271
2 5.869 ˆ 10´15 0.2019
3 9.108 ˆ 10´15 0.2869
4 1.286 ˆ 10´14 0.3631
5 9.373 ˆ 10´6 0.3598

Table 3.1: Average training and validation error on data generated from 6 variable tropical
rational functions. For each degree, the training loss is low, but the validation error is high
and increasing as a function of degree.

r´5, 5s6. We then fit a tropical rational function f̂ of the same degree using Algorithm 1

with a stopping criterion of ηk ď 10´8 or a maximum of 1000 iterations. In degrees at

most 4, the method reached the stopping criterion in fewer than 1000 iterations for each

trial. For degree 5, the method terminated after reaching 1000 iterations in 3 trials. In this

experiment, p0 and q0 are initialized with entries drawn uniformly at random from r´5, 5s6.

Table 3.1 shows the average relative training and validation loss }f̂pxq ´ y}8{}y}8 across

the five trials in each degree. Here, the training loss is low, indicating that Algorithm 1 finds

a near optimal solution. However, the validation loss is high and increasing as a function of

the degree. This indicates that when run to completion, Algorithm 1 solves the optimization

problem (3.2) well. However, the higher validation errors suggest that the solution to (3.2)

is nonunique. In particular, Algorithm 1 does not necessarily recover the coefficients of the

tropical rational function used to generate the data.

3.3.4 Performance on Existing Datasets

In this section, we test the performance of our method on datasets generated from convex

functions presented in [MT20] and datasets generated from nonconvex functions presented

in [KL21, RK15].

Convex Functions Here, we use datasets from [MT20] and demonstrate that Algorithm

1, as a generalization of tropical polynomial regression, can be used to approximate convex



46

−2 0 2 4 6 8 10 12
2

4

6

8

10

x

y

Approximation of a Tropical Line

Data
Polynomial
Rational

Figure 3.6: Approximation of a tropical line using tropical polynomial regression and Algo-
rithm 1. Note that the two fits diverge near x “ 11, where the tropical rational approximation
becomes nonconvex.

functions. First, we generate data points pxpiq, gpxpiqqq, where the xpiq are 200 equally spaced

points on the interval r´1, 12s and gpxpiqq “ maxp3, xpiq ´2q ` ϵpiq is a tropical line, where ϵpiq

is drawn independently from a uniform distribution on r´0.5, 0.5s. We fit a tropical rational

function and a tropical polynomial with W “ t0, 1u. The results are plotted in Figure 3.6.

Note that there is a deviation between the two approximations near x “ 11, where the

tropical rational approximation becomes nonconvex.

Next, we generate 500 pairs px
piq
1 , x

piq
2 q P r´1, 1s2 uniformly at random and set ypiq “

px
piq
1 q2 ` px

piq
2 q2 ` ϵpiq, where the ϵpiq are drawn independently from a normal distribution with

mean 0 and variance 0.252. We then fit tropical rational functions of degrees d “ 1, 2, . . . , 6

to the data and record the error. Figure 3.7 shows the average and worst error across 25 such

trials as well as the results reported in [MT20, Table 1]. Note that in the experimental setup

of [MT20], tropical polynomials are fit to the data where the monomials are chosen via k-

means clustering. In our setup, exponents for the numerator and denominator polynomials

are t0, 1, . . . , dmaxu2. It appears that the approach in [MT20] yields a lower error in the

low-parameter setting, while the rational regression leads to lower training error in the high-
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Figure 3.7: Errors in tropical approximations to a bivariate dataset generated from a convex
function. Note that despite a data-blind choice of exponents, in the large parameter setting,
tropical rational regression using Algorithm 1 produces approximations with lower training
error than that reported in [MT20, Table 1], which used tropical polynomials with exponents
chosen via k-means clustering.

parameter setting despite the data-independent monomial selection.

Nonconvex Functions Here, we test the performance of Algorithm 1 on nonconvex func-

tions tested by [KL21, RK15]. Specifically, we consider the functions

g1px1, x2q “ x2
1 ´ x2

2 for px1, x2q P r0.5, 7.5s ˆ r0.5, 3.5s,

g2px1, x2q “ x2
2

sinpx1q

x1

for px1, x2q P r1, 3s ˆ r1, 2s,

and g3px1, x2q “ expp´10px2
1 ´ x2

2q
2
q for px1, x2q P r1, 2s ˆ r1, 2s.

For each function, we study the effect of degree of tropical rational function and number of

data points used on the error and solution time. Specifically, for N P t102, 202, 502, 1002u,

we generate a dataset of N equally spaced gridpoints px
piq
1 , x

piq
2 q of the function domain

and their evaluations gjpx
piq
1 , x

piq
2 q and use Algorithm 1 to fit tropical rational functions of

degrees 1, 2, . . . , 25. The results are displayed in Figure 3.8. Note that the training errors
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are comparable to those tested in [KL21].

3.3.5 ReLU Neural Network Initialization

Here we investigate the use of Algorithm 1 to initialize the weights of a ReLU neural network.

The motivation for this approach is that the output of Algorithm 1 carries information about

the training data. So, networks with weights initialized from the output of the tropical

regression heuristic should start from a lower loss than those with weights drawn from a

distribution that does not depend on the training data. Additionally, the computational

cost of performing an iteration of Algorithm 1 is OpNDq, which is comparable to the cost

of an epoch of stochastic gradient descent for a network with D parameters. However, the

networks that we are able to initialize have significantly more than D parameters. Despite

the potential advantages of a tropical initialization, we find that such a scheme does not

always lead to faster convergence or lower training or validation error. Moreover, the network

architectures which we are able to initialize using a tropical rational function appear to have

unstable training, even when initialized using well-known strategies.

In our experiments, we apply Algorithm 1 on data from the noisy sine curve and peaks

datasets to generate approximations of the data, then use the output tropical rational func-

tion to initialize the weights of ReLU networks. The architecture of the initialized network is

determined by the number of monomials in the tropical rational function f used to initialize

the network. Specifically, the proof of [ZNL18, Theorem 5.4] describes one method to write

a tropical rational function fpxq “ ppxq ´ qpxq as a ReLU neural network. If g and h are

two tropical polynomials represented by neural networks ν and µ, respectively, then

pg‘hqpxq “ σppν´µqpxqq`σpµpxqq´σp´µpxqqq “

„

1 1 ´1

ȷ

σ

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

νpxq ´ µpxq

µpxq

´µpxq

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

. (3.4)
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In particular, the expression (3.4) can be applied to the case in which gpxq “ wJx ` gw

is a tropical monomial. This allows us to take the maximum of two networks by adding a

layer and appropriately concatenating weight matrices in the hidden layers. In the resulting

architecture, each hidden layer decreases in width. For example, a univariate degree 15

tropical rational function f can be represented via repeated applications of (3.4) as a neural

network where the compositions are

R1
Ñ R48

Ñ R24
Ñ R12

Ñ R6
Ñ R1.

For each dataset, we compare networks of the same architecture using the following

initialization strategies:

• Repeated applications of (3.4) to the terms of the tropical rational function f output

by Algorithm 1

• He initialization [HZRS15]

• Weights and biases drawn uniformly at random from r´k, ks1, where k “

c

1

number of inputs

for each layer

All neural network parameter optimization is done in PyTorch version 1.11.0 using the

Adam optimizer [KB14] to minimize the MSE loss.

Univariate Data

We use a degree 15 tropical rational function to initialize a neural network to fit the noisy sin

curve from above. The test data consists of 200 pairs pxpiq, ypiqq, where xpiq is randomly drawn

points on the interval r´1, 12s and ypiq “ sinpxpiqq. The networks are trained for 1000 epochs

with batches of size 64 and a learning rate of 5 ˆ 10´6 for the tropical initialized network

and 10´2 for the He-initialized and uniformly-initialized networks. We found choosing a

1This is the default initialization for linear layers in PyTorch version 1.11.0
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smaller learning rate for the tropical initialization important to prevent the optimization

from reducing the accuracy of the model. Training and validation errors are shown in

Figure 3.9. The network initialized from a tropical rational function has lower training and

validation error than the network initialized using the other methods.

Bivariate Data

We use a degree 31 tropical rational function to initialize the peaks dataset using Algorithm

1 as the initialization. The networks are trained for 1000 epochs with a batch size of 64 and

a learning rate of 10´4 for He-initialized and uniformly-initialized networks and 10´7 for the

tropically initialized network. Results are shown in Figure 3.10. The networks initialized

with He initialization and with uniform initialization reach lower training and validation

errors than the tropically initialized network.
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Figure 3.8: Performance of Algorithm 1 on datasets generated from nonconvex bivariate
functions. The plots on the left display the relationship between error, degree, and number
of sample points, while the figures on the right show the dependence of computation time
on degree and number and sample points.
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Figure 3.9: Training and validation errors for neural network fit to noisy sin data. The
network initialized from a tropical rational approximation to the dataset starts and remains
at lower training and validation losses than the networks initialized with the He Initialization
[HZRS15]. and with uniform initialization
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Figure 3.10: Training and validation errors for neural network fits to peaks data. The
networks initialized the He Initialization [HZRS15] and uniform initialization reach lower
training and validation errors than the tropically initialized network.
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Chapter 4

Tensor-Tensor Products and

Semidefinite Programs

This chapter is based on joint work with Elizabeth Newman [DN25]. The mathematical

content is the same; however the presentation has been altered to align with the themes of this

disseration. Additionally, [DN25] includes numerical experiments conducted by Elizabeth

Newman that are omitted here.

In this chapter, we investigate a notion of positive semidefiniteness for third order tensors

and define convex optimization problems over such tensors. Our point of view is derived

from the ‹M tensor-tensor product, a family of tensor-tensor products depending on an

underlying invertible matrix M which allows for the generalization of many familiar linear

algebraic properties to the tensor case [KKA15]. We show that under a reasonable notion

of positive semidefiniteness for tensors with the ‹M product, many desirable properties of

PSD matrices carry over to the tensor case. Moreover, by leveraging the algebraic structure

of the ‹M product, we show that optimizing a linear functional over an affine slice of the

cone of positive semidefinite tensors can be viewed as solving a block-diagonalized matrix

semidefinite programing problem.

In another direction, we study the algebraic structure of the ‹M product, connecting the
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choice of matrix M to the representation theory of finite groups. In particular, we show that

if the rows of the matrix M are chosen corresponding to a basis compatible with a decom-

position into irreducible representations, then the ‹M multiplication map is equivariant map

for an explicit linear subspace of tensors. Combining the representation theoretic perspective

on the ‹M product with the observation that optimization over affine slices of the cone of

positive semidefinite tensors is equivalent to a block-diagonalized semidefinite program leads

to a natural connection with well-studied invariant semidefinite programs [GP04].

As applications of the tensor semidefinite programming framework, we phrase low-rank

tensor completion problems as tensor semidefinite programs and provide a description of

certain group invariant quadratic forms.

Notation: In this chapter, we will work with third-order tensors A P Kn1ˆn2ˆn3 , where the

field K P tR,Cu. Tensors will be denoted with uppercase caligraphic letters (A,B, C, . . .).

We will use Matlab notation for indexing, so that Ai,j,k P K is the scalar in the ith row, jth

column of the kth frontal slice of the tensor. Tensors of format 1 ˆ 1 ˆ n3 are called tubes

and will be denoted using lowercase bold letters (a,b, c, . . .). There are fixed vector space

isomorphisms tube : Kn3 Ñ K1ˆ1ˆn3 and vec : K1ˆ1ˆn3 Ñ Kn3 . In coordinates, we have

that tubepaq1,1,i “ ai and vecpaqi “ a1,1,i. We write a ” a for a P Kn3 and a P K1ˆ1ˆn3 if

tubepaq “ a.

4.1 The ‹M Product of Tensors

The ‹M product gives the structure of a commutative ring to the vector space of tubes.

In this section, we recall the definition and some preliminary results on the ‹M product.

One important theme when working with the ‹M -prodcut is a dependence on coordinates.

Usually, in algebra, one seeks coordinate-free definitions and properties. However, in applied

settings coordinates are genearlly specified by the problem. When working with the ‹M

product from an algebraic perspective, we will see that there is a balancing act between the
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advantages of coordinate-free and coordinate based approaches.

Informally speaking, the ‹M product operates on tubes by transforming the tubes to a

new basis, performing pointwise mulitplications, then pulling back to the original basis. To

make this precise, we define the mode-3 product on tensors.

Definition 4.1.1 (Mode-3 Product). Let A P Kn1ˆn2ˆn3 be the tensor with tubes Ai,j,: “ ai,j

and let M P Kpˆn3. The mode-3 product of A with M , denoted A ˆ3 M , is the tensor with

tubes pA ˆ3 Mqi,j ” M vecpai,jq.

Remark 4.1.1. In commutative algebra, one frequently understands maps between spaces of

tensors in terms of the universal property of tensor products. We can cast the definition of the

mode-3 product in this light as well. Specifically, the map Kn1 ˆKn2 ˆKn3 Ñ Kn1 bKn2 bKp

which sends pa, b, cq ÞÑ a b b b pMcq is multilinear and the ˆ3 product is the induced map

Kn1 b Kn2 b Kn3 Ñ Kn1 b Kn2 b Kp.

Using the mode-3 product, we are able to define the ‹M product of tubes. Note that if

the matrix M is clear from context, we will denote Aˆ3M by Â and refer to Â as the image

of A in the transform domain.

Definition 4.1.2 (‹M product on tubes [KKA15]). Let a,b P C1ˆ1ˆn3 be tubes and fix

M P GLn3pCq. We define

a ‹M b “ pa ˆ3 M d b ˆ3 Mq ˆ3 M
´1

” M´1 diagpM vecpaqqM vecpbq,

where d is the pointwise product. The ‹M product turns C1ˆ1ˆn3 into a commutative ring

with multiplicative identity 1M “ tubepM´1
1n3q. The resulting ring is denoted CM .

Using the ‹M product, we have an alternative viewpoint on tensors A P Cn1ˆn2ˆn3 .

Specifically, rather than viewing a tensor as a multiliear object over the field C, we can view

a tensor as a CM -linear object. That is, A P Matn1ˆn2pCMq is an n1 ˆn2 matrix with entries

in the ring CM . In particular, there is a natural notion of tensor-tensor product.
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Definition 4.1.3 (‹M product of tensors [KKA15]). Let A P Cn1ˆkˆn3 and B P Ckˆn2ˆn3.

The product A ‹M B is the tensor C P Cn1ˆn2ˆn3 with tubes

Ci,j,: “

k
ÿ

ℓ“1

Ai,ℓ,: ‹M Bℓ,j,:.

Note that with this definition of tensor-tensor product, the tensor A ‹M B represents the

composition of CM -linear transformations of free CM -modules Cn2
M

B
Ñ Ck

M
A
Ñ Cn1

M . Moreover,

since the ‹M product on tubes is defined by pointwise multiplication in the transform domain,

the ‹M product of two tensors can be computed completely in parallel in the transform

domain. This leads to an alternate equivalent definition of A ‹M B.

Definition 4.1.4 (‹M product of tensors [KKA15]). Let A P Cn1ˆkˆn3 and B P Ckˆn2ˆn3.

The product A ‹M B is the tensor C P Cn1ˆn2ˆn3 such that for each k P rn3s, we have

Ĉ:,:,k “ Â:,:,kB̂:,:,k.

The definition of the ‹M product provided in Definition 4.1.4 suggests a recipe for de-

veloping tensor decompositions analogous to those found in numerical linear algebra. First,

take the tensor to the transform domain, compute a matrix decomposition for each frontal

slice of the transformed tensor, then pull everything back to the original basis by taking the

mode-3 product with M´1. Not only does this recipe work to create tensor decompositions,

but such decompositions can be computed in parallel since the frontal slices are independent

in the transform domain.

Following this recipe results in several important definitions which generalize familiar

objects from linear algebra. We will use the following definitions in the subsequent sections.

Definition 4.1.5 (Multiplicative Identity Tensor). The multiplicative identity tensor IM P

Cnˆnˆn3 is the unique tensor such that each frontal slice of xIM is the n ˆ n identity matrix.

Note that this implies that IM has tubes pIMqi,i,: “ 1M and pIMqi,j,: “ 0 otherwise.
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Definition 4.1.6 (Hermitian Transpose of a Tensor). Let A P Cn1ˆn2ˆn3. The Hermitian

transpose of A is the unique tensor AH P Cn2ˆn1ˆn3 such that for each k P n3, we have

yAH
:,:,k “ pÂ:,:,kq

H .

For real-valued A P Rn1ˆn2ˆn3 and a real M P GLn3pRq, we call AH the transpose of A and

denote by AJ. Moreover, we have that pAJqi,j,: “ Aj,i,:. We call the tensor A symmetric if

A “ AJ.

Definition 4.1.7 (Orthogonal Tensor). Let A P Rnˆnˆn3 and M P GLn3pRq is ‹M -orthogonal

if A ‹M AJ “ IM “ AJ ‹M A. The definition of a ‹M -unitary complex tensor is analogous,

with AH replacing AJ.

With these definitions, one can define a singular value decomposition of a given tensor. A

tensor S P Cn1ˆn2ˆn3 is f -diagonal if the only nonzero tubes in S are Si,i,: for i P rminpn1, n2qs.

That is, every frontal slice of S is a diagonal matrix.

Theorem 4.1.8 (Existence of an SVD, t-rank [KKA15, KHAN21]). Let A P Rn1ˆn2ˆn3 and

M P GLn3pRq. Then, there are ‹M -orthogonal tensors U and V and an f-diagonal tensor S

such that

A “ U ‹M S ‹M VJ
“

r
ÿ

i“1

si,i ‹M Ui,:,: ‹M pVJ
q:,i,:.

Moreover, this decomposition can be computed slice-wise in the transform domain. Specifi-

cally, for each k P rn3s,

pA ˆ3 Mq:,:,k “ pU ˆ3 Mq:,:,kpS ˆ3 Mq:,:,kpVJ
ˆ3 Mq:,:,k

is a singular value decomposition of the matrix pA ˆ3 Mq:,:,k.The number of nonzero tubes

si,i in S is called the t-rank of A.

The formulation of the SVD is computationally tractable and gives notion of rank which
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is compatible with the the ‹M product structure. Finally, we note that if the matrix M is

orthogonal, then the ‹M product is compatible with the inner product on Rn1ˆn2ˆn3 which

induces the Fröbenius norm.

Lemma 4.1.9. Fix an orthogonal matrix M P Rn3ˆn3 and let X P Rnˆ1ˆn3

1. If A,B P R1ˆnˆn3, then

xA ‹M X ,B ‹M X y “ xX , pAJ
‹M Bq ‹M X y.

2. If A P Rnˆnˆn3, then

xX ,A ‹M X y “ xA,X ‹M XJ
y.

3. For any tensors A,B P Rn1ˆn2ˆn3, we have that

xA ˆ3 M,B ˆ3 My “ xA,By.

Proof. The proofs are calculations:

1.

xA ‹M X ,B ‹M X y “

C

n
ÿ

i“1

ai ‹M xi,
n
ÿ

j“1

bj ‹M xi

G

“

n
ÿ

i“1

n
ÿ

j“1

xai ‹M xi,bj ‹M xjy

“

n
ÿ

i“1

n
ÿ

j“1

@

MJ diagpM vecpaiqqM vecpxiq,M
J diagpM vecpbjqqM vecpxjq

D

“

n
ÿ

i“1

n
ÿ

j“1

@

vecpxiq,M
J diagpM vecpaiqq diagpM vecpbjqqM vecpxjq

D

“ xX , pAJ
‹M Bq ‹M X y
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2.

xX ,A ‹M X y “

n
ÿ

i“1

C

vecpxiq,

˜

n
ÿ

j“1

MJ diagpMai,jqMxj

¸G

“

n
ÿ

i“1

n
ÿ

j“1

@

vecpxiq,M
J diagpM vecpxjqqM vecpai,jq

D

“

n
ÿ

i“1

n
ÿ

j“1

@

MJ diagpM vecpxjqqM vecpxiq, vecpai,jq
D

“ xX ‹M XJ,Ay.

3.

xA ˆ3 M,B ˆ3 My “

n1
ÿ

i“1

n2
ÿ

j“1

xM vecpai,jq,M vecpbi,jqy

“

n1
ÿ

i“1

n2
ÿ

j“1

xvecpai,jq, vecpbi,jqy

“ xA,By.

In Section 4.2 below, we will show that many linear algebraic properties of positive

semidefinite matrices have analogs for a class of tensors.

4.2 M-Semidefinite Tensors

In this section, we develop the theory of M -positive semidefinite (M -PSD) tensors and cor-

responding M -semidefinite programming problems (M -SDP). This builds on work done in

[ZHW21, ZHH22, MKY24] where positive semidefinite tensors and semidefinite program-

ming problems which respected the t-product structure were studied. In Section 4.2.1, we

develop the basic properties of M -PSD tensors. In section 4.2.2, we introduce M -SDP prob-

lems. Section 4.2.3 provides an application of this framework to low-rank tensor completion

problems.
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4.2.1 M-Semidefinite Tensors

The notion of positive semidefinite matrices is crucial in many areas of pure and applied

mathematics. It is well known that there are many equivalent conditions for a matrix to be

PSD.

Theorem 4.2.1 (cf [BPT13, Appendix A.1]). The following are equivalent for a symmetric

matrix A P Rnˆn:

1. A is positive semidefinite.

2. xx,Axy ě 0 for all x P Rn.

3. There is a factorization A “ BBJ, where B P Rnˆr and r “ rkpAq.

4. All 2n ´ 1 principal minors of A are nonnegative.

5. Every eigenvalue of A is nonnegative.

Following the definition of t-PSD tensors given in [ZHW21], we define M -PSD tensors

through the inner product, mirroring condition 2 from Theorem 4.2.1.

Definition 4.2.2 (M -PSD Tensor). Let A P Rnˆnˆn3 be a symmetric tensor and M P Rn3ˆn3

an orthogonal matrix. The tensor A is M-positive semidefinite (M-PSD) if

xX ,A ‹M X y ě 0 for all X P Rnˆ1ˆn3 .

We denote the set of M-PSD tensors of format n ˆ n ˆ n3 by PSDn
M .

In the remainder of this section, we will prove results analogous to the conditions for a

matrix to be PSD given by Theorem 4.2.1. We assume throughout that M is an orthogonal

matrix. First, we provide a few immediate remarks about the set of M -PSD tensors.



61

Remark 4.2.1. 1. The set PSDn
M is a convex cone in the real vector space of symmetric

tensors. Indeed, for any λ, µ ě 0 and any A,B P PSDn
M , it follows from the R-linearity

of the ‹M product and the inner product that

xX , pλA ` µBq ‹M X y “ λxX ,A ‹M X y ` µxX ,B ‹M X y ě 0 for all X P Rnˆnˆ1.

2. The dependence on M in the definition cannot be removed. That is, there exist tensors

which are M -PSD but not N -PSD for M ‰ N . As an explicit example, we have that

the tensor A with frontal slices

A:,:,1 “

»

—

–

0 0

0 1

fi

ffi

fl

and A:,:,2 “

»

—

–

1 0

0 0

fi

ffi

fl

is I-PSD but not M -PSD for M “ 1?
2

»

—

–

1 1

1 ´1

fi

ffi

fl

.

3. In the case n “ 1, A P R1ˆ1ˆn3 is simply a tube A “ a. Taking inspiration from

the matrix case, where positive semidefinite 1 ˆ 1 matrices are simply nonnegative

scalars, one would expect that the tube a is a “nonnegative” element of the ring

RM . However, the ring RM is not ordered, so we instead relax to the condition

that a is a square in the ring RM . In fact, a tube a P RM is a square if and

only if every entry of â “ a ˆ3 M is nonnegative. Indeed, if a “ b ‹M b, then,

â “ pb̂ Ÿ b̂q ”

„

p
řn3

j“1M1,jbjq
2 p

řn3

j“1M2,jbjq
2 . . . p

řn3

j“1Mn3,jbjq
2

ȷJ

has nonneg-

ative entries. Conversely, if â has nonnegative entries, then since each nonnegative

element of R is a square, we have that â ”

„

α2
1 α2

2 . . . α2
n3

ȷJ

and a “ b‹M b, where

b ” M´1

„

α1 α2 . . . αn3

ȷJ

. This fits thematically with the ‹M -product framework,

as nonnegativity here is equivalent to facewise nonnegativity in the transform domain.
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4. Because the ‹M product represents a RM -linear transformation Rn
M Ñ Rn

M , there is

an underlying R-linear transformation of the underlying R-vector spaces Rnˆ1ˆn3 Ñ

Rnˆ1ˆn3 . By composing with the isomorphisms vec and tube, we obtain an associated

R-linear transformation of R-vector spaces Rnn3 Ñ Rnn3 . In a reasonable notion of

M -positive semidefiniteness, one would want this R-linear transforamtion to also be

positive semidefinite, and we show below in Proposition 4.2.3 that this is indeed the

case. It also follows that the tensor A is M -PSD if and only if the quadratic form

X ÞÑ xX ,A ‹M X y is positive semidefinite on Rnˆ1ˆn3 .

Proposition 4.2.3. Fix an orthogonal matrix M P Rn3ˆn3. Given a symmetric tensor

A P Rnˆnˆn3, we have that A P PSDn
M if and only if the block matrix

»

—

—

—

—

—

—

—

–

D1,1 D1,2 . . . D1,n

D2,1 D2,2 . . . D2,n

...
. . .

...

Dn,1 Dn,2 . . . Dn,n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Di,j “ diagpM vecpai,jqq (4.1)

is positive semidefinite.

Proof. Note that for X P Rnˆ1ˆn3 , we have that the ith tube ofA‹MX is given by pA‹MX qi “

řn
j“1 ai,j ‹M xj. It then follows that

xX ,A ‹M X y “

n
ÿ

i“1

˜

vecpxiq
J vec

˜

n
ÿ

j“1

ai,j ‹M xj

¸¸

“

n
ÿ

i“1

˜

vecpxiq
J

˜

n
ÿ

j“1

MJDi,jM vecpxjq

¸¸

,

where Di,j “ diagpM vecpai,jqq. Setting yj “ M vecpxjq P Rn3 for each j P rns then gives

that

xX ,A ‹M X y “

n
ÿ

i“1

n
ÿ

j“1

yJ
i Di,jyj.
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So, xX ,A ‹M X y ě 0 for all X if the block matrix (4.1) is positive semidefinite. Because M

is invertible, the linear transformation Rnˆ1ˆn3 Ñ Rnn3 which sends a tensor X to the vector

„

pM vecpx1qqJ pM vecpx2qqJ . . . pM vecpxnqqJ

ȷJ

is an isomorphism and therefore xX ,A ‹M X y ě 0 for all X only if the block matrix (4.1) is

positive semidefinite.

We now work towards an analouge of Theorem 4.2.1 for M -PSD tensors. In particular,

we show that M -PSD tensors factorize, have prinicpal minors which are squares in RM , and

have eigentubes which are squares in the ring of tubes RM .

Factorization:

Our first goal is to show that a symmetric tensor A P Rnˆnˆn3 is M -PSD if and only if it

admits a decomposition A “ B ‹M BJ, where B P Rnˆrˆn3 and r “ t-rankpAq. An important

consequence of the factorization will be that a tensor A is M -PSD if and only if each frontal

slice of Â is a positive semidefinite matrix. Since we are relating the factorization of A to

t-rankpAq, we will pass to the SVD of A in our proof. First, we note that one direction is

clear:

Proposition 4.2.4. A tensor of the form A “ B ‹M BJ for B P Rnˆrˆn3 is M-PSD.

Proof. Note that if B “

„

Bp1q Bp2q . . . Bprq

ȷ

, where Bpiq P Rnˆ1ˆn3 , then B ‹M BJ “

řr
i“1 Bpiq ‹M BpiqJ. Since PSDn

M is a convex cone, it therefore suffices to show that B ‹M BJ

is M -PSD for any B P Rnˆ1ˆn3 . This follows from Lemma 4.1.9 since for any X P Rnˆ1ˆn3 ,

we have that

xX , pB ‹M BJ
q ‹M X y “ xBJ

‹M X ,BJ
‹M X y “ }BJ

‹M X }
2
F ě 0.
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The converse to Proposition 4.2.4 takes a bit more work. To prove that any M -PSD

tensor A admits a decomposition A “ B ‹M BJ, we pass through the SVD and reduce to

the case of f-diagonal tensors. In this case, we show that every M -PSD f-diagonal tensor has

diagonal tubes which are squares in the ring RM .

Theorem 4.2.5. A symmetric tensor A P Rnˆnˆn3 is M-PSD if and only if A “ B ‹M BJ

where B P Rnˆrˆn3, where r “ t-rankpAq.

Proof. The “if” direction is Proposition 4.2.4. For the converse direction, we first reduce

to the f -diagonal case. Let A “ U ‹M S ‹M UJ be an SVD of A. Note that there is a

decomposition of this form since the SVD is computed slicewise in the transform domain

and A (and thus Â) is symmetric. Next, note that by Lemma 4.1.9, we have that for any

X P Rnˆ1ˆn3 ,

xX ,A ‹M X y “ xX , pU ‹M S ‹M UJ
q ‹M X y “ xUJ

‹M X ,S ‹M pUJ
‹M X qy.

Since U is orthogonal, it follows that A is PSD if and only if S is PSD. So, it suffices to

consider the case of f -diagonal tensors. We claim that if S is an f-diagonal tensor which is

M -PSD, then each tube along the diagonal of S is a square in RM . Fix an index i P rns and

ℓ P rn3s and set X P Rnˆ1ˆn3 to be the tensor with tubes

xj “

$

’

’

&

’

’

%

tubepMJeℓq, j “ i

0, j ­“ i

.

where eℓ is the ℓth standard basis vector of Rn3 . Note that the tubes xj are defined so that

the only nonzero entry of pX is pXi,1,ℓ “ 1. Then,

xX ,S ‹M X y “ eJ
ℓ diagpM vecpSi,i,:qqeℓ ě 0.

So, every entry of M vecpSi,i,:q is nonnegative and therefore Si,i,: is a square in the ring

of tubes. If S has t-rankpSq “ r, then this implies that there is Q P Rnˆrˆn3 such that
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S “ Q ‹M QJ. Taking B “ U ‹M Q then yields A “ B ‹M BJ.

The decomposition given in Theorem 4.2.5 allows us to check membership in the cone

PSDn
M on frontal slices in the transform domain. This is similar to other properties with ‹M -

prodcuts of tensors, where the tensor property is equivalent to matrix properties on frontal

slices in the transform domain.

Corollary 4.2.6. Let M P Rn3ˆn3 be orthogonal. A symmetric tensor A P Rnˆnˆn3 is M-

PSD if and only if each frontal slice of Â is a PSD matrix. That is, pA ˆ3 Mq:,:,ℓ ľ 0 for

each ℓ P rn3s.

Proof. By Theorem 4.2.5, the tensor A is M -PSD if and only if A “ B ‹M BJ for some

B P Rnˆrˆn3 . By the definition of the ‹M -product, this is equivalent to Â:,:,ℓ “ B̂:,:,ℓB̂J
:,:,ℓ

for each ℓ P rn3s and therefore A is M -PSD if and only if each frontal slice of Â is a PSD

matrix.

We will use Corollary 4.2.6 in our discussion of M -semidefinite programming problems

below. In particular, we can view Corollary 4.2.6 as a block-diagonalization result giving n3

independent n ˆ n matrix variables rather than an nn3 ˆ nn3 matrix variables.

Principal Minors:

In this subsection, we make an analogy with statement (4) in Theorem 4.2.1, which states

that every principal minor of a PSD matrix is nonnegative. To effectively develop such a

result, we need a notion of determinant. For a tensor A P Rnˆnˆn3 , we define the determinant

det
M

pAq “
ÿ

σPSn

sgnpσqa1σp1q ‹M a2σp2q ‹M ¨ ¨ ¨ ‹M anσpnq. (4.2)

Here, the sign of a permutation σ P Sn is sgnpσq “ 1 if σ can be written as an even

number of transpositions and sgnpσq “ ´1 otherwise. Note that detMpAq P R1ˆ1ˆn3 is a
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tube and that the definition (4.2) is consistent with the point of view that A is an RM -

linear transformation of RM -modules. If J “ tj1, j2, . . . , jru Ď rns is a subset of indices with

j1 ď j2 ď ¨ ¨ ¨ ď jr, then the principal minor indexed by J is

det
M

pAJq “
ÿ

σPSr

sgnpσqaj1,jσp1q
‹M aj2,jσp2q

‹M . . . ‹M ajr,jσprq
.

Remark 4.2.2. The tube determinant of a n ˆ n ˆ n3 tensor with the t-product structure

was defined in [EJRR23] to be the tube dettpAq such that

{det
t

pAq “ tube

˜

„

detpÂ:,:,1q detpÂ:,:,2q . . . detpÂ:,:,n3q

ȷJ
¸

.

The definition of detM in (4.2) agrees with this perspective. Indeed, for M P GLn3pRq

and A P Rnˆnˆn3 , we have that for Di,j “ diagpM vecpai,jqq,

det
M

pAqq “
ÿ

σPSn3

sgnpσqa1,σp1q ‹M a2,σp2q ‹M . . . ‹M ar,σprq

” M´1
ÿ

σPSn3

sgnpσqD1,σp1qD2,σp2q ¨ ¨ ¨Dn3´1,σpn3´1qM vecpan3,σpn3qq

” M´1

„

detpÂ:,:,1q detpÂ:,:,2q ¨ ¨ ¨ detpÂ:,:,n3q

ȷJ

.

(4.3)

Proposition 4.2.7. A symmetric tensor A P Rnˆnˆn3 is M-PSD if and only if for each

ordered subset of indices J Ď rns, the principal minor detMpAJq is a square in the ring RM .

Proof. Let J “ tj1, j2, . . . , jru Ď rns with j1 ď j2 ď . . . ď jr. By Equation (4.3), we have

that

det
M

pAJq ” M´1

„

detpÂJ,J,1q detpÂJ,J,2q . . . detpÂJ,J,n3q

ȷ

.

Suppose that A is M -PSD. By Corollary 4.2.6, each frontal slice Â:,:,ℓ is positive semidefinite

and therefore each minor detpÂJ,J,ℓq is nonnegative. It then follows that detMpAJq is a square

in RM .
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Conversely, if detMpAJq is a square in RM for any ordered set of indices J , then detpÂJ,J,ℓq ě

0 for each ℓ P rn3s. So, every principal minor of the frontal slice Â:,:,ℓ is nonnegative and

therefore Â has PSD frontal slices. By Corollary 4.2.6, this implies A P PSDn
M .

Eigentubes:

The final characterization of PSD matrices in Theorem 4.2.1 is that a symmetric matrix A

is positive semidefinite if and only if A has all nonnegative eigenvalues. We prove a weaker

statement for M -PSD tensors, namely, that under a nondegeneracy condition, the tubes

which act analogously to eigenvalues must be squares in RM . This statement is a weaker

statement than Theorem 4.2.5 and Proposition 4.2.7 because the ring RM has zero divisors.

The spectral theory of tensors equipped with the t-product was developed in [EJRR23]. Note

also that a notion of spectral theory for higher order tensors which does not depend on a

tensor-tensor product has been studied in the literature; see e.g. [QL17] for an overview.

Proposition 4.2.8. Suppose that A P Rnˆnˆn3 is M-PSD. Let λ P RM and X P Rnˆ1ˆn3 be

such that A ‹M X “ λ ‹M X and that all frontal slices of X̂ are nonzero. Then λ is a square

in RM .

Proof. If A ‹M X “ λ ‹M X , then in the transform domain, we have Â Ÿ X̂ “ λ̂ Ÿ X̂ , where

Ÿ denotes the facewise product. It then follows that for each ℓ P rn3s,

Â:,:,ℓX̂:,1,ℓ “ λ̂1,1,ℓX̂:,1,ℓ.

By the hypothesis that all frontal slices of X̂ are nonzero, this implies that λ̂1,1,ℓ is an eigen-

value of Â:,:,ℓ for each ℓ P rn3s. By Corollary 4.2.6, the matrix Â:,:,ℓ is positive semidefinite

and therefore λ̂1,1,ℓ ě 0. It therefore follows that λ is a square in RM .

Note that the requirement that all frontal slices of X̂ are nonzero is necessary for the

conclusion of Proposition 4.2.8 to hold, as shown by the following example.
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Example 4.2.1. Let A P R2ˆ2ˆ2 and X P R2ˆ1ˆ2 have frontal slices

A:,:,1 “ A:,:,2 “ I, X:,1,1 “

»

—

–

1

1

fi

ffi

fl

, X:,1,2 “

»

—

–

0

0

fi

ffi

fl

.

Then, if I is the 2ˆ2 identity matrix, A P PSD2
I and A‹IX “ λ‹IX for any λ P RI with

λ1,1,1 “ 1. However, λ is a square in RI if and only if λ has nonnegative entries. It follows

that there are tubes λ with A ‹I X “ λ ‹I X which are not squares in RI . For example,

λ “ tubep

„

1 ´1

ȷJ

q is such a tube. ˛

4.2.2 M-Semidefinite Programs

Using the notion of M -PSD tensors developed in the previous section, we are able to define

M -semidefinite programs. Taking inspiration from regular semidefinite programming prob-

lems, these are problems of optimizing a linear functional over the cone of M -PSD tensors.

Definition 4.2.9 (M -SDP). Let M P Rn3ˆn3 be an orthogonal matrix and fix symmetric

tensors C P Rnˆnˆn3 and Apiq P Rnˆnˆn3 for i P rks and scalars b1, b2, . . . , bk. An M -

semidefinite programming problem (M-SDP) is an optimization problem of the form

max xC,X y s.t. xApiq,X y “ bi for i P rks, X P PSDn
M . (M-SDP)

The problem (M-SDP) reduces to classical semidefinite programming in the case where

n3 “ 1. On the other extreme, (M-SDP) is equivalent to linear programming in Rn3 when

n “ 1 and M “ I. In between these extreme cases, (M-SDP) can be thought of as standard

SDP with n3 matrix variables of size n ˆ n (or, equivalently, a single nn3 ˆ nn3 block

diagonal matrix variable with blocks of size nˆn). Indeed, by Corollary 4.2.6, the condition

X P PSDn
M can be checked on frontal slices in the transform domain.

Proposition 4.2.10. Fix an orthogonal matrix M P Rn3ˆn3, and let C,Apiq, and bi be as in

Definition 4.2.9. Then, a tensor X is feasible (optimal) to (M-SDP) if and only if Xpℓq “ X̂:,:,ℓ
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for ℓ P rn3s is feasible (optimal) to the following problem

max
n3
ÿ

ℓ“1

xĈ:,:,ℓ, Xpℓq
y

s.t.
n3
ÿ

ℓ“1

xyApiq
:,:,ℓ, X

pℓq
y “ bi i P rks,

Xpℓq ľ 0 ℓ P rn3s.

Proof. By Corollary 4.2.6, we have X P PSDn
M if and only if X̂:,:,j ľ 0 for each j P rn3s.

Moreover, since M is orthogonal, it follows from Lemma 4.1.9 that xC,X y “ xĈ, X̂ y “

řn3

j“1xĈ:,:,j, X̂:,:,jy and for each i P rℓs, we have xyApiq,X y “ xyApiq, X̂ y “
řn3

j“1x
yApiq

:,:,j, X̂:,:,jy.

In the special case where for each i, the tensor yApiq has only one nonzero frontal slice

yApiq
:,:,ℓi , the equality constraint

řn3

ℓ“1x
yApiq

:,:,ℓ, X
pℓqy “ bi reduces to xxAi

:,:,ℓi , X
pℓiqy “ bi. So, in

this case, (M-SDP) can be solved via n3 independent standard SDPs with matrix variables

of size n ˆ n.

We conclude this section with an example highlighting the dependence on M of the

feasible region to (M-SDP). In particular, we show that different choices of M can lead to

drastically different behaviors with the feasible region, as for tensors with the same format

and affine constraints, one choice of matrix leads to a feasible region with interior in R2 while

another is a line segment in R2.

Example 4.2.2. Consider the 2 ˆ 2 ˆ 2 tensor X with frontal slices

X:,:,1 “

»

—

–

x y

y p1 ´ xq

fi

ffi

fl

X:,:,2 “

»

—

–

p1 ´ xq y

y x

fi

ffi

fl

.

Now, X ľI 0 if and only if xp1 ´ xq ´ y2 ě 0. So, the set of I-PSD tensors with this

structure is given by px, yq in the disk of radius 1
2
centered at p1

2
, 0q.

On the other hand, if we set α “ 1?
2
and M “

»

—

–

α α

α ´α

fi

ffi

fl

, then the frontal slices of

pX “ X ˆ3 M are
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(a) The set of I-PSD tensors in Example 4.2.2 (b) The set of M -PSD tensors in Example 4.2.2

Figure 4.1: The sets tpx, yq | X ľI 0u (Figure 4.1a) and tpx, yq | X ľM 0u (Figure 4.1b)
discussed in Example 4.2.2. The region for which X ľI 0 is a disk, while the region for
which X ľM 0 is a line segment.

zX:,:,1 “

»

—

–

α 2αy

2αy α

fi

ffi

fl

zX:,:,2 “

»

—

–

αp2x ´ 1q 0

0 αp1 ´ 2xq

fi

ffi

fl

.

So, X ľM 0 if and only if x “ 1
2
and y2 ď 1

4
. This is a line segment in R2. The two

regions are shown in Figure 4.1.

˛

4.2.3 Application: Low-Rank Tensor Completion

One application of semidefinite programming in the matrix setting is in low rank matrix

completion. In particular, for a matrix A with singular values σ1 ě σ2 ě . . . ě σr ě 0,

one can compute the nuclear norm }A}˚ “
řr

j“1 σj via a semidefinite program through the

following primal-dual pair (see e.g., [RFP10] [BPT13, Section 2.1]).
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max tracepAJY q min
W1,W2

1

2
ptraceW1 ` traceW2q

s.t.

»

—

–

I Y

Y J I

fi

ffi

fl

ľ 0 s.t.

»

—

–

W1 A

AJ W2

fi

ffi

fl

ľ 0

(4.4)

In another line of research, the ‹M product has been in low-rank completion of tensors

(e.g., [KLL21]). Here, the authors consider a norm on Rn1ˆn2ˆn3 defined as the sum of

nuclear norms of frontal slices in the transform domain:

}X }M,˚ “

n3
ÿ

ℓ“1

}pX ˆ3 Mq:,:,ℓ}˚. (4.5)

We show below that an analogous formulation computes the norm (4.5) using an M -SDP

and use this to formulate the tensor completion problem for fixed M as an M -SDP.

Proposition 4.2.11. Fix an orthognal matrix M P Rn3ˆn3. The M-nuclear norm of a tensor

A P Rn1ˆn2ˆn3, defined by (4.5), can be computed by solving n3 independent matrix SDPs or

solving a single equivalent M-SDP.

Proof. Let Â “ A ˆ3 M . For each ℓ P rn3s, we can compute optimal solutions W
pℓq
1 ,W

pℓq
2 to

min
W1,W2

1

2
ptraceW1 ` traceW2q s.t.

»

—

–

W1 Â:,:,ℓ

ÂJ
:,:,ℓ W2

fi

ffi

fl

ľ 0 (4.6)

where }Â:,:,ℓ}˚ “ 1
2
ptraceW

pℓq
1 ` traceW

pℓq
2 q. It follows that }A}M,˚ “

řn3

ℓ“1 }Â:,:,ℓ}˚ “

1
2

řn3

ℓ“1ptraceW
pℓq
1 `traceW

pℓq
2 q. This shows that }A}M,˚ can be computed via n3 independent

SDPs.

We now claim that }A}M,˚ is the optimal value of the following M -SDP:

min
1

2

C

»

—

–

IM 0

0 IM

fi

ffi

fl

,

»

—

–

W1 A

AJ W2

fi

ffi

fl

G

s.t.

»

—

–

W1 A

AJ W2

fi

ffi

fl

ľM 0. (4.7)

To see that the problem (4.7) provides a lower bound on }A}M,˚, set xW1 and xW2 to be the
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tensors with frontal slices pxW1q:,:,ℓ “ W
pℓq
1 and pxW2q:,:,ℓ “ W

pℓq
2 , ℓ P rn3s where W

pℓq
1 and W

pℓq
2

are optimal solutions to (4.4) as above. Further set W1 “ xW1 ˆ3M
´1 and W2 “ xW2 ˆ3M

´1.

Now, by Corollary 4.2.6, it follows that

»

—

–

W1 A

AJ W2

fi

ffi

fl

is M -PSD. Moreover, we compute that

the corresponding objective value is

1

2

C

»

—

–

IM 0

0 IM

fi

ffi

fl

,

»

—

–

W1 A

AJ W2

fi

ffi

fl

G

“
1

2

C

»

—

–

IM ˆ3 M 0

0 IM ˆ3 M

fi

ffi

fl

,

»

—

–

W1 A

AJ W2

fi

ffi

fl

ˆ3 M

G

“
1

2

n3
ÿ

ℓ“1

C

»

—

–

I 0

0 I

fi

ffi

fl

,

»

—

–

W
pℓq
1 Â:,:,ℓ

ÂJ
:,:,ℓ W

pℓq
2

fi

ffi

fl

G

“
1

2

n3
ÿ

ℓ“1

ptraceW
pℓq
1 ` traceW

pℓq
2 q

“

n3
ÿ

ℓ“1

}Â:,:,ℓ}˚

“ }A}M,˚

Conversely, by Corollary 4.2.6, any M -PSD tensor with block format

»

—

–

W1 A

AJ W2

fi

ffi

fl

yields

feasible solutions to (4.4) by taking frontal slices in the transform domain. Moreover, the

corresponding objective value satisfies

1

2

C

»

—

–

IM 0

0 IM

fi

ffi

fl

,

»

—

–

W1 A

AJ W2

fi

ffi

fl

G

“
1

2

n3
ÿ

ℓ“1

ptracepW1 ˆ3 Mq:,:,ℓ ` tracepW2 ˆ3 Mq:,:,ℓq

ě

n3
ÿ

ℓ“1

}pA ˆ3 Mq:,:,ℓ}˚

“ }A}M,˚.

So, the problem (4.7) computes }A}M,˚.
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We now consider the tensor completion problem. A tensor Y P Rn1ˆn2ˆn3 is partially

specified if the entries Yi,j,k are known for pi, j, kq P Ω Ď Z3 and unspecified Yi,j,k if pi, j, kq R

Ω. We seek a low M -rank solution to the tensor completion problem, using the M -nuclear

norm (4.5) as a proxy for rank in the objective function:

min
A

}A}M,˚ s.t. Ai,j,k “ Yi,j,k for all pi, j, kq P Ω. (4.8)

We rewrite (4.8) as an M -SDP:

min
A,W1,W2

1

2

C

»

—

–

IM 0

0 IM

fi

ffi

fl

,

»

—

–

W1 A

AJ W2

fi

ffi

fl

G

s.t. Ai,j,k “ Yi,j,k for all pi, j, kq P Ω,

»

—

–

X A

AJ Z

fi

ffi

fl

ľM 0.

(4.9)

Note that if Y P Rn1ˆn2ˆn3 , then the tensors involved in (4.9) have sizes W1 P Rn1ˆn1ˆn3 ,A P

Rn1ˆn2ˆn3 , and W2 P Rn2ˆn2ˆn3 .

4.3 Group Representations and ‹M-Products

In this section, we investigate the algebraic structure of the ‹M -product thorugh the lens

of representation theory of finite groups. This will allow us to connect the M -SDP frame-

work develooped in the previous section to invariant SDPs in Section 4.3.2. Representation

theoretic methods have become increasingly popular in data-centric mathematics. One par-

ticularly active area which takes this perpective is the area of “geometric deep learning”;

see, e.g., [BBCV21, LN23]

First, we note that from a purely commutative algebraic point of view, the rings CM are

all isomorphic. So, an algebraic interpretation of the ‹M -product needs to involve more than

just the ring structure on CM .
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Proposition 4.3.1. Fix n3. Then, for any M P GLn3pCq, we have that CM » CI in the

category of C-algebras.

Proof. The map ϕ : CM Ñ CI defined by ϕpaq “ a ˆ3 M is bijective and C-linear since M

is invertible. It is a C-algebra homomorphism because

ϕpa ‹M bq “ tubepM´1 diagpM vecpaqqM vecpbqq ˆ3 M

“ tubepdiagpM vecpaqqM vecpbqq

“ ϕpaq ‹I ϕpbq.

(4.10)

As one motivation of our point of view, notice that the map ϕ used in the proof of

Proposition 4.3.1 is simply a change of (C-vector space) basis on the rings. So, it is natural

to ask “What is a good choice of basis?” To answer this question, we assume that our

problem has some underlying symmetry and show that a “good” choice of basis is one which

is compatible with the decomposition of Cn3 into irreducible representations of the underlying

group action.

4.3.1 Equivariance Properties of the ‹M-product

In this subsection, we develop an interpretation of the ‹M product based on the representation

theory of finite groups. Specifically, we derive conditions on a finite group G, a representation

ρ : G Ñ GLn3pCq, the matrix M P Cn3ˆn3 , and tubes ai,j P C1ˆ1ˆn3 which ensure that

multiplication A ‹M B is ρ-equivariant, that is, A ‹M pg ¨ Bq “ g ¨ pA ‹M Bq for any B of

compatible size. These conditions are concrete and can be interpreted in terms of linear

equations involving the rows of the matrix M . The representation theoretic results may

be of independent interest and have potential applications to other problems involving ‹M -

products of tensors. So, we work in the more general setting of complex-valued tensors.
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We first reduce the problem to determining the equivariance of the multiplication map

Ta : C1ˆ1ˆn3 Ñ C1ˆ1ˆn3 .

For notational convenience, if ρ : G Ñ GLn3pCq is a representation of the group G, then

for a tensor A P Cn1ˆn2ˆn3 , we denote g ¨ A “ A ˆ3 ρpgq.

Lemma 4.3.2. Let A P Cn1ˆn2ˆn3 and fix a group G and representation ρ : G Ñ GLn3pCq.

The map A ‹M ‚ : Cn2ˆkˆn3 Ñ Cn1ˆkˆn3 is ρ-equivariant for any k P N if and only if the

maps Tai,j
: C1ˆ1ˆn3 Ñ C1ˆ1ˆn3 are ρ-equivariant for all i P rn1s and j P rn2s.

Proof. If the maps Tai,j
: C1ˆ1ˆn3 Ñ C1ˆ1ˆn3 are ρ-equivariant for all i P rn1s and j P rn2s

then for any g P G, and any B P Cn2ˆkˆn3 , we compute that

pA ‹M pg ¨ Bqqi,j,: “

n2
ÿ

ℓ“1

ai,ℓ ‹M pg ¨ bℓ,jq “

n2
ÿ

ℓ“1

g ¨ pai,ℓ ‹M bℓ,kq “ g ¨ pA ‹M Bqi,j,:.

Conversely, suppose that there is some b P C1ˆ1ˆn3 , g P G, and i P rn1s, j P rn2s such

that ai,j ‹M pg ¨ bq ‰ g ¨ pai,j ‹M bq. Then, if B P Cn2ˆ1ˆn3 is the tensor with Bj,1 “ b we

have A ‹M pg ¨ Bq ‰ g ¨ pA ‹M Bq.

To make the ideas of equivariance concrete, we take the t-product as our motivating ex-

ample. Specifically, we show that the multiplication maps Ta : Cn3 Ñ Cn3 are all equivariant

under a representation of the cyclic group of order n3.

Example 4.3.1 (Cyclic Equivariance of the tensor t-product). The t-product is the ‹M -

product with M taken to be the (unnormalized) discrete Fourier matrix F P Cn3ˆn3 where

each entry is a power of a complex root of unity; that is, Fj`1,k`1 “ e2πijk{n3 for j, k “

0, . . . , n3 ´ 1 [KHAN21]. The matrix representative of the linear transformation Ta : Cn3 Ñ
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Cn3 is the circulant matrix

F´1 diagpF vecpaqqF “

»

—

—

—

—

—

—

—

–

a1 an3 . . . a2

a2 a1 . . . a3
...

. . .
...

an3 an3´1 . . . a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

n3
ÿ

i“1

aiZ
i´1 where Z “

»

—

—

—

—

—

—

—

–

0 0 . . . 1

1 0 . . . 0

...
. . .

...

0 . . . 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.11)

Note that the matrix Z arises in the regular representation of the cyclic group Cn3 of

order n3, defined on a generator g of G by ρpgq “ Z.

Given some a P C1ˆ1ˆn3 , we show that the linear map Ta : C1ˆ1ˆn3 Ñ C1ˆ1ˆn3 is ρ-

equivariant. Specifically, if g P Cn3 be the generator of the cyclic group of order n3. Then,

for any b P C1ˆ1ˆn3 , we have

a ‹F pg ¨ bq ”

˜

n3
ÿ

i“1

aiZ
i´1

¸

pZ vecpbqq “ Z

˜

n3
ÿ

i“1

aiZ
i´1

¸

vecpbq ” g ¨ pa ‹F bq. (4.12)

˛

In general, the multiplication maps Ta will only be equivariant for some subset of tubes.

We want to characterize this subset.

Recall from Section 2.5 that if G is a finite group and ρ is a faithful representation, then

the decomposition of Cn3 into irreducible representations of ρ takes the form

Cn3 » V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vm,

where dimVj “ dj. This gives a corresponding (non-canonical) basis of Cn3

B “ tv1,1, v1,2, . . . , v1,d1 , v2,1, . . . , vm,dmu,

where Vj “ spantvj,1, vj,2, . . . , vj,dju. If the matrix M changes basis from the standard basis



77

to B, then for each g P G, the matrix MρpgqM´1 will be block diagonal, with blocks

of size d1, d2, . . . , dm. Schur’s Lemma (Lemma 2.5.4) characterizes ρ-equivariance of linear

transformations Cn3 Ñ Cn3 . We connect this characterization to the matrix M .

Theorem 4.3.3. Fix a finite group G and a representation ρ : G Ñ GLn3pCq. Suppose that

the decomposition of Cn3 into irreducible representations of ρ is given by

Cn3 » V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vm,

where dimCpVjq “ dj. Let M P GLn3pCq be a change of basis compatible with this decompo-

sition. There is a vector subspace Wρ Ď C1ˆ1ˆn3 of tubes a for which the multiplication map

Tapbq “ a ˚M b is ρ-equivariant given by

Wρ “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

tubepxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

diagpMxq “

»

—

—

—

—

—

—

—

–

c1Id1

c2Id2
. . .

cmIdm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, c1, c2, . . . , cm P C

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

.

Proof. Note that by the choice of M , we have that the structured matrix for multiplication

by a factors as in the diagram:

Cn3 V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vm

Cn3 V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vm

Ta

M

diagpMvecpaqq

M´1

In particular, the map Ta is ρ-equivariant if and only if the map given by diagpM vecpaqq

is ρ-equivariant. By Schur’s Lemma (Lemma 2.5.4), this happens if and only if the restric-

tions to each Vi are given by multiplication by a constant. This happens if and only if

diagpM vecpaqq has the desired block structure.

Theorem 4.3.3 gives explicit conditions linear conditions on the space of tubes for the
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multiplication by a map to be equivariant in terms of the rows of the matrix M . To do so,

we form an auxillary matrix V P Cn3ˆm, with block structure

V “

»

—

—

—

—

—

—

—

–

1d1 0 . . . 0

0 1d2 0

...
. . .

0 0 . . . 1dm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where 1di P Cdiˆ1 is the constant vector of all ones. Then, for any a P Cn3 , tubepaq P Wρ if

and only if we can find coefficients c P Cm such that Ma “ V c.

Example 4.3.2 (The Symmetric Group S3). Consider the symmetric group

S3 “ xσ, τ | σ2
“ τ 3 “ 1, στ “ τ 2σy.

Let ρ : S3 Ñ GL3pCq be the permutation representation so that

ρpσq “

»

—

—

—

—

–

0 1 0

1 0 0

0 0 1

fi

ffi

ffi

ffi

ffi

fl

and ρpτq “

»

—

—

—

—

–

0 0 1

1 0 0

0 1 0

fi

ffi

ffi

ffi

ffi

fl

.

The decomposition of C3 into irreducibles is then C3 » V1 ‘ V2 for V1 “ spanCtp1, 1, 1qu

and V2 “ spanCtp1,´1, 0q, p1, 0,´1qu. We construct M so that the rows correspond to these

bases of V1 and V2.

M “

»

—

—

—

—

–

1 1 1

1 ´1 0

1 0 ´1

fi

ffi

ffi

ffi

ffi

fl

and M´1
“

1

3

»

—

—

—

—

–

1 1 1

1 ´2 1

1 1 ´2

fi

ffi

ffi

ffi

ffi

fl

.

To determine the ρ-equivariant transformations, Ta, we solve for a using the relation
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Ma “ V c. In particular, we compute the kernel of the augmented matrix

„

M V

ȷ

; that

is,

ker

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

1 1 1 1 0

1 ´1 0 0 1

1 0 ´1 0 1

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

“

$

’

’

’

’

&

’

’

’

’

%

a P C3, c1, c2 P C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1 ` a2 ` a3 “ c1

a1 ´ a2 “ c2

a1 ´ a3 “ c2

,

/

/

/

/

.

/

/

/

/

-

.

Theorem 4.3.3 then implies that Ta is ρ-equivariant if and only if a1´a2 “ a1´a3 “ c2 for

some constant c2 P C. Therefore, the set of tubes which yield ρ-equivariant transformations

are

Wρ “ ta P C1ˆ1ˆ3
| a1 ´ a2 “ a1 ´ a3u “ spanCttubep1, 0, 0q, tubep0, 1, 1qu

Let a1 “ tubep1, 0, 0q and let a2 “ tubep0, 1, 1q be the basis tubes of the Wρ. Let b P C1ˆ1ˆ3

be arbitrary and consider Tapbq for each basis vector; that is,

Ta1pbq “ a1 ‹M b ” M´1 diagpM vecpa1qqM
loooooooooooooomoooooooooooooon

I3

vecpbq “

»

—

—

—

—

–

b1

b2

b3

fi

ffi

ffi

ffi

ffi

fl

, and (4.13a)

Ta2pbq “ a2 ‹M b ” M´1 diagpM vecpa2qqM
loooooooooooooomoooooooooooooon

Z3

vecpbq “

»

—

—

—

—

–

b2 ` b3

b1 ` b3

b1 ` b2

fi

ffi

ffi

ffi

ffi

fl

. (4.13b)

We see that Tai
pg ¨ bq “ g ¨ b for any g P S3, since S3 acts by permuting indices. ˛

There are several immediate corollaries to Theorem 4.3.3.

Corollary 4.3.4. Fix a finite group G, a representation ρ : G Ñ GLn3pCq, and M P

GLn3pCq. The multiplication map Tapbq “ a ˚M b is ρ-equivariant for all a P C1ˆ1ˆn3 if and

only if MρpgqM´1 is diagonal for each g P G.
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Proof. By Theorem 4.3.3 if Ta is ρ-equivariant for all a P C1ˆ1ˆn3 , then Wρ “ C1ˆ1ˆn3 . By

the description of Wρ, any diagonal matrix D arises as diagpM vecpaqq for some a P Wρ and

since the multiplication map Ta is ρ-equivariant, we have that for any g P G,

DMρpgqM´1
“ MρpgqM´1D.

This implies that MρpgqM´1 is diagonal by taking D to be the matrices with Di,i “ 1

and Dj,j “ 0 for i ranging over rn3s and j ­“ i. The other converse follows since diagonal

matrices commute.

Corollary 4.3.5. If G is a nonabelian group and ρ a faithful representation of G, then there

exist tubes a P C1ˆ1ˆn3 such that the multiplication map Tapbq “ a‹M b is not ρ-equivariant.

Proof. If ρ is a faithful representation of G and g, h P G have gh ­“ hg, then ρpgqρphq ­“

ρphqρpgq. Because the matrices ρpgq and ρphq do not commute, they are not simultaneously

diagonalizable and the result follows by Corollary 4.3.4.

So, while the t-product provides an example for which every multiplication map Ta is

ρ-equivariant for the cyclic group, it is an anomoly in the sense that Wρ will be a proper

subspace in most cases, for example symmetric groups.

4.3.2 Connection to Invariant SDPs

We now use the representation theoretic interpretation of the ‹M product to study invariant

semidefinite programs. The study of invariant SDPs was initiated by Gaterman and Parillo

in [GP04]. We overview the main ideas here.

An SDP is said to be invariant with respect to the group representation ρ the cost

function and feasible set are invariant under the action of G on symmetric matrices. Note

that if ρ : G Ñ GLn3pCq is a representation, then G acts on symmetric n3 ˆ n3 matrices

by g ¨ X “ ρpgqJXρpgq. So, if ρpgq is orthogonal for all g and the feasible set is invariant

under the action of G, then ρpgqX “ Xρpgq, i.e., the linear transformation defined by X is
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ρ-equivariant. So, if C3 » V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vm is the decomposition of C3 into irreducibles

with dimVi “ di, then we can change basis so that A “ P´1XP has block format

A “

»

—

—

—

—

—

—

—

–

A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...
. . .

...

Am,1 Am,2 . . . Am,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where Ai,j : Vi Ñ Vj. Furthermore, by Schur’s Lemma, we know that Ai,j “ 0 if Vi ‰ Vj and

Ai,j “ ci,jIdi if Vi “ Vj. Once again changing basis allows us to block diagonalize A, where

the size of the blocks depend on di and the multiplicity of each irreducible Vi (that is, the

number of copies it has in the decomposition of Cn3).

So, the approach to invariant SDPs involves a change of basis related to a group action

and results in a block diagonalization. In the previous sections, we have seen that M -PSD

tensors correspond to block diagonal PSD matrices and that the choice of change of basis

M can be related to a group action. So, it is natural to connect M -SDP problems with

invariant SDP problems.

The equality constraints in (M-SDP) allow one to enforce that multiplication by the

tensor X satisfies group equivariance properties. Indeed, if ρ : G Ñ GLn3pRq and M are as

in Theorem 4.3.3, then the condition that multiplication is ρ-equivariant is a linear condition

on the space of tubes and can therefore be written using equalities of the form xApiq,X y “ 0

for some symmetric tensors Apiq. In particular, group equivariance can be encoded in the

constraints of (M-SDP), and such cases yield invariant semidefinite programs.

Theorem 4.3.6. Let G be a finite group and ρ : G Ñ GLn3pRq a representation with ρpgq

orthogonal for each g P G. Let M P Rn3ˆn3 and Wρ be as in the statement of Theorem 4.3.3.

Set L Ď Rnˆnˆn3 to be the vector space of symmetric tensors whose tubes are elements of

Wρ. Then, for any symmetric tensors C,Apiq of size n ˆ n ˆ n3 and any scalars bi, i P rks,

the M-SDP
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maxxC,X y s.t. xAi,X y “ bi for i P rks, X P PSDn
M X L

is an invariant SDP with respect to the representation ρ̂ : G Ñ GLnn3pRq given by ρ̂pgq “

In b ρpgq, where In is the n ˆ n identity matrix and b is the matrix kronecker product.

Proof. Note that for any tensor X P Rnˆnˆn3 , the multiplication map X ‹M ‚ : Rnˆ1ˆn3 Ñ

Rnˆ1ˆn3 gives a linear transformation Rnn3 Ñ Rnn3 with matrix representative

X̂ “

»

—

—

—

—

—

—

—

–

M´1D1,1M M´1D1,2M . . . M´1D1,nM

M´1D2,1M M´1D2,2M . . . M´1D2,nM

...
...

. . .
...

M´1Dn,1M M´1Dn,2M . . . M´1Dn,nM

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Di,j “ diagpM vecpxi,jqq

Now, if X P L, then xi,j P Wρ for each i, j and therefore M´1Di,jM commutes with ρpgq for

any g P G. Since ρpgqJ “ pρpgqq´1 “ ρpg´1q,

ρpgq
JM´1Di,jM “ M´1Di,jMρpgq

J.

It then follows that for any g P G,

ρ̂pgq
JX̂ρ̂pgq “ X̂ρ̂pgq

Jρ̂pgq “ X̂.

To conclude, we need to show that if B P Rnˆnˆn3 is a symmetric tensor and B̂ is its

matrix representative, then xB,X y “ tracepB̂X̂q. Note that if a,b P R1ˆ1ˆn3 are tubes, then

because M is orthogonal,
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xa,by “ xM vecpaq,M vecpbqy

“ tracepdiagpM vecpaqq diagpM vecpbqqq

“ tracepM´1 diagpM vecpaqqMM´1 diagpM vecpbqqMq

It then follows that

xB,X y “

n
ÿ

i“1

˜

n
ÿ

k“1

xbi,k,xk,iy

¸

“

n
ÿ

i“1

˜

n
ÿ

k“1

tracepM´1 diagpM vecpbi,kqqMM´1 diagpM vecpxk,iqqMq

¸

“ tracepB̂X̂q.

We conclude this section with a simple example which highlights the connection between

M -SDP and invariant SDP.

Example 4.3.3. Consider the symmetric group S2 “ xid, σ | σ2 “ idy and let ρ : S2 Ñ

GL2pRq be the representation with

ρpσq “

»

—

–

0 1

1 0

fi

ffi

fl

. (4.14)

The corresponding decomposition of R2 into irreducibles is R2 » spanRtp1, 1qu‘spanRtp1,´1qu.

Note that each irreducible in this decomposition has multiplicity 1.

Let M “

»

—

–

α α

α ´α

fi

ffi

fl

, where α “ 1?
2
. Since MρpσqM´1 “

»

—

–

1 0

0 ´1

fi

ffi

fl

is diagonal, it follows

from Corollary 4.3.4 that the multiplication map Ta is ρ-equivariant for all tubes a P R1ˆ1ˆ2.

That is, with notation as in the statement of Theorem 4.3.6, we have L “ R2ˆ2ˆ2 and

therefore PSD2
M X L “ PSD2

M .
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Consider the following tensor X P R2ˆ2ˆ2 and its transformed pX P R2ˆ2ˆ2 given by

X:,:,1 “

»

—

–

x1 1

1 y1

fi

ffi

fl

X:,:,2 “

»

—

–

x2 1

1 y2

fi

ffi

fl

(4.15a)

pX:,:,1 “

»

—

–

αpx1 ` x2q 2α

2α αpy1 ` y2q

fi

ffi

fl

, pX:,:,2 “

»

—

–

αpx1 ´ x2q 0

0 αpy1 ´ y2q

fi

ffi

fl

. (4.15b)

We will show that the corresponding M -SDP

min
px1,x2q,py1,y2q

xI˚,X y s.t. X ľM 0 (4.16)

is invariant under the group action of S2.

By Proposition 4.2.10, we can rewrite (4.16) using block matrices with blocks from the

transform domain resulting in the equivalent M -SDP

min
px1,x2q,py1,y2q

xI˚,X y s.t.

»

—

–

pX:,:,1

pX:,:,2

fi

ffi

fl

bdiagp pX q

ľ 0.
(4.17)

Because the frontal slices in the transform domain are symmetric matrices, the block diagonal

matrix bdiagp pX q is a symmetric matrix that is invariant under the induced action ρ̂pσq “

I2 b ρpσq. Moreover, the objective function xI˚,X y “ x1 ` x2 ` y1 ` y2 is invariant under

ρ̂, which acts as permutations pxi, yiq ÞÑ pxgpiq, ygpiqq for g P S2. Since the objective function

and feasible region of (4.17) are both invariant under ρ̂, the problem (4.17) is an invariant

SDP.

Note that the decomposition of R4 into irreducible representations of S2 consists of the

trivial representation and the sign representation, each with multiplicity 2, and the corre-

sponding blocks in (4.17) are 2 ˆ 2.

˛
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4.3.3 Application: Invariant Quadratic Forms

A well-known application of semidefinite programming is as a relaxation of polynomial opti-

mization problems. The central idea is to search for nonnegativity certificates of a polynomial

p in the form of a decomposition of p into a sum of squares; see e.g., [Las01, Par03]. The

maximum value of γ such that ppxq ´ γ is a sum of squares (SOS) is then a (possibly strict)

lower bound on infxPRn ppxq. Additionally, a polynomial ppxq ´ γ is a sum of squares if and

only if there is a positive semidefinite Gram matrix Q such that ppxq ´γ “ ξJQξ, where ξ is

a vector of all monomials of degree at most d “ degppq. Searching for the maximum γ such

that ppxq ´ γ is a sum of squares is therefore a semidefinite programming problem. Here, we

use M-PSD tensors to study a subset of SOS polynomials. As a starting point, we mirror the

definition of block-circulant SOS polynomial from [ZHH22] to define M -SOS polynomials.

It will be convenient to use the notation of fold to turn a vector of length mk into a

tensor of format m ˆ 1 ˆ k. More precisely, if v “

„

vJ
1 vJ

2 . . . vJ
m

ȷJ

, where vi P Rk for

each i P rms, then we set

fold
k

pvq “

„

tubepv1q tubepv2q . . . tubepvmq

ȷJ

P Rmˆ1ˆk.

Definition 4.3.7 (M-SOS Polynomial). Suppose that f P Rrx1, x2, . . . , xksď2d and that n3

divides N “
`

k`d
d

˘

. Set rxsd “

„

1 x1 x2 . . . xk x2
1 x1x2 . . . xd

k

ȷJ

and X pn3q

d “

foldn3prxsdq P RpN{n3qˆ1ˆn3. We say that f is an M-SOS polynomial if there are Q1, . . . ,Qr P

R1ˆpN{n3qˆn3 such that

fpxq “

r
ÿ

j“1

vecpQj ˚M X pn3q

d q
J vecpQj ˚M X pn3q

d q. (4.18)

Remark 4.3.1. Note that if n3 “ 1, then M is a nonzero real number and a polynomial is

M -SOS if and only if it is SOS.

The definition (4.18) highlights that the polynomial f is a sum of squares, since for any

tensor A, the inner product expands as xA,Ay “ }A}2F “
ř

a2i,j,k. As discussed above, a
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sum of squares polynomial has a positive semidefinite Gram matrix. The additional structure

implied by the ‹M product in the decomposition (4.18) yields an M -PSD tensor.

Proposition 4.3.8. f is an M-SOS polynomial if and only if there is Q P PSDn
M such that

fpxq “ xX pn3q

d ,Q ˚M X pn3q

d y.

Proof. Let Q1, . . . ,Qr P R1ˆpN{n3qˆn3 such that

fpxq “

r
ÿ

j“1

vecpQj ˚M X pn3q

d q
J vecpQj ˚M X pn3q

d q.

Then, because vecpQj ˚M X pn3q

d qJ vecpQj ˚M X pn3q

d q “ xQj ˚M X pn3q

d ,Qj ˚M X pn3q

d y for each

j P rrs it follows from Lemma 4.1.9 and Proposition 4.2.4 that

fpxq “

r
ÿ

j“1

xQj ˚M X pn3q

d ,Qj ˚M X pn3q

d y “

C

X pn3q

d ,

˜

r
ÿ

j“1

QJ
j ˚M Qj

¸

˚M X pn3q

d

G

and Q “

´

řr
j“1QJ

j ˚M Qj

¯

is M -PSD.

Conversely, let Q P PSDn
M be such that fpxq “ xX pn3q

d ,Q ˚M X pn3q

d y. By Theorem 4.2.5,

there is a decomposition Q “ BJ ˚M B with B P Rrˆnˆn3 . This yields that f is M -SOS by

taking Qi “ Bi,:,: for each i P rrs.

There has been recent interest in sums of squares polynomials which are invariant under

a group action on the variables, see e.g., [GP04, RTAL13, HHS21]. In this setting, the

theory of invariant SDPs is leveraged to better understand the SDPs which certify that an

invariant sos polynomial is a sum of squares. Since the results of this section relate the

‹M -product to invariant SDPs, we work towards an analogy in the tensor case. While every

M -SDP corresponding to an invariant SOS program results in an invariant polynomial, the

converse is not true without an additional assumption on the multiplicity of the irreducible

representations appearing in the decomposition of Rn3 .
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Theorem 4.3.9. Fix an orthogonal matrix M P Rn3ˆn3. Let G be a finite group and

ρ : G Ñ GLn3pRq be a representation with each ρpgq orthogonal, and set Wρ Ď R1ˆ1ˆn3

to be the vector subspace of tubes for which multiplication is ρ-equivariant. Consider a

quadratic form f P Rrxi,j | i P rms, j P rn3ss2 and the action of G defined on variables by

g ¨

„

xi,1, xi,2, . . . , xi,n3

ȷJ

“ ρpgq

„

xi,1, xi,2, . . . , xi,n3

ȷJ

for each i P rms.

If f “ xX pn3q

1 ,Q ˚M X pn3q

1 y for some M-PSD tensor Q with tubes in Wρ then f is SOS

and invariant under the action of G. The converse holds if each irreducible representation

in the decomposition of Rn3 appears with multiplicity one.

Proof. Suppose that f “ xX pn3q

1 ,Q ˚M X pn3q

1 y where Q is M -PSD and has tubes in Wρ. Let

ξ “

„

x1,1 x1,2 . . . x1,n3 x2,1 . . . xm,n3

ȷJ

be the length mn3 vector consisting of all variables, and set

Q̂ “

»

—

—

—

—

—

—

—

–

M´1D1,1M M´1D1,2M . . . M´1D1,mM

M´1D2,1M M´1D2,2M . . . M´1D2,mM

...
...

. . .
...

M´1Dm,1M M´1Dm,2M . . . M´1Dm,mM

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Di,j “ diagpM vecpqi,jqq.

Then, f “ ξJQ̂ξ. The action of g P G on f is given by g ¨f “ ppImbρpgqqξqJQ̂ppImbρpgqqξq.

Now, since qi,j P Wρ for each i, j P rms, it follows that ρpgq commutes with M´1Di,jM for

each g P G. Since ρpgq is orthogonal for each g P G, it then follows that

g ¨ f “ ppIm b ρpgqqξq
JQ̂ppIm b ρpgqqξq “ ξJQ̂ξ “ f

Conversely, suppose that f is SOS and invariant under the action of G. Then, there is a

pmn3q ˆ pmn3q positive semidefinite matrix Q such that f “ ξJQξ and pIm b ρpgqqJQpIm b

ρpgqq “ Q. Let
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Q “

»

—

—

—

—

—

—

—

–

Q1,1 Q1,2 . . . Q1,m

Q2,1 Q2,2 . . . Q2,m

...
...

. . .
...

Qm,1 Qm,2 . . . Qm,m

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where each Qi,j is n3 ˆ n3. Now, for each i, j and each g P G, ρpgqJQi,jρpgq “ Qi,j since

pIm b ρpgqqJQpIm b ρpgqq “ Q. By hypothesis, the decomposition of Rn3 into irreducibles is

given by

Rn3 » V1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vs,

where each Vi is unique. Since M corresponds to a symmetry adapted basis of Rn3 it follows

from Schur’s Lemma (Lemma 2.5.4) that

MQi,jM
´1

“

»

—

—

—

—

—

—

—

–

c1Id1

c2Id2
. . .

csIds

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where dt “ dimVt. By Theorem 4.3.3, there exists a tube qi,j P Wρ such that MQi,jM
´1 “

diagpM vecpqi,jqq. This in turn implies that

Q “

»

—

—

—

—

—

—

—

–

M´1D1,1M M´1D1,2M . . . M´1D1,mM

M´1D2,1M M´1D2,2M . . . M´1D2,mM

...
...

. . .
...

M´1Dm,1M M´1Dm,2M . . . M´1Dm,mM

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Di,j “ diagpM vecpqi,jqq.

and therefore if Q P Rmˆmˆn3 is the tensor with tubes Qi,j,: “ qi,j, then f “ xX pn3q

1 ,Q ‹M

X pn3q

1 y.
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We conclude this section with examples demonstrating Theorem 4.3.9 and its limitations.

Example 4.3.4. Let S3 be the symmetric group on three elements and ρ : S3 Ñ GL3pRq

be the permutation representation. Set

M “

»

—

—

—

—

–

´ 1?
3

´ 1?
3

´ 1?
3

1?
2

0 ´1?
2

1?
6

´ 2?
6

1?
6

fi

ffi

ffi

ffi

ffi

fl

, q1 “ p´
?
3q

»

—

—

—

—

–

1

1

1

fi

ffi

ffi

ffi

ffi

fl

, and q2 “ p
?
18q

»

—

—

—

—

–

´1
?
3

1

fi

ffi

ffi

ffi

ffi

fl

The map Ta : RM Ñ RM is ρ-equivariant if and only if a P spanRtq1,q2u. We construct

an M -SOS quadratic form f P Rrx1, x2, x3, y1, y2, y3s as

fpx, yq “

C

»

—

–

x

y

fi

ffi

fl

,

¨

˚

˝

»

—

–

q1 ` q2

q2

fi

ffi

fl

˚M

„

q1 ` q2 q2

ȷJ

˛

‹

‚

˚M

»

—

–

x

y

fi

ffi

fl

G

“

´

p´3 ´
?
2qx1 ` p3 ´

?
2qx2 ` p3 ´

?
2qx3 ´ p4 `

?
2qy1 ` p2 ´

?
2qy2 ` p2 ´

?
2qy3

¯2

`

´

p3 ´
?
2qx1 ` p´3 ´

?
2qx2 ` p3 ´

?
2qx3 ` p2 ´

?
2qy1 ´ p4 `

?
2qy2 ` p2 ´

?
2qy3

¯2

`

´

p3 ´
?
2qx1 ` p3 ´

?
2qx2 ` p´3 ´

?
2qx3 ` p2 ´

?
2qy1 ` p2 ´

?
2qy2 ´ p4 `

?
2qy3

¯2

Note that f is invariant under

px1, x2, x3, y1, y2, y3q ÞÑ pxgp1q, xgp2q, xgp3q, ygp1q, ygp2q, ygp3qq for g P S3.

˛

We also show that the condition that each irreducible representation appearing in the

decomposition of Rn3 appears with multiplicity is necessary via an example.

Example 4.3.5. Let S2 “ tid, σu, and ρ : S2 Ñ GL3pRq be the representation with
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ρpσq “

»

—

—

—

—

–

1 0 0

0 0 1

0 1 0

fi

ffi

ffi

ffi

ffi

fl

. That is, σ acts on vectors by swapping the second and third coordinates.

Note that the decomposition of R3 into irreducible representations is given by

R3
» spanp1, 0, 0q ‘ spanp0, 1, 1q ‘ spanp0, 1,´1q,

and that the trivial representation appears with multiplicity 2, given by spanp1, 0, 0q and

spanp0, 1, 1q.

Let α “ 1?
2
and M “

»

—

—

—

—

–

1 0 0

0 α α

0 α ´α

fi

ffi

ffi

ffi

ffi

fl

. Note that an SOS quadratic form f P Rrx1, x2, x3s2

is M -SOS if and only if a Gram matrix Q for f satisfies the condition that MQM´1 is

diagonal.

Let

fpxq “ px1 ` x2 ` x3q
2

` px2 ´ x3q
2

“ x2
1 ` 2x2

2 ` 2x2
3 ` 2x1x2 ` 2x1x3.

The first square px1 ` x2 ` x3q2 is the square of the sum of elements lying in each copy of

the trivial representation of S2. The unique Gram matrix for f is Q “

»

—

—

—

—

–

1 1 1

1 2 0

1 0 2

fi

ffi

ffi

ffi

ffi

fl

. Now,

MQM´1
“

»

—

—

—

—

–

1
?
2 0

?
2 2 0

0 0 2

fi

ffi

ffi

ffi

ffi

fl

is not diagonal. So, there is no tube q P R1ˆ1ˆ3 such that Q “ M´1 diagpM vecpqqqM and

therefore f cannot be M -SOS. ˛
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Chapter 5

Topological Approach to Aggregations

of Quadratic Inequalities

The content of this chapter is based on joint work with Greg Blekherman and appears in

[BD25]. This chapter presents a condensed version of the results with fewer examples than

the journal version. Additionally, the introductory sections of this chapter have been changed

to better position this work in the context of the dissertation.

In this chapter, we study the properties of semialgebraic sets defined by three quadratic

inequalities from the point of view of algebraic topology. In doing so, we address open

problems in real algebraic geometry as well as optimization from a unified viewpoint.

In real algebraic geometry, one is frequently interested in certificates of emptiness for real

varieties in terms of sums of squares of polynomials. Consider a variety defined by a complete

intersection of three quadrics Q1, Q2, Q3. One certificate that VRpQ1, Q2, Q3q Ď RPn is empty

is a positive definite linear combination of the Qi :

3
ÿ

i“1

λiQi “ A ą 0.

In this case, we have that the quadratic form fpxq “ xJAx is strictly positive (and therefore

nonvanishing) on RPn but f P xQ1, Q2, Q3y. Note that (up to relabeling the Qi) this gives a
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sum of squares certificate that Q3 is positive on the variety VRpQ1, Q2q by rearranging. That

is

Q3 “ f ` xQ1, Q2y.

However, because the variety VRpQ1, Q2q has degree 4 and codimension 2, it follows from

Theorem 2.3.8 that there are choices for Q3 such that VRpQ1, Q2, Q3q “ H but Q3 is

not a sum of squares mod xQ1, Q2y. So, a natural question is “Under what conditions is

VRpQ1, Q2, Q3q “ H ?”

The other problem comes from optimization. The optimization of a linear functional over

a set S defined by quadratic inequalities is a computationally difficult problem. However, one

can equivalently optimize the functional over the convex hull of the set S. For this approach

to be tractable, one needs an efficient description of convpSq. One approach to finding

an efficient description is by aggregations (nonnegative linear combinations) of the defining

inequalities [Yil09, DMnS22, BDS24]. In the two quadratics case, convpSq can always be

represented by aggregations [Yil09]. In the three quadratics case, one is guaranteed such a

representation if there is a positive definite linear combination of the defining quadratics.

However, this condition is not necessary.

We address both problems by studying the algebraic topology of the associated spec-

tral curve–the real algebraic plane curve cut out by det
`
ř3

i“1 λiQi

˘

. Specifically, spectral

sequences derived in [AL12] relate the homology of semialgebraic sets defined by quadratic

inequalities to the cohomology of linear combinations of the defining quadratics with specified

index and coefficients in a specified polyhedral cone. These sets are precisely the intersections

of components of the complement of the spectral curve with a polyhedral cone.

For both problems, we show that the positive definite linear combination (PDLC) con-

dition relaxes to a condition on the hyperbolicity of the spectral curve. This is a strict

generalization of the PDLC condition, as the spectral curve is hyperbolic when there is a

positive definite linear combination, as in Example 2.3.1. Moreover, these results highlight
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the interplay of algebra, convex geometry, and optimization prevalent in this dissertation.

To make precise statements of the main results of this chapter, we will first fix notation.

Notation In this chapter, we will fix the following notation. We fix three symmetric

pn ` 1q ˆ pn ` 1q matrices Q1, Q2, Q3. To these three matrices, we associate the following:

• The functions fipxq “

„

xJ 1

ȷ

Qi

„

xJ 1

ȷJ

for i P r3s.

• The homogenizations fhpx, xn`1q “

„

xJ xn`1

ȷ

Qi

„

xJ xn`1

ȷJ

for i P r3s.

• The semialgebraic set

S “ tx P Rn
| fipxq ď 0 for all i P r3su .

• The homogenized version of S:

Sh
“
␣

px, xn`1q P Rn
ˆ R | fh

i pxq ď 0 for all i P r3s
(

.

Given an element λ P R3

• We consider linear combinations of the matrices Qλ “
ř3

i“1 λiQi, quadratics fλ “

ř3
i“1 λifi, and homogeneous quadratics fh

λ “
ř3

i“1 λif
h
i .

• We consider an associated (affine) semialgebraic set defined by fλ

Sλ “ tx P Rn
| fλpxq ď 0u.

• The homogenization of Sλ:

Sh
λ “ tpx, xn`1q P Rn

ˆ R | fh
λ px, xn`1q ď 0u.
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With this setup, we define the spectral curve to be the curve in RP2 cut out by the

polynomial

gpλq “ det pλ1Q1 ` λ2Q2 ` λ3Q3q .

Finally, we will need notation for the restriction of many of these objects to a hyperplane

H Ď Rn`1. We denote by Qλ|H the restriction of the matrix Qλ to the n-dimensional space

H. Note that the signature and singularity of this restriction is well-defined.

Statement of Main Results and Relationship to Prior Work We first address the

real algebraic geometry problem of finding a certificate of emptiness for the real variety

VRpfh
1 , f

h
2 , f

h
3 q Ď RPn. Under the assumption that the spectral curve is smooth, our theo-

rem relates the emptiness of VRpfh
1 , f

h
2 , f

h
3 q to the hyperbolicity of the spectral curve and a

condition on eigenvalues of matrices in spanRtQ1, Q2, Q3u.

Theorem 5.0.1. Suppose that the spectral curve is smooth and that n ‰ 2. Then, VRpfh
1 , f

h
2 , f

h
3 q

is empty if and only if one of the following holds:

1. The spectral curve is hyperbolic and there is µ P R3 such that Qµ has n positive eigen-

values

2. n “ 3, and the spectral curve has no real points.

In the case n “ 2, the spectral curve is not smooth if the projective variety VRpfh
1 , f

h
2 , f

h
3 q

is nonempty.

The result of Theorem 5.0.1 in the case n “ 3 can be found in [PSV11, Theorem 7.8].

Additionally, the ”only if” direction for n ě 4 is in [Agr88]. Our statement of Theorem 5.0.1

unifies these existing results and provides a converse to the statement in [Agr88].

Additionally, Theorem 5.0.1 can be interpreted in light of the Helton-Vinnikov Theorem

(Theorem 2.3.13 [HV07]), which states that any hyperbolic plane curve possesses a definite
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determinantal representation. In this case, the variety defined by the associated quadratic

forms is necessarily empty. Theorem 5.0.1, on the other hand, says that there is only one

other possibility for a determinantal representation of a hyperbolic curve where the variety

defined by the corresponding quadratic forms is empty–there must be a linear combination

of the defining matrices which obtains n positive eigenvalues and therefore there must be a

hyperbolicity cone P of g whose interior consists of µ P R3 such that Qµ has n ´ 1 positive

and two negative eigenvalues.

As an extension of Theorem 5.0.1, we study the emptiness of solution sets of systems

defined by three quadratic inequalities under the assumption that the variety VRpfh
1 , f

h
2 , f

h
3 q

is empty.

Proposition 5.0.2. Suppose that the spectral curve is smooth and nonempty and that the

variety VRpfh
1 , f

h
2 , f

h
3 q is empty. Then, for a nonzero polyhedral cone K Ď R3, we have that

the set

tXpKq “ trxs P RPn
| fh

i prxsq P K for all i P r3suu

is empty if and only if either

1. there is µ P K˝ such that Qµ ą 0, or

2. the set Ωn “ tλ P K˝XS2 | Qλ has at least n positive eigenvaluesu has dimZ2 H
1pΩnq “

1.

While the statement and proof of 5.0.2 requires the language of cohomology, we note that

the condition can be checked via convex geometry. Specifically, by Theorem 5.0.1, we have

that when the variety VRpfh
1 , f

h
2 , f

h
3 q is empty, the spectral curve must be hyperbolic with

hyperbolicity cone P whose interior contains either positive definite combinations or matrices

with exactly two negative eigenvalues. In the PDLC case, the statement of Proposition 5.0.2

asserts that there is a nonempty intersection of the cones K˝ and P . In the non-PDLC case,

the condition on the first cohomology group of Ωn is equivalent to P Ă K˝.
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We use these tools to study aggregations of quadratic inequalities, and in particular, the

existence of representations

convpSq “
č

λPΛ

Sλ. (5.1)

To relate aggregations to convexity, we need to restrict our attention to subsets of aggre-

gations. We say that an aggregation λ P R3
` is permissible if Qλ has at most one negative

eigenvalue. Note that if λ is permissible, then intpSλq is either empty, convex, or the disjoint

union of two convex sets. We further stratify permissible aggregations into good aggrega-

tions–λ such that convpSq Ď Sλ and bad aggregations– permissible aggregations which are

not good. Using this language, we are able to develop a sufficient condition for a represen-

tation of the form (5.1).

Theorem 5.0.3. Assume that intpSq ‰ H and that S has no points at infinity, i.e.

␣

px, 0q P Rn
ˆ R | fh

i px, 0q ď 0 for all i P r3s
(

“ H.

Suppose further that the variety VRpfh
1 , f

h
2 , f

h
3 q “ H and the spectral curve is smooth and

nonempty. Then,

1. If n ě 3, the spectral curve g is hyperbolic. Let P Ď R3 be the hyperbolicity cone of

g such that intpPq consists of either positive definite matrices or matrices with exactly

two negative eigenvalues. If no nonzero aggregation lies in P, then there are k ď 6

good aggregations λp1q, λp2q, . . . , λpkq P R3
` such that

convpSq “

k
č

i“1

Sλpiq .

2. If n “ 2 and g is hyperbolic, then piq still applies. If g is not hyperbolic, then there is

a (possibly infinite) subset Λ1 Ď R3
` of good aggregations such that
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convpSq “
č

λPΛ1

Sλ.

The condition in Theorem 5.0.3 is related to the main results of [DMnS22, BDS24]. In

these settings, it was determined that PDLC is sufficient for a description via aggregations of

the convex hull of sets defined three strict inequalities. The results in [DMnS22, BDS24] were

derived using hidden convexity properties of quadratic maps. However, using our topological

approach, we are able to provide a sufficient condition which does not rely on PDLC and

deal with the technically more subtle case of closed inequalities.

We further study the set of permissible aggregations, providing finiteness results.

Theorem 5.0.4. Suppose that VRpfh
1 , f

h
2 , f

h
3 q is empty and that the spectral curve is smooth

and hyperbolic. Then, there is a finite subset Λ1 of permissible aggregations such that

č

λ permissible

Sλ “
č

λPΛ1

Sλ.

Finally, when restricting to the PDLC case, we are able to improve the bound on the

number of necessary aggregations:

Theorem 5.0.5. If Q1, Q2, Q3 satisfy PDLC, S “ clpintpSqq, and intpSq ­“ H, then there is

a subset tλp1q, λp2q, . . . , λprqu of good aggregations with r ď 4 such that

convpSq “

r
č

i“1

Sλpiq .

Theorem 5.0.5 is related to [BDS24, Conjecture 3.2], where the authors conjecture the

existence of a set T defined by the intersection of three strict quadratic inequalities satisfy-

ing PDLC such that convpT q cannot be described using fewer than six good aggregations.

Theorem 5.0.5 says that if the set defined by the non-strict inequalities is sufficiently regular,

then four aggregations is sufficient.
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5.1 Homogeneous Quadratic Maps

In this section we briefly review the necessary background on homogeneous quadratic maps

and establish notation. The main goal of this section is to state [AL12, Theorem A], which

provides a spectral sequence relating the topology of the solution set of a system of quadratic

inequalities with the topology of sets of linear combinations of the defining matrices. This

theorem can be thought of as a topological duality theorem for quadratics.

A homogeneous quadratic map p : Rn`1 Ñ Rm is a map

ppxq “ pp1pxq, p2pxq, . . . , pmpxqq,

where each pi is a quadratic form on Rn`1. Note that because each pi is a quadratic form, we

have that ppλxq “ λ2ppxq for any λ P R. In particular, for a point rxs P RPn, the evaluation

pprxsq is well-defined up to nonnegative scaling. So, for K Ď Rm a polyhedral cone and

p : Rn`1 Ñ Rm a homogeneous quadratic map, we set

XpK, pq “ trxs P RPn
| pprxsq P Ku.

When the polyhedral cone K and the homogeneous quadratic map p are clear from context,

we drop them from the notation and simply write X “ XpK, pq. As an example, if we set

fh “ pfh
1 , f

h
2 , f

h
3 q and take the polyhedral cone K “ ´R3

`, then

Xp´R3
`, f

h
q “

␣

rpx, xn`1qs P RPn
| px, xn`1q P Sh

zt0u
(

.

That is, Xp´R3
`, fq is the image of Sh in projective space. The sets XpK, pq will play the

role of “primal” objects in the results of this chapter. We also define dual objects coming

from linear combinations of the defining quadratic forms with coefficients in a specified cone.

Specifically, if p “ pp1, p2, . . . , pmq is a homogeneous quadratic map and Pi is the symmetric

matrix representative of pi, then we set
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Ωj
pK, pq “

#

λ P K˝
X Sm´1

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

λiPi has at least j positive eigenvalues

+

.

We also define a relative version of ΩjpK, pq for the restriction of the quadratic map p to

a hyperplane H Ď Rn`1. Specifically,

Ωj
HpK, pq “

#

λ P K˝
X Sm´1

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

i“1

λiPi|H has at least j positive eigenvalues

+

.

We will frequently work with the setting where the components of a homogeneous quadratic

map are defined by some λp1q, λp2q, . . . , λpmq P R3. In this case, if A P Rmˆ3 is the matrix

whose rows are pλpjqqJ, then we set

fh
A “ pfh

λp1q , f
h
λp2q , . . . , f

h
λpmqq.

Since fh
Apxq “ Afhpxq (i.e. fh

A factors through R3), we can change cones to pull back the

sets Ωj to R3 and only work with the homogeneous quadratic map fh. Specifically, we see

that for a fixed polyhedral cone K Ď Rm, we have

XpK, fh
Aq “ trxs P RPn

| fh
Aprxsq P Ku

“ trxs P RPn
| fh

prxsq P A´1
pKqu

“ XpA´1
pKq, fh

q,

where A´1pKq is the preimage of K under the map A : R3 Ñ Rm. Moreover, we compute

that
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pAJK˝
q

˝
“ tv P R3

| xAJy, vy ď 0 for all y P K˝
u

“ tv P R3
| xy, Avy ď 0 for all y P K˝

u

“ tv P R3
| Av P pK˝

q
˝
u

“ A´1
pKq.

So, A´1pKq has polar dual AJK˝ Ď R3, which we will leverage for convenient computations

of the sets Ωj. Specifically, we will frequently encounter the case where K “ ´Rm
` , in which

case we see that

Ωj
pA´1

p´Rm
` q, fh

q “ tλ P conepλp1q, λp2q, . . . , λm
qXS2

| Qλ has at least j positive eigenvalues.u.

We can now state the spectral sequence of [AL12, Theorem A], which will provide the

basis for many of our computations in this chapter.

Theorem 5.1.1 ([AL12]). Let p : Rn`1 Ñ Rm be a homogeneous quadratic map and let

K Ď Rm be a polyhedral cone. Then, there is a first quadrant, cohomology spectral sequence

pEr, drq converging to Hn´˚pXpK, pqq such that Ei,j
2 “ H ipK˝ XBm,Ωjq. Moreover, there is

an explicit formula for the differential d2.

It follows from the long exact sequence in cohomology of the pair pK˝ X Bm,Ωjq that

Eij
2 –

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

H i´1pΩj`1q, i ě 2, Ωj`1 ­“ H

H0pΩj`1q{Z2, i “ 1, Ωj`1 ­“ H

Z2, i “ 0, Ωj`1 “ H

0, otherwise

. (5.2)
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5.2 Certificates of Emptiness for Systems of Quadrat-

ics

In this section we use Theorem 5.1.1 to prove Theorem 5.0.1 and Proposition 5.0.2. We

begin with a preparatory lemma about determinantal curves.

Lemma 5.2.1. If λ P Ωnpt0uq (i.e. Qλ has n positive eigenvalues) and the spectral curve is

smooth, then rλs P RP2 lies in the interior of an oval of the spectral curve of depth at least

tn`1
2

u ´ 1.

Proof. Let x P S2 be such that rxs P RP2 is on the exterior of every oval of the spectral

curve. By [Vin93], it follows that if n ` 1 is even, then Qx has n`1
2

positive and negative

eigenvalues, and if n ` 1 is odd, then one of Qx or ´Qx has tn`1
2

u ` 1 positive eigenvalues

and tn`1
2

u negative eigenvalues. Since g is smooth, it follows that if rλs is on the interior of

an oval of depth k but on the exterior of all ovals of depth at least k ` 1, then Qλ has at

most tn`1
2

u ` k positive eigenvalues for n ` 1 even and tn`1
2

` k ` 1 positive eigenvalues for

n ` 1 odd. In either case, if Qλ has at least n positive eigenvalues, it therefore follows that

λ is in the interior of an oval of depth at least tn
2
u ´ 1.

We will start with the case where X “ Xpt0u, fhq “ VRpfh
1 , f

h
2 , f

h
3 q. The hyperbolicity of

the spectral curve is an immediate computation using Lemma 5.2.1 and the spectral sequence

of Theorem 5.1.1.

Proposition 5.2.2 (cf [Agr88]). Suppose that n ě 4 and that the spectral curve is smooth

and nonempty. If VRpfh
1 , f

h
2 , f

h
3 q is empty, then the spectral curve is hyperbolic and Ωnpt0uq

is nonempty, i.e., there is µ P R3 such that Qµ has n positive eigenvalues.

Proof. Set X “ VRpfh
1 , f

h
2 , f

h
3 q and Ωj “ Ωjpt0u, fhq for notational convenience. If PDLC

holds then we are done.

We now show that Ωn ‰ H. Suppose for the sake of a contradiction that Ωn “ H and let

pEr, drq be the spectral sequence of Theorem 5.1.1. By the isomorphisms (5.2), we have that
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E0,n
2 – Z2. On the other hand, we have that H0pXq “ 0 since X is empty. Therefore, since

H ipΩjq “ 0 for all i ě 2 for all j, it must be the case that at least one of d0,n2 : Z2 Ñ H1pΩnq

or d0,n3 : Z2 Ñ H2pΩn´1q is nonzero. However, since Ωn “ H, it follows that H1pΩnq “ 0.

Similarly, since the spectral curve is nonempty, H2pΩn´1q “ 0. So, both differentials must

be zero, the desired contradiction.

The remaining case is that Ωn ‰ H and PDLC does not hold. We want to show that in

this case, the spectral curve is hyperbolic. As before, let pEr, drq be the spectral sequence

of Theorem 5.1.1. We will use the fact that H0pXq “ 0 to compute the cohomology groups

H ipΩjq. Note that since Ωn ‰ H, it follows that there is Qµ with at most one positive

eigenvalue and therefore Ωj`1 Ď S2 is a proper subset for each j ě 1. In particular, this

implies that E3,j
2 “ H2pΩj`1q “ 0 for all j ě 1. Since n ě 4, this implies that E3,j

2 “ 0 for

j ě n ´ 3. So, the E2 page has the following form:

E2

0 1 2 3

n ´ 3

n ´ 2

n ´ 1

n Z2 0 0 0

0 H0pΩnq{Z2 H1pΩnq 0

0 H0pΩn´1q{Z2 H1pΩn´1q 0

0 H0pΩn´2q{Z2 H1pΩn´2q 0

Since 0 “ H0pXq “
À

i`j“n E
i,j
8 , it follows that d0,nr is injective for some r ě 2. Because

Ei,j “ 0 for all j when i ě 4, we in fact have that d0,n2 must be injective. So H1pΩnq ‰ 0.

Since H1pΩnq ‰ 0, and since λ P Ωn implies that rλs lies in the interior of an oval of the

spectral curve of depth at least tn`1
2

u ´ 1, the spectral curve must have a nest of ovals of

depth tn`1
2

u. Therefore the spectral curve is hyperbolic.

The converse is more difficult. In particular, we need to compute the differential d2 of
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the spectral sequence. In [AL12], the authors relate the value of the differential d2 to sets

of matrices with repeated eigenvalues. To make the precise statement, we set Q to be the

vector space of quadratic forms on Rn`1. For q P Q, we set ρ1pqq ě ρ2pqq ě . . . ě ρn`1pqq to

be the eigenvalues of q and Dj “ tq P Q | ρjpqq ą ρj`1pqqu. With this notation, we have the

following theorem.

Theorem 5.2.3 ([AL12, Theorem B]). There is a formula for the differential d2 in terms

of matrices with repeated eigenvalues. Explicitly,

d2pxq “ px ! f̄˚γ1,jq|pK˝XB3,ΩjpKqq for x P H˚
pK˝

X B3,Ωj`1
q.

Here, f̄ : R3 Ñ Q is given by f̄pλq “ fh
λ and f̄˚ is the induced map on cohomology. The

value of the class γ1,j P H2pQ,Djq on the image of σ : B2 Ñ Q with σpBB2q Ď Dj is equal

to the intersection number of σpB2q and QzDj mod 2.

We will be interested in applying Theorem 5.2.3 to compute d0,n2 p1q in the case where g is

hyperbolic with a hyperbolicity cone P such that the interior of P consists of λ such that Qλ

has exactly n ´ 1 positive and two negative eigenvalues. In particular, we will want to show

that there is exactly one λ P intpPq X S2 such that Qλ has a repeated negative eigenvalue.

In this case, with notation as in Theorem 5.2.3, we have that γ1,n ­“ 0 so that d0,n2 p1q ‰ 0.

Lemma 5.2.4. Suppose that Ωnpt0uq is nonempty and that g is smooth and hyperbolic with

hyperbolicity cone P which contains matrices with n´1 positive and two negative eigenvalues.

Then, if λp1q, λp2q P intpPq are such that Qλp1q and Qλp2q each have repeated eigenvalue ´1,

then for each t P R, we have that tQλp1q ` p1 ´ tqQλp2q has at least two negative eigenvalues.

Proof. Note that the statement holds for all t P r0, 1s by the convexity of P . Let V be the

two dimensional subspace of Rn`1 corresponding to the eigenvalue ´1 of Qλp1q and let U be

the two dimensional subspace of Rn`1 corresponding to the eigenvalue ´1 of Qλp2q .

Then, if t ě 1 and v P V has vJv “ 1,
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vJ
ptQλp1q ` p1 ´ tqQλp2qqv “ ´t ` p1 ´ tqvJQλp2qv ď ´1.

Similarly, if u P U has uJu “ 1 and t ď 0, then

uJ
ptQλ1 ` p1 ´ tqQλp2qqu “ tpuJQλp1qu ` 1q ´ 1 ď ´1.

So, the claim follows from the variational characterization of eigenvalues.

Using Lemma 5.2.4, we show that there is exactly one λ P intpPq X S2 such that Qλ has

a repeated negative eigenvalue. This will allow us to compute d0,n2 p1q ‰ 0.

Lemma 5.2.5. Suppose that Ωnpt0uq is nonempty and that g is smooth and hyperbolic with

hyperbolicity cone P which contains matrices with n´1 positive and two negative eigenvalues.

Then, there is a unique λ P P X S2 such that Qλ has a repeated negative eigenvalue.

Proof. First, there can be at most one such λ. Suppose for the sake of a contradiction that

λp1q, λp2q P P XS2 had repeated negative eigenvalue. Then, for some rescaling ˆλp1q and ˆλp2q of

λp1q and λp2q, respectively, we would have Q ˆλp1q and Q ˆλp2q with repeated negative eigenvalue

´1. By Lemma 5.2.4, we have that for all t P R, the matrix Q
t ˆλp1q`p1´tq ˆλp2q must have at least

two negative eigenvalues. Since g is hyperbolic with respect to both λp1q and λp2q, it must

be the case that the univariate polynomial detpQ ˆλp2q ` tpQ ˆλp1q´ ˆλp2qqq has all zeros at infinity,

but this contradicts the smoothness of g.

We now show that there is at least one λ P P X S2 such that Qλ has a repeated negative

eigenvalue. Let λ P intpPq X S2 and let vp1q, vp2q, . . . , vpn`1q be an orthonormal basis of

eigenvectors of Qλ corresponding to the eigenvalues ρ1pQλq ě ρ2pQλq ě . . . ě ρn`1pQλq. Set

B “

„

1?
|ρ1pQλq|

vp1q 1?
|ρ2pQλq|

vp2q 1?
|ρn`1pQλq|

vpn`1q

ȷ

.

Then, x ÞÑ Bx defines a real change of coordinates on RPn. In these coordinates, the

quadratic form fh
λ is represented by the diagonal matrix
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BJQλB “ diagp1, 1, . . . , 1,´1,´1q.

By the above discussion, λ is the unique element of P XS2 such that BJQλB has a repeated

negative eigenvalue. Using Theorem 5.2.3, we therefore obtain that

VRpBJQ1B,BJQ2B,BJQ3Bq “ H.

Since nonexistence of real points on a variety is preserved under a real change of coordinates

on RPn, this implies that VRpfh
1 , f

h
2 , f

h
3 q is empty. By Theorem 5.2.3, this implies that the

differential d0,n2 is nontrivial and therefore there is an odd number of λ P P X S2 such that

Qλ has a repeated negative eigenvalue. By the preceding discussion, this λ must be unique.

We are now able to prove the n ě 4 case of Theorem 5.0.1.

Proposition 5.2.6. Suppose that n ě 4 and that the spectral curve is smooth. If g is

hyperbolic with hyperbolicity cone P such that intpPq has either positive definite matrices or

matrices with exactly two negative eigenvalues, then VRpfh
1 , f

h
2 , f

h
3 q “ H.

Proof. If P contains positive definite matrices, then we are done. Otherwise, intpPq contains

matrices with n ´ 1 positive and two negative eigenvalues. Set X “ Xpt0u, fhq and Ωj “

Ωjpt0uq. If pEr, drq is the spectral sequence of Theorem 5.1.1, then the E2 page has the form

E2

0 1 2

n ´ 3

n ´ 2

n ´ 1

n Z2 0 0

0 0 H1pΩnq – Z2
d0,n2d
0,n
2

0 0 0

0 0 0
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So, we have that

H0pXq –
à

i`j“n

Ei,j
8 – kerpd0,n2 q.

To show that X “ H, it therefore suffices to show that d0,n2 is injective, i.e, d0,n2 p1q ‰ 0. Let

σ : B2 Ñ S2 be a representative of the nontrivial class in H2pS2,Ωnq. Then, with notation as

in the statement of Theorem 5.2.3, we have that γ1,npf̄pσqq is equal to the number p mod 2q

of λ P P X S2 such that Qλ has a repeated negative eigenvalue. By Lemma 5.2.5, there is a

unique such λ. Therefore,

d0,n2 p1qpσq “ 1 ! f̄˚γ1,npσq “ γ1,npf̄pσqq “ 1.

So d0,n2 p1q is not the zero map and therefore d0,n2 is injective. So,

H0pXq – kerpd0,n2 q – 0

and X “ H.

We are now prepared to prove the full statement of Theorem 5.0.1. The small n (n ď 3)

cases are treated separately.

Proof of Theorem 5.0.1 . We separate the proof by cases for the value of n.

n ě 4: This is given by Propositions 5.2.2 and 5.2.6.

n “ 3: See [PSV11, Theorem 7.8].

n “ 1: If Q1, Q2, Q3 are linearly independent, then they span the entire space of quadrics

and therefore satisfy PDLC.
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n “ 2: Recall here that the statement of Theorem 5.0.1 asserts that the spectral curve is

not smooth when VRpfh
1 , f

h
2 , f

h
3 q is nonempty.

Suppose that v P R3 is a nonzero point with rvs P VRpfh
1 , f

h
2 , f

h
3 q. Then, we have that the

vectors Q1v,Q2v, and Q3v are all orthogonal to v and therefore dimpspanRpQ1, Q2, Q3qq ď 2.

Let α P R3 be nonzero such that 0 “
ř3

i“1 αiQiv “ Qαv. If Qα has rank 1, then rαs is

necessarily a singular point of VRpgq.

Suppose that α has rank 2. Let D Ď Sym3pRq be the hypersurface in the space of real

symmetric 3 ˆ 3 matrices defined by the vanishing of the determinant. Note that Qα P D

since rkpQαq ‰ 3. By Jacobi’s formula, we have that ∇ detpQαq “ adjQα “ cvvJ for some

constant c. This implies that the tangent space to D at Qα, TQαD is the space of quadratic

forms which vanish at v since xadjQα, Qy “ 0 implies that tracepvvJQq “ vJQv “ 0. But

then Qi P TQαD for each i P r3s and spanRptQi | i P r3suq intersects D non-transversely at

Qα. So, rαs is a singular point of the spectral curve.

Example 5.2.1 ([PSV12, Example 5.2]). As stated in Example 2.3.2, the polynomial

ppx, y, zq “ det

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

–

25x 0 12y ´ 32x ´60z

0 25x 10z 24x ` 16y

12y ´ 32x 10z 6x ` 4y 0

´60z 24x ` 16y 0 6x ` 4y

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

is hyperbolic with respect to p1, 0, 0q and there are no values of px, y, zq which result in a

positive definite matrix. We interpret this example in terms of Theorem 5.0.1. Set

Q1 “

»

—

—

—

—

—

—

—

–

25 0 ´32 0

0 25 0 24

´32 0 6 0

0 24 0 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, Q2 “

»

—

—

—

—

—

—

—

–

0 0 12 0

0 0 0 16

12 0 4 0

0 16 0 4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and Q3 “

»

—

—

—

—

—

—

—

–

0 0 0 ´60

0 0 10 0

0 10 0 0

´60 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Figure 5.1: An affine slice of the spectral curve for Example 5.2.1

Note that we have that the spectral curve gpλq “ gpdetp
ř3

i“1 λiQiqq “ ppλ1, λ2, λ3q. Fig-

ure 5.1 shows the spectral curve in the affine slice λ1 “ 1 and the signature of matrices in

each connected component of the complement of the curve. Here, for example, the label

p`,`,´,´q means that matrices in this region have two positive and two negative eigenval-

ues. As predicted by Theorem 5.0.1, we see that the spectral curve is hyperbolic and has a

hyperbolicity cone whose interior consists of matrices with exactly two negative eigenvalues.

˛

We now turn our attention to systems of quadratic inequalities. This will be useful

for the study of quadratically constrained optimization problems in the later sections of

this chapter. In particular, we prove the dichotomy of Proposition 5.0.2: a set defined

by quadratic inequalities is empty if and only if combinations of the defining inequalities

achieve a positive definite matrix or the set with n positive eigenvalues has nontrivial first

cohomology.

Proof of Proposition 5.0.2. For notational convenience, we set X “ XpK, fhq and Ωj “

ΩjpK, fhq. Suppose first that X “ H and Ωn`1 “ H. We want to show that H1pΩnq is

nontrivial. As in the proof of Proposition 5.2.2, it must be the case that Ωn is nonempty

since otherwise dimZ2pH0pXqq ě 1. So, if pEr, drq is the spectral sequence of Theorem 5.1.1,

the E2 page must have the following form:
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E2

0 1 2

n ´ 2

n ´ 1

n Z2 0 0

0 H0pΩnq{Z2 H1pΩnq

0 H0pΩn´1q{Z2 H1pΩn´1q

Note that we have used the fact that H2pΩjq “ H for all j since K˝ is a proper subset of R3.

Since X “ H, it must be the case that d0,n2 : Z2 Ñ H1pΩnq is injective, as E0,n
8 – kerpd0,n2 q

is a direct summand of H0pXq – 0. So, H1pΩnq ‰ 0.

We now show that the conditions on Ωn and Ωn`1 are sufficient for the emptiness of X.

If µ P K˝ X S2 has Qµ ą 0, then X “ H. Indeed, if fhpxq “ pfh
1 pxq, fh

2 pxq, fh
3 pxqq P K,

then fh
µ pxq ď 0 since µ P K˝. On the other hand fh

µ pxq ą 0 for all rxs P RPn since Qµ ą 0.

Finally, if Ωn`1 is empty and Ωn has nontrivial first cohomology, then it suffices to show

that the differential d0,n2 : Z2 Ñ H1pΩnq is nonzero. By Theorem 5.2.3, this happens if

there is a continuous map σ : B2 Ñ spanRtQ1, Q2, Q3u such such that σpBB2q Ď Ωn and

intpσpB2qq contains a unique matrix with repeated negative eigenvalue. Since the variety

VRpfh
1 , f

h
2 , f

h
3 q is empty, we know that such a map σ exists, as in the proof of Proposition

5.2.6. So, the differential d0,n2 ‰ 0 and therefore E0,n
3 – E0,n

8 – 0. Moreover, we see that

E1,n´1
2 – E2,n´2

2 – 0 from the hyperbolicity and smoothness of the spectral curve. So,

H0pXq – E0,n
8 ‘ E1,n´1

8 ‘ E2,n´2
8 – 0

and X is therefore empty.

The result of Proposition 5.0.2 is that when the real variety VRpfh
1 , f

h
2 , f

h
3 q is empty

and the spectral curve is smooth and hyperbolic, the emptiness of a system of quadratic

inequalities can be determined by convex geometry. Specifically, the system of inequalities
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defined by a polyhedral cone K is empty if and only if K˝ intersects the cone of positive

definite linear combinations of the Qi or if the cone K
˝ contains the hyperbolicity cone P of

g which certifies the emptiness of the real variety.

5.3 Reduction to Finite Subsets of Aggregations

In this section, we use the topological techniques of Proposition 5.0.2 to determine upper

bounds on the number of necessary aggregations in a description

convpSq “
č

λPΛ1

Sλ.

First, we recall some known results about aggregations of quadratic inequalities before

proving our upper bounds in the general empty variety setting and improved upper bounds

in the PDLC setting.

5.3.1 Some Preliminaries on Aggregations

Recall that we have set

Λ “ tλ P R3
` | Qλ has exactly one negative eigenvalueu.

An aggregation λ P Λ is a good aggregation if convpSq Ď Sλ and a bad aggregation

otherwise.

Lemma 5.3.1 ([BDS24]). If λ P Λ, then intpSλq is either a convex set or a union of two

disjoint convex sets. Moreover, λ is a bad aggregation if and only if intpSλq is a union of

two disjoint convex sets and intpSq has nonempty intersection with both components.

In [BDS24], the authors study bounds on the number of necessary aggregations in the

PDLC case. The strategy is to improve a given aggregation by translating in the direction of

a positive semidefinite matrix. By repeatedly applying this strategy, the authors show that
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the set defined by good aggregations can be defined by good aggregations with at most two

nonzero entries.

Proposition 5.3.2 ([BDS24]). Suppose that PDLC holds and set Θ “ tθ P R3 | Qθ ľ 0u

and Λ1 “ tλ P Λ | λ is a good aggregation and Sλ ‰ Rnu. If λ P Λ1 and θ P Θ are such that

λ1 “ λ ` θ P R3
`zt0u, then λ1 P Λ and Sλ1 Ď Sλ.

Proposition 5.3.3 ([BDS24]). Suppose that PDLC holds. Set Λ1 as in Proposition 5.3.2

and Λ2 “ tλ P Λ1 | | supppλq| ď 2u. Then,
Ş

λPΛ1
Sλ “

Ş

λPΛ2
Sλ.

5.3.2 Upper Bounds when VRpfh
1 , f

h
2 , f

h
3 q “ H

To determine such bounds, we interpret the redundancy of a given aggregation in terms of a

system of quadratic inequalities. The idea is to ensure that the zero set of an new aggregation

does not intersect the set defined by the previous aggregations, resulting in a strictly smaller

subset.

Proposition 5.3.4. Let λp1q, λp2q, . . . , λpk`1q P Λ. Set fh
k “ pfh

λp1q , f
h
λp2q , . . . , f

h
λpkqq and fh

k “

pfh
λp1q , f

h
λp2q , . . . , f

h
λpk`1qq. Suppose that VRpfh

λpk`1qqXXp´Rk`1
` , fh

k`1q “ H and that Xp´Rk
`, f

h
k q

and Xp´Rk`1
` , fh

k`1q have the same number of connected components. Then,

Xp´Rk`1, fh
k`1q “ Xp´Rk, fh

k q.

Proof. Note that Xp´Rk`1
` , fh

k`1q Ď Xp´Rk
`, f

h
k q. For the reverse inclusion, note that if

fh
λpk`1qpxq ­“ 0 for all rxs P Xp´Rk`1

` , fh
k`1q, then fh

λpk`1q has constant nonzero sign on each

connected component of Xp´Rk, fh
k q. Since Xp´Rk

`, f
h
k q and Xp´Rk`1

` , fh
k`1q have the same

number of connected components, this implies that fλpk`1qprxsq ă 0 for all rxs P Xp´Rk, fh
k q.

Therefore Xp´Rk`1, fh
k`1q “ Xp´Rk, fh

k q.

Note that the statement of the conclusion of Proposition 5.3.4 implies that
Şk

i“1 Sλpiq “

Şk`1
i“1 Sλpiq . Indeed, a point in x P

´

Şk
i“1 Sλpiq

¯

z

´

Şk`1
i“1 Sλpiq

¯

would yield a point rpx, 1qs P

Xp´Rk
`, f

h
k qzXp´Rk`1, fh

k`1q.
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The advantage of Proposition 5.3.4 is that we will be able to conclude that given a finite

list of aggregations, some new aggregation is unnecssary by applying Proposition 5.0.2 with

a cone of the form ´Rk ˆ t0u. When ´Rk ˆ t0u is pulled back to R3, we will therefore need

to study sets of the form Ωjpconepλp1q, λp2q, . . . , λpkqq˝q.

As a starting point, taking inspiration from Proposition 5.3.3, we consider a subset Λ1

of Λ which consists of aggregations which generate extreme rays of Λ and have at least one

zero entry:

Λ1
“ tλ P expΛq | | supppλq| ď 2u .

Note that |Λ1| ď 6 since each facet of R3
` can contain at most two extreme rays of Λ. We will

work towards applying Proposition 5.3.4 in the case that λp1q, λp2q, . . . , λpkq is an enumeration

of Λ1 and λpk`1q P Λz conepΛ1q. So, we need to understand the relevant cone.

Lemma 5.3.5. If λ P Λ1, then either λ is a standard basis vector of R3 or gpλq “ 0.

Proof. If λ is not a standard basis vector, then λ “ λiei ` λjej for soe i ­“ j P r3s and

λi, λj ą 0. Since λ P Λ1, if gpλq ­“ 0, then Qλ has exactly n positive and one negative

eigenvalue. So, for any ϵ ą 0 sufficiently small, we have that λ´ ϵpei ` ejq and λ` ϵpei ` ejq

are both elements of R3
`. Moreover, Qλ˘ϵpei`ejq also has exactly n positive and one negative

eigenvalue. But then, λ does not span an extreme ray of Λ, a contradiction.

Lemma 5.3.6. Supose that λp1q, λp2q, . . . , λpkq is an enumeration of Λ1 and that λpk`1q P

Λz conepΛ1q. Let A P Rpk`1qˆ3 have rows pλpiqqJ. If, for fixed i P rks, the set

F “ ttλpk`1q
` sλpiq

| t P R, s P R`u

is a face of AJpRk
` ˆ Rq, then gpλpiqq “ 0.

Proof. Note that if λpk`1q P Λz conepΛ1q, then λpk`1q has strictly positive entries. Let v P R3

be a supporting vector to the face F so that vJλpk`1q “ vJλpiq “ 0 and vJλpjq ą 0 for
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j P rksztiu. Suppose for the sake of a contradiction that gpλpiqq ‰ 0. By Lemma 5.3.5, this

implies that λpiq is a standard basis vector of R3, without loss of generality λpiq “ e1.

Since λpiq “ e1 and gpλpiqq ‰ 0, this implies that Qλpiq “ Q1 has exactly n positive and

one negative eigenvalue. So, either e2 P Λ1 or there is t P r0, 1q such that te1 ` p1´ tqe2 P Λ1.

But then, vJe2 ą 0. Similarly, vJe3 ą 0. Since λpk`1q has strictly positive entries, this

implies that vJλpk`1q ą 0, a contradiction with the construction of v.

Lemma 5.3.6 says that the elements of Λ1 involved with faces of the cone AJp´Rk ˆRq lie

on the spectral curve. In the setting where the spectral curve is smooth and hyperbolic, they

will necessarily lie on the oval of depth tn`1
2

u or tn`1
2

u ´ 1. We will be particularly interested

in the latter case (since the innermost oval bounds a convex region.) Fix C to be the part of

the affine cone over the oval tn`1
2

u ´ 1 of the spectral curve such that λ P C implies that Qλ

has n´1 positive eigenvalues, one negative eigenvalue, and 0 as an eigenvalue of multiplicity

one. Additionally, fix P to be the hyperbolicity cone of the spectral curve consisting of either

positive definite matrices or matrices with exactly two negative eigenvalues.

Lemma 5.3.7. Let λ P ΛXC. Then, if e P P, there is exactly one root t˚ of gpte` p1´ tqλq

for t P p0, 1s and t˚e ` p1 ´ t˚qλ lies on BP.

Proof. First, we can reduce to the case where g is a definite representation of the spectral

curve since any hyperbolic plane curve has a definite representation and the number of

intersection points of the spectral curve and a fixed line L “ tte ` p1 ´ tqλ | t P Ru is

invariant to a change in the representation of the curve.

Now, there is at least one such root since e P P . On the disjoint union p´8, 0q Y p1,8q,

there are at least n ´ 1 roots since for sufficiently large values of t, the matrices Qλ`tpe`λq

and Qλ´tpe´λq have opposite signature. Since 0 is a root and there is a root in p0, 1s, there

can be no other roots, as gpte ` p1 ´ tqλq has degree n ` 1 as a univariate polynomial in the

variable t.
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Lemma 5.3.8. Suppose that CXR3
` ‰ H and that S ‰ H. Then, each connected component

of C X R3
` intersects a proper face of R3

`. Moreover, if a connected component of C X R3
`

intersects intpR3
`q, then there exist λp1q ‰ λp2q in C X R3

` with | supppλpiqq| ď 2.

Proof. Note that the interior of C consists of λ such that Qλ has n positive and one negative

eigenvalue. If a connected component C1 of C X R3
` does not intersect a proper face of R3

`,

then C1 is contained entirely in intpR3
`q. This implies that the image of C1 in RP2 is an oval

of the spectral curve of depth tn`1
2

u ´ 1. Since there is only one such component, it must

be the case that C1 “ C. but then the hyperbolicity cone P is contained in intpR3
`q, which

implies that S “ H by Proposition 5.0.2. So, it must be the case that C1 intersects a proper

face of R3
`.

The preceding paragraph shows that R3
` cannot contain the entirety of the region bounded

by C. So, if a connected component C1 of C XR3
` contains an element with strictly positive

entries and there is a unique element λ with | supppλq| ď 2, then the entirety f the region

bounded by C1 is contained in R3
`. This implies that C1 “ C, a contradiction as above.

The result of Lemma 5.3.8 is that we have control of the elements on the oval of the

spectral curve of submaximal depth. We will leverage this below to obtain certificates of re-

dundancy for aggregations in terms of the intersection of polyhedral cones with hyperbolicity

cones.

Theorem 5.3.9. Suppose that VRpfh
1 , f

h
2 , f

h
3 q is empty but S ­“ H, the spectral curve is

smooth and hyperbolic, and that ΩnpconepΛ1q˝q is contractible. Then,
Ş

λPΛ1 Sλ “
Ş

λPΛ Sλ.

Proof. Enumerate Λ1 “ tλp1q, λp2q, . . . , λpkqu and let λpk`1q P Λz conepΛ1q. Note that if

gpλpk`1qq ­“ 0, then we can write λpk`1q as a conical combination of an element of conepΛ1q

and an element of C, where C is as above. In particular, it suffices to take λpk`1q P C.

Moreover, by the hypothesis that S ­“ H, we have that P Ę R3
`. This implies that there

is e P P and λpiq, λpjq P Λ such that tλpk`1q ` p1 ´ tqe “ λ for some λ P conepλpiq, λpjqq at

0 ď t ď 1. Since λpk`1q R C, we can take λpiq, λpjq PC.
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Set K “ conepλpiq, λpjq, λpk`1q,´λpk`1qq. We will show that P Ď intpK˝q. For notational

convenience, denote by A the matrix such that AJ “

„

λpiq λpjq λpk`1q

ȷ

, so that K˝ “

AJpR2
` ˆ Rq.

Suppose for the sake of a contradiction that AJpR2
` ˆ Rq X P “ t0u. Let v be normal

to a separating hyperplane oriented so that vJy ą 0 for all y P P and vJw ď 0 for all

w P AJpR2
` ˆ Rq. Then, vJλpk`1q ă 0 since tλpk`1q ` p1 ´ tqe “ λ. But then, for pc1, c2, dq P

R2
`,R, we have that vJpdλpk`1q ` c1λ

piq ` c2λ
pjqq can take both positive and negative values

since d is unconstrained. This contradicts the assumption that v was normal to a separating

hyperplane. So, P and AJpR2
` ˆ Rq intersect nontrivially. In fact, it must be the case that

P Ď intpAJpR2
` ˆ Rqq. Indeed, the face ttλpkq ` sλpiq | t P R, s P R`u cannot intersect P

(and similarly for the face defined by λpkq and λpjq). This is a consequence of Lemma 5.3.7

since if there were an element e in this intersection, then there would be two roots of g when

restricted to the line segment between λpk`1q and e.

Since P Ď intpK˝q, we have that either H1pΩnpK˝qq ‰ 0 or Ωn`1pK˝q ‰ H. By Propo-

sition 5.0.2, this implies that XpK˝, fhq “ H. That is,

VRpfh
λpk`1qq X Xp´R2, pfh

λp1q , f
h
λp2qqq “ H.

This in turn implies that VRpfh
λpk`1qq X XpconepΛ1q˝, fhq “ H. By the hypothesis that

ΩnpconepΛ1q˝q is contractible and Proposition 5.3.4, this implies that λpk`1q is unecessary,

i.e.,
Şk

i“1 Sλpiq “
Şk`1

i“1 Sλpiq .

The following example demonstrates the proof of Theorem 5.3.9.

Example 5.3.1 (Certifying the Redundancy of an Aggregation). Figure 5.2 illustrates the

argument of the proof of Theorem 5.3.9. Again, we take the system of quadratics from

Example 5.2.1 so that the curve VRpgq is hyperbolic but g is not a definite representation.

The aggregation µ which lies in the interior of R3
` does not contribute to the intersection of

all aggregations of correct signature, which is given by
Ş

λPΛ1 Sλ. This is certified by the fact
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Figure 5.2: An illustration of Theorem 5.3.9. The aggregation µ is unnecessary for the
description of

Ş

λPΛ1 Sλ since P Ď K.

that the cone K “ AJpR4
` ˆ Rq contains the hyperbolicity cone of g in its interior. Here,

AJ “

„

λp1q λp2q λp3q λp4q µ

ȷ

for an enumeration Λ1 “ tλpiq | i P r4su. In cohomological

terms, H1pΩnpK˝qq “ Z2.

˛

We also show via example that the condition that ΩnpconepΛ1q˝q is contractible is a

nontrivial hypothesis.

Example 5.3.2 (A Necessary Aggregation with Positive Entries). We construct a system

of quadratics such that
Ş

λPΛ1 Sλ has three connected components, but for some µ with

strictly positive entries, Sµ X p
Ş

λPΛ1 Sλq has only two components. As in Example 5.2.1, we

start with the matrices

M1 “

»

—

—

—

—

—

—

—

–

25 0 ´32 0

0 25 0 24

´32 0 6 0

0 24 0 6

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, M2 “

»

—

—

—

—

—

—

—

–

0 0 12 0

0 0 0 16

12 0 4 0

0 16 0 4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, and M3 “

»

—

—

—

—

—

—

—

–

0 0 0 ´60

0 0 10 0

0 10 0 0

´60 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The matrices do not satisfy PDLC and detpxM1 `yM2 `zM3q is hyperbolic with respect
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to p1, 0, 0q. We construct the defining quadratics fipx, y, zq “

„

x y z 1

ȷ

Qi

„

x y z 1

ȷJ

with Qi defined as follows:

Q1 “ M1 ` 1.5M2 “

»

—

—

—

—

—

—

—

–

25 0 ´14 0

0 25 0 48

´14 0 12 0

0 48 0 12

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q2 “ M1 ´ 2M2 ` 2M3 “

»

—

—

—

—

—

—

—

–

25 0 ´56 ´120

0 25 20 ´8

´56 20 ´2 0

´120 ´8 0 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Q3 “ M1 ´ 2M2 ´ 2M3 “

»

—

—

—

—

—

—

—

–

25 0 ´56 120

0 25 ´20 ´8

´56 ´20 ´2 0

120 ´8 0 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

We numerically compute that the elements of Λ1 are appropriately normalized vectors

in the directions of the following vectors λp1q, λp2q, λp3q. Since the semialgebraic set Sλ is

invariant under positive scalings of λ, we work directly with the λpiq. We also take an

aggregation µ which lies on the oval of depth tn`1
2

u ´ 1 with strictly positive entries.

λp1q
“ e1, λp2q

“ p1, 0.68725, 0q, λp3q
“ p1, 0, 0.68725q, µ “ p0.1429, 0.4286, 0.4286q

The intersection of the cone K “ conepλp1q, λp2q, λp3qq with Ωnp´R3
`q has three connected

components and the intersection of the cone K̃ “ conepλp1q, λp2q, λp3q, µq with Ωnp´R3
`q

has two connected components. The corresponding semialgebraic sets
Ş3

i“1 Sλpiq and Sµ X

`
Ş3

i“1 Sλpiq

˘

have three and two connected components, respectively. However, as in the
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Figure 5.3: Plots for Example 5.3.2. The left figure displays the spectral curve and relevant
aggregations and cones. The center figure shows the set Sµ X p

Ş

λPΛ1 Sλq which has two
connected components. The right figure shows

Ş

λPΛ1 Sλ, which has three connected compo-
nents.

proof of Theorem 5.3.9, VRpfh
µ q X

`
Ş3

i“1 Sλpiq

˘

“ H. So intersecting with Sµ has the effect of

cutting off a component of
`
Ş3

i“1 Sλpiq

˘

. In particular, we see that
Ş

λPΛ1 Sλ ­“
Ş

λPΛ Sλ. The

spectral curve and the relevant semialgebraic sets are shown in Figure 5.3.

˛

As shown in Example 5.3.2, the set defined by the intersection of all permissible aggre-

gations is not necessarily defined by the intersection of aggregations in Λ1 when Ωnp˝pΛq1q

is not contractible. However, we are able to determine a bound on the number of aggrega-

tions with strictly positive entries which are needed in such a description in the case where

PDLC is not satisfied and the set defined by all permissible aggregations is not connected.

As a starting point, we observe that adding an aggregation λ P intpR3
`q to Λ1 cannot make

the number of connected components of the set defined by the intersection of aggregations

increase.

Lemma 5.3.10. Set K0 “ conepΛ1q and let µp1q, µp2q, . . . , µpNq P Λ have strictly positive

entries. For each j P rN s, set Kj “ conepΛ1 Y
Ťj

i“1tµ
piquq. Then, every connected component

of ΩnpK˝
j q intersects a component of ΩnpK˝

0q. Moreover, we have that

1 ď dimH0
pΩn

pK˝
Nqq ď dimH0

pΩn
pK˝

N´1qq ď ¨ ¨ ¨ ď dimH0
pΩn

pK˝
1qq ď dimH0

pΩn
pK˝

0qq.
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Proof. First, we show that there are no connected components of ΩnpK˝
j q which consist of

points with all positive entries. Suppose for the sake of a contradiction that there was such a

component. Then, its boundary would form an oval of VRpgq whose interior contains matrices

with n positivev eigenvalues. If VRpfh
1 , f

h
2 , f

h
3 q “ H, then VRpgq is hyperbolic and the only

oval which contains matrices with n positive eigenvalues in its interior is the oval of depth

tn`1
2

u ´ 1. If Kj contains this oval, then it also contains the oval of maximal depth, and thus

the hyperbolicity cone of g which certifies the emptiness of the variety. By Proposition 5.0.2,

this would implies that XpK˝
j , f

hq “ H, a contradiction since Xp´R3
`, f

hq Ď XpK˝
j , f

hq.

So, every connected component of ΩnpK˝
j q has nonempty intersection with ΩnpK˝

0q since

there is λ in each component with some coordinate λi “ 0. Therefore, either λ P Λ1 or λ is

a conical combination of two elements of Λ1. Since ΩnpK˝
0q Ď ΩnpK˝

j´1q Ď ΩnpK˝
j q for all j,

this implies that every connected component of ΩnpK˝
j q intersects ΩnpK˝

j´1q.

The last claim then follows since there are at least as many connected components of

ΩnpK˝
j´1q as connected components of ΩnpK˝

j q. Finally, since Xp´R3
`, f

hq ‰ H, we have

that dimH0pΩnpK˝
Nqq ě 1.

We are now prepared to prove Theorem 5.0.4, which states that the intersection over all

permissible aggregations is given by the intersection over a finite subset Λ1 of permissible

aggregations. The essential idea is that the number of aggregations with strictly positive

components which can be necessary is bounded above by the number of connected com-

ponents of dimH0pΩnpconepΛ1q˝qq, or equivalently the number of connected components of

XpconepΛ1q˝, fhq by an application of Theorem 5.1.1.

Proof of Theorem 5.0.4. If ΩnpconepΛ1q˝q is contractible, then Λ1 “ Λ1 by Theorem 5.3.9.

Otherwise, if ΩnpconepΛ1q˝q is not contractible, we can apply Lemma 5.3.8. Specifically,

fix an enumeration λp1q, λp2q, . . . , λpkq of Λ1. A list µp1q, µp2q, . . . , µpNq of aggregations with

strictly positive entries only contains necessary elements only if dimH0pΩnpKcircjqq ă

dimH0pΩnpK˝
j´1qq. In particular, the maximal length N of a sequence of aggregations with

positive entries which can be necessary is at most dimH0pΩnpconepΛ1q˝qq.
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5.3.3 Improved Upper Bounds in the PDLC Case

In this section, we study the topology of the set of good aggregations as a subset of the set

of all permissible aggregations. We pay particular attention to the PDLC case, where, under

assumptions on the regularity of the set S, we obtain an improved bound on the number of

necessary aggregations to describe convpSq. As a starting point, we show that when the set S

has no low-dimensional components, i.e. S “ intpSq, then sets of good and bad aggregations

are connected in the set of permissible aggregations.

Proposition 5.3.11. Suppose that S “ intpSq. Then, each connected component of Λ

consists of only good aggregations or only bad aggregations.

Proof. We first show that the set of good aggregations is closed in Λ. Let λpiq Ñ λ be a

sequence of aggregations converging to λ P Λ. Recall that the matrix Qλ has the block struc-

ture Qλ “

»

—

–

Aλ bλ

bJ
λ cλ

fi

ffi

fl

, where the quadratic form associated to Aλ P Rnˆn is the homogeneous

part of fλ. If intpSλpiqq is convex for sufficiently large i, then Aλpiq ľ 0 for sufficiently large i.

This in turn implies that intpSλq is convex since the cone of positive semidefinite matrices is

closed and therefore Aλ ľ 0. Otherwise, suppose that intpSλpiqq has two convex components

for large i. Set pαpiq, βpiqq P Rn ˆ R to be the unit length eigenvector corresponding to the

negative eigenvalue of Qλpiq for each i, with sign chosen such that pαpiqqJx ď βpiq for all x P S.

This is possible since each λpiq is a good aggregation and the affine hyperplane defined by

pαpiqqJx “ βpiq separates the two components of intpSλpiqq. Now, αpiq Ñ α and βpiq Ñ β

where pα, βq is an eigenvector of Qλ corresponding to the negative eigenvalue and such that

αJx ď β for all x P S. So, λ is a good aggregation.

Next, we show that the set of bad aggregations is also closed in Λ. Let λpiq Ñ λ be a

sequence of bad aggregations which converges to λ P Λ. Let pαpiq, βpiqq be the unit length

eigenvector of Qλpiq corresponding to the negative eigenvalue of Qλpiq chosen with orientation

such that pαpiqqJ Ñ αJ and βpiq Ñ β where pα, βq is an eigenvector of Qλ corresponding to

the negative eigenvalue. Since each λpiq is a bad aggregation, there are x, y P intpSq such
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that pαpiqqJx ă βpiq and pαpiqqJy ą βpiq for all i sufficiently large. So, αJx ď β and αJy ě β.

Since x, y P intpSq, this in turn implies that there are x̂, ŷ P intpSq such that αJx̂ ă β and

αJŷ ą β. So, λ is a bad aggregation.

To conclude, note that if Λ˚ is a connected component of Λ, then Λ˚ can be written as a

disjoint union of good aggregations in Λ˚ and bad aggregations in Λ˚. Since Λ˚ is connected

this implies that Λ˚ consists entirely of good aggregations or entirely of bad aggregations.

We will now restrict our attention to the PDLC case. Here, unlike in the previous

sections, we do not assume that the spectral curve VRpgq is smooth. First, we show that the

PDLC hypothesis implies that exactly one connected component of aggregations of correct

signature consists of good aggregations.

Proposition 5.3.12. Suppose that PDLC holds, intpSq ‰ H, and S has no points at infinity.

Then, exactly one connected component of Ωnp´R3
`q consists of good aggregations.

Proof. Note that convpSq can be described as the intersection of finitely many good aggre-

gations by [BDS24] since the Qλ ‰ 0 for all λ ‰ 0 by the hypothesis that the Qi are linearly

independent and the map fh satisfies hidden hyperplane convexity since PDLC holds. By

the results of [BDS24], there are good aggregations λp1q, λp2q, . . . , λprq with r ď 6 such that

convpSq “
Şr

i“1 Sλpiq . Set K “ conepλp1q, λp2q, . . . , λprqq.

Suppose for the sake of a contradiction that ΩnpK˝q has at least two components. From

the spectral sequence of Theorem 5.1.1, it follows that dimH0pXpK˝, fhqq ě 2. It therefore

follows that the set T defined by T “
Ş

λ a good aggregation Sλ has at least two components. On

the other hand, if S has no points at infinity then every connected component of T must

intersect S since otherwise there would be an affine hyperplane H with H X T ‰ H but

H X convpSq “ H. This can’t happen when PDLC holds by [BDS24]. So, S intersects

multiple connected components of T , which in turn implies that convpSq intersects multiple

connected components of T , which is a contradiction since convpSq is connected. So, it

must be the case that ΩnpK˝q has only one component and therefore exactly one connected
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component of Ωnp´R3
`q contains good aggregations.

We will show that the set defined by the intersection of all good aggregations can be

defined by the intersection of at most four good aggregations by following a similar strategy

to that of Proposition 5.3.2. Note that if PDLC holds and S ‰ H, then the hyperbolicity

cone P of g which contains positive semidefinite matrices does not intersect R3
` away from 0.

However, it can be the case that the hyperbolicity cone of g which contains negative definite

matrices intersects R3
` and moreover is completely contained in R3

`. When the hyperbolicity

cone of g which contains negative definite matrices is not completely contained in R3
`, the

strategy from Proposition 5.3.2 applies directly.

Proposition 5.3.13. Suppose that PDLC holds, intpSq ‰ H, and S has no points at infinity.

Assume that the hyperbolicity cone P of g which contains negative definite matrices is not

contained in R3
`. Then, there are λ

p1q, λp2q, . . . , λprq such that r ď 4 and convpSq “
Şr

i“1 Sλpiq.

Proof. If the hyperbolicity cone P of g which contains negative definite matrices is not

conttained in R3
`, then there is θ P R3 such that Qθ ľ 0 and at least one component of θ is

strictly positive, without loss generality θ3 ą 0. Note that since intpSq ‰ H, it follows that

θ R R3
` and at least one of θ1, θ2 ă 0.

If λ “ λ1e1`λ2e2 P Λ is an aggregation for λ1, λ2 ą 0, we have that λ`ϵθ P R3
`zt0u, where

ϵ “ min
!

´λi

θi
| θi ă 0

)

ą 0. But then, by Proposition 5.3.2, λ`ϵθ is a good aggregation with

Sλ`ϵθ Ď Sλ. By the choice of ϵ, we additionally have that λ`ϵθ P conepe1, e3qYconepe2, e3q. In

particular, by improving aggregations in this way, no aggregation in conepe1, e2q is necessary.

By Proposition 5.3.3 and the fact that all aggregations in conepei, ejq can be described using

at most two aggregations, it follows that convpSq can be described as the intersection of at

most four aggregations.

The case where the cone of negative definite matrices is completely contained in R3
` is

more subtle. To deal with this case, we fix the following notation stratifying subsets of

aggregations.



123

• Λ1 “ tλ P Λ | λ is a good aggregation and Sλ ‰ Rnu.

• Λ2 “ tλ P Λ1 | | supppλq| ď 2u.

• Λ3 “ tλ P Λ2 | }λ} “ 1 and λ generates an extreme ray of Λ2u.

We will also need the following technical lemmas regarding the relationship between the

negative definite cone and conepΛ3q.

Lemma 5.3.14. Suppose that the hyperbolicity cone of g which contains negative definite

matrices is strictly contained in R3
`. Suppose further that λ P Λ3 has gpλq “ 0 and that

ω P R3 has Qω ă 0. Then, for any t P p0, 1q, the matrix Qtλ`p1´tqω has at most n´1 positive

eigenvalues.

Proof. Consider the univariate polynomial gptλ ` p1 ´ tqωq. Suppose for the sake of a

contradiction that there is t˚ P p0, 1q such that Qt˚λ`p1´t˚qω has n positive eigenvalues. Since

gpλq “ 0 and since Qω has n`1 negative eigenvalues, there are n`1 roots of gptλ`p1´ tqωq

on the interval p0, 1s when counted with multiplicity. There must additionally be a root t˚

with t˚ ă 0 since the line connecting λ and ω must have two points of intersection with

the boundary of the hyperbolicity cone. But then, the nonconstant degree n` 1 polynomial

gptλ ` p1 ´ tqωq has at least n ` 2 roots, the desired contradiction.

Lemma 5.3.15. Suppose that n ě 3 and that the hyperbolicity cone of g which contains

negative definite matrices is strictly contained in R3
`. Let ω P conepΛ3q be nonzero. Then,

Qω has at least one nonnegative eigenvalue.

Proof. By Carathéodory’s Theorem, ω is a conical combination of some λp1q, λp2q, λp3q P Λ3.

Let V1, V2, V3 be the n-dimensional subspaces of Rn`1 such that vJQλpiqv ě 0 for v P V1.

Since n ě 3, we have that the vector subspace V “ V1 X V2 X V3 has codimension at most 3

in Rn`1 and therefore dimpV q ě 1. Now, for a nonzero v P V and t1, t2, t3 ě 0, we compute

that
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vJ

˜

3
ÿ

i“1

tiQλpiq

¸

v ě 0

and thereforeQω has at least one nonnegative eigenvalue for each ω P conepλp1q, λp2q, λp3qq.

We can now prove the improved bound on the number of needed aggregations in the

PDLC case.

Proof of Theorem 5.0.5. The case for which the hyperbolicity cone of g which contains neg-

ative definite matrices is not contained in R3
` is proven in Proposition 5.3.13. For the case

where the hyperbolicity cone is contained in R3
`, we separate by the cases n “ 1, n “ 2, n ě 3.

Note that it follows from [BDS24] that convpSq “
Ş

λPΛ2
Sλ and that since a convex

combination of good aggregations is a good aggregation if it is permissible, convpSq “

Ş

λP|Λ3|
Sλ. So, it suffices to bound |Λ3|. Recall that if λ P Λ3, then Qλ has exactly one

negative eigenvalue, as otherwise, intpSq “ H. Finally recall that the set of good aggregations

is connected by Propositions 5.3.11 and 5.3.12.

In the cases n “ 1 and n “ 2, we are able to use the structure of the spectral curve to

explicitly bound |Λ3|.

n “ 1: If λ P R3
`, then either Qλ ă 0 or λ P Λ. Since the cone of negative definite matrices

is contained in R3
`, it follows that every nonzero λ P R3

` with | supppλq| ď 2 has exactly

one negative eigenvalue. So, Λ is connected and therefore the set of good aggregations is

connected and Λ3 “ te1, e2, e3u, so |Λ3| “ 3 ď 4.

n “ 2: In this case, if λ P Λ3 is not a standard basis vector, then λ lies on the non-oval

component of the spectral curve. Note that the line through two standard basis vectors ej

and ek can only intersect this component once. So, if a face conepej, ekq of R3
` contains two

elements of Λ3, it must be the case that either these two components are ej and ek or that

exactly one of ej and ek is an element of Λ3. So, up to relabeling the Qi, there are three

possibilities for the set Λ3:
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Λ3 P
␣

te1, e2, e3u, te1, λ
p2q, λp3q

u, te2, e3, λ
p2q, λp3q

u
(

,

where λpiq P conepe1, eiq. In all cases, |Λ3| ď 4.

n ě 3: The case n ě 3 is more technical. Let λp1q, λp2q, . . . , λprq be such that convpSq “

Şr
i“1 Sλpiq . SetK “ conepλp1q, λp2q, . . . , λprqq, and note that at most two of the λpiq can lie on a

given facet conepej, ekq of R3
`. Note that Ω

n :“ ΩnpK˝q is nonempty and connected. Indeed,

if Ωn were empty, then S would intersect nontirivially with every affine hyperplane in Rn

by Proposition 5.0.2 and therefore convpSq “ Rn. Connectedness follows from Proposition

5.3.12.

We now show that the connected component of Λ which contains Ωn contains exactly two

aggregations λp1q and λp2q (up to relabeling) and that this implies that convpSq “ Sλp1q XSλp2q .

Note that we know that there are λp1q, λp2q in the connected component of Λ which contains

Ωn coming from the intersection of the spectral curve with the boundary of R3
`.

Suppose for the sake of a contradiction that there is λp3q in the same connected component

of Λ as λp1q and λp2q. Given ω with Qω ă 0, we consider the lines Li connecting ω and λpiq

in R3 and their restrictions to the sphere L̂i “ t ℓ
}ℓ}

| ℓ P Liu. For any i P r3s and µ P L̂i, we

have that Qµ has at most n´ 1 positive eigenvalues. In particular, we see that L̂i XΩn “ H

for each i P r3s and therefore Ωn has at least two connected components, a contradiction.

To show that convpSq “ Sλp1q X Sλp2q , we note that it suffice to show that for any affine

hyperplane H Ď Rn,

˜

r
č

i“1

Sλpiq

¸

X H “ H ðñ Sλp1q X Sλp2q X H “ H.

Let H be an affine hyperplane such that p
Şr

i“1 Sλpiqq X H “ H. By Proposition 5.0.2,

we know that Ωn
HpK˝q ‰ H, since PDLC is satisfied and therefore H1pΩn´1

H pK˝qq “ 0. By

the Cauchy Interlacing theorem, it must be the case that Ωn
HpK˝q Ď Ωn. Moreover, gH
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interlaces g so that the hyperbolicity cone of gH containing positive definite matrices cannot

be completely contained in R3
` and therefore Ωn

HpK˝q Xconepλp1q, λp2qq ‰ H. But then, since

Ωn
HpK˝qXconepλp1q, λp2qq ‰ H, it must be the case that Sλp1q XSλp2q XH “ H by Proposition

5.0.2.

5.4 Computing the Convex Hull

In this section, we derive a sufficient condition for the expression

convpSq “
č

λPΛ1

Sλ,

proving Theorem 5.0.3. Our strategy mirrors the strategy in [DMnS22, BDS24]. Loosely

speaking, given a valid inequality on S, and H the hyperplane defining this valid inequality,

we want to show that there is an aggregation λ such that the restriction Qλ|H is positive

definite.

Recall that we say that the set S has no points at infinity if

Sh
X tpx, 0q P Rn`1

u “ t0u

Lemma 5.4.1. Suppose that S has no points at infinity. If α P Rn and β P R are such that

αJx ă β for all x P S, and if H “ tpu, un`1q | αJu “ βun`1u, is the associated hyperplane

in Rn`1, then Sh X H “ t0u.

Proof. If 0 ‰ pû, ûn`1q P Sh X H, then û
ûn`1

P S and αJ

´

û
ûn`1

¯

“ β.

We now record a strategy for obtaining sufficient conditions for the expression of convpSq

in terms of good aggregations. Variants of this strategy were used in [DMnS22, BDS24].

Proposition 5.4.2. Suppose that intpSq ‰ H and that the matrices Qi satisfy the following

property:
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If αJx ă β is a valid inequality on S, then for the hyperplane

H “ tpx, xn`1q | αJx “ βxn`1u Ď Rn`1, there exists λ P R3
` such that Qλ|H ą 0.

(*)

Then, there is a set Λ1 Ď R3
` of good aggregations such that convpSq “

Ş

λPΛ1
Sλ.

Proof. Let y R convpSq. Then, there is α P Rn such that αJx ă αJy for all x P S. Set

β “ αJy and H “ tpx, xn`1q | αJx “ βxn`1u. If property (*) holds, then there is an

aggregation λ P R3
` such that Qλ|H ą 0. By the Cauchy Interlacing Theorem and the

hypothesis that intpSq ‰ H, it follows that Qλ has exactly one negative eigenvalue. Since

Qλ|H ą 0, this in turn implies that either Sλ is convex or Sλ is the disjoint union of two

convex components separated by the affine hyperplane tx P Rn | αJx “ βu. Since αJx ă β

is a valid inequality on S, this implies that convpSq is contained in a single convex connected

component of Sλ and therefore λ is a good aggregation which certifies that y R convpSq.

So, in order to develop a sufficient condition for convpSq to be given by aggregations, we

can search for properties which ensure that Sh X H “ t0u is certified by positive definite

aggregations Qλ|H for any hyperplane H. We will restrict our attention to the setting where

VRpfh
1 , f

h
2 , f

h
3 q “ H and the spectral curve is smooth. By Theorem 5.0.1, we know that the

spectral curve must be hyperbolic with a hyperbolicity cone P such that intpPq has either

positive definite matrices or matrices with exactly two negative eigenvalues. On the other

hand, if VRpfh
1 , f

h
2 , f

h
3 q “ H, and H Ď RPn is a hyperplane, then VRpfh

1 , f
h
2 , f

h
3 q X H must

be empty. So, the restricted spectral curve gHpλq “ detpQλ|Hq must also be hyperbolic if

it is smooth and have hyperbolicity cone PH such that intpPHq either has positive definite

combinations or combinations with exactly two negative eigenvalues.

So, we want to understand the way the ovals of VRpgq and VRpgHq interact. Note that if

Q1, Q2, Q3 satisfy PDLC then so do Q1|H , Q2|H , Q3|H and the ovals of VRpgHq interlace those

of VRpgq [KPV15]. When P contains matrices with two negative eigenvalues, the realtionship
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is more subtle. Restricting our attention to a pencil gives the following restriction on the

interactions between the ovals [Tho76, Tho91].

Lemma 5.4.3. Suppose that g is smooth and that λp1q, λp2q P R3 are such that gpλpiqq “ 0

for i “ 1, 2 and that gptλp1q ` p1´ tqλp2qq ‰ 0 for t P p0, 1q. Suppose further that gHpλpiqq ‰ 0

for i “ 1, 2. The number of zeros of gHptλp1q ` p1 ´ tqλp2qq for t P p0, 1q is even if Qλp1q and

Qλp2q have the same signature and odd otherwise.

Proof. Let r P Z be such that Q
p1q

λ has r positive eigenvalues, n´r negative eigenvalues, and

0 as an eigenvalue of multiplicity one. Then, Qλp1q |H has r positive eigenvalues and n ´ r

negative eigenvalues as well by the Cauchy Interlacing Theorem.

If Qλp1q and Qλp2q have the same signature, then Q
p2q

λ |H also has r positive and n ´ r

negative eigenvalues. So, gHpλp1qq and gHpλp2qq have the same sign and therefore gHptλp1q `

p1 ´ tqλp2qq has an even number of zeros for t P p0, 1q.

If Qλp2q has r ` 1 positive and n ´ r ´ 1 negative eigenvalues and 0 as an eigenvalues of

multiplicity one, then Qλp2q |H has r ` 1 positive and n ´ r ´ 1 negative eigenvalues by the

Cauchy Interlacing Theorem. In particular, gHpλp1qq and gHpλp2qq have opposite sign so that

gHptλp1q ` p1 ´ tqλp2qq must have an odd number of zeros on t P p0, 1q. The case where Qλp2q

has r ´ 1 positive eigenvalues is similar.

In the case where g is hyperbolic and P contains matrices with two negative eigenvalues,

Lemma 5.4.3 says that there are only three possibilities for the ovals of VRpgHq. The ovals

of VRpgHq interlace the ovals of VRpgq where the signature changes, and the hyperbolicity

cone PH of gH either is contained in the hyperolicity cone P , is between the ovals of VRpgq

of depth tn`1
2

u ´ 1 and tn`1
2

u (and therefore contains Qλ|H ą 0), or is between the ovals of

VRpgq of depth tn`1
2

u ´ 2 and tn`1
2

u ´ 1. We will need to refine the information computed

by Lemma 5.4.3 to eliminate the last possibility. To do so, we use the following spectral

sequence from [AL12] which computes the relative homology of hyperplane sections of sets

XpK, fq.
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Theorem 5.4.4 ([AL12, Theorem D]). Fix a polyhedral cone K Ď Rm, a homogeneous

quadratic map p : Rn`1 Ñ Rm, and a hyperplane H̄ Ď RPn. There is a first quadrant

cohomology spectral sequence pGr, drq converging to Hn´˚pXpK, pq, XpK, pq X H̄q with

Gi,j
2 “ H i

pΩj
HpKq,Ωj`1

pKqq for j ą 0, Gi,0
2 “ H i

pK˝
X Bn,Ω1

pKqq.

We will apply Theorem 5.4.4 to hyperplane sections of an empty variety to understand

the relationship between the spectral curves gpλq and gHpλq. In particular, we will see that

it must be the case that every noncontractible loop in Ωn´1
H pt0uq can be deformed to a

noncontractible loop in Ωnpt0uq.

Corollary 5.4.5. Fix a hyperplane H Ď Rn`1. Suppose that VRpfh
1 , f

h
2 , f

h
3 q “ H and that

the polynomial g is smooth and hyperbolic. Suppose further that the hyperbolicity cone P of

g does not contain a positive definite matrix. Then, H1pΩn´1
H pt0uq,Ωnpt0uqq “ 0.

Proof. Let pGr, drq be the spectral sequence of Theorem 5.4.4. For notational convenience,

set X “ VRpfh
1 , f

h
2 , f

h
3 q, Ωj “ Ωjpt0uq, and Ωj

H “ Ωjpt0uq.

If n “ 2, then G1,1
8 – kerpd1,12 : G1,1

2 Ñ G3,0
2 q. Since X and X X H̄ are both empty, it

follows that 0 “ H0pX,X X H̄q – G2,0
8 ‘ G1,1

8 ‘ G0,2
8 . It then follows that G1,1

8 must be

zero and that d1,12 is injective. Since G3,0
2 “ H3pK˝ X B3,Ω1q “ H3pB3,S2q “ 0, it therefore

follows that G1,1
2 “ H1pΩ1

H ,Ω
2q “ 0.

Now suppose that n ě 3. We start by showing that Gi,j
2 “ 0 when i ě 3 and j ě 1. From

the long exact sequence of the pair pΩj
H ,Ω

j ` 1q, there is an exact sequence

¨ ¨ ¨ Ñ H i´1
pΩj`1

q Ñ H i
pΩj

H ,Ω
j`1

q Ñ H i
pΩj

Hq “ 0 Ñ . . . ,

where H ipΩj
Hq “ 0 for i ě 3 since Ωj

H Ď S2. So, it suffices to show H i´1pΩj`1q “ 0 for i ě 3

and j ě 1. By Theorem 5.0.1 and the hypothesis that PDLC does not hold, we see that

for n ě 4, Ωj`1 is homotopy equivalent to the union of two points when j “ 1, homotopy

equivalent to a point when 2 ď j ď n ´ 2, homotopy equivalent to S1 when j “ n ´ 1, and
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empty when j “ n. When n “ 3, we see that Ω1`1 is homotopy equivalent to a disjoint

union of two points, Ω2`1 is homotopy equialent to S1, and Ω3`1 is empty. In all cases, this

implies that H i´1pΩj`1q “ 0 for i ě 3 and j ě 1. This in turn implies that H ipΩj
H ,Ω

j`1q “ 0

since H i´1pΩj`1q – H ipΩj
H ,Ω

j`1q.

Next, we note that since g is smooth and PDLC does not hold, it must be the case that

Ω1 “ S2 and therefore Gi,0 “ H ipB3,Ω1q “ H ipB3,S2q “ 0 for i ě 4.

So, we have shown that Gi,j
2 “ 0 for i ě 3, j ě 1 and for i ě 4 with no assumption

on j. Since n ě 3, it therefore follows that H1pΩn´1
H ,Ωnq – G1,n´1

2 has stabilized so that

H1pΩn´1
H ,Ωnq – G1,n´1

2 . Since X and X X H̄ are empty, it follows that

0 “ H0pX,X X H̄q “

n
à

j“0

Gn´j,j
8

and therefore H1pΩn´1
H ,Ωnq “ 0.

Corollary 5.4.5 gives conditions on the relative cohomology groups of the Ωj. We apply

this to the setting where g and gH are both smooth and hyperbolic and PDLC does not hold

in order to determine the relationship between the hyperbolicity cones P and PH .

Theorem 5.4.6. Suppose that VRpfh
1 , f

h
2 , f

h
3 q “ H and that g is smooth and hyperbolic with

hyperbolicity cone P such that intpPq contains matrices with exactly two negative eigenvalues.

Then, if gH is smooth and hyperbolic, either PH contains positive definite matrices or PH Ď

P.

Proof. Suppose that PH does not contain positive definite matrices. By Theorem 5.0.1,

it follwos that if λ P intPH , then Qλ|H has exactly two negative eigenvalues and n ´ 2

positive eigenvalues. Suppose for the sake of a contradiction that PH Ę P . By Lemma

5.4.3 and the Cauchy Interlacing Theorem, this implies that the image of PH X S2 in RP2

is contained between the ovals of VRpgq of depth tn`1
2

u ´ 2 and tn`1
2

u ´ 1. So the images of

PH X S2 and P X S2 in RP2 are bounded by two disjoint ovals, neither of which contains

the other. Since the image of Ωn in RP2 is the region on the interior of the oval of VRpgq of
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(a) The hyperbolicity cone PH is contained in
P

(b) The hyperbolicity cone PH lies between the
ovals of g of maximal and submaximal depth
and the restrictions Q1|H , Q2|H , Q3|H satisfy
PDLC.

Figure 5.4: Examples of the possible containment patterns for the hyperbolic curves g and
gH as given by Theorem 5.4.6.

depth tn`1
2

u ´ 1 and the exterior of the oval of VRpgq of depth tn`1
2

u, we see that there is a

representative σ of the nontrivial class in H1pΩ
n
Hq – H1pΩn

Hq which has nontrival intersection

with the image of Ωn. In particular, this implies that σ gives rise to a nontrivial class in

H1pΩ
n´1
H ,Ωnq – H1pΩn´1

H ,Ωnq, contradicting Corollary 5.4.5.

Examples of the two containment patterns are shown in Figure 5.4. Using the ideas of

Theorem 5.4.6, we are able to prove Theorem 5.0.3. In particular, we see that in order to

ensure that all certificates of emptiness for sets Sh X H are obtained from positive definite

aggregations Qλ|H ą 0, it suffices to separate the cone P from the cone R3
` of aggregations.

Proof of Theorem 5.4.6. We first show that condition (*) is satisfied before turning to the

finiteness statement when the spectral curve is hyperbolic. Note that the PDLC case is

settled by [BDS24], so assume that P does not contain a positive definite matrix.

Let H be a hyperplane such that Sh XH “ t0u. This implies that the set XpK, fhq “ H

for K “ ´R3
` the nonpositive orthant. By Proposition 5.0.2, either there is λ P R3

` such

that Qλ|H ą 0 or we have H1pΩn´1
H pKqq ‰ 0. In either case, gH is hyperbolic if it is smooth.

Since Ωn´1pKq Ď K˝ X S2, a nontrivial H1pΩn´1
H q would imply that PH Ď K˝ “ R3

`. This
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cannot happen by Theorem 5.4.6 since no nontrivial aggregation lies in P , i.e., PH X R3
` Ď

P X R3
` “ t0u. If gH is not smooth and H1pΩn´1

H pKqq ‰ 0, then by the Cauchy Interlacing

Theorem and the fact that P X R3
` “ 0, there is λ P K˝ such that rλs P RP2 lies on the

outside of the oval VRpgq of depth tn`1
2

u ´ 1 and such that Qλ|H has at most n ´ 2 positive

eigenvalues. But then a nontrivial class in H1pΩn´1
H pKqq would give a nontrival class of

H1pΩn´1
H pKq,ΩnpKqq, contradicting Corollary 5.4.5. So, there is λ P R3

` such that Qλ|H ą 0

and thereofre (*) is satisfied.

In the case n “ 2, if g is not hyperbolic, then (*) holds. Indeed, a nontrivial class

in H1pΩ1
HpKqq would give a nontrivial class in H1pΩ1

HpKq,Ω2pKqq. Since this contradicts

Corollary 5.4.5, this implies that there is λ P R3
` such that Qλ|H ą 0.

Finally, we show that when the spectral curve is hyperbolic, a finite number of good ag-

gregations recovers convpSq. For each y P Rnz convpSq, let λpyq P R3
` be a good aggregations

certifying that y R convpSq. Setting Λ˚ “ tλpyq | y P Rnz convpSqu and λp1q, λp2q, . . . , λpkq to

be the unit length generators of the extreme rays of Λ˚ which have | supppλpiqq| ď 2 gives

that convpSq “
Şk

i“1 Sλpiq by arguing as in the proof of Theorem 5.3.9. Note that k ď 6

since each λpiq generates an extreme ray of Λ˚ and has | supppλpiqq| ď 2.

We conclude with an example demonstrating the result of Theorem 5.0.3.

Example 5.4.1. We continue with the system of three quadratics as in Example 5.2.1. By

construction, the nontrivial aggregation p1, 0, 0q lies in the hyperbolicity cone of g and we

see that convpSq is a strict subset of the set defined by the intersection of good aggregations

Sλ. This is demonstrated in Figure 5.5. However, if we modify the system of quadratics to

be given by

Q̃1 “ p0.3Q1 ` 0.4Q2 ` 0.3Q3q , Q̃2 “ Q2, Q̃3 “ Q3,

then no nontrivial aggregation lies in the hyperbolicity cone of g and we are able to describe

convpSq as an intersection
Ş3

i“1 Sλpiq . This is shown in Figure 5.6 below.
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(a) Spectral Curve (b) Approximation

Figure 5.5: Plots corresponding to the system pQ1, Q2, Q3q in Example 5.4.1. The set S in
orange and approximation of convpSq via aggregations in blue (Figure 5.5b) and the spectral
curve and cone R3

` (Figure 5.5a)

(a) Spectral Curve (b) Approximation

Figure 5.6: Plots corresponding to the modified system pQ̃1, Q̃2, Q̃3q in Example 5.4.1. The
set S in orange and approximation of convpSq via aggregations in blue (Figure 5.6b) and the
spectral curve and cone R3

` (Figure 5.6a)
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Chapter 6

Conclusions and Future Directions

In this dissertation, we examined three problems at the intersection of algebraic and convex

geometry and optimziation, using a broad range of tools from each. In Chapter 3, we

presented a heuristic for regression problems using tropical algebraic structure and showed

that this heuristic connected to underlying convex geometry. In Chapter 4, we studied

semidefinite programs which were additionally compatible with a tensor structure. In doing

so, we saw that there were additional connections to group theory. Finally, in Chapter 5,

we provided a unified veiwpoint on a problem in real algebraic geometry and a problem in

quadratically constrained optimization, connecting both problems to convex structures in

“dual” objects.

Future Directions

There are many directions for extending the work presented in this dissertation. The area of

tropical geometry for machine learning has been rapidly expanding in recent years. Future

work could help to develop a better theoretical understanding of the convergence behavior of

Algorithm 1. Specifically, one may be able to leverage the geometric structure of the loss to

better understand the behavior of the iterates. Additionally, future work could augment the

polynomial regression steps using the ideas in [Hoo19, TM19, TTM22] to develop variants of
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Algorithm 1 for use with different norms or which enforce sparsity patterns or a regularization

term. More generally, the development of a procedure for monomial selection remains open.

One potential application domain is in ReLU network initialization. In this work, we

successfully initialized a ReLU network using a tropical rational function for a univariate

regression task, while the tropical initialization was outperformed by existing initialization

strategies for a bivariate regression task. This indicates the potential for future work to

develop a better understanding of network initialization. In particular, the network archi-

tectures used in our experiments are limited, and a full understanding of correspondences

between network architectures and tropical functions is currently an open problem; however

some progress has been made recently, for example in [BLM24].

In the realm of tensor-tensor products and semidefinite programs, there is great potential

for developing a bilevel optimization scheme in tensor completion. That is, optimize over

the choice of M as well as the tensor completion. Such bilevel optimzation schemes have

been developed in [NK24]. Since the semidefinite formuation presented in Chapter 4 is a

parametrized convex problem, it may be possible to exploit this structure while optimizing

over the choice of M .

In the study of systems of quadratics, there are multiple directions for future research.

First, our analysis relied heavily on the fact that we were examining systems of three

quadratic inequalities, so that the corresponding spectral object was an algebraic curve.

An obvious next step is to study the shape of the spectral hypersurface in RPm´1 for sys-

tems of m quadratics. Here, we no longer expect the hypersurface to be hyperbolic, and

PDLC is no longer a sufficient condition for the convex hull to be given by aggregations, so

the problem is significantly more challenging. In an alternate direction, it is reasonable to

expect to be able to leverage the dichotomy presented in Theorem 5.0.1 to construct upper

bounds on the degree of sums of squares multipliers for positivstellensatz certificates for a

quadratic forms on varieties defined by the complete intersection of two quadrics. Finally, the

computational implementation and implications of the results in Chapter 5 remain open.
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