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Abstract

Statistical Methods for Disease Surveillance Based on Multiple Data
Streams

By Yuzi Zhang

Disease surveillance systems are widely implemented to monitor diseases distribu-
tion and detect outbreaks. An important task of disease surveillance is to infer the
number of prevalent or cumulative incident cases. When there are multiple disease
surveillance systems in operation for monitoring the same disease among essentially
closed populations, the capture-recapture (CRC) approach is an appealing tool used
for integrating information across the systems to estimate the total number of diseased
cases. We first develop a hierarchical modeling framework for analyzing individual-
level surveillance data collected from multiple surveillance systems at multiple surveil-
lance sites that allows for individual-level heterogeneity in capture probabilities, and
borrows information across surveillance sites to improve the estimation of disease case
counts. Second, we propose an accessible sensitivity and uncertainty analysis using
a multinomial distribution-based maximum likelihood estimation (MLE) procedure
that hinges on a key inestimable parameter for two-catch CRC experiments. Under
this multinomial model, we also derive bias-corrected estimators which allow for any
user-specified level of the dependency between two systems. We next clarify some
crucial pitfalls of the popular log-linear model-based approach to CRC estimation.
Finally, motivated by those pitfalls, we develop an alternative framework again under
the multinomial distribution-based model, and hinging on the choice of a key parame-
ter that reflects dependences among surveillance systems. This alternative framework
leverages generalizations of the closed-form estimator derived in the sensitivity and
uncertainty analysis framework, and extends the associated bias correction proce-
dures to incorporate CRC studies involving an arbitrary number of systems. Under
the alternative framework, we show how expert opinion can be incorporated in the
spirit of prior information to guide estimation in an appealing and transparent way,
and how an adapted credible interval approach can be used to facilitate inference
exhibiting favorable frequentist properties. By generalizing the idea in the proposed
uncertainty analysis targeting for two-catch cases, the proposed framework permits
principled uncertainty analyses via which a user can acknowledge his/her level of
confidence in assumptions made about the key dependency parameter.
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Chapter 1

Introduction



2

1.1 Introduction to Disease Surveillance

Disease surveillance systems that monitor disease distribution and detect outbreaks

are critical for developing, implementing and evaluating public health programs. Dis-

ease surveillance systems are typically categorized as passive or active. So-called

“passive” surveillance systems obtain incident cases information through reports filed

by healthcare facilities, including hospitals, clinics, and laboratories (Hadorn and

Stärk, 2008). In a passive system, no deliberate efforts are made for identifying in-

cident cases from the targeted populations. In contrast, active surveillance systems

are designed to periodically screen for disease in target populations, often utilizing

highly sensitive, standardized diagnostic methods (Jamison et al., 2006). Hence, pas-

sive surveillance systems are generally more cost-effective and can be established over

large geographic areas (Hadorn and Stärk, 2008). Data from passive surveillance sys-

tems have become more readily available in many parts of the world due to increased

capabilities of electronic reporting (Simonsen et al., 2016; Huff et al., 2017; Wang

et al., 2019). Despite their potentials as an important data source, passive surveil-

lance systems are known to suffer from under-ascertainment (Gibbons et al., 2014).

Specifically, passive surveillance relies on encounters with health care facilities and

some individuals with the disease of interest may not seek care.

Disease surveillance systems are generally associated with under-ascertainment,

and the capture probability of disease surveillance systems could be influenced by

various factors, such as age, sex, race, economic status, access to health care, disease

symptoms, and disease severity (Gibbons et al., 2014; Peixoto et al., 2020). Identifying

factors that affect the case ascertainment in a surveillance system is an important

research area. This knowledge can be used to infer the total number of incident cases

in the study region, leveraging the large amount of data from passive surveillance

systems and the overlap between multiple surveillance systems.
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1.2 Capture-Recapture Methods in Disease Surveil-

lance

When multiple overlapping disease surveillance systems are implemented to survey

a disease across a study period among closed populations, capture-recapture (CRC)

methods can be applied to estimate the number of prevalent or incident cases (N).

CRC methods are originally developed for the purpose of estimating the abundance

of animal populations based on experiments recording the animal encounter history

over multiple trapping occasions. More recently, the use of the CRC methods has

also become common in epidemiological studies used for studying human populations.

Specially, CRC methods are widely used in various disease surveillance projects for

estimating the number of diseased cases, such as cancer (McClish and Penberthy,

2004), HIV infections (Abeni et al., 1994; Bernillon et al., 2000; Héraud-Bousquet

et al., 2012), COVID-19 infections (Böhning et al., 2020), and other diseases (Van Hest

et al., 2008). Different surveillance systems can be viewed in the same way as the

trapping occasions considered in the ecological studies.

1.2.1 Data structure

To implement the CRC methods, surveillance data collected from multiple overlap-

ping surveillance systems can be summarized at two different levels, i.e., individual

and population levels. Specifically, the observed individual-level CRC data contain

binary capture indicators of separate surveillance systems for individuals who have

been identified by surveillance systems. In contrast, the population-level CRC data

only provide the frequency of each possible capture history, except for the number of

cases never identified by any system. For instance, Table 1.1 and 1.2 present indi-

vidual and population levels data under the case where two surveillance systems are

implemented. Let nij be the observed number of individuals having capture history
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(i, j), subscripts of 1 indicates captured and 0 not captured by a given system. y1q and

y2q denote capture indicators (captured/not captured) of individual q for system 1

and 2, respectively. Table 1.1 displays three possible capture histories for an individ-

ual; the individual who has capture history (0, 0) cannot be observed. Aggregating

the individual-level data across all captured individuals results in the population-

level data as shown in Table 1.2. Since individuals with capture history (0, 0) are

unobserved, the cell count n00 is unknown. We are interested in estimating the total

incident cases N , which is equivalent to estimating N00.

It worth noting that, due to the unobserved cell count (e.g., n00 for the two-catch

case), at least one untestable assumption regarding the dependency between systems

is required to enable the estimation of N (Lyles et al., 2021a). One classical as-

sumption is that of independence, which states that capture efforts (i.e., trapping

occasions in ecology, surveillance systems in epidemiology) operate independently

at the population level. For the case where two capture efforts are implemented,

several estimators have been developed under the independence assumption. The

well-known Lincoln-Petersen (LP) estimator is the earliest example (Lincoln, 1930;

Petersen, 1896), while an approximately unbiased estimator was subsequently pro-

posed by Chapman (Chapman, 1951) to overcome positive bias inherent in the LP

estimator.

Table 1.1: Individual-level data of two-catch CRC methods

Captured in system 1 Captured in system 2
Capture history

(y1q, y2q)

Yes Yes (1, 1)

Yes No (1, 0)

No Yes (0, 1)

No No (0, 0)
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Table 1.2: Population-level data of two-catch CRC methods

Captured in system 2

Captured in system 1 Yes No

Yes n11 n10

No n01 n00 =?

N = ?

1.2.2 Multinomial models

In CRC literature, the multinomial model is a popular choice for analyzing population-

level CRC data (Darroch, 1958; Wittes, 1974; Seber et al., 1982). Using the two-

catch population-level data as an example, this model assumes (N11, N10, N01, N00) ∼

Multinomial(N, p11, p10, p01, p00), where pij is the population-level probability of hav-

ing capture history (i, j). These probabilities of different capture histories are often

characterized using parameters of interest based on an assumed dependency structure

between data streams. For example, under the classical independence assumption,

those probabilities can be expressed as the function of two marginal probabilities,

p1 and p2, where p1 and p2 are proportions identified by the first and the second

streams, respectively. The population-level multinomial model also allows one to

introduce dependencies between data streams by representing probabilities of possi-

ble capture histories based on a different set of parameters. In this dissertation, we

factorize probabilities of possible capture histories using conditional probabilities to

allow the consideration of various dependency structures across data streams.

Note that parameters used to express probabilities of different capture histories

are defined at the population-level. In other words, the population-level multino-

mial model does not make assumptions on the individual-level capture probabil-

ities (Lyles et al., 2021a). Consider the individual-level multinomial model, and
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let Hij,q denote the binary indicator of whether the q-th individual has capture

history (i, j). Specifically, h11,q = 1 indicates the individual q was captured by

both systems, equivalently, y1q = 1 and y2q = 1 for individual q. Then we have

(H11,q, H10,q, H01,q, H00,q) ∼ Multinomial(1, p11,q, p10,q, p01,q, p00,q), where pij,q is the

individual-specific probability of having capture history (i, j). By drawing N samples

from this individual-level multinomial model, four cell counts (i.e., the number of

cases having capture histories (i, j) for i, j ∈ {0, 1}) can be obtained. Prior authors

have shown that the population-level multinomial model can be obtained by repeating

this data generation mechanism for an arbitrary number of times while introducing

a joint distribution f(p) to model capture probabilities, (p11,q, p10,q, p01,q, p00,q) (Lyles

et al., 2021a).

1.2.3 Poisson models

The Poisson log-linear model is another popular choice for modeling the population-

level CRC data (Cormack, 1989; Hook and Regal, 1995; Chao et al., 2001). The

model assumes the observed cell counts follow Poisson distributions with means de-

pendent on their capture histories (Cormack, 1989). The dependency structure be-

tween systems is introduced by including interaction terms between binary indicators

for data systems. By varying the combinations of interaction terms, different de-

pendency structures can be obtained. The Poisson model is closely related to the

population-level multinomial model. For example, Cormack and Jupp (1991) showed

that maximum likelihood estimators (MLEs) of N derived using the population-level

multinomial model are equivalent to estimates yielded by Poisson log-linear models

when equivalent assumptions are imposed.
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1.2.4 Models allowing individual heterogeneity in capture

probabilities

To estimate the total number of cases, one can focus on the individual-level capture

indicators (e.g., y1q and y2q for q = 1, . . . , N under the two-catch case). Models

focusing on the individual-level capture indicators permit the consideration of the

heterogeneity in capture probabilities. For example, P (ytq = 1) = ptq can be modeled

via a logit model to allow individual heterogeneity in capture probabilities, where t is

the index for data stream and q is the index for individual (Huggins, 1989; Coull and

Agresti, 1999; Tounkara and Rivest, 2015). Specifically, the model in general form

can be written as:

logit(ptq) = αt +XT
q βt + ϵq, (1.1)

where αt is the system-specific intercept, Xq is a vector of individual-level covariates

included for the system t, βt are system-specific model coefficients, and ϵq denotes the

random effect which is typically assumed to follow a mean-zero normal distribution.

The inclusion of random effects is a way to incorporate unobserved heterogeneity

capture probabilities. The critical untestable assumption imposed in this model is

the conditional independence, which implies that individual-level capture indicators

are independent conditional on covariates included in the model and the random

effect. With the estimated capture probabilities p̂tq, the estimate of N is obtained by

applying the Horvitz-Thompson estimator that is
∑nc

q=1 1/p̂tq, where nc is the number

of uniquely identified cases (Huggins, 1989).

1.3 Specific Aims

This dissertation focuses on the development of CRC methods for estimating the

number of diseased cases and/or the disease prevalence based on surveillance data
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collected from multiple overlapping systems. The specific aims of this dissertation

are:

• Aim 1. Develop a Bayesian hierarchical model to improve the estimation of case

counts while incorporating individual heterogeneity in capture probabilities and

borrowing information across surveillance locations based on spatial-referenced

surveillance data collected from multiple overlapping surveillance systems.

• Aim 2. Propose an accessible and unified sensitivity and uncertainty analysis

framework based on the population-level multinomial model focusing on a key

inestimable parameter.

• Aim 3. Clarify pitfalls associated with the commonly used log-linear modeling

paradigm when analyzing CRC data in epidemiological studies.

• Aim 4. Develop a transparent modeling framework relying on closed-form

estimators derived from the modeling idea adopted in Aim 2, while leveraging

expert opinion to guide the estimation of case counts to address pitfalls clarified

in Aim 3.
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Chapter 2

A Hierarchical Model for

Analyzing Multi-Site

Individual-Level Disease

Surveillance Data
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2.1 Background

Geo-reference CRC data and observed spatial patterns in incident cases have moti-

vated the development of methods accounting for data collected at multiple surveil-

lance sites. For example, the N -mixture model proposed by Royle (2004) aims to

estimate size of animal populations from data collected at multiple trapping sites by

multiple trapping efforts. This model used a Poisson distribution to model the un-

observed true population size at each site, which are treated as nuisance parameters

and marginalized out of the likelihood. Estimators for site-specific population size

at sites with multiple trapping efforts have been derived using estimated site-specific

case rates. Recently, Li et al. (2020) extended the N -mixture model under a Bayesian

spatial hierarchical framework to estimate disease incident cases. Compared to the

N -mixture models, the extended model allows to estimate site-specific incident cases

at sites where overlapping occurs, as well as sites where only one system is available.

An important application of the extended N -mixture models is to bias-correct a pas-

sive disease surveillance system that covers large areas. While the existing methods

allow for capture probabilities to vary across sites and systems, they cannot account

for individual-level heterogeneity in capture probability. As discussed by Otis et al.

(1978) and many others, fail to account for individual heterogeneous capture proba-

bilities may result in severely biased estimator of the number of incident cases. Thus,

methods that account for individual heterogeneity in capture probability and incor-

porate spatial patterns in cases are needed for analyzing individual-level surveillance

data collected over multiple sites by multiple systems.

In this chapter, we propose an approach for analyzing multi-site individual-level

CRC data obtained by linking a passive and an active surveillance system. Specifi-

cally, in a unified modeling framework, we aim to (1) examine factors associated with

individual-level capture probabilities, (2) examine factors associated with true inci-

dent cases across sites, and (3) estimate true incident cases by bias-correcting data



11

from a passive surveillance system. Our approach combines an individual-level bino-

mial mixture (BM) model, which allows for covariate-dependent capture probability,

with a spatial Poisson regression model for site-specific true incident cases. Unlike

previous N -mixture models for multi-site CRC data, our approach treats the true

number of incident cases as parameters of interest. Inference and estimation are car-

ried out via a Bayesian two-stage procedure to address missing covariate information

on individuals not captured by any system.

We introduce the motivating pulmonary tuberculosis (PTB) surveillance data

from a major center of ongoing transmission in China in Section 2.2. In Section

2.3, we describe the proposed statistical framework and the corresponding two-stage

Bayesian estimation procedure. In Section 2.4, we present simulation studies for

evaluating the performance of the proposed framework, particularly highlighting the

benefits of supplementing the BM model with a spatial process model for estimat-

ing true incident cases. In Section 2.5, the proposed approach is applied to the PTB

surveillance data, and we report estimated total PTB incident cases, and factors asso-

ciated with system-specific capture probabilities and PTB rates. Finally, we conclude

with a discussion of future methodological directions in Section 2.6.

2.2 Motivating Data

In China, the National Infectious Disease Reporting System (NIDRS) is a passive,

country-wide, web-based infectious disease reporting network that collects case data

on reportable diseases. Complementary to NIDRS, cross-sectional prevalence surveys

are conducted periodically (e.g., every five years) for select infections, and provinces

implement annual sentinel surveillance surveys in select locations. Hereafter, we refer

to these three surveillance systems as S1, S2, and S3, respectively.

We analyzed linked S1, S2 and S3 PTB data in Sichuan, a province with a high
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burden of PTB and a population of more than 80 million people (Yang et al., 2008).

The passive NIDRS (S1) has been operating in all 181 counties of Sichuan since

2004, and more than 71,000 PTB cases were reported in 2010 in the province. We

supplemented S1 data with data from a cross-sectional PTB prevalence survey (S2)

conducted in 2010 for surveying PTB among populations over 15 years of age at

the community-level, as well as from sentinel surveillance (S3) conducted in nine

select communities each year from 2012 to 2016 targeting populations over 15 years

of age. The total number of PTB cases reported by these three surveillance systems

represents an underestimation of the true number in Sichuan because these three

surveillance systems cannot enumerate all PTB cases. Potential factors associated

with underestimation including that S1 only captures PTB cases who had encounter

at health facilities covered by S1, and S2 and S3 (active systems) only capture cases at

sub-regions of Sichuan. One goal of the current analysis is to examine individual and

area-level covariates that may be associated with system-specific capture probability.

To estimate the total number of PTB cases in the study region, we assume the

population is closed during the study period. We obtained de-identified two two-

catch CRC datasets by performing record linkage between S1 and S2, and between

S1 and S3 uusing patient name, sex, date of birth, and residence address identifiers.

Briefly, S1 data from 2009 to 2010 were linked to S2 data, and S1 data from 2011

to 2016 were linked to S3 data. The aggregated ascertainment histories of the S1-S2

and S1-S3 linked data are summarized in Table 2.1. Figure 2.1 shows the community

sites where both S1 and S2, or S1 and S3, were linked. We note that S2 and S3 do

not temporally overlap during the study period. Our study included a total of 58

reporting sites with linked data: 24 sites that yielded S1-S2 linked data, and 34 sites

that yielded S1-S3 linked data.

Individual-level case characteristics (e.g., age, sex) were recorded for each indi-

vidual by all three systems. Population-level risk factors of PTB and geographical
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information collected at each surveillance site included annual gross domestic prod-

uct per capita (GDP) from 2009 to 2016; prefecture-level average area per capita in

2010, a measurement of crowding (average area); county-level proportions of elderly

(> 65 years old) in 2010 (percent of elderly); longitude; latitude; and elevation in

meter. Summary statistics of individual-level and county/prefecture-level variables

are presented in Table 2.2 and Table 2.3.

Table 2.1: PTB cases ascertainment by S1 and S2 in 2009-2010, and by S1 and S3 in
2011-2016, in the study region

2009 - 2010 2011 - 2016
Captured in S2 Captured in S3

Captured in S1 Yes No Yes No
Yes 84 37 85 155
No 117 ? 172 ?

Table 2.2: Summary statistics of individual-level variables for motivating PTB data

Covariates S1-S2 (Total = 238) S1-S3 (Total = 412) S1 (Total = 71844)
Age Group

< 40 18.49% 23.30% 42.07%
[40, 50) 18.49% 16.50% 18.37%
[50, 60) 17.23% 19.17% 16.66%
[60, 70) 29.41% 26.21% 14.12%
≥ 70 16.38% 14.80% 8.79 %

Gender
females 27.31% 30.83% 29.65%
males 72.69% 69.17% 70.35%

2.3 Methods

2.3.1 Model Specification

Consider a passive surveillance system that operates at S sites. Let Ns denote the

unobserved true number of incident cases at site s, and the total number of incident
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Figure 2.1: Counties within Sichuan Province where S1 and S2, or S1 and S3 surveil-
lance are active.

Table 2.3: Summary statistics of county/prefecture level covariates over all 181 coun-
ties for motivating PTB data

Covariates Mean (SD) Median [Min, Max]
Longitude 103.96 (1.93) 104.04 [98.20, 107.99]
Latitude 30.17 (1.52) 30.39 [26.45, 33.66]
GDP 19537.31 (12293.93) 15511 [4785, 66912]

Elevation 1433.75 (1304.15) 714.98 [298.09, 4499.40]
Average area 34.24 (7.38) 34.74 [15.27, 58.57]

Percent of elderly 10.12 (2.66) 10.66 [4.60, 16.39]
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cases in the study region is given by N =
∑S

s=1Ns. Among these S sites, a supple-

mentary active surveillance system only occurs at K sites with K < S. Without loss

of generality, we assume the first K sites have both passive and active surveillance

data. We refer to these first K sites as the linked sites, and the other S −K sites as

the unlinked sites. For i = 1, . . . , Ns, s = 1 . . . , S, let y1is denote the capture indicator

of i-th individual for the passive system. Similarly, for i = 1, . . . , Ns, s = 1 . . . , K, let

y2is denote the capture indicator for the active system.

We assume Ytis ∼ Bin(1, ptis) for t = 1, 2 with density function pytistis (1−ptis)(1−ytis),

and ptis is interpreted as the capture probability of system t for individual i at site

s. At the K linked sites, individual-level capture history is modeled using a binomial

mixture (BM) model (Dorazio and Andrew Royle, 2003; Royle, 2004; Tounkara and

Rivest, 2015). Assume Y1is and Y2is are independent given p1is and p2is, and because

individuals with capture history y1is = 0 and y2is = 0 are not observed, the data

likelihood of the capture history for individual i at the linked site s has a conditional

joint density (Finney, 1947) given by

P (Y1is = y1is, Y2is = y2is|y1is = 1 or y2is = 1) =
p
y1is
1is (1−p1is)(1−y1is)p

y2is
2is (1−p2is)(1−y2is)

1−(1−p1is)(1−p2is) .

To allow for individual heterogeneity in capture probabilities p1is and p2is, logit

models are used to incorporate individual-level covariates. In addition to linking ac-

tive surveillance data and passive surveillance data, we further model the unobserved

incident cases Ns as a Poisson process for all sites where any surveillance system

operates, s = 1, . . . , K,K + 1, . . . , S. Our final proposed model is given by following

hierarchical model that includes logistic regressions for individual-level capture indi-

cators and a spatial Poisson regression for site-specific incident cases:
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For linked sites, s = 1, . . . , K:

P (Y1is = y1is, Y2is = y2is|y1is = 1 or y2is = 1)

=
py1is1is (1− p1is)

(1−y1is)py2is2is (1− p2is)
(1−y2is)

1− (1− p1is)(1− p2is)
,

log

(
p1is(β1)

1− p1is(β1)

)
= xT1isβ1, log

(
p2is(β2)

1− p2is(β2)

)
= xT2isβ2, i = 1, . . . , ns,

ns =
Ns∑
i

I(y1is = 1 or y2is = 1),

(2.1)

For unlinked sites, s = K + 1, . . . , S:

ns =
Ns∑
i=1

I(y1is = 1), (2.2)

For all sites, s = 1, . . . , S:

Ns|λs(α, ϵs) ∼ Poisson(λs(α, ϵs)),

log(λs(α, ϵs)) = zTs α+ ϵs,

(2.3)

where ns is number of disease cases identified by surveillance systems at site s, x1is and

x2is denote vectors of individual and location-specific covariates, such as demographic

and residence information with corresponding system-specific coefficients β1 and β2,

I(·) denotes the indicator function, λs(α, ϵs) is the expected number of incident cases

at site s, zs is a vector of risk factors for the disease of interest with regression

coefficient α, and spatial random effects ϵs follow a mean-zero Gaussian process with

an exponential covariance function. Specifically, (ϵ1, . . . , ϵS)
T ∼ MVN(0,Σ), Σij =

σ2 exp(−Ds,s′

ϕ
) where Ds,s′ denotes the valid distance metric between site s and s′, and

σ2 and ϕ represent marginal variance and range parameter in exponential covariance

function respectively.
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2.3.2 A Two-Stage Bayesian Procedure for Inference

Our goal is to obtain estimates of total cases N and site-specific cases Ns in the

study region correcting for under-ascertainment of the surveillance system. The main

difficulty in estimation is that site-specific cases Ns do not appear in the individual-

level capture history likelihood. Hence, posterior samples of Ns cannot be directly

obtained from specifying a full conditional distribution that includes contributions

from both the BM model and the spatial Poisson model. We propose a Bayesian

two-stage estimation procedure using Markov Chain Monte Carlo (MCMC) algo-

rithm for the hierarchical model. In the first stage, model coefficients β1 and β2

are estimated with the CRC data at the K linked sites. Given estimates of capture

probabilities of observed individuals, posterior distributions of Ns are obtained using

the Horvitz-Thompson estimator. In the second stage, the estimated Ns and their

associated uncertainties are treated as the observed data likelihood for the spatial

Poisson regression. Furthermore, a simulation-based procedure based on posterior

predictive distributions of the capture history is developed to account for using the

Horvitz-Thompson (H-T) estimator in first-stage estimation. Details of the proposed

two-stage estimation procedure are presented in subsequent sections.

2.3.3 First-Stage Estimation

First-stage estimation is based on the BM model with CRC data formed by augment-

ing the passive system with the active system at K linked sites. The likelihood of β1

and β2 can be written as

L
(
β1,β2; {y1,s,y2,s}Ks=1

)
=

K∏
s=1

ns∏
i=1

py1is1is (1− p1is)
(1−y1is)py2is2is (1− p2is)

(1−y2is)

1− (1− p1is)(1− p2is)
, (2.4)

where yt,s = {ytis, i = 1 . . . , ns} for t = 1, 2 denotes individual capture history at

site s. The posterior distributions of β1 and β2 are sampled by Metropolis-Hastings
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(M-H) algorithms. With posterior samples of model coefficients, the posterior dis-

tributions of individual-specific capture probabilities can be obtained by applying

inverse logit transformation to linear combinations of posterior samples of model

coefficients. Specifically, for the active system, the posterior distribution of p2is is

given by logit−1(xT2isβ2), i = 1, . . . , ns, s = 1, . . . , K. For the passive system, capture

probabilities can be obtained for both linked and unlinked sites. In other words,

p1is is computed for each individual who has been identified by the passive system,

i = 1, . . . , ns, s = 1, . . . , S.

The Horvitz-Thompson estimator of Ns is given by

N∗
s =

∑ns
i=1 1/qis, qis :=

 1− (1− p1is)(1− p2is) for s = 1, . . . , K

p1is for s = K + 1, . . . , S.

(2.5)

Simply applying posterior samples of p1is and p2is to the Equation (2.5) will provide

conditional posterior samples of N∗
s assuming known individual capture history, p1is,

and p2is. We denote the desired first-stage marginal posterior distribution as [N∗
s |hs],

where hs = {y1,s,y2,s} for linked sites and hs = y1,s for unlinked sites. To appropri-

ately propagate statistical uncertainties in estimating coefficients in the BM model

to the H-T estimator (i.e., generate samples from [N∗
s |hs]), we draw a random sam-

ple from the limiting distribution of the H-T estimator N( 1
qis
, 1−qis

q2is
) for each posterior

sample of qis (Huggins, 1989). This additional sampling step approximates the uncer-

tainty in N∗
s with known capture probabilities. As a result of this simulation-based

procedure, we obtain posterior samples which appropriately quantify uncertainties

associated with using the H-T estimator. Finally, a point estimate of Ns denoted

as N̂s is obtained by computing the posterior mean; 95% credible intervals are ob-

tained by taking the 2.5% and 97.5% percentile of the resulting posterior samples.

The posterior samples of N are obtained by summing up posterior samples of Ns. In

summary, first-stage estimation yields preliminary estimates of total and site-specific
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incident cases solely based on CRC data at linked sites.

2.3.4 Second-Stage Estimation

Let N̂ = (N̂1, . . . , N̂S)
T denote the vector of preliminary estimates of site-specific

incident cases obtained from first-stage estimation and N = (N1, . . . , NS)
T denote

the vector of true site-specific incident cases. To connect results from first-stage

estimation to the Poisson log-linear model, we first note that the target joint posterior

distribution of Θ = {N ,α, σ2, ϕ} is

[Θ|N̂ ] ∝
∫

[N̂ |N , {hs}Ss=1]× [N |λ]× [λ|α, σ2, ϕ]× [α]× [σ2]× [ϕ]dh1 . . . dhS, (2.6)

where λ = (λ1, . . . , λS)
T . To obtain posterior samples of Θ with M-H algorithms

based on the Equation (2.6) using results obtained from first-stage estimation, we

apply two approximations. Firstly, to approximate [N̂ |N , {hs}Ss=1], we use a multi-

variate normal distribution with mean N and variance-covariance matrix computed

as the empirical variance of N̂ from first-stage posterior samples. The second approx-

imation replaces the outer integration of capture history via an additional sampling

step.

We begin by generating posterior samples of Θ using Equation (2.6) while ignor-

ing the outer integration (i.e., assuming capture history hs is known from observed

CRC data). We refer to these posterior samples as naive posterior samples, which

will underestimate uncertainties associated with posterior distribution of N because

uncertainties of capture histories have not been incorporated. To approximate the

outer integration of Equation (2.6), N̂s and estimated coefficients of BM models are

used to impute multiple datasets of individual-level capture history. In other words,

we repeatedly draw observations {y1is, y2is} from their posterior predictive distribu-

tions. Each imputed dataset is analyzed separately using the two-stage estimation
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procedure to generate naive posterior samples of N . Finally, naive posterior samples

of all model parameters are pooled across imputed datasets to approximate samples

generated from the desired distribution presented in Equation (2.6). Full details of

generating imputed dataset are given in Appendix A.1.

2.3.5 Prior Distributions

We assign weakly informative priors for model parameters. The prior distribution for

each element in model parameter vectors β1, βs and α are normal distributions. For

spatial random effect σ2 and range parameter ϕ, the prior distributions are Inverse-

Gamma and Gamma distributions respectively. All distribution parameters are spec-

ified at values that represent weakly informative priors.

2.4 Simulation Studies

We conducted simulation studies to evaluate the performance of the proposed mod-

eling framework in estimating the number of incident cases. We focused on bias, root

mean square error (RMSE) and 95% credible interval coverage for the total incident

cases N . A variety of statistical models have been developed for analyzing CRC

data. However, none of them are directly comparable to our proposed model, which

allows for individual-level covariates in capture probabilities and borrows information

across surveillance sites within a unified framework. Hence, our simulation studies

aim to illustrate potential advantages of the proposed model to the most competitive

method for individual-level CRC data, i.e., the BM model. Implementation of the

BM model can be viewed as the first-stage estimation of our model. We note that

the BM model does not borrow information across sites, nor does it utilize site-level

covariates for case rate because the likelihood does not involve the unobserved true

number of cases. We also examined the impacts of ignoring the spatial dependency
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by specifying exchangeable location-specific random effects (i.e., non-spatial model)

and including multiple active systems.

2.4.1 Simulation Design

We generated site-specific incident cases Ns from a spatial Poisson process with log

mean α and an exponential covariance function for 50 sites. For each simulated

individual, capture history was generated from a Binomial distribution with capture

probabilities determined by logit models for the passive and active systems. The logit

models contained individual-level continuous covariates X1 ∼ Uniform(−1, 1) and

X2 ∼ Uniform(−2, 2) respectively with both regression coefficients set to 1. Since the

logit models include two different covariates, two systems work independently at the

population level. Finally, the CRC data were obtained at 10 randomly sampled sites

by keeping individuals who were captured by at least one system. For the other 40

unlinked sites, only the capture history provided by the passive system was recorded.

We examined the following simulation scenarios: (1) high versus low mean capture

probabilities of the two systems by varying intercepts of the logit models (β10 and

β20), (2) strong versus weak spatial dependence in log case rate via parameter ϕ, (3)

high versus low case rate controlled by log mean α. Smaller values for β10, β20, α

and ϕ correspond to smaller mean capture probabilities for both systems, smaller

overall case rate, and weaker spatial correlation between site-specific incident cases.

A total of eight simulation scenarios were designed and 100 datasets were generated

for each scenario. To mimic the real-world situation, N and Ns were fixed for each

scenario, but individual-level capture history changed across replications. Details of

data generation procedure for the simulation studies can be found in Appendix A.2.1.
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2.4.2 Comparison with One-Stage BM Model

The estimated mean bias, RMSE and coverage of 95% credible intervals of N for dif-

ferent simulation scenarios from the BMmodel, the proposed model, and the proposed

model using exchangeable random effects in the second-stage estimation are summa-

rized in Table 2.4. In all scenarios, our proposed model outperforms the BM model

in terms of mean bias and RMSE when the spatial dependency is either incorporated

or not. For the BM model, a positive bias is observed across all scenarios, especially

when capture probabilities are small. This is likely because the Horvitz-Thompson

estimator may result in estimates which are biased upward when estimated capture

probabilities are supplied, the positive bias may be more evident when number of cap-

tured cases is small (i.e., capture probabilities are small) (McDonald and Amstrup,

2001; Tounkara and Rivest, 2015). The bias reduction associated with the proposed

model is most remarkable when capture probabilities are small for both systems. For

example, the mean bias decreased from 139 to 11 under Scenario 1 when average cap-

ture probabilities for both systems are around 27%. Although our proposed model

has larger mean bias in Scenario 6, the difference is negligible compared to the true

N . This could be due to the large number of observed cases to sufficiently estimate

Ns based on the BM model.

The relative RMSE using BM model as reference indicates that our proposed

model with or without correct specification of the spatial dependency reduced RMSE

under all scenarios, particularly when spatial correlation is strong. Under most of

scenarios, the proposed model correctly incorporating spatial dependency has better

performance in terms of RMSE compared to the proposed model using exchangeable

random effects.

In terms of the coverage, the 95% credible intervals constructed by all models

achieved or were close to the nominal level under most of scenarios. These results

support the validity of the proposed two-stage estimation procedure in conducting
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inference of N . Without implementing the simulation-based procedure used for ap-

proximating the integral in Equation (2.6), the 95% CI resulted in under-coverage as

suggested by the simulation results presented in Table 2.5.

2.4.3 Positive Dependence between Systems

The simulations above assumed the two surveillance systems have independent cap-

ture probabilities at the population level. We also examined the performance of

the proposed model when two surveillance systems are positively correlated at the

population level. The positive dependency between two systems are introduced by

including a common covariate to the two logit capture probability models; details

about this simulation study can be found in Appendix A.2.2. The mean bias and

RMSE summarized from this simulation study suggest that the proposed model still

outperforms the BM model under all simulation scenarios as shown in Table 2.6.

2.4.4 Benefits of Multiple Active Systems

Our motivating application involves three surveillance systems, where a passive sys-

tem is linked to two active systems, resulting in two independent CRC datasets. To

illustrate the benefits of additional linkage between passive and active surveillance

systems, we extended our simulation study to the scenario where two active systems

that do not have overlap are available. The data generation procedure is similar to

the procedure outlined for the previous simulation study with following differences:

(1) two sets of linked sites without spatial overlap were simulated; (2) a total of three

logit models including an intercept and a common covariate were specified for each

system, separately. The simulated data resulted in 100 cases on average at each site,

and averaged capture probability of systems 1 (passive), 2 (active), and 3 (active) are

0.27, 0.35, and 0.33, respectively. We simulated a total of 100 sites, 10 sites were ran-

domly selected as sites where S1 and S2 are linked, and 20 other sites were randomly
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selected as sites where S1 and S3 are linked. Details about modifying the proposed

model to analyze such data and the full parameters set-up can be found in Appendix

A.3 and A.2.3.

Table 2.7 presents the averaged estimates, averaged posterior standard deviation,

and RMSE of regression coefficients of the BM model from using two datasets and

one of them. With both active systems being linked to the passive system, coefficients

associated with those three systems can be estimated simultaneously. As we expect,

estimates of coefficients are empirically unbiased regardless of the degree of the sys-

tem linkage. However, RMSE was reduced when two active systems were analyzed

together compared to analyzing datasets separately (S1-S2 and S1-S3), particularly

for coefficients related to capture probabilities of S1, the system is linked to both ac-

tive systems. For example, comparing analysis using only S1-S2 linked data to using

all data, the RMSE reduced from 0.32 to 0.19 for the intercept. This can be explained

by the fact that both S2 and S3 contribute to the data likelihood used for estimating

coefficients associated with S1. We also observed that RMSE of coefficients associ-

ated with systems 2 and 3 decreased when two datasets were used simultaneously.

This reduction is likely because the precision of estimated coefficients associated with

S1 improved, resulting in more accurate estimation of capture probability associated

with the two other active systems. Finally, as a result of improved estimation for

coefficients of the BM model, the estimation of total number of cases also improved

in the second-stage estimation when additional active systems are available (Table

2.8).
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Table 2.5: Mean bias, RMSE, coverage of 95% credible intervals of N estimated
from the proposed model without implementing the simulation-based procedure used
for approximating the integral in Equation (2.6) over 100 simulated data when two
systems are independent at the population level

Scenario Mean bias Coverage RMSE
1 32 0.65 341
2 -19 0.88 225
3 74 0.68 314
4 25 0.87 176
5 24 0.75 502
6 -49 0.80 315
7 7 0.73 433
8 2 0.80 306
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2.5 Application

The proposed framework was applied to bias-correct reported PTB cases from the

widely-distributed passive system (S1) in Sichuan in 2010. We modified the model to

allow for two independent CRC datasets, i.e., the S1-S2 and S1-S3 linked datasets. In

addition to estimating PTB cases, operating characteristics of the three surveillance

systems and risk factors of PTB were also explored using the proposed model. The

final logit models and spatial Poisson log-linear model including at-risk populations

as an offset were selected by retaining covariates with 95% CI excluding 0. In this

data analysis, age group with age < 40 and female were used as reference group; all

continuous risk factors of PTB and geographical information (longitude, latitude and

elevation) were centered at their means computed across all sites.

Goodness of fit of the model was assessed by comparing several quantities sum-

marizing observed data to their corresponding posterior predictive distributions. We

used the following quantities to summarize observed PTB data collected in Sichuan.

For the S1-S2 linked data, we compute the number of PTB cases captured by S1 and

S2 alone at linked sites, denoted as nS1 , nS2 , respectively. Similarly, we compute the

number of PTB cases captured by S1 and S3 alone and denoted as n∗
S1
, nS3 . From

Table 2.1, we have nS1 = 121, nS2 = 201, n∗
S1

= 240, and nS3 = 257. We also

computed the number of PTB cases captured by S1 alone for each of 181 counties.

The posterior predictive distributions of those quantities were obtained by simulation.

Specifically, we drew observed outcomes (e.g., capture indicators of S1 at S1-S2 linked

sites) from its predictive distribution and then computed posterior median and 95%

posterior intervals. 10,000 samples were generated and details of simulating from the

corresponding posterior predictive distributions are provided in Appendix A.4.

Figure 2.2 displays observed and posterior predictive distributions for summary

statistics of observed linked and unlinked data to assess model fit. We observed that

posterior predictive distributions are centered around observed values, which suggest
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Figure 2.2: Observed and posterior predictive distributions for quantities summariz-
ing observed data.

that the final model fitted PTB data well.

The estimated odds ratios for system-specific capture probability are presented in

Table 2.9. Capture probability of S1 increased with latitude, decreased over time and

was higher for male cases. Unlike S1, the capture probabilities of the cross-sectional

active system (S2) tended to have higher capture of cases in older age groups. Similar

age effects were also observed in the sentinel system (S3). Additionally, S3 capture

probability was strongly impacted by elevation. We also found that S3 had higher

capture probability among patients who resided at locations with high GDP. The

overall capture probabilities for each system were estimated to be 0.36 (95% CI: 0.32,

0.41) for S1, 0.73 (95% CI: 0.66, 0.79) for S2 and 0.37 (95% CI: 0.31, 0.43) for S3

respectively.

Table 2.10 presents the associations between several risk factors and PTB preva-

lence from the Poisson log-linear model. The effect of elevation on PTB prevalence

(1.48 95%CI: 1.17, 1.85) indicates that areas with higher elevation tend to have higher

PTB prevalence. Higher elevation areas in the study region are generally rural (most

major urban areas reside in the low elevation plains) and exhibit lower socioeconomic
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Table 2.9: Results from the first-stage estimation applied to analyzing individual
capture probabilities of PTB data

Systems Covariates
Estimated ORs
(posterior SD)

95% Credible Intervals

S1 Baseline 0.76 (0.16) (0.50, 1.12)
Longitude 1.18 (0.11) (0.98, 1.41)
Latitude 0.80 (0.06) (0.68, 0.92)
Year 0.84 (0.04) (0.77, 0.92)

Gender
male versus female 1.37 (0.25) (0.95, 1.92)

S2 Baseline 0.82 (0.30) (0.41, 1.55)
Age (years)

[40, 50) versus < 40 3.14 (1.78) (0.99, 7.65)
[50, 60) versus < 40 5.65 (3.98) (1.53, 15.99)
[60, 70) versus < 40 10.03 (7.17) (2.67, 28.17)
≥ 70 versus < 40 10.89 (13.18) (2.06, 36.65)

S3 Baseline 0.45 (0.13) (0.26, 0.75)
GDP 1.33 (0.18) (1.02, 1.73)

Elevation 10.41 (6.83) (2.84, 27.92)
Age (years)

[40, 50) versus < 40 1.77 (0.59) (0.88, 3.17)
[50, 60) versus < 40 2.35 (0.77) (1.19, 4.24)
[60, 70) versus < 40 2.75 (0.84) (1.46, 4.75)
≥ 70 versus < 40 5.89 (2.52) (2.50, 12.04)
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status and poorer quality housing (Liu et al., 2005; Wanyeki et al., 2006). Propor-

tion elderly and average area per capita (a measure of crowding) were found to be

significantly associated with PTB prevalence; and in fact they are known risk factors

of PTB (Wanyeki et al., 2006; Lönnroth et al., 2009; Li et al., 2019).

From our hierarchical model, the total number of PTB cases in Sichuan in 2010

is estimated to be 170,579 (95% CI: 138,180, 209,971), which is more than twice the

number of cases observed in S1 alone. Figure 2.3 displays the maps of observed versus

adjusted incident PTB cases from the passive system (S1) and the corresponding

prevalence (per 1000 population). There is high spatial heterogeneity in PTB cases

across the study region, and S1 suffers from substantial under-ascertainment. The

prevalence estimates in Figure 2.3 help identify areas with high PTB prevalence that

may be neglected if only unadjusted S1 data are considered. To better visualize

differences spatially, Figure A.1 and Figure A.2 present the estimated bias for the

number of PTB cases and PTB prevalence associated with S1.

Table 2.10: Results from the second-stage estimation applied to analyzing PTB preva-
lence of PTB data

Covariates Estimated RRs (posterior SD) Posterior 95% CIs
Elevation 1.48 (0.17) (1.17, 1.85)

Average area 0.94 (0.02) (0.89, 0.99)
Percent of elderly 1.16 (0.05) (1.06, 1.27)

σ2 0.32 (0.08) (0.21, 0.52)
ϕ 55.75 (15.49) (32.88, 92.40)



34

Figure 2.3: A map of observed/adjusted number of PTB cases, and observed/adjusted
PTB prevalence per 1000 population in Sichuan in 2010 with county borders.

2.6 Discussion

In this chapter, we propose a statistical framework that integrates a BM model with a

spatial Poisson model to address under-ascertainment of a passive surveillance system

when active surveillance systems data are also available to construct a CRC dataset

in sub-regions. To our best knowledge, this is the first time the commonly used BM
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model for individual-level CRC data and Poisson model for aggregate-level incident

cases are employed jointly. Doing so allows us to incorporate individual-level covari-

ates for capture probabilities, covariates for disease rates, and spatial dependence.

A two-stage Bayesian estimation procedure is developed for conducting inference of

the incident cases, while addressing missing covariate information for individuals not

captured by any system. Compared to the methods which solely rely on CRC data,

the additional latent process on Ns allows us to utilize data from locations without

active surveillance.

Applying the proposed model to the study of PTB in the study region, we iden-

tified factors that affect the capture probabilities of three surveillance systems that

monitors PTB, risk factors and spatial pattern of PTB cases. Passive surveillance

(S1) exhibited the lowest average capture probability and was impacted by geographic

location, time period and case sex. When appropriate, estimates of parameters that

govern S1 capture probabilities can be used to bias-correct S1 PTB cases at locations

and years without active surveillance. Surprisingly, on average, the capture prob-

ability of sentinel surveillance (S3) was low (0.37) and was impacted by economic

conditions, geographic location and age. This low capture probability may indicate

that this active surveillance effort was not well implemented. The factors identified

as influencing capture probabilities may be considered as strategies are sought to

strengthen public health surveillance in the study region.

Our proposed model can be viewed as a general hierarchical framework for cor-

recting raw cases reported by passive surveillance systems when other samples of the

epidemiological process of interest are available. Specifically, the first-stage model

does not have to be restricted to the BM model presented in Section 2.3. Any model

that provides site-specific estimation of incident cases based on CRC data, such as

models that belong to the classes of mixture models, can be utilized. Our model can

also be easily extended to dealing with the situation in which the targeted passive
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system can be augmented with multiple active surveillance systems, since the BM

model used in the first-stage estimation is able to accommodate CRC data formed by

multiple surveillance efforts (Tounkara and Rivest, 2015). In light of this generality,

one important future extension of the proposed model is to include consideration of

unmeasured heterogeneity in capture probability. For example, to account for both

measured and unmeasured heterogeneity, the logit-normal model proposed by Coull

and Agresti (1999) is an appropriate model considered in the first-stage estimation.

The Horvitz-Thompson estimator may result in unrealistically large estimation

of site-specific incident cases when estimated individual-specific capture probabilities

are close to zero. This is because individuals who have very low probabilities of being

captured will contribute greatly to the estimation of N . These unrealistically large

estimates may affect our second-stage estimation. This warrants a further direction to

develop or incorporate an improved estimator that is robust to extremely small cap-

ture probabilities as a substitute for the Horvitz-Thompson estimator. For example,

one convention adopted in estimating average treatment effect with inverse probabil-

ity weighting, is to restrict propensity scores within the range [0.1, 0.9] (Crump et al.,

2009).
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Chapter 3

Sensitivity and Uncertainty

Analysis for Two-Stream CRC

Methods
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3.1 Background

It is important to note that essentially all CRC methods rely upon untestable assump-

tions to enable estimation of the total number of diseased cases N . Here, untestable

implies that observed data contain no information about justifying imposed assump-

tions. For example, the classical independence assumption discussed in Section 1.2

cannot be justified solely based on the observed data. This point has been widely

discussed in the literature. For instance, under two-catch CRC, Darroch et al. (1993)

observed that the cross-product ratio measuring the dependency between two surveil-

lance efforts cannot be estimated directly based on the observed data alone, and that

assumptions must be made in order to identify an estimate of this ratio to permit esti-

mation of N . Additionally, Coull and Agresti (1999) and Dorazio and Andrew Royle

(2003) suggested that regularly used model selection metrics such as Akaike’s infor-

mation criterion (AIC; Akaike (1974)) are not adequate tools for defending untestable

model-based assumptions to which estimators of N can be extremely sensitive. This

sensitivity has been demonstrated in empirical and applied settings, such as a study

to quantify workplace injuries and illnesses via CRC which showed that the estimate

is sensitive to assumptions about both dependence of surveillance efforts and the

heterogeneity in individual capture probabilities (Boden, 2014). A recent effort to

estimate the number of healthcare workers who have died fighting COVID-19 based

on two overlapping surveillance efforts similarly illustrated that the estimated number

of diseased cases are sensitive to the specification of the coefficient of interaction term

in the adapted log-linear model (Zhang and Small, 2020). The exponentiation of this

coefficient is equivalent to the cross-product ratio discussed in Darroch et al. (1993).

In epidemiologic research, it is now commonplace to study the effect of untestable

assumptions through sensitivity analysis, such as assessing the effect of misclassifi-

cation and unmeasured confounders (Fox et al., 2005; Groenwold et al., 2010; Lyles

and Lin, 2010). In CRC settings, a few authors have considered sensitivity analysis
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to evaluate the effect of untestable assumptions on estimation of N (Boden, 2014;

Gerritse et al., 2015; Zhang and Small, 2020). Specifically, the study conducted in

Boden (2014) to quantify workplace injuries and illnesses via CRC has showed that

the estimate is sensitive to assumptions about both dependence of surveillance ef-

forts and the heterogeneity in individual capture probabilities. Recently, Zhang and

Small (2020) illustrated that the estimated number of healthcare workers who have

died fighting COVID-19 obtained from the adapted log-linear model is sensitive to

the specification of the coefficient of interaction term in the model when analyzing a

two-catch CRC data.

In this chapter, we focus on CRC experiments with two streams. We develop a

sensitivity analysis providing a novel visualization based on a key inestimable param-

eter reflecting the assumed level of association between the two data streams under a

population-level multinomial model (Darroch, 1958; Seber et al., 1982). In addition

to exploring the sensitivity of the N estimation with respect to the key inestimable

parameter, we further propose a simulation-based uncertainty analysis for quantifying

uncertainty in the estimate of N associated with the variation in the key inestimable

parameter, together with statistical uncertainties. Relevant prior work in the case of

measurement error modeling suggests that incorporating variation in a sensitivity pa-

rameter by introducing a subjective prior can be preferable to assuming a fixed value

for the sensitivity parameter, in terms of inferential properties such as the tradeoff of

interval coverage and width (Gustafson, 2005).

The proposed uncertainty analysis can be conceptualized as a model averaging

approach based on a simulation-based procedure by viewing the estimate of N with

a given value of the key parameter as one fitted model. While model averaging

approaches have been proposed in CRC contexts in a frequentist framework where

model selection metrics are used for estimating weights for each model (Stanley and

Burnham, 1998; Cameron et al., 2012), the uncertainty analysis advocated here does
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not rely on model selection metrics (which are insufficient for defending CRC model-

based assumptions (Coull and Agresti, 1999; Darroch et al., 1993)) and is similar in

spirit to complex fully Bayesian analyses (Chatterjee and Mukherjee, 2016; Lee et al.,

2003). Here, we target those epidemiologists practicing surveillance by crystallizing

specification of assumptions about the key parameter, offering a clear and accessi-

ble approach to both sensitivity and uncertainty analyses, and demonstrating that

covariates explaining heterogeneity in the population can be incorporated by strat-

ifying. We generalize the classical recommendations for incorporating covariates by

stratification (Sekar and Deming, 1949) or through regression models with categorical

covariates (Huggins, 1989), in which independence of the capture efforts is assumed

within each stratum. Instead, the proposed framework allows the epidemiologist

to contemplate and implement stratum-specific assumptions about the dependency

between data streams. Finally, we demonstrate that special cases of the proposed

uncertainty analysis can serve as a general CRC interval estimation approach.

3.2 Methods

3.2.1 Maximum Likelihood Estimators

We follow the same notations and adapt the population-level multinomial model de-

scribed in Section 1.2.2 for deriving MLEs of N under the two-catch case. Typ-

ical population-level two-catch CRC data are summarized in Table 1.2. Due to

the unobserved cell count n00, the population-level multinomial model is not di-

rectly applicable in practice. The conditional model (N11, N10, N01|Nc = nc) ∼

Multinomial(nc, p
∗
11, p

∗
10, p

∗
01, p

∗
00) is considered, where nc is the number of cases caught

at least once, p∗ij is defined as pij/pc and pc = p11+p10+p01 is the probability of being

caught at least once. To allow for modeling the dependency between two streams,

we introduce the parameters (p1, p2|1, p2|1̄), where p1 is the marginal probability of
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identification in stream 1, and p2|1 and p2|1̄ are the probability of a case is identi-

fied by stream 2 given identified or not identified by stream 1, respectively. Among

these three parameters, only p2|1 can be estimated from the observed data. The other

two parameters are inestimable, since the cell count n00 is not observed. As a result

of this non-identifiability, the familiar CRC modeling challenge is that at least one

unverifiable assumption is required for estimating N .

Consider a situation where a researcher assumes a specific value for the inestimable

parameter ψ = p2|1̄. Given a valid ψ (i.e., 0 < ψ ≤ 1), the maximum likelihood

estimator (MLE) of N and its variance estimator are given by (Chen, 2020; Lyles

et al., 2021a):

N̂ψ = n11 + n10 +
n01

ψ
, (3.1)

ˆV ar(N̂ψ) =
(1− ψ)

ψ2
n01. (3.2)

Alternatively, the unverifiable assumption can be imposed less directly via a ratio

ϕ =
p2|1
p2|1̄

. This ratio is a population-level measurement of the dependency between

the two streams. The commonly assumed Lincoln-Petersen (LP) condition (i.e., in-

dependence assumption) corresponds to ϕ = 1, whereas ϕ > 1 suggests an overall

positive association between the two streams (cases that are identified by stream 1

tend to be more likely to also be identified by stream 2), and < 1 indicates negative

association. In the CRC literature, the case of ϕ > 1 is usually referred to as ”trap

happiness”, while ϕ < 1 is known as ”trap aversion” (Seber et al., 1982). With a

known population-level ratio ϕ, the MLE of N and its variance estimator become

(Chen, 2020; Lyles et al., 2021a):

N̂ϕ = n11 + n10 +
n01(n11 + n10)

n11

ϕ, (3.3)

ˆV ar(N̂ϕ) = w1(w1 − 1)n11 + w2(w2 − 1)n10 + w3(w3 − 1)n01, (3.4)
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where w1 = 1− n01n10

n2
11

ϕ, w2 = 1 + n01

n11
ϕ, and w3 = (1 + n10

n11
)ϕ. Here, Equation (3.4) is

simpler and more generalizable expression of a result given in Chen (2020).

The odds ratio θ = p10p01
p11p00

is another population-level measure of dependency that

has been a focal point in previous literature (Darroch et al., 1993; Boden, 2014;

Wolter, 1990). The parameters ϕ and θ are largely interchangeable in that the value

1 is a benchmark for both, if θ indicates the two streams are positively correlated, so

does ϕ. The MLE of N based on known θ and its variance estimator are:

N̂θ = n11 + n10 +
n10n01

n11

θ, (3.5)

ˆV ar(N̂θ) = w1(w1 − 1)n11 + w2(w2 − 1)n10 + w3(w3 − 1)n01, (3.6)

where w1 = 1− n01n10

n2
11

θ, w2 = 1+ n01

n11
θ, and w3 = 1+ n10

n11
θ. The detailed derivations for

variance estimators of MLEs in Equations (3.1), (3.3), and (3.5) appear in Appendix

B.3.

It is important to emphasize that assumptions are imposed at the population

level. For example, the assumption ϕ = 1 or θ = 1 technically allows for a mixture of

individuals characterized by trap-happiness and trap-aversion, if this mixture happens

to result in ϕ = 1 or θ = 1 at the population level (Lyles et al., 2021a). Similarly,

a constant value assumed for ψ does not necessarily imply that this value is the

same for each individual. The parameters ψ and ϕ depend on the labeling of the

data streams. Specifically, p2|1/p2|1̄ is not necessarily equal to p1|2/p1|2̄ and p2|1̄ is

generally different from p1|2̄. When basing sensitivity analysis on ϕ or ψ, we suggest

starting with selecting the most comfortable labeling, meaning that researchers are

more confident in making assumptions about the key parameter under that selected

labeling. In contrast, the parameter θ is invariant to different labeling.

The MLE in Equation (3.1) is strictly unbiased, while the MLEs in Equations

(3.3) and (3.5) are biased. Their bias is asymptotically negligible, since those MLEs

are consistent estimators (Sanathanan, 1972). To reduce mean bias associated with
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N̂ϕ under small to moderate sample size conditions, we generalize a Taylor-series

expansion approach taken by Lyles et al. (2021a) to allow the incorporation of any

value of ϕ and derive two bias-corrected estimators referred to as the BC and BC2

estimators. These two bias-corrected estimators and their variance estimators are:

N̂BC
ϕ = N̂ϕ −

n10n01

n2
11

ϕ, (3.7)

ˆV ar
(
N̂BC
ϕ

)
= w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01,

(3.8)

where C = n10p̂01
n2
11
ϕ, w1 = 1− n10n01

n2
11

ϕ, w2 = 1 + n01

n11ϕ
, and w3 = ϕ+ n10

n11
ϕ− n10

n2
11
ϕ, and

N̂BC2
ϕ = N̂ϕ −

n10n01

(n11 + 0.5)2
ϕ, (3.9)

ˆV ar(N̂BC2
ϕ ) = w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01,

(3.10)

where C = 2n11n01p̂01
(n11+0.5)3

− n10p̂01
(n11+0.5)2

ϕ, w1 = 1 − n10n01

n2
11

ϕ + 2n11n01

(n11+0.5)2
, w2 = 1 + n01

n11
ϕ −

n01

(n11+0.5)2
ϕ, and w3 = ϕ + n10

n11
ϕ − n10

(n11+0.5)2
ϕ. These same bias correction procedures

can be applied to N̂θ.

Under the Lincoln-Petersen conditions, we found the BC2 estimator to be nearly

identical to the bias-corrected estimator of Chapman (Chapman, 1951; Lyles et al.,

2021a). Thus, one can also consider a simple direct generalization, by introducing the

parameter ϕ into the original form of the Chapman estimator to obtain another bias-

corrected estimator; we refer to this estimator as a generalized Chapman estimator.
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With given ϕ, the generalized estimator and its variance estimator are given by

N̂∗
Chap =

(n11 + n10 + 1)(n11 + n01ϕ+ 1)

(n11 + 1
− 1, (3.11)

ˆV ar(N̂∗
Chap) = w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01,

(3.12)

where C = n10p̂01
(n11+1)2

ϕ, w1 = 1 − n10n01

(n11+1)2
ϕ, w2 = 1 + n01

(n11+1)
ϕ, and w3 = ϕ + n10

(n11+1)
ϕ.

We provide derivations and algebraic forms for all these bias-corrected estimators and

their variances in Appendix B.2 - B.3.

3.2.2 Sensitivity Analysis

Unverifiable assumptions about the population-level dependency can be couched in

terms of different lynchpin parameters, which can be the basis for sensitivity analysis.

For example, prior studies (Gerritse et al., 2015; Zhang and Small, 2020) chose the

coefficient of the two-way interaction term in a log-linear model fitted to two-stream

CRC data as the key parameter. Although this parameter is interpretable and the

log-linear model is closely related to the multinomial model adopted here (Cormack,

1989; Lum and Ball, 2015; Sandland and Cormack, 1984), propagating the uncertainty

of the interaction term could be difficult given that the profile likelihood approach is

a highly recommended basis for obtaining log-linear model-based interval estimates

(Sanathanan, 1972). In contrast, closed-form MLEs of N hinging on the parameters

ψ, ϕ and θ can greatly facilitate the propagation of uncertainty in the approach

proposed herein. Given that ψ and ϕ are more easily generalizable to incorporate

multiple streams, here we focus on those two parameters. We illustrate this approach

with publicly available HIV surveillance data, noting that a similar sensitivity analysis

could also be applied using θ as the key parameter. Motivating data were collected

from four data streams in Lazio, Italy, during 1990. For the purpose of illustration,
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we selected one pair of these data streams (centers I and II); the data are presented

in Table 3.1.

Table 3.1: Cell counts for two-stream CRC HIV data analyzed in Abeni et al. (1994)

Captured in stream 2
Captured in stream 1 Yes No

Yes 14 222
No 679 ?

Figure 3.1 shows how the MLE of N varies with the assumed values of ψ and

ϕ, with point-wise Wald-type 95% confidence intervals (CIs) assuming known ψ or

ϕ. Although the range of variation in ψ and ϕ cannot be compared directly, we

note that the estimated N ranges from the 7,000 to 30,000 for the ψ within the

range (0.02, 0.1), and varying ϕ from 0.75 to 3 corresponds to the estimated N

varying from 8,820 to 34,574. The Lincoln–Petersen estimator and the estimator

proposed by Chao (1987) are labeled. While the Lincoln–Petersen estimator assumes

ϕ = 1, the Chao estimator assumes a level of positive dependency estimated based

on a model developed assuming conditions that would typically be unrealistic in

two-stream epidemiologic surveillance (Lyles et al., 2021a). The Lincoln–Petersen

estimator yields an estimate of 11,682 (95% CI: 5,807, 17,557); the corresponding

estimated ψ is 0.059. The Chao estimator yields an estimate of 29,908 (95% CI:

14,252, 45,564), with corresponding estimated ψ and ϕ taking the values of 0.023 and

2.59, respectively. The huge difference between these two estimates of N stems from

the vastly different projected values of ϕ.

The blue line with smaller slope in Figure 3.1(B) shows the sensitivity plot that

would have resulted if 50 patients in the n01 cell had instead appeared in the n11 cell,

with n10 remaining the same (n11 = 64, n10 = 222, n01 = 679). It is clear that based on

this altered data, the estimation ofN is far less sensitive to the assumption imposed on

ϕ over the range depicted. This finding is consistent with prior observations (Gerritse

et al., 2015) that estimation is less sensitive when the implied coverage (measured by
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n11

n11+n01
) of the two streams is high.

Figure 3.1: Sensitivity plots based on data from Table 3.1. The black error bars
represent point-wise Wald-type 95% CIs assuming known ψ and ϕ. Red solid points
and error bars mark the Lincoln–Petersen estimator and the estimator of Chao (1987)
along with their 95% CIs; note that in Figure 3.1(B), ϕ = 1 corresponds to the
Lincoln–Petersen estimator. The blue line denotes the sensitivity plot based on the
data where 50 patients in the n01 cell has moved to the n11 cell while the n10 cell
remains the same. MLE=maximum likelihood estimator.

We emphasize that all MLEs on the sensitivity plots (Figure 3.1) yield the exact

same maximized value of the multinomial likelihood (Lyles et al., 2021a), implying

that the observed data provide no information about the dependence assumption. In

fact, ϕ = 1 is the only specific assumed value that could be potentially defended in

practice, for example, if one data stream is implemented as post-enumeration random

sample or otherwise as a random sample taken agnostically with respect to the other

(Chao et al., 2008; Lyles et al., 2021a,b). Data-driven assumptions about ψ or ϕ

obtained through metrics such as the Chao (1987) estimator or a log-linear model as

applied to two streams are seldom clear to practitioners, and can also never be verified

based only on the observed data (Lyles et al., 2021a). For this reason, the readily

accessible sensitivity analysis embodied in Figure 3.1 provides a tool for researchers

to visualize how the estimates of N respond to different unverifiable assumptions
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about these key parameters. This further motivates us to propose an extension of

the sensitivity analysis geared toward quantifying the uncertainty when estimating

N subsequent to embedding variation about ψ or ϕ by assumption.

3.2.3 Uncertainty Analysis

As Figure 3.1 illustrates, specifying a known value for ψ leads to an exceedingly precise

estimator. However, this estimator can very seldom be unlocked for direct use outside

of sensitivity analysis, except under a unique study design (Lyles et al., 2021b). In

the typical scenario, we propose an uncertainty analysis anchored on the intuitively

accessible ratio parameter ϕ. Specifically, we encourage that epidemiologist to reflect

on competing forces (e.g., temporal and geographical coverage of the two surveillance

systems), in order to postulate which state of nature (ϕ > 1 or ϕ < 1) is more likely

at the population level. Further, the analysis relies on specification of an assumed

distribution (akin to a prior) for ϕ, centered at the epidemiologist’s best guess and

reflecting his or her level of confidence in that guess and the anticipated feasible range.

First, we reiterate that the data likelihood contains no information for updating

ϕ. As such, the distribution to be postulated for ϕ is generally to be specified based

on expert opinion. For the estimable parameter p2|1, we apply a weakly informative

prior to obtain its posterior distribution as in standard Bayesian analysis.

To implement the proposed uncertainty analysis, two options are available. Option

(1) is to propagate the variation in ϕ along with statistical uncertainties into the

appropriate level of uncertainty about ψ, and to leverage the unbiased estimator

N̂ψ. Option (2) is to accommodate the variation in ϕ directly using a bias-corrected

estimator. Detailed procedures for obtaining 95% percentile intervals for N under

Options (1) and (2) are presented in Appendix B.4.

As illustrated previously (Lyles et al., 2021a), under the Lincoln–Petersen con-

ditions in which ψ = p2|1, adopting a Beta(1, 0) prior for p2|1 and replacing ψ in
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Equation (3.1) by the resulting posterior mean yields the Chapman estimator. This

connection motivates us to use the Beta(1, 0) prior for p2|1 when implementing Op-

tion (1). If implementing Option (2), we recommend use of the BC2 estimator or

the generalized Chapman estimator, since the BC estimator is downward biased and

suffers from instability when the probability associated with capture history (1,1) is

small (Table 3.5).

While Option (2) can be implemented more directly, Option (1) is more easily

generalizable. This is because derivations of bias-corrected estimators require extra

effort and become specific to the chosen definition of the ratio parameter ϕ as the

number of streams increases. For example, a total of three definitions of ϕ can be con-

sidered under three stream case (see Appendix B.7). In contrast, the direct analogue

to N̂ψ is readily available in the multiple (> 2) stream case.

We conducted uncertainty analysis using Option (1), exploring different assumed

distributions for ϕ for the HIV data (Table 3.1). To promote some commonality with

prior work (Chatterjee and Mukherjee, 2016), we considered three distributions for

illustration: (a) Uniform(0.75, 1.25), (b) Normal(1, 0.072), and (c) Uniform(1, 2).

The first two distributions reflect the same best guess, since they are both centered

at 1; however, both reflect a lack of complete faith in that assumption. Compared

to the first, the second distribution covers essentially the identical range but with

smaller variation and greater confidence in the best guess of 1. The third distribution

centered at 1.5 represents a case in which we assume an expert has reason to believe

the two streams are positively correlated at the population level.

As shown in Figure 3.2, compared to assuming ϕ equal to a specific value, allow-

ing variation in ϕ naturally results in a more conservative interval. Also as expected,

assuming less variation (i.e., distribution (a) vs. (b)) yields a narrower interval. We

obtained CIs based on the assumption of ϕ equal to a fixed value by applying the pro-

posed uncertainty analysis for interval estimation with the ϕ distribution degenerating
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to that fixed value, a practice that we study empirically in a subsequent section.

Figure 3.2: Uncertainty analysis for data from Table 3.1. The density plots in red,
blue, and yellow reflect the posterior distributions of ψ when the assumed distributions
of ϕ are Unif(0.75, 1.25), N(1, 0.072), and Unif(1, 2), respectively. The black error
bars represent the 95% CIs obtained from the proposed uncertainty analysis assuming
ϕ = 1 (7,165, 19,042), and ϕ = 1.5 (10,627, 28,446). The error bars in red, blue,
and yellow denote 95% CIs obtained from the uncertainty analysis with assumed
distributions of ϕ are Unif(0.75, 1.25), N(1, 0.072), and Unif(1, 2), respectively.

We note that the Lincoln–Petersen conditions represent a natural “middle ground”

for uncertainty analysis, with the LP or Chapman estimator reported with its usual

measure of statistical uncertainty representing a special case in which the assumed
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distribution for ϕ degenerates to 1. This provides additional motivation to examine

the proposed uncertainty analysis as a general approach for interval estimation of N .

For example, when the distributional assumption for ϕ degenerates to a specific value,

the 95% CI constructed based on the proposed uncertainty analysis can be viewed

as an empirical approach to obtain interval estimation under the assumption that ϕ

equals that value.

In practice, postulating the center of the assumed distribution for ϕ is typically

a difficult task. However, expert opinion in this regard is arguably more defensible

than reliance on a specific statistical model to elucidate ϕ, particularly in the case of

two streams. The task may be more readily tackled within strata formed by variables

deemed to be associated with likelihood of capture at the population level. Within

such strata, it may be easier for the epidemiologist to postulate where the center of

the ϕ distribution should be, and in particular whether it should be > 1, = 1, or < 1.

The choice of both the center and spread of the assumed distribution can clearly be

stratum specific. The proposed uncertainty analysis thus offers a principled way to

account for covariates, acknowledging the fact that the true ϕ is unknown within each

stratum and yielding point and interval estimates for N obtained by summing over

strata.

3.2.4 Sensitivity Analysis with A Known Case Ratio

In practice, one strategy to aid with postulating the range of key parameters is to

leverage external information. For example, Wolter (1990) assumed a known ratio of

cases across the sexes together with the same odds ratio (i.e., θ) in the two groups to

obtain estimates ofN and θ. Motivated by this idea, we apply the proposed sensitivity

analysis under the assumption that the case ratio is known and that key parameters

ϕ or θ are the same across strata defined by a binary covariate. Specifically, when

the proposed sensitivity analysis is applied within each stratum, the crossing point
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of the two sensitivity plots provides a visual estimate of N and the key parameter (ϕ

or θ). The corresponding derived estimators are presented in Appendix B.5 - B.6. It

can be shown that these estimators coincide with the MLEs of those parameters.

To demonstrate its power as a visualization tool, we applied the sensitivity analysis

anchored on ϕ and θ within each stratum to the data explored in Wolter (1990) (Table

B.1). As shown in Figure 3.3, estimates of ϕ or θ under Wolter’s assumptions can

be directly read from the sensitivity plots and were used to estimate N (numerical

values of estimated ϕ, θ, and N are given in Table B.2). We note that the estimated

N here is the same regardless of whether the equivalence assumption was imposed in

terms of ϕ or θ; however, this equivalence is not guaranteed in general. We also note

that when the sensitivity plots for the two strata are parallel or overlap, the crossing

point cannot be identified. In other words, the estimators of ϕ and θ are not well

defined in such instances, adding a visual clarification of the potential instability in

Wolter’s proposed estimator (Mallet et al., 1994).

Figure 3.3: Sensitivity plot with known case ratio based on data from Table B.1
(Wolter, 1990). The red solid points mark the crossing points of sensitivity plots;
the black solid lines represent sensitivity plots for females and the black dashed lines
represent scaled sensitivity plots (i.e., divided by the known sex ratio r = 1.15) for
males.
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3.3 Simulation Studies

In this section, we summarize simulations designed to evaluate the performance of

the proposed uncertainty analysis. The simulation study was implemented using Op-

tion (1); results obtained under different scenarios are presented in Table 3.2. For

simulation without stratification, the data were generated assuming ϕ follows a Uni-

form(0.75, 1.25) distribution and the assumed prior distribution of ϕ is correctly

specified. As suggested by the coverage summary, the proposed uncertainty analysis

is a valid approach to fully and accurately quantified the uncertainties in estimating

N . In contrast, failing to account for that variation by assuming a degenerate distri-

bution for ϕ at 1 resulted in severe under-coverage. For scenarios reflecting the actual

application need where uncertainties are assumed for a degenerate true ϕ, simula-

tion results are summarized in Table 3.3. We found that incorporating uncertainties

markedly improved the coverage compared to assuming ϕ degenerates to the wrong

value. The performance of the proposed uncertainty analysis was also evaluated when

using Option (2) under scenarios where the prior distribution of ϕ was correctly spec-

ified. Compared to Option (1), using Option (2) resulted in the reduction in median

width of intervals (Table 3.4).

We further conducted a simulation study under the situation where a binary

covariate is incorporated by stratification. We explored two types of mixture, the

first a mixture of independence and negative association and the second a mixture

of independence and positive association. Simulation results demonstrate that the

proposed uncertainty analysis is easily adapted to incorporating stratification and

providing excellent coverage when uncertainty in ϕ is correctly imposed (Table 3.2).

Under-coverage is again demonstrated when variation in ϕ is ignored.

Simulation results for evaluating the proposed bias-corrected estimators are pre-

sented in Table 3.5. We found that the BC2 and generalized Chapman estimators

are virtually unbiased, and almost identical as N increases. In cases where both
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were downward biased, the BC2 estimator was slightly less biased compared to the

generalized Chapman estimator and notably less biased than the BC estimator.

Interval estimation under the Lincoln–Petersen conditions based on the proposed

uncertainty analysis achieved comparable performance with a previously proposed

transformed logit CI (Sadinle, 2009), both in terms of coverage and median interval

width (Table 3.6). The transformed logit CI was selected for comparison due to its

reliable performance in coverage (Lyles et al., 2021a; Sadinle, 2009).

3.4 Discussion

We have developed a sensitivity and uncertainty analysis framework focused upon a

key inestimable parameter for CRC experiments with two surveillance efforts. We

have discussed three definitions based on intuitive interpretations of that inestimable

parameter, i.e., ψ, ϕ, and θ. We have derived closed-form MLEs hinging on these

key parameters, where the one based on a known value of ψ = p2|1̄ (Equation 3.1)

was previously confirmed as unbiased (Lyles et al., 2021a). We have provided bias-

corrected estimators as alternatives to the MLEs based on known ϕ and θ. The

proposed sensitivity analysis can be anchored on either one of those parameters, to

graphically study the impact of the key parameters on the estimation of N . With this

novel data visualization tool, epidemiologists can gauge sensitivity of the estimate N

to critical assumptions at the beginning of the analysis. In addition, this visualization

allows the direct identification of the MLE of N under the case with a known case

ratio (Wolter, 1990). Applying the sensitivity analysis to motivating HIV data (Abeni

et al., 1994), we have emphasized the importance of incorporating expert opinion in

terms of directionality (< 1, = 1, > 1) and where to center the best guess for the

parameter ϕ or θ, given that the observed data carry no information about those

parameters.
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The proposed uncertainty analysis approach is further designed for quantifying un-

certainties in the estimation of N while accounting for assumed variation in ϕ. While

this aspect of our work is similar in spirit to fully Bayesian analyses previously de-

veloped (Chatterjee and Mukherjee, 2016), our uncertainty analysis is more intuitive

and practical, providing general access for epidemiologic applications. Two options

are available for incorporating the assumed variation of ϕ. Option (1) leverages the

unbiased MLE N̂ψ, while Option (2) directly uses bias-corrected MLEs which can be

used to improve the efficiency of the uncertainty analysis (Table 3.4). We recommend

the use of Option (1), due to its direct extension to incorporate multiple streams.

First, the MLE assuming a known value of the parameter analogous to ψ = p2|1̄

can be easily derived under the multiple stream case. Second, we find that different

assumptions can be related back to a parameter analogous to ψ. For example, the

inestimable parameter p3|1̄2̄ is the analogue to ψ = p2|1̄ in the three-stream case; we

provide the MLE for N assuming a known p3|1̄2̄ (the analogue to Equation 3.1) in

Appendix B.7. We aspire to fully develop the extension to multiple streams, and to

use the methods provided here to motivate a transparent general modeling framework

for analyzing CRC data in epidemiologic surveillance studies (discussed in Chapter

5). In this chapter, we have also illustrated that the proposed uncertainty analysis

can serve as a general interval estimation approach with reliable performance under

various scenarios.
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Table 3.2: Simulation results for evaluating uncertainty quantification with and
without stratification

Scenario Assuming variation in ϕ Ignoring variation in ϕ
No stratification

(p1, p2)
a, N

median
width

coverage
(%)

median
width

coverage
(%)

(0.1, 0.25), 1000 822 94.5 652 86.1
(0.1, 0.25), 500 534 94.7 468 91.2
(0.1, 0.5), 1000 607 94.5 374 71.8
(0.1, 0.5), 500 363 94.6 265 82.4

(0.25, 0.25), 1000 551 95.1 374 79
(0.25, 0.25), 500 337 94.8 265 86.3
(0.5, 0.5), 1000 282 94.9 124 49.4
(0.5, 0.5), 500 157 94.9 88 66.2

Stratified by a binary variable

(p1, p2|1)
b, (ϕ1, ϕ2)

c, N
median
width

coverage
(%)

median
width

coverage
(%)

(0.1, 0.25), (1, 0.8), 2200 1295 95.3 1128 76.6
(0.1, 0.25), (1, 0.8), 1100 863 95.3 841 85.8
(0.1, 0.25), (1, 1.2), 2200 969 94.8 632 55.4
(0.1, 0.25), (1, 1.2), 1100 572 95.4 459 68.6
(0.1, 0.5), (1, 0.8), 2200 866 95.2 627 63.8
(0.1, 0.5), (1, 0.8), 1100 524 95.2 450 76.7
(0.1, 0.5), (1, 1.2), 2200 464 94.9 201 37.3
(0.1, 0.5), (1, 1.2), 1100 250 94.9 143 50.1
(0.25, 0.25), (1, 0.8), 2200 1303 95.2 943 83.9
(0.25, 0.25), (1, 0.8), 1100 872 95.6 703 90.1
(0.25, 0.25), (1, 1.2), 2200 975 95.1 528 65.6
(0.25, 0.25), (1, 1.2), 1100 578 94.9 382 79.5
(0.5, 0.5), (1, 0.8), 2200 875 95.0 529 72.9
(0.5, 0.5), (1, 0.8), 1100 532 95.1 380 82.9
(0.5, 0.5), (1, 1.2), 2200 471 94.8 174 43.4
(0.5, 0.5), (1, 1.2), 1100 257 94.9 124 58.1

a p1 and p2 are marginal probabilities of capture in stream 1 and 2.
b p1 and p2|1 are marginal capture probability of stream 1 and probability of being identified by
stream 2 given identified by stream 1, with these values the same within each stratum.
c ϕ1 and ϕ2 denote the center of distribution of ϕ within each stratum.
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Table 3.3: Simulation results for evaluating uncertainty quantification when the true
ϕ = 0.9 or 1.1

Scenario
The proposed

uncertainty analysis
assumes ϕ = 1

The proposed
uncertainty analysis

assumes ϕ ∼Uniform(0.8, 1.2)
Data was generated by assuming ϕ = 0.9

(p1, p2|1, ϕ)
a, N

median
width

coverage
(%)

median
width

coverage
(%)

(0.1, 0.25, 0.9), 1000 712 92.5 840 96.7
(0.1, 0.25, 0.9), 500 513 94.1 562 96.2
(0.1, 0.5, 0.9), 1000 411 83.2 593 97.4
(0.1, 0.5, 0.9), 500 291 89.7 366 96.9

(0.25, 0.25, 0.9), 1000 408 87.6 544 97.2
(0.25, 0.25, 0.9), 500 288 91.8 343 96.5
(0.5, 0.5, 0.9), 1000 134 59.1 264 98.9
(0.5, 0.5, 0.9), 500 95.0 79.0 150 98.0

Data was generated by assuming ϕ = 1.1

(p1, p2|1, ϕ)
a, N

median
width

coverage
(%)

median
width

coverage
(%)

(0.1, 0.25, 1.1), 1000 592 89.2 696 93.6
(0.1, 0.25, 1.1), 500 424 90.7 463 92.9
(0.1, 0.5, 1.1), 1000 339 83.3 488 95.3
(0.1, 0.5, 1.1), 500 241 87.1 301 93.8

(0.25, 0.25, 1.1), 1000 342 86.2 452 94.8
(0.25, 0.25, 1.1), 500 244 89.4 286 93.9
(0.5, 0.5, 1.1), 1000 115 66.8 219 97.6
(0.5, 0.5, 1.1), 500 82 80.1 126 96.2

a p1 and p2|1 are marginal capture probability of stream 1 and probability of being identified by
stream 2 given identified by stream 1, with these values the same within each stratum.

Table 3.4: Simulation results for evaluating uncertainty quantification using Option
2 with different bias-corrected estimators

Scenario Option (1) Bias-corrected estimators used in Option (2)

N̂∗
chap N̂BC

ϕ N̂BC2
ϕ

(p1, p2)a, N
median
width

coverage
(%)

median
width

coverage
(%)

median
width

coverage
(%)

median
width

coverage
(%)

(0.1, 0.25), 1000 822 94.3 806 94.7 770 93.8 772 94
(0.1, 0.25), 500 534 94.7 520 94.3 464 92.7 470 93
(0.1, 0.5), 1000 608 94.7 600 94.9 592 94.6 593 94.5
(0.1, 0.5), 500 363 94.6 356 95.1 344 94.3 345 94.3

(0.25, 0.25), 1000 552 95.1 546 95.4 538 95 539 95
(0.25, 0.25), 500 336 94.8 332 94.9 321 94.3 322 94.3
(0.5, 0.5), 1000 282 95.1 281 95.1 281 95 281 95.1
(0.5, 0.5), 500 157 94.9 156 95 156 94.9 156 94.9

a p1 and p2 are marginal probabilities of capture in stream 1 and 2.
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Table 3.5: Simulation results for evaluating bias-corrected estimators of N with a
known ϕ

Scenario Mean (SD) a

(p1, ψ, ϕ)
b, N N̂ϕ N̂BC

ϕ N̂BC2
ϕ N̂∗

chap

(0.1, 0.2, 0.75), 50 - 27 (18) 33 (16) 32 (16)
(0.1, 0.3, 0.75), 50 - 31 (22) 40 (19) 39 (19)
(0.1, 0.2, 1), 50 - 30 (21) 38 (19) 37 (19)
(0.1, 0.3, 1), 50 64 (44) 34 (23) 44 (22) 43 (22)
(0.1, 0.2, 1.5), 50 64 (46) 34 (24) 44 (24) 43 (23)
(0.1, 0.3, 1.5), 50 64 (45) 39 (22) 48 (23) 47 (23)
(0.1, 0.2, 0.75), 100 134 (88) 61 (49) 85 (43) 83 (43)
(0.1, 0.3, 0.75), 100 138 (99) 69 (49) 95 (49) 92 (47)
(0.1, 0.2, 1), 100 139 (100) 66 (51) 93 (49) 90 (48)
(0.1, 0.3, 1), 100 134 (99) 77 (45) 99 (50) 97 (48)
(0.1, 0.2, 1.5), 100 134 (101) 78 (47) 99 (52) 97 (50)
(0.1, 0.3, 1.5), 100 120 (76) 90 (34) 101 (42) 100 (40)
(0.1, 0.2, 0.75), 200 284 (219) 145 (100) 198 (107) 193 (102)
(0.1, 0.3, 0.75), 200 256 (183) 171 (76) 201 (96) 199 (91)
(0.1, 0.2, 1), 200 265 (204) 163 (86) 201 (104) 198 (99)
(0.1, 0.3, 1), 200 236 (143) 187 (65) 201 (82) 200 (79)
(0.1, 0.2, 1.5), 200 235 (143) 187 (66) 201 (84) 200 (81)
(0.1, 0.3, 1.5), 200 215 (72) 197 (48) 200 (54) 200 (54)
(0.1, 0.2, 0.75), 350 437 (302) 311 (126) 352 (163) 349 (156)
(0.1, 0.3, 0.75), 350 396 (188) 338 (95) 352 (122) 351 (118)
(0.1, 0.2, 1), 350 406 (226) 332 (106) 351 (137) 350 (132)
(0.1, 0.3, 1), 350 378 (121) 347 (87) 351 (95) 351 (94)
(0.1, 0.2, 1.5), 350 377 (123) 346 (90) 350 (97) 350 (97)
(0.1, 0.3, 1.5), 350 363 (76) 349 (67) 350 (68) 350 (68)

a Mean and SD denote averaged bias and standard deviation of point estimates across 10,000 simu-
lations for each estimator, respectively; N̂ϕ is not reported if more than 30% of simulated datasets
had n11 = 0.
b p1, ψ = p2|1̄, and ϕ = p2|1/p2|1̄ are probabilities used for generating data based on multinomial
distribution.
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Table 3.6: Simulation results for evaluating interval estimation under Lincoln-
Petersen conditions

Scenario Uncertainty analysis Transformed logit

(p1, p2)
a, N

median
width

coverage
(%)

(% missed high,
% missed low)

median
width

coverage
(%)

(% missed high,
% missed low)

(0.05, 0.05), 10000 7592 95.0 (1.91, 3.09) 7499 95.3 (1.36, 3.38)
(0.05, 0.05), 5000 5506 95.1 (1.65, 3.25) 5382 95.6 (0.90, 3.49)
(0.05, 0.05), 2500 4042 95.2 (1.12, 3.65) 3869 95.9 (0.11, 4.03)
(0.05, 0.1), 10000 5161 95.1 (2.00, 2.86) 5146 95.2 (1.81, 3.00)
(0.05, 0.1), 5000 3703 94.9 (1.79, 3.28) 3678 95.2 (1.48, 3.31)
(0.05, 0.1), 2500 2638 95.2 (1.52, 3.25) 2606 95.7 (0.90, 3.38)
(0.05, 0.2), 10000 3430 94.7 (2.25, 3.03) 3434 94.8 (2.23, 3.00)
(0.05, 0.2), 5000 2439 94.8 (2.27, 2.94) 2437 95.1 (2.11, 2.80)
(0.05, 0.2), 2500 1744 95.0 (1.76, 3.26) 1742 95.3 (1.61, 3.13)
(0.1, 0.1), 10000 3534 95.2 (1.99, 2.83) 3535 95.1 (1.93, 2.93)
(0.1, 0.1), 5000 2519 94.8 (2.22, 3.02) 2514 95.1 (1.99, 2.91)
(0.1, 0.1), 2500 1797 95.1 (1.83, 3.08) 1788 95.4 (1.58, 2.98)
(0.1, 0.2), 10000 2356 95.0 (2.15, 2.88) 2358 95.1 (2.03, 2.89)
(0.1, 0.2), 5000 1669 94.8 (2.31, 2.85) 1669 95.1 (2.24, 2.68)
(0.1, 0.2), 2500 1190 94.9 (2.19, 2.95) 1190 95.0 (2.12, 2.84)

a p1 and p2 are marginal probabilities of capture in stream 1 and 2.
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Chapter 4

Pitfalls of the Log-linear Modeling

Framework for CRC Studies
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4.1 Background

Log-linear models are widely adopted CRC methods to estimate disease risk or preva-

lence in human populations, which assumes independent Poisson distributions for the

observed cell counts (Fienberg, 1972; Cormack, 1989). To estimate the total number

of cases, the log-linear model regresses observed cell counts against indicators of the

capture history and their interactions. The popularity of log-linear models is partially

due to their allowance for dependency between systems via interaction terms. In ad-

dition, the accessibility of log-linear models also greatly promotes their applications.

For example, the GENMOD procedure in SAS and the glm function in R can be directly

used for fitting log-linear models to CRC data (Institute, 1985; R Core Team, 2023).

The application of log-linear models has been extended to incorporate covariates.

Discrete covariates can be incorporated by stratification of the cell counts, or by di-

rectly including the covariates and their interactions with indicators of the capture

history in the log-linear model (Fienberg, 1972; Hook and Regal, 1995). The log-linear

model is a discrete cell-count model, and hence can only incorporate continuous co-

variates by first categorizing them. However, logistic models allow one to include both

individual-level discrete and continuous covariates to model the capture probability

of each data stream by assuming independence conditional on covariates (Huggins,

1989; Alho, 1990). Further extensions of this model permit consideration of the de-

pendency structure between data streams while also modeling the individual-level

capture probabilities using the logistic model (Zwane and van der Heijden, 2005).

In this model, the dependency between data streams is induced by allowing capture

probabilities to depend on covariates and responses to data streams.

In epidemiological studies, practitioners usually undertake the fitting of all possible

log-linear models after excluding the highest-order interaction term. This exclusion

is by common convention as a means of ensuring identifiability, since the number

of cases not captured by any system is unobserved. Subsequently, the estimated
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N and associated 95% CI are typically reported based on the model identified by a

model selection metric, e.g., Akaike’s information criterion (AIC), likelihood ratio test

statistics, or the Bayesian Information Criterion (BIC) (Akaike, 1974; Schwarz, 1978;

Hook and Regal, 1997; Héraud-Bousquet et al., 2012; Barocas et al., 2018). Generally,

the log-linear model with the lowest AIC will be selected as the “best” model to obtain

the estimate of N (Hook and Regal, 1997; Héraud-Bousquet et al., 2012). However,

it has been noted in various applied studies that different log-linear models can result

in widely different estimated N (Poorolajal et al., 2017; Ramos et al., 2020; Zhang

and Small, 2020). In other words, the estimation of N can be very sensitive to

model assumptions that cannot be verified using only the observed data (Fienberg,

1972; Hook and Regal, 1997; Lyles et al., 2021a; Zhang et al., 2022). However, those

commonly applying log-linear models for CRC-based estimation in current practice

are often unaware of the extent to which regularly-used model selection metrics based

on the observed data are inadequate.

In this chapter, we illustrate two major pitfalls associated with the log-linear model

paradigm for CRC, primarily stemming from the fact that it dissuades users from

carefully considering or attempting to vet the assumptions (e.g., regarding population-

level dependencies among data streams) required to enable the estimation of N . First,

we show that the log-linear model framework is highly “exclusionary”. Specifically,

the log-linear model generally excludes many possible estimates of N by design (as

illustrated in Section 4.4). Second, we illustrate how model selection metrics can be

deceptive and inadequate tools for CRC model selection. We clarify how such metrics

choose models based on certain observable constraints in the data, despite the fact

that these constraints actually provide no information about true non-identifiable

dependency parameters characterizing the data streams that are central to the valid

estimation of N . The goal is to caution that application of the log-linear model

framework to analyze CRC data requires a clear understanding of these pitfalls, with
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careful consideration of what key dependency assumptions are imposed (sometimes

implicitly) by the adopted model.

4.2 Motivating Data

We used two publicly available epidemiological CRC datasets for quantifying HIV

infections, together with one dataset simulated in a setting where referrals between

data streams occur (Jones et al., 2014). The data demonstrate how the log-linear

model framework excludes many possible estimates of N by design. The two real data

examples involve three and four data streams, respectively, and both were analyzed

previously using the log-linear model (Abeni et al., 1994; Poorolajal et al., 2017).

Specifically, the three-stream HIV CRC data were collected in Iran in 2016 and the

four-stream HIV data were collected in Lazio, Italy during 1990.

4.3 MLEs of N with a Given Key Dependency Pa-

rameter

We extend the population-level multinomial model and the parametrization adopted

in Chapter 3 to incorporate multiple (>) data streams (Darroch, 1958; Zhang et al.,

2022). We have discussed the connection between the population-level multinomial

model and the individual-level multinomial model in Section 1.2.2. We assume a

closed population with N diseased cases, with K ≥ 2 surveillance streams imple-

mented. Under this situation, a total of 2K unique capture histories exist. Let

the set O = {(11 . . . 1), (101 . . . 1), . . . , (0 . . . 0)} containing 2K sequences denote the

collection of all possible capture histories, where capture histories are arranged in lex-

icographic order and 1 denotes captured and 0 not captured. Let hi denote the i-th

sequence in the set O with i = 1, . . . , 2K , Nhi and nhi denote the true and observed
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number of cases having capture history hi. Because the number of cases not captured

by any stream is unobserved, n0...0 is missing.

In Chapter 3, we used the parameter vector (p1, p2|1, p2|1̄) to model the 3 observed

cell (Table 1.2) under the population-level multinomial model while allowing an ar-

bitrary level of dependency between two streams (Lyles et al., 2021a). For a given

value of the inestimable parameter ψ = p2|1̄, the closed form MLE of N is shown in

Equation (3.1). When using the ratio parameter ϕ = p2|1/p2|1̄ to measure the depen-

dency between two streams, the corresponding MLE of N with known ϕ is provided

in Equation (3.3). We emphasize again that any valid value of ψ or ϕ yields exactly

the same maximized log-likelihood value.

For the case of K > 2 streams, the extended parameter vector containing condi-

tional probabilities (p1, p2|1, p2|1̄, p3|12, p3|1̄2, p3|12̄, . . . , pK|1̄2̄.̄.. ¯K−1) models the observed

2K − 1 cell counts, where p1 denotes the marginal probability of identification by the

first stream and the remaining parameters are population-level conditional probabil-

ities of identification in the k-th stream given all other capture histories arranged in

lexicographic order (̄· indicates no, otherwise yes). For example, p3|12̄ represents the

proportion captured by the third stream given captured by the first stream but not

captured by the second. As noted above, in the two-stream case we refer to p2|1̄ as

the key inestimable parameter and use ψ to denote it. Similarly, we denote pK|1̄2̄.̄.. ¯K−1

as ψ and treat it as the key inestimable parameter when K > 2.

Given K > 2 streams, we derive the MLE of N for a known value of ψ and

its variance estimator under the population-level conditional multinomial model as

follows:

N̂ψ = (nc − n00...1) +
n00...1

ψ
, (4.1)

ˆV ar(N̂ψ) =
1− ψ

ψ2
n00...1, (4.2)
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where nc is the observed number of cases caught at least once, and n00...1 is the ob-

served number of cases caught by the last stream but not by any other stream. This

MLE and its variance estimator under the three-stream case have been proposed

previously (see Appendix B.7), but Equations (4.1) - (4.2) extend the result to in-

corporate an arbitrary number of streams. As in the two-stream case, we emphasize

that N̂ψ is equally consistent with the observed cell counts for any valid value of ψ

(i.e., 0 < ψ ≤ 1) that one supplies. That is, the parameter ψ is non-identifiable based

on the observed data alone.

4.4 The Exclusionary Property of CRC Log-linear

Models

Unlike the population-level multinomial model adopted in Chapter 3, the log-linear

model assumes that cell counts are independent Poisson variables conditional on

model coefficients that determine their corresponding means. For the simplest CRC

setting with two-stream data and no covariates, the corresponding fully specified

log-linear model is:

log [E (Nhi)] = α + β1X1 + β2X2 + δX1X2, (4.3)

where Xk = 1 if cases are identified by the k-th stream under capture history hi,

and 0 otherwise, for k = 1, 2. The estimated N is then computed as nc + exp α̂,

where α̂ is the MLE of the intercept. With 3 observed cell counts, it is impossible to

estimate all 4 model coefficients. In the above example, the standard CRC log-linear

modeling convention of dropping theK-way interaction term implies setting δ = 0. In

addition, a hierarchy principle is also typically applied, whereby any log-linear model

considered must include all possible lower level interaction terms before the inclusion
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of any higher level interaction term. When K > 2, a valid candidate model also must

include all first-order terms. Applying the first convention for the basic two-stream

case, only 3 models would therefore be valid candidates; however, note that there are

a total of 7 possible models that can be fitted if these conventions are not applied.

Each of these has been closely examined by prior authors, who showed that the full

set of 7 possible models allows for at most 4 unique estimates of the ratio parameter

ϕ = p2|1/p2|1̄ (see Table 2 in Lyles et al. (2021a)). Yet, as noted earlier, there are

in fact an infinite number of values of the key parameter (ψ or ϕ) that yield unique

MLEs of N and are equally consistent with the observed data. This simple special

case exhibits the exclusionary nature of CRC log-linear models, in the sense that they

exclude many possible estimates by design. As we will see, this important pitfall is

not avoided simply by including additional streams and/or covariates.

4.4.1 A Toy Example

To illustrate the exclusionary nature of the log-linear model, we apply the novel

visualization tool proposed in Chapter 3 to the toy set of cell counts presented in

Table 4.1. In this example, we deliberately set n11 equal to n01 in order to demonstrate

other pitfalls discussed in later sections.

Table 4.1: Toy two-stream CRC data

Captured in stream 2
Captured in stream 1 Yes No

Yes n11 = 250 n10 = 500 n1· = 750
No n01 = 250 n00 =?

n·1 = 500 N =?

† n1· = n11 + n10 and n·1 = n11 + n10.

Figure 4.1 shows estimates from all 7 possible log-linear models as well as MLEs

of N in Equations (3.1) and (3.3) with various assumed ψ and ϕ values based on the

example data. The figure demonstrates that the log-linear model framework excludes
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large swaths of possible estimates of N . In this example, considering all possible

log-linear models only results in 4 unique estimates of N , despite the fact that a

continuum of estimated N values is consistent with the observed data. As shown in

Figure 4.1(B), the 7 possible log-linear models only permit ϕ to take estimated values

of 2/3, 4/5, and 1. Yet, any value of ϕ within the range [1/3,∞) would result in

an equally valid estimate of N based on the observed data. The lower bound of 1/3

is derived based on the natural lower bound of N , i.e., N is no smaller than nc the

number of cases captured at least once.

It is also noteworthy that, in this example, none of the possible log-linear models

allows positive dependency between data streams (i.e., ϕ > 1). However, there is no

evidence in the observed data to exclude this possibility, in light of the unobserved

cell count n00. Moreover, two positively correlated streams are often seen in practice

(Hook and Regal, 2000). For instance, both streams may tend to identify cases with

similar characteristics.

Although it has been shown that MLEs of N derived using the population-level

multinomial model are equivalent to estimates yielded by log-linear models when

equivalent assumptions are imposed (Cormack and Jupp, 1991), we observe that

there are estimates from unsaturated (i.e., the number of model coefficients is less

than the number of observed capture histories) log-linear models (e.g., M1, M4) that

do not appear on the curve continuum in Figure 4.1. This is because unsaturated

log-linear models also impose assumptions on observed cell counts, while the MLEs

of N assuming known ψ or ϕ do not since the observed cell counts were used. That

is, when the log-linear model imposes constraints on observed cell counts, the two

models indeed impose different sets of assumptions. For example, model 1 constrains

the three fitted cell counts to be equal (i.e., p11 = p10 = p01), so that the fitted counts

differ from the observed in this example. Since fitted cell counts always coincide with

observed cell counts when fitting saturated log-linear models, estimates from those
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Figure 4.1: Estimates of N from all possible log-linear models based on two-stream
toy example CRC data presented in Table 4.1. Black solid line denotes the MLE of
N in Equation (3.1) with assumed ψ = p2|1̄ in panel (A); black solid line denotes
the MLE of N in Equation (3.3) in panel (B); black solid points represent estimates
from all possible 7 log-linear models; blue dashed lines mark the estimates from the
log-linear model with the lowest AIC (i.e., Model 3).

models are consistent with the MLEs in Equations (3.1) and (3.3) when fixing ψ

or ϕ at the corresponding log-linear model-based estimates. In this example where

n11 = n01, the unsaturated model 3 happens to result in an estimated N equal to an

MLE based on Equation (3.3), as shown in Figure 4.1(B). However, when n11 is not

equal to n01, estimates from model 3 will deviate from the MLE. The estimate from

the unsaturated model 2 is also on the curve because it forces the sum of observed

n11 and n10 is equal to the sum of fitted n11 and n10.

Importantly, the log-linear model framework continues to exclude many valid es-

timates even though the number of possible log-linear models increases exponentially

with the number of data streams. For the three-stream case, the fully specified log-
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linear model is given by

log [E (Nhi)] = α+ β1X1 + β2X2 + β3X3 + γ1X1X2 + γ2X1X3 + γ3X2X3 + δX1X2X3.

(4.4)

With 7 observed cell counts, a total of 127 log-linear models are possible, of which

only 8 are valid candidates when applying both standard conventions discussed previ-

ously. While model (4.4) allows both positive and negative associations between data

streams by including pairwise interaction terms, studies have pointed out that the

log-linear model framework is incapable of incorporating certain dependency scenarios

(Jones et al., 2014).

To expand on this point, Figure 4.2 displays a variety of estimated N values ob-

tained under different assumptions using log-linear models and the MLE in Equation

(4.1), based on simulated three-stream data analyzed in Jones et al. (2014). These

data were simulated from a population-level multinomial distribution by assuming

N = 200, 000, the first stream (S1) and the third stream (S3) are independent condi-

tional on the second stream (S2), and that 20% of cases captured by S1 are referred

to S3. In Figure 4.2, while we cut ψ at the values of 0.02 and 0.9, it is possible that

ψ can go beyond 0.9 (in which case the estimated N would remain flat) or below 0.02

(in which case the estimated N could theoretically blow up). It is clear that estimates

of N from log-linear models only occupy a small part of the curve. For example, no

log-linear model places the estimated N within the range 310,000 to 860,000, despite

the fact that all values in that range (and all other values depicted on the curve)

are equally consistent with the observed data. A key point here (explored further

below) is that the log-linear modeling framework leads the user to believe that such

exclusions are based on relevant information available in the data, but this is not the

case. In addition, as prior authors (Jones et al., 2014) concluded, no log-linear model

captures the true associations among the three streams under which these data were
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generated.

Figure 4.2: Estimates of N from all possible log-linear models based on simulated
data from the last column of Table 4 of Jones et al. (2014). Black solid line denotes
the MLE of N in Equation (4.1) as assumed ψ = p3|1̄2̄ varies; red solid points denote
estimates from the 8 possible log-linear models when imposing the usual conventions
(i.e., no 3-way interaction and following the hierarchy principle); the union of red and
black solid points denote estimates from all 127 possible log-linear models; blue solid
points/dashed lines denote MLEs in Equation (4.1) under four different assumptions.
On x-axis, RR denotes the assumption ψ =

p3|1̄2p3|12̄
p3|12

, p3|12 denotes the assumption

ψ = p3|12. The text p3|12̄ denotes the assumption ψ = p3|12̄, and the text p3|1̄2 denotes
the assumption ψ = p3|1̄2. The blue triangle/dashed line denotes the estimated N by
imposing correct assumptions, which assume S1 and S3 are independent conditional
on S2 and 20% referral of individuals from S1 to S3.

We also explored actual three-stream CRC data analyzed in a previous study

(Poorolajal et al., 2017). In Figure 4.3, we observe for example that there is no

log-linear model implying the potentially reasonable assumption that psi =
p3|1̄2p3|12̄
p3|12

,
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i.e., the population-level association between S2 and S3 is the same regardless of

identification (or not) by S1. Similarly, no model reflects the assumption ψ = p3|12,

i.e., the proportion captured by S3 among those not captured by S1 and S2 is equal

to the proportion captured by S3 among those captured by both S1 and S2. As

shown in Table 4.3, the 8 possible models only yield at most 8 unique estimates of N

when applying the usual CRC conventions. Again, however, a continuum of estimates

is consistent with the observed data and a significant swath of these estimates are

unachievable when fitting all possible log-linear models.

We note that the number of possible log-linear models increases exponentially

even when the standard conventions are applied. With four data streams, there

are 113 possible log-linear models under the standard conventions (Hook and Regal,

1995), while there are a total of 32,767 models if we consider all possible combina-

tions of predictors. However, with this many possible models, the log-linear model

framework still excludes many possible estimates as illustrated using data from Abeni

et al. (1994) (Figure 4.4). For example, no log-linear model projects ψ = p4|1̄2̄3̄ into

the range from 0.06 to 0.17. However, this range in fact contains many plausible

assumptions, including for example that the key parameter ψ is equal to p4|1̄23 or

p4|12̄3.

For cases involving more than two streams (Figures 4.2 - 4.4), note again that

not all estimates from log-linear models are on the black curve. As discussed in the

two-stream case, log-linear models that impose the same assumption about the key

parameter ψ do not necessarily impose the same assumptions about observed cell

counts due to constraints built into unsaturated models.
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Figure 4.3: Estimates of the total HIV case count from all possible log-linear models
based on data from Figure 1 of Poorolajal et al. (2017), with “Transfusion center”,
“VCTCs”, and “Prison” comprising Streams 1, 2, and 3, respectively. Black solid
line denotes the MLE of N in Equation (4.1) as assumed ψ = p3|1̄2̄ varies; red solid
points denote estimates from the 8 possible log-linear models when imposing the
usual conventions (i.e., no 3-way interaction and following the hierarchy principle);
the union of red and black solid points denote estimates from all 127 possible log-
linear models; blue solid points/dashed lines denote MLEs in Equation (4.1) under
four different assumptions. On x-axis, RR denotes the assumption ψ =

p3|1̄2p3|12̄
p3|12

, p3|12
denotes the assumption ψ = p3|12. The text p3|12̄ denotes the assumption ψ = p3|12̄,
and the text p3|1̄2 denotes the assumption ψ = p3|1̄2.
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Figure 4.4: Estimates of the total number HIV cases from all possible log-linear
models based on four-stream CRC data from Table 2 of Abeni et al. (1994), with
“Center I”, “Center II” and “Center III”, and “Center IV” comprising Streams 1, 2,
3, and 4, respectively. Black solid line denotes the MLE of N in Equation (4.1) as
assumed ψ = p4|1̄2̄3̄ varies; red solid points denote estimates from the 113 possible
log-linear models when imposing the usual conventions (i.e., no 4-way interaction
and following the hierarchy principle); the union of red and black solid points denote
estimates from all possible 32,767 log-linear models. The text p4|1̄23 denotes the
assumption ψ = p4|1̄23, and the text p4|12̄3 denotes the assumption ψ = p4|12̄3.
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4.5 AIC is Deceiving as a Metric for CRC Model

Selection

To settle upon a final model for estimating N under the log-linear model framework,

practitioners often rely on common metrics such as AIC, BIC, or likelihood ratio test

statistics. However, numerous sources have raised concerns about the adequacy of

such metrics in CRC modeling for epidemiologic surveillance (Fienberg, 1972; Hook

and Regal, 1997; Coull and Agresti, 1999; Lyles et al., 2021a).

The main issue associated with typical model selection metrics in CRC settings is

that they attempt to identify a “best-fitting” model based solely on the observed data,

which in themselves contain no information about any key dependency parameter

upon which assuredly valid estimation and inference could be based. That is, certain

untestable assumptions (e.g., regarding the dependency structure between streams)

are necessary to identify an estimate of N , but these metrics are incapable of assessing

untestable assumptions. Nonetheless, a metric like AIC will happily select a log-

linear model on the basis of certain testable assumptions. The problem is that such

a model then projects an assumption about a non-identifiable dependency parameter

that fundamentally determines the estimate of N . Unfortunately, the unsuspecting

user is typically unaware of the exclusionary property, or the fact that this projection

is little more than a mathematical construct. Indeed, the log-linear model that fits

the observed data best might project an assumption about dependencies among data

streams which differs greatly from the underlying truth. That underlying truth could

be much more consistent with the estimated N from a poorly fitting log-linear model,

or, as we have seen, might not be attainable by any log-linear model.

Table 4.2 presents estimates along with the AIC for each model fitted to the toy

example data in Table 4.1. Note that model 3 yields the lowest AIC; this occurs

because n11 = n01 in the observed data. The corresponding mathematical construct,
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for which there is no basis, then projects the unobserved cell count n00 to be the same

as the observed cell count n10. The key point is that the testable constraint E(N11) =

E(N01) producing the selected model can be defended based on the data. However,

the assumption E(N10) = E(N00) is untestable in the observed data. Suppose the

true value of ϕ were 1.5, which indicates E(N00) = 875 and E(N) = 1, 875. This

truth differs greatly from the model-projected estimate of E(N00), which equals 500,

from applying model 3.

Importantly, the problem associated with relying on testable constraints to project

the unobserved cell count remains even when the number of streams increases. Using

model 2 in Table 4.3 as an example, the estimated unobserved cell count N000 takes its

form only because the testable constraints E(N111)/E(N110) = E(N101)/E(N100) =

E(N011)/E(N010) are assumed under model 2. The computation of N000 is a purely

mathematical construct, and the untestable assumption used for inferring N000 cannot

be justified using the observed data. Yet, a practitioner selecting model 2 based on a

metric like AIC would be led to believe otherwise.
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For the three-stream CRC data reflected in Figures 4.2 and 4.3, Tables 4.4 and 4.5

present results from the candidate log-linear models following the standard conven-

tions, together with those models (among all possible) that yield the most favorable

AIC. Table 4.4 illustrates that all saturated models fit the data equivalently, despite

the fact that the resulting estimates range from 152,000 to 877,000. No unsaturated

model “beats” those saturated models in terms of AIC. When following the stan-

dard conventions, model 8 (resulting in an estimate far from the true N = 200, 000)

would be selected. We note again that these data were simulated under a referral

scenario that no log-linear model is able to incorporate; thus, researchers have no

chance of approaching the true dependency structure even if they carefully follow

the recommended log-linear model paradigm. Similarly, we observe that model 9 in

Table 4.5 is an unsaturated model which yields lower AIC than the saturated models.

This model assumes the testable constraint, E(N110)/E(N101) = E(N010)/E(N001),

and projects the unobserved count based on the subsequent assumption E(N000) =

E(N100)E(N001)/E(N101). While the observable constraint might be supported based

on the observed data, the assumption about the unobserved count is a mathemati-

cal construct that could not actually be justified without external knowledge about

operating characteristics of the surveillance streams.

We conducted additional simulation studies to further demonstrate that AIC is not

a reliable tool for CRC model selection. These simulations focus on the three-stream

case, which is a common scenario in epidemiological studies. We simulated 1,000

datasets from a population-level multinomial model under two different scenarios

assumingN = 5, 000. In the first scenario, one testable assumption and one untestable

assumption were imposed, while in the second scenario, two testable assumptions and

one untestable assumption were imposed. Details of these simulation settings are

given in Appendix C.

Under scenario 1, it is easy to show that the model that was most frequently
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Table 4.4: Log-linear models for three-stream data simulated by assuming
N = 200, 000 and analyzed by (Jones et al., 2014) under the usual conventions
and with most favorable AIC

Fitted models under the usual conventions

Model X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 N̂ ψ̂ AIC

1 ✓ ✓ ✓ 199,910 0.446 51,619

2 ✓ ✓ ✓ ✓ 260,386 0.342 18,469

3 ✓ ✓ ✓ ✓ 196,734 0.461 51,544

4 ✓ ✓ ✓ ✓ 161,909 0.723 21,365

5 ✓ ✓ ✓ ✓ ✓ 877,366 0.077 7,936

6 ✓ ✓ ✓ ✓ ✓ 181,214 0.614 3,210

7 ✓ ✓ ✓ ✓ ✓ 152,553 0.852 14,078

8 ✓ ✓ ✓ ✓ ✓ ✓ 306,540 0.272 93

Fitted models with most favorable AIC

Model X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 N̂ ψ̂ AIC

9 ✓ ✓ ✓ ✓ ✓ ✓ 877,366 0.077 93

10 ✓ ✓ ✓ ✓ ✓ ✓ 181,214 0.614 93

11 ✓ ✓ ✓ ✓ ✓ ✓ 152,553 0.863 93

12 ✓ ✓ ✓ ✓ ✓ ✓ 203,973 0.5 93

13 ✓ ✓ ✓ ✓ ✓ ✓ 162,316 0.759 93

14 ✓ ✓ ✓ ✓ ✓ ✓ 154,311 0.842 93

†✓ indicates the predictor is included.
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Table 4.5: Log-linear models for three-stream analyzed by
Poorolajal et al. (2017) under the usual conventions and with most favorable AIC

Fitted models under the usual conventions

Model X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 N̂ ψ̂ AIC

1 ✓ ✓ ✓ 10,421 0.04 112

2 ✓ ✓ ✓ ✓ 8,550 0.048 105

3 ✓ ✓ ✓ ✓ 9,751 0.044 111

4 ✓ ✓ ✓ ✓ 13,792 0.026 66

5 ✓ ✓ ✓ ✓ ✓ 6,290 0.074 90

6 ✓ ✓ ✓ ✓ ✓ 17,149 0.021 66

7 ✓ ✓ ✓ ✓ ✓ 14,122 0.026 68

8 ✓ ✓ ✓ ✓ ✓ ✓ 419,22 0.008 60

Fitted models with most favorable AIC

Model X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 N̂ ψ̂ AIC

9 ✓ ✓ ✓ ✓ ✓ 14,904 0.024 59

10 ✓ ✓ ✓ ✓ ✓ ✓ 6,291 0.074 60

11 ✓ ✓ ✓ ✓ ✓ ✓ 17,149 0.021 60

12 ✓ ✓ ✓ ✓ ✓ ✓ 14,122 0.026 60

13 ✓ ✓ ✓ ✓ ✓ ✓ 2,600 0.5 60

14 ✓ ✓ ✓ ✓ ✓ ✓ 3,010 0.304 60

15 ✓ ✓ ✓ ✓ ✓ ✓ 3,353 0.229 60

†✓ indicates the predictor is included.
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( 80%) selected by the AIC implies the testable assumption used for data generation

(Table 4). The untestable assumption projected by this model suggests that the key

parameter ψ = p3|1̄2̄ = 0.5. However, the data were generated assuming this key

parameter equals 0.1. Hence, it is not surprising that the average estimate obtained

from the selected model (3, 040) is far afield from the true value of 5, 000. The other

two models that were selected by the AIC under some simulations also project very

different estimates of N . In similar fashion, the two most frequently selected mod-

els under scenario 2 permit the two prespecified testable assumptions when certain

constraints are applied to model coefficients. Again, the average estimates obtained

from the two most frequently selected models (6,848 and 4,407) fall far from the truth

because neither model projects the correct untestable assumption.

When applying the standard conventions under scenario 1, note that the saturated

model was almost always selected as “best”. However, the corresponding averaged

estimated N is 8,053, greatly overestimating the true value of 5,000. All of these

simulation results highlight the fact that using AIC as a CRC model selection metric

is misleading, since models fitting the observed data “best” cannot in fact be assumed

to reliably project the correct untestable assumption which is critical for estimating

N .

4.6 Discussion

In this chapter, we first demonstrated that the CRC log-linear model framework is

highly exclusionary, in the sense that applying that framework can exclude, by design,

broad ranges of estimates of N that are in fact as consistent with the observed data as

any others. In practice, we believe any CRC model framework that ignores potentially

valid estimates before they can even be considered should be used with great caution.

For example, prior authors suggest that epidemiological CRC data streams often tend
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Table 4.6: Frequency of log-linear models selected by the AIC and averaged estimates
from AIC-favored log-linear models across 1,000 simulations among 127 possible log-
linear models and 8 possible log-linear models under the usual conventions

All possilbe 127 models

X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Frequency a
Averaged

Estimates of
N = 5, 000

Scenario 1 b

✓ ✓ ✓ ✓ ✓ 798 3,040

✓ ✓ ✓ ✓ ✓ 52 3,804

✓ ✓ ✓ ✓ ✓ 150 8,052

Scenario 2 c

✓ ✓ ✓ ✓ ✓ 490 6,848

✓ ✓ ✓ ✓ ✓ 1 6,232

✓ ✓ ✓ ✓ ✓ 1 4,646

✓ ✓ ✓ ✓ ✓ 453 4,407

✓ ✓ ✓ ✓ ✓ ✓ 55 6,871

8 possible models under the usual conventions

X1 X2 X3 X1X2 X1X3 X2X3 X1X2X3 Frequency a
Averaged

Estimates of
N = 5, 000

Scenario 1 b ✓ ✓ ✓ ✓ ✓ 4 4,089

✓ ✓ ✓ ✓ ✓ ✓ 996 8,053

Scenario 2 c

✓ ✓ ✓ ✓ ✓ 846 6,848

✓ ✓ ✓ ✓ ✓ 1 4,409

✓ ✓ ✓ ✓ ✓ ✓ 153 6,871

†✓ indicates the predictor is included.
a The number of simulations that the model was selected by the AIC across 1,000 simulations.
b Data were generated from population-level multinomial model with N = 5, 000, p1 = 0.3, p2|1 =
0.2, p2|1̄ = 0.3, p3|12 = 0.8, p3|12̄ = 0.16, p3|1̄2 = 0.5, ψ = 0.1. Those parameters imply E(N011) =
E(N010) = 525 and p3|12/p3|1̄2 = p3|12̄/ψ = 1.6.
c Data were generated from population-level multinomial model with N = 5, 000, p1 = 0.3, p2|1 =
0.5, p2|1̄ = 0.3, p3|12 = 0.35, p3|12̄ = 0.35, p3|1̄2 = 0.25, ψ = 0.4375. Those parameters imply
E(N111) = E(N101) = 262.5, E(N110) = E(N100) = 487.5, p3|12̄/ψ = 0.8.
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to reflect a net positive dependence (Hook and Regal, 2000). However, as we have

seen in Figures 4.1 - 4.4, log-linear models might exclude many feasible estimates

corresponding to the situation in which data streams are positively correlated.

As stated in Coull and Agresti (1999), the dependency between data streams

cannot reliably be uncovered using only the observed cell counts. We have further

emphasized this point via simulation studies demonstrating that the model selection

procedure relying on the metric AIC is fundamentally deceiving. Specifically, the

model that fits the observed data “best” cannot be assumed to project the correct

untestable assumption about the unobserved cell count. Other model selection metrics

(e.g., BIC) would suffer from the same problem. It is also worth noting that adding

extra data streams cannot necessarily provide information for reliably inferring the

dependency among existing data streams. Along these lines, it can be tempting to

infer pairwise dependences using three-stream data (Lum and Ball, 2015). However,

no matter how many data streams are included, the number of cases not captured by

any streams is still unobserved. Thus, dependencies among data streams typically re-

main unclear. Because of the exclusionary property and the fact that model selection

in the CRC log-linear model framework is fraught with the pitfalls exhibited herein,

we encourage concerted efforts toward a departure from the current reality in which

that framework is the centerpiece of standard practice for CRC-based epidemiological

surveillance.

As one step toward such a departure, we note that the novel visualization plots

based on the MLE in Equation (4.1) have been demonstrated to permit a continuum

of estimates of N . This closed-form MLE potentially sheds light on an alternative

modeling framework (discussed in details in Chapter 5) that would avoid the “exclu-

sionary” problem of the log-linear model. In terms of model selection, an accessible

alternative framework focused on leveraging an epidemiologist’s knowledge about op-

erating characteristics of surveillance streams would be attractive, since (despite what
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metrics like AIC might suggest) no information about the true dependencies among

streams is available in the observed data alone. A key benefit of such an approach

would be the ability to foster careful consideration and transparency with regard to

the untestable assumption(s) upon which estimation is based, as opposed to having

them dictated as murky mathematical constructs based on the modeling framework

that one adopts. Nevertheless, we believe the nature of CRC surveillance will almost

always suggest a role for sensitivity and/or uncertainty analysis (Zhang and Small,

2020; Zhang et al., 2022).
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Chapter 5

A CRC Modeling Framework for

Disease Surveillance Emphasizing

Expert Opinion in the Spirit of

Prior Information
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5.1 Background

Motivated by the two main pitfalls associated with the log-linear model illustrated

in Chapter 4, we propose a modeling framework based on a population-level multi-

nomial model and hinging on a key parameter to characterize dependencies among

data streams. In the proposed framework, all possible estimates are theoretically

attainable. In addition, the framework incorporates expert opinion about the level

of dependency between data streams in a transparent way to drive estimation rather

than purely relying on mathematical constructs to project dependency assumptions

which could be hidden and misleading (Zhang et al., 2023a).

In the multinomial model, dependencies between data streams are introduced by

representing probabilities of possible capture histories based on a set of parameters

(Fienberg, 1972). In the proposed model, we consider a set of conditional probabili-

ties to characterize probabilities of different capture histories. This parametrization is

in the same spirit as one introduced previously by Farcomeni (2011). Specifically, in

Farcomeni (2011), a general class of models was developed to enable the estimation of

total case counts by introducing linear constraints on those conditional probabilities.

This idea of utilizing conditional probabilities was further extended to accommo-

date observed and unobserved heterogeneities in capture probabilities by including

covariates and random effects when analyzing individual-level CRC data (Farcomeni,

2016).

Although our proposed modeling framework uses an analogous parameterization,

it significantly differs from previous work by allowing the user to impose both linear

and non-linear constraints on conditional probabilities. Additionally, the proposed

model treats one conditional probability as the key parameter (i.e., the probability of

identification by the last data stream given lack of identification by any other data

stream) which is the basis to incorporate expert understanding of how data streams

interact with each other. The introduction of this key parameter enables a closed-
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form estimator under various constraints based on the multinomial distribution-based

likelihood. We also propose bias-corrected estimators to reduce mean bias associated

with the closed-form estimator under certain constraints. As a demonstrably prefer-

able alternative to confidence intervals based on the asymptotic normality of the

estimator, we provide credible intervals with favorable frequentist properties by ex-

tending a Dirichlet-multinomial-based procedure developed by Lyles et al. (2021a).

This Dirichlet-multinomial-based approach further permits uncertainty analyses to

produce credible intervals that acknowledge the user’s level of confidence on the de-

pendency assumption by assigning a distribution to a selected key dependence pa-

rameter.

5.2 Methods

5.2.1 Preliminaries

Consider a CRC study where K ≥ 2 surveillance systems are implemented for moni-

toring a disease among a closed population in which N diseased cases exist. Denote

O = {(11 . . . 11), (11 . . . 10), . . . , (00 . . . 00)} the set that includes 2K sequences, where

each sequence of length K consists of 0s and 1s and represents a possible capture his-

tory, 1 indicates captured by the system and 0 indicates not captured. In the set

O, capture histories are arranged in the lexicographic order. Let Nhi denote the

true number of cases having capture history hi that is the i-th element in O, for

i = 1, . . . , 2K . Note that
∑2K

i=1Nhi = N . Due to the nature of CRC studies, we

cannot observe cases that are not captured by any system, i.e., Nh
2K

is unobserved.

In other words, only nc =
∑2K−1

i=1 nhi cases are observed. We model those counts Nhi

using a population-level multinomial model (Darroch, 1958),

{Nhi}
2K

i=1 ∼ Multinomial
(
N, {phi(θ)}

2K

i=1

)
, (5.1)



87

where phi(θ) is the probability of having capture history hi and θ is the vector of

parameters used for characterizing multinomial probabilities. In this dissertation, we

choose a marginal probability and 2K − 1 conditional probabilities as parameters to

make this characterization. Specifically, θ = (p1, p2|1, p2|1̄, p3|12, p3|1̄2, . . . , pK|12...K−1),

where the marginal probability p1 is the probability of being captured by the first

system and the conditional probabilities again are arranged in the lexicographic order

where k̄ indicates not captured by the k-th system, otherwise yes. For example,

p3|1̄2 represents the proportion of being captured by the third system conditional on

identified by the second system but not identified by the first system. Compared to

conditional probabilities used in Farcomeni (2011) that describe capture probabilities

for each individual, the conditional probabilities included in θ are used to characterize

the probability of having certain capture history at the population-level. Focusing

on population-level parameters, the model in Equation (5.1) does not require capture

probabilities are homogeneous across individuals (Lyles et al., 2021a). We note that

the labeling of the data streams (i.e., determining which data stream should be labeled

as the last data stream) matters in this framework, and should be considered carefully

as part of the process of exerting expert opinion (see Section 5.5). Any capture

probability phi(θ) can then be factorized using those probabilities. As an example,

p011(θ) = (1− p1)p2|1̄p3|1̄2 when K = 3.

Using the model given in (5.1), the likelihood of N and θ can be written as follows:

L(N,θ) = Lb(N,θ)× Lc(θ)

=
N !

nc!(N − nc)!
pc(θ)

nc [1− pc(θ)]
(N−nc) × nc!∏2K−1

i=1 nhi !

2K−1∏
i=1

[
phi(θ)

pc(θ)

]nhi
,

(5.2)

where pc(θ) =
∑2K−1

i=1 phi(θ) is the probability of being captured at least once. As

shown in Equation (5.2), the likelihood L(N,θ) is decomposed into two parts: the
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binomial likelihood Lb(N,θ), and the conditional likelihood Lc(θ) which does not

include N . With this likelihood decomposition, a well-known estimator is given by

N̂ =
nc

pc(θ̂)
, (5.3)

where θ̂ is the maximum likelihood estimator (MLE) derived by maximizing Lc(θ)

(Fienberg, 1972; Sanathanan, 1972). At least one constraint that is unverifiable based

only on the observed data is required to estimate θ and N , since only 2K − 1 counts

are observed. Our approach hinges on the notion that couching this unverifiable

constraint in terms of an interpretable parameter, and directing expert opinion toward

it, opens up a CRC framework with significant advantages over existing paradigms

that attempt to identify that parameter solely through mathematical constructs.

Let ψ denote the last conditional probability pK|12...K−1 in θ, which is the propor-

tion of being identified by the last system but not by any other system. When ψ is

known, a closed-form MLE of N based on incorporating an arbitrary number (K) of

data streams using the model in Equation (5.1) has been introduced in Chapter 4,

that is (Zhang et al., 2023b):

N̂ψ = (nc − n0...1) +
n0...1

ψ
, , (5.4)

where n0...1 is the observed number of cases captured by the last system but not by

any other system. By varying the value of ψ, the MLE in Equation (5.4) allows one

to provide estimates of N corresponding to all feasible dependency structures across

systems. For example, Figure D.1 shows possible estimates of N under three- and

four-catch cases when valid ψ values are supplied into Equation (5.4). This MLE

acknowledges the continuum of estimated N . Again, we emphasize that labeling

matters when applying this MLE. As shown in Figure D.1, assigning different labels

to data streams results in different estimates of N even if the same value of ψ is
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assumed.

The assumption about the dependency structure between systems is key to the

estimation of N (Chao et al., 2001; Lyles et al., 2021a). This MLE has been shown

to be an unbiased estimator if the assumed ψ is correct, although inserting any valid

value of ψ ∈ (0, 1] leads to an estimate that is equally consistent with the observed

data (Lyles et al., 2021a). The MLE in Equation (5.4) is also the MLE in Equation

(5.3) when assuming ψ is known.

5.2.2 Proposed modeling framework

Point estimation

The MLE in Equation (5.4) provides a precise closed-form estimator of N ; however,

specifying an exact value of the non-identifiable parameter ψ is rarely possible except

under unique study designs (e.g., Lyles et al. (2021b)). To exploit this closed-form

MLE more generally in practice, we consider a class of estimators which is obtained

by relating ψ to other conditional probabilities in the parameter vector θ. Let θ∗

denote the rest of the parameters in θ with ψ removed and define ψ = g(θ∗), where

g(·) is a function that relates ψ to other parameters. When the constraint ψ = g(θ∗)

is imposed, all parameters in θ∗ are estimable using the conditional likelihood in

Equation (5.2). The estimator of N obtained by plugging the estimate ψ̂ = g(θ̂∗),

where θ̂∗ denotes the estimated θ∗, into Equation (5.4) is:

N̂
ψ

∣∣
ψ=g(θ̂∗)

= (nc − n0...1) +
n0...1

g(θ̂∗)
. (5.5)

The estimator in Equation (5.5) theoretically permits all possible estimates of N

that are consistent with the observed data. For example, defining g(θ∗) = p2|1 for

K = 2 means that the resulting estimator corresponds to the estimator derived in the

prior study under the independence assumption (Lincoln, 1930; Lyles et al., 2021a).
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In epidemiological studies, three-catch CRC data (K = 3) are commonly encountered.

To provide an overview of constraints that can be incorporated using the estimator in

Equation (5.5), we present possible constraints having practical interpretations under

the three-catch case in Table 5.1.

Table 5.1: Possible constraints that can be incorporated under the three-catch case

Constraint a Implications of the constraint when r = 1

Comments on the
labeling of data
streams under
the constraint

1 ψ =
p3|12
r

The proportion of cases identified by stream 3
among cases that are NOT captured by

streams 1 and 2 is equal to the proportion of
cases identified by stream 3 among cases

that are captured by both streams 1 and 2.

The estimation of N is
sensitive to the labeling.

2 ψ =
p3|1̄2
r

Streams 2 and 3 operate independently
among cases that are NOT captured

by stream 1.

The estimation of N is
invariant to the switch

labels of
stream 2 and stream 3.

3 ψ =
p3|12̄
r

Streams 1 and 3 operate independently
among cases that are NOT captured

by stream 2.

The estimation of N is
invariant to the switch

labels of
stream 1 and stream 3.

4 ψ = r
p3|1̄2p3|12̄
p3|12

(a) The conditional association between two
data streams is measured by a ratio of

two conditional probabilities in θ.
(b) The association between streams 1 and 3
among cases captured by stream 2 is the
same as the association between stream

1 and 3 among cases NOT captured by stream 2.
(c) The association between streams 2 and 3
among cases captured by stream 1 is the
same as the association between stream

2 and 3 among cases NOT captured by stream 1.

The estimation of N is
sensitive to the labeling.

5 ψ
1−ψ = r

[
p3|1̄2

1−p3|1̄2

][
p3|12̄

1−p3|12̄

]
[

p3|12
1−p3|12

]

(a) The conditional association between two
data streams is measured by an odds
ratio defined based on conditional

probabilities in θ.
(b) The association between streams 1 and 3
among cases captured by stream 2 is the
same as the association between stream

1 and 3 among cases NOT captured by stream 2.
(c) The association between streams 2 and 3
among cases captured by stream 1 is the
same as the association between stream
2 and 3 among cases NOT captured by

stream 1.

The estimation of N is
sensitive to the labeling.

a r can be a fixed value or follow a pre-parametric distribution in the uncertainty analysis; ψ = p3|1̄2̄)
under the three-catch case.

When relating ψ to θ∗, the estimator in Equation (5.5) coincides with the MLE

in Equation (5.3) if only one equality constraint [via g(θ∗)] is imposed. We note

that when using ψ obtained from maximizing the conditional likelihood while assum-

ing additional equality constraints involving estimable parameters, the estimator in
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Equation (5.5) is less efficient compared to the MLE in Equation (5.3). The efficiency

gained from imposing the extra constraints is not leveraged, since observed counts

(rather than fitted ones based on such constraints) are used in Equation (5.5). Con-

sider for example a case where K = 3, let g(θ∗) = p3|12̄ (i.e.,constraint 3 in Table

5.1 when r = 1) and assume an additional testable equality constraint p3|12 = p3|1̄2.

This additional constraint implies that E(N111)E(N010) = E(N011)E(N110). However,

whereas both constraints could be incorporated via Equation (5.3), using Equation

(5.5) to estimate N does not accommodate this additional constraint because the

observed counts are used. In the CRC context, testable constraints can be defensed

using common model selection metrics (e.g., AIC) based on the observed data alone.

As a result of imposing extra testable constraints, an improvement in the precision

of the estimation of N can be achieved. However, in fact, in the proposed modeling

framework, we persuade researchers to not take advantage of the efficiency gain by

imposing additional testable equality constraints. This is because the untestable con-

straint hinging on ψ is crucial to the estimation of N , while testable constraints are

less relevant to the validity of the estimation. Compared to gain statistical precision,

it is more important to focus attention on the untestable constraint that directly

relates to the validity of the estimation.

In our proposed modeling framework, we recommend the estimator in Equation

(5.5) for general use for several reasons. First, this closed-form estimator with given

g(θ̂∗) greatly facilitates bias-corrections, inference, and the incorporation of uncer-

tainty in assumptions imposed via g(θ∗) (as discussed in later sections) under various

situations which are potentially encountered in practice. Specifically, these advantages

occur when ψ is related to estimable parameters through only one equality constraint

defined by g(θ∗), where estimable parameters are referred to parameters in θ that

are not directly included when computing pc(θ) = 1 − (1 − p1)
∏K

k=2(1 − pk|1...k−1).

For example, p2|1, p3|12, p3|1̄2, and p3|12̄, are the estimable parameters in θ under the
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three-catch case, and each can be readily estimated in closed form. For instance, the

estimator of p3|12 is n111

n111+n110
, and estimators of the other two estimable parameters

(i.e., p3|1̄2 and p3|12̄) are obtained similarly. When ψ is defined as a function of es-

timable parameters, using Equation (5.5) guarantees a closed form estimator for N

and avoids the complication of inestimable parameters (such as p2|1̄) required in the

computation of pc(θ) that may necessitate numerical maximization of the conditional

likelihood in order to use Equation (5.3). This could be especially laborious when a

non-linear constraint is assumed in g(θ∗).

In addition to the aforementioned statistical advantages, the introduction of g(θ∗)

allows the practitioner to accommodate external knowledge about the dependency

between systems. In other words, an expert’s understanding and opinion about how

the systems interact with each other can be directly incorporated through careful

consideration of how the key parameter ψ relates to the estimable parameters in θ.

Expert opinion can be the most valuable tool for guiding the estimation of N , since

the assumption about the dependency cannot be verified through any model selection

metric based on the observed data alone.

Bias corrections

As discussed in Chapter 3, under the two-catch case (K = 2), previous developments

led to an estimator (i.e., Equation (3.3)) allowing any level of dependency between

two systems by introducing a ratio parameter ϕ = p2|1/ψ, where ϕ measures the

population-level dependency level (= 1 indicates independence, > 1 indicates posi-

tively associated, and < 1 indicates negatively associated) (Zhang et al., 2023a). This

estimator can be obtained by defining g(θ∗) = p2|1/ϕ using Equation (5.5), assuming

ϕ is known. We have showed that this estimator is biased in Chapter 3, and developed

two bias-corrected estimators using a Taylor-series expansion approach (Lyles et al.,

2021a; Zhang et al., 2023a). In this Chapter, we exploit the fact that the analogue
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to ϕ can be defined similarly for any K > 2, yielding a corresponding estimator of N

via Equation (5.5). As in the two-stream case, these resulting estimators with given

ratio parameters are biased; however, the Taylor expansion approach can again be

applied to derive bias-corrected estimators. Here, we specifically extend this approach

to the three-catch case and derive bias-corrected estimators based on three different

definitions of the ratio parameter. Those estimators are:

N̂ϕ1 = (nc − n001) +
n001(n111 + n110)

n111

ϕ1 −
n110n001

(n111 + 0.5)2,
(5.6)

N̂ϕ2 = (nc − n001) +
n001(n011 + n010)

n011

ϕ2 −
n010n001

(n011 + 0.5)2
, (5.7)

N̂ϕ3 = (nc − n001) +
n001(n101 + n100)

n101

ϕ3 −
n100n001

(n101 + 0.5)2
, (5.8)

where ϕ1 = p3|12/ψ, ϕ2 = p3|1̄2/ψ, and ϕ3 = p3|12̄/ψ. These three ratio parameters are

directly interpretable, note that they are the same as the r defined in Table 5.1 for

constraints 1-3. For example, ϕ2 = 1 indicates that the second system and the third

system operate independently among cases that are not captured by the first system,

which implies g(θ∗) = p3|1̄2. We note that the number of analogues of ϕ increases

rapidly as K increases, as there are a total of
∑K−2

j=0

(
K−1
j

)
analogues of ϕ for a given

K. In addition, when g(θ∗) imposes a non-linear relationship between ψ and other

estimable parameters (e.g., g(θ∗) =
p3|1̄2p3|12̄
p3|12

), the derivation of the bias correction can

become laborious because the Taylor expansion approach requires one to compute the

Hessian matrix of a function of multiple conditional capture probabilities. Specifically,

the function of interest includes 2K − 1 conditional capture probabilities which are

defined as probabilities of having observable capture histories conditional on being

identified while incorporating constraints specified via g(θ∗). The Taylor expansion

approach is not easily generalizable to such cases, as the derivation is specific to the

definition of that g function.

Under the independence assumption for K = 2, there is a well-known classical
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bias-corrected estimator (Chapman, 1951). Lyles et al. (2021a) demonstrated that

inserting the Beta(1, 0) prior-based posterior mean of p2|1 (i.e., n11+1
n11+n10+1

) as ψ into

the estimator in Equation (5.4) replicates the Chapman estimator. Motivated by this

fact, we propose a straightforward and generalizable bias-correction strategy which

inserts Beta(1, 0) posterior means into Equation (5.5) for any estimable parameters

appearing in g(θ∗). For example, given g(θ∗) =
p3|1̄2p3|12̄
p3|12

for K = 3, this strategy

yields the following convenient bias-corrected estimator:

(nc − n001) +
n001(n111 + 1)(n011 + n010 + 1)(n101 + n100 + 1)

(n101 + 1)(n011 + 1)(n111 + n110 + 1)

Compared to the Taylor expansion approach, this strategy can be easily applied to

incorporate any form of g(θ∗) that links ψ to estimable parameters, for any given

K. In Section 5.3, we compare the two bias correction approaches in scenarios where

both are accessible.

Inference via Bayesian credible intervals

To flexibly incorporate various forms of g(θ∗) and achieve favorable coverage, we

extend the Dirichlet-multinomial-based approach proposed in Lyles et al. (2021a)

to provide credible intervals to accompany the estimator of N in Equation (5.5)

while incorporating constraints imposed via g(θ∗) for any given K. First, note that

the conditional likelihood given in Equation (5.2) implies the observed counts con-

ditional on nc follow a multinomial distribution with probabilities p∗hi =
phi (θ)

pc(θ)
for

i = 1, . . . , 2K − 1. To obtain 95% credible intervals for N under various assumptions

which are introduced via different constraints defined by g(θ∗), we begin by generating

multiple simulated datasets by assigning a Dirichlet prior to p∗ = (p∗h1 , . . . , p
∗
h
2K−1

).

Specifically, simulated datasets are obtained from multiplying nc by posterior samples

of p∗. For the l-th simulated dataset, an estimate N̂l is computed using Equation
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(5.5) with the corresponding pre-specified g(θ∗). However, these estimates of N are

conditional on nc. To account for the uncertainty in nc, we implement an additional

step. We draw a sample from a binomial distribution with probability pc,l = nc,l/N̂l

and size nc/pc,l (this value is rounded to the nearest integer) which we denote as n∗
c,l,

where nc,l is the sum of the generated observed cell counts based on the l-th simu-

lated dataset. Finally, we take the 2.5th and 97.5th percentiles of samples computed

as n∗
c,l/pc,l to form the 95% credible interval of N under the assumption specified

via g(θ∗). A detailed summary of the steps for constructing the proposed credible

intervals can be found in Appendix D.1.

Uncertainty analysis

In our proposed modeling framework, assumptions about the dependency structure

across systems are introduced by focusing investigator attention upon a key non-

identifiable but interpretable population-level parameter ψ, and defining g(θ∗) as a

way to formulate a well-considered assumption about ψ in terms of estimable param-

eters. However, it is not possible to be certain about this dependency level assump-

tion in most epidemiological studies. We propose a simulation-based approach to

propagate uncertainty about the parameter characterizing assumptions about the de-

pendency level. A parametric distribution (e.g., uniform or normal) is introduced to

the parameter that characterizes the dependency strength under a given dependency

structure which is specified through g(θ∗). In the proposed uncertainty analysis, we

draw multiple samples from the assumed distribution for that parameter. For each

simulated value of that parameter, we then apply the Dirichlet-based approach to ob-

tain samples of the estimated N under the specified g(θ∗). We pool all samples across

different values of that parameter together to construct the credible interval that in-

corporates both statistical uncertainties and the uncertainty about that parameter.

Details about the proposed uncertainty analysis, which generalizes past work (e.g.,
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Chatterjee and Mukherjee (2016), Zhang et al. (2023a)) in the two-stream case to the

setting of arbitrary K, can be found in Appendix D.2.

5.3 Simulations

We conducted simulation studies to evaluate the performance of the proposed bias-

corrected estimators, the Dirichlet-multinomial-based credible intervals, and the un-

certainty analysis under various scenarios. For each scenario, 1000 replicates were

simulated. We first evaluated the performance of the proposed bias-corrected estima-

tors for estimating N , and the Dirichlet-multinomial-based credible intervals. We also

implemented the log-linear model, (perhaps the most commonly used CRC method in

epidemiological studies), for comparison whenever applicable (Cormack, 1989; Jones

et al., 2014). Details of all of our simulation settings are given in Appendix D.3.

We consider here two constraints as examples under the three-catch case: (A)

p3|1̄2 = ψ and (B) the odds ratio constraint
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

=
p3|12̄/(1−p3|12̄)

ψ/(1−ψ) . These two

constraints are constraints 2 and 5 showed in Table 5.1 when fixing r at 1, both

of them imply assumptions that are reasonable in practical applications. Under con-

straint A, two bias-corrected estimators are available. One is derived using the Taylor

expansion approach as given in Equation (5.7), and the other is obtained by leverag-

ing the Beta(1, 0) prior-based posterior mean of p3|1̄2. For constraint B, the Taylor

expansion approach is less straightforward since ψ is a non-linear function of other

estimable parameters. However, the bias-correction based on Beta(1, 0) priors for the

estimable parameters is straightforward and easily accessible. We note that there are

saturated log-linear models that imply these two constraints, i.e., log-linear models

including a number of predictors equal to the number of observed cell counts. These

two saturated log-linear model can be found in Equations (D.1) and (D.2). For the

log-linear model, the profile likelihood approach is often advocated in statistical lit-
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erature for computing the confidence interval for N (Cormack, 1992; Gimenez et al.,

2005). However, in practical CRC analyses for epidemiological studies, the confidence

interval is commonly obtained by exponentiating a simple Wald-based interval for the

intercept (Zhang and Small, 2020).

Table 5.2 presents the relative bias, the coverage probability, and the average

width of 95% intervals for estimating N under constraint 1. It is clear that the log-

linear model and the estimator in Equation (5.5) produced the same point estimates

across the different simulation scenarios. Note that estimates obtained from both

methods are biased upwards, with the bias decreasing as the sample size and/or

the probability of being caught at least once increases. Compared with the biased

estimator in Equation (5.5), the two bias-corrected estimators derived using the Taylor

expansion approach and leveraging the Beta(1, 0) prior significantly reduced the bias

especially for moderate sample sizes (e.g., N = 500). In addition, these two bias

correction approaches are almost identical in all cases.

From Table 5.2, we also observe that the coverage of the 95% credible intervals

obtained from the proposed Dirichlet-based approach achieved or was close to the

nominal level regardless of what estimators were used. In addition, the two common

interval estimation approaches applied to the log-linear model also provided satis-

factory coverage across all scenarios. However, the Dirichlet-based approach using

bias-corrected estimators resulted in a reduction in the interval width under most

scenarios.

Simulation results based on constraint 2 are shown in Table 5.3, with the equiv-

alence between the estimator of N in Equation (5.5) and the log-linear model-based

estimate again demonstrated. The bias-corrected estimator obtained by inserting

posterior means of estimable parameters into Equation (5.5) demonstrably reduced

the positive bias of the uncorrected estimator in Equation (5.5) across all scenarios.

Credible intervals obtained in conjunction with this bias-corrected estimator yielded
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reduced interval width, while maintaining appealing coverage compared to the other

intervals.

To demonstrate the flexibility of the proposed modeling framework, we next car-

ried out a simulation study under scenarios where no log-linear model is applicable.

Specifically, we considered a scenario where referral exists in the three-catch case

(Jones et al., 2014). The proposed modeling framework was implemented to accom-

modate this scenario by introducing a parameter to characterize the referral pro-

portion and specifying a constraint that correctly implies the dependency structure

between the three systems. For the purpose of comparison, we applied the log-linear

modeling paradigm in which the AIC was used for selecting the model among candi-

date models. As expected, our proposed modeling framework provided valid estimates

and excellent coverage, while the log-linear model failed to incorporate such scenarios

as illustrated in the previous study (Table 5.4) (Jones et al., 2014).

We further conducted simulations to illustrate the benefits of the proposed strat-

egy of imposing a well-considered assumption via linking estimable parameters to the

inestimable parameter ψ. First, we generated data under the independence assump-

tion for the three-catch case and fitted the proposed model assuming a less restrictive

constraint where ψ = p3|1̄2 (note that while independence implies this constraint, the

converse is not true). Under this latter constraint, we only focused on the ψ param-

eter and made no assumptions about the association between system 1 and system

2. As shown in Table 5.5, the coverage of credible intervals obtained under both the

independence assumption and the assumption ψ = p3|1̄2 is satisfactory. As expected,

wider intervals were observed when the less restrictive constraint was assumed. How-

ever, estimates obtained via this less restrictive constrain were empirically unbiased

when the proposed bias-correction was implemented. On the other hand, when data

were generated under the less restrictive constraint ψ = p3|1̄2, assuming independence

yielded biased estimates and a severe under-coverage problem (Table 5.5). Thus, ap-
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plication of the targeted constraint offers an accessible robust alternative to the full

independence assumption.

To evaluate the performance of the uncertainty analysis, we considered a setting

in which the untestable assumption about the dependency between system 1 and

system 3 conditional on lack of capture by system 2 can be benchmarked by the

testable assumption about the dependency between system 1 and system 3 conditional

on capture by system 2. The corresponding constraint can be expressed as
p3|12
p3|1̄2

=

r
p3|12̄
ψ

, where r is referred to as the key parameter determining the dependency across

systems, and it can be a fixed value or follow a pre-specified parametric distribution

to allow for uncertainty. Table 5.6 shows coverage and average widths of 95% credible

intervals obtained from the proposed uncertainty analysis across different forms of r.

We first demonstrated that the uncertainty analysis successfully incorporates both

statistical uncertainties and the uncertainty of the assumption about dependency, as

suggested by the coverage of 95% credible intervals obtained under scenarios where

the distribution of r is correctly specified. When data were generated by allowing

r to vary within a range (i.e., r ∼ Uniform(0.8, 1.2)) mistakenly assuming a fixed

value of r resulted in an expected under-coverage problem that is aggravated as N

increases. However, the under-coverage problem alleviates when a distribution which

is less variant (i.e., N(1, 0.062) essentially covers the same range as the Uniform(0.8,

1.2) but is less variant) compared to the one used for generating data was introduced

for r. We also showed that incorporating uncertainty for the key parameter r is

beneficial relative to assuming an incorrect fixed value for r, with respect to providing

credible intervals for N with better coverage. This is the key point of such uncertainty

analyses, as previously outlined in the simpler two-catch setting discussed in Chapter

3 (Zhang et al., 2023a).
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Table 5.2: Simulation results for estimating N under constraint 1, p3|1̄2 = ψ: relative
bias, 95% coverage, and width of intervals averaged across 1000 simulated datasets
where pc is the probability of being caught at least once.

pc = 0.53 pc = 0.64

N Estimator a Relative
bias b Coverage

Average
width

Relative
bias b Coverage

Average
width

500
Proposed
(no BC)

0.061 93.5 406.5 0.014 93.7 175.1

Proposed
(BC)

0.004 92.1 314.6 0.002 93.8 165.7

Proposed
(BC beta prior)

0.003 91.7 311 0.002 93.5 165.3

Log-linear
(exp)

0.061 94.7 471.1 0.014 93.1 174.3

Log-linear
(prof)

- 95.2 416.0 - 93.6 179.7

1000
Proposed
(no BC)

0.022 95.7 504.8 0.009 95.2 241.2

Proposed
(BC)

-0.001 94.4 454.0 0.003 95.5 234.7

Proposed
(BC beta prior)

-0.002 94.8 453.5 0.003 95.4 234.7

Log-linear
(exp)

0.022 95.4 519.2 0.009 94.6 235.3

Log-linear
(prof)

- 95.4 526.9 - 94.9 243.7

2000
Proposed
(no BC)

0.011 94.4 676.1 0.004 94.3 334.5

Proposed
(BC)

0 94.5 647.1 0.002 94.4 330.7

Proposed
(BC beta prior)

0 94.1 646.1 0.002 94.1 330.2

Log-linear
(exp)

0.011 94.6 681.7 0.004 93.6 323.6

Log-linear
(prof)

- 94.6 688.2 - 94.3 336.4

5000
Proposed
(no BC)

0.003 96.0 1035.8 0.003 94.3 524.5

Proposed
(BC)

-0.001 95.8 1017.2 0.002 94.4 521.8

Proposed
(BC beta prior)

-0.001 95.8 1018.1 0.002 94.2 522.3

Log-linear
(exp)

0.003 95.7 1031.4 0.003 93.1 504.2

Log-linear
(prof)

- 95.7 1038.6 - 93.6 519.3

a Proposed (no BC) = estimator in Equatio (5.5), Proposed (BC) = estimator in Equation (5.7),
Proposed (BC beta prior) = estimator derived by leveraging Beta posterior for p3|1̄2, Log-linear
(exp) = 95% Wald-type confidence interval obtained based on the estimated intercept, Log-linear
(prof) = 95% confidence interval obtained using the profile likelihood approach. b Relative bias is
computed as

∑
i(N̂i −N)/1000, where i is the simulation index.
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Table 5.3: Simulation results for estimating N under constraint 2,
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

=
p3|12̄/(1−p3|12̄)

ψ/(1−ψ) : relative bias, 95% coverage, and width of intervals averaged across 1000
simulated datasets, where pc is the probability of being caught at least once.

pc = 0.55 pc = 0.63

N Estimator a Relative
bias b Coverage

Average
width

Relative
bias b Coverage

Average
width

500
Proposed
(no BC)

0.061 93.4 585.8 0.045 94.5 426.3

Proposed
(BC beta prior)

0.02 92.6 496.6 0.026 94.0 381.1

Log-linear
(exp)

0.061 93.8 630.0 0.045 94.8 444.3

Log-linear
(prof)

- 93.1 606.5 - 93.5 429.2

1000
Proposed
(no BC)

0.03 94.4 730.7 0.016 94.8 529.3

Proposed
(BC beta prior)

0.012 94.2 679.1 0.009 94.5 505.4

Log-linear
(exp)

0.030 94.4 750.5 0.016 95.0 537.7

Log-linear
(prof)

- 94.2 738.9 - 94.5 529.2

2000
Proposed
(no BC)

0.015 94.6 963.9 0.015 94.4 724.6

Proposed
(BC beta prior)

0.007 94.3 931.8 0.012 94.2 710.6

Log-linear
(exp)

0.015 94.9 974.2 0.015 94.5 726.8

Log-linear
(prof)

- 94.2 968.1 - 94.7 722.2

5000
Proposed
(no BC)

0.008 94.2 1471.3 0.008 93.7 1101.5

Proposed
(BC beta prior)

0.005 94.3 1452.7 0.006 94.0 1095.0

Log-linear
(exp)

0.008 94.5 1472.2 0.008 93.4 1099.2

Log-linear
(prof)

- 94.6 1467.7 - 93.6 1097.4

a Proposed (no BC) = estimator in Equatio (5.5), Proposed (BC beta prior) = estimator derived
by leveraging Beta posterior for p3|12, p3|1̄2, and p3|12̄, Log-linear (exp) = 95% Wald-type confidence
interval obtained based on the estimated intercept, Log-linear (prof) = 95% confidence interval
obtained using the profile likelihood approach. b Relative bias is computed as

∑
i(N̂i − N)/1000,

where i is the simulation index.
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Table 5.4: Simulation results for estimating N under referral scenarios where a pro-
portion q of cases are referred from stream 1 to stream 3, and streams 1 and 3 are
independent given capture status in stream 2: relative bias, 95% coverage, and width
of intervals averaged across 1000 simulated datasets, where q is the proportion of
cases that are referred from stream 1 to stream 3.

q = 0.1 q = 0.3

N Estimator a
Relative
bias b

Coverage
Average
width

Relative
bias b

Coverage
Average
width

500
Proposed
(no BC)

0.046 95.0 603.2 0.135 95.1 1286.9

Log-linear
(exp)

0.248 55.1 581.0 0.634 48.9 1022.3

Log-linear
(prof)

- 58.8 490.5 - 51.8 869.5

1000
Proposed
(no BC)

0.020 95.1 471.9 0.037 95.4 1025.9

Log-linear
(exp)

0.203 58.8 769.7 0.466 35.1 1104.0

Log-linear
(prof)

- 62.1 765.4 - 38.0 1100.7

2000
Proposed
(no BC)

0.008 95.5 518.0 0.017 94.9 873.7

Log-linear
(exp)

0.190 58.6 1064.0 0.404 10.6 1414.7

Log-linear
(prof)

- 61.4 1058.2 - 11.9 1412.1

5000
Proposed
(no BC)

0.004 95.5 760.1 0.004 95.6 1066.4

Log-linear
(exp)

0.180 24.0 1614.5 0.382 0 2115.2

Log-linear
(prof)

- 25.3 1609.7 - 0 2110.3

† The log-linear model was selected based on the AIC for each simulation, candidate log-linear models
follow the usual conventions that are no three-way interactions, and include all capture indicators
for streams.
a Proposed (no BC) = estimator in Equatio (5.5), Log-linear (exp) = 95% Wald-type confidence
interval obtained based on the estimated intercept, Log-linear (prof) = 95% confidence interval
obtained using the profile likelihood approach.
b Relative bias is computed as

∑
i(N̂i −N)/1000, where i is the simulation index.
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Table 5.5: Simulation results for estimating N when the dependency structure is mis-
specified: relative bias, 95% coverage, and width of intervals averaged across 1000
simulated datasets.

Data generated under the
independence assumption

Data generated under
the assumption

N
Assumption specified
in the fitted model

a Relative
bias

b Coverage
Average
width

Relative
bias

b Coverage
Average
width

500 independence 0.013 94.4 179.0 -0.204 6.2 92.5
ψ = p3|1̄2 0.005 92.9 346.1 0.004 92.1 314.6

1000 independence 0.006 94.6 261.5 -0.206 0.2 132.6
ψ = p3|1̄2 -0.001 95.8 511.9 -0.001 94.4 454.0

2000 independence 0.003 93.7 374.4 -0.206 0.0 189.5
ψ = p3|1̄2 0.003 94.4 738.9 0.000 94.5 647.1

5000 independence 0.001 95.0 596.3 -0.207 0.0 300.1
ψ = p3|1̄2 -0.001 93.7 1153.5 -0.001 95.8 1017.2

a The bias-corrected estimator given in Equation (5.7) is used when the model assumes
ψ = p3|1̄2.
b Relative bias is computed as

∑
i(N̂i −N)/1000, where i is the simulation index.

Table 5.6: Coverage and width of 95% credible intervals obtained from uncertainty
analysis imposing the constraint

p3|12
p3|1̄2

= r
p3|12̄
ψ

; results were averaged across 1000 sim-

ulated datasets and bias-corrections leveraging Beta(1, 0) priors were implemented.

Data generated
assuming

r ∼ Uniform(0.8, 1.2)

Data generated
assuming
r = 0.9

Data generated
assuming
r = 1.1

N Assumption Coverage
Average
width

Coverage
Average
width

Coverage
Average
width

1000 r = 1 90.9 835.8 92.8 514.0 93.8 625.5
r ∼ N(1, 0.062) 92.0 861.9 92.9 532.2 93.4 643.8

r ∼ Uniform(0.8, 1.2) 95.1 952.0 96.1 602.7 95.9 731.1
2000 r = 1 88.8 1163.0 88.5 712.4 93.5 873.0

r ∼ N(1, 0.062) 88.5 1197.7 90.1 751.1 94.6 922.0
r ∼ Uniform(0.8, 1.2) 94.4 1409.4 96.3 912.1 97.5 1122.6

5000 r = 1 81.2 1813.1 83.8 1124.4 90.8 1357.0
r ∼ N(1, 0.062) 84.7 1970.3 89.3 1271.6 93.0 1515.5

r ∼ Uniform(0.8, 1.2) 94.2 2620.3 97.9 1774.4 97.5 2127.2
10000 r = 1 68.9 2547.7 75.5 1591.7 79.9 1932.7

r ∼ N(1, 0.062) 75.2 2984.5 87.1 1944.3 89.1 2376.2
r ∼ Uniform(0.8, 1.2) 93.7 4421.7 99.3 3030.1 98.7 3722.5

20000 r = 1 55.2 3643.2 60.0 2240.8 67.0 2707.1
r ∼ N(1, 0.062) 71.7 4769.1 84.9 3174.7 88.2 3847.7

r ∼ Uniform(0.8, 1.2) 95.2 7906.7 100 5512.1 99.7 6673.2
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5.4 Real Data Applications

We applied our proposed modeling framework to two real CRC datasets which have

been analyzed before using the log-linear modeling paradigm (Abeni et al., 1994;

Poorolajal et al., 2017). Both datasets were collected for surveying the number of

HIV infections in a particular area; the first real data application involves three data

streams, while the second contains four data streams.

5.4.1 Three-stream HIV CRC data

The CRC data for this example relate to HIV-positive patients identified by three data

streams: stream 1 (transfusion center), stream 2 (volunteer counseling and testing

centers), and stream 3 (prison) in Iran in 2016. In the original analysis, a final

estimate was obtained from a log-linear model including all three capture indicators

for separate data streams, a two-way interaction term between capture indicators

for streams 1 and 2, and a two-way interaction term between capture indicators for

streams 2 and 3 (Poorolajal et al., 2017). As a result, the total number of HIV positive

cases (N) was estimated to be 17,149 with 95% Wald-type confidence interval (CI)

(11,979 - 25,078). One can show that the log-linear model selected in the previous

study imposes two constraints expressed as p3|12 = p3|1̄2 and p3|12̄ = ψ using the

parameterization adopted in our proposed modeling framework. This model was

selected based on AIC considerations, following common practice. However, prior

work clearly demonstrates that AIC is not a defensible tool for model selection in

the CRC context. A fact hidden from the typical user is that the log-linear model

framework led to selecting this model because the testable constraint (i.e., p3|12 =

p3|1̄2) was largely consistent with the observed data. A key issue is that the crucial

untestable constraint (p3|12̄ = ψ) does not follow logically from the testable constraint

but rather is projected as a mathematical construct under the exclusionary log-linear
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framework (Zhang et al., 2023b).

In the proposed modeling framework, we recommend the use of the estimator in

Equation (5.5) that utilizes observed counts and incorporates the constraint which

relates the inestimable parameter ψ to other estimable parameters. Assuming the

same untestable constraint as the selected log-linear model (i.e., g(θ∗) = p3|12̄/r and

r = 1) and applying the bias-correction, the proposed model resulted in the estimate

of 16,530 (95% CI: 11,644 – 22,933). Since the constraint imposed to enable the

estimation of N cannot be verified by the observed data alone, we also applied the

proposed uncertainty analysis in which r was assumed to follow the Uniform(0.8, 1.2),

the resulting 95% CI was (11,016 – 25,385). We note that application of the proposed

modeling framework with an investigator choosing the above constraint with r = 1

yields interval estimates similar to those reported by the original authors.

Besides the dependency specified via the selected log-linear model, we explored

other possible dependency structures between data streams that the investigator could

assume using the proposed model. The resulting estimates are shown in Figure 5.1.

We note that all estimates reported under the proposed model framework are bias-

corrected using the procedure relying on Beta(1, 0) priors. We first considered the

dependency structure specified by defining g(θ∗) = p3|1̄2/r. Specifically, we assumed

r equal to 2, which implies a positive association between streams 2 and 3 among

cases not identified by stream 1. Such a positivity assumption could be reasonable in

this setting, as both streams 2 and 3 are volunteer-based (Poorolajal et al., 2017). To

allow for uncertainty in this assumption, the Uniform(1.6, 2.4) distribution was also

introduced to r. It is clear that the estimates of N obtained under these assumptions

are much smaller than the estimate from the selected log-linear model.

We also explored other constraints which imply positive associations between

streams 2 and 3. Specifically, we anchored the association between streams 2 and

3 among cases that were not identified by stream 1 using the association between
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streams 2 and 3 among cases that were identified by stream 1. The strength of the

latter association can be reflected using different quantities that can be estimated

using the observed data. For example, we used relative risks (RRs) p3|12/p3|12̄ and

p3|1̄2/ψ to measure those two associations. In this real data example, the observed

data indicated that there is a positive association between streams 2 and 3 among

cases captured by stream 1. The constraint to enable the estimation is expressed as

p3|12
p3|12̄

= r
p3|1̄2
ψ

, where r determines the strength of the association between streams 2

and 3 among cases not identified by stream 1. The resulting estimates are given in

Figure 5.1 and labeled as RR = 1 or 2 and RR ∼ Uniform(0.8, 1.2) or Uniform(1.6,

2.4), indicating r = 1 or 2, and r ∼ Uniform(0.8, 1.2) or Uniform(1.6, 2.4). Lastly, we

considered the constraint
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

= r
p3|12̄/(1−p3|12̄)

ψ/(1−ψ) , which is referred to as an odd-

ratio (OR) type constraint. Under this constraint, the association between streams

2 and 3 among cases identified by stream 1 was measured using the odd ratio and

was estimated from the real data. The estimates along with 95% CIs are provided in

Figure 5.1 when assuming r = 2 and r follows Uniform(1.6, 2.4). This point estimate

(i.e., assuming OR=2) is similar to the one obtained using the constraint defined via

the relative risk (i.e., RR=2).

5.4.2 Four-stream HIV CRC data

This four-stream HIV data were collected from four sites implemented for testing HIV-

1 infected patients in Lazio, Italy during 1990 (Abeni et al., 1994). The prior authors

reported an estimate using a log-linear model containing four capture indicators for

each data source and the two-way interaction between indicators for streams 3 and

4. One can show that this log-linear model implies the following constraints on the

inestimable parameter ψ: p4|123̄ = p4|1̄23̄ = p4|12̄3̄ = ψ. We computed point estimates,

corresponding 95% CIs, and 95% CIs allowing uncertainties around the assumptions

under these three separate constraints (Figure 5.2). As recommended under the
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proposed framework, we only focused on the constraint associated with ψ and did

not impose testable constraints (i.e., p4|123̄ = p4|1̄23̄ = p4|12̄3̄). The two constraints

(p4|1̄23̄ = ψ and p4|12̄3̄ = ψ) resulted in estimates which fall into the same range as the

estimate obtained from the log-linear model selected by the original authors. However,

note for example that the p4|123̄ = ψ assumption produces an estimate that is much

smaller. The previous authors stated that there are cases referred from stream 3 to

stream 4. Thus, it is reasonable to speculate that streams 3 and 4 were positively

associated. To characterize this positive association, we considered three constraints:

(a) ψ = p4|12̄3/r, (b)
p4|1̄23
p4|1̄23̄

= r1
p4|1̄2̄3
ψ

, and (c)
p4|12̄3
p4|12̄3̄

= r2
p4|1̄2̄3
ψ

. Constraint (a) relates the

inestimable ψ to the estimable parameter p4|12̄3 yields an estimated N of 6329 (95%

CI: 3412 – 13,786) when assuming r = 2. As shown in Figure 5.2, the estimate under

constraint (b) specifying r1 equal to 2 coincided with the estimate from the selected

log-linear model. However, they imply different dependency structures between data

streams. When assuming r2 = 2, constraint (c) resulted in an estimate much larger

than the others.

5.5 Discussion

This Chapter presents an accessible modeling framework based on the population-

level multinomial model, with interpretable conditional probabilities introduced to

characterize the probability of different capture histories. By focusing on the key in-

estimable parameter ψ (i.e., the probability of being captured by the last data stream

given not identified by any other data stream), the proposed framework allows the

user to flexibly incorporate expert opinion about dependencies among data streams

to guide the estimation of the number of diseased cases. Unless under a careful design

to ensure the independence between data streams (Lyles et al., 2021b), we believe

relying on expert opinion is in fact the most promising way to specify the depen-
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Figure 5.1: Estimates and 95% credible intervals of N obtained from applying the
proposed modeling framework while imposing different constraints to three-catch HIV
CRC data collected in Iran in 2016. The dashed grey line marks the point estimate
reported by Poorolajal et al. (2017), who analyzed the same based on a log-linear
model. RR denotes the relative risk-type constraint

p3|12
p3|12̄

= r
p3|12̄
ψ

, e.g., RR=2 indicates

r = 2. OR denotes the odd ratio-type constraint
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

= r
p3|12̄/(1−p3|12̄)

ψ/(1−ψ) , e.g.,

OR ∼ Unif(1.6, 2.4) indicates r ∼ Uniform(1.6, 2.4).
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Figure 5.2: Estimates and 95% credible intervals of N obtained from applying the
proposed modeling framework while imposing different constraints to four-catch HIV
CRC data collected in Lazio, Italy during 1990. The dashed grey line marks the
point estimate reported by Abeni et al. (1994), who analyzed the same data using a
log-linear model. RR 1bar denotes the relative risk-type constraint

p4|12̄3
p4|1̄23̄

= r1
p4|1̄2̄3
ψ

,

e.g., RR 1bar=2 indicates r1 = 2. RR 2bar denotes the relative risk-type constraint
p4|12̄3
p4|12̄3̄

= r2
p4|1̄2̄3
ψ

, e.g., RR 2bar∼Unif(1.6, 2.4) indicates r2 ∼ Uniform(1.6, 2.4).
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dency assumption which drives the estimation. Since we recommend imposing the

dependency assumption by relating the key parameter to other estimable conditional

probabilities, carefully determining how to label data streams can greatly facilitate

the estimation. For example, when considering a scenario where data streams A, B,

and C are implemented, it is better to label stream A or B as the last data stream

when one has confidence to speculate that streams A and B are positively associated.

Besides assigning labels to data streams, choosing constraints (i.e., determining

g(θ∗)) is also a critical step in the proposed modeling framework. We provide an

overview of practical constraints in Table 5.1 for three-catch cases, and implemented

those constraints in simulation studies and the real data application. As described in

Table 5.1, the odd ratio-type constraint (i.e., constraint 5 in Table 5.1) as well as the

relative risk-type constraint (i.e., constraint 4 in Table 5.1) anchor the inestimable

association using estimable associations, while two constraints adopt different mea-

surements of associations. We observed that the odd ratio-type constraint yields the

same estimation regardless of the labeling when the value of r is specified, this con-

clusion can be easily demonstrated theoretically. Compared to the use of odds ratio-

type constraint, using the relative risk-type constraint more flexibly incorporates the

dependency assumption since this constraint allows leverage expert opinions to deter-

mine which stream should be labeled as the last data stream. Additionally, in the real

data application using three-catch data, we observed that estimates obtained from

imposing the odds ratio type constraint were generally associated with larger stan-

dard errors compared to estimates based on the relative risk-type constraint (e.g.,

Figure 5.1). Thus, we recommend the use of relative risk-type constraint over the

odds ratio-type constraint when analyzing three-catch data.

We proposed a straightforward bias-correction procedure leveraging Beta(1, 0)

posterior means of the estimable conditional probabilities to reduce the mean bias.

This can be viewed in spirit as a significant generalization of classical bias corrections
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under stream independence assumptions (e.g., Chapman (1951)). In conjunction

with bias-corrected estimators, we find that our proposed adapted credible interval

approach produces intervals of smaller length, while maintaining favorable cover-

age compared to direct use of the unadjusted estimator. The uncertainty analy-

sis accomplished based on the Dirichlet-multinomial-based approach allows one to

characterize and readily accommodate uncertainties in the dependency assumption.

Through simulation studies, we have shown that such uncertainty analysis augments

robustness under the proposed modeling framework, in light of virtually unavoidable

mis-specification of the true dependency assumption.

Compared to the log-linear modeling framework which has been demonstrated to

exclude potentially large swaths of feasible estimates by design (Zhang et al., 2023b),

the proposed model anchoring on the estimator in Equation (5.5) makes all possi-

ble estimates attainable. Stratified CRC analysis are often desired to provide the

stratum-specific estimate of the diseased counts (Héraud-Bousquet et al., 2012). The

proposed modeling framework can be easily extended to incorporate categorical co-

variates by applying the modeling framework separately within each stratum formed

by those categorical covariates. The estimated total number of cases is then obtained

by summing up estimates across strata. Compared to incorporating categorical co-

variates in the log-linear modeling framework, the natural of the credible intervals

approach greatly facilitates the interval estimation for the total number of cases.

Specifically, the corresponding interval is computed by pooling posterior samples of

the case counts for each stratum. Since the proposed modeling framework focusing on

population-level CRC data, it is less straightforward to allow the inclusion of contin-

uous covariates. One possible approach may be to model the estimable probabilities

used for specifying the constraint using logit models, and then apply the estimator in

Equation (5.5) while integrating over possible values of ψ.
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Chapter 6

Summary and Future Work
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6.1 Summary

This dissertation focuses on developing statistical methods for analyzing disease

surveillance data collected from multiple disease surveillance systems to improve the

estimation of the number of diseased cases.

In Chapter 2, a hierarchical model has been proposed under the full Bayesian mod-

eling framework to analyze individual-level surveillance data collected from multiple

surveillance systems over multiple surveillance sites. The proposed model permits the

consideration of individual-specific heterogeneous capture probabilities and borrows

information across surveillance sites in an unified modeling framework. Compared to

methods which solely rely on individual-level surveillance data collected at surveil-

lance sites where overlaps between surveillance systems exist, the proposed model

also allows one to utilize surveillance data from locations where only one surveil-

lance system operates. Simulation studies have demonstrated the improvement in

the estimation when applying the proposed method compared to models cannot in-

corporate the additional information provided at locations where only one system is

in operation.

An accessible sensitivity and uncertainty analysis framework has been introduced

in Chapter 3 with focus on the two-catch CRC data. The proposed sensitivity and un-

certainty analysis anchors on a key inestimable parameter which is interpretable and

measures the dependency between systems using the population-level multinomial

model. By treating the key interpretable dependency parameter as the sensitivity

parameter, the proposed sensitivity analysis provides an appealing data visualiza-

tion to explore how the key parameter impacts the estimation of case counts. The

simulation-based uncertainty analysis provides an interval estimation incorporating

both statistical uncertainties in estimating the case counts and the uncertainty about

the dependency assumption made to enable the estimation.

In Chapter 4, we clarified two main pitfalls associated with the commonly used
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log-linear modeling paradigm to provide the estimation of case counts in CRC con-

texts. We showed that the log-linear model excludes many possible estimates by

design, and the regularly used selection metrics are fundamentally flawed and de-

ceiving when analyzing CRC data. To circumvent these pitfalls, in Chapter 5, we

proposed a modeling framework that serves as an alternative to the log-linear model

for analyzing CRC data in epidemiological studies. The proposed model extends the

multinomial distribution-based likelihood approach adopted in Chapter 3 to incorpo-

rate setting where multiple surveillance systems are implemented (≥ 2), which theo-

retically permits all possible estimates. Instead of applying model selection metrics

to determine the untestable dependency assumption, the proposed model leverages

expert opinion in spirit of prior information to guide the estimation. The uncertainty

analysis introduced in Chapter 3 further inspires the implementation of a princi-

pled simulation-based uncertainty analysis to acknowledge the confidence level of the

dependency assumption made based on expert opinion in the proposed alternative

modeling framework.

6.2 Future Work

The PTB data analyzed in Chapter 2 contain CRC data collected over different years.

In the proposed Bayesian hierarchical model, we focus on the individual-level CRC

data and allow the individual-level capture probabilities to vary by year. The PTB

data can also be summarized to form year-specific population-level CRC data. This

type of data motivates us to extend the modeling framework proposed in Chapter 5

to allow borrowing information across years when estimating the year-specific case

counts. We may consider to adopt a hierarchical model which allows the use of

year-specific conditional probabilities to characterize capture probabilities of different

capture histories in each year while assuming the dependency structure between data
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structure is the same across different years.

In this dissertation, the disease status is always assumed to be perfectly identified

in all implemented surveillance systems. However, in practice, the disease status is

potentially misclassified. This warrants future developments that aim to incorporate

misclassification. For the Bayesian hierarchical model developed in Chapter 2, one

can consider to introduce latent variables to represent the true disease status. Moti-

vated by recent developments under specific CRC study designs (Ge et al., 2023), we

can extend the modeling framework developed in Chapter 5 to account for errors in

determining disease status using positive predictive value parameters.
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Appendix A

Appendix for Chapter 2

A.1 Posterior predictive simulation procedure for

generating imputed dataset

Each imputed data is generated based on following steps:

• Linked sites, for s = 1, . . . , K

1. For each linked site, sample N̂s individuals from the individual-level

capture-recapture data with replacement; the corresponding covariates are

obtained by randomly shuffling the original covariates for s = 1, . . . , K.

2. Unconditional capture probability of each sampled individual for each sys-

tem (passive and active) is computed as
exp (xTtiβ̂t)

1+exp (xTtiβ̂t)
, for t = 1, 2, i =

1, . . . , N̂s, s = 1, . . . , K, where xti denotes covariates vector.

3. Draw two ascertainment histories for each sample individuals from Bernoulli

distributions with mean equal to unconditional capture probabilities ob-

tained in step 2.

4. The imputed capture-recapture data is then formed by removing individ-

uals who have capture history (0,0).
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• S −K unlinked sites, for s = K + 1, . . . , S

1. For each unlinked site, sample N̂s individuals from data collected only by

passive surveillance system with replacement; the corresponding covariates

are obtained by randomly shuffling the original covariates for s = K +

1, . . . , S.

2. Unconditional capture probability of each sampled individuals for the pas-

sive system is computed as
exp (xT1iβ̂1)

1+exp (xT1iβ̂1)
, i = 1, . . . , N̂s, s = K + 1, . . . , S,

where x1i denotes covariates vector.

3. Draw one ascertainment history for each sample individuals from Bernoulli

distribution with mean equal to unconditional capture probability obtained

in step 2.

4. Combine the ascertainment history for the passive system of individuals

sampled at all S sites and remove individuals with ascertainment history

0 to create the imputed data formed by passive system.

A total M imputed datasets are generated based on the above steps. In simulation

studies, we have found that M = 20 is sufficient to obtain valid 95% credible interval

coverage.

A.2 Data generation procedure

A.2.1 Two systems are independent at the population level

For every combination of parameters (β10, β11, β20, β21, α, and ϕ) presented in Ta-

ble A.1, we generate 100 datasets and fix N and location-specific Ns. With given

parameters, each dataset is simulated as:

1. 50 sites are randomly selected from a 100 × 100 square area. Randomly select

10 of them as linked sites.
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2. Site-specific Ns is generated from a Poisson distribution with mean λs generated

as log(λs) = α + ϵs, where ϵ = (ϵ1, . . . , ϵ50)
T ∼ MVN(0,Σ), Σ = σ2 exp(−D

ϕ
),

σ2 = 0.2 and D is the Euclidean distance between sites.

3. Capture history of each individual is generated with

logit(p1i) = β10 + β11X1i, logit(p2i) = β20 + β21X2i,

where X1i ∼ Uniform(−1, 1) and X2i ∼ Uniform(−2, 2).

A.2.2 Two systems are positively correlated at the popula-

tion level

For every combination of parameters (β10, β11, β20, β21, α, and ϕ) presented in , we

generate 100 datasets and fix N and location-specific Ns. With given parameters and

set σ2 = 0.1 across all scenarios, each dataset is simulated by following procedures

outlined in A.2.1 with modifying the step 3 as:

3. Capture history of each individual is generated with

logit(p1i) = β10 + β11Xi, logit(p2i) = β20 + β21Xi,

where Xi ∼ Uniform(0, 1.5).

Because Xi presents in both logit models and β11 and β21 are greater than zero, two

systems are positively correlated at the population-level.

A.2.3 Multiple active systems are included

Let S1 to denote the passive system, S2 and S3 to denote two active systems. Data

used in the simulation study involving three systems (i.e., the passive system is linked
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to two active systems) are simulated as:

1. 100 sites are randomly selected from a 200× 200 square area. Randomly select

30 of them as linked sites, of which 10 sites are S1-S2 linked sites and the other

20 sites are S1-S3 linked sites.

2. Site-specific Ns is generated from a Poisson distribution with mean λs generated

as log(λs) = α + ϵs, where ϵ = (ϵ1, . . . , ϵ100)
T ∼ MVN(0,Σ), Σ = σ2 exp(−D

ϕ
),

where α = 4.6, σ2 = 0.1, ϕ = 30, and D is the Euclidean distance between sites.

3. Capture history of each individual is generated with

logit(p1i) = β10 + β11Xi, logit(p2i) = β20 + β21Xi, logit(p3i) = β30 + β31Xi

where β10 = −1.75, β11 = 1, β20 = −1.75, β21 = 1.5, β30 = −1.85, β31 =

1.5, Xi ∼ Uniform(0, 1.5).

4. The observed S1-S2 linked data consist capture histories of individuals captured

by S1 or S2 at the 10 S1-S2 linked sites. Similarly, the observed S1-S3 linked

data consist capture histories of individuals captured by S1 or S3 at the 20

S1-S3 linked sites. Finally, only capture histories from S1 are recorded for those

70 unlinked sites.

A.3 Estimation and inference for two independent

two-stream CRC data

We follow notations and convention of labeling systems used in Chapter 2. Compare

to the regular situation introduced in Section 2.3 in Chapter 2, we now have linked

sites for S1-S2 and S1-S3 linked data separately and individual-level capture histories

from all three systems. Suppose S1 operates at S sites, K12 sites have S1-S2 linked
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Table A.1: Coefficients of models used for generating simulated datasets

two systems are independent
at the population level

two systems are positively correlated
at the population level

Scenario β10 β11 β20 β21 α ϕ β10 β11 β20 β21 α ϕ
1 -1 1 -1 1 3.3 10 -1.75 1 -1.75 1.5 3.9 10
2 -0.5 1 -0.5 1 3.3 10 -1.5 1 -1.5 1.5 3.9 10
3 -1 1 -1 1 3.3 30 -1.75 1 -1.75 1.5 3.9 30
4 -0.5 1 -0.5 1 3.3 30 -1.5 1 -1.5 1.5 3.9 30
5 -1 1 -1 1 4.3 10 -1.75 1 -1.75 1.5 4.6 10
6 -0.5 1 -0.5 1 4.3 10 -1.5 1 -1.5 1.5 4.6 10
7 -1 1 -1 1 4.3 30 -1.75 1 -1.75 1.5 4.6 30
8 -0.5 1 -0.5 1 4.3 30 -1.5 1 -1.5 1.5 4.6 30

data, and K13 sites have S1-S3 linked data. As the model presented in Section 2.3,

system-specific capture probabilities are modeled via logit regression models taking

following forms:

log

{
p1is(β1)

1− p1is(β1)

}
= xT1isβ1, log

{
p1is(β2)

1− p2is(β2)

}
= xT2isβ2, log

{
p3is(β3)

1− p3is(β3)

}
= xT3isβ3,

where β1, β2, and β3 are vectors of coefficients of the BM model with corresponding

covariates x1is, x2is, and x3is. To estimate β1, β2, and β3, we first write out the data

likelihood contribution from S1-S2 linked data at K12 linked sites as:

L12

(
β1,β2; {y1,s,y2,s}K12

s=1

)
=

K12∏
s=1

ns∏
i=1

py1is1is (1− p1is)
(1−y1is)py2is2is (1− p2is)

(1−y2is)

1− (1− p1is)(1− p2is)
,

where y1,s = {y1is : i = 1, . . . , ns} and y2,s = {y2is : i = 1, . . . , ns} are vector of capture

histories in S1-S2 linked data at site s for S1 and S2 respectively, and ns are number of

unique cases captured by S1 or S2 at site s. Similarly, the data likelihood contribution from

S1-S3 linked data is:

L13

(
β1,β3; {y∗

1,s,y3,s}K13
s=1

)
=

K13∏
s=1

ns∏
i=1

p
y∗1is
1is (1− p1is)

(1−y∗1is)py3is3is (1− p3is)
(1−y3is)

1− (1− p1is)(1− p3is)
,

where y∗
1,s = {y∗1is : i = 1, . . . , ns} and y3,s = {y3is : i = 1, . . . , ns} are vector of capture

histories in S1-S3 linked data at site s for S1 and S3 respectively, and ns are number of



121

unique cases captured by S1 or S3 at site s. Since S2 and S3 do not have overlap, the data

likelihood contribution from S1-S2 and S1-S3 linked data is given by

L
(
β1,β2,β3; {y1,s,y2,s}K12

s=1, {y1,s,y3,s}K13
s=1

)
= L12 × L13.

These coefficients can be sampled using Metropolis-Hastings (M-H) algorithms. Analogous

to Equation (2.5) in Section 2.3, the Horvitz-Thompson (H-T) estimator of Ns is given by

N∗
s =

∑ns
i=1 1/qis, qis :=


1− (1− p1is)(1− p2is) for s belongs to S1-S2 linked sites

1− (1− p1is)(1− p3is) for s belongs to S1-S3 linked sites

p1is for s belongs to unlinked sites

Once we obtain estimates of Ns using the H-T estimator, the second-stage estimation can

be implemented by following Section 2.3.4.

A.4 Goodness of fit of the proposed model for an-

alyzing PTB data

The posterior predictive distributions of quantities summarising observed linked data (nS1 ,

nS2 , n
∗
S1
, and nS3) are generated as:

1. Draw 10,000 samples from posterior samples of coefficients included in logit models

for modeling system-specific capture probabilities.

2. For each sample of coefficients, compute individual-level capture probabilities for

S1, S2, and S3 for individuals caught at least once at linked sites. These capture

probabilities are unconditional capture probabilities.

3. For each individual caught at least once, compute probability of being caught at least

once at S1-S2 linked sites and S1-S3 linked sites, separately.

4. Divide computed unconditional capture probabilities by the corresponding proba-

bility of being caught at least once to obtain conditional capture probabilities (i.e.,
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the probability of being caught given being caught at least once). Finally, for each

individual, we have 10,000 samples of the conditional probability.

5. For each computed conditional probability, we draw one capture indicator from the

Bernoulli distribution with mean equal to that conditional probability. For example,

for individual i captured at S1-S2 linked site s, capture indicators are simulated for

S1 and S2 from Bernoulli(p
∗(j)
1is ) and Bernoulli(p

∗(j)
2i1 ), for j = 1, . . . , 10, 000, where

p
∗(j)
1is and p

∗(j)
2i1 are conditional probabilities computed using j-th sample of coefficients.

Specifically, p
∗(j)
1is =

p
(j)
1is

1−(1−p(j)1is)(1−p
(j)
2is)

, p
(j)
1is is unconditional probability computed by

taking inverse logit transformation to sampled coefficients, similarly for p
∗(j)
2is . Then,

10,000 sets of simulated capture histories are obtained at all linked sites. Finally,

predictive posterior distributions of quantities of interest are obtained using those

simulated capture histories.

The posterior predictive distributions of quantities summarising observed data from S1

alone (i.e., number of county-specific unique cases captured by S1) are generated as:

1. Draw 100 samples from posterior samples of a vector of true county-specific number

of cases N = (N1, . . . , N181)
T obtained at the end of second-stage estimation.

2. For each N , we impute Ns − ncs number of individuals for s = 1, . . . , 181, their

covariates are randomly drew from observed covariates with replacement, where ncs

is unique number of cases captured at site s. Then for those Ns individuals, we draw

100 samples of coefficients associated with capture probabilities of S1 for each and

compute unconditional probabilities of being captured by S1. These probabilities

are used to generate capture indicators of S1 for Ns individuals. Combine simulated

capture indicators over 100 sampled vector of N , we have in total of 10,000 sets of

capture indicators. Finally, predictive posterior distributions of N are obtained using

those simulated capture indicators of S1.

Posterior median and 95% posterior intervals are computed from those generated predictive

distributions.
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Figure A.1: A map of difference between adjusted number of PTB cases and observed
PTB cases in Sichuan in 2010
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Figure A.2: A map of difference between adjusted PTB prevalence per 1000 popula-
tion and observed PTB prevalence in Sichuan in 2010
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Appendix B

Appendix for Chapter 3

B.1 Conditional multinomial model for population-

level two-stream CRC data

(N11, N10, N01|Nc = nc) ∼ Multinomial(nc, p
∗
11, p

∗
10, p

∗
01),

where nc = n11 + n10 + n01 is the number of cases caught at least once; p∗ij = pij/pc

in where pc = p11 + p10 + p01 and pij denotes the probability of having capture history

(i, j), i, j ∈ {0, 1}.

L(pc) =
nc

n11!n01!n10!

(
p11
pc

)n11

×
(
p10
pc

)n10

×
(
p01
pc

)n01

,

N̂ =
nc
p̂c
.

B.2 Derivation of bias-corrected estimators under

two-stream CRC

Given ϕ, the MLE of N is

N̂ϕ = n11 + n10 +
n01(n11 + n10)

n11
ϕ.
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Define nc = n11 + n10 + n01, pc = p11 + p10 + p01, and p∗ij =
pij
pc
, where i, j ∈ {0, 1}.

Dividing both sides by N̂ϕ, we have:

1 = p̂11 + p̂10 +
p̂01(p̂11 + p̂10)

p̂11
ϕ,

1

p̂c
= p̂∗11 + p̂∗10 +

p̂∗01(p̂
∗
11 + p̂∗10)

p̂∗11
ϕ.

Then, the N̂ϕ can be written as:

N̂ϕ = n11 + n10 +
n01(n11 + n10)

n11
ϕ = nc

{
p̂∗11 + p̂∗10 +

p̂∗01(p̂
∗
11 + p̂∗10)

p̂∗11
ϕ

}
=
nc
p̂c
.

Let p∗ = (p∗11, p
∗
10, p

∗
01), and define a function f(p̂∗) = p̂∗11 + p̂∗10 +

p̂∗01(p̂
∗
11+p̂

∗
10)

p̂∗11
ϕ. Follow

the Taylor-series expansion (Jewell, 1984):

E [f(p̂∗)] = f (p̂∗) + g (p̂∗) +O(n−2
c ),

where g(p∗) = E
[
1
2(p̂

∗ − p∗)TD2(p
∗)(p̂∗ − p∗)

]
, and D2(p

∗) is the Hessian of f evaluated

at p∗, which is given by 
2p∗10p

∗
01

p∗311
ϕ

−p∗01ϕ
p∗211

−p∗10ϕ
p∗211

−p∗01ϕ
p∗211

0 ϕ
p∗11

−p∗10ϕ
p∗211

ϕ
p∗11

0


Then we have g(p∗) is:

g(p∗) =
1

2
× 2p∗10p

∗
01

p∗311ϕ
V ar(p̂∗11) +

−p∗01ϕ
p∗211

Cov(p̂∗11, p̂
∗
10) +

−p∗10ϕ
p∗211

Cov(p̂∗11, p̂
∗
01) +

ϕ

p∗11
Cov(p̂∗10, p̂

∗
01).

Under the conditional multinomial distribution model, we have:

V ar(p̂∗11) =
p∗11(1− p∗11)

nc
, Cov(p̂∗11, p̂

∗
10) =

−p∗11p∗10
nc

,

Cov(p̂∗11, p̂
∗
01) =

−p∗11p∗01
nc

, Cov(p̂∗10, p̂
∗
01) =

−p∗10p∗01
nc

.
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Some algebra leads to:

ĝ(p∗) =
n10n01ϕ

n211nc
.

Since N̂ϕ = ncf(p
∗), the estimated bias in N̂ϕ is:

ncĝ(p̂
∗) =

n10n01
n211

ϕ.

Finally, the bias-corrected estimator of N and its variation estimator are given by

N̂BC
ϕ = N̂ϕ −

n10n01
n211

ϕ (B.1)

ˆV ar
(
N̂BC
ϕ

)
= w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01, (B.2)

where C = n10p̂01
n2
11

ϕ, w1 = 1− n10n01

n2
11

ϕ, w2 = 1 + n01
n11ϕ

, and w3 = ϕ+ n10
n11
ϕ− n10

n2
11
ϕ.

It is clear that N̂BC
ϕ is not well-defined when n11 = 0. A small adjustment to the

denominator term in the correction factor results in:

N̂BC2
ϕ = N̂ϕ −

n10n01
(n11 + 0.5)2

ϕ. (B.3)

The variance estimator of the estimator N̂BC2
ϕ derived using the multivariate delta

method is:

ˆV ar(N̂BC2
ϕ ) = w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01, (B.4)

where C = 2n11n01p̂01
(n11+0.5)3

− n10p̂01
(n11+0.5)2

ϕ, w1 = 1− n10n01

n2
11

ϕ+ 2n11n01
(n11+0.5)2

, w2 = 1+ n01
n11
ϕ− n01

(n11+0.5)2
ϕ,

and w3 = ϕ+ n10
n11
ϕ− n10

(n11+0.5)2
ϕ.

The estimator N̂BC
ϕ is a direct generalization of the corrected MLE of Darroch (1958) in

the two-stream case under the LP conditions, while ˆV ar(N̂BC2
ϕ ) (BC2 estimator) generalizes

an estimator shown by Lyles et al. (2021a) to be a direct competitor to the bias-corrected

estimator of Chapman (1951). One can also consider a simple direct generalization, by
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introducing the parameter ϕ into the original form of the Chapman estimator, as follows:

N̂∗
Chap =

(n11 + n10 + 1)(n11 + n01ϕ+ 1)

(n11 + 1
− 1 (B.5)

Note that Equation (B.5) reduces to the original Chapman estimator when ϕ = 1, and

we refer it as the generalized Chapman estimator. The corresponding variance estimator is:

ˆV ar(N̂∗
Chap) = w1(w1 − 1− C)n11 + w2(w2 − 1− C)n10 + w3(w3 − 1− C)n01, (B.6)

where C = n10p̂01
(n11+1)2

ϕ, w1 = 1− n10n01
(n11+1)2

ϕ, w2 = 1 + n01
(n11+1)ϕ, and w3 = ϕ+ n10

(n11+1)ϕ.

Analogous to the recommendations of Lyles et al. (2021a), we suggest setting ˆV ar(N̂BC2
ϕ )

in (B.3) equal to ˆV ar(N̂∗
Chap) in (??), in the event that n11 = 0 when using the BC2 ap-

proach.

The Taylor-series expansion approach can also be applied to bias-correct the MLE with

known odds ratio θ. We first write the MLE of N in Equation (3.5) as:

N̂θ =
nc

p̂∗11 + p̂∗10 + p̂∗01 +
p̂∗10p̂

∗
01

p̂∗11
θ
.

Similarly, we define f(p̂∗) = p̂∗11 + p̂∗10 + p̂∗01 +
p̂∗10p̂

∗
01

p̂∗11
θ, and D2(p

∗) is


2p∗10p

∗
01

p∗311
θ

−p∗01θ
p∗211

−p∗10θ
p∗211

−p∗01θ
p∗211

0 θ
p∗11

−p∗10θ
p∗211

θ
p∗11

0


Some algebra leads to:

ĝ(p∗) =
n10n01θ

n211nc

The bias-corrected estimator with given θ is given by

ˆV ar(N̂BC
θ ) = N̂θ −

n10n01θ

n211
(B.7)
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As with the BC2 estimator with given ϕ in Equation (B.3), the same adjustment can also

be applied to stabilize the estimator in Equation (B.7). The corresponding BC2 estimator

with given θ is

ˆV ar(N̂BC2
θ ) = N̂θ −

n10n01θ

(n11 + 0.5)2
(B.8)

B.3 Variance estimators

For notational convenience, we let n denote the vector of observed counts (n11, n10, n01) and

write the MLE of N with a given value of a key parameter (e.g., ψ, ϕ, or θ) as N̂ = f(n).

The first derivative of N̂ with respect to n is denoted as (w1, w2, w3), with a corresponding

variance estimator derived using the multivariate delta method given by

V ar(N̂) = N
{
w1p11 [w1(1− p11)− w2p10 − w3p01]

+ w2p10 [w2(1− p10)− w1p11 − w3p01]

+ w3p01 [w3(1− p01)− w1p11 − w2p10]
} (B.9)

1. Variance estimator of N̂ψ:

Some algebra based on the fact that p11 + p10 + p01/ψ = 1 leads to the variance

estimator in Equation (3.2).

2. Variance estimator of N̂ϕ:

Some algebra based on the fact that p11+p10+p01ϕ+
p10p01
p11

ϕ = 1 leads to the variance

estimator in Equation (3.4).

3. Variance estimator of N̂BC
ϕ :

Some algebra based on the fact that p11 + p10 +
(
p01

p10p01
p11

)
ϕ− p10p01

p11n11
ϕ = 1 leads to

the variance estimator in Equation (B.2).

4. Variance estimator of N̂BC2
ϕ :

Some algebra based on the fact that p11 + p10 +
(
p01

p10p01
p11

)
ϕ − p10p01n11

p11(n11+0.5)2
ϕ = 1

leads to the variance estimator in Equation (B.4).
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5. Variance estimator of N̂∗
Chap:

Some algebra based on the fact that p11 + p10 + p01ϕ + p10p01n11

p11(n11+1)ϕ = 1 leads to the

variance estimator in Equation (B.6).

B.4 Procedure for obtaining 95% percentile inter-

val for N

Under Option (1), the recommended procedure for obtaining a 95% percentile interval for

N (from which we seek favorable frequentist properties) is:

(i). Specify the prior distribution of p2|1 and the assumed distribution of ϕ.

(ii). Obtain D posterior samples of ψ by combining D posterior samples of p2|1 and D

independent random draws of ϕ generated from the assumed distribution using the

definition ψ = p2|1/ϕ (the posterior samples for ψ empirically reflect both the assumed

variation in ϕ and statistical uncertainty in estimating p2|1).

(iii). For each generated ψ, take M random draws from a Normal(N̂ψ, ˆV ar(N̂ψ)) distribu-

tion (see Equations (3.1) and (3.2)).

(iv). A total of D × M posterior samples of N are obtained by combining together all

random draws across each generated value of ψ.

(v). Take the 2.5th and 97.5th percentiles of the resulting D ×M posterior samples of N

to construct the 95% percentile interval.

With a Beta (1,0) prior for p2|1, the conjugate posterior distribution of p2|1 is a Beta

distribution with mean equal to (n11 + 1)/(n11 + n10 + 1). Lyles et al. (2021a) show that

inserting this mean into Equation (3.1) in place of ψ yields the Chapman estimator. With

this in mind, we recommend use of the Beta (1,0) prior for p2|1 when implementing the

proposed uncertainty analysis under Option (1).

The 95% credible interval for N obtained under Option (2) is produced as follows:
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(i). Specify the prior distribution of ϕ and generate D realizations from that distribution.

Importantly, accept realizations only if they yield a value greater than n11/(n11+n10);

this is because ϕ = p2|1/ψ and ψ is constrained to be ≤ 1.

(ii). For each given value of ϕ, draw M random draws from a normal distribution with

mean N̂BC2
ϕ and variance equal to the estimated variance of N̂BC2

ϕ (note that N̂BC2
ϕ

could be replaced by any of the bias-corrected estimators in Equations (B.1), (B.3),

and (B.5)).

(iii). Take the 2.5th and 97.5th percentiles of the resulting D ×M posterior samples of N

to construct the 95% percentile interval.

B.5 Crossing points of sensitivity plots obtained

from two strata

Let ns111, n
s1
10, and ns101 denote the observed cell counts in the first stratum, with the su-

perscript s2 used analogously for the data in the second stratum. Letting Ns1 and Ns2

represent the true number of cases for each stratum, the case ratio r = Ns1/Ns2 is assumed

known (e.g., obtained from previous data on prevalence). Considering the proposed sensi-

tivity analysis focused on ϕ, it can be shown that the x-axis and y-axis coordinates of the

crossing point between the plots from stratum 2 and the scaled plots from stratum 1 (i.e.,

depicting Ns1 divided by r) are:

ϕ̂ =

(ns111+n
s1
10)

r − (ns211 + ns210)

n
s2
01(n

s2
11+n

s2
10)

n
s2
11

− n
s1
01(n

s1
11+n

s1
10)

r×ns111

, (B.10)

N̂s2,ϕ̂
= ns211 + ns210 +

ns201 (n
s2
11 + ns210)

ns211
ϕ̂. (B.11)

Similarly, the crossing point of the two sensitivity analysis plots anchored on θ are given
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by

θ̂ =
r(ns211 + ns210 + ns201)− (ns111 + ns110 + ns101)

n
s1
10n

s1
01

n
s1
11

− rn
s2
10n

s2
01

n
s2
11

, (B.12)

N̂s2,θ̂
= ns211 + ns210 + ns201 +

ns210n
s2
01

ns211
θ̂ (B.13)

B.6 MLEs with a known case ratio

Let ns1c and ns2c denote the number of distinct cases identified by the two data streams for

each stratum. The ps111, p
s1
10, and p

s1
01 denote corresponding capture probabilities for the first

stratum and the probability of being caught at least once for the first stratum is denoted

as ps1c = ps111 + ps110 + ps101. Similarly, the superscript s2 is used for the second stratum. The

conditional multinomial likelihood is given by

L =
ns1c !

ns111!n
s1
10!n

s1
01!

(
ps111
ps1c

)ns111 (ps110
ps1c

)ns110 (ps101
ps1c

)ns101 ns2c !

ns211!n
s2
10!n

s2
01!

(
ps211
ps2c

)ns211 (ps210
ps2c

)ns210 (ps201
ps2c

)ns201
The MLEs of ps1c and ps2c under the assumption that ϕ is the same across strata have the

following forms:

p̂s1c =
ns1c

ns1c +
n
s1
10n

s1
01

n
s1
11

ϕ
(B.14)

p̂s2c =
ns2c

ns2c +
n
s2
10n

s2
01

n
s2
11

ϕ
(B.15)

Since we have n
s1
c

p
s1
c

= rn
s2
c

p
s2
c

, the MLE of ϕ is

ϕ̂ =

(ns111+n
s1
10)

r − (ns211 + ns210)

n
s2
01(n

s2
11+n

s2
10)

n
s2
11

− n
s1
01(n

s1
11+n

s1
10)

r×ns111

(B.16)

Supplying the MLE of ϕ to Equation (B.15) and using the fact that Ns2 = ns2c /p̂
s2
c , the

MLE of Ns2 is

N̂s2,ϕ̂
= ns211 + ns210 +

ns201 (n
s2
11 + ns210)

ns211
ϕ̂. (B.17)
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The MLEs of ϕ and Ns2 coincide with estimators in Equations (B.10) and (B.11). We also

verified that estimators in Equations (B.12) and (B.13) are the same as the MLEs provided

in Equations 4 and 5 of Wolter (1990), derived using the multinomial model.

B.7 MLEs under three-stream CRC

When three overlapping surveillance streams are implemented, 7 observed cell counts are

obtained, denoted as n111, n110, n101, n100, n011, n010, n001. The MLE and its variance

estimator with given p3|1̄2̄ derived based on population-level multinomial model are given

by

N̂ = n111 + n110 + n101 + n100 + n011 + n010 + n001/p3|1̄2̄, (B.18)

ˆV ar(N̂) =
(1− p3|1̄2̄)

p2
3|1̄2̄

n001. (B.19)

Note that Equation (B.18) is a direct generalization of Equation (3.1). Three inestimable

ratio parameters (akin to relative risks) are available as focal points for sensitivity analysis

in this case, i.e., ϕ1 = p3|12/p3|1̄2̄ , ϕ2 = p3|1̄2/p3|1̄2̄, and ϕ3 = p3|12̄/p3|1̄2̄. Any of the three

ratio parameters would have an intuitive interpretation, for example, the ratio assumption

p3|12̄/p3|1̄2̄ = 1 reflects an assumption that identification in stream 3 is not impacted by

identification in stream 1, given non-identification in stream 2.

Table B.1: Cell counts for two-stream capture-recapture analyzed in Wolter (1990)

Males Females

Captured in S2 Captured in S3

Captured in S1 Yes No Yes No

Yes 46 11 54 13

No 20 ? 5 ?
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Table B.2: Results from analyzing data presented in Table B.1 by applying the pro-
posed sensitivity analysis under the assumption that ϕ or θ are equal across sexes
and the sex ratio is known to be 1.15

Point estimate Assume ϕ are equal across sexes Assume θ are equal across sexes
ϕ 1.1 -
θ - 1.7
N 159 159
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Appendix C

Appendix for Chapter 4

Data were generated from the population-level multinomial:

(N111, N110, N101, N100, N011, N010, N001, N000)

∼Multi(N ; p111, p110, p101, p100, p011, p010, p001, p000)

The true number of cases N is set to 5, 000 under both scenarios, and capture proba-

bilities are computed based on parameters (p1, p2|1, p2|1̄, p3|12, p3|1̄2, p3|12̄, p3|1̄2̄):

p111 = p1p2|1p3|12,

p110 = p1p2|1(1− p3|12),

p101 = p1(1− p2|1)p3|12̄,

p100 = p1(1− p2|1)(1− p3|12̄),

p011 = (1− p1)p2|1̄p3|1̄2,

p010 = (1− p1)p2|1̄(1− p3|1̄2),

p001 = (1− p1)(1− p2|1̄)ψ,

p000 = (1− p1)(1− p2|1̄)(1− ψ),

where under three-stream cases, ψ = p3|1̄2̄.

Scenario 1
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We assume the probability of having capture history (011) is equal to the probability of

having capture history (010), and that the association between the first data stream and

the third data stream is not affected by whether cases are identified by the second data

stream. Converting to mathematical expressions, these stipulations correspond to setting

the testable assumption p011 = p010, i.e., E(N011) = E(N010), and the untestable assump-

tion p3|12/p3|1̄2 = p3|12̄/ψ. True values of the parameters are: p1 = 0.3, p2|1 = 0.2, p2|1̄ = 0.3,

p3|12 = 0.8, p3|12̄ = 0.16, p3|1̄2 = 0.5, ψ = 0.1.

Scenario 2

We impose two testable assumptions E(N111) = E(N101) and E(N110) = E(N100), and one

untestable assumption which states that the key parameter ψ = p3|12̄/0.8. This untestable

assumption implies that, among those not identified by the second stream, cases are more

likely to be captured by the third stream if they are NOT captured by the first stream, i.e.,

the first stream and third stream are negatively correlated conditional on a lack of capture

by the second stream.
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Appendix D

Appendix for Chapter 5

D.1 Dirichlet-multinomial-based approach for in-

ference

Let n = {nhi}, for i = 1, . . . , 2K − 1, denote the vector of observed counts under the K-

catch case, where K ≥ 2. Let p∗ = {phi/pc}, for i = 1, . . . , 2K − 1, denote the vector of

probabilities of having the observable capture histories conditional on the event of being

identified at least once, where pc is the probability of that event. Here the parameter θ

is removed for notational simplicity; however, a constraint is indeed imposed by specifying

g(θ∗) to avoid the non-identifiability issue when estimating N . As described in Section

5.2.2, n|nc ∼ Multinomial(nc,p
∗), where nc is the number of uniquely identified cases.

The procedure for obtaining the proposed 95% credible intervals for N under the con-

straint g(θ∗) is summarized as follows:

(1). Assign a Dirichlet prior to p∗ and draw L posterior samples for p∗ from the conjugate

Dirichlet posterior distribution, denoting these samples as p∗
l , for l = 1, . . . , L.

(2). Obtain L simulated CRC datasets by multiplying nc by p∗
l , then round the product to

be integers, denoted as nl.

(3). Use each simulated dataset nl to calculate the number of uniquely identified cases nc,l
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and compute an estimate N̂l via Equation (5.5), mimicking the desired estimand under

the constraint g(θ∗).

(4). For each pair of nc,l and N̂l, compute pc,l = nc,l/N̂l and draw a sample n∗c,l from

Binomial
(
nc
pc,l
, pc,l

)
. Note that pc,l should be no larger than 1, and is thus set to 1 in

the rare event that this fails to hold.

(5). Take the 2.5th and 97.5th percentiles of the posterior samples of N computed as n∗c,l/pc,l

to construct the 95% credible interval.

Based on simulation studies conducted in this work, we found L = 1, 000 to be sufficient to

obtain a reliable 95% credible interval.

D.2 Uncertainty analysis

We use an example to illustrate the procedure of applying the proposed uncertainty analysis

to obtain 95% credible intervals which acknowledge statistical uncertainties and propagate

the uncertainty about the key parameter which controls the dependency between data

streams. Let K = 3 and define g(θ∗) = r
p3|1̄2p3|12̄
p3|12

, which is the same setting as in the

simulation study conducted to assess the uncertainty analysis with results given in Table

5.6. For this example, the key dependency parameter is r and we assume it to follow a

parametric distribution denoted as f . The procedure generalizes a prior proposal for the

special case of K = 2 as discussed in Chapter 3 (Zhang et al., 2023a) and is similar to the

method described in Appendix D.1 for obtaining 95% credible intervals without assuming

extra uncertainty about the key dependency parameter. Specifically,

(1). Draw M samples based the assumed parametric distribution f , and denote the sample

as rm, for m = 1, . . . ,M .

(2). For each rm, apply the procedure for obtaining L posterior samples of N under the

constraint g(θ∗) = rm
p3|1̄2p3|12̄
p3|12

(i.e., follow steps (1)-(5) described in Section D.1).
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(3). Take the 2.5th and 97.5th percentiles of the posterior samples of N by pooling L×M

posterior samples together to construct the desired 95% credible interval.

D.3 Simulation settings

Data generation

Simulation studies in Section 5.3 focused on the three-catch case; thus, data were simulated

using the following population-level multinomial distribution:

(N111, N110, N101, N100, N011, N010, N001, N000)

∼ Multinomial(N ; p111, p110, p101, p100, p011, p010, p001, p000),

where N is the true number of cases.

Using conditional probabilities, θ = (p1, p2|1, p2|1̄, p3|12, p3|1̄2, p3|12̄, ψ), introduced in this

work, the multinomial probabilities are computed as:

p111 = p1p2|1p3|12, p110 = p1p2|1(1− p3|12),

p101 = p1(1− p2|1)p3|12̄, p100 = p1(1− p2|1)(1− p3|12̄),

p011 = (1− p1)p2|1̄p3|1̄2, p010 = (1− p1)p2|1̄(1− p3|1̄2),

p001 = (1− p1)(1− p2|1̄)ψ, p000 = (1− p1)(1− p2|1̄)(1− ψ),

where the computation of ψ depends on the assumed constraint(s) in each simulation sce-

nario.

Parameters used in producing simulation results included in Section 5.3

1. Parameters used in simulation scenarios presented in Table 5.2, where data were gener-

ated under the constraint ψ = p3|1̄2.
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N p1 p2|1 p2|1̄ p3|12 p3|1̄2 p3|12̄ ψ pc

500 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

500 0.35 0.4 0.2 0.3 0.3 0.1 0.3 0.64

1000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

1000 0.35 0.4 0.2 0.3 0.3 0.1 0.3 0.64

2000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

2000 0.35 0.4 0.2 0.3 0.3 0.1 0.3 0.64

5000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

5000 0.35 0.4 0.2 0.3 0.3 0.1 0.3 0.64

2. Parameters used in simulation scenarios presented in Table 5.3, where data were gen-

erated under the constraint
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

=
p3|12̄/(1−p3|12̄)

ψ/(1−ψ) = r. Different ψ values were

realized by varying r.

N p1 p2|1 p2|1̄ p3|12 p3|1̄2 p3|12̄ ψ r pc

500 0.35 0.4 0.2 0.25 0.142857 0.25 0.14 2 0.55

500 0.35 0.4 0.2 0.25 0.294118 0.25 0.29 0.8 0.63

1000 0.35 0.4 0.2 0.25 0.142857 0.25 0.14 2 0.55

1000 0.35 0.4 0.2 0.25 0.294118 0.25 0.29 0.8 0.63

2000 0.35 0.4 0.2 0.25 0.142857 0.25 0.14 2 0.55

2000 0.35 0.4 0.2 0.25 0.294118 0.25 0.29 0.8 0.63

5000 0.35 0.4 0.2 0.25 0.142857 0.25 0.14 2 0.55

5000 0.35 0.4 0.2 0.25 0.294118 0.25 0.29 0.8 0.63

3. Parameters used in simulation scenarios presented in Table 5.5, where data were gener-

ated under the independence assumption (i.e., p2|1 = p2|1̄, and p3|12 = p3|1̄2 = p3|12̄ = ψ)

and the assumption ψ = p3|1̄2.
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Parameters used for generating data under the independence assumption are:

N p1 p2|1 = p2|1̄ p3|12 = p3|1̄2 = p3|12̄ = ψ pc

500 0.2 0.25 0.1 0.46

1000 0.2 0.25 0.1 0.46

2000 0.2 0.25 0.1 0.46

5000 0.2 0.25 0.1 0.46

Parameters used for generating data under the assumption ψ = p3|1̄2 are:

N p1 p2|1 p2|1̄ p3|12 p3|1̄2 p3|12̄ ψ pc

500 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

1000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

2000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

5000 0.35 0.4 0.2 0.3 0.1 0.1 0.1 0.53

4. Parameters used in simulation scenarios presented in Table 5.6, where data were gener-

ated under the constraint
p3|12
p3|1̄2

= r
p3|12̄
ψ .

Parameters used for generating data are (p1 = 0.2p2|1 = 0.4, p2|1̄ = 0.2, p3|12 = 0.25, p3|1̄2 =

0.2, p3|12̄ = 0.2). When assuming r ∼ Uniform(0.8, 1.2), data were generated by first

drawing 1000 replicates of r from Uniform(0.8, 1.2), and computing the corresponding

ψ for each sampled r value. Finally, we generated data from the multinomial distribu-

tion with probabilities computed using ψ and the other parameters specified beforehand.

When fixing r, the data generation procedure is the same as before.

5. Parameters used in simulation scenarios presented in Table 5.4, where data were gener-

ated under the referral scenario where a proportion q of cases are referred from stream 1

to stream 3, and streams 1 and 3 are independent given the capture status under stream

2. Specifically, p3|12 = p3|1̄2 and ψ = p3|12̄.
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N q p1 p2|1 p2|1̄ p3|12 p3|1̄2 p3|12̄ ψ pc

500 0.1 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

500 0.3 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

1000 0.1 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

1000 0.3 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

2000 0.1 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

2000 0.3 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

5000 0.1 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

5000 0.3 0.35 0.4 0.3 0.1 0.3 0.1 0.3 0.68

D.4 Log-linear models fitted in simulation studies

with results presented in Tables 5.2 and 5.3

The log-linear model implies constraint p3|1̄2 = ψ

log [E (Nhi)] = α+ β1X1 + β2X2 + β3X3 + γ1X1X2 + γ2X1X3 + δX1X2X3, (D.1)

The log-linear model implies constraint
p3|12/(1−p3|12)
p3|1̄2/(1−p3|1̄2)

=
p3|12̄/(1−p3|12̄)

ψ/(1−ψ)

log [E (Nhi)] = α+ β1X1 + β2X2 + β3X3 + γ1X1X2 + γ2X1X3 + γ3X2X3, (D.2)

where X1, X2, and X3 are capture indicators for streams 1, 2, and 3, respectively; 1

indicates captured, and 0 otherwise. For example, under model (D.1), log [E (Nh1)] =

α+ β1 + β2 + β3 + γ1 + γ2 + δ.
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Figure D.1: Estimates of N from the closed form MLE in Equation (5.4) by varying
the assumed ψ under three/four-catch case with different labeling. Figure D.1(A)
uses the three-catch HIV CRC data analyzed in Poorolajal et al. (2017) and Figure
D.1(B) uses the four-catch HIV CRC data analyzed in Abeni et al. (1994).
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