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Abstract

Line-to-Point Registration with Applications
in Geometric Reconstruction of Coronary Stents

By Claire Y. Lin

Registration is a process of geometrically transforming one object to cor-
respond to the other. It can utilized to align images, surfaces, or point
clouds. The Iterative Closest Point algorithm is widely used in registration
to achieve reconstruction of geometric shapes, but has drawbacks such as non-
differentiability.

This thesis introduces a line-to-point registration method, useful in impos-
ing a skeletal structure, defined by nodes and edges, on a given set of points
in 2D or 3D. This method computes the distance from a point cloud to a
skeletal structure using projections, and uses rigid, affine, and nonparametric
transformations for distance minimization, taking into account regularization
on the nonparametric transformation. The proposed approach can be utilized
in the registration of two geometric objects, where one has a known structural
skeleton, and the other is a point set.

In this thesis, this method is used to achieve correspondence between the
undeformed and deformed configurations of a coronary prosthesis, called a
bioresorbable stent. The undeformed configuration is represented by a skele-
ton of the prosthesis based on the manufacturer’s design, and the deformed
configuration is represented by a set of points obtained from medical images.
Registration is used to automatize the geometric reconstruction of implanted
coronary stents in patient-specific cases, to allow Computational Fluid Dy-
namics (CFD) analysis in the clinical trials at Emory University.
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1 Introduction

Given two objects (e.g. points, lines, surfaces), the goal of registration is to find a

reasonable transformation φ, such that one object, after the transformation, is similar

to the other. Following the standard terminology in registration, we call the first object

the template, and the other the reference.

For example, registration can be performed on two point clouds [7], two surfaces

[14], or two images [12]. Here, we consider a case where the template is a set of line

segments, and the reference is a set of points. This is useful in our application, as we

discuss in Section 1.1.

To impose a structure, or shape, on a set of data points, registration techniques

can be used to achieve correspondence. In this thesis, we explore an approach that

matches the data points with a predefined set of line segments. In particular, we aim

at deforming an object defined by nodes and edges, such that its distance to the point

cloud is minimized. A simple illustration is shown in Figure 1.1.

Figure 1.1: Imposing a pre-defined structure on a set of points.



1 INTRODUCTION 2

1.1 Motivation

The motivation for this thesis is an application in the geometric reconstruction of

a bioresorbable coronary stent, a device commonly used in cardiology to prevent the

narrowing of coronary arteries. From an Optical Coherence Tomography (OCT) image

of a patient undergoing Percutaneous Coronary Intervention (PCI) [16], one can obtain

information of a cross-section of the coronary arteries, together with the struts of an

implanted (hence deformed) stent. After the detection of stent structs from a set of

OCT images, we can represent them by a set of points in 3D, each point corresponding

to a strut of a deformed stent structure.

To enable further medical analysis (e.g. fluid dynamics simulations [15]) of the

effects of a coronary stent on a patient, it is neccesary to reconstruct geometrically a

deformed stent structure, based on the given 3D point cloud. Using registration, our

goal is thus to find a reasonable deformation of a coronary stent that fits the observed

data point cloud.

An illustration of a template and a reference in our application is shown in Figure

1.2. The template is defined using an undeformed stent structure based on the man-

ufacturer’s design, and here we refer to a horizontal circular frame as a “ring”, and a

vertical frame in between two rings as a “beam”.

The process of stent reconstruction is previously accomplished by manually detect-

ing and categorizing the observed data, as we discuss in Section 1.2. This can be

inefficient due to manual interventions; hence the motivation of this thesis is to autom-

atize the reconstruction process by registering an undeformed stent structure to a set

of data points. We explore a method that accomplishes this task in either 2D or 3D.
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Figure 1.2: A pre-defined template with nodes X, a reference point cloud P, and a
deformed template imposed on the point cloud.

1.2 Related Work

Method-wise, the registration of 2D or 3D shapes has been explored by many [6].

In particular, the Iterative Closest Point (ICP) is a widely-used algorithm for the

reconstruction of 2D and 3D geometric entities.

The ICP method, first introduced in [7], can be used in registrations of point sets,

line segment sets, curves, or surfaces [3]. Given a geometric object as a template,

one can decompose it into a point set, and use the ICP algorithm to minimize its

distance to a reference object [3]. Some proposed distance metrics used in ICP are the

Euclidean distance between corresponding points [3], or the distance between a point

and a tangent plane approximation of the surface at its corresponding point [7]. ICP

is widely used in computer vision, pattern recognition and image analysis [8].

We discuss the ICP method, and its drawbacks (e.g. differentiability), in further
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detail in Section 2, within the context of our application.

Application-wise, one approach explored by B. Yang [15] is to choose a particular

section of the set of 3D data, and obtain a set of points in 2D by “unrolling” the 3D

data. This enables us to manually connect and categorize the points in 2D, based on

our knowledge of the stent structure. Combination of all sections results in an unrolled

point cloud with categorization. Afterwards, a map back to 3D provides a categorized

point cloud, and cubic spline is used to reconstruct the deformed stent structure in the

patient’s coronary arteries.

1.3 Contributions

In the theoretical aspect, we introduce a line-to-point registration method, useful for

imposing a structure, defined by line segments, on a given set of points. Specifically, we

use projections of data points onto line segments, by which differentiability is achieved,

to compute the distance between the reference and the template. To minimize the

computed distance, we propose a three-step transformation procedure, taking into

account regularization.

From the application viewpoint, we use our method to automatize, and thus ex-

pedite, a critical step in the geometric reconstruction of implanted coronary stents.

Given a 3D point cloud representing stent struts, we are able to achieve correspon-

dence between a stent skeleton and the point cloud, thereby obtaining a deformed

stent structure, useful for further analysis of its impact in the coronary arteries of a

patient.
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1.4 Outline

In Section 2, we consider the possibility of using the Iterative Closest Point algo-

rithm for our applicational problem, and discuss its drawbacks in comparison with our

line-to-point method. We then introduce our method in the context of our application

in Section 3. We follow up with some numerical experiments in Section 4, and provide

directions for future work in Section 5.
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2 Iterative Closest Point

In this section, we discuss the ICP as a method alternative to line-to-point, that

one could use to achieve our goal of imposing a stent structure on a set of observed

data. We then discuss the disadvantages of the ICP method, in comparison with the

line-to-point registration approach.

2.1 The ICP Algorithm

To apply the ICP to the reconstruction of a coronary stent, consider a point cloud

of nodes on an undeformed stent, X = {x1, x2, . . . , xNx} ⊂ Rd (d = 2 or 3), and a point

cloud of observed data P = {p1, p2, . . . , pNp} ⊂ Rd. One way to find correspondence

is to use the ICP algorithm to minimize the distance between the two point clouds X

and P.

Briefly speaking, the ICP algorithm starts with the identity transformation φ(0), and

iteratively finds a transformation φ(k) until it reaches some stopping criterion (e.g. num-

ber of iterations, change in misfit, etc.). In the kth iteration (k > 0), we minimize the

distance between the transformed template φ(k)(X) = {φ(k)(x1), φ
(k)(x2), . . . , φ

(k)(xNx)} =

{φ(k)
1 , φ

(k)
2 , . . . , φ

(k)
Nx
} and the reference P. This distance can be written as

D
(
φ(k)(X),P

)
=

Nx∑
i=1

‖φ(k)
i − p̃i‖22 , where p̃i = argmin

p∈P
‖φ(k−1)

i − p‖22 . (1)

Here we use a discrete representation for distance D, as we consider the case when φ

is discretized on the point cloud X. In general, however, φ can be continuous.

Using ICP, we can compute the rigid registration of two point sets using closed-form

methods, such as singular value decomposition, by expressing the transformation with

a rotation matrix and a translation vector [1]. One can also introduce a scale matrix,
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and achieve registration with scaling [8].

2.2 ICP vs. Line-to-Point

Here we discuss the differentiability, and visualization, as two major advantages the

line-to-point approach has, in our application, over the ICP method.

Due to the pointwise nature of the template in the ICP method, the problem is

discrete and therefore non-differentiable. To see this in more detail, let us look at

a situation with ICP in Example 2.1, and compare it with a similar case using the

line-to-point approach in Example 2.2.

Example 2.1: Non-differentiability of ICP

Consider the case when in the first iteration, a point xi ∈ X has equal distances to

two points p1, p2 ∈ P (Figure 2.1). The discrete nature of ICP causes an ambiguity of

choosing between p1 and p2 for the value of p̃i in (1), making it impossible to formulate

the expression of ∇D
(
φ(X),P

)
in a unique manner.

To be more specific, since p1 and p2 give us the same value for the distance, choosing

either one does not affect the overall D
(
φ(X),P

)
. However, if p1 is chosen, and φ causes

xi to move further from p1 and closer to p2 (Figure 2.1), then the Taylor series, using

p1 in the expression for ∇D
(
φ(X),P

)
, predicts the objective function to increase in

value. This is not true if p2 is chosen, since then the gradient would predict a decrease

in the overall distance, which is what we desire.
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Figure 2.1: The pointwise nature of ICP causes its non-differentiability.

Example 2.2: Differentiability of Line-to-point Approach

In our line-to-point registration approach, however, we use the projection of each

pi ∈ P onto the edges in our template. This requires a template with pre-defined line

segments, and in our application, it comes from our knowledge of the skeletal structure

of an undeformed stent.

We discuss projections in more detail in Section 3.2.1. As a brief example, let p̂i

be the projection of pi onto the edge defined by nodes x1, x2 (Figure 2.2), then the

problem is continuous and differentiable up to the length of the edge, thus relieving the

non-differentiability of ICP. When x1 is moved further from pi (Figure 2.2), projection

onto the edge defined by φ1 and φ2 allows differentiability on this edge.

The line-to-point method is applicable to the case of a coronary stent, since we do

not require any pi ∈ P to land on a particular xj ∈ X, but only to get close enough

to our pre-defined template structure. We present the results in our application using

this approach in Section 4.1.

Figure 2.2: Projection in line-to-point registration makes the problem differentiable.
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Another advantage the line-to-point approach has over ICP is its ability to be

visualized and deformed directly.

In (1), the step of finding the closest point for each xi in P can be problematic in

practice. This is because we only have the knowledge of X as a set of points, and do

not have control over how X as a whole is moved by φ. In our application of a coronary

stent, however, X is more than a disordered point cloud; each point in X is connected

to some other points by the structure of a coronary stent. Therefore, using merely the

ICP for nonlinear transformations, we can end up with an unreasonable stent structure

(e.g. overlapping of stent).

One way to resolve this issue is to impose a grid (i.e. a partitioning of the region

of interest into a number of congruent cells [12]) on X, on which we interpolate a

nonlinear transformation φ with respect to this grid [12], so that we have control over

the movement of X. In the end, the grid transformed by φ can also help visualize the

reasonability of our resulting φ(X).

Using our line-to-point approach, however, such a grid is not necessary. Rather,

the transformed template itself gives a nice visualization of the reasonability of our

solution.

Further detail on our template and the general approach is discussed in Section 3.
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3 Line-to-Point Registration

In this section, we introduce the procedure of our line-to-point registration ap-

proach. We split the section into subsections based on discussions of a template, the

objective function, and numerical optimization.

At each subsection, we review some theoretical concepts if necessary. We then

discuss the approach in the context of our application (i.e. reconstruction of a coronary

stent), but the method can be extended to other applications. Specifically, if we have

information of a data set, and a desired skeletal structure to act as a template (Section

3.1), we can deform the structure to fit the given data.

3.1 Template

Given a set of data points, our template is a piecewise linear object defined by

nodes and edges. Our objective is to deform the template such that its distance to the

point cloud is minimized.

As in our notation in Section 2.1, let X = {x1, x2, . . . , xNx} ⊂ Rd be a point

cloud of nodes in our template, and P = {p1, p2, . . . , pNp} ⊂ Rd be a point cloud

of observed data. In addition, we define edges in our template by E =
{
{i, j} :

∃ a line segment between xi and xj
}

.

From now on, we represent our template as G(X,E). To relate this notation to the

traditional representation of an undirected graph G(V,E) [4], simply define a vertex

function f : V → Rd by f(i) = xi, and let E = E.

In our application, the template is an undeformed stent skeleton, which is built

based on the design of a bioresorbable coronary stent [15]. This can be done in both 2D

and 3D (Figure 3.1). Transformation of the template is done by directly transforming

the nodes X (Section 3.2.2). Since the edges E are defined in terms of the indices of



3 LINE-TO-POINT REGISTRATION 11

Figure 3.1: Sections of 2D and 3D templates in our application.

nodes in the template, movement of the entire skeleton is an immediate consequence

of the movement of X. In the entire process, E remains unchanged.

3.2 Objective Function

Our registration problem is to find a reasonable transformation φ of a template

G(X,E), such that its distance to the reference P is minimized. To this end, the

objective function J : Rd·Nx → R can be written as

J
(
φ(X)

)
= D

(
G
(
φ(X),E

)
,P
)

+
∑
i

αiSi

(
G
(
φ(X),E

))
, (2)

where D denotes a distance measure (Section 3.2.3), αi is a regularization parameter,

and Si, as a regularizer, measures the reasonability of a transformation (Section 3.2.4).

Depending on whether the transformation is parametric (i.e. whether the transfor-

mation can be written as a linear combination of basis functions, with coefficients as

elements in a parameter w [12]), we minimize J with respect to either the parameter

w, or the transformed nodes φ(X) = {φ(x1), φ(x2), . . . , φ(xNx)} = {φ1, φ2, . . . , φNx}

(Section 3.2.2).

In this subsection, we present the objective function by discussing projection, para-

metric and nonparametric transformations, distance measure, and regularization.
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3.2.1 Projection

The projection of a point p on a line segment is a point p̂ that has the shortest

distance to p. Since a line segment is a closed and convex set in Rd, the projection is

unique [5]. In our problem, we want to find for each p ∈ P the closest projection onto

all the edges in G(X,E).

Consider a point pk ∈ P, and its projection on an edge in G(X,E) with endpoints

xi, xj ∈ X ,

p̂
(i,j)
k = xi + t

(i,j)
k (xj − xi) , (3)

where t
(i,j)
k =


0 if c

(i,j)
k < 0,

c
(i,j)
k if 0 ≤ c

(i,j)
k ≤ 1,

1 if c
(i,j)
k > 1,

and c
(i,j)
k =

(xj − xi)T (pk − xi)
(xj − xi)T (xj − xi)

.

In the expression of t
(i,j)
k we normalize (xj − xi), and t

(i,j)
k takes care of projection p̂

(i,j)
k

both in between and at the endpoints of the line segment [5]. The distance from point

pk to the line segment {xi, xj} can then be written as ‖p̂(i,j)k − pk‖22.

Using the projection defined in (3), we perform projections of pk onto all edges in

our template G(X,E), and compute the distance from pk to each edge. We can then

pick the minimum of these distances, and denote the corresponding projection as p̂k,

and the scalar as tk. We also record the corresponding edge index. Repeat this process

for all p ∈ P, and this is called the brute-force search.

For future work, the above step can be improved by using more efficient search

techniques. For example, one can pre-compute the region in Rd closest to a given

pi ∈ P, using the Delaunay triangulation, or the Voronoi diagram [2]. We can then

project pi onto the edges corresponding to the nodes in X in this region, thus reducing

the number of searches needed.

Let us look at how to implement projection numerically. We can represent the
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nodes X as a vector of length d ·Nx, denoted by X. Then ∀k = 1, 2, . . . , Np, write the

corresponding projection with minimal distance p̂k
(
G(X,E)

)
as

p̂k(X) = Q
(1)
k X + tk · (Q(2)

k −Q
(1)
k )X ,

where tk =


0 if ck < 0,

ck if 0 ≤ ck ≤ 1,

1 if ck > 1,

and ck =

(
(Q

(2)
k −Q

(1)
k )X

)T (
pk −Q(1)

k X
)

‖(Q(2)
k −Q

(1)
k )X‖22

,

and Q
(1)
k , Q

(2)
k are matrices of sizes d by d ·Nx, obtained from the recorded edge indices,

such that Q
(1)
k X and Q

(2)
k X are the endpoints of the closest edge corresponding to pk.

Using the above, we repeat the process Np times, to obatin a point cloud of pro-

jections P̂
(
G(X,E)

)
=
{
p̂1
(
G(X,E)

)
, p̂2
(
G(X,E)

)
, . . . , p̂Np

(
G(X,E)

)}
. Observe that

each p̂k : Rd·Nx → Rd, when written as a function of X, is differentiable except at

the endpoints of the corresponding line segment. This differentiability, as mentioned

before in Section 2.2, is an advantage in our application over the non-differentiable ICP

method.

To get the gradient of p̂k with respect to X, first find the gradient ∇tk using the

quotient rule, then find the Jacobian J p̂k using the product rule. To represent it

explicitly, let Qk = Q
(2)
k −Q

(1)
k , then

∇tk =

 0 if tk = 0 or tk = 1,

‖QkX‖22(QT
k pk−QT

k Q
(1)
k X−Q(1)T

k QkX)−2XTQT
k (pk−Q

(1)
k X)QTQX

‖QkX‖42
otherwise,

and J p̂k = Q
(1)
k + tkQk +QkX∇tTk .

We can perform this differentiation procedure on all the points in P̂
(
G(X,E)

)
. In

the end, if we write the point cloud P and the projection point cloud P̂ as vectors of
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length d·Np, denoted respectively by P and P̂, then we can represent P̂ : Rd·Nx → Rd·Np

as a function of X.

From the application viewpoint, we have found, for each point in the observed

data P, a corresponding projection in our undeformed stent template G(X,E). This

projection, as we discuss in Section 3.2.3, is used to define the distance measure D in

(2).

3.2.2 Transformations

In this thesis, we consider both parametric and nonparametric transformations in

our objective function. Here we review the concepts of rigid and affine transformations,

and discuss transformations in the context of our application.

Consider a node xi ∈ X, and its image φi under a transformation φ. In the case of a

parametric transformation, let w = [w1 w2 . . .]
T denote the transformation parameter.

Rigid transformation allows translations and rotations. When d = 2, w ∈ R3, and

a rigid transformation can be written in the form

φi =

 cos(w1) −sin(w1)

sin(w1) cos(w1)

xi +

 w2

w3

 .
When d = 3, we have w ∈ R6, and a linear system with a product of 2D plane rotation

matrices defined by w1, w2, and w3 [12].

Affine linear transformation allows shearing and scaling. When d = 2, w ∈ R6, and

an affine linear transformation can be written in the form

φi =

 w1 w2

w4 w5

xi +

 w3

w6

 .
When d = 3, we have w ∈ R12 [12].
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In the rigid and affine transformations above, all φi ∈ φ(X) depend on w, and

thus the objective function in (2) is minimized with respect to w. In cases when

a transformation cannot be parameterized, the objective function is minimized with

respect to the transformed point cloud φ(X) directly.

Example 3.1: Three-step Transformation in 2D

In practice, we follow a three-step transformation process to achieve registration. As

an illustration, we use the example at the beginning of Section 1. As shown in Figure

3.2, the misfit J = D
(
G
(
φ(X),E

)
,P
)

decreases in each step. After nonparametric

transformation, we observe visually that the transformed template G
(
φ(X),E

)
fits the

data P.

Here we make use of the trafo function, provided by FAIR [12], to perform rigid

and affine linear transformations.

Figure 3.2: Deforming a pre-defined template to match a set of points, using three
steps of transformations.
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Figure 3.3: An example of performing affine transformation only, and invoking rigid
transformation before affine transformation.

Example 3.2: Necessity of Rigid Transformation before Affine

Although rigid transformation can be seen as a particular affine transformation

[12], note that it is necessary here to perform rigid transformation separately. This is

because of the projection method we are using. As an example, we start with a template

far away from the data point cloud, find the projections with minimal distances, and

immediately perform affine linear transformation (Figure 3.3). In this case, the closest

projections cover only a small portion of our template, and we get a result that does

not preserve the lengths of edges in the template. This can be undesirable in many

applications.

In the coronary stent case, the three-step transformation process can be visualized

by the deformation of a stent structure G(X,E), so that its distance to the observed

point cloud P gets minimized in each step.

With the knowledge of projection and transformations, we are now ready to define

a distance measure D.
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3.2.3 Distance Measure

At this stage, we have knowledge of a transformed template G
(
φ(X),E

)
, and a ref-

erence point cloud P. The idea is to obtain a set of closest projections P̂
(
G
(
φ(X),E

))
,

and compute the distance between the data and the projections. By this, we can write

the distance as

D
(
G
(
φ(X),E

)
,P
)

=
1

2

Np∑
i=1

D
(
G
(
φ(X),E

)
, pi

)
=

1

2

Np∑
i=1

∥∥∥pi − p̂i(G(φ(X),E
))∥∥∥2

2
,

where we define the distance from a point pi ∈ P to a template G(X,E) to be the

L2 -norm of the distance from pi to its projection p̂i onto the template.

From the numerical viewpoint, since E and P never change throughout the process,

D : Rd·Nx → R can be written with respect to X using P̂ defined in Section 3.2.1:

D(X) =
1

2
‖P− P̂(X)‖22 .

The gradient of D can be obtained by chain rule using the computed Jacobian JP̂:

∇D(X) =
(
P− P̂(X)

)
JP̂(X) ,

and the Hessian of D can be approximated by letting

∇2D(X) ≈ JP̂(X)TJP̂(X) .

Hence with transformation φ, the distance D
(
G
(
φ(X),E

)
,P
)

can be represented

as a function of φ(X). This distance measure provides us a way to represent the misfit

between our transformed template G
(
φ(X),E

)
and the reference P.

We now proceed to look at the remaining term in the objective function (2), the
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Figure 3.4: Both transformations of the template qualify as solutions.

regularizer.

3.2.4 Regularization

Registration problems, along with other inverse problems, are usually not well-

posed in the sense of Hadamard. That is, solutions to these problems either do not

exist, are not unique, or do not depend continuously on the data [9].

Example 3.3: Ill-posedness of the Problem

In our case, for example, the problem of minimizing the distance measure is ill-

posed, since there is not a unique solution. As a simple illustration, let us consider the

problem in Figure 3.4. Both transformations I and II are solutions, since both trans-

formed templates end up fitting the data, minimizing D
(
G
(
φ(X),E

)
,P
)

. However,

they are visually different, as one roughly preserves the length of each edge in the tem-

plate, and the other keeps the overall rectangular shape. Which one to choose would

depend on our practical purposes, and to obtain a reasonable solution, regularization

is necessary.

The purpose of a regularizer Si

(
G
(
φ(X),E

))
is to avoid undesirable results due to

ill-posedness, by penalizing unrealistic transformations of X. Regularization parame-

ters, αi > 0, are used for compromising between similarity and reasonability [12].
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In our application, for example, it is not enough to require the transformed template

to fit the given data. Because of material properties of a coronary stent, a reasonable

solution would restrict the length the skeletal stent from being unrealistically stretched,

squeezed, or deformed in different directions.

Here we consider two regularizers for nonparametric transformation: a length reg-

ularizer SL, and a direction regularizer SD.

Our length regularizer SL considers each edge in the transformed templateG
(
φ(X),E

)
,

and penalize change in its length. Let SL : Rd·Nx → R be defined by

SL

(
G
(
φ(X),E

))
=

1

2

Ne∑
i=1

(
‖φ(xi,1)− φ(xi,2)‖22
‖xtem

i,1 − xtem
i,2 ‖22

− 1

)2

,

where Ne is the size of E, and xtem
i,1 , xtem

i,2 and φ(xi,1), φ(xi,2) denote the left and right

endpoints of the ith edge in our template respectively before and after a nonparametric

transformation φ.

Our direction regularizer SD considers the directions toward which two nodes on an

edge move, and penalize the distances moved in different directions. Let SD : Rd·Nx →

R be defined by

SD

(
G
(
φ(X),E

))
=

1

2

Ne∑
i=1

∥∥∥(φ(xi,1)− xtem
i,1

)
−
(
φ(xi,2)− xtem

i,2

)∥∥∥2
2
.

This regularizer measures the variations of nodes in the template; its purpose is thus

analogous to that of a diffusion operator [12].

Note that in our application, we define the template as a skeletal stent structure

with equal-length edges, and no weight is required in this case. In general, if lengths of

the edges differ greatly, we can introduce weights on the edges in the template (e.g. let

wi = ‖xtem
i,1 − xtem

i,2 ‖22 for i = 1, . . . , Ne). One can relate this template to a weighted
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graph [4].

To implement SL numerically as a function of X, first define a matrix A0 of size

Ne by Nx in terms of the edges E in our template, such that A(i, j) = 1, where xj = xi,1,

and A(i, k) = −1, where xk = xi,2. Then the Kronecker product [12] A = Id×d ⊗ A0,

where Id×d is the d by d identity matrix, takes the value of [x1,1−x1,2 . . . xNe,1−xNe,2]
T

written as a vector of length d ·Ne. Here A has size d ·Ne by d ·Nx.

Let Xtem denote the vector X prior to nonparametric transformation, then the

only variable is X, and the length regularizer can be written as

SL(X) =
1

2
‖rL(X)‖22 , where rL(X) = I · (AX� AX)� (AXtem � AXtem)− 1 .

Here � and � denote respectively element-wise multiplication and division, and I =

I1×d⊗ INe×Ne has size Ne by d ·Ne, where I1×d is a 1 by d matrix with 1 as entries, and

INe×Ne is the Ne by Ne identity matrix.

Using this notation, the gradient can be expressed as

∇SL(X) = rL(X)T∇rL(X) , where ∇rL(X) = 2·I�(AXtem�AXtem)·diag(AX)·A ,

and diag(AX) denotes a diagonal matrix with entries in AX on its main diagonal [10].

We can also approximate the Hessian by letting

∇2SL(X) ≈ ∇rL(X)T∇rL(X) .

In a similar manner, we can express SD using A defined above, such that

SD(X) =
1

2
‖rD(X)‖22 , where rD(X) = A(X−Xtem) .
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Here the gradient and Hessian are respectively

∇SD(X) = rD(X)TA, and ∇2SD(X) = ATA .

This Hessian of size d ·Nx by d ·Nx is exactly Id×d⊗LG, where LG is the Laplacian [4]

of an undirected graph G(V,E), whose relation to our template G(X,E) is discussed

before in Section 3.1.

With a nonparametric transformation φ, SL and SD is computed with respect to

φ(X). Combining the numerical representations of the distance measure and the regu-

larizers, we can now express the objective function (2) for nonparametric transforma-

tion as

J
(
φ(X)

)
= D

(
φ(X)

)
+ αLSL

(
φ(X)

)
+ αDSD

(
φ(X)

)
,

where αL, αD > 0 are regularization parameters of SL and SD. For parametric trans-

formations, we use the objective function without regularization.

3.3 Numerical Optimization

In each of the three transformation steps, we minimize the objective function J by

numerical optimization. Here we consider the Gauss-Newton method with the Armijo

line search to solve the minimization problem [13].

Here we use the GaussNewton function, provided by FAIR [12], to perform nu-

merical optimization.
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4 Numerical Experiments

In our application, detection of stent struts has been performed by T. Han [11] and

B. Yang [15], based on OCT images provided by the Division of Cardiology at Emory

Healthcare. We thus start with a 3D point cloud, on which we proceed to test the

line-to-point registration approach.

In this section, we first demonstrate the entire process in 3D by an example. We

then discuss some supplementary steps as we implement the method in our practical

application.

4.1 3D Case Step-by-Step Demonstration

We perform experiments in 3D, as it is more effective for our application. However,

the procedure described here can be applied to a 2D point cloud, as Example 3.1

illustrates.

Here we use a section of obtained data for demonstration. For visualization pur-

poses, let the reference P correspond to three rings in a stent, and define a template

G(X,E) (Figure 4.1). In this case, Nx = 162, Ne = 168, and Np = 230.

Since G(X,E) and P are far from each other, we first use rigid transformation to

bring them together. This step can be replaced in practice, as we discuss in Section

4.2.2. For stopping criterion, here we let the maximal number of iterations be 15. In

this case it takes 10 iterations, and the template is brought close to our data, with a

misfit of J ≈ 28.7 (Figure 4.2).

Here the −1th iteration refers to the state before registration, and the 0th iteration

represents that before a transformation is performed.

We then use affine transformation to deform the template by shearing and scaling.

Here we let the maximal number of iterations be 20, and it takes 15 iterations, with a
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Figure 4.1: Before registration.

Figure 4.2: After rigid transformation.

Figure 4.3: After affine transformation.

Figure 4.4: After nonparametric transformation.
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misfit of J ≈ 1.50 (Figure 4.3).

The final step is to use nonparametric transformation to further fit our template

to the data. For stopping criterion here, we set the tolerance of the change in J to

10−4. It takes 6 iterations, and the result is visually a better fit than that after the

affine transformation, with a misfit of J ≈ 0.56 (Figure 4.4). In this example, along

with all other experiments, we use αL = 1.2 and αD = 2 as regularization parameters

respectively for our length and direction regularizers, SL and SD. Our choice of these

values is purely empirical, based on experimenting and comparing results using values

of J and visual reasonability.

We observe, in each of the above three transformation steps, that the value of J

decreases monotonically, and the gradient ∇J gets close to 0.

In this example, there are two steps we performed along the process: selection of

the data, and rotation of the template. We left them out of the descriptions above to

avoid confusion; let us now take a look at them separately.

4.2 Supplementary Procedures

In this subsection, we discuss two steps we follow as we perform our numerical

experiments. These steps help improve the performance of the registration approach

in our application, but they can be different in other applications.

4.2.1 Data Selection and Denoising

In this thesis, we run our experiements in a section-by-section manner: we perform

registration on point clouds of selected stent sections, and combine the results to get

the structure of an entire stent.

The inputs in our case are slice numbers, each of which corresponds to a point cloud

of stent struts detected from an OCT slice. Therefore, selecting a section of a point
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Figure 4.5: Results without and with denoising after data selection.

cloud is accomplished by simply changing the input slice numbers. An additional step

we perform, after data selection, is to denoise by removing undesired data points.

Example 4.1: Denoising when Selecting Data

When we need a point cloud that corresponds to three rings, we want to remove

some points from above or below these three rings (Figure 4.5).

At this stage, we perform this step of denoising manually, by interactively selecting

the undesired points in the data brushing mode in MATLAB, and removing the selected

data.

4.2.2 Correction of Rotation

Although rotation of the template is performed during rigid transformation, we

observe undesirable results in some experiments. This is because of the non-convex

nature of our problem.

To resolve this issue in our application, we replace the rigid transformation step by

first translating the template using the center of mass of P, then rotate the translated

template around its first principal component, as we have done to obtain Figure 4.6.

We then choose the angle corresponding to the minimal J , and use the rotated template
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Figure 4.6: The objective function for rigid transformation is not convex, and hence
solution depends on initial guess.

Figure 4.7: Results without and with correction of rotation.

as an initial guess for affine transformation. Performing this step, followed by affine

and nonparametric transformations, gives us a reasonable result (Figure 4.7).

Example 4.2: Non-convexity of objective function

Let us choose a point cloud P corresponding to three rings, and translate our

template by the center of mass of P. Then rotate the translated template around

its first principal component, the direction with the most variability. The resulting

misfits are shown in Figure 4.6, where we observe at least two local minima. In this

case, different initial guesses of the rotation angle can bring us different results.

In the above example, we use a step length of 30 degrees to find the minimal misfit,

but this step length of rotation is completely dependent on the user.

Note that although we replace the step of rigid transformation in our application,
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we do not remove it from the line-to-point registration scheme, because it can play

an important role in more general applications, where we do not have a non-convex

objective function.

4.3 Semi-Automatic 3D Registration of a Coronary Stent

Following the steps with improvements, we perform registration by sections of three

to five rings, and combine the results to obtain an entire stent structure.

Figure 4.8 shows an example of a resulting stent. Given a set of observed data and

knowledge of a stent structure, we can perform geometric reconstruction of different

types of coronary stents (other than bioresorbable stents), using the same procedure.

Figure 4.8: Combination of sections provide us with the structure of an entire stent.
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5 Conclusions

In this section, we summarize what we have accomplished at this stage, and discuss

what the next steps can be. We conclude from the viewpoints of both the general

method, and our application.

5.1 Current Work

We have introduced a line-to-point registration approach, which is useful for im-

posing a known structure on a given set of data in 2D or 3D. This method uses the

projections of points onto line segments, and aims at fitting a skeletal object with

three steps of transformations. Using the length and direction regularizers, we can

adjust the regularization parameters to preserve the overall structure. In general, this

approach can be used in registration of two geometric objects, one of which has a

skeleton structure, and the other can be represented by a point cloud.

In the application of this thesis, we use the proposed approach to reconstruct im-

planted coronary stents in a section-by-section manner. If categorization of data is

needed, we can simply use the projection algorithm to find the closest ring or beam

corresponding to each data point.

5.2 Future Directions

Method-wise, one can introduce a weight function w to the template, such that

G(X,E, w) denotes a template with weights on its nodes or edges. One can also con-

sider adding regularizers. For example, overlapping of edges, which can result from

nonparametric transformation, is unrealistic in many applications. To penalize this

situation, we can impose regularization with respect to the surface areas defined by

the skeletal template. However, the task of detecting surface areas, as well as the
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regularization on them, is nontrivial.

In our application, we aim at a one-step registration of an entire stent. An idea is

to obtain a better initial guess as the template using the centers of each OCT slice,

and construct a center line to perform an initial deformation of our template. We can

also utilize knowledge of the conformation of a patient’s coronary arteries, to constrain

the deformation of the stent skeleton.
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Symbols and Abbreviations

Symbols

αi > 0, regularization parameter

φ, a transformation

φi = φ(xi), a point xi ∈ X transformed

by φ

D, distance measure

d = 2 or 3, dimension

E, a set of edges in the template

G(X,E), a template with nodes X and

edges E

J , objective function

J, Jacobian

Ne, size of E

Np, size of P

Nx, size of X

P = {p1, p2, . . . , pNp}, a point cloud of data

in the reference

P, P represented as a vector of length d·Np

P̂
(
G(X,E)

)
= {p̂1

(
G(X,E)

)
, p̂2
(
G(X,E)

)
,

. . . , p̂Np

(
G(X,E)

)
}, a point cloud of

projections of P onto G(X,E)

P̂, P̂ represented as a vector of length d·Np

Si, regularizer

w, parameter of a parametric

transformation

X = {x1, x2, . . . , xNx}, a point cloud of

nodes in the template

X, X represented as a vector of length d·Nx

xi,1, xi,2 ∈ X, left and right endpoint of the

ith edge in template G(X,E)

Abbreviations

FAIR, Flexible Algorithms for Image

Registration

ICP, Iterative Closest Point

OCT, Optical Coherence Tomography

PCI, Percutaneous Coronary Intervention


	Introduction
	Motivation
	Related Work
	Contributions
	Outline

	Iterative Closest Point
	The ICP Algorithm
	ICP vs. Line-to-Point

	Line-to-Point Registration
	Template
	Objective Function
	Projection
	Transformations
	Distance Measure
	Regularization

	Numerical Optimization

	Numerical Experiments
	3D Case Step-by-Step Demonstration
	Supplementary Procedures
	Data Selection and Denoising
	Correction of Rotation

	Semi-Automatic 3D Registration of a Coronary Stent

	Conclusions
	Current Work
	Future Directions

	References
	Symbols and Abbreviations

