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Abstract 
 

The role of disease-driven human mobility changes in dengue transmission 
By Kathryn L. Schaber 

 
Human mobility plays a central role in shaping pathogen transmission by generating spatial 
and/or individual variability in potential pathogen-transmitting contacts. Fine-scale, daily 
mobility patterns are of particular importance for viruses spread by Aedes aegypti, a day-biting 
mosquito with a limited flight range and a propensity for residential locations. Indeed, house-to-
house human movement has been shown to underlie spatial patterns of dengue incidence. Recent 
research has shown, however, that symptomatic infection can influence human mobility and 
pathogen transmission dynamics. While the mobility changes of a symptomatic individual and 
their social contacts can significantly influence the spread of directly transmitted pathogens, they 
have not yet been included in theoretical models of dengue virus (DENV) transmission. This 
dissertation aims to determine the importance of dynamic human mobility patterns for human-
mosquito contact networks that lead to DENV transmission heterogeneity. Data were analyzed 
on the mobility of symptomatic dengue cases and their social contacts, then the impact of these 
disease-driven mobility changes on human-mosquito contacts and onward DENV transmission 
was determined. I found that presence and magnitude of mobility change depended on the day of 
illness and the individual’s sense of well-being, with the largest decrease in mobility occurring 
on the first three days of symptoms when infectiousness is peaking. Almost all symptomatic 
individuals received help from their housemates throughout illness and continued to receive 
visits from their ‘routine visitors’, most of whom were aware of the illness. Those who did help 
symptomatic individuals only made mobility changes drastic enough to affect their work in 28% 
of cases. When accounting for symptomatic mobility change, there were significant changes in 
the number of expected mosquito bites an infectious individual received, the location the bites 
occurred, and the individual’s predicted onward transmission. I also found that the role of biting 
suitability in determining an individual’s onward transmission can be dependent on the density 
of mosquitoes in the individual’s home. Broadly, these results display a variety of ways 
symptomatic dengue illness can impact human mobility patterns, further affecting an individual’s 
exposure to human-mosquito contacts and their overall contribution to DENV transmission.   
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Chapter 1: Introduction 
 

The force of infection, or the rate at which individuals get infected with a pathogen, for a 

vector-borne disease is composed of three terms: probability of contact between a susceptible 

individual and a mosquito, probability that the mosquito is infected with the pathogen, 

probability that contact between the susceptible human and infected mosquito results in 

successful transmission [1]. Each of these rates/probabilities can vary between individuals or 

locations, causing transmission heterogeneity, where certain individuals or locations contribute 

disproportionately to pathogen transmission and epidemic spread [2-4]. Traditionally for vector-

borne diseases, mosquito movement and spatial variation of mosquito densities are the primary 

factors that cause differing probabilities of human-mosquito contact, thereby generating spatial 

transmission heterogeneity [5]. 

 

Human movement, social contacts, and vector-borne disease  

 These spatial factors of mosquitoes can be outweighed, however, when human mobility 

occurs at a broader spatial scale. Human mobility can drive transmission across multiple spatial 

and temporal scales, shaping the structure of transmission networks and influencing 

epidemiologic processes such as pathogen introduction, epidemic transmission, and endemic 

persistence [6-10]. While fine scale (daily, intra-urban) human mobility patterns may not have an 

effect for pathogens spread by widely dispersed vectors with large movement ranges, it has been 

shown to play an important role with vectors such as Aedes aegypti, a day-biting mosquito that 

has a limited flight range (<100m) and a propensity for the indoors [11]. 
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 Daily human movement plays a more significant role in transmission of Aedes aegypti’s 

pathogens, because it works on a broader scale, dispersing virus into multiple locations where 

mosquitos are present and able to bite susceptible individuals. Spatially, mosquito densities vary 

between households and an individual’s daily movement patterns determine the number of 

mosquitoes contacted per day. Within a population, susceptible individuals will have different 

routine movements, contact different numbers of mosquitoes, and have varying probabilities of 

contacting an infected mosquito. While mosquitoes can be present at any/all locations an 

individual routinely visits, studies have shown that residential areas have a higher prevalence of 

Aedes aegypti mosquitoes and are the primary locations of human-mosquito exposure [12, 13].  

Routine movements between households are likely to be shaped by social connections 

between individuals in the population, where two people with a strong connection will likely 

visit each other’s houses frequently. Therefore, routine movement can cause two individuals with 

strong social ties to have frequent, daytime contact with the same mosquitoes in a location where 

human-mosquito exposure occurs [12]. Consequently, a susceptible individual’s probability of 

contacting an infected mosquito will vary depending on the infection status and social tie 

strength of individuals in their contact network. Conversely, an infected individual’s contribution 

to transmission can be influenced by not only how many bites they receive, but also which 

vectors the bites are from and whom those vectors encounter next [16]. 

 The presence of symptomatic infection may, however, influence routine mobility 

patterns, in turn influencing onward virus transmission and the structure of transmission chains. 

Research on directly transmitted diseases has demonstrated disease-driven behavior changes 

(namely isolation, avoidance, and caregiving) [14] and the significant influence they can have on 

predictions of pathogen spread [15-18]. The effects of these behavioral changes on transmission 
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should also be considered for certain vector-borne diseases, particularly those spread by Aedes 

aegypti, or a similar vector. The impact of movement changes on an individual’s mosquito 

contacts and onward transmission will likely depend on the distribution of mosquitoes at their 

home and across the rest of their activity space (routinely visited locations) [8, 19, 20]. At a 

population level, human mobility changes could affect pathogen spread in a variety of ways 

depending upon which individuals in the population experience symptoms and change their 

mobility and potential exposure to Aedes aegypti mosquitoes. One Aedes-borne illness where 

human movements have been shown as key to explaining transmission dynamics is dengue [21-

25]. 

 

Dengue as a study system 

 Dengue is the most important mosquito-borne viral disease of humans worldwide, 

affecting approximately 390 million people a year and endemic in over 100 countries [26]. 

Prevalent in the tropics and subtropics, the acute illness is caused by any of four 

immunologically related viruses in the family Flaviviridae and is transmitted by Aedes spp. 

mosquitoes (primarily Aedes aegypti). Symptoms associated with dengue (acute fever, headache, 

musculoskeletal pain, and rash) occur in a small proportion of cases, while the other 70% of 

cases experience either very mild symptoms (inapparent) or no symptoms (asymptomatic) [27-

29]. For those individuals who are infected with dengue virus (DENV) and experience 

symptoms, infectiousness tends to peak during the first few days after onset of symptoms and 

lasts for 4-5 days [30-32]. There are, however, a few days before symptom onset when 

individuals have sufficient viremia levels to be infectious [30, 32]. 
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House-to-house human movement has been shown to significantly influence DENV 

transmission [33-35], with an individual’s risk of DENV infection significantly increasing when 

he or she routinely visited the same residential locations as DENV-infected people [34]. Further, 

when mobility-driven contact structure has been included in theoretical models, the effect on 

DENV epidemic transmission is dramatic. Overlapping movement patterns within social groups 

drive the fine-scale heterogeneity in DENV transmission rates [33]. 

Furthermore, variations in movement patterns occur during a dengue epidemic, with 

symptomatically DENV-infected individuals visiting fewer houses and staying at home more [3, 

36, 37]. This variation in mobility has not yet been taken into account for theoretical DENV 

models; however, it will likely impact human-mosquito contacts and onward transmission. There 

may not be population-level effects on epidemic size and length, given the prevalence of 

asymptomatic infections, which are not associated with mobility reduction. The pattern of 

transmission may be affected by asymptomatic (and susceptible) individuals changing their 

movement patterns to act as caregivers for their symptomatic social contacts. It is necessary to 

account for these socially structured mobility changes in dengue transmission in order to better 

understand the impact on human-mosquito contacts and transmission heterogeneity. Inclusion of 

dynamic mobility also elucidates the important role asymptomatically and pre-symptomatically 

infected individuals may have in maintaining onward DENV transmission. 

 

Study Area 

A unique location to study the role of human mobility on DENV transmission is the Amazon city 

of Iquitos, Peru. Iquitos is a geographically isolated, tropical urban environment with 

approximately 430,000 inhabitants located along the margin of the Amazon River [38]. The 
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city’s economic structure is highly informal and dynamic, with one-third of economically active 

individuals either unemployed or informally employed [39]. Iquitos has been the home of 

extensive, long-term arboviral research led by the University of California, Davis and U.S. Naval 

Medical Research Unit 6 since 1999 [8, 29, 34, 35, 40-42]. Extensive human mobility studies 

paired with detailed epidemiological data have made Iquitos an informative site for 

understanding the dynamics of arbovirus transmission. All four serotypes of DENV have been 

introduced in Iquitos; however, at any particular time virus transmission is usually dominated by 

a single serotype [29, 43]. Previous research [35] demonstrated that inhabitants visit an average 

of 5.8 (±3.6 SD) locations over a two-week period. While most movement (~80%) occurs within 

1 km of their home, inhabitants have highly irregular and temporally unstructured routines that 

are not dominated by a single location, such as a workplace [35]. 

 

Dissertation Summary 

 In this dissertation, I aim to determine the importance of dynamic human mobility 

patterns on human-mosquito contact networks that lead to DENV transmission heterogeneity. I 

will accomplish this by analyzing detailed data on the mobility of symptomatic dengue cases and 

their social contacts, then determining the impact of these changes on both human-mosquito 

contacts and onward DENV transmission using a mathematical framework that accounts for 

house-to-house movement and stochastic DENV transmission.  

 I hypothesize that the dynamic human movement patterns of symptomatic individuals 

will drastically reduce the overall connectedness of the DENV transmission network; however, 

increased contact of symptomatic cases with caregivers and the sustained mobility of pre-

symptomatic and asymptomatic hosts will continue to drive onward DENV transmission. 
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Chapter 2: Dengue illness impacts daily human mobility patterns in 
Iquitos, Peru 
 
Reprinted from: Schaber KL, Paz-Soldan VA, Morrison AC, Elson WHD, Rothman AL, 
Mores CN, et al. Dengue illness impacts daily human mobility patterns in Iquitos, Peru. 
PLoS neglected tropical diseases. 2019;13(9):e0007756. 
 

Introduction 

Human mobility plays a central role in shaping the structure of transmission networks 

and in influencing epidemiologic processes such as pathogen introduction, epidemic 

transmission, and endemic persistence [1-4]. While human mobility can drive transmission 

across multiple spatial and temporal scales [3, 5], it is at the finest scales (daily, intra-urban 

human movements) where epidemic processes occur and emergency public health interventions 

are usually implemented. Evidence from theoretical models and empirical studies show that 

individual and/or spatial variability in number and frequency of contacts can lead to transmission 

heterogeneity, where certain individuals or locations contribute disproportionately to pathogen 

transmission and epidemic spread [6-8]. Thus, identifying social and behavioral characteristics 

(e.g., mobility patterns, occupations, age classes) most responsible for such disproportionate 

contributions has become a public health priority, with significant potential for leveraging the 

power of public health surveillance programs and targeted disease control [9-11].  

Dengue, an acute illness caused by four immunologically related viruses in the family 

Flaviviridae and transmitted by Aedes spp. mosquitoes (primarily Aedes aegypti), is the most 

important mosquito-borne viral disease of humans worldwide [12]. Because Aedes aegypti 

seldom disperse beyond 100 meters, have a propensity for resting and biting inside residential 

buildings, and bite during the day [13-16], human movements are key to explaining the urban 

transmission dynamics of dengue virus (DENV) [17-21]. Individual movement patterns can also 
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expand the spatial scale of transmission and lead to significant heterogeneity in transmission 

patterns by connecting otherwise discrete subpopulations of mosquitoes [3, 22, 23]. Extensive 

movement studies performed in the upper Amazon city of Iquitos, Peru, have shown that while 

human mobility within a resource-poor urban center is highly unstructured (with only 38% of 

participants having regular mobility routines), the majority of locations visited are either 

residential or commercial, with most movements (81%) occurring within 1 km of an individual’s 

home [24-28]. Moreover, an individual’s risk of DENV infection significantly increased when he 

or she routinely visited the same residential locations as DENV-infected people, whereas the 

distance the individual lived from a DENV-infected case was not significant [26].  

Such empirical characterizations of fine-scale human mobility patterns and risk of DENV 

infection have informed complex simulation models that explore the theoretical role of human 

movement on the spatial and temporal patterns of disease dynamics [18, 23, 29]. When mobility-

driven contact structure is included in theoretical models, the effect on DENV epidemic 

transmission is dramatic. Overlapping movement patterns within social groups drive the fine-

scale heterogeneity in DENV transmission rates; however, the presence of a mosquito vector can 

hide the effect of socially structured movements if only spatially aggregated infection dynamics 

are considered [23]. Such models do not take into account the fact that symptomatic infection 

may influence mobility, which in turn can influence onward virus transmission and the structure 

of transmission chains. Research on directly transmitted diseases has demonstrated disease-

driven behavior changes [30] and the significant influence they can have on predictions of 

pathogen spread [31-34]. For DENV, mobility data have been captured for febrile symptomatic 

individuals and healthy individuals using either retrospective movement surveys [35] or GPS 

trackers [36]. Febrile DENV-infected individuals visited significantly fewer places, traveled 
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shorter distances, and spent more time at home [35, 36]. These patterns reveal particularly 

important information for understanding the complex relationship between symptom severity and 

human mobility, and to ultimately determine if there is an association between human mobility 

and infectiousness to mosquitoes. However, because DENV infectiousness peaks at 0-2 days 

after onset of symptoms and lasts for 4-5 days after onset of symptoms [37-39], human mobility 

during the first few days of symptoms could be key to better understand transmission dynamics. 

The goal of this study, therefore, was to conduct detailed, daily retrospective interviews to 

measure the mobility behavior of clinically apparent DENV-infected individuals throughout their 

illness, with the goal of generating mobility metrics that can be used to characterize the absolute 

and relative impacts of disease on potential exposure to Aedes aegypti mosquitoes.  

 

Methods 

Study Area 

 This study was performed in the Amazon city of Iquitos, Peru. Iquitos is a geographically 

isolated, tropical urban environment with approximately 430,000 inhabitants located along the 

margin of the Amazon River [40]. The city’s economic structure is highly informal and dynamic, 

with one-third of economically active individuals either unemployed or informally employed 

[41]. Iquitos has been the home of extensive, long-term arboviral research led by the University 

of California, Davis and U.S. Naval Medical Research Unit 6 since 1999 [3, 24-28, 42]. 

Extensive human mobility studies paired with detailed epidemiological data have made Iquitos 

an informative site for understanding the dynamics of arbovirus transmission. All four serotypes 

of DENV have been introduced in Iquitos; however, at any particular time virus transmission is 

usually dominated by a single serotype [42, 43]. Previous research [27] demonstrated that 
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inhabitants visit an average of 5.8 (±3.6 SD) locations over a two-week period. While most 

movement (~80%) occurs within 1 km of their home, inhabitants have highly irregular and 

temporally unstructured routines that are not dominated by a single location, such as a workplace 

[27]. 

Study Design 

 The study followed a contact-cluster design in which reverse transcription polymerase 

chain reaction (RT-PCR) positive, or viral nucleic acid test positive, DENV-infected individuals 

(index cases) were captured through community or clinic-based febrile surveillance systems, as 

described previously [26]. At the time of the initial blood sample, a 15-day retrospective semi-

structured movement survey (RMS) was administered to the index case to identify the locations 

they visited in the 15 days prior to diagnosis (characterizing the “pre-illness” period). Consenting 

individuals (contacts) from the index cases’ home and residential locations visited by the index 

case were then screened for DENV infection using RT-PCR [26] [44]. The RMS was 

administered to DENV PCR-positive contacts to quantify mobility behavior associated with 

potential virus exposure.  

 RMSs were developed based on findings of focus groups and validated by comparison 

with data from people wearing GPS tracking devices [24, 25].  RMSs capture positional, 

temporal and behavioral information of routine human mobility. Questions focus on the amount 

of time an individual spent at home, the visitors they received, and the places they visited. For 

time spent at home, individuals were asked about the average number of hours spent at home 

each day of the week, specifically focusing on the period from 5 a.m. to 10 p.m., which includes 

the peak landing and biting times for Aedes aegypti [45]. For places visited, information was 

collected on the type of place visited, when, for how long, and how often in the 15-day period. 
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Trained, local Iquitos residents (the ‘Movement Team’) verbally administered electronic RMSs 

and recorded the information on tablets in the CommCare application [46]. 

 To track movements of DENV positive participants during their illness, daily interviews 

using a modified daily RMS (DRMS) were conducted in person or by telephone for 7 days 

following the initial RT-PCR-positive blood test. Where participants were not available for daily 

interviews, information about movements on several days was collected at a single interview. 

The DRMS asks about the amount of time spent at home the previous day(s) and the following 

information about each place visited during the previous day(s): day visited, place type, location, 

time of day visited, and time spent. For residential places visited, the DRMS asks whom they 

were visiting, their reason for visiting, if anyone in the home was ill during the preceding 15 

days, and (for routinely visited houses) if/why there was any change in the time of visitation, as 

compared to the “pre-illness” period. During this seven-day period, DENV positive individuals 

were also administered two Quality of Well-Being surveys (QWB) by the Movement Team, one 

2-3 days and one 7 days after the initial PCR-positive blood test. The QWB survey is a validated 

instrument used to measure an individual’s quality of life during chronic illness [47]. Our study 

was a novel application of the QWB survey to an acute illness. The survey responses were sent 

to the developers at University of California, San Diego, who used a weighted algorithm to 

produce one well-being score between 0.0 (death) and 1.0 (asymptomatic and fully-functioning) 

covering the three days prior to each survey date [47].  

 At a follow-up visit scheduled 30 days after the initial PCR-positive blood test, 

individuals were given a 15-day (“post-illness”) RMS and QWB survey in an effort to record 

their “baseline” mobility behavior and well-being in the absence of illness.  

Data Processing 
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 For each study participant, the following variables were computed from the “pre-illness” 

and “post-illness” 15-day RMS: (1) total number of locations visited, (2) proportion of visits to 

each location type, (3) total number of houses visited, (4) proportion of visits to houses of family 

members vs. houses of friends, and (5) average proportion of time spent at home per day. 

Equivalent daily values of these variables were collected for each participant from the DRMSs. 

Rather than referring to values as occurring on a certain number of days after the PCR-positive 

blood test, a standardized “day after symptom onset” variable was calculated. Because blood 

tests were not done on the same day of illness for all participants, DRMSs captured a range of 1-

15 days after symptom onset. We focused our analysis on days 1-9 after symptom onset; few 

individuals had data for days 10-15 after symptom onset. 

Data Analysis 

Analysis of mobility data had two main objectives: (1) comparing healthy (pre- and post- 

illness) mobility to mobility during illness, and (2) determining if mobility patterns changed 

during the 9 days after symptom onset.  

For the first objective, mobility during illness was calculated by averaging a participant’s 

DRMS for all available time points up to day 9 after symptom onset. Comparisons were done for 

the following mobility metrics: daily number of locations visited, daily number of houses visited, 

and proportion of time spent at home. When a metric followed a normal distribution (assessed 

via the Shapiro-Wilk test), pairwise comparisons were performed with paired t-tests followed by 

Holm-Bonferroni corrections. When the variable was not normally distributed, the non-

parametric Kruskall-Wallis Rank Sum Test and pairwise Wilcoxon Signed Rank Test for paired 

data were utilized. As many individuals would stop visiting other locations during their illness 

period [35], we also analyzed the number of locations, number of houses, and time at home as 
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binary variables, asking if any locations/houses were visited and if any time was spent away 

from home. These binary outcomes were compared between all possible pairs of time points 

(pre-during, during-post, and pre-post illness) using McNemar’s χ2 test.  

If locations were visited, further analyses determined what type of locations they were. 

While these data were subject-correlated across time points, they could not be analyzed as paired 

data because not all participants visited locations at every time point. Generalized logistic mixed-

effects models (GLMMs) determined the association between the probability of a location type 

being visited and the time period being considered (pre-during-post illness), while accounting for 

repeated measures by using participant ID as the random intercept. Location type was separated 

into four groups: (1) house, (2) health, (3) education/work, and (4) other (e.g., recreation, church, 

market, port). Similarly, logistic GLMMs determined the association between time period (pre-

during-post symptoms) and the probability of a specific house type being visited (e.g., family 

versus friend).  

For the second objective, aiming to determine whether mobility patterns changed during 

the illness period, we calculated mobility metrics for 3-day groups (days 1-3, 4-6, and 7-9 after 

onset of symptoms). Daily data were aggregated into 3-day groups to allow for robust analyses, 

while also controlling for the dearth of data points on certain days. In particular, the first two 

days after symptom onset had incomplete information for some participants due to the time 

required to capture individuals with symptoms, run RT-PCR tests, and obtain confirmed test 

results. To make pre/post and during-illness data comparable, 15-day RMS values were 

condensed to give movements over an average 3-day period. Analysis of the number of 

locations/houses, proportion of location/house types, and time spent at home followed the same 

steps described above. Comparisons were made between the 3-day groups to determine whether 
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significant changes occur in movement patterns during illness. Further, movements within the 3-

day groups were each compared to post-illness mobility. 

The associations between daily (DRMS) mobility patterns and possible predictor 

variables were examined using Generalized Linear Mixed Models (GLMMs), Generalized 

Additive Mixed Models (GAMMs), and Generalized Additive Models for Location Scale and 

Shape (GAMLSSs) [48-50]. Best-fit models were determined for each of the following mobility 

outcomes: total number of locations visited (count variable), relative number of locations visited 

(compared to when healthy) (continuous variable), total number of houses visited (count), 

relative number of houses visited (continuous), total proportion of time spent time at home 

(continuous), and relative amount of time spent at home (continuous). For both the total number 

of locations visited and total number of houses visited, GLMMs and GAMMs with underlying 

Poisson distributions were compared. An individual’s age, occupation, gender, QWB score, and 

the “day after symptom onset” were considered as predictor variables, with the best-fit model 

determined using an AIC and a Chi-square test comparing reduction in residual deviance. The 

response variable proportion of time spent at home was best characterized by a one-inflated beta 

distribution, so analysis was done with GAMLSS, as detailed below. 

 Although GLMM and GAMM regressions model the mean (μ) value of the distribution 

of the response variable, GAMLSS allows other distribution parameters to be modeled as a 

function of explanatory variables. A one-inflated beta distribution has possible values 0<y≤1 and 

is defined in two parts: the probability that y=1 (modeled by the η parameter) and the probability 

for 0<y<1, which is shaped by a traditional beta distribution with parameters mean (μ) and shape 

(σ). Here, the η parameter was the probability an individual stayed at home 100% of the time 
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(y=1). If an individual did not stay at home the entire day, the proportion of time that was spent 

at home (0<y<1) was determined by a beta distribution with μ and σ.  

 We also considered response variables as relative values in order to control for the 

individual variation in mobility levels. The number of locations (houses) an individual visited on 

each day during illness was considered relative to the average number of locations (houses) they 

visited pre-illness. Similarly, the number of hours a participant spent at home during each day of 

illness was compared to the average number of hours that individual spent at home pre-illness. 

While relative number of houses could not be well explained by a set distribution, both relative 

number of locations visited and relative amount of time spent at home were best characterized by 

the logistic distribution. Analysis of these response variables was done with GAMLSS, where 

both the mean (μ) and the standard deviation (σ) parameters of the logistic distribution could be 

modeled as a function of explanatory variables. Best-fit GAMLSS models were chosen using 

forward and backward selection for each of the explanatory variables. All statistical analyses 

were performed in R 3.3.0 statistical computing software [48-51]. 

Ethics Statement 

 The procedures for enrollment of participants, dengue diagnosis, semi-structured 

interviews, and participant follow-up were approved by the Institutional Review Board (IRB) of 

the United States Naval Medical Research Center Unit No. 6 (NAMRU-6) 

(NAMRU6.2014.0021) in compliance with all applicable federal regulations governing the 

protection of human subjects. IRB relying agreements were established between NAMRU-6 and 

Emory University, Tulane University, University of California Davis, University of Rhode 

Island, San Diego State University, and University of Notre Dame. In addition to IRB approval, 

investigators obtained host country approval from the Loreto Regional Health Department, 
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which oversees health research in Iquitos. Adult study participants provided written informed 

consent and a parent or guardian provided informed consent on behalf of child study participants. 

 

Results 

 Detailed mobility data were collected from a total of 62 DENV+ participants. 

Descriptions of participant demographics and data completeness appear in the Supplemental 

Text (Text S2.1). The most commonly reported symptoms were general malaise (100%), 

weakness (96.61%), fever (93.22%), headache (91.53%), anorexia (89.83%), and 

musculoskeletal pain (84.75%). During days 1-9 post-onset of symptoms, the average maximum 

malaise intensity of participants was 7.5 on a scale of 10 (range: 0-10), as compared to a mean 

intensity of 0.28 out of 10 (range: 0-6) during the post-illness time period. While all participants 

reported some level of malaise and dengue-related symptoms, the vast majority of participants 

(88.7%) received only outpatient care.  

For the 34 participants with QWB scores collected at all time points (2-3 days post blood 

test, a week post blood test, and post-illness), scores were considered in terms of “days after 

symptom onset”. The mean QWB score of those reported in the nine days after symptom onset 

was 0.61 (range: 0.25-1.0). The median QWB score was less than 0.70 all nine days after 

symptom onset; however, a few individuals had scores of 1.0 (“asymptomatic”) as early as day 4. 

While the DRMS may have captured mobility on days when individuals were asymptomatic, the 

vast majority of individuals retained symptoms throughout the nine days after symptom onset 

(Figure S2.3). Therefore, that period will be referred to as “during illness” in the remaining 

sections.  
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The mean QWB score at the post-illness time point was 0.88 (range: 0.48-1.0, median 

1.0). While the post-illness survey may contain data from a few individuals who were still 

symptomatic, in general we considered it a suitable approximation of healthy mobility. Another 

proxy for healthy mobility, the “pre-illness” RMS, may have also captured some symptomatic 

movements because the 15-day retrospective survey could not be given until DENV cases were 

captured a median of 3 days after symptom onset.  

Healthy vs. Symptomatic Mobility Patterns 

When comparing healthy (pre-/post-illness) and symptomatic time points, there was a 

significant difference in both the proportion of time spent at home and the average number of 

locations visited (Figure 2.1A-2.1B). Healthy participants spent 60% of their time at home and 

visited an average of 1.3/1.1 (pre-/post-illness) locations per day, whereas ill participants spent 

74% of their time at home (Wilcoxon test: p < 0.001) and visited an average of 0.73 locations 

(Wilcoxon test: pre-illness: p < 0.001; post-illness: p=0.010) (Table S2.2). Participants were also 

significantly less likely to visit other houses during illness, as compared to pre-illness 

(McNemar’s χ2: p < 0.001) and post-illness (McNemar’s χ2: p = 0.043) (Table S2.3).  

 The odds (adjusted odds ratio/AOR) of an individual visiting an education/work location 

during healthy time points (AOR pre-/post-illness: 2.0/4.4) were significantly greater than during 

illness (GLMM: p < 0.001; Table 2.1, Figure 2.2). Similar significant differences were seen for 

visits to “other” place types (GLMM: p<0.001; Table 2.1, Figure 2.2). Conversely, the odds of 

participants going to a health-related place pre- or post-illness were significantly lower than 

during illness (AOR: pre-/post-illness: 0.019/0.002; Table 2.1, Figure 2.2). Although individuals 

were more likely to visit a house during the pre-illness time period as compared to during illness 

(AOR: 1.684; GLMM: p=0.013), there was no significant difference for post-illness (AOR: 



 21 

0.872; GLMM: p=0.64), where individuals were predicted to visit houses with a mean 

probability of 21% (Table 2.1, Table S2.4). 

Mobility Patterns During Illness 

During days 1-3 and 4-6 after symptom onset, individuals were significantly more likely 

to spend all of their time at home, compared to both days 7-9 after symptom onset (McNemar’s 

χ2: p = 0.046) and post-illness (McNemar’s χ2: days 1-3: p = 0.008; days 4-6: p = 0.008) (Table 

S2.6). There was also a significant difference in the average proportion of time spent for days 1-3 

and 4-6 (76%) when compared to both days 7-9 (69%) (Wilcoxon test: days 1-3: p = 0.014; days 

4-6: p = 0.008) and post-illness (59%) (Wilcoxon test: days 1-3: p = 0.005; days 4-6: p < 0.001; 

Figure 2.3B, Table S2.5). Individuals were significantly less likely to visit any locations during 

illness compared to post-illness (McNemar’s χ2: days 1-3: p = 0.001; days 4-6: p < 0.001; days 7-

9: p = 0.008; Table S2.6).  Accordingly, the average number of locations visited was 

significantly lower on days 1-3 (paired t-test: p = 0.017) and 4-6 after symptom onset (paired t-

test: p < 0.001) when compared to the mean 3.4 places visited every 3 days at post-illness 

(Figure 2.3A). The average number of locations visited on days 1-3 (1.5 places/3-days) was also 

significantly less than the average number of locations visited on days 7-9 after symptom onset 

(2.2 places/3-days) (Wilcoxon test: p = 0.047; Table S2.5). 

When considering the type of location visited (Figure 2.4), the three during-illness time 

points (days 1-3/4-6/7-9) were compared to the post-illness period. Post-illness, the participants 

were predicted to visit education/work places with a 48% probability, “other” places with a 32% 

probability, houses with a 20% probability, and health-related places with only a 0.2% 

probability (Table S2.7). Compared to post-illness, the odds of an individual visiting an 

education/work place were significantly lower for days 1-3 (AOR: 0.08), days 4-6 (AOR: 0.22), 
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and days 7-9 after symptom onset (AOR: 0.26) (GLMM: p< 0.001; Table 2.2). Conversely, the 

odds of visiting a health-related place during illness were significantly higher compared to post-

illness (AOR: days 1-3: 3826; days 4-6: 1041; days 7-9: 365), likely due to the very low 

probability of a health-related location being visited post-illness when healthy (GLMM: p < 

0.001). The likelihood of visiting a house during illness was not significantly different than the 

likelihood post-illness (AOR: days 1-3: 1.08; days 4-6: 1.20; days 7-9: 1.64; GLMM: p > 0.05). 

There were also no significant correlations between the illness time point and the odds of visiting 

a family member’s (versus friend’s) house (Table 2.2, Table S2.7).  

Daily Mobility Patterns During Symptomatic Illness 

The best-fitting model to describe the relative number of locations visited was a 

GAMLSS with a logistic distribution. The μ parameter (mean) was best explained by a positive 

effect of day after symptom onset (p < 0.001) and a random intercept for participants, which 

allowed the mean relative number of locations to vary by participant. The σ parameter (standard 

deviation) was best explained by QWB score (p < 0.001), day after symptom onset (p < 0.001), 

and an interaction between the two (p < 0.001) (Table 2.3). For relative amount of time spent at 

home, the best-fit model was a GAMLSS with underlying logistic distribution, where the μ 

parameter was best explained by a negative effect of day (p = 0.0011) and a random intercept for 

participants. The σ parameter was best explained by a positive effect of day after symptom onset 

(p < 0.001) (Table 2.4). 

With proportion of time spent at home as the response variable, the best-fit model 

explains the η parameter as a function of age (<18 or >18) (p = 0.005) and an interaction 

between age and day after symptom onset (p = 0.018). The μ parameter was explained by a 

random slope of participants over time and the σ parameter was explained by the QWB score and 
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a smoothed function of the day of illness (Table 2.5). This suggests that whether an individual 

spent all (100%) of their time at home was dependent on both their age and the day of illness, 

whereas the proportion of time spent at home (when less than 100%) depended on the day of 

illness (p = 0.005) and how they were feeling (QWB score) (p = 0.094; Table 2.5). While the 

day of illness did not have an overall effect on the mean proportion of time spent at home (when 

less than 100%), the random slope for participants suggests that day of illness had a varying 

effect across participants.  

 

Discussion 

 We found that dengue illness affects almost all aspects of an individual’s mobility 

behavior. During mild symptomatic illness, individuals visited significantly fewer locations and 

houses and spent significantly more time at home. Further, symptomatic participants visited 

education/work and “other” locations less often than when they were healthy and visited health 

locations more often. These results (1) are consistent with and expand prior evidence indicating 

that individuals with symptomatic illness move less than healthy individuals [31, 35, 52]; (2) 

refine estimates of the effects of mild symptomatic dengue illness on movement by quantifying 

changes before, during and after the symptomatic phase of infection; and (3) suggest the need to 

better account for disease-driven mobility behavior changes in DENV transmission models [31, 

53].  

 The most dramatic changes in mobility occurred during the first 3 days after symptom 

onset, when significantly fewer locations were visited and significantly more time was spent at 

home. During days 4-6 and 7-9 after symptom onset, the number of locations visited increased 

and the proportion of time spent at home decreased. By days 7-9 after symptom onset, the 
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number of locations visited and the time spent at home were no longer significantly different 

from healthy behaviors. This reduction in mobility during illness, particularly on days 1-3 after 

symptom onset, could affect an individual’s contribution to onwards DENV transmission. For 

DENV, viremia reaches levels infectious to mosquitoes a few days prior to symptom onset and 

peaks at 0-2 days after symptom onset, with titers then lowering by days 4-5 (although some 

individuals are still capable of infecting mosquitoes) (37-39). During peak infectiousness, most 

individuals are spending more time at home and visiting fewer places, thereby reducing the 

number of distinct Aedes aegypti mosquitoes with whom potential virus-spreading contacts 

occur. This may allow those few individuals who do not alter their movements to have a more 

significant role in pathogen transmission during peak infectiousness. During the pre-

symptomatic period, however, almost all individuals have high mobility and a viremia level 

sufficient for virus transmission to mosquitoes [38]. Recent theoretical models of within-host 

viral dynamics for symptomatic individuals estimate that 24% of onward transmission results 

from mosquitoes biting during the pre-symptomatic period [54]. When also accounting for 

mobility changes throughout viremia, many individuals may have their greatest contribution to 

transmission be during the pre-symptomatic stage. Ten Bosch et. al. also estimated that 

asymptomatic individuals had only 80% the net infectiousness of symptomatic individuals [54]. 

This reduction in net infectiousness may be counteracted by the hypothetically unaltered 

mobility patterns exhibited by asymptomatic (and minimally symptomatic) individuals, further 

increasing the overall contribution of silent transmission. Such potential dynamics emerging 

from the coupling between individual infectiousness, movement, and disease severity deserve 

further investigation [55], because they may help explain the explosive nature of DENV 

outbreaks and the limitations of vector control in containing virus transmission.  
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 Throughout an individual’s illness period, we found that day of illness and the 

participant’s subjective sense of well-being (QWB score) were significant predictors for the 

relative number of locations visited, as compared to pre-illness. When considering the proportion 

of time spent at home, an individual’s age and their day of illness were significant in predicting 

whether they chose to stay at home 100% of the day or not, with children being more likely to 

stay home all day compared to adults. When an individual chose to spend some amount of time 

outside their house, the day of illness and the QWB score significantly predicted the proportion 

of time. Further, the relative amount of time participants spent at home compared to pre-illness 

was also significantly predicted by the day of illness. Individuals with more severe symptoms 

and those at the beginning of their illness were more likely to be spending more time at home 

(both absolute proportion of time and amount of time relative to pre-illness values). Further, 

when compared to pre-illness, individuals at the beginning of their illness have lower values of 

relatively visited locations compared to toward the end of illness. 

 One limitation of our study is the reliance on participant recall, which can be subject to 

recall bias. However, the retrospective semi-structured interview we utilized was previously 

tested in Iquitos and was found to obtain superior data on activity space, as compared to 

wearable GPS data-loggers [24]. Further, in the DRMS participants only needed to recall 

movements over the past 24 hours, making bias less likely. Our study also faced limitations with 

the number of participants and the ability to measure movement on the first two days after 

symptom onset. Nevertheless, our study is one of the first to collect human mobility data at a 

daily scale during symptomatic infection. Future studies could build on our study by collecting 

detailed mobility data from more individuals with a wider spectrum of symptom severity, 
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including across a wider range of diseases. Future studies should also seek to make coupled 

measurements of an individual’s infectiousness throughout the course of mobility data collection. 

 Human mobility patterns have played an important role in recent vector-borne disease 

transmission models [56]. There is, however, an increasing need to include differing mobility 

patterns when modeling individuals that are ill versus healthy. We demonstrate that individuals 

with dengue spend significantly more time at home, particularly during the first days after 

symptom onset when they are most infectious, potentially limiting contact with Ae. aegypti 

outside their home. When looking at the locations being visited during illness, however, the 

proportion of houses was consistent throughout and remained similar to the post-illness level. 

This may be of particular importance for onward transmission given the propensity for Ae. 

aegypti to bite inside houses [13, 14, 57]. The abundance of mosquitoes in both an individual’s 

home and the houses/locations they visit when infectious will likely determine the effect that 

reduced mobility has on their overall contribution to DENV transmission. Reduction in mobility 

patterns when symptomatic could also affect the amount of overlap a social group has in the 

places they frequent. Given the significant role of socially structured human mobility in 

determining fine-scale DENV transmission rates [23], accounting for the dynamic nature of 

social contacts during a symptomatic DENV infection could allow for more accurate modeling 

of disease transmission and the design of more efficient disease prevention strategies. 
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Tables 

Table 2.1: Adjusted Odds Ratios (and 95% Confidence Intervals) for location type 
throughout illness, derived from logistic GLMMs.  

 Pre-Illness (Day 0) Post-Illness (Day 30) 
Education/Work 1.884 (CI: 1.317-2.725) *** 4.429 (CI: 2.964-6.695) *** 
Health 0.019 (CI: 0.009-0.037) *** 0.002 (CI: 0.001-0.008) *** 
Other 2.144 (CI: 1.496-3.110) *** 1.660 (CI: 1.109-2.508) * 
House 1.684 (CI: 1.110-2.585) * 0.872 (CI: 0.539-1.419) 

Family’s House 0.348 (CI: 0.078-1.360) 0.509 (CI: 0.125-1.855) 
Odds Ratios are for pre- and post-illness time periods, compared to the period during illness 
(daily interview period) based on logistic GLMMs. For houses, the odds ratios are given for 
family member’s houses (vs. friend’s houses). Significant associations between time period and 
location visitation are denoted with red asterisks (* p<0.05,  ** p<0.01,  ***p<0.001). 
 
 
Table 2.2: Adjusted Odds Ratios (and 95% Confidence Intervals) for location type during 
illness, derived from logistic GLMMs. 

Odds ratios are for days 1-3, 4-6, and 7-9 after symptom onset, as compared to the post-illness 
time period, based on logistic GLMMs. For houses, the odds ratios are given for family 
member’s houses (vs. friend’s houses). Significant associations between time period and location 
visitation are denoted with red asterisks (* p<0.05,  ** p<0.01,  ***p<0.001). 
 

Table 2.3: Fixed effects of a GAMLSS predicting relative number of locations visited, as 
compared to pre-illness. 

Parameter  Estimate Std. Error z value p-value 
μ Intercept -1.07 0.023 -46.79 < 0.001 *** 
μ Day 0.063 0.0132 4.81 < 0.001 *** 
      
σ Intercept -7.001 0.914 14.85 < 0.001 *** 
σ Day 1.086 0.157 -2.85 0.001 *** 
σ QWB score 7.371 5.07 1.70 0.001 *** 
σ Day*QWB score -1.252 -5.56 1.70 0.001 *** 

Each distribution parameter (μ, σ) has distinct explanatory variables. 

 Days 1-3 Days 4-6 Days 7-9 
Education/Work 0.08 (CI: 0.03-0.18) 

*** 
0.22 (CI: 0.11-0.43) 
*** 

0.26 (CI: 0.14-0.45) 
*** 

Health 3826 ( CI: 585-42793) 
*** 

1041 (CI: 205-9101) 
*** 

365 (CI: 72-3175) 
*** 

Other 0.51 (CI: 0.22-1.08) 0.29 (CI: 0.14-0.56) 
*** 

0.86 (CI: 0.47-1.52) 

House 1.08 (CI: 0.39-2.80) 1.20 (CI: 0.52-2.73) 1.64 (CI: 0.76-3.42) 
Family’s House 21.15 (CI: 0.16-

1.48x1023) 
1.48 (CI: 0.22-12.35) 0.97 (CI: 0.15-6.40) 
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Table 2.4: Fixed effects of a GAMLSS predicting relative amount of time spent at home, as 
compared to pre-illness. 

Parameter  Estimate Std. Error z value p-value 
μ Intercept 4.974 0.385 12.91 < 0.001 *** 
μ Day -0.295 0.088 -3.37 0.0011 ** 
      
σ Intercept -0.133 0.164 -0.81 0.421 
σ Day 0.107 0.029 3.69 < 0.001 *** 

Each distribution parameter (μ, σ) has distinct explanatory variables. 
 

Table 2.5: Fixed effects of a GAMLSS predicting proportion of time spent at home.  
Parameter  Estimate Std. Error z value p-value 
μ Intercept 0.599 1.02e-05 58426 < 0.001 *** 
      
σ Intercept 9.147 0.616 14.85 < 0.001 *** 
σ pb(Day) -0.332 0.116 -2.85 0.006 ** 
σ QWB score 1.754 1.034 1.70 0.094 
      
η Intercept -1.995 0.930 -2.15 0.035 * 
η Age: (<18) 2.992 1.044 2.87 0.005 ** 
η Day 0.215 0.154 1.40 0.166 
η Age: (<18)*Day -0.425 0.176 -2.42 0.018 * 

Each distribution parameter (μ, σ, η) has distinct explanatory variables. 
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Figures  

Figure 2.1: Mobility Values Throughout Illness.  
(A) Average number of locations visited during each time period (B) Average proportion of time 
spent at home during each time period. Significant differences, denoted by letters, were detected 
using pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a 
family-wise error-rate of 0.05. All significant differences had p-values < 0.01. 
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Figure 2.2: Place Types Visited Throughout Illness. 
Expressed as the percent of locations being visited of each location type. Other location type 
includes: markets, restaurants, ports, churches, cemeteries, recreational places, internet cafes, and 
all else. The number of participants who visited places is listed above each time point. 
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Figure 2.3: Mobility Values During Illness (in 3-day intervals). 
(A) Average number of locations visited per 3-day period. (B) Average proportion of time spent 
at home per 3-day period. Significant differences, denoted by letters, were detected using 
pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a family-
wise error-rate of 0.05. All significant differences had p-values < 0.05. 
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Figure 2.4: Place Types Visited During Illness (in 3-day intervals).  
Expressed as the percent of locations being visited of each location type. Other location type 
includes: markets, restaurants, ports, churches, cemeteries, recreational places, internet cafes, and 
all else. The number of participants who visited places is listed above each time point. 
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Supplementary materials 

Text S2.1: Participant Description. 
 
 Detailed mobility data were collected from a total of 62 DENV+ participants. The median 

age of participants was 17 years old, with 35 (57%) participants being under 18 years old. Thirty-

nine (63%) participants were students. Other participants were housewives (13%) or worked in 

unskilled labor (10%), in construction (6%), as vendors (5%), in healthcare (2%), or as self-

employed (2%).  Of the 62 participants, 35 (60%) were male and 27 (40%) were female. DENV 

positive participants were administered the pre-illness RMS, a median of 3 days after symptom 

onset. Of these 62 participants, 34 completed a post-illness mobility survey a range of 30-127 

days after initial PCR+ blood test. Daily mobility data was collected from an average of 40 

participants on days 1-9 after symptom onset; however, on days 1, 2, and 9, only 21, 33, and 28 

participants, respectively, provided data (Table S1). By merging DRMS results into 3-day 

groups, we had data for 46, 54, and 49 participants on days 1-3, 4-6, and 7-9 after symptom 

onset, respectively.  

 

Table S2.1: Number of participants with data on each day post-symptom onset. In the 
bottom section, the number of participants for each 3-day group is given.  
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Table S2.2: Results of pairwise Wilcoxon Sign Rank tests of paired data for time points 
pre-, during, and post-illness. Tests were performed for number of locations visited, number of 
houses visited, and proportion of time spent at home, comparing between three time points: pre-, 
during, and post-illness. (* p<0.05,  ** p<0.01,  ***p<0.001). 

 
 
Table S2.3: Results of McNemar’s χ2 test for time points pre-, during, and post-illness. Tests 
were performed for number of locations visited, number of houses visited, and proportion of time 
spent at home, comparing between three time points: pre-,during, and post-illness. (* p<0.05,  ** 
p<0.01,  ***p<0.001). 

 
  



 35 

Table S2.4: Mean predicted probability of a specific location type being visited throughout 
illness. Probabilities are predicted for pre-, during, and post-illness time periods, based on 
logistic GLMMs. For houses, the probabilities are predicted for visiting family member’s houses 
(vs friend’s houses) (Table 2.1). 
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Table S2.5: Results of pairwise Wilcoxon Sign Rank tests of paired data for time points 
during illness. Tests were performed for number of locations visited, number of houses visited, 
and proportion of time spent at home, comparing between post-illness and three time points 
during illness (days 1-3, 4-6, 7-9). (* p<0.05,  ** p<0.01,  ***p<0.001). 
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Table S2.6: Results of McNemar’s χ2 test for time points during illness. Tests were 
performed for number of locations visited, number of houses visited, and proportion of time 
spent at home, comparing between four time points: days 1-3, 4-6, 7-9, and post-illness. (* 
p<0.05,  ** p<0.01,  ***p<0.001). 
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Table S2.7: Mean predicted probability of a specific location type being visited during 
illness. Probabilities are predicted for time points during illness and post-illness, based on 
logistic GLMMs. For houses, the probabilities are predicted for visiting family member’s houses 
(vs friend’s houses) (Table 2). 

 
 
Table S2.8: Results from likelihood ratio tests between pairs of GLMMs of total number of 
locations visited with various explanatory variables. The Chi square test statistic is looking at 
the reduction in deviance for each model as compared to GLMM(day). AICs are also provided 
for each model. The best-fit model is highlighted in red. 

 
 
Table S2.9: Table comparing additive regression models for total number of locations 
visited with various explanatory variables. AIC values, degrees of freedom (DF), and amount 
of deviance explained (%) are provided for each model. The best-fit model is highlighted in red. 
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Table S2.10: Fixed effects of the best-fit model for total number of locations visited: 
GLMM “Total Locations ~ day”. 

 
 
Table S2.11: Results from likelihood ratio tests between pairs of GLMMs of total number 
of houses visited with various explanatory variables. The Chi square test statistic is looking at 
the reduction in deviance for each model as compared to GLMM(day). AICs are also provided 
for each model. The best-fit model is highlighted in red. 

 
 
Table S2.12: Table comparing additive regression models for total number of houses visited 
with various explanatory variables. AIC values, degrees of freedom (DF), and amount of 
deviance explained (%) are provided for each model. The best-fit model is highlighted in red. 

 
 
Table S2.13: Fixed effects of the best-fit model for total number of houses visited: GLMM 
“Total Houses ~ day”. 
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Figure S2.1: Average Number of Houses Visited Throughout Illness. Expressed as the 
average number of houses visited during each time period. Significant differences, denoted by 
letter, were found using pairwise paired t-tests with Holm’s correction to account for a family-
wise error-rate of 0.05. 
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Figure S2.2: Average Number of Houses Visited During Illness (in 3-day intervals). 
Expressed as the average number of locations visited per 3-day period for time point. Significant 
differences, denoted by letter, were found using pairwise paired t-tests with Holm’s correction to 
account for a family-wise error-rate of 0.05. 
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Figure S2.3: Median (interquartile range) QWB-score as a function of day of illness. 
Numbers on top indicate number of surveys that included paired movement and QWB data.    
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Introduction 

Dengue fever, an acute illness caused by four immunologically related viruses, is the 

most important mosquito-borne viral disease of humans [1]. Due to the sedentary, day-biting 

behavior of the primary vector, Aedes aegypti, and its propensity for residential locations [2-5], 

human mobility and visitation patterns to other residential locations shape human-mosquito 

contacts and dengue virus (DENV) transmission dynamics [6-11]. Indeed, an individual’s risk of 

DENV infection increases when they routinely visited the same residential locations as other 

DENV-infected people [12]. Recently, studies have shown that individuals with symptomatic 

dengue infection have significant changes in their mobility patterns during illness, spending 

more time at home and visiting fewer locations during the first six days of illness [13, 14]. These 

disease-driven mobility changes are predicted to lead to a large proportion of primary infectious 

bites occurring at the home of an infectious individual, causing an increase in the risk of 

acquiring infection for those living in or visiting the residence (as seen in Chapter 4). During the 

outbreak of another Aedes-borne disease, chikungunya, the probability of transmission between 

household members was 12%, compared to 0.3% for those living more than 50 meters away. 

Further, females, who spent significantly more time in or around the home, were 1.5 times more 

likely than males to become infected [15]. 
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Often symptomatic individuals have family members or friends help take care of them 

during illness. Estimations of this disease-driven change in social connections have been limited 

due to difficulties in obtaining accurate information about household dynamics during illness. 

Frequently, partial information about caregiving behavior in response to dengue illness has been 

obtained from surveys aimed at quantifying the ‘indirect’ costs of dengue [16, 17]. Specifically, 

some studies have separated lost days at work/school for caregivers/housemates [17-21], leading 

to rough estimates showing that those caring for dengue patients may miss an average of 4-5 

days at work, with one study reporting 52% of those in the household being workers [17, 20]. 

Similarly, for children in Thailand, approximately half of caregivers worked, with the most 

common caregivers being female, specifically the child’s mother [22]. As most studies focus on 

caregiving for everyone or children specifically, it is unclear how common caregiving is for 

adults and whether the person providing care is a housemate or an outside visitor, a factor that 

could determine how much of an effect their mobility changes have on shaping the structure of 

DENV transmission networks.  

We capitalized on an established contact-cluster design to monitor the social support 

received by symptomatic DENV-infected individuals throughout their illness period, focusing on 

the frequency with which individuals receive home-based care from housemates and/or visitors, 

as well as the number of caregivers, how they helped, and if their work was affected by this 

activity. We hypothesize that caregiving behavior will be common, with the majority of 

caregivers being adult housemates of the sick individual. We further hypothesize that the type of 

help given and the impact on the caregiver’s work will depend on symptom severity and the 

relation of the caregiver to the DENV-infected individual. 
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Methods 

Study Area 

 This study was performed in the Amazon city of Iquitos, Peru. Iquitos is a geographically 

isolated, tropical urban environment with approximately 430,000 inhabitants located along the 

margin of the Amazon River [23]. The city’s economic structure is highly informal and dynamic, 

with one-third of economically active individuals either unemployed or informally employed 

[24]. Iquitos has been the home of extensive, long-term arboviral research led by the University 

of California, Davis and U.S. Naval Medical Research Unit 6 since 1999 [11, 25-30]. Extensive 

human mobility studies paired with detailed epidemiological data have made Iquitos an 

informative site for understanding the dynamics of arbovirus transmission. All four serotypes of 

DENV have been introduced in Iquitos; however, at any particular time virus transmission is 

usually dominated by a single serotype [29, 31]. Previous research [27] demonstrated that the 

majority of individual’s movement (~80%) occurs within 1 km of their home; however, mobility 

is highly irregular and temporally unstructured, rarely centering around a single location, such as 

a workplace [27]. 

Study Design 

Iquitos residents with a laboratory-confirmed DENV infection (by PCR) were recruited 

into the study through clinic- and community-based longitudinal febrile surveillance, as 

previously described [26]. At the time of initial case capture (blood sample), a retrospective 

semi-structured movement survey (RMS) was verbally administered by trained nurses (the 

‘Movement Team’) to identify the locations an individual had visited in the 15 days prior to 

diagnosis (to identify behaviors during the exposure period) as well as the visitors they received 

at home in the previous three days. A modified, daily RMS (DRMS) was conducted for the 
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following seven days [14], which included a small subset of questions about the individual’s 

quality of life (QOL). These questions, which focused on an individual’s ability to complete 

normal activities, were taken from a larger QOL survey administered only twice during illness. 

The QOL questions were, however, added to the DRMS partway through data collection, so only 

a portion of respondents have answers recorded. There was also a daily survey regarding the 

symptoms an individual experienced [Paz-Soldan, in review]. During this seven-day period, 

DENV positive individuals were also administered two Quality of Well-Being surveys (QWB) 

by the Movement Team, one 2-3 days and one seven days after the initial PCR-positive blood 

test. The QWB survey is a validated instrument used to measure an individual’s quality of life 

during chronic illness [32][Elson, in review] that uses a weighted algorithm to produce one well-

being score between 0.0 (death) and 1.0 (asymptomatic and fully-functioning)[32]. On the 

seventh day after the initial blood test, individuals were administered a survey about the 

expenses incurred during dengue illness, for both the symptomatic individual and possible 

caretakers. 

 At a follow-up visit scheduled 30 days after the initial PCR-positive blood test, 

individuals were given “post-illness” RMS and QWB surveys in an effort to record their 

“baseline” mobility behavior and well-being in the absence of illness. Individuals were also 

given another ‘Expenses’ survey in case any expenses were accrued after the day-7 survey was 

administered. Table S3.1 provides a description of each survey, including when it was 

administered and the number of respondents, as well as listing the particular questions we will be 

analyzing. 

Data Processing 



 52 

 For each study participant, rather than referring to daily survey values as occurring on a 

certain number of days after the PCR-positive blood test, a standardized “day after symptom 

onset” variable was calculated. Because blood tests were not done on the same day of illness for 

all participants, daily surveys captured a range of 1-14 days after symptom onset. We focused 

our analysis on days 1-10 after symptom onset; few individuals (12/71) had data for days 11-13 

after symptom onset. 

 For each day after symptom onset, DRMS data were utilized to record (1) how many 

visitors an individual had at their home (if any), (2) their relation of the visitor, (3) why they 

were visiting, (4) if they knew the person was sick at the time of visit, and (5) whether they visit 

at least once a week in the absence of illness (self-reported ‘routineness’ of the visitor). Further, 

the QOL questions on the DRMS gave daily data on whether individuals felt they had the ability 

to do daily, physical, and self-care activities.  Pre- and post-illness RMS provided the “baseline” 

number of visitors an individual received. 

The QWB survey provided two data points within the symptomatic period, which were 

combined into an overall value of whether individuals felt they needed help with daily activities 

or personal care at any point throughout symptoms. Similarly, the two time points in the 

‘Expenses’ data were combined to provide information on (1) if an individual had someone help 

care for them, (2) how many people helped, (3) the relation of the helpers, (4) what they helped 

with, and (5) whether the helper’s work was affected.  

While the symptom survey provided data on 36 symptoms, we focused on six groups of 

symptoms that are often associated with dengue illness (malaise/weakness, fever/chills, 

headache/retro-orbital pain, body/muscle pain, bone/join pain, and abdominal pain). For each 

symptom group, the presence (0/1) and intensity level (0-1) were analyzed for each day of 
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illness, as was the number of symptom groups experienced on each day (out of six) and the total 

intensity score for all symptom groups (out of six). For the entire illness period, variables were 

calculated for overall presence of each symptom, maximum intensity score for each symptom, 

maximum number of daily symptom groups experienced, and maximum daily intensity score. 

Data Analysis 

Analysis of the data had two main goals: (1) examining the home visits and caregiving 

received by individuals with a symptomatic dengue infection, and (2) determining whether these 

behaviors could be predicted by characteristics of the symptomatic individuals and their illness. 

For the first objective, caregiving behaviors were examined for the following variables: (1) 

presence of caregivers, (2) number of caregivers, (3) relation of caregiver, (4) days help was 

provided, (5) whether the caregiver helped take care of the sick individual, (6) whether they 

helped around the house, (7) whether they helped by providing money or items, and (8) whether 

their work was affected. For each variable of interest, overall values were provided and 

comparisons were made based on the gender (male/female) and age (adult/child) of the 

symptomatic individual, as well as the gender/age combination of the individual (male 

adult/male child/female adult/female child). These comparisons were conducted using Fisher’s 

Exact test.  

Comparisons were also conducted to determine whether gender or age (or a combination 

of the two) were associated with receiving visitors at some point during illness. Visitor behaviors 

were also summarized for the entire illness period using variables: (1) presence of visitors, (2) 

number of unique visitors, (3) relation of visitors, (4) number of unique visits by each visitor, (5) 

whether they were ‘routine visitors’, (6) whether they knew about the illness, and (7) the reason 

for the visit. Characteristics of an individual’s visit were compared based on whether the 
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individual was a ‘routine visitor’ or not (as self-reported by the symptomatic person). We also 

examined whether there were any significant differences in visitor behavior if caregiving was or 

was not present and vice versa (if visitor presence affected caregiving behaviors).  

For the second objective, possible predictors for receiving caregiving behavior were 

examined using Generalized Linear Models (GLMs). Best-fit models were determined for the 

logistic response variables of: presence of caregiving, number of caregivers (one versus two), 

relationship of caregiver (housemate or not), if helped around the house (yes/no), if helped with 

buying things or giving money (yes/no), and if the caregiver’s work was affected (yes/no). 

Possible predictor variables included the age (child vs. adult) and gender (male vs. female) of the 

sick individual (as well as an interaction variable for age and gender), whether the sick individual 

had a high or low number of housemates (split into a binary variable around the median number 

of housemates), whether they needed help with personal care activities or daily activities at some 

point during illness (QWB), overall presence of each symptom group during illness, maximum 

daily symptom groups experienced, and maximum daily symptom intensity score. Best-fit 

models were determined using the corrected AIC (AICc) and the relative likelihood of the model 

(weight).  

Whether or not a symptomatic individual received visitors was examined as a logistic 

response variable in two ways: for the entire illness period and for each day of illness. When the 

entire illness period was considered, GLM models were examined with the same predictor 

variables as above. When the response variable was the presence of visitors on each day of 

illness, Generalized Linear Mixed Models (GLMMs) were used, with the participant ID as a 

random effect to account for repeated observations [33]. Day of illness was included as a 

possible predictor variable to determine whether visitor presence changes throughout illness. 
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Daily values were also provided for the possible predictor variables of symptom presence and the 

ability to complete activities (QOL). Variables with set values that did not change during illness 

(i.e., gender, age, number of housemates, whether help was needed to complete daily or personal 

care activities) were also considered as possible predictors. All statistical analyses were 

performed in R 3.3.0 statistical computing software [33, 34]. 

 
 
Results 

 Detailed data were collected from 71 DENV+ participants about daily visitors received, 

67 of who also provided data on caregiving behavior. The age group and gender of these 

participants, as well as the number of participants when both datasets were combined, can be 

found in the supplemental information (Table S3.2). The majority of participants surveyed 

reported having an illness lasting five or more days (76.9%). 

 Overall, the percent of individuals who reported experiencing a symptom class at some 

point during illness was 98.7% (malaise/weakness), 93.7% (fever/chills), 93.7% (headache/retro-

orbital pain), 79.8% (body/muscle pain), 68.4% (bone/joint pain), and 59.5% (abdominal pain). 

The presence of symptoms at each day after symptom onset was also calculated (Table S3.3). of 

the 70 individuals who responded to the QWB survey, the percent of individuals who reported 

needing help with daily activities and personal care at some point during illness were 52.9% and 

14.3%, respectively.  Comparatively, a large proportion of participants reported having some 

limitation in their ability to complete physical (72.7%), daily (69.7%), and self-care (60.6%) 

activities when asked on each day of illness (QOL) (Table S3.3).  

Who is Receiving Help 
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During symptomatic dengue illness, 89.5% of participants had someone help care for 

them. Visitors were received by 32.3% of sick individuals, with 87.1% of visitors knowing the 

individual was sick and 80.0% of visits being related to their illness (Table 3.1). Of the 60 

individuals who had someone help them, 33.3% also had visitors at some point during their 

illness. A total of four individuals (6.0%) had no caregiving help and received no visitors during 

illness. Of the seven individuals who did not receive help, five were adult females. Accordingly, 

children were significantly more likely than adults to have someone helping them (97.5% vs. 

77.8%) (Fisher’s Exact test, p=0.01) and female children (100%) were significantly more likely 

than female adults (68.8%) (Fisher’s Exact test, p=0.02) (Table 3.2, S3.4). Female children also 

received significantly more visitors during illness (50%) compared to male children (13.0%) 

(Fisher’s Exact test, p=0.02), with females (45.7%) having an overall higher rate of visitors than 

males (19.4%) (Fisher’s Exact test, p=0.02) (Table 3.2, S3.4). Accordingly, the events of 

receiving caregiving and visitors during illness were most associated with the age and sex of the 

ill person, respectively (Table S3.5, S3.6). Children had a higher expected probability of 

receiving help compared to adults (97.4% vs. 76.9%) and females had a higher predicted 

probability of receiving visitors compared to males (50% vs. 20%).  

When examining whether or not visitors were received on each day of illness, the best-fit 

GLMM by AICc score included the interaction between age and sex (after accounting for 

participant ID as a random effect), where female children had the highest predicted probability of 

receiving visitors on each day of illness (13.5%) and male children had the lowest (0.6%) (Table 

S3.7) (Figure 3.2). This model, however, was not significantly better than the GLMM including 

only sex (and random effect of participant) when looking at reduction in deviance (χ2 Analysis of 
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Deviance, p=0.09) (Table S3.7). In this model, males and females had predicted probabilities of 

1.2% and 7.8% for receiving visitors on each day of illness. 

During illness, individuals tended to receive either one (47.8%) or two (26.1%) visitors, 

the majority of whom (69.6%) only visited once during the illness period (Table 3.1). It was 

most common for sick individuals to receive help from one person (88.7%) who helped for the 

length of the illness (94.1%). There was a significant association between number of people 

helping an ill individual and whether they reported needing help with personal care at some point 

during illness (from the QWB survey) (Table S3.8). Those who needed personal care help had a 

33.3% predicted probability of receiving help from two people, compared to only 6.1% for those 

who didn’t need help.  

Who is Giving Help 

In 91.2% of cases, the sick individual received help from a relative that lived with them. 

According to the best-fit model for relation of the caregiver, children had a higher predicted 

probability of receiving help from a housemate (97.6%) compared to adults (86.4%) (Table 

S3.9). Of the visitors received during illness, half (49.9%) were family members, 35.3% were 

friends, and 15.3% were other individuals, with 87.1% of visitors being reported as ‘routine 

visitors’ (visited at least once a week pre-illness) by the ill participant (Table 3.1). Those who 

weren’t routine visitors were mostly friends (54.5%) or other individuals (36.4%). Sixty-three 

percent of ‘non-routine visitors’ were aware that the participant was sick, compared to 90.5% of 

routine visitors (Table 3.1).  

What Help is Being Given 

The majority (83.8%) of visits a symptomatic individual received from a ‘routine visitor’ 

were for reasons related to the illness, 66.2% were for emotional support, 6.8% were for logistic 
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support, and 8.1% for some other illness related reason (Table 3.1). Comparatively, 45.5% of 

visits from ‘non-routine visitors’ were not disease related, and those that were related to the 

illness were for something other than emotional support (9.1%) or logistic support (9.1%) (Table 

3.1). When the symptomatic individuals received help from caregivers, the most common way of 

helping was by taking care of them (95.6%), with 47.1% of caregivers helping around the house 

(taking care of children, cooking, cleaning) and 38.2% helping by buying things for the sick 

individual or giving them money (Table 3.3). The largest proportion of people (34.3%) helped 

only with taking care of the sick person; however, 20.9% of people helped in all three ways 

(Table 3.3). There were no significant differences between gender or age class in whether each 

type of help was provided, although getting help around the house was quite common for adult 

males (75%) compared to adult females (41.67%) (Fisher’s Exact test, p=0.2) and children 

(40.91%) (Fisher’s Exact test, p=0.08) (Table S3.4). There was no significant difference in the 

way the caregivers helped or the reason for a visitor’s visit when looking at the 20 individuals 

who received both visitors and caregivers during illness. The best-fit model for whether or not an 

individual received help in the form of money or things accounted for how many house members 

they had (less than or greater than median of 8) and whether they needed personal care help 

during their illness (Table S3.10). Individuals who needed help with personal care and had a 

large number of housemates had a higher predicted probability of receiving money and things 

than those who didn’t need personal care help and/or live with fewer housemates (Figure 3.3). 

The best-fit model for predicting whether or not help was received around the house included the 

maximum symptom intensity score (Table S3.11). 

What is the Impact for the Person Giving Help 
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Of all the people helping symptomatically ill individuals, only 28.4% had their work 

affected. It was significantly more common for work to be affected when helping sick adults 

(41.7%) compared to sick children (18.2%) (Fisher’s Exact test, p=0.05) (Table 3.2). In 

particular, 58.3% of those helping adult females had their work affected, as compared to 25% 

helping adult males (Fisher’s Exact test, p=0.2), 22.7% helping female children (Fisher’s Exact 

test, p=0.06), and 13.6% helping male children (Fisher’s Exact test, p=0.02) (Table S3.4). The 

best-fit model (based on AICc score) predicting whether a helper’s work would be affected 

accounted for presence of bone/joint or abdominal pain during illness (Table S3.12), where the 

predicted probability of work being affected was higher both when helping those with bone/joint 

and abdominal pain versus those who didn’t experience these symptoms (Figure 3.4). This 

model was, however, not significantly better than the GLM based on only maximum symptom 

intensity score during illness (χ2 Analysis of Deviance, p=0.13), where a higher maximum 

intensity was associated with an increased probability that the person helping would have their 

work affected. 

 

Discussion 

Almost all individuals with symptomatic dengue received some form of help during their 

illness, whether through caregiving or illness-related visits. Caregiving was most associated with 

the sick individual’s age group, where children were most likely to receive help and for that help 

to be from a relative they live with, which is consistent with previous results that the majority of 

child caregivers are the mother [22]. Visiting behaviors differed most between genders, with 

females more likely than males to receive visitors overall and on each day of illness. 



 60 

Interestingly, however, female children seemed to be significantly more likely to receive both 

caregiving and visitors during illness. 

Previous social support research found that most long-term assistance is received from 

family members, whereas short-term aid is mostly provided by friends and neighbors [35]. While 

our study was on a much shorter timescale, we see similar trends with 91% of caregiving coming 

from relatives in the same household and 95% of caregivers helping for the length of the illness. 

Comparatively, other family members and friends made up the majority of visitors during illness, 

70% of whom only visited once during the illness period. Our data also agrees with previous 

findings that patients most often want emotional support from family and friends (rather than 

logistic support) [36], with almost all caregivers helping to take care of the ill individuals and 

66% of visitors coming to give emotional support. 

The likelihood of receiving other forms of help, around the house or through material 

aid/money, was most associated with the magnitude of the disease, whether symptom intensity or 

the need for personal care. Likely once an individual’s symptoms become very intense (enough 

so to need personal care help) they become unable to get housework done or make it to the store 

to buy things needed for their illness. Giving things/money was more likely when a sick 

individual had a large number of housemates. This could be due to the correlation with a lower 

socioeconomic status (although we did not find a significant effect when we ran a model with a 

composite SES score) or it could be more likely that housemates get housework done when there 

are more of them present.  

It was also found that providing money or material aid was the least common way 

caregivers helped sick individuals. This could be due in part to the relatively low cost of 

ambulatory dengue illness. Indeed, in a previous study, direct costs made up just 10.2% of the 



 61 

total cost of a single dengue case [17]. The majority of the cost burden for dengue infection was 

indirect, based on days lost at school and work for the patient and their caregiver. This high cost 

of lost workdays is particularly interesting given that we found only 28% of caregivers had their 

work affected, although the effect would likely last the length of the symptomatic illness. It was 

most common for those helping female adults to have their work affected, possibly because 

children and male adults already had their mother/spouse (female adult) acting as a caregiver 

before illness, whereas when the mother was sick, a working adult would have to take days off to 

help take care of them. 

The mobility behavior of a susceptible individual can determine their exposure to 

infectious mosquitoes and subsequent risk of DENV infection. If members of a frequently visited 

house become DENV+, an individual’s probability of exposure may increase, assuming they 

don’t change their movements. The presence of symptomatic cases may, however, cause social 

contacts to practice avoidance (stop visiting) or caregiving (visit more frequently/longer), which 

could cause decreases or larger increases in infection risk for the susceptible individual, 

respectively. These mobility changes could also decrease the connectivity of the infectious 

individual’s home and stunt the onward transmission potential, given that house-to-house human 

movements drive DENV transmission [26].  

One important factor to consider for dengue is the prevalence of infections that progress 

with mild or no symptoms (~70%) [29, 37, 38]. Recent evidence has demonstrated that these 

individuals can be infectious to mosquitoes [22, 39]. This study also documented DENV viremia 

reaching infectious levels a few days prior to symptom onset. Further, recent theoretical models 

estimated that 24% of onward transmission can result from mosquito bites during the 

presymptomatic period [41]. In both of these cases, individuals could be infectious to mosquitoes 
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without having their routine mobility patterns impacted by symptomatic illness [42, 43]. If 

individuals with presymptomatic or asymptomatic infectiousness acted as caregivers/visitors, 

however, their mobility could change to spend more time at the home of the symptomatically ill 

individual and less time at other locations, impacting expected onward transmission. As 

predicted with symptomatic cases in Schaber et.al., infectious individuals limiting their mobility 

could cause either increases or decreases in onward transmission depending partially on the 

distribution of mosquitoes across their activity space [in progress]. 

We hypothesized that the majority of a symptomatic individual’s social contacts would 

stop visiting to protect themselves from infection while one or two housemates of the individual 

would act as caregivers, spending more time at home. We found that caregiving, while very 

common for housemates, did not affect the helper’s mobility patterns in the majority (72%) of 

cases. Mobility patterns of visitors were also surprisingly unaffected, with ‘routine visitors’ still 

visiting the symptomatic person at least once during their illness. This continuation of routine 

mobility patterns in the presence of a symptomatic dengue case may not have an effect for the 

onward transmission of presymptomatic/asymptomatic individuals, but it could increase a 

susceptible individual’s exposure to infectious mosquitoes and allow the sustained spatial 

transmission potential of DENV.  
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Tables 

Table 3.1: Summary of Visitors Received During Illness by Ambulatory DENV infected 
individuals in Iquitos, Peru. 
Data on the visits individuals received when ill is provided overall, and split into groups of visits 
based on if made by routine visitors (self reported). 

 
*2 visits had NA values 
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Table 3.2: Results of Fisher’s Exact Test for Sex/Age Comparisons of Caregiving and 
Visitor Behaviors Experienced by Ambulatory DENV infected individuals in Iquitos, Peru. 
Tests were performed for whether caregiving was received, if the person who helped was their 
housemate, if the person who helped had their work affected, whether the type of help was taking 
care of the individual, helping around the house, or helping with money and buying things. Tests 
were also performed for whether or not visitors were received during the illness period (*p<0.05,  
** p<0.01,  ***p<0.001). 
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Table 3.3: Frequency of Different In-Home Caregiving Behaviors Provided to Ambulatory 
DENV Infected Individuals in Iquitos, Peru. Given as the number and percent of helpers (out 
of 67). 

 
* Includes help with taking care of kids, cooking, and cleaning 
 
Figures 

Figure 3.1:	Percent of the Population with Symptoms Present, Abilities Limited (Physical, 
Daily, Self-care), and Visitors Received on each Day after Symptom Onset During 
Ambulatory DENV infection in Iquitos, Peru. Symptoms are split into six groups. Each type 
of event (presence of symptoms, limited abilities) is presented in a separate facet, both of which 
have a line for percent of the population that received visitors. 
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Figure 3.2: Predicted Probability of Receiving a Visitor on Each Day of Illness, Based on a 
GLMM Fitted to Data of DENV Infected Individuals in Iquitos, Peru. Given in terms of age 
group and sex. Error bars represent 95% Confidence Intervals. 
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Figure 3.3: Predicted Probability of Receiving Money or Things as a Form of Caregiving 
During Ambulatory DENV Infection, Based on a GLM Fitted to Data From Iquitos, Peru. 
Given in terms of number of housemates and whether the individual reported needed personal 
care during illness. Error bars represent 95% Confidence Intervals. 
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Figure	3.4:	Predicted	Probability	of	Caregiver’s	Work	Being	Affected	During	Ambulatory	
DENV	Infection,	Based	on	a	GLM	Fitted	to	Data	From	Iquitos,	Peru.	Given	in	terms	of	if	
abdominal	pain	is	present	and	if	bone/joint	pain	is	present	at	any	point	during	illness.	Error	bars	
represent	95%	Confidence	Intervals. 
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Supplemental materials 

Table S3.1: Description of Surveys. Provides descriptions of each survey and questions of 
interest on the survey, as well as the time point when each survey was administered to 
individuals, how the data were aggregated for analysis, the number of respondents total, and the 
number of respondents who also have data on ‘Expenses’ and ‘Daily Visitors’.  

 
* QOL questions were added to the end of DRMS surveys partway through data collection, 
hence the low number of respondents. 
 
Table S3.2: Age and sex distribution for of participants with (A) expenses (caregiving) and 
(B) daily visitor data. 
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Table S3.3: Daily frequencies of individuals experiencing symptoms, activity limitations, 
and receiving visitors. Symptoms are split into six groups. Numbers represent the total number 
of individuals experiencing the symptom/limitation/visitors on that day, where the total number 
of respondents for each day is listed at the top of each section. Colors represent the percent of the 
population affected. Different color scales are used for symptom, limitation, and visitor presence 
in order to easily visualize the patterns.     
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Table S3.4: Results of Fisher’s Exact test for sex and age combinations. Tests were 
performed for whether caregiving was received, if the person who helped had their work 
affected, and whether helped around the house. Tests were also performed for whether or not 
visitors were received at some point during illness (* p<0.05,  ** p<0.01,  ***p<0.001). 
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Table S3.5: Results from likelihood ratio tests between pairs of logistic GLMs with various 
explanatory variables and response variable of whether or not caregiving was received. For 
each model, values are provided for the reduction in deviance compared to the null model, 
corrected AIC (AICc), change in AICc compared to the best fit model (DAICc), and model 
weight. The best-fit model is highlighted in red.  
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Table S3.6: Results from likelihood ratio tests between pairs of logistic GLMs with various 
explanatory variables and response variable of whether or not visitors were received. For 
each model, values are provided for the reduction in deviance compared to the null model, 
corrected AIC (AICc), change in AICc compared to the best fit model (DAICc), and model 
weight. The best-fit model is highlighted in red.  
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Table S3.7: Results from likelihood ratio tests between pairs of logistic GLMMs with 
various explanatory variables and response variable of whether or not visitors were 
received for each day of illness. For each model, values are provided for the reduction in 
deviance compared to the null model, corrected AIC (AICc), change in AICc compared to the 
best fit model (DAICc), and model weight. The best-fit model is highlighted in red. 
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Table S3.8: Results from likelihood ratio tests between pairs of logistic GLMs with various 
explanatory variables and response variable of whether the ill individual had one or two 
caregivers. For each model, values are provided for the reduction in deviance compared to the 
null model, corrected AIC (AICc), change in AICc compared to the best fit model (DAICc), and 
model weight. The best-fit model is highlighted in red. 
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Table S3.9: Results from likelihood ratio tests between pairs of logistic GLMs with various 
explanatory variables and response variable of whether the caregiver was a housemate or 
not. For each model, values are provided for the reduction in deviance compared to the null 
model, corrected AIC (AICc), change in AICc compared to the best fit model (DAICc), and 
model weight. The best-fit model is highlighted in red. 
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Table S3.10: Results from likelihood ratio tests between pairs of logistic GLMs with 
various explanatory variables and response variable of whether or not help was received in 
the form of money and things. For each model, values are provided for the reduction in 
deviance compared to the null model, corrected AIC (AICc), change in AICc compared to the 
best fit model (DAICc), and model weight. The best-fit model is highlighted in red.  
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Table S3.11: Results from likelihood ratio tests between pairs of logistic GLMs with 
various explanatory variables and response variable of whether or not help was received 
around the house. For each model, values are provided for the reduction in deviance compared 
to the null model, corrected AIC (AICc), change in AICc compared to the best fit model 
(DAICc), and model weight. The best-fit model is highlighted in red. 
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Table S3.12: Results from likelihood ratio tests between pairs of logistic GLMs with 
various explanatory variables and response variable of whether or not the helper’s work 
was affected. For each model, values are provided for the reduction in deviance compared to the 
null model, corrected AIC (AICc), change in AICc compared to the best fit model (DAICc), and 
model weight. The best-fit model is highlighted in red. 
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Chapter 4: The impact of symptomatic mobility change on dengue 
virus transmission 
 
To be submitted with the following authors: 
Kathryn L. Schaber, T. Alex Perkins, Alun L. Lloyd, Lance A. Waller, Uriel Kitron, Valerie A. 
Paz-Soldan, John P. Elder, Alan L. Rothman, William H. Elson, Robert C. Reiner, Amy C. 
Morrison, Thomas W. Scott, Gonzalo M. Vazquez-Prokopec 
 

Introduction	  

The rate at which humans encounter vectors (mosquitoes, ticks, bugs) is a driver of 

vector-borne disease transmission dynamics [1, 2]. Human-vector contacts can be influenced by 

myriad of factors, including the vector’s host-seeking behavior [3, 4], the host’s biting 

attractiveness [5-8], and the spatial distribution/density of both hosts and vectors [9-12]. 

Variations in some or all of these factors can lead to heterogeneous exposure, where certain 

individuals have higher contact rates with vectors than others [13-15]. The epidemiological 

consequence of such uneven distribution of human-vector contacts could be significant, as long 

as it results in key encounters where a large number of vectors are infected [2]. Therefore, 

individual contribution to transmission is influenced by not only how many bites are received, 

but also which vectors the bites are from and whom those vectors encounter next [16]. 

Given the central epidemiological role of mixing between hosts and vectors, there is a 

need for better quantification of its frequency and temporal variability, as its epidemiological 

role depends on the coupling among human (behavior, immunity, etc.), vector (dispersal, 

longevity, etc.), and environmental heterogeneities [17]. Theoretical and simulation models have 

been used to assess the role of such factors. One such model focuses on how heterogeneous 

exposure to vectors, poor mixing, and finite host numbers can determine the spatial scale of 

transmission [16]. Poor mixing can lead to infections being clustered in groups of closely 
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connected individuals, as observed in the clustering of infections among socially connected 

individuals [18-20]. This association between human behavior and mixing is of particular 

relevance for dengue and other Aedes-borne viruses (dengue, chikungunya, Zika) [1, 21-23], for 

which house-to-house human movement has been shown to underlie spatial patterns of incidence 

[18, 20, 24].  

 Dengue is an acute illness caused by any of four immunologically related viruses in the 

family Flaviviridae and transmitted by Aedes spp. mosquitoes (primarily Aedes aegypti). 

Prevalent in the tropics and subtropics, it is the most important mosquito-borne viral disease of 

humans worldwide [25]. Symptoms associated with dengue (acute fever, headache, 

musculoskeletal pain, and rash) occur in a small proportion of cases, while the other 70% of 

cases experience either very mild symptoms (inapparent) or no symptoms (asymptomatic) [26-

28]. Recently, it was empirically shown that human mobility patterns change throughout 

symptomatic (febrile) dengue infection, with individuals visiting fewer locations and staying at 

home more [29-31]. While disease-driven mobility changes significantly influence the spread of 

directly transmitted pathogens, they have not yet been included in theoretical models of dengue 

virus (DENV) transmission [32, 33]. For DENV, the impact of movement changes on an 

individual’s mosquito contacts and onward transmission will likely depend on the distribution of 

mosquitoes at their home and across the rest of their activity space [17, 21, 34]. At a population 

level, human mobility changes could affect pathogen spread in a variety of ways depending upon 

which individuals in the population experience symptoms and change their mobility and 

potential exposure to Aedes aegypti mosquitoes. 

For those DENV-infected individuals who experience symptoms, infectiousness tends to 

peak during the first few days after symptom onset when mobility is restricted and most human-
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mosquito contacts are occurring at the individual’s home [35-37]. There are, however, a few 

days before symptom onset when individuals have sufficient viremia levels to be infectious and 

have not yet changed their movement patterns [35, 37]. A recent theoretical model of within-host 

viral dynamics estimated that 24% of an individual’s onward transmission results from mosquito 

bites during this presymptomatic phase [38]. We hypothesize that the presymptomatic period 

could have a significant change in its contribution to transmission when accounting for the 

decreased mobility levels during the rest of the infectiousness period. To test this hypothesis, we 

examined the role of disease-driven mobility change in DENV transmission by theoretically 

exploring how day-to-day changes in a symptomatic individual’s mobility and human-mosquito 

contacts, combined with heterogeneous attractiveness to mosquitoes, may impact population-

level dynamics of DENV transmission. 

 

Methods 

Original Model Framework 

Our model builds on a previously published mathematical framework that describes 

where and when human-mosquito contacts occur based on fine-scale human and mosquito 

mobility [16]. In the original framework, a set of houses, {f}, and larval sites, {l}, were arranged 

on a disc. Each house was assigned a number of residents equal to 2 plus a Poisson random 

variable (λ = 3.5), creating a two-person minimum per household. In order to assign the numbers 

of mosquitoes/larvae at each house/larval site, mosquito movement and reproduction were 

simulated for a total of 200 time steps, with the first 100 acting as a burn-in period. Counts of 

mosquitoes and larvae at each location were averaged over the second 100 time steps, providing 

the ‘equilibrium’ values. Poorly mixed mosquito movement was characterized by matrices L and 
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F, giving the distance-based probabilities of an adult female mosquito moving from any house to 

any larval site, and vice versa [16]. Human mobility was also determined using distance-based 

probabilities, with the proportion of time each individual spent at each household documented in 

the H matrix. Each row of the H matrix described where a single host spent time and each 

column detailed all of the individuals spending time at a single household. Each individual was 

also assigned a biting suitability score (which accounts for biting attractiveness, avoidance 

behavior, and defensive behavior) using a random exponential draw with rate based on empirical 

biting data [39]. Based on the mobility matrix, H, and biting suitability scores, a U matrix was 

calculated to be the distribution of mosquito bites on all individuals at each house, where each 

row gave the distribution of bites on all hosts at a single household and each column depicted the 

bites distributed on a single individual across all households. A stochastic transmission model 

was layered on top of this framework, which included a household-level SEI model for 

mosquitoes and an individual-based SEIR model for hosts (Figure S4.1). Individuals 

transitioned through multiple exposed (E) sub-stages, totaling the duration of pathogen latency in 

terms of feeding-cycle-length time steps. Hosts also transitioned through multiple infectious (I) 

sub-stages, until a random number draw from a probability distribution transitions them into the 

recovered (R) stage. Transmission was initiated by moving a single human into the first 

infectious (I) stage. 

 Model simulations had discrete time steps to capture the length of a mosquito feeding 

cycle (~3 days). During each time step, hosts would allocate their time at houses based on H. The 

mosquitoes at each house would take blood meals from possible hosts based on U matrix 

probabilities and move to a larval site based on L probabilities. Eggs were laid based on a 

Poisson distribution with mean equal to number of adult females at the site multiplied by average 
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egg batch size. Adult mosquitoes then moved to a house searching for their next blood meal 

based on F probabilities. During each time step, mosquito larvae also progressed through a set 

number of stages based on site-specific density dependence until emerging into adult 

mosquitoes. For both mosquitoes and humans, each time step also accounted for progression 

through illness. 

Updated Model Description 

Our model was set up in a similar manner as the original model with a few modifications 

to enable us to address our motivating questions. Parameters with set values were defined (Table 

1), then houses and larval sites were placed on a disc, humans and mosquitoes were assigned 

locations, and mosquito movement probabilities were determined (Figure 4.1a) (Table 4.2). 

Rather than defining human mobility patterns based on distance, we generated a socially 

structured human mobility matrix for each of 200 simulation runs (Figure 4.1b). First, a random 

social network with household structure was constructed using the “configuration model” [40]. 

Each individual was assigned a number of “half-edges” (their degree) from a Poisson distribution 

with rate λ = 2.8, the mean number of residential locations visited in a data set described by 

Perkins et al. [34]. Fifteen percent of individuals were given no half-edges and did not move 

from their home [20]. Half-edges were then paired uniformly at random to form the edges of the 

social network, making sure there were no self-loops, multiple edges, or loops within houses 

(Figure 4.1b). This random network was represented as an |h|-by-|h| adjacency matrix SN, where 

|h| is the size of the set of hosts {h}. A separate |h|-by-|f| presence/absence matrix, Homes, is 

constructed, where Homesi,j denotes whether or not the ith host lives at the jth residential site.  

Multiplying the SN and Homes matrices produced an |h|-by-|f| matrix, HM, denoting 

which residential sites an individual will visit based on their social network (note that this matrix 
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was not presence/absence, as when the ith host was socially connected to multiple individuals at 

the jth residential site, HMi j > 1) (Figure 4.1b). This matrix was used to populate the human 

mobility matrix, H, which calculated the proportion of time each host spent at each household in 

the same way as the original model (Figure 4.2). Each host, i, spent 50% of their time at home, j, 

(Hi j  = 0.5) and divided the remaining 50% of their time into the houses visited in HM (When 

HMi j > 1, as mentioned above, a proportionally larger amount of time was allocated at that 

residential location). For the 15% of individuals, i, who had no mobility outside their home, j, Hi j  

= 1. Based on this implicit mobility matrix and each individual’s biting suitability, the |f|-by-|h| 

matrix U was created to describe the distribution of mosquito bites on all individuals at each 

house, as in the original model [16]. 

The overlaid transmission model was similar to the original version; however, only one 

exposed (E) stage was included (based on pathogen latency of DENV) and the maximum number 

of infectious sub-stages was 5 (I1 – I5). Rather than use a single set value for human 

infectiousness, values were chosen for each of these sub-stage (I1 – I5) based on data of mean 

daily probability of mosquito infection for individuals with primary infections [38] (Figure 4.3). 

For each 3-day infection time point in our model, we averaged these mean infectiousness values 

(Table 3).  The updated transmission model also defined the first time step in the human 

infectiousness stage (I1) as the “presymptomatic period” and all subsequent infectious time steps 

(I2 – I5) as the “symptomatic” period, where the presymptomatic period contributed to 25% of 

infectiousness for individuals who progressed through all five infectiousness stage (I1 – I5) 

before recovery.   

After the model framework was set-up, at each time step of the simulation: hosts 

allocated their time at houses based on H; mosquitoes moved to larval sites, laid eggs, had 
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advancement in larval stages, moved back to houses, and took blood meals in the same format as 

the original model. Both hosts and mosquitoes progressed through incubation (E), infectiousness 

(I), and (for hosts) recovery (R) (Figure 4.3). Virus transmission occurred from infectious hosts 

to susceptible mosquitoes and from infectious mosquitoes to susceptible hosts. At the end of 

each time point, host mobility was changed for those hosts who were symptomatically 

infectiousness. 

Host Mobility Changes: Two different scenarios were considered to examine mobility changes: 

(1) no symptomatic movement change and (2) movement change throughout symptomatic 

infection. For scenario (1) no changes were made to the mobility matrix. For scenario (2), host 

mobility changes occurred at each 3-day time step of symptomatic infection based on recently 

published data on human mobility throughout symptomatic infection [31] (Table 4.3) (Figure 

S4.2). As data from Schaber et al. [31] were grouped as days 1-3, 4-6, and 7-9 after symptom 

onset, they corresponded to the I2, I3, and I4 stages here. When individuals were in the first three 

days after symptom onset, they were significantly more likely to spend all of their time at home 

and visit no places. Accordingly, when an individual transitioned into symptomatic infection in 

the simulation (I2), their movement was completely stopped (HM[i, ] = 0) and all time was spent 

at home (HM[i, home] = 1). During days 4-6 after symptom onset (sub-stage I3), individuals 

spent an average of 76% of time at home and visited approximately 1/3 of normally frequented 

places. On days 7-9 after symptom onset (sub-stage I4) time at home and fraction of places being 

visited averaged 69% and 2/3, respectively. Therefore, we set the time at home to be 80% (70%) 

for the I3 (I4) stage and had individuals visiting 1/3 (2/3) of their originally frequented houses 

(Table 4.3). The order in which houses were added back into an individual’s movements in 

stages I3 and I4 was determined by random sample where a house’s probability of being chosen 
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was weighted by its original HM value. This made it more likely that individuals would resume 

visiting houses where they were socially connected to multiple residents. When individuals 

reached the I5 stage (days 10-12 after symptom onset), movement patterns and time at home 

were reset to original values (Table 4.3). At the end of each time step, once these movement 

changes were updated for all symptomatic individuals in the HM matrix, the H and U matrices 

were recalculated as described above. We also considered a scenario where only 30% of 

individuals (chosen from a random binomial draw) had symptomatic infection with mobility 

change in order to determine whether the presence of asymptomatic infections had an impact on 

symptomatic mobility changes. 

 Two other scenarios of interest that we accounted for were (1b) no movement change 

with no presymptomatic period and (2b) movement change throughout symptomatic infection 

with no presymptomatic period. For these scenarios the first stage of infectiousness (I1), the 

presymptomatic period, was removed and individuals became immediately symptomatic with 

infectiousness and movements corresponding to the I2 – I5 stages.  

Model Outputs: Previously, multiple metrics were created to explore how mobile hosts and 

mosquitoes contribute to pathogen dispersal [16]. Of particular interest was the matrix R, which 

corresponded to the concept of effective reproductive number. This matrix gave the probability 

that a primary infection in one host will result in a secondary infection in some other host, where 

summing each row provided the number of expected secondary infections arising from a single 

individual. The B matrix was also utilized to measure the expected number of bites per time step 

on each host at each blood-feeding habitat (house). Each row of B provided the number of 

expected bites on a single individual at all households and each column gave the expected 

number of bites occurring on all individuals at a single household during one time step. At the 
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population level, dynamics were examined using the simulation outputs of cumulative number of 

infections at each time step and number of infectious hosts at each time step. We utilized these 

original metrics and created versions that accounted for mobility change. 

 The B matrix could be used as a way to examine heterogeneity in human-mosquito 

contact rates, not only across hosts/locations, but also throughout an individual’s infectiousness 

period. As this metric was based on the distribution of bites across hosts at each site (U), and 

therefore affected by the human mobility matrix (H), a list of B matrices was created to measure 

biting pre-epidemic (with normal movements) and during each time step of infectiousness. 

Within each simulation, Bnorm was calculated for all individuals before infection spread began. 

During disease spread, Bi[k,] was recorded for each host, k, at each infectiousness sub-stage (I1 – 

I5), i. This set of matrices gave us the expected number of mosquito bites on each host at each 

house throughout infectiousness/mobility changes. 

 The previously-derived version of the R matrix, referred to as Rnorm, measured the 

probability of host l receiving one or more secondary infectious bites arising from primary 

infectious host, k. This accounts for the primary infectious host transmitting the virus to a 

susceptible mosquito (the primary infectious bite) and that newly infectious mosquito then 

transmitting the virus to a susceptible host (the secondary infectious bite). The R metric was 

slightly adjusted to account for time-step-specific infectiousness where  

𝑅",$ = 1 − 𝑒)*+(-./	-1/	-2/	-3/	-4) 

with ci values representing an individual’s time-step-specific infectiousness values. The V matrix 

gave the number of expected secondary bites on each host arising from primary bites on all other 

hosts over one time step, where each row described the number of expected secondary bites on 

all hosts from primary bites on a single individual and each column provides the number of 
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expected secondary bites received by a single individual from primary bites on all other hosts 

during one time step. Because the U matrix affected the V matrix, host mobility change was 

accounted for by creating a set of matrices, Vi, for each sub-stage of infectiousness (I1 – I5). 

When host k was infectious in the simulation, their Vi[k,] values were recorded for each I sub-

stage (I1 – I5). At the end of the simulation run a matrix referred to as Rmovement was created, 

where 

𝑅678969:; = 1 − 𝑒)*(+.-./	+1-1/	+2-2/	+3-3/	+4-4). 

 In order to examine the importance of where the primary infectious bite occurs on host k, 

we also divided Rmovement into two separate matrices, Rmovement (home), and Rmovement (other 

houses). This was done by calculating Vi(home) and Vi(other houses), which derived the number 

of expected secondary bites on each host arising from primary bites that occur at each time point 

of infectiousness, i, on all other hosts at their home and everywhere but their home. These Vi 

(home) and Vi (other houses) matrices were then used to derive Rmovement (home) and Rmovement 

(other houses), respectively. Similarly, Rnorm was divided into Rnorm (home) and Rnorm (other 

houses) in order to compare the effect of where a primary infectious bite occurred when not 

accounting for mobility.  

 A new metric that focused on the number of mosquitoes present in each individual’s 

home was also considered. The number of mosquitoes in each individual’s home was recorded at 

the beginning of the simulation run (pre-epidemic) and at each time point of infectiousness for 

that individual. For each scenario a list was output with all of these metrics for each of 200 

simulation runs. 

Data Analysis: 
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 Analysis of simulation outputs had three main objectives: Determining the effects of 

disease-driven mobility changes on (1) population-level outbreak dynamics, (2) onward 

transmission, and (3) human-mosquito contacts. 

For the first objective, determining the effects of mobility change on population-level 

disease dynamics, we compared four scenarios: no mobility change; no mobility change and no 

presymptomatic period; mobility change; mobility change and no presymptomatic period. The 

effect of mobility changes could be determined by comparing the “no mobility change” and 

“mobility change” scenarios. To determine the role of the presymptomatic period when mobility 

changes occur, we compared the difference in ‘mobility change, presymptomatic’ and ‘mobility 

change, no presymptomatic’ to the difference in ‘no mobility change, presymptomatic’ and ‘no 

mobility change, no presymptomatic’ in order to account for the baseline effect of removing one 

period of infectiousness (the presymptomatic period).  

The number of infectious hosts at each time step was used to calculate the maximum 

infection prevalence, the time to maximum prevalence, and the length of the epidemic (when the 

number of infectious hosts was 0 without increasing again). The cumulative number of infections 

at each time step was utilized to record the total percent of the population infected in an 

epidemic, as well the time point when the percent of cumulative infections reached 10% and 

65%. For the remaining two objectives, we focused our analysis on the scenario were a 

presymptomatic period is present and mobility changes were occurring. In order to determine the 

effect of these mobility changes on onward transmission, the Rnorm and Rmovment matrices were 

utilized. Row sums of Rmovement and Rnorm gave the expected number of secondary infectious bites 

arising from all primary bites on an individual host either with or without accounting for 

movement changes. Similarly, row sums of Rmovement(home), Rmovement(other houses),  
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Rnorm(home), and Rnorm(other houses) determined the expected secondary bites arising from an 

individual due to only primary bites at their home or only primary bites at other houses (with and 

without movement changes). The distributions of Rmovement and Rnorm values were compared and 

Rchange was calculated to examine how accounting for mobility affects an individual’s R-value.  

Possible predictor variables for onward transmission were examined using generalized 

additive models (GAMs) [41]. Best-fit models were determined for Rmovement, Rmovement(home), 

Rchange, and Rchange(home). Rchange values were analyzed both as raw numbers and as percent 

change relative to Rnorm values.  The variables considered as predictors were an individual’s 

biting suitability score, the number of mosquitoes in their home, the percent of expected 

mosquito bites that occur at their home pre-exposure, and the number of places they visit pre-

exposure. Best-fit was determined with DAICc and the percent of deviance explained by each 

model. 

 For the third objective, we calculated the expected number of mosquito contacts for each 

individual pre-exposure and at each stage of infectiousness (I1 – I5). Expected counts were 

calculated as row sums of Bnorm and each Bi matrix. For all individuals that experienced infection, 

the change in number of expected mosquito contacts was calculated for each infectiousness 

stage, as compared to pre-exposure. Percent change was also calculated to account for variation 

in healthy mosquito contact counts 

𝐵> −	𝐵:7?6
𝐵:7?6

. 

 We examined the importance of these variations in healthy mosquito contacts by 

comparing those with the top 20% of expected contacts pre-exposure to the rest of the population 

(bottom 80%). B matrices were also used to determine the percent of an individual’s mosquito 

contacts that occurred at their home. Generalized additive models (GAMs) were examined for 
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change in expected mosquitoes contacts, both as a number and a percent. Predictors and methods 

for finding best-fit models are as mentioned above. All statistical analyses were performed in R 

3.3.0 statistical computing software. 

 

Results 

Epidemic Dynamics 

Among the 200 simulations run for each scenario, outbreaks occurred in 76% and 53.5% 

when mobility changes were and were not considered, respectively (Table 4.2). When the 

presymptomatic period was removed, only 55% and 39.5% of simulation led to outbreaks with 

and without mobility change. In the simulations where outbreaks did not occur, the infection 

only spread to a few people (maximum of 20) before leaving the population. For simulations 

leading to epidemics, the inclusion of symptomatic mobility change increased the time to peak 

infection by 8% (9 days) and increased the length of the epidemic by 5% (13.5 days) to reach the 

epidemic’s end (Table 4.2) (Figure 4.3). These delays had minimal effects on the percent of the 

population infected at peak prevalence and overall, with average changes of -0.7% and 0.2%, 

respectively (Table 4.2, S4.1). Removing the presymptomatic period had minimal effects on 

epidemic timing regardless of whether mobility changes were included, with epidemic length 

decreasing by less than 3 days, on average (Table 4.2) (Figure 4.3). Without mobility change, 

peak prevalence decreased by an average of 0.9% and total percent of individuals infected 

decreased by an average 2.4% (Table 4.2, S4.3). In the presence of symptomatic mobility 

changes, removal of the presymptomatic period caused a 5.7% decrease at peak prevalence and a 

4% decrease in the percent of population infected, on average (Table 4.2, S4.3) (Figure 4.3). 

Onward Transmission  



 97 

 At a population level, the distributions of onward transmission (R) values were 5.4 (± 5.1 

SD) and 5.9 (± 4.8 SD) without and with mobility change, respectively (Table 4.3) (Figure 

S4.3). At an individual level, however, the average change in onward transmission when 

mobility changes were considered (Rchange) was -15.1% (± 29.9 SD) and the average change in 

onward transmission for only primary bites at home (Rchange(home)) was 39.7% (± 22.7 SD) 

(Table 4.3) (Figure S4.4). Further, while Rnorm and Rmovement had similar values, primary bites at 

home and at other locations seemed to contribute an equal amount to onward transmission for 

Rnorm, whereas primary bites at home had a much larger contribution for Rmovement (Table 4.3) 

(Figure 4.4a). The majority of secondary infectious bites contributing to transmission occurred 

at other houses for both Rnorm and Rmovement (Table 4.3) (Figure 4.4b).  

The best-fit model for all of the onward transmission response variables was one 

accounting for an individual’s biting suitability score, the number of mosquitoes in their home, 

the percent of bites expected to occur at home pre-exposure, and all possible interactions 

between these three (Table S4.4-S4.7, S4.9). There were, however, reduced models that 

provided more straightforward trends to examine. For example, for models of onward 

transmission (Rmovement) with single predictor variables, biting suitability score and number of 

mosquitoes at home pre-exposure explained 32.3% and 27.7% of deviance, respectively, whereas 

percent of bites expected at home pre-exposure only explained 9.3% of deviance (Table S4.5). 

Further, 74.8% of deviance is explained in a model containing biting suitability, number of 

mosquitoes at home, and their interaction, which is only 2.9% less than the best-fit model. 

Independently, larger numbers of mosquitoes at home and higher biting suitability score both 

increased the expected onward transmission value (Figure 4.5). Those individuals with larger 

values of both saw an extra increase in expected onward transmission due to the interaction term, 
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whereas those with high mosquito numbers and a low biting suitability score saw a decrease in 

their expected effect (Figure 4.5). The effect was visible in the predicted values of onward 

transmission, where increasing biting suitability score from 0 to 1 only increased predicted 

onward transmission by 5 when there was a low mosquito count at home, compared to an 

increase of 30 for those with high mosquito density at home (Figure 4.5). 

Predictions of onward transmission without mobility change included (Rnorm) were also 

dependent on the interactions between biting suitability, number of mosquitoes present at home, 

and percent of bites expected at home. Including a variable for the total number of mosquitoes in 

all the houses an individual visited pre-exposure did not increase the fit of models (Table S4.4).  

When an individual’s Rnorm value was accounted for, the percent change in onward transmission 

due to mobility inclusion (Rchange) could be predicted by the percent of bites expected to occur at 

home pre-exposure with 80.50% of deviance explained (Table S4.7). Accounting for the other 

two variables and the interaction terms only increased explained deviance by 3.4% (Table S4.7). 

When the percent of bites expected to occur at home pre-exposure was below 42%, there was a 

predicted decrease in onward transmission, whereas those with greater than 42% of bites 

expected at home pre-exposure saw increases in onward transmission when mobility was 

accounted for (Figure 4.6a). The notable exception to this monotonically increasing effect was 

the tempered increase in onward transmission for those who received their pre-exposure bites 

almost exclusively at home (Figure 4.6a). When examining the change in onward transmission 

only from primary bites at home (Rchange(home)), a majority of the deviance was explained in a 

model with percent bites expected at home pre-exposure as well as biting suitability score, where 

individuals with low biting suitability scores were predicted to have the biggest percent increases 

in onward transmission when accounting for mobility (Table S4.7) (Figure 4.6b). When both 
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variables were considered, the change in onward transmission from primary bites at home only 

was predicted to be positive for all individuals, with the biggest percent increase for those with 

low biting suitability scores and a small percent of bites at home pre-exposure and the most 

tempered increase for those with almost all of their expected bites occurring at home pre-

exposure (Figure 4.6b). If Rchange was examined as a raw number rather than a percent change, 

all three variables and their interaction terms were needed to achieve a good model fit (Table 

S4.6).  

Human-Mosquito Contacts During Illness 

At the population level, the distribution of expected mosquito contacts appeared to be 

similar throughout symptomatic mobility (Table S4.8) (Figure S4.5). When examining the 

change in an individual’s expected contacts at each time point of symptoms, however, 57% of 

individuals had a decrease in expected contact and 38% had an increased (Table 4.4) (Figure 

S4.7-S4.8). Further, of those individuals who received the top 20% of expected mosquito 

contacts pre-exposure, 24% had a large enough decrease in mosquito contacts on the first three 

days after symptom onset to no longer be in the top 20% when symptomatic (Figure S4.6).  

The percent change in expected mosquito contacts from pre-exposure to the first three 

days after symptom onset was best explained by a GAM including biting suitability score, 

number of mosquitoes at home pre-exposure, and percent of bites expected at home pre-

exposure, as well as their interactions, which explained 93% of deviance (Table S4.9). The 

model with only a term for percent of bites expected at home pre-exposure, however, was able to 

explain 92% of the deviance (Table S4.9). The effect of percent bites at home on percent change 

in expected mosquito contacts was very similar to the effect on percent change in onward 

transmission. Those with less than 42% of bites at home pre-exposure were predicted to have 
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decreases in expected contacts on the first three days of symptoms while those with greater than 

42% of bites at home pre-exposure were predicted to see increases in expected contacts (Figure 

4.7). Individuals who received none of their bites at home pre-exposure were expected to have 

the largest percent decrease, whereas those who received around 90% of their bites at home pre-

exposure had the largest percent increase (Figure 4.7). If change in expected mosquito contacts 

was examined as a raw value rather than a percent change, all three variables and their 

interactions were needed to provide an accurate prediction and explain a large amount of the 

deviance (Table S4.9). 

For the scenario where only 30% of cases experienced symptoms (and symptomatic 

mobility change), the expected values and relative changes for onward transmission and human-

mosquito contacts had similar dynamics as in the case above where all individuals were 

symptomatic (Table S4.10-S4.17, Figure S4.9-S4.15). 

 

Discussion 

Transmission of DENV is highly focal at the household level, likely due to the mobility 

and biting behaviors of Ae. aegypti [23, 42-44]. Fine-scale human mobility has been shown to 

expand this spatial scale and cause transmission to be characterized by human-mosquito contacts 

at an individual’s home as well as the other houses they routinely visit (their activity space), 

generating variation in exposure to mosquitoes [18, 20, 21, 30, 45]. This importance of both 

primary bites at home and at other houses in contributing to onward transmission can be seen in 

the distribution of Rnorm values when mobility changes are not included. While this may hold true 

for the 70% of cases with inapparent infection, individuals with symptomatic infection 

drastically change their movements during infectiousness [31]. These changes in mobility make 
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an individual’s household mosquitoes contacts significantly more important for determining their 

onward transmission potential, with the activity space playing a severely diminished role. This 

shift in where mosquito contacts occur when an individual is infectious can lead to either 

increased or decreased contact rates and onward transmission, largely based on what percent of 

mosquito contacts were already expected to occur at home before mobility change. 

 An individual’s biting suitability has been previously identified as an important 

determinant of their onward transmission potential [1]. While this held true in our analysis, we 

found the effect to be dependent on the density of mosquitoes in an individual’s home. Those 

with only a few mosquitoes in their home could go from lowest to highest biting suitability score 

and cause 5 more secondary infections, whereas those with many mosquitoes in their home could 

cause 30 more secondary cases. Indeed, individuals with low values in either biting suitability 

score or number of mosquitoes at home were predicted to have low onward transmission, 

partially due to the interaction effect of these two variables (Figure 4.5).  

While an individual’s biting suitability cannot be changed, the number of mosquitoes in 

their home can, which has significant implications for disease control. While reducing household 

mosquitoes would be predicted to decrease onward transmission for all individuals, the effect 

could be particularly drastic for those with high biting suitability given the synergistic effect of 

the two factors on expected transmission. Further, those with a small number of mosquito bites 

expected in their homes are predicted to see a decrease in onward transmission potential when 

symptomatic mobility changes are accounted for. 

One limitation of our study was the lack of an empirical social network to accurately 

parameterize our model framework. However, using a random graph accounted for the 

inhomogeneous nature of social interactions while still allowing conclusions to be generalized to 
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multiple locations. Further, by wiring a new random social network at the beginning of each 

simulation, it’s unlikely that outcomes will be caused by specific artifacts of the network 

structure. The model was also limited by its size, being representative of a neighborhood rather 

than an entire city. However, given that the most significant effects were seen at the individual 

level (rather than the population-level), increasing the number of houses in the framework would 

likely not have a drastic impact. While this model framework allowed for many different metrics 

to be examined, there were limitations in what could be calculated from simulations due to the 

stochastic nature. Further research should focus on possible advancements of the model and the 

methods used to analyze the simulations.  

 There are numerous factors that can contribute an individual’s onward transmission 

potential. In order to better understand the complex dynamics of disease transmission, we 

developed a framework that examines the contribution of multiple heterogeneous factors, both 

individually and in relation to each other. In particular, the coupling between mobility and 

symptom severity was empirically parameterized to better understand its role in disease 

dynamics. Symptomatic mobility change can have a significant impact on the relationship 

between biting suitability, density of mosquitoes, and location where the majority of mosquito 

contacts are occurring, leading to a spectrum of changes in expected mosquito contacts and 

onward transmission potential. The interconnectedness of these factors may have an effect on the 

relative contribution of symptomatic individuals to overall epidemic transmission dynamics.  
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Tables 

Table 4.1: Parameters that Vary by Infectiousness Stage. Values provided for individuals 
when susceptible, and at each sub-stage of infectiousness based on data from [31, 38]. 

 
 
Table 4.2: Infection Prevalence Based on Presence of Presymptomatic Period and/or 
Mobility Changes. Infection prevalence data were analyzed from four scenarios: (1) no mobility 
change occurred and the presymptomatic period was present, (2) no mobility change occurred 
and no presymptomatic period was present,  (3) mobility change occurred and the 
presymptomatic period was present, and (4) mobility change occurred and no presymptomatic 
period was present. For each scenario, the average time point was listed for when infection 
prevalence reaches its maximum and reaches 0% at the end of epidemic. The percent of the 
population infected during maximum infection prevalence was also listed, as well as the number 
of simulations where an outbreak occurred. Time steps values were converted to days (1 time 
step = 3 days). 
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Table 4.3: Average R Values With and Without Mobility Change and Change in R due to 
Mobility Change Inclusion. Rnorm values were calculated using an individual’s healthy 
movement patterns, while Rmovement values accounted for changes in mobility throughout 
infectiousness. Changes in R-values due to mobility inclusion were calculated for each 
individual as a raw number and as a percent of Rnorm value. Overall R-values were listed, as well 
as R-values based on only primary bites occurring at home or at other houses. 

 
 
Table 4.4: Average Change in Expected Mosquito Bites for Each Infectiousness Sub-stage 
When Symptomatic Mobility Change is Occurring (I2 – I4), Separated Based on Expected 
Bite Values Pre-exposure. Average changes are given both as raw numbers and percent change 
relative to number of expected bites pre-exposure. 
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Figures 
 
Figure 4.1: Diagram with Setup of Model Framework for Each Scenario and Each 
Simulation Run. (a) For each scenario, (i) houses and larval sites are placed on a disc, humans 
are assigned to each house, and mosquitoes are assigned to each house/larval site. (ii) Then, 
distance-based mosquito mobility matrices are created with the probabilities of mosquitoes 
moving from any house to any larval site (L) and any larval site to any house (F). (b) For each of 
200 simulation runs, (i) a random social network (SN) is generated for humans by assigning each 
person a degree (where 15% spend all of their time at home and have a degree of 0), then 
randomly matching humans to each other while avoiding connections between members of the 
same household. (ii) Using information on social network contacts and where each individual 
lives,  (iii) a human movement matrix, HM defines which houses individuals visit, weighted by 
the number of social network contacts that live there. Using this mobility data, a matrix H is 
created, which defines the proportion of time an individual spends at each house. Fifty percent of 
time is spent at home and 50% of time is split between social contacts’ houses based on the edge 
weights in HM. (c) Example of the human mobility network (H) configured for 50 houses is 
provided. The top is the sub-network containing only connections between an individual and 
their own home. The bottom is the sub-network containing only connections between an 
individual and other houses. Blue square nodes represent houses and orange circle nodes 
represent individuals. Edges between an individual and their own home are black and edges 
connecting to other houses are gray. Edges are weighted by H matrix values, where thicker edges 
reflect more time spent at a place. 
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Figure 4.2: Diagram of Stochastic DENV Transmission Model. A household-level SEI model 
is used for mosquitoes. For humans, an individual-based SEIR model is used. The I (infectious) 
stage is divided into five sub-stages, each with their infectiousness value, shown here with 
weighted arrows (shown in Table 3). Individuals can either progress to the next (I) infectious 
sub-stage or move straight to the (R) recovered stage based on a probability function. The 
probability of moving to the recovered stage is shown with weighted arrows.  
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Figure 4.3: Proportion of Population Infected During Epidemic Simulations, by Scenario.	
For each scenario and for each time step, the average proportion of infected hosts is calculated 
across all simulation runs where an outbreak occurred. Standard deviations are included in the 
shaded ribbons. 
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Figure 4.4: Expected Onward Transmission Values With and Without Movement Changes 
Accounted For, Separated by Where Primary Bites Occur and Where Secondary Bites 
Occur. (a) gives onward transmission for primary bites occurring at home (red) and at other 
houses (blue) both without (left) and with (right) movement change included. (from left to right: 
Rnorm(home), Rnorm(other houses), Rmovement(home), and Rmovement(other houses)) (b) gives onward 
transmission for secondary bites at the home of the primary infected individual (red) and at other 
houses (blue). 
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Figure 4.5: Smooth Functions and Predictions for Rmovement Based on a GAM Model 
Containing Number of Mosquitoes in Home Pre-exposure, Biting Suitability Score, and 
Their Interaction. On the left (i, ii, iii), the component smooths for each predictor variable are 
provided. For the 1-d smooths (i, ii), the y-axis is the contribution of the predictor variable to the 
fitted response, centered around 0 (with 0 denoted by a red dashed line). For the 2-d smooth for 
the interaction term (iii), a heatmap with overlaid contours is provided. The values of the 
contours represent the contribution of the interaction term to the fitted response. Positive values 
are in red and negative values are in blue. On the right (iv) is the predicted values of onward 
transmission based on biting suitability and number of mosquitoes at home pre-exposure, 
presented as a heatmap with contours. 
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Figure 4.6: Smooth Functions and Predictions for Percent Change in Rmovement and 
Rmovement(home) Based on GAM Models. (a) The smooth value for percent change in Rmovement, 
predicted by percent of bites expected at home pre-exposure. As there is only one predictor 
variable in this model, the y-axis represents the fitted response based on the predictor variable. 
(b) Smooth values for percent change in Rmovement(home), predicted by biting suitability score 
and percent of bites expected at home pre-exposure. On the left (i, ii), the component smooths 
for each predictor variable are provided. The y-axis is the contribution of the predictor variable 
to the fitted response, centered around 0 (with 0 denoted by a red dashed line). On the right (iii) 
is the predicted percent change in onward transmission from primary bites at home based on 
biting suitability and percent of bites expected at home pre-exposure, presented as a heatmap 
with contours. 

 
 
Figure 4.7: Smooth Functions and Predictions for Percent Change in Expected Mosquito 
Contacts Based on GAM Model Containing Percent of Bites Expected at Home Pre-
exposure. The smooth function for the predictor variable. As there is only one predictor variable 
in this model, the y-axis represents the fitted response based on the predictor variable. 
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Supplemental materials 
 
Table S4.1: Simulation Parameters with Set Values for All Scenarios. 

 
 
Table S4.2: Simulation Parameters Set for Each Scenario. 
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Table S4.3: Cumulative New Infections Based on Presence of Presymptomatic Period 
and/or Mobility Changes. Average time points when cumulative percent of new infections 
reached 10%, 65%, and total percent infection. Average percent of the population infected was 
also listed. Data were averaged across simulation runs for four scenarios: (1) no mobility change 
occurred and the presymptomatic period was present, (2) no mobility change occurred and no 
presymptomatic period was present,  (3) mobility change occurred and the presymptomatic 
period was present, and (4) mobility change occurred and no presymptomatic period was present. 
Time steps values were converted to days (1 time step = 3 days). 
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Table S4.4: Comparison of GAMs for Expected Onward Transmission Without Mobility 
Change, Rnorm. Amount of deviance explained (%),degrees of freedom (DF), change in AICc 
compared to the best fit model (DAICc), and model weight are provided for each model. The 
best-fit model is highlighted in red. 
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Table S4.5: Comparison of GAMs for Expected Onward Transmission. Models are 
Compared for Response Variables Rmovement and Rmovement(home). Amount of deviance 
explained (%),degrees of freedom (DF), change in AICc compared to the best fit model (DAICc), 
and model weight are provided for each model. The best-fit model is highlighted in red. 
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Table S4.6: Comparison of GAMs for Change in Expected Onward Transmission When 
Mobility is Included. Models are Compared for Response Variables Rchange and 
Rchange(home). Amount of deviance explained (%),degrees of freedom (DF), change in AICc 
compared to the best fit model (DAICc), and model weight are provided for each model. The 
best-fit model is highlighted in red. 
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Table S4.7: Comparison of GAMs for Percent Change in Expected Onward Transmission 
When Mobility is Included. Models are Compared for Response Variables Rchange and 
Rchange(home) as Percentages. Amount of deviance explained (%),degrees of freedom (DF), 
change in AICc compared to the best fit model (DAICc), and model weight are provided for each 
model. The best-fit model is highlighted in red. 

 
 
Table S4.8: Average Expected Mosquito Bites for Each Sub-stage of Infectiousness After 
Symptom Onset (I2 – I5), Separated Based on Expected Bite Values Pre-exposure.  
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Table S4.9: Comparison of GAMs for Change in Expected Mosquito Contacts in the First 
Three Days After Symptom Onset When All Time is Spent at Home (sub-stage I2). Models 
are Compared for Response Variable as a Raw Number and a Percentage. Amount of 
deviance explained (%),degrees of freedom (DF), change in AICc compared to the best fit model 
(DAICc), and model weight are provided for each model. The best-fit model is highlighted in 
red. 
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Table 4.10: Average R Values With and Without Mobility Change and Change in R due to 
Mobility Change Inclusion for Only Symptomatic Individuals in the Scenario with 70% 
Asymptomatic Cases and 30% Symptomatic Cases. Rnorm values were calculated using an 
individual’s healthy movement patterns, while Rmovement values accounted for changes in mobility 
throughout infectiousness. Changes in R-values due to mobility inclusion were calculated for 
each individual as a raw number and as a percent of Rnorm value. Overall R-values were listed, as 
well as R-values based on only primary bites occurring at home or at other houses. 
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Table S4.11: Comparison of GAMs for Expected Onward Transmission Without Mobility 
Change, Rnorm, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic 
Cases and 30% Symptomatic Cases. Amount of deviance explained (%),degrees of freedom 
(DF), change in AICc compared to the best fit model (DAICc), and model weight are provided 
for each model. The best-fit model is highlighted in red. 
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Table S4.12: Comparison of GAMs for Expected Onward Transmission for Only 
Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and 30% 
Symptomatic Cases. Models are Compared for Response Variables Rmovement and 
Rmovement(home). Amount of deviance explained (%),degrees of freedom (DF), change in AICc 
compared to the best fit model (DAICc), and model weight are provided for each model. The 
best-fit model is highlighted in red. 
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Table S4.13: Comparison of GAMs for Change in Expected Onward Transmission When 
Mobility is Included for Only Symptomatic Individuals in the Scenario with 70% 
Asymptomatic Cases and 30% Symptomatic Cases. Models are Compared for Response 
Variables Rchange and Rchange(home). Amount of deviance explained (%),degrees of freedom 
(DF), change in AICc compared to the best fit model (DAICc), and model weight are provided 
for each model. The best-fit model is highlighted in red. 
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Table S4.14: Comparison of GAMs for Percent Change in Expected Onward Transmission 
When Mobility is Included for Only Symptomatic Individuals in the Scenario with 70% 
Asymptomatic Cases and 30% Symptomatic Cases. Models are Compared for Response 
Variables Rchange and Rchange(home) as Percentages. Amount of deviance explained 
(%),degrees of freedom (DF), change in AICc compared to the best fit model (DAICc), and 
model weight are provided for each model. The best-fit model is highlighted in red. 
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Table S4.15: Average Expected Mosquito Bites for Each Sub-stage of Infectiousness After 
Symptom Onset (I2 – I5) for Only Symptomatic Individuals in the Scenario with 70% 
Asymptomatic Cases and 30% Symptomatic Cases, Separated Based on Expected Bite 
Values Pre-exposure.  

 
 
Table 4.16: Average Change in Expected Mosquito Bites for Each Infectiousness Sub-stage 
When Symptomatic Mobility Change is Occurring (I2 – I4), for Only Symptomatic 
Individuals in the Scenario with 70% Asymptomatic Cases and 30% Symptomatic Cases, 
Separated Based on Expected Bite Values Pre-exposure. Average changes are given both as 
raw numbers and percent change relative to number of expected bites pre-exposure. 
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Table S4.17: Comparison of GAMs for Change in Expected Mosquito Contacts in the First 
Three Days After Symptom Onset When All Time is Spent at Home (sub-stage I2) for Only 
Symptomatic Individuals in the Scenario with 70% Asymptomatic Cases and 30% 
Symptomatic Cases. Models are Compared for Response Variable as a Raw Number and a 
Percentage. Amount of deviance explained (%),degrees of freedom (DF), change in AICc 
compared to the best fit model (DAICc), and model weight are provided for each model. The 
best-fit model is highlighted in red. 
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Figure S4.1: Equations for human and mosquito transmission models, as seen in [16]. 
(A)Stochastic, individual-based SEIR dynamics for hosts. rfail is a failure distribution that defines 
the probability of recovering after i time steps. (B)Stochastic, household-level SEI dynamics for 
mosquitoes. Bernoulli, Binomial, and Multinomial functions generate random numbers from 
those distributions with the supplied parameters. See Tables S4.1-4.2 for parameter definitions. 

 
 
Figure S4.2: Mobility Values During Illness (in 3-day Intervals). 
(A) Average number of locations visited per 3-day period. (B) Average proportion of time spent 
at home per 3-day period. Significant differences, denoted by letters, were detected using 
pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a family-
wise error-rate of 0.05.  All significant differences had p-values < 0.05. 
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Figure S4.3:  Distribution of Rnorm and Rmovement Values. Outliers were removed. 

 
 
Figure S4.4: Distribution of Rchange, Rchange(home), and Rchange(other houses) Values. Outliers 
were removed. The red line represents no change. 
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Figure S4.5: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage. 

 
Figure S4.6: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage, 
Separated Based on Top 20/Bottom 80% of Expected Bites Pre-exposure. 
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Figure S4.7: Distribution of Change in Expected Mosquito Contacts at Each Infectious 
Sub-stage Relative to Pre-exposure Values, Separated Based on Top 20/Bottom 80% of 
Expected Bites Pre-exposure. 
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Figure S4.8: Distribution of Percent Change in Expected Mosquito Contacts at Each 
Infectious Sub-stage Relative to Pre-exposure Values, Separated Based on Top 20/Bottom 
80% of Expected Bites Pre-exposure. 
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Figure S4.9:  Distribution of Rnorm and Rmovement values for Only Symptomatic Individuals 
in the Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases. Outliers were 
removed. 

 
 
Figure S4.10: Distribution of Rchange, Rchange(home), and Rchange(other houses) values for 
Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and 30% 
Symptomatic Cases. Outliers were removed. The red line represents no change. 
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Figure S4.11: Expected Onward Transmission Values With and Without Movement 
Changes Accounted For, Separated by Where Primary Bites Occur and Where Secondary 
Bites Occur, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic 
Cases and 30% Symptomatic Cases. (a) gives onward transmission for primary bites occurring 
at home (red) and at other houses (blue) both without (left) and with (right) movement change 
included. (from left to right: Rnorm(home), Rnorm(other houses), Rmovement(home), and 
Rmovement(other houses)) (b) gives onward transmission for secondary bites at the home of the 
primary infected individual (red) and at other houses (blue). 
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Figure S4.12: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage 
for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and 
30% Symptomatic Cases. 

 
 
Figure S4.13: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-
stage, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases 
and 30% Symptomatic Cases, Separated Based on Top 20/Bottom 80% of Expected Bites 
Pre-exposure. 
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Figure S4.14: Distribution of Change in Expected Mosquito Contacts at Each Infectious 
Sub-stage Relative to Pre-exposure Values, for Only Symptomatic Individuals in the 
Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases, Separated Based 
on Top 20/Bottom 80% of Expected Bites Pre-exposure. 

 
 
Figure S4.15: Distribution of Percent Change in Expected Mosquito Contacts at Each 
Infectious Sub-stage Relative to Pre-exposure Values, for Only Symptomatic Individuals in 
the Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases, Separated 
Based on Top 20/Bottom 80% of Expected Bites Pre-exposure. 
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Chapter 5: Conclusion 

Summary of Results 

The overall goal of this research was to determine the importance of dynamic human 

mobility on human-mosquito contact networks that lead to DENV transmission heterogeneity. 

Chapters 2 and 3 describe the mobility changes seen for individuals with symptomatic dengue 

infection in Iquitos, Peru and for their social network contacts. In Chapter 2, I found empirical 

evidence of the coupling between human mobility and symptom severity, with symptomatic 

dengue cases experiencing mobility changes throughout their illness period, dependent on both 

the day of illness and their subjective sense of well-being. The largest decrease in mobility 

occurred during the first three days of symptoms, which is also the time when infectiousness 

peaks for dengue infection. Further, while individuals experienced changes in the types of 

locations they visited, the proportion of residential location being visited stayed consistent 

throughout illness. 

In Chapter 3, I describe how symptomatic dengue infection can also cause mobility 

changes for the social network contacts of the ill individual. These changes were, however, much 

less common than expected. Contacts designated as “routine visitors” continued to visit the 

symptomatic individual during illness, most with awareness of the illness. While the vast 

majority of symptomatic individuals received help, most caregivers were housemates of the 

individual and while they may have made slight mobility changes, only 28% made changes 

drastic enough for their work to be affected. The largest effect was seen when female adults were 

ill, likely because they acted as the caregiver of the house for their children and/or spouse, 

whereas when they were ill the working spouse would have to change their schedule to help. 
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Chapter 4 examines the impact that symptomatic mobility change can have on human-

mosquito contacts and onward transmission of DENV. When accounting for dynamic mobility 

change throughout the illness period (parameterized based on Chapter 2), there were significant 

changes in the number of expected mosquito bites an infectious individual would receive and the 

location they would occur. Consequently, the vast majority of primary infectious bites (bites 

where an infectious individual transmits DENV to a susceptible mosquito) contributing to an 

individual’s expected onward transmission occurred in their home, with the rest of their activity 

space playing a severely diminished role. Comparatively, when an individual was susceptible the 

home and the activity space contributed equally to infectious mosquito exposure. Therefore, 

accounting for mobility change when symptomatic leads to a disconnect between the exposure 

and onward transmission processes.  

This distinction between exposure and onward transmission is particularly important in 

the lens of dengue prevention and control. A common control method is reactive insecticide 

spraying, focusing on homes of reported dengue cases. This approach may help decrease onward 

transmission of the virus by symptomatic individuals, due to the amplified role of the home; 

however, it may only be marginally successful in preventing exposure to DENV, given the role 

of the activity space. Further, the importance of the activity space for presymptomatic and 

asymptomatic infectiousness will likely cause reactive spraying to fail in controlling an 

epidemic. The best strategy for preventing an epidemic may be limiting exposure by practicing 

avoidance behavior: susceptible individuals (or those without symptoms) not visiting houses 

with infectious individuals (and likely infectious mosquitoes). We found in Chapter 3, however, 

that this prevention practice was not very common for the social contacts of symptomatic dengue 

cases.  
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 In this dissertation, I found empirical evidence of a coupling between human mobility 

and symptom severity. This coupling, and other heterogeneous factors, were included in a model 

of disease transmission in order to better understand how each factor impacts disease dynamics, 

both individually and in relation to the other heterogeneities. The results emphasized the 

importance of couplings in determining the people and places that drive disease transmission. 

Future Work 

 The results of this research lead to multiple avenues for future exploration. Future studies 

on the mobility changes of caregivers should also be considered. While only 28% of caregivers 

have large enough changes for their work to be affected, there are likely smaller changes in 

mobility that are occurring to accommodate the ill individual. While previous studies have been 

done on caregiving behavior, they focus on the monetary effect of caregiving, rather than the 

effect on daily patterns. Studies on the mobility changes of those living with symptomatically ill 

individuals could provide more robust data to accurately predict the effect of mobility on DENV 

transmission [1-6]. 

Further, given the predicted impacts of symptomatic mobility change on heterogeneous 

DENV transmission (seen in Chapter 4), it is imperative to also examine the possible effects of 

mobility changes by the social network contacts of the ill individuals. In Chapter 4 our model 

assumed the social contacts of a symptomatic individual stop visiting during the illness period. In 

Chapter 3, however, routine visitors continued to visit throughout the individual’s illness. 

Accounting for this could have a large effect on DENV transmission, as susceptible individuals 

could be exposed to the infectious mosquitoes in the ill person’s home. Further, caregiving 

behavior was shown to affect the work of approximately a third of helpers, the vast majority of 
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whom were housemates. This is another mobility behavior that could affect DENV transmission 

and should be further explored.  

 Another important line of research that should be considered is the role of 

presymptomatic and asymptomatic individuals. Approximately 70% of dengue infections are 

characterized by mild or no symptoms [7-9]. Further, DENV viremia reaches levels infectious to 

mosquitoes a few days prior to symptom onset, leading to a pre-symptomatic infectious period 

during which individuals’ routine is not impacted by illness [10, 11]. If individuals with 

presymptomatic or asymptomatic infectiousness act as caregivers/visitors, spending time at the 

home of the symptomatically ill individual and possibly decreasing time at other locations could 

impact their expected onward transmission.  

 Human mobility patterns can be impacted in a variety of ways in the presence of 

symptomatic dengue transmission, all of which have the ability to affect exposure to human-

mosquito contacts and onward DENV transmission. Here, we described the mobility changes of 

the symptomatically ill individual and their social network contacts and examined the possible 

impacts of symptomatic mobility changes. Further research can focus on the impact of social 

network contacts changing their mobility, the importance of “hidden” infectiousness 

(presymptomatic and asymptomatic infection), and the efficacy of reactive vector control in 

order to better understand the complex interaction of symptoms, mobility, and infectiousness. 
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