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Abstract

The role of disease-driven human mobility changes in dengue transmission
By Kathryn L. Schaber

Human mobility plays a central role in shaping pathogen transmission by generating spatial
and/or individual variability in potential pathogen-transmitting contacts. Fine-scale, daily
mobility patterns are of particular importance for viruses spread by Adedes aegypti, a day-biting
mosquito with a limited flight range and a propensity for residential locations. Indeed, house-to-
house human movement has been shown to underlie spatial patterns of dengue incidence. Recent
research has shown, however, that symptomatic infection can influence human mobility and
pathogen transmission dynamics. While the mobility changes of a symptomatic individual and
their social contacts can significantly influence the spread of directly transmitted pathogens, they
have not yet been included in theoretical models of dengue virus (DENV) transmission. This
dissertation aims to determine the importance of dynamic human mobility patterns for human-
mosquito contact networks that lead to DENV transmission heterogeneity. Data were analyzed
on the mobility of symptomatic dengue cases and their social contacts, then the impact of these
disease-driven mobility changes on human-mosquito contacts and onward DENV transmission
was determined. I found that presence and magnitude of mobility change depended on the day of
illness and the individual’s sense of well-being, with the largest decrease in mobility occurring
on the first three days of symptoms when infectiousness is peaking. Almost all symptomatic
individuals received help from their housemates throughout illness and continued to receive
visits from their ‘routine visitors’, most of whom were aware of the illness. Those who did help
symptomatic individuals only made mobility changes drastic enough to affect their work in 28%
of cases. When accounting for symptomatic mobility change, there were significant changes in
the number of expected mosquito bites an infectious individual received, the location the bites
occurred, and the individual’s predicted onward transmission. I also found that the role of biting
suitability in determining an individual’s onward transmission can be dependent on the density
of mosquitoes in the individual’s home. Broadly, these results display a variety of ways
symptomatic dengue illness can impact human mobility patterns, further affecting an individual’s
exposure to human-mosquito contacts and their overall contribution to DENV transmission.
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Chapter 1: Introduction

The force of infection, or the rate at which individuals get infected with a pathogen, for a
vector-borne disease is composed of three terms: probability of contact between a susceptible
individual and a mosquito, probability that the mosquito is infected with the pathogen,
probability that contact between the susceptible human and infected mosquito results in
successful transmission [1]. Each of these rates/probabilities can vary between individuals or
locations, causing transmission heterogeneity, where certain individuals or locations contribute
disproportionately to pathogen transmission and epidemic spread [2-4]. Traditionally for vector-
borne diseases, mosquito movement and spatial variation of mosquito densities are the primary
factors that cause differing probabilities of human-mosquito contact, thereby generating spatial

transmission heterogeneity [5].

Human movement, social contacts, and vector-borne disease

These spatial factors of mosquitoes can be outweighed, however, when human mobility
occurs at a broader spatial scale. Human mobility can drive transmission across multiple spatial
and temporal scales, shaping the structure of transmission networks and influencing
epidemiologic processes such as pathogen introduction, epidemic transmission, and endemic
persistence [6-10]. While fine scale (daily, intra-urban) human mobility patterns may not have an
effect for pathogens spread by widely dispersed vectors with large movement ranges, it has been
shown to play an important role with vectors such as Aedes aegypti, a day-biting mosquito that

has a limited flight range (<100m) and a propensity for the indoors [11].



Daily human movement plays a more significant role in transmission of Aedes aegypti’s
pathogens, because it works on a broader scale, dispersing virus into multiple locations where
mosquitos are present and able to bite susceptible individuals. Spatially, mosquito densities vary
between households and an individual’s daily movement patterns determine the number of
mosquitoes contacted per day. Within a population, susceptible individuals will have different
routine movements, contact different numbers of mosquitoes, and have varying probabilities of
contacting an infected mosquito. While mosquitoes can be present at any/all locations an
individual routinely visits, studies have shown that residential areas have a higher prevalence of
Aedes aegypti mosquitoes and are the primary locations of human-mosquito exposure [12, 13].

Routine movements between households are likely to be shaped by social connections
between individuals in the population, where two people with a strong connection will likely
visit each other’s houses frequently. Therefore, routine movement can cause two individuals with
strong social ties to have frequent, daytime contact with the same mosquitoes in a location where
human-mosquito exposure occurs [12]. Consequently, a susceptible individual’s probability of
contacting an infected mosquito will vary depending on the infection status and social tie
strength of individuals in their contact network. Conversely, an infected individual’s contribution
to transmission can be influenced by not only how many bites they receive, but also which
vectors the bites are from and whom those vectors encounter next [16].

The presence of symptomatic infection may, however, influence routine mobility
patterns, in turn influencing onward virus transmission and the structure of transmission chains.
Research on directly transmitted diseases has demonstrated disease-driven behavior changes
(namely isolation, avoidance, and caregiving) [14] and the significant influence they can have on

predictions of pathogen spread [15-18]. The effects of these behavioral changes on transmission



should also be considered for certain vector-borne diseases, particularly those spread by Aedes
aegypti, or a similar vector. The impact of movement changes on an individual’s mosquito
contacts and onward transmission will likely depend on the distribution of mosquitoes at their
home and across the rest of their activity space (routinely visited locations) [8, 19, 20]. Ata
population level, human mobility changes could affect pathogen spread in a variety of ways
depending upon which individuals in the population experience symptoms and change their
mobility and potential exposure to Aedes aegypti mosquitoes. One Aedes-borne illness where
human movements have been shown as key to explaining transmission dynamics is dengue [21-

25].

Dengue as a study system

Dengue is the most important mosquito-borne viral disease of humans worldwide,
affecting approximately 390 million people a year and endemic in over 100 countries [26].
Prevalent in the tropics and subtropics, the acute illness is caused by any of four
immunologically related viruses in the family Flaviviridae and is transmitted by Aedes spp.
mosquitoes (primarily Aedes aegypti). Symptoms associated with dengue (acute fever, headache,
musculoskeletal pain, and rash) occur in a small proportion of cases, while the other 70% of
cases experience either very mild symptoms (inapparent) or no symptoms (asymptomatic) [27-
29]. For those individuals who are infected with dengue virus (DENV) and experience
symptoms, infectiousness tends to peak during the first few days after onset of symptoms and
lasts for 4-5 days [30-32]. There are, however, a few days before symptom onset when

individuals have sufficient viremia levels to be infectious [30, 32].



House-to-house human movement has been shown to significantly influence DENV
transmission [33-35], with an individual’s risk of DENV infection significantly increasing when
he or she routinely visited the same residential locations as DENV-infected people [34]. Further,
when mobility-driven contact structure has been included in theoretical models, the effect on
DENV epidemic transmission is dramatic. Overlapping movement patterns within social groups
drive the fine-scale heterogeneity in DENV transmission rates [33].

Furthermore, variations in movement patterns occur during a dengue epidemic, with
symptomatically DENV-infected individuals visiting fewer houses and staying at home more [3,
36, 37]. This variation in mobility has not yet been taken into account for theoretical DENV
models; however, it will likely impact human-mosquito contacts and onward transmission. There
may not be population-level effects on epidemic size and length, given the prevalence of
asymptomatic infections, which are not associated with mobility reduction. The pattern of
transmission may be affected by asymptomatic (and susceptible) individuals changing their
movement patterns to act as caregivers for their symptomatic social contacts. It is necessary to
account for these socially structured mobility changes in dengue transmission in order to better
understand the impact on human-mosquito contacts and transmission heterogeneity. Inclusion of
dynamic mobility also elucidates the important role asymptomatically and pre-symptomatically

infected individuals may have in maintaining onward DENV transmission.

Study Area
A unique location to study the role of human mobility on DENV transmission is the Amazon city
of Iquitos, Peru. Iquitos is a geographically isolated, tropical urban environment with

approximately 430,000 inhabitants located along the margin of the Amazon River [38]. The



city’s economic structure is highly informal and dynamic, with one-third of economically active
individuals either unemployed or informally employed [39]. Iquitos has been the home of
extensive, long-term arboviral research led by the University of California, Davis and U.S. Naval
Medical Research Unit 6 since 1999 [8, 29, 34, 35, 40-42]. Extensive human mobility studies
paired with detailed epidemiological data have made Iquitos an informative site for
understanding the dynamics of arbovirus transmission. All four serotypes of DENV have been
introduced in Iquitos; however, at any particular time virus transmission is usually dominated by
a single serotype [29, 43]. Previous research [35] demonstrated that inhabitants visit an average
of 5.8 (£3.6 SD) locations over a two-week period. While most movement (~80%) occurs within
1 km of their home, inhabitants have highly irregular and temporally unstructured routines that

are not dominated by a single location, such as a workplace [35].

Dissertation Summary

In this dissertation, I aim to determine the importance of dynamic human mobility
patterns on human-mosquito contact networks that lead to DENV transmission heterogeneity. I
will accomplish this by analyzing detailed data on the mobility of symptomatic dengue cases and
their social contacts, then determining the impact of these changes on both human-mosquito
contacts and onward DENV transmission using a mathematical framework that accounts for
house-to-house movement and stochastic DENV transmission.

I hypothesize that the dynamic human movement patterns of symptomatic individuals
will drastically reduce the overall connectedness of the DENV transmission network; however,
increased contact of symptomatic cases with caregivers and the sustained mobility of pre-

symptomatic and asymptomatic hosts will continue to drive onward DENV transmission.
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Chapter 2: Dengue illness impacts daily human mobility patterns in
Iquitos, Peru

Reprinted from: Schaber KL, Paz-Soldan VA, Morrison AC, Elson WHD, Rothman AL,
Mores CN, et al. Dengue illness impacts daily human mobility patterns in Iquitos, Peru.
PLoS neglected tropical diseases. 2019;13(9):e0007756.

Introduction

Human mobility plays a central role in shaping the structure of transmission networks
and in influencing epidemiologic processes such as pathogen introduction, epidemic
transmission, and endemic persistence [1-4]. While human mobility can drive transmission
across multiple spatial and temporal scales [3, 5], it is at the finest scales (daily, intra-urban
human movements) where epidemic processes occur and emergency public health interventions
are usually implemented. Evidence from theoretical models and empirical studies show that
individual and/or spatial variability in number and frequency of contacts can lead to transmission
heterogeneity, where certain individuals or locations contribute disproportionately to pathogen
transmission and epidemic spread [6-8]. Thus, identifying social and behavioral characteristics
(e.g., mobility patterns, occupations, age classes) most responsible for such disproportionate
contributions has become a public health priority, with significant potential for leveraging the
power of public health surveillance programs and targeted disease control [9-11].

Dengue, an acute illness caused by four immunologically related viruses in the family
Flaviviridae and transmitted by Aedes spp. mosquitoes (primarily Aedes aegypti), is the most
important mosquito-borne viral disease of humans worldwide [12]. Because dedes aegypti
seldom disperse beyond 100 meters, have a propensity for resting and biting inside residential
buildings, and bite during the day [13-16], human movements are key to explaining the urban

transmission dynamics of dengue virus (DENV) [17-21]. Individual movement patterns can also
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expand the spatial scale of transmission and lead to significant heterogeneity in transmission
patterns by connecting otherwise discrete subpopulations of mosquitoes [3, 22, 23]. Extensive
movement studies performed in the upper Amazon city of Iquitos, Peru, have shown that while
human mobility within a resource-poor urban center is highly unstructured (with only 38% of
participants having regular mobility routines), the majority of locations visited are either
residential or commercial, with most movements (81%) occurring within 1 km of an individual’s
home [24-28]. Moreover, an individual’s risk of DENV infection significantly increased when he
or she routinely visited the same residential locations as DENV-infected people, whereas the
distance the individual lived from a DENV-infected case was not significant [26].

Such empirical characterizations of fine-scale human mobility patterns and risk of DENV
infection have informed complex simulation models that explore the theoretical role of human
movement on the spatial and temporal patterns of disease dynamics [18, 23, 29]. When mobility-
driven contact structure is included in theoretical models, the effect on DENV epidemic
transmission is dramatic. Overlapping movement patterns within social groups drive the fine-
scale heterogeneity in DENV transmission rates; however, the presence of a mosquito vector can
hide the effect of socially structured movements if only spatially aggregated infection dynamics
are considered [23]. Such models do not take into account the fact that symptomatic infection
may influence mobility, which in turn can influence onward virus transmission and the structure
of transmission chains. Research on directly transmitted diseases has demonstrated disease-
driven behavior changes [30] and the significant influence they can have on predictions of
pathogen spread [31-34]. For DENV, mobility data have been captured for febrile symptomatic
individuals and healthy individuals using either retrospective movement surveys [35] or GPS

trackers [36]. Febrile DENV-infected individuals visited significantly fewer places, traveled
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shorter distances, and spent more time at home [35, 36]. These patterns reveal particularly
important information for understanding the complex relationship between symptom severity and
human mobility, and to ultimately determine if there is an association between human mobility
and infectiousness to mosquitoes. However, because DENYV infectiousness peaks at 0-2 days
after onset of symptoms and lasts for 4-5 days after onset of symptoms [37-39], human mobility
during the first few days of symptoms could be key to better understand transmission dynamics.
The goal of this study, therefore, was to conduct detailed, daily retrospective interviews to
measure the mobility behavior of clinically apparent DENV-infected individuals throughout their
illness, with the goal of generating mobility metrics that can be used to characterize the absolute

and relative impacts of disease on potential exposure to Aedes aegypti mosquitoes.

Methods

Study Area

This study was performed in the Amazon city of Iquitos, Peru. Iquitos is a geographically
isolated, tropical urban environment with approximately 430,000 inhabitants located along the
margin of the Amazon River [40]. The city’s economic structure is highly informal and dynamic,
with one-third of economically active individuals either unemployed or informally employed
[41]. Iquitos has been the home of extensive, long-term arboviral research led by the University
of California, Davis and U.S. Naval Medical Research Unit 6 since 1999 [3, 24-28, 42].
Extensive human mobility studies paired with detailed epidemiological data have made Iquitos
an informative site for understanding the dynamics of arbovirus transmission. All four serotypes
of DENV have been introduced in Iquitos; however, at any particular time virus transmission is

usually dominated by a single serotype [42, 43]. Previous research [27] demonstrated that
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inhabitants visit an average of 5.8 (+3.6 SD) locations over a two-week period. While most
movement (~80%) occurs within 1 km of their home, inhabitants have highly irregular and
temporally unstructured routines that are not dominated by a single location, such as a workplace
[27].

Study Design

The study followed a contact-cluster design in which reverse transcription polymerase
chain reaction (RT-PCR) positive, or viral nucleic acid test positive, DENV-infected individuals
(index cases) were captured through community or clinic-based febrile surveillance systems, as
described previously [26]. At the time of the initial blood sample, a 15-day retrospective semi-
structured movement survey (RMS) was administered to the index case to identify the locations
they visited in the 15 days prior to diagnosis (characterizing the “pre-illness” period). Consenting
individuals (contacts) from the index cases’ home and residential locations visited by the index
case were then screened for DENV infection using RT-PCR [26] [44]. The RMS was
administered to DENV PCR-positive contacts to quantify mobility behavior associated with
potential virus exposure.

RMSs were developed based on findings of focus groups and validated by comparison
with data from people wearing GPS tracking devices [24, 25]. RMSs capture positional,
temporal and behavioral information of routine human mobility. Questions focus on the amount
of time an individual spent at home, the visitors they received, and the places they visited. For
time spent at home, individuals were asked about the average number of hours spent at home
each day of the week, specifically focusing on the period from 5 a.m. to 10 p.m., which includes
the peak landing and biting times for Aedes aegypti [45]. For places visited, information was

collected on the type of place visited, when, for how long, and how often in the 15-day period.
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Trained, local Iquitos residents (the ‘Movement Team”) verbally administered electronic RMSs
and recorded the information on tablets in the CommCare application [46].

To track movements of DENV positive participants during their illness, daily interviews
using a modified daily RMS (DRMS) were conducted in person or by telephone for 7 days
following the initial RT-PCR-positive blood test. Where participants were not available for daily
interviews, information about movements on several days was collected at a single interview.
The DRMS asks about the amount of time spent at home the previous day(s) and the following
information about each place visited during the previous day(s): day visited, place type, location,
time of day visited, and time spent. For residential places visited, the DRMS asks whom they
were visiting, their reason for visiting, if anyone in the home was ill during the preceding 15
days, and (for routinely visited houses) if/why there was any change in the time of visitation, as
compared to the “pre-illness” period. During this seven-day period, DENV positive individuals
were also administered two Quality of Well-Being surveys (QWB) by the Movement Team, one
2-3 days and one 7 days after the initial PCR-positive blood test. The QWB survey is a validated
instrument used to measure an individual’s quality of life during chronic illness [47]. Our study
was a novel application of the QWB survey to an acute illness. The survey responses were sent
to the developers at University of California, San Diego, who used a weighted algorithm to
produce one well-being score between 0.0 (death) and 1.0 (asymptomatic and fully-functioning)
covering the three days prior to each survey date [47].

At a follow-up visit scheduled 30 days after the initial PCR-positive blood test,
individuals were given a 15-day (“post-illness”’) RMS and QWB survey in an effort to record
their “baseline” mobility behavior and well-being in the absence of illness.

Data Processing
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For each study participant, the following variables were computed from the “pre-illness”
and “post-illness” 15-day RMS: (1) total number of locations visited, (2) proportion of visits to
each location type, (3) total number of houses visited, (4) proportion of visits to houses of family
members vs. houses of friends, and (5) average proportion of time spent at home per day.
Equivalent daily values of these variables were collected for each participant from the DRMSs.
Rather than referring to values as occurring on a certain number of days after the PCR-positive
blood test, a standardized “day after symptom onset” variable was calculated. Because blood
tests were not done on the same day of illness for all participants, DRMSs captured a range of 1-
15 days after symptom onset. We focused our analysis on days 1-9 after symptom onset; few
individuals had data for days 10-15 after symptom onset.

Data Analysis

Analysis of mobility data had two main objectives: (1) comparing healthy (pre- and post-
illness) mobility to mobility during illness, and (2) determining if mobility patterns changed
during the 9 days after symptom onset.

For the first objective, mobility during illness was calculated by averaging a participant’s
DRMS for all available time points up to day 9 after symptom onset. Comparisons were done for
the following mobility metrics: daily number of locations visited, daily number of houses visited,
and proportion of time spent at home. When a metric followed a normal distribution (assessed
via the Shapiro-Wilk test), pairwise comparisons were performed with paired t-tests followed by
Holm-Bonferroni corrections. When the variable was not normally distributed, the non-
parametric Kruskall-Wallis Rank Sum Test and pairwise Wilcoxon Signed Rank Test for paired
data were utilized. As many individuals would stop visiting other locations during their illness

period [35], we also analyzed the number of locations, number of houses, and time at home as



16

binary variables, asking if any locations/houses were visited and if any time was spent away
from home. These binary outcomes were compared between all possible pairs of time points
(pre-during, during-post, and pre-post illness) using McNemar’s  test.

If locations were visited, further analyses determined what type of locations they were.
While these data were subject-correlated across time points, they could not be analyzed as paired
data because not all participants visited locations at every time point. Generalized logistic mixed-
effects models (GLMMs) determined the association between the probability of a location type
being visited and the time period being considered (pre-during-post illness), while accounting for
repeated measures by using participant ID as the random intercept. Location type was separated
into four groups: (1) house, (2) health, (3) education/work, and (4) other (e.g., recreation, church,
market, port). Similarly, logistic GLMMs determined the association between time period (pre-
during-post symptoms) and the probability of a specific house type being visited (e.g., family
versus friend).

For the second objective, aiming to determine whether mobility patterns changed during
the illness period, we calculated mobility metrics for 3-day groups (days 1-3, 4-6, and 7-9 after
onset of symptoms). Daily data were aggregated into 3-day groups to allow for robust analyses,
while also controlling for the dearth of data points on certain days. In particular, the first two
days after symptom onset had incomplete information for some participants due to the time
required to capture individuals with symptoms, run RT-PCR tests, and obtain confirmed test
results. To make pre/post and during-illness data comparable, 15-day RMS values were
condensed to give movements over an average 3-day period. Analysis of the number of
locations/houses, proportion of location/house types, and time spent at home followed the same

steps described above. Comparisons were made between the 3-day groups to determine whether
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significant changes occur in movement patterns during illness. Further, movements within the 3-
day groups were each compared to post-illness mobility.

The associations between daily (DRMS) mobility patterns and possible predictor
variables were examined using Generalized Linear Mixed Models (GLMMs), Generalized
Additive Mixed Models (GAMMs), and Generalized Additive Models for Location Scale and
Shape (GAMLSSs) [48-50]. Best-fit models were determined for each of the following mobility
outcomes: total number of locations visited (count variable), relative number of locations visited
(compared to when healthy) (continuous variable), total number of houses visited (count),
relative number of houses visited (continuous), total proportion of time spent time at home
(continuous), and relative amount of time spent at home (continuous). For both the total number
of locations visited and total number of houses visited, GLMMs and GAMMSs with underlying
Poisson distributions were compared. An individual’s age, occupation, gender, QWB score, and
the “day after symptom onset” were considered as predictor variables, with the best-fit model
determined using an AIC and a Chi-square test comparing reduction in residual deviance. The
response variable proportion of time spent at home was best characterized by a one-inflated beta
distribution, so analysis was done with GAMLSS, as detailed below.

Although GLMM and GAMM regressions model the mean (i) value of the distribution
of the response variable, GAMLSS allows other distribution parameters to be modeled as a
function of explanatory variables. A one-inflated beta distribution has possible values 0<y<I and
is defined in two parts: the probability that y=1 (modeled by the n parameter) and the probability
for 0<y<1, which is shaped by a traditional beta distribution with parameters mean (i) and shape

(o). Here, the | parameter was the probability an individual stayed at home 100% of the time
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(y=1). If an individual did not stay at home the entire day, the proportion of time that was spent
at home (0<y<1) was determined by a beta distribution with p and o.

We also considered response variables as relative values in order to control for the
individual variation in mobility levels. The number of locations (houses) an individual visited on
each day during illness was considered relative to the average number of locations (houses) they
visited pre-illness. Similarly, the number of hours a participant spent at home during each day of
illness was compared to the average number of hours that individual spent at home pre-illness.
While relative number of houses could not be well explained by a set distribution, both relative
number of locations visited and relative amount of time spent at home were best characterized by
the logistic distribution. Analysis of these response variables was done with GAMLSS, where
both the mean () and the standard deviation (o) parameters of the logistic distribution could be
modeled as a function of explanatory variables. Best-fit GAMLSS models were chosen using
forward and backward selection for each of the explanatory variables. All statistical analyses
were performed in R 3.3.0 statistical computing software [48-51].

Ethics Statement

The procedures for enrollment of participants, dengue diagnosis, semi-structured
interviews, and participant follow-up were approved by the Institutional Review Board (IRB) of
the United States Naval Medical Research Center Unit No. 6 (NAMRU-6)
(NAMRU6.2014.0021) in compliance with all applicable federal regulations governing the
protection of human subjects. IRB relying agreements were established between NAMRU-6 and
Emory University, Tulane University, University of California Davis, University of Rhode
Island, San Diego State University, and University of Notre Dame. In addition to IRB approval,

investigators obtained host country approval from the Loreto Regional Health Department,
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which oversees health research in Iquitos. Adult study participants provided written informed

consent and a parent or guardian provided informed consent on behalf of child study participants.

Results

Detailed mobility data were collected from a total of 62 DENV+ participants.
Descriptions of participant demographics and data completeness appear in the Supplemental
Text (Text S2.1). The most commonly reported symptoms were general malaise (100%),
weakness (96.61%), fever (93.22%), headache (91.53%), anorexia (89.83%), and
musculoskeletal pain (84.75%). During days 1-9 post-onset of symptoms, the average maximum
malaise intensity of participants was 7.5 on a scale of 10 (range: 0-10), as compared to a mean
intensity of 0.28 out of 10 (range: 0-6) during the post-illness time period. While all participants
reported some level of malaise and dengue-related symptoms, the vast majority of participants
(88.7%) received only outpatient care.

For the 34 participants with QWB scores collected at all time points (2-3 days post blood
test, a week post blood test, and post-illness), scores were considered in terms of “days after
symptom onset”. The mean QWB score of those reported in the nine days after symptom onset
was 0.61 (range: 0.25-1.0). The median QWB score was less than 0.70 all nine days after
symptom onset; however, a few individuals had scores of 1.0 (“asymptomatic”) as early as day 4.
While the DRMS may have captured mobility on days when individuals were asymptomatic, the
vast majority of individuals retained symptoms throughout the nine days after symptom onset
(Figure S2.3). Therefore, that period will be referred to as “during illness” in the remaining

sections.
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The mean QWB score at the post-illness time point was 0.88 (range: 0.48-1.0, median
1.0). While the post-illness survey may contain data from a few individuals who were still
symptomatic, in general we considered it a suitable approximation of healthy mobility. Another
proxy for healthy mobility, the “pre-illness” RMS, may have also captured some symptomatic
movements because the 15-day retrospective survey could not be given until DENV cases were
captured a median of 3 days after symptom onset.

Healthy vs. Symptomatic Mobility Patterns

When comparing healthy (pre-/post-illness) and symptomatic time points, there was a
significant difference in both the proportion of time spent at home and the average number of
locations visited (Figure 2.1A-2.1B). Healthy participants spent 60% of their time at home and
visited an average of 1.3/1.1 (pre-/post-illness) locations per day, whereas ill participants spent
74% of their time at home (Wilcoxon test: p <0.001) and visited an average of 0.73 locations
(Wilcoxon test: pre-illness: p < 0.001; post-illness: p=0.010) (Table S2.2). Participants were also
significantly less likely to visit other houses during illness, as compared to pre-illness
(McNemar’s y%: p < 0.001) and post-illness (McNemar’s ¥*: p = 0.043) (Table S2.3).

The odds (adjusted odds ratio/AOR) of an individual visiting an education/work location
during healthy time points (AOR pre-/post-illness: 2.0/4.4) were significantly greater than during
illness (GLMM: p < 0.001; Table 2.1, Figure 2.2). Similar significant differences were seen for
visits to “other” place types (GLMM: p<0.001; Table 2.1, Figure 2.2). Conversely, the odds of
participants going to a health-related place pre- or post-illness were significantly lower than
during illness (AOR: pre-/post-illness: 0.019/0.002; Table 2.1, Figure 2.2). Although individuals
were more likely to visit a house during the pre-illness time period as compared to during illness

(AOR: 1.684; GLMM: p=0.013), there was no significant difference for post-illness (AOR:
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0.872; GLMM: p=0.64), where individuals were predicted to visit houses with a mean
probability of 21% (Table 2.1, Table S2.4).
Mobility Patterns During Illness

During days 1-3 and 4-6 after symptom onset, individuals were significantly more likely
to spend all of their time at home, compared to both days 7-9 after symptom onset (McNemar’s
¥>: p = 0.046) and post-illness (McNemar’s y%: days 1-3: p = 0.008; days 4-6: p = 0.008) (Table
S2.6). There was also a significant difference in the average proportion of time spent for days 1-3
and 4-6 (76%) when compared to both days 7-9 (69%) (Wilcoxon test: days 1-3: p = 0.014; days
4-6: p = 0.008) and post-illness (59%) (Wilcoxon test: days 1-3: p = 0.005; days 4-6: p < 0.001;
Figure 2.3B, Table S2.5). Individuals were significantly less likely to visit any locations during
illness compared to post-illness (McNemar’s y*: days 1-3: p = 0.001; days 4-6: p < 0.001; days 7-
9: p =0.008; Table S2.6). Accordingly, the average number of locations visited was
significantly lower on days 1-3 (paired t-test: p = 0.017) and 4-6 after symptom onset (paired t-
test: p < 0.001) when compared to the mean 3.4 places visited every 3 days at post-illness
(Figure 2.3A). The average number of locations visited on days 1-3 (1.5 places/3-days) was also
significantly less than the average number of locations visited on days 7-9 after symptom onset
(2.2 places/3-days) (Wilcoxon test: p = 0.047; Table S2.5).

When considering the type of location visited (Figure 2.4), the three during-illness time
points (days 1-3/4-6/7-9) were compared to the post-illness period. Post-illness, the participants
were predicted to visit education/work places with a 48% probability, “other” places with a 32%
probability, houses with a 20% probability, and health-related places with only a 0.2%
probability (Table S2.7). Compared to post-illness, the odds of an individual visiting an

education/work place were significantly lower for days 1-3 (AOR: 0.08), days 4-6 (AOR: 0.22),
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and days 7-9 after symptom onset (AOR: 0.26) (GLMM: p< 0.001; Table 2.2). Conversely, the
odds of visiting a health-related place during illness were significantly higher compared to post-
illness (AOR: days 1-3: 3826; days 4-6: 1041; days 7-9: 365), likely due to the very low
probability of a health-related location being visited post-illness when healthy (GLMM: p <
0.001). The likelihood of visiting a house during illness was not significantly different than the
likelihood post-illness (AOR: days 1-3: 1.08; days 4-6: 1.20; days 7-9: 1.64; GLMM: p > 0.05).
There were also no significant correlations between the illness time point and the odds of visiting
a family member’s (versus friend’s) house (Table 2.2, Table S2.7).
Daily Mobility Patterns During Symptomatic Illness

The best-fitting model to describe the relative number of locations visited was a
GAMLSS with a logistic distribution. The p parameter (mean) was best explained by a positive
effect of day after symptom onset (p < 0.001) and a random intercept for participants, which
allowed the mean relative number of locations to vary by participant. The ¢ parameter (standard
deviation) was best explained by QWB score (p < 0.001), day after symptom onset (p < 0.001),
and an interaction between the two (p < 0.001) (Table 2.3). For relative amount of time spent at
home, the best-fit model was a GAMLSS with underlying logistic distribution, where the p
parameter was best explained by a negative effect of day (p = 0.0011) and a random intercept for
participants. The ¢ parameter was best explained by a positive effect of day after symptom onset
(p <0.001) (Table 2.4).

With proportion of time spent at home as the response variable, the best-fit model
explains the n parameter as a function of age (<18 or >18) (p = 0.005) and an interaction
between age and day after symptom onset (p = 0.018). The p parameter was explained by a

random slope of participants over time and the ¢ parameter was explained by the QWB score and
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a smoothed function of the day of illness (Table 2.5). This suggests that whether an individual
spent all (100%) of their time at home was dependent on both their age and the day of illness,
whereas the proportion of time spent at home (when less than 100%) depended on the day of
illness (p = 0.005) and how they were feeling (QWB score) (p = 0.094; Table 2.5). While the
day of illness did not have an overall effect on the mean proportion of time spent at home (when
less than 100%), the random slope for participants suggests that day of illness had a varying

effect across participants.

Discussion

We found that dengue illness affects almost all aspects of an individual’s mobility
behavior. During mild symptomatic illness, individuals visited significantly fewer locations and
houses and spent significantly more time at home. Further, symptomatic participants visited
education/work and “other” locations less often than when they were healthy and visited health
locations more often. These results (1) are consistent with and expand prior evidence indicating
that individuals with symptomatic illness move less than healthy individuals [31, 35, 52]; (2)
refine estimates of the effects of mild symptomatic dengue illness on movement by quantifying
changes before, during and after the symptomatic phase of infection; and (3) suggest the need to
better account for disease-driven mobility behavior changes in DENV transmission models [31,
53].

The most dramatic changes in mobility occurred during the first 3 days after symptom
onset, when significantly fewer locations were visited and significantly more time was spent at
home. During days 4-6 and 7-9 after symptom onset, the number of locations visited increased

and the proportion of time spent at home decreased. By days 7-9 after symptom onset, the
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number of locations visited and the time spent at home were no longer significantly different
from healthy behaviors. This reduction in mobility during illness, particularly on days 1-3 after
symptom onset, could affect an individual’s contribution to onwards DENV transmission. For
DENYV, viremia reaches levels infectious to mosquitoes a few days prior to symptom onset and
peaks at 0-2 days after symptom onset, with titers then lowering by days 4-5 (although some
individuals are still capable of infecting mosquitoes) (37-39). During peak infectiousness, most
individuals are spending more time at home and visiting fewer places, thereby reducing the
number of distinct Aedes aegypti mosquitoes with whom potential virus-spreading contacts
occur. This may allow those few individuals who do not alter their movements to have a more
significant role in pathogen transmission during peak infectiousness. During the pre-
symptomatic period, however, almost all individuals have high mobility and a viremia level
sufficient for virus transmission to mosquitoes [38]. Recent theoretical models of within-host
viral dynamics for symptomatic individuals estimate that 24% of onward transmission results
from mosquitoes biting during the pre-symptomatic period [54]. When also accounting for
mobility changes throughout viremia, many individuals may have their greatest contribution to
transmission be during the pre-symptomatic stage. Ten Bosch et. al. also estimated that
asymptomatic individuals had only 80% the net infectiousness of symptomatic individuals [54].
This reduction in net infectiousness may be counteracted by the hypothetically unaltered
mobility patterns exhibited by asymptomatic (and minimally symptomatic) individuals, further
increasing the overall contribution of silent transmission. Such potential dynamics emerging
from the coupling between individual infectiousness, movement, and disease severity deserve
further investigation [55], because they may help explain the explosive nature of DENV

outbreaks and the limitations of vector control in containing virus transmission.
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Throughout an individual’s illness period, we found that day of illness and the
participant’s subjective sense of well-being (QWB score) were significant predictors for the
relative number of locations visited, as compared to pre-illness. When considering the proportion
of time spent at home, an individual’s age and their day of illness were significant in predicting
whether they chose to stay at home 100% of the day or not, with children being more likely to
stay home all day compared to adults. When an individual chose to spend some amount of time
outside their house, the day of illness and the QWB score significantly predicted the proportion
of time. Further, the relative amount of time participants spent at home compared to pre-illness
was also significantly predicted by the day of illness. Individuals with more severe symptoms
and those at the beginning of their illness were more likely to be spending more time at home
(both absolute proportion of time and amount of time relative to pre-illness values). Further,
when compared to pre-illness, individuals at the beginning of their illness have lower values of
relatively visited locations compared to toward the end of illness.

One limitation of our study is the reliance on participant recall, which can be subject to
recall bias. However, the retrospective semi-structured interview we utilized was previously
tested in Iquitos and was found to obtain superior data on activity space, as compared to
wearable GPS data-loggers [24]. Further, in the DRMS participants only needed to recall
movements over the past 24 hours, making bias less likely. Our study also faced limitations with
the number of participants and the ability to measure movement on the first two days after
symptom onset. Nevertheless, our study is one of the first to collect human mobility data at a
daily scale during symptomatic infection. Future studies could build on our study by collecting

detailed mobility data from more individuals with a wider spectrum of symptom severity,
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including across a wider range of diseases. Future studies should also seek to make coupled
measurements of an individual’s infectiousness throughout the course of mobility data collection.
Human mobility patterns have played an important role in recent vector-borne disease
transmission models [56]. There is, however, an increasing need to include differing mobility
patterns when modeling individuals that are ill versus healthy. We demonstrate that individuals
with dengue spend significantly more time at home, particularly during the first days after
symptom onset when they are most infectious, potentially limiting contact with Ae. aegypti
outside their home. When looking at the locations being visited during illness, however, the
proportion of houses was consistent throughout and remained similar to the post-illness level.
This may be of particular importance for onward transmission given the propensity for Ae.
aegypti to bite inside houses [13, 14, 57]. The abundance of mosquitoes in both an individual’s
home and the houses/locations they visit when infectious will likely determine the effect that
reduced mobility has on their overall contribution to DENV transmission. Reduction in mobility
patterns when symptomatic could also affect the amount of overlap a social group has in the
places they frequent. Given the significant role of socially structured human mobility in
determining fine-scale DENV transmission rates [23], accounting for the dynamic nature of
social contacts during a symptomatic DENV infection could allow for more accurate modeling

of disease transmission and the design of more efficient disease prevention strategies.
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Table 2.1: Adjusted Odds Ratios (and 95% Confidence Intervals) for location type
throughout illness, derived from logistic GLMMs.

Pre-Illness (Day 0)

Post-Illness (Day 30)

Education/Work 1.884 (CI: 1.317-2.725) *** 4.429 (CI: 2.964-6.695) ***
Health 0.019 (CI: 0.009-0.037) *** 0.002 (CI: 0.001-0.008) ***
Other 2.144 (CI: 1.496-3.110) *** 1.660 (CI: 1.109-2.508) *
House 1.684 (CI: 1.110-2.585) * 0.872 (CI: 0.539-1.419)

Family’s House

0.348 (CI: 0.078-1.360)

0.509 (CI: 0.125-1.855)

Odds Ratios are for pre- and post-illness time periods, compared to the period during illness
(daily interview period) based on logistic GLMMs. For houses, the odds ratios are given for
family member’s houses (vs. friend’s houses). Significant associations between time period and
location visitation are denoted with red asterisks (* p<0.05, ** p<0.01, ***p<0.001).

Table 2.2: Adjusted Odds Ratios (and 95% Confidence Intervals) for location type during
illness, derived from logistic GLMMs.

Days 1-3

Days 4-6

Days 7-9

Education/Work

0.08 (CI: 0.03-0.18)

*kk

0.22 (CI: 0.11-0.43)

*kk

0.26 (CI: 0.14-0.45)

*kk

Health 3826 ( CI: 585-42793) | 1041 (CI: 205-9101) | 365 (CI: 72-3175)
*kk *kk *kk
Other 0.51 (CI: 0.22-1.08) 0.29 (CI: 0.14-0.56) 0.86 (CI: 0.47-1.52)
*kk
House 1.08 (CI: 0.39-2.80) 1.20 (CI: 0.52-2.73) 1.64 (CI: 0.76-3.42)

Family’s House

21.15 (CL: 0.16-
1.48x10%)

1.48 (CI: 0.22-12.35)

0.97 (CI: 0.15-6.40)

Odds ratios are for days 1-3, 4-6, and 7-9 after symptom onset, as compared to the post-illness
time period, based on logistic GLMMs. For houses, the odds ratios are given for family
member’s houses (vs. friend’s houses). Significant associations between time period and location
visitation are denoted with red asterisks (* p<0.05, ** p<0.01, ***p<0.001).

Table 2.3: Fixed effects of a GAMLSS predicting relative number of locations visited, as
compared to pre-illness.

Parameter Estimate Std. Error z value p-value

n Intercept -1.07 0.023 -46.79 <0.001 ***
n Day 0.063 0.0132 4.81 <0.00] **=*
c Intercept -7.001 0.914 14.85 <0.00] **=*
c Day 1.086 0.157 -2.85 0.001 ***
c QWRB score 7.371 5.07 1.70 0.001 ***
c Day*QWB score | -1.252 -5.56 1.70 0.001 **=*

Each distribution parameter (1, 6) has distinct explanatory variables.
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Table 2.4: Fixed effects of a GAMLSS predicting relative amount of time spent at home, as
compared to pre-illness.

Parameter Estimate Std. Error z value p-value

n Intercept 4.974 0.385 1291 <0.001 **=*
n Day -0.295 0.088 -3.37 0.0011 **
c Intercept -0.133 0.164 -0.81 0.421

c Day 0.107 0.029 3.69 <0.00] ***

Each distribution parameter (1, 6) has distinct explanatory variables.

Table 2.5: Fixed effects of a GAMLSS predicting proportion of time spent at home.

Parameter Estimate Std. Error | z value p-value

n Intercept 0.599 1.02e-05 58426 <0.00] **=*
c Intercept 9.147 0.616 14.85 <0.00] **=*
c pb(Day) -0.332 0.116 -2.85 0.006 **

c QWB score 1.754 1.034 1.70 0.094

n Intercept -1.995 0.930 -2.15 0.035 *

n Age: (<18) 2.992 1.044 2.87 0.005 **

1 Day 0.215 0.154 1.40 0.166

n Age: (<18)*Day | -0.425 0.176 -2.42 0.018 *

Each distribution parameter (1, 6, n) has distinct explanatory variables.



Figures

Figure 2.1: Mobility Values Throughout Illness.

(A) Average number of locations visited during each time period (B) Average proportion of time
spent at home during each time period. Significant differences, denoted by letters, were detected

using pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a
family-wise error-rate of 0.05. All significant differences had p-values < 0.01.
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Figure 2.2: Place Types Visited Throughout Illness.

Expressed as the percent of locations being visited of each location type. Other location type
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includes: markets, restaurants, ports, churches, cemeteries, recreational places, internet cafes, and

all else
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Figure 2.3: Mobility Values During Illness (in 3-day intervals).

(A) Average number of locations visited per 3-day period. (B) Average proportion of time spent
at home per 3-day period. Significant differences, denoted by letters, were detected using
pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a family-
wise error-rate of 0.05. All significant differences had p-values < 0.05.
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Figure 2.4: Place Types Visited During Illness (in 3-day intervals).

Expressed as the percent of locations being visited of each location type. Other location type
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includes: markets, restaurants, ports, churches, cemeteries, recreational places, internet cafes, and

all else. The number of participants who visited places is listed above each time point.
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Supplementary materials

Text S2.1: Participant Description.

Detailed mobility data were collected from a total of 62 DENV+ participants. The median
age of participants was 17 years old, with 35 (57%) participants being under 18 years old. Thirty-
nine (63%) participants were students. Other participants were housewives (13%) or worked in
unskilled labor (10%), in construction (6%), as vendors (5%), in healthcare (2%), or as self-
employed (2%). Of the 62 participants, 35 (60%) were male and 27 (40%) were female. DENV
positive participants were administered the pre-illness RMS, a median of 3 days after symptom
onset. Of these 62 participants, 34 completed a post-illness mobility survey a range of 30-127
days after initial PCR+ blood test. Daily mobility data was collected from an average of 40
participants on days 1-9 after symptom onset; however, on days 1, 2, and 9, only 21, 33, and 28
participants, respectively, provided data (Table S1). By merging DRMS results into 3-day
groups, we had data for 46, 54, and 49 participants on days 1-3, 4-6, and 7-9 after symptom

onset, respectively.

Table S2.1: Number of participants with data on each day post-symptom onset. In the
bottom section, the number of participants for each 3-day group is given.

Day post symptom onset | 1 2 | 314 5 |6]|7 8 | 9 | Post-iliness

Number of participants | 21 | 33 | 45 | 51 | 48 | 47 | 45 | 45 | 28 34

with data
|

Day post symptom onset 1-3 4-6 7-9 Post-illness

Number of participants 46 54 49 34

with data




34

Table S2.2: Results of pairwise Wilcoxon Sign Rank tests of paired data for time points
pre-, during, and post-illness. Tests were performed for number of locations visited, number of
houses visited, and proportion of time spent at home, comparing between three time points: pre-,

during, and post-illness. (* p<0.05, ** p<0.01, ***p<0.001).

Outcome Variable | Time point 1 Time point 2 | p-value
Locations visited During lliness (Days 1-9) | Pre-illness <0.001 ***
Locations visited During lllness (Days 1-9) | Post-illness 0.010 *
Locations visited Pre-illness Post-illness 1.000
Houses visited During lliness (Days 1-9) | Pre-illness <0.001 ***
Houses visited During lliness (Days 1-9) | Post-illness 0.093
Houses visited Pre-illness Post-illness 1.000

Time spent at home | During lliness (Days 1-9) | Pre-illness <0.001 ***
Time spent at home | During lliness (Days 1-9) | Post-illness <0.001 ***
Time spent at home | Pre-illness Post-illness 1.000

Table S2.3: Results of McNemar’s 2 test for time points pre-, during, and post-illness. Tests

were performed for number of locations visited, number of houses visited, and proportion of time

spent at home, comparing between three time points: pre-,during, and post-illness. (* p<0.05, **
<0.01, ***p<0.001).

Outcome Variable ITlme point 1 Time point 2 | x? score | p-value
Locations visited During lliness (Days 1-9) | Pre-illness 5.82 0.016 *
Locations visited During lliness (Days 1-9) | Post-illness 3.2 0.074
Locations visited Pre-illness Post-illness 0.5 0.480
Houses visited During lliness (Days 1-9) | Pre-illness 20.35 <0.001 ***
Houses visited During lliness (Days 1-9) | Post-illness 4.08 0.043 *
Houses visited Pre-illness Post-illness 0.1 0.752

Time spent at home | During lliness (Days 1-9) | Pre-illness 5.82 0.016 *
Time spent at home | During lliness (Days 1-9) | Post-illness 3.2 0.074

Time spent at home | Pre-illness Post-illness 0 1
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Table S2.4: Mean predicted probability of a specific location type being visited throughout
illness. Probabilities are predicted for pre-, during, and post-illness time periods, based on
logistic GLMMs. For houses, the probabilities are predicted for visiting family member’s houses

(vs friend’s houses) (Table 2.1).

Pre-illness

Post-illness

During lliness

(Day 0) (Day 30) (Daily)
Education/Work 0.345 0.517 0.243
Health 0.017 0.001 0.316
Other 0.326 0.273 0.255
House 0.304 0.207 0.178

Family’s House 0.55

0.46

0.67




Table S2.5: Results of pairwise Wilcoxon Sign Rank tests of paired data for time points
during illness. Tests were performed for number of locations visited, number of houses visited,
and proportion of time spent at home, comparing between post-illness and three time points
during illness (days 1-3, 4-6, 7-9). (* p<0.05, ** p<0.01, ***p<0.001).

Outcome Variable | Time point 1

Time point 2

p-value

Locations visited Days 1-3 Post-illness 0.0170 *
Locations visited Days 4-6 Post-illness <0.001 ***
Locations visited Days 7-9 Post-illness 0.123
Locations visited Days 1-3 Days 4-6 1.000
Locations visited Days 1-3 Days 7-9 0.047 *
Locations visited Days 4-6 Days 7-9 0.871
Houses visited Days 1-3 Post-illness 0.628
Houses visited Days 4-6 Post-illness 0.148
Houses visited Days 7-9 Post-illness 0.722
Houses visited Days 1-3 Days 4-6 1.000
Houses visited Days 1-3 Days 7-9 0.289
Houses visited Days 4-6 Days 7-9 1.000

Time spent at home | Days 1-3 Post-illness 0.005 **
Time spent at home | Days 4-6 Post-illness <0.001 ***
Time spent at home | Days 7-9 Post-illness 0.308

Time spent at home | Days 1-3 Days 4-6 1.000

Time spent at home | Days 1-3 Days 7-9 0.014 *
Time spent at home | Days 4-6 Days 7-9 0.008 **




Table S2.6: Results of McNemar’s y? test for time points during illness. Tests were
performed for number of locations visited, number of houses visited, and proportion of time
spent at home, comparing between four time points: days 1-3, 4-6, 7-9, and post-illness. (*

<0.05, ** p<0.01, ***p<0.001).

Outcome Variable | Time point1 | Time point 2 | x?score | p-value
Locations visited Days 1-3 Post-illness 10.08 0.001 **
Locations visited Days 4-6 Post-illness 11.08 <0.001 ***
Locations visited Days 7-9 Post-illness 7.11 0.008 **
Locations visited Days 1-3 Days 4-6 0 1.000
Locations visited Days 1-3 Days 7-9 3.06 0.080
Locations visited Days 4-6 Days 7-9 2.08 0.149
Houses visited Days 1-3 Post-illness 2.29 0.131
Houses visited Days 4-6 Post-illness 2.5 0.114
Houses visited Days 7-9 Post-illness 0.44 0.505
Houses visited Days 1-3 Days 4-6 0 1.000
Houses visited Days 1-3 Days 7-9 5.14 0.023 *
Houses visited Days 4-6 Days 7-9 3.2 0.074
Time spent at home | Days 1-3 Post-illness 7.11 0.008 **
Time spent at home | Days 4-6 Post-illness 7.11 0.008 **
Time spent at home | Days 7-9 Post-illness 3.2 0.074
Time spent at home | Days 1-3 Days 4-6 0 1.000
Time spent at home | Days 1-3 Days 7-9 4 0.046 *
Time spent at home | Days 4-6 Days 7-9 2.5 0.114




38

Table S2.7: Mean predicted probability of a specific location type being visited during
illness. Probabilities are predicted for time points during illness and post-illness, based on
logistic GLMMs. For houses, the probabilities are predicted for visiting family member’s houses
(vs friend’s houses) (Table 2).

Days 1-3 Days 4-6 Days 7-9 Post-lliness
(Day 30)
Education/Work 0.165 0.244 0.278 0.479
Health 0.467 0.353 0.177 0.002
Other 0.200 0.208 0.323 0.315
House 0.138 0.175 0.193 0.200
Family’s House 0.71 0.67 0.65 0.46

Table S2.8: Results from likelihood ratio tests between pairs of GLMMs of total number of
locations visited with various explanatory variables. The Chi square test statistic is looking at
the reduction in deviance for each model as compared to GLMM(day). AICs are also provided
for each model. The best-fit model is highlighted in red.

MODEL DF AIC Deviance Chisq Pr(>Chi)
GLMM(day) 3 368 |362.25

GLMM(gqwb_score) 3 372 |365.72 0 1
GLMM(day, qwb_score) |4 369 |360.71 1.55 0.21
GLMM(day*qwb_score) = 370 |360.45 1.81 0.41

Table S2.9: Table comparing additive regression models for total number of locations
visited with various explanatory variables. AIC values, degrees of freedom (DF), and amount
of deviance explained (%) are provided for each model. The best-fit model is highlighted in red.

MODEL DF  AIC Deviance

Explained (%)
GAMM(day) 3 532 [1.26%

GAMM(s(day),s(qwb_score), |7 538 2.65%
tilqwb_score,day))
GAMM(te(qwb_score,day)) |7 538 3.87%




Table S2.10: Fixed effects of the best-fit model for total number of locations visited:
GLMM “Total Locations ~ day”.

Estimate Std. Error tvalue p-value

Intercept -0.898 0.274 -3.28 0.001 **
day 0.077 0.041 1.86 0.063

Table S2.11: Results from likelihood ratio tests between pairs of GLMMs of total number
of houses visited with various explanatory variables. The Chi square test statistic is looking at
the reduction in deviance for each model as compared to GLMM(day). AICs are also provided
for each model. The best-fit model is highlighted in red.

MODEL DF AIC Deviance Chisq Pr{>Chi)
GLMM(day) 3 103 |96.72

GLMM(qwb_score) 3 104 |97.91 0 1
GLMM(day, qwb_score) |4 105 |96.59 0.133 0.715
GLMM(day*qwb_score) 5 105 |94.65 2.067 0.356

Table S2.12: Table comparing additive regression models for total number of houses visited
with various explanatory variables. AIC values, degrees of freedom (DF), and amount of
deviance explained (%) are provided for each model. The best-fit model is highlighted in red.

MODEL DF AIC Deviance
Explained (%)
MODEL DF AlC Deviance
Explained (%)
GAMM (day) 3 841 [1.26%

GAMM(te(qwb_score,day)) |7 853 2.52%

Table S2.13: Fixed effects of the best-fit model for total number of houses visited: GLMM
“Total Houses ~ day”.

Estimate Std. Error z value p-value

Intercept -8.457 2.083 -4.061 <0.001 ***
day 0.171 0.010 1.718 0.086




Figure S2.1: Average Number of Houses Visited Throughout Illness. Expressed as the
average number of houses visited during each time period. Significant differences, denoted by
letter, were found using pairwise paired t-tests with Holm’s correction to account for a family-
wise error-rate of 0.05.
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Figure S2.2: Average Number of Houses Visited During Illness (in 3-day intervals).
Expressed as the average number of locations visited per 3-day period for time point. Significant
differences, denoted by letter, were found using pairwise paired t-tests with Holm’s correction to
account for a family-wise error-rate of 0.05.
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Figure S2.3: Median (interquartile range) QWB-score as a function of day of illness.
Numbers on top indicate number of surveys that included paired movement and QWB data.
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Introduction

Dengue fever, an acute illness caused by four immunologically related viruses, is the
most important mosquito-borne viral disease of humans [1]. Due to the sedentary, day-biting
behavior of the primary vector, Aedes aegypti, and its propensity for residential locations [2-5],
human mobility and visitation patterns to other residential locations shape human-mosquito
contacts and dengue virus (DENV) transmission dynamics [6-11]. Indeed, an individual’s risk of
DENV infection increases when they routinely visited the same residential locations as other
DENV-infected people [12]. Recently, studies have shown that individuals with symptomatic
dengue infection have significant changes in their mobility patterns during illness, spending
more time at home and visiting fewer locations during the first six days of illness [13, 14]. These
disease-driven mobility changes are predicted to lead to a large proportion of primary infectious
bites occurring at the home of an infectious individual, causing an increase in the risk of
acquiring infection for those living in or visiting the residence (as seen in Chapter 4). During the
outbreak of another 4edes-borne disease, chikungunya, the probability of transmission between
household members was 12%, compared to 0.3% for those living more than 50 meters away.
Further, females, who spent significantly more time in or around the home, were 1.5 times more

likely than males to become infected [15].
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Often symptomatic individuals have family members or friends help take care of them
during illness. Estimations of this disease-driven change in social connections have been limited
due to difficulties in obtaining accurate information about household dynamics during illness.
Frequently, partial information about caregiving behavior in response to dengue illness has been
obtained from surveys aimed at quantifying the ‘indirect’ costs of dengue [16, 17]. Specifically,
some studies have separated lost days at work/school for caregivers/housemates [17-21], leading
to rough estimates showing that those caring for dengue patients may miss an average of 4-5
days at work, with one study reporting 52% of those in the household being workers [17, 20].
Similarly, for children in Thailand, approximately half of caregivers worked, with the most
common caregivers being female, specifically the child’s mother [22]. As most studies focus on
caregiving for everyone or children specifically, it is unclear how common caregiving is for
adults and whether the person providing care is a housemate or an outside visitor, a factor that
could determine how much of an effect their mobility changes have on shaping the structure of
DENV transmission networks.

We capitalized on an established contact-cluster design to monitor the social support
received by symptomatic DENV-infected individuals throughout their illness period, focusing on
the frequency with which individuals receive home-based care from housemates and/or visitors,
as well as the number of caregivers, how they helped, and if their work was affected by this
activity. We hypothesize that caregiving behavior will be common, with the majority of
caregivers being adult housemates of the sick individual. We further hypothesize that the type of
help given and the impact on the caregiver’s work will depend on symptom severity and the

relation of the caregiver to the DENV-infected individual.
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Methods

Study Area

This study was performed in the Amazon city of Iquitos, Peru. Iquitos is a geographically
isolated, tropical urban environment with approximately 430,000 inhabitants located along the
margin of the Amazon River [23]. The city’s economic structure is highly informal and dynamic,
with one-third of economically active individuals either unemployed or informally employed
[24]. Iquitos has been the home of extensive, long-term arboviral research led by the University
of California, Davis and U.S. Naval Medical Research Unit 6 since 1999 [11, 25-30]. Extensive
human mobility studies paired with detailed epidemiological data have made Iquitos an
informative site for understanding the dynamics of arbovirus transmission. All four serotypes of
DENYV have been introduced in Iquitos; however, at any particular time virus transmission is
usually dominated by a single serotype [29, 31]. Previous research [27] demonstrated that the
majority of individual’s movement (~80%) occurs within 1 km of their home; however, mobility
is highly irregular and temporally unstructured, rarely centering around a single location, such as
a workplace [27].
Study Design

Iquitos residents with a laboratory-confirmed DENYV infection (by PCR) were recruited
into the study through clinic- and community-based longitudinal febrile surveillance, as
previously described [26]. At the time of initial case capture (blood sample), a retrospective
semi-structured movement survey (RMS) was verbally administered by trained nurses (the
‘Movement Team’) to identify the locations an individual had visited in the 15 days prior to
diagnosis (to identify behaviors during the exposure period) as well as the visitors they received

at home in the previous three days. A modified, daily RMS (DRMS) was conducted for the
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following seven days [14], which included a small subset of questions about the individual’s
quality of life (QOL). These questions, which focused on an individual’s ability to complete
normal activities, were taken from a larger QOL survey administered only twice during illness.
The QOL questions were, however, added to the DRMS partway through data collection, so only
a portion of respondents have answers recorded. There was also a daily survey regarding the
symptoms an individual experienced [Paz-Soldan, in review]. During this seven-day period,
DENYV positive individuals were also administered two Quality of Well-Being surveys (QWB)
by the Movement Team, one 2-3 days and one seven days after the initial PCR-positive blood
test. The QWB survey is a validated instrument used to measure an individual’s quality of life
during chronic illness [32][Elson, in review] that uses a weighted algorithm to produce one well-
being score between 0.0 (death) and 1.0 (asymptomatic and fully-functioning)[32]. On the
seventh day after the initial blood test, individuals were administered a survey about the
expenses incurred during dengue illness, for both the symptomatic individual and possible
caretakers.

At a follow-up visit scheduled 30 days after the initial PCR-positive blood test,
individuals were given “post-illness” RMS and QWB surveys in an effort to record their
“baseline” mobility behavior and well-being in the absence of illness. Individuals were also
given another ‘Expenses’ survey in case any expenses were accrued after the day-7 survey was
administered. Table S3.1 provides a description of each survey, including when it was
administered and the number of respondents, as well as listing the particular questions we will be
analyzing.

Data Processing
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For each study participant, rather than referring to daily survey values as occurring on a
certain number of days after the PCR-positive blood test, a standardized “day after symptom
onset” variable was calculated. Because blood tests were not done on the same day of illness for
all participants, daily surveys captured a range of 1-14 days after symptom onset. We focused
our analysis on days 1-10 after symptom onset; few individuals (12/71) had data for days 11-13
after symptom onset.

For each day after symptom onset, DRMS data were utilized to record (1) how many
visitors an individual had at their home (if any), (2) their relation of the visitor, (3) why they
were visiting, (4) if they knew the person was sick at the time of visit, and (5) whether they visit
at least once a week in the absence of illness (self-reported ‘routineness’ of the visitor). Further,
the QOL questions on the DRMS gave daily data on whether individuals felt they had the ability
to do daily, physical, and self-care activities. Pre- and post-illness RMS provided the “baseline”
number of visitors an individual received.

The QWB survey provided two data points within the symptomatic period, which were
combined into an overall value of whether individuals felt they needed help with daily activities
or personal care at any point throughout symptoms. Similarly, the two time points in the
‘Expenses’ data were combined to provide information on (1) if an individual had someone help
care for them, (2) how many people helped, (3) the relation of the helpers, (4) what they helped
with, and (5) whether the helper’s work was affected.

While the symptom survey provided data on 36 symptoms, we focused on six groups of
symptoms that are often associated with dengue illness (malaise/weakness, fever/chills,
headache/retro-orbital pain, body/muscle pain, bone/join pain, and abdominal pain). For each

symptom group, the presence (0/1) and intensity level (0-1) were analyzed for each day of
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illness, as was the number of symptom groups experienced on each day (out of six) and the total
intensity score for all symptom groups (out of six). For the entire illness period, variables were
calculated for overall presence of each symptom, maximum intensity score for each symptom,
maximum number of daily symptom groups experienced, and maximum daily intensity score.
Data Analysis

Analysis of the data had two main goals: (1) examining the home visits and caregiving
received by individuals with a symptomatic dengue infection, and (2) determining whether these
behaviors could be predicted by characteristics of the symptomatic individuals and their illness.
For the first objective, caregiving behaviors were examined for the following variables: (1)
presence of caregivers, (2) number of caregivers, (3) relation of caregiver, (4) days help was
provided, (5) whether the caregiver helped take care of the sick individual, (6) whether they
helped around the house, (7) whether they helped by providing money or items, and (8) whether
their work was affected. For each variable of interest, overall values were provided and
comparisons were made based on the gender (male/female) and age (adult/child) of the
symptomatic individual, as well as the gender/age combination of the individual (male
adult/male child/female adult/female child). These comparisons were conducted using Fisher’s
Exact test.

Comparisons were also conducted to determine whether gender or age (or a combination
of the two) were associated with receiving visitors at some point during illness. Visitor behaviors
were also summarized for the entire illness period using variables: (1) presence of visitors, (2)
number of unique visitors, (3) relation of visitors, (4) number of unique visits by each visitor, (5)
whether they were ‘routine visitors’, (6) whether they knew about the illness, and (7) the reason

for the visit. Characteristics of an individual’s visit were compared based on whether the



54

individual was a ‘routine visitor’ or not (as self-reported by the symptomatic person). We also
examined whether there were any significant differences in visitor behavior if caregiving was or
was not present and vice versa (if visitor presence affected caregiving behaviors).

For the second objective, possible predictors for receiving caregiving behavior were
examined using Generalized Linear Models (GLMs). Best-fit models were determined for the
logistic response variables of: presence of caregiving, number of caregivers (one versus two),
relationship of caregiver (housemate or not), if helped around the house (yes/no), if helped with
buying things or giving money (yes/no), and if the caregiver’s work was affected (yes/no).
Possible predictor variables included the age (child vs. adult) and gender (male vs. female) of the
sick individual (as well as an interaction variable for age and gender), whether the sick individual
had a high or low number of housemates (split into a binary variable around the median number
of housemates), whether they needed help with personal care activities or daily activities at some
point during illness (QWB), overall presence of each symptom group during illness, maximum
daily symptom groups experienced, and maximum daily symptom intensity score. Best-fit
models were determined using the corrected AIC (AICc) and the relative likelihood of the model
(weight).

Whether or not a symptomatic individual received visitors was examined as a logistic
response variable in two ways: for the entire illness period and for each day of illness. When the
entire illness period was considered, GLM models were examined with the same predictor
variables as above. When the response variable was the presence of visitors on each day of
illness, Generalized Linear Mixed Models (GLMMs) were used, with the participant ID as a
random effect to account for repeated observations [33]. Day of illness was included as a

possible predictor variable to determine whether visitor presence changes throughout illness.
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Daily values were also provided for the possible predictor variables of symptom presence and the
ability to complete activities (QOL). Variables with set values that did not change during illness
(i.e., gender, age, number of housemates, whether help was needed to complete daily or personal
care activities) were also considered as possible predictors. All statistical analyses were

performed in R 3.3.0 statistical computing software [33, 34].

Results

Detailed data were collected from 71 DENV+ participants about daily visitors received,
67 of who also provided data on caregiving behavior. The age group and gender of these
participants, as well as the number of participants when both datasets were combined, can be
found in the supplemental information (Table S3.2). The majority of participants surveyed
reported having an illness lasting five or more days (76.9%).

Overall, the percent of individuals who reported experiencing a symptom class at some
point during illness was 98.7% (malaise/weakness), 93.7% (fever/chills), 93.7% (headache/retro-
orbital pain), 79.8% (body/muscle pain), 68.4% (bone/joint pain), and 59.5% (abdominal pain).
The presence of symptoms at each day after symptom onset was also calculated (Table S3.3). of
the 70 individuals who responded to the QWB survey, the percent of individuals who reported
needing help with daily activities and personal care at some point during illness were 52.9% and
14.3%, respectively. Comparatively, a large proportion of participants reported having some
limitation in their ability to complete physical (72.7%), daily (69.7%), and self-care (60.6%)
activities when asked on each day of illness (QOL) (Table S3.3).

Who is Receiving Help
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During symptomatic dengue illness, 89.5% of participants had someone help care for
them. Visitors were received by 32.3% of sick individuals, with 87.1% of visitors knowing the
individual was sick and 80.0% of visits being related to their illness (Table 3.1). Of the 60
individuals who had someone help them, 33.3% also had visitors at some point during their
illness. A total of four individuals (6.0%) had no caregiving help and received no visitors during
illness. Of the seven individuals who did not receive help, five were adult females. Accordingly,
children were significantly more likely than adults to have someone helping them (97.5% vs.
77.8%) (Fisher’s Exact test, p=0.01) and female children (100%) were significantly more likely
than female adults (68.8%) (Fisher’s Exact test, p=0.02) (Table 3.2, S3.4). Female children also
received significantly more visitors during illness (50%) compared to male children (13.0%)
(Fisher’s Exact test, p=0.02), with females (45.7%) having an overall higher rate of visitors than
males (19.4%) (Fisher’s Exact test, p=0.02) (Table 3.2, S3.4). Accordingly, the events of
receiving caregiving and visitors during illness were most associated with the age and sex of the
ill person, respectively (Table S3.5, S3.6). Children had a higher expected probability of
receiving help compared to adults (97.4% vs. 76.9%) and females had a higher predicted
probability of receiving visitors compared to males (50% vs. 20%).

When examining whether or not visitors were received on each day of illness, the best-fit
GLMM by AICc score included the interaction between age and sex (after accounting for
participant ID as a random effect), where female children had the highest predicted probability of
receiving visitors on each day of illness (13.5%) and male children had the lowest (0.6%) (Table
S3.7) (Figure 3.2). This model, however, was not significantly better than the GLMM including

only sex (and random effect of participant) when looking at reduction in deviance (> Analysis of
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Deviance, p=0.09) (Table S3.7). In this model, males and females had predicted probabilities of
1.2% and 7.8% for receiving visitors on each day of illness.

During illness, individuals tended to receive either one (47.8%) or two (26.1%) visitors,
the majority of whom (69.6%) only visited once during the illness period (Table 3.1). It was
most common for sick individuals to receive help from one person (88.7%) who helped for the
length of the illness (94.1%). There was a significant association between number of people
helping an ill individual and whether they reported needing help with personal care at some point
during illness (from the QWB survey) (Table S3.8). Those who needed personal care help had a
33.3% predicted probability of receiving help from two people, compared to only 6.1% for those
who didn’t need help.

Who is Giving Help

In 91.2% of cases, the sick individual received help from a relative that lived with them.
According to the best-fit model for relation of the caregiver, children had a higher predicted
probability of receiving help from a housemate (97.6%) compared to adults (86.4%) (Table
S3.9). Of the visitors received during illness, half (49.9%) were family members, 35.3% were
friends, and 15.3% were other individuals, with 87.1% of visitors being reported as ‘routine
visitors’ (visited at least once a week pre-illness) by the ill participant (Table 3.1). Those who
weren’t routine visitors were mostly friends (54.5%) or other individuals (36.4%). Sixty-three
percent of ‘non-routine visitors” were aware that the participant was sick, compared to 90.5% of
routine visitors (Table 3.1).

What Help is Being Given
The majority (83.8%) of visits a symptomatic individual received from a ‘routine visitor’

were for reasons related to the illness, 66.2% were for emotional support, 6.8% were for logistic



58

support, and 8.1% for some other illness related reason (Table 3.1). Comparatively, 45.5% of
visits from ‘non-routine visitors’ were not disease related, and those that were related to the
illness were for something other than emotional support (9.1%) or logistic support (9.1%) (Table
3.1). When the symptomatic individuals received help from caregivers, the most common way of
helping was by taking care of them (95.6%), with 47.1% of caregivers helping around the house
(taking care of children, cooking, cleaning) and 38.2% helping by buying things for the sick
individual or giving them money (Table 3.3). The largest proportion of people (34.3%) helped
only with taking care of the sick person; however, 20.9% of people helped in all three ways
(Table 3.3). There were no significant differences between gender or age class in whether each
type of help was provided, although getting help around the house was quite common for adult
males (75%) compared to adult females (41.67%) (Fisher’s Exact test, p=0.2) and children
(40.91%) (Fisher’s Exact test, p=0.08) (Table S3.4). There was no significant difference in the
way the caregivers helped or the reason for a visitor’s visit when looking at the 20 individuals
who received both visitors and caregivers during illness. The best-fit model for whether or not an
individual received help in the form of money or things accounted for how many house members
they had (less than or greater than median of 8) and whether they needed personal care help
during their illness (Table S3.10). Individuals who needed help with personal care and had a
large number of housemates had a higher predicted probability of receiving money and things
than those who didn’t need personal care help and/or live with fewer housemates (Figure 3.3).
The best-fit model for predicting whether or not help was received around the house included the
maximum symptom intensity score (Table S3.11).

What is the Impact for the Person Giving Help
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Of all the people helping symptomatically ill individuals, only 28.4% had their work
affected. It was significantly more common for work to be affected when helping sick adults
(41.7%) compared to sick children (18.2%) (Fisher’s Exact test, p=0.05) (Table 3.2). In
particular, 58.3% of those helping adult females had their work affected, as compared to 25%
helping adult males (Fisher’s Exact test, p=0.2), 22.7% helping female children (Fisher’s Exact
test, p=0.06), and 13.6% helping male children (Fisher’s Exact test, p=0.02) (Table S3.4). The
best-fit model (based on AICc score) predicting whether a helper’s work would be affected
accounted for presence of bone/joint or abdominal pain during illness (Table S3.12), where the
predicted probability of work being affected was higher both when helping those with bone/joint
and abdominal pain versus those who didn’t experience these symptoms (Figure 3.4). This
model was, however, not significantly better than the GLM based on only maximum symptom
intensity score during illness (y*> Analysis of Deviance, p=0.13), where a higher maximum
intensity was associated with an increased probability that the person helping would have their

work affected.

Discussion

Almost all individuals with symptomatic dengue received some form of help during their
illness, whether through caregiving or illness-related visits. Caregiving was most associated with
the sick individual’s age group, where children were most likely to receive help and for that help
to be from a relative they live with, which is consistent with previous results that the majority of
child caregivers are the mother [22]. Visiting behaviors differed most between genders, with

females more likely than males to receive visitors overall and on each day of illness.
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Interestingly, however, female children seemed to be significantly more likely to receive both
caregiving and visitors during illness.

Previous social support research found that most long-term assistance is received from
family members, whereas short-term aid is mostly provided by friends and neighbors [35]. While
our study was on a much shorter timescale, we see similar trends with 91% of caregiving coming
from relatives in the same household and 95% of caregivers helping for the length of the illness.
Comparatively, other family members and friends made up the majority of visitors during illness,
70% of whom only visited once during the illness period. Our data also agrees with previous
findings that patients most often want emotional support from family and friends (rather than
logistic support) [36], with almost all caregivers helping to take care of the ill individuals and
66% of visitors coming to give emotional support.

The likelihood of receiving other forms of help, around the house or through material
aid/money, was most associated with the magnitude of the disease, whether symptom intensity or
the need for personal care. Likely once an individual’s symptoms become very intense (enough
so to need personal care help) they become unable to get housework done or make it to the store
to buy things needed for their illness. Giving things/money was more likely when a sick
individual had a large number of housemates. This could be due to the correlation with a lower
socioeconomic status (although we did not find a significant effect when we ran a model with a
composite SES score) or it could be more likely that housemates get housework done when there
are more of them present.

It was also found that providing money or material aid was the least common way
caregivers helped sick individuals. This could be due in part to the relatively low cost of

ambulatory dengue illness. Indeed, in a previous study, direct costs made up just 10.2% of the
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total cost of a single dengue case [17]. The majority of the cost burden for dengue infection was
indirect, based on days lost at school and work for the patient and their caregiver. This high cost
of lost workdays is particularly interesting given that we found only 28% of caregivers had their
work affected, although the effect would likely last the length of the symptomatic illness. It was
most common for those helping female adults to have their work affected, possibly because
children and male adults already had their mother/spouse (female adult) acting as a caregiver
before illness, whereas when the mother was sick, a working adult would have to take days off to
help take care of them.

The mobility behavior of a susceptible individual can determine their exposure to
infectious mosquitoes and subsequent risk of DENV infection. If members of a frequently visited
house become DENV+, an individual’s probability of exposure may increase, assuming they
don’t change their movements. The presence of symptomatic cases may, however, cause social
contacts to practice avoidance (stop visiting) or caregiving (visit more frequently/longer), which
could cause decreases or larger increases in infection risk for the susceptible individual,
respectively. These mobility changes could also decrease the connectivity of the infectious
individual’s home and stunt the onward transmission potential, given that house-to-house human
movements drive DENV transmission [26].

One important factor to consider for dengue is the prevalence of infections that progress
with mild or no symptoms (~70%) [29, 37, 38]. Recent evidence has demonstrated that these
individuals can be infectious to mosquitoes [22, 39]. This study also documented DENV viremia
reaching infectious levels a few days prior to symptom onset. Further, recent theoretical models
estimated that 24% of onward transmission can result from mosquito bites during the

presymptomatic period [41]. In both of these cases, individuals could be infectious to mosquitoes
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without having their routine mobility patterns impacted by symptomatic illness [42, 43]. If
individuals with presymptomatic or asymptomatic infectiousness acted as caregivers/visitors,
however, their mobility could change to spend more time at the home of the symptomatically ill
individual and less time at other locations, impacting expected onward transmission. As
predicted with symptomatic cases in Schaber et.al., infectious individuals limiting their mobility
could cause either increases or decreases in onward transmission depending partially on the
distribution of mosquitoes across their activity space [in progress].

We hypothesized that the majority of a symptomatic individual’s social contacts would
stop visiting to protect themselves from infection while one or two housemates of the individual
would act as caregivers, spending more time at home. We found that caregiving, while very
common for housemates, did not affect the helper’s mobility patterns in the majority (72%) of
cases. Mobility patterns of visitors were also surprisingly unaffected, with ‘routine visitors’ still
visiting the symptomatic person at least once during their illness. This continuation of routine
mobility patterns in the presence of a symptomatic dengue case may not have an effect for the
onward transmission of presymptomatic/asymptomatic individuals, but it could increase a
susceptible individual’s exposure to infectious mosquitoes and allow the sustained spatial

transmission potential of DENV.
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Tables

Table 3.1: Summary of Visitors Received During Illness by Ambulatory DENYV infected
individuals in Iquitos, Peru.

Data on the visits individuals received when ill is provided overall, and split into groups of visits
based on if made by routine visitors (self reported).

By Routine Visitor?
(self reported)
All Visits Yes No
(n=85) (87% visits) (13% visits)
Relationship
of Visitor?
Family 49.91% 55.41% 9.09%
Friend 35.29% 32.43% 54.55%
Other 15.29% 12.16% 36.36%
Know of lliness?
Yes 87.06%* 90.54%* 63.64%
Reason for Visit?
Emotional 58.82% 66.22% 9.09%
Support
Logistical 7.06% 6.76% 9.09%
Support
Other Disease 11.77% 8.11% 36.36%
Support
Not Related to 20.00%* 16.22%* 45.46%
Disease
Routine Visitor?
Yes 87.06% -

*2 visits had NA values
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Table 3.2: Results of Fisher’s Exact Test for Sex/Age Comparisons of Caregiving and
Visitor Behaviors Experienced by Ambulatory DENV infected individuals in Iquitos, Peru.
Tests were performed for whether caregiving was received, if the person who helped was their
housemate, if the person who helped had their work affected, whether the type of help was taking
care of the individual, helping around the house, or helping with money and buying things. Tests
were also performed for whether or not visitors were received during the illness period (*p<0.05,

% p<0.01, ***p<0.001).

Outcome Variable Group 1 Group 2 p-value
Someone Helped Female Male 0.4
Someone Helped Adult Child 0.01**
Helped by Housemate Female Male 0.2
Helped by Housemate Adult Child 0.7
Helper’s Work Affected Female Male 0.2
Helper’s Work Affected Adult Child 0.05*
Helped Take Care of Me Female Male 1.0
Helped Take Care of Me Adult Child 1.0
Helped Around House Female Male 0.5
Helped Around House Adult Child 0.2
Helped with Money/Things | Female Male 0.8
Helped with Money/Things | Adult Child 0.8
Received Visitors Female Male 0.02*
Received Visitors Adult Child 0.6
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Table 3.3: Frequency of Different In-Home Caregiving Behaviors Provided to Ambulatory
DENY Infected Individuals in Iquitoes, Peru. Given as the number and percent of helpers (out

of 67).
Help Take Help Around |Help with Number of
Care of House* Money/Buying | Helpers
Person Things
Yes Yes Yes 14 (20.9%)
Yes Yes No 17 (25.4%)
Yes No Yes 11 (16.4%)
Yes No No 23 (34.3%)
No Yes Yes 0 (0%)
No Yes No 0 (0%)
No No Yes 2 (3.0%)
No No No 0 (0%)

* Includes help with taking care of kids, cooking, and cleaning

Figures

Figure 3.1: Percent of the Population with Symptoms Present, Abilities Limited (Physical,

Daily, Self-care), and Visitors Received on each Day after Symptom Onset During

Ambulatory DENYV infection in Iquitos, Peru. Symptoms are split into six groups. Each type
of event (presence of symptoms, limited abilities) is presented in a separate facet, both of which
have a line for percent of the population that received visitors.

Symptom Presence | |

Ability Limitations

100

Percent of Population

—— Malaise/Weakness
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Retroorbital Pain

—— Bone/Joint Pain
—— Body/Muscle Pain
—— Abdominal Pain
—— Physical Limitations
Daily Limitations

Self-care Limitations

= = Received Visitors

6 8 10
Day after Symptom Onset
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Figure 3.2: Predicted Probability of Receiving a Visitor on Each Day of Illness, Based on a
GLMM Fitted to Data of DENV Infected Individuals in Iquitos, Peru. Given in terms of age
group and sex. Error bars represent 95% Confidence Intervals.
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Figure 3.3: Predicted Probability of Receiving Money or Things as a Form of Caregiving
During Ambulatory DENV Infection, Based on a GLM Fitted to Data From Iquitos, Peru.
Given in terms of number of housemates and whether the individual reported needed personal
care during illness. Error bars represent 95% Confidence Intervals.
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Figure 3.4: Predicted Probability of Caregiver’s Work Being Affected During Ambulatory
DENYV Infection, Based on a GLM Fitted to Data From Iquitos, Peru. Given in terms of if
abdominal pain is present and if bone/joint pain is present at any point during illness. Error bars
represent 95% Confidence Intervals.
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Supplemental materials

Table S3.1: Description of Surveys. Provides descriptions of each survey and questions of
interest on the survey, as well as the time point when each survey was administered to

individuals, how the data were aggregated for analysis, the number of respondents total, and the

number of respondents who also have data on ‘Expenses’ and ‘Daily Visitors’.

Questions of Interest When Survey Description Number of Survey Name
Administered Respondents
(days after Total:
blood test)
* Did anyone help take care of Day 7 To look at the direct costs (money spenton |67 (67) Expenses
you during illness? Day 30 medication, etc.) and indirect (lost income
* How many people? due to absence at work) costs incurred
* What was their relationship to during illness for the ill individual and
you? possible caretakers.
* How did they help you?
* Was their work affected by
helping you?
* Did you have visitors? Days 1-7 To determine whether visitors were received | 71 (67) Daily Visitors
* What was their relationship to at an individual’s home. (Part of a larger subsection of the
you? retrospective movement survey modified to Daily Retrospective
* Why were they visiting? identify locations visited, time spent at Movement Survey
* Did they know you were ill at home, and visitors received in the previous (DRMS)
the time of the visit? 24 hours of illness.)
* Do these individuals routinely
visit you (without illness)?
* Did you have the ability todo |Days 1-7 To assess an an individual’s ability to 33(31) Daily ‘Quality of
daily activities? complete their normal activities (taken from Life’ (QOL)
* Did you have the ability to do a larger QOL survey) subsection of the
physical activities? Daily Retrospective
* Did you have the ability to do Movement Survey
self-care activities? (DRMS)*
* Did you need help with daily Day 2-3 To measure an individual’s quality of life as a | 70 (67) Quality of Well-Being
activities? Day 7 well-being score ranging between 0.0 (QwB)
* Did you need help with Day 30 (death) and 1.0 (asymptomatic and fully-
personal care activities? functioning).
* For each symptom: Days 1-7 To assess presence and intensity of 36 79 (66) Iliness Perception
* Were symptoms present? different symptom types associated with and Response (IPR)
* Rate the symptom dengue illness, and whether alleviating
intensity(1-10) measures were taken/worked.

* QOL questions were added to the end of DRMS surveys partway through data collection,
hence the low number of respondents.

Table S3.2: Age and sex distribution for of participants with (A) expenses (caregiving) and

(B) daily visitor data.
Expenses (n=67)

Daily Visitors (n=71)

Children  Adult Children  Adult
A) (<18) (>= 18) B) (<18) (>= 18)
Male 22 11 33 Male 23 13 36
(32.84%)  (16.42%) (49.25%) (32.39%)  (18.31%) | (50.70%)
Female 18 16 34 Female 18 17 35
(26.87%)  (23.88%) (50.75%) (25.35%)  (23.94%) | (49.30%)
40 27 41 30
(59.70%)  (40.30%) (57.75%)  (42.25%)
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Table S3.3: Daily frequencies of individuals experiencing symptoms, activity limitations,
and receiving visitors. Symptoms are split into six groups. Numbers represent the total number
of individuals experiencing the symptom/limitation/visitors on that day, where the total number
of respondents for each day is listed at the top of each section. Colors represent the percent of the
population affected. Different color scales are used for symptom, limitation, and visitor presence
in order to easily visualize the patterns.

(n=66) (n=66) (n=66) (n=66) (n=66) (n=66) (n=66) (n=66) (n=66) (n=66)

45 36

Malaise/Weakness 34 21

Fever/Chills 31 20
Percent of Population
Headache/ 97 14 Presenting Symptoms
Retroorbital Pain - 75
Body/Muscle Pain 42 45 42 32 23 15 50
- 25

Bone/Joint Pain 38 38 37 27 18

Abdominal Pain =~ 15 19 23 22 23 16 12

(n=17) (n=31) (n=42) (n=58) (n=58) (n=55) (n=45) (n=46) (n=29) (n=25) ngggitv?;; gputation

. - 25
Received Visitors - 5 8 4 »

(n=9) (n=14) (n=25) (n=29) (n=31) (n=29) (n=27) (n=23) (n=16) (n=8)

7

; iviti imi Percent of Population
Physical Activities Limited 13 6 6 3 with Limited Abiltties
e LRE
Daily Activities Limited 15 17 10 4 4 2 50
25
Self-care Activities Limited 8 12 13 15 9 3 3 2 L)

1 2 3 4 5 6 7 8 9 10
Day after Symptom Onset



Table S3.4: Results of Fisher’s Exact test for sex and age combinations. Tests were
performed for whether caregiving was received, if the person who helped had their work
affected, and whether helped around the house. Tests were also performed for whether or not
visitors were received at some point during illness (* p<0.05, ** p<0.01, ***p<0.001).

Outcome Variable

Someone Helped

Female Adult

Male Adult

Someone Helped Female Adult | Female Child | 0.02*
Someone Helped Female Adult | Male Child 0.06
Helper’'s Work Affected | Female Adult | Male Adult 0.2
Helper’'s Work Affected | Female Adult | Female Child | 0.06
Helper’'s Work Affected | Female Adult | Male Child 0.02*
Helped Around House | Male Adult Female Adult | 0.2
Helped Around House Male Adult Male Child 0.08

Helped Around House

Received Visitors

Male Adult
Male Child

Female Child
Female Child

Received Visitors

Male Child

Male Adult

0.2

Received Visitors

Male Child

Female Adult

0.07
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Table S3.5: Results from likelihood ratio tests between pairs of logistic GLMs with various
explanatory variables and response variable of whether or not caregiving was received. For
each model, values are provided for the reduction in deviance compared to the null model,
corrected AIC (AICc), change in AICc compared to the best fit model (AAICc), and model
weight. The best-fit model is highlighted in red.

Pl:edctor\larlable(s)

Intercept 1 46.5 49 0.038
Sex 159 2 47.0 5.4 0.029
Age (<18) 7.02 2 416 [0.0 0.442
Sex * Age 10.5 4 42.6 1.0 0.266
Maximum Number of 7.87 6 50.0 84 0.007
Symptom Groups Present

Maximum Symptom Intensity |2.81 2 458 4.2 0.054
Score

Number Housemates (<8) 3.18 2 45.4 38 0.065
Presence of Headache/Retro- | 1.17 2 474 59 0.024
orbital Pain

Presence of Body/Muscle 0.333 2 483 6.7 0.016
Pain

Presence of Bone/Joint Pain |0.662 2 479 6.4 0.018
Presence of Abdominal Pain |0.010 2 48.6 7.0 0.013
Needed Help with Personal 0.007 2 48.6 7.0 0.013
Care (QWB)

Needed Help with Daily 0.38 2 48.2 6.6 0.016
Activities (QWB)
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Table S3.6: Results from likelihood ratio tests between pairs of logistic GLMs with various
explanatory variables and response variable of whether or not visitors were received. For
each model, values are provided for the reduction in deviance compared to the null model,
corrected AIC (AICc), change in AICc compared to the best fit model (AAICc), and model
weight. The best-fit model is highlighted in red.

Predictor Variable(s)

Intercept 1 88.2 4.7 0.045
Sex 6.8 2 83.6 0.0 0.462
Age (<18) 0.522 2 |899 6.3 0.020
Sex * Age 8.38 4 |86.5 2.9 0.110
Maximum Number of 0.06 2 90.3 6.7 0.016
Symptom Groups Present

Maximum Symptom Intensity | 0.36 2 90.0 6.4 0.019
Score

Number Housemates (<8) 0.32 2 90.1 6.5 0.018
Presence of Headache/Retro- | 0.001 2 90.4 6.8 0.015
orbital Pain

Presence of Body/Muscle 0.121 2 |90.3 6.7 0.016
Pain

Presence of Bone/Joint Pain | 0.699 2 89.7 6.1 0.022
Presence of Abdominal Pain | 1.04 2 |893 5.8 0.026
Needed Help with Personal 0.100 2 90.3 6.7 0.016
Care (QWB)

Needed Help with Daily 0.11 2 |90.3 6.7 0.016
Activities (QWB)

Visitors Received on Original | 0.808 3 89.6 6.0 0.023
(Day 0) survey




Table S3.7: Results from likelihood ratio tests between pairs of logistic GLMMs with
various explanatory variables and response variable of whether or not visitors were
received for each day of illness. For each model, values are provided for the reduction in
deviance compared to the null model, corrected AIC (AICc), change in AICc compared to the
best fit model (AAICc), and model weight. The best-fit model is highli i

Predictor Variable(s) Deviance df AlCc

Intercept

Day of lliness 225 3 2315 |5.6 0.023
Sex 220 3 226.5 |0.7 0.279
Age (<18) 225 3 2315 5.6 0.024
Sex * Age 216 5 2258 |0.0 0.390
Number of Symptom 226 3 2316 |[5.8 0.021
Groups Present on Day

Symptom Intensity Score | 226 3 2319 |[6.0 0.019
on Day

Number Housemates (<8) |226 3 2319 (6.0 0.019
Presence of 226 3 231.7 |59 0.021
Malaise/Weakness on

Day of lliness

Presence of Fever/Chills |226 3 2319 |6.0 0.019
on Day of lliness

Presence of 226 3 2316 |5.7 0.022
Headache/Retro-orbital

Pain on Day of lliness

Presence of Body/Muscle |225 3 2314 |56 0.024
Pain on Day of lliness

Presence of Bone/Joint 225 3 2315 |[5.6 0.023
Pain on Day of lliness

Presence of Abdominal 226 3 2319 (6.0 0.019
Painon Day of Illiness

Needed Help with 226 3 2319 |6.0 0.019
Personal Care (QWB)

Needed Help with Daily [225 3 2313 (55 0.025
Activities (QWB)

74
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Table S3.8: Results from likelihood ratio tests between pairs of logistic GLMs with various
explanatory variables and response variable of whether the ill individual had one or two
caregivers. For each model, values are provided for the reduction in deviance compared to the
null model, corrected AIC (AICc), change in AICc compared to the best fit model (AAICc), and
model weight. The best-fit model is highlighted in red.

Predictor Variable(s) Deviance df AAICc Weight
Intercept 1 40.7 2.4 0.1159
Sex 0.032 2 42.8 4.5 0.040
Age (<18) 0.004 2 42.8 45 0.040
Sex * Age 4.69 4 42.6 4.4 0.043
Maximum Number of 2.03 5 47.7 9.5 0.003
Symptom Groups Present

Maximum Symptom 0.78 2 42.0 3.8 0.059
Intensity Score

Number Housemates (<8) | 0.024 2 42.8 4.5 0.040
Presence of 0.445 2 42.4 4.1 0.050
Headache/Retro-orbital

Pain

Presence of Body/Muscle |0.79 2 42.0 3.8 0.059
Pain

Presence of Bone/Joint 0.107 2 42.47 4.4 0.042
Pain

Presence of Abdominal 0.366 7 42.4 4.2 0.048
Pain

Needed Help with Personal | 4.55 2 38.2 0.0 0.386
Care (QWB)

Needed Help with Daily 1.29 2 415 33 0.076
Activities (QWB)
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Table S3.9: Results from likelihood ratio tests between pairs of logistic GLMs with various
explanatory variables and response variable of whether the caregiver was a housemate or
not. For each model, values are provided for the reduction in deviance compared to the null
model, corrected AIC (AICc), change in AICc compared to the best fit model (AAICc), and
model weight. The best-fit model is highlighted in red.

Predictor Variable(s) Deviance df AlCc AAICc Weight

Intercept 1 32.0 0.8 0.130
Sex 14 2 32.7 1.6 0.090
Age (<18) 2.95 2 31.2 0.0 0.196
Sex * Age 5.09 4 335 2.3 0.061
Maximum Number of 5.90 5 35.1 3.9 0.028
Symptom Groups Present

Maximum Symptom 0.38 2 33.7 2.6 0.054
Intensity Score

Number Housemates (<8) |0.353 2 338 2.6 0.054
Presence of 0.262 2 339 2.7 0.051
Headache/Retro-orbital

Pain

Presence of Body/Muscle |0.055 2 34.1 2.9 0.046
Pain

Presence of Bone/loint 0.021 2 34.1 2.9 0.045
Pain

Presence of Abdominal 172 2 324 1.2 0.106
Pain

Needed Help with Personal |0.102 2 34.0 2.8 0.047
Care (QWB)

Needed Help with Daily 14 2 32.7 1.6 0.090
Activities (QWB)
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Table S3.10: Results from likelihood ratio tests between pairs of logistic GLMs with
various explanatory variables and response variable of whether or not help was received in
the form of money and things. For each model, values are provided for the reduction in
deviance compared to the null model, corrected AIC (AICc), change in AICc compared to the
best fit model (AAICc), and model weight. The best-fit model is highlighted in red.

Predictor Variable(s)

Intercept

Sex 0.855 2 89.8 6.1 0.025
Age (<18) 0.323 2 90.3 6.7 0.019
Sex * Age 1.25 4 93.9 10.2 0.003
Maximum Number of 3.38 5 94.1 10.5 0.003
Symptom Groups Present

Maximum Symptom Intensity | 0.04 2 90.6 7.0 0.017
Score

Number Housemates (<8) 3.75 2 86.9 3.2 0.107
Presence of Headache/Retro- | 0.074 2 90.6 6.9 0.017
orbital Pain

Presence of Body/Muscle 0.674 2 90.0 6.3 0.023
Pain

Presence of Bone/Joint Pain | 0.031 2 90.6 7.0 0.017
Presence of Abdominal Pain | 0.103 2 90.6 6.9 0.017
Needed Help with Personal |[4.1 2 86.6 29 0.128
Care (QWB)

Needed Help with Daily 1.25 2 89.4 ol 0.031
Activities (QWB)

Number Housemates (<8) + 9.2 3 83.7 0.0 0.544
Needed Help with Personal

Care (QWB)




Table S3.11: Results from likelihood ratio tests between pairs of logistic GLMs with
various explanatory variables and response variable of whether or not help was received

around the house. For each model, values are provided for the reduction in deviance compared

to the null model, corrected AIC (AICc), change in AICc compared to the best fit model

(AAICc), and model weight. The best-fit model is highlighted in red.

Predictor Variable(s) Deviance df AlCc AAICc Weight
Intercept 1 90.8 11 0.117
Sex 0.251 2 92.7 3.0 0.046
Age (<18) 2.52 2 90.4 0.7 0.142
Sex * Age 4.07 4 93.3 0.7 0.033
Maximum Number of 3.48 5 96.3 6.6 0.008
Symptom Groups Present

Maximum Symptom 3.26 2 89.7 0.0 0.206
Intensity Score

Number Housemates (<8) 0.612 2 92.3 2.6 0.055
Presence of 0 2 92.79 |3.3 0.040
Headache/Retro-orbital Pain

Presence of Body/Muscle 0.875 2 92.0 2.4 0.063
Pain

Presence of Bone/Joint Pain | 1.25 2 91.7 2.0 0.075
Presence of Abdominal Pain |0 2 92.9 33 0.040
Needed Help with Personal |0.412 2 925 2.8 0.050
Care (QWB)

Needed Help with Daily 2.27 2 90.6 1.0 0.126

Activities (QWB)
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Table S3.12: Results from likelihood ratio tests between pairs of logistic GLMs with
various explanatory variables and response variable of whether or not the helper’s work
was affected. For each model, values are provided for the reduction in deviance compared to the
null model, corrected AIC (AICc), change in AICc compared to the best fit model (AAICc), and
model weight. The best-fit model is highlighted in red.

Predictor Variable(s)

Intercept

Sex 2.1 2 74.1 5.4 0.020
Age (<18) 2.24 2 73.9 5.2 0.022
Sex * Age 4.6 4 76.1 7.4 0.008
Maximum Number of 6.63 5 756.4 |7.7 0.006
Symptom Groups Present

Maximum Symptom Intensity | 7.37 2 68.8 0.1 0.283
Score

Number Housemates (<8) 0.023 2 76.2 7.5 0.007
Presence of Headache/Retro- | 1.17 2 75.0 6.3 0.013
orbital Pain

Presence of Body/Muscle 0.872 2 75.3 6.6 0.011
Pain

Presence of Bone/Joint Pain | 6.17 2 70.0 1.3 0.155
Presence of Abdominal Pain | 5.82 2 70.4 1.7 0.130
Needed Help with Personal 2.02 2 74.2 5.5 0.019
Care (QWB)

Needed Help with Daily 0.084 2 76.1 7.4 0.007
Activities (QWB)

Presence of Bone/Joint Pain + | 9.68 3 68.7 0.0 0.298
Presence of Abdominal Pain
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Chapter 4: The impact of symptomatic mobility change on dengue
virus transmission

To be submitted with the following authors:

Kathryn L. Schaber, T. Alex Perkins, Alun L. Lloyd, Lance A. Waller, Uriel Kitron, Valerie A.
Paz-Soldan, John P. Elder, Alan L. Rothman, William H. Elson, Robert C. Reiner, Amy C.
Morrison, Thomas W. Scott, Gonzalo M. Vazquez-Prokopec

Introduction

The rate at which humans encounter vectors (mosquitoes, ticks, bugs) is a driver of
vector-borne disease transmission dynamics [1, 2]. Human-vector contacts can be influenced by
myriad of factors, including the vector’s host-seeking behavior [3, 4], the host’s biting
attractiveness [5-8], and the spatial distribution/density of both hosts and vectors [9-12].
Variations in some or all of these factors can lead to heterogeneous exposure, where certain
individuals have higher contact rates with vectors than others [13-15]. The epidemiological
consequence of such uneven distribution of human-vector contacts could be significant, as long
as it results in key encounters where a large number of vectors are infected [2]. Therefore,
individual contribution to transmission is influenced by not only how many bites are received,
but also which vectors the bites are from and whom those vectors encounter next [16].

Given the central epidemiological role of mixing between hosts and vectors, there is a
need for better quantification of its frequency and temporal variability, as its epidemiological
role depends on the coupling among human (behavior, immunity, etc.), vector (dispersal,
longevity, etc.), and environmental heterogeneities [17]. Theoretical and simulation models have
been used to assess the role of such factors. One such model focuses on how heterogeneous
exposure to vectors, poor mixing, and finite host numbers can determine the spatial scale of

transmission [16]. Poor mixing can lead to infections being clustered in groups of closely
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connected individuals, as observed in the clustering of infections among socially connected
individuals [18-20]. This association between human behavior and mixing is of particular
relevance for dengue and other Aedes-borne viruses (dengue, chikungunya, Zika) [1, 21-23], for
which house-to-house human movement has been shown to underlie spatial patterns of incidence
[18, 20, 24].

Dengue is an acute illness caused by any of four immunologically related viruses in the
family Flaviviridae and transmitted by Aedes spp. mosquitoes (primarily Aedes aegypti).
Prevalent in the tropics and subtropics, it is the most important mosquito-borne viral disease of
humans worldwide [25]. Symptoms associated with dengue (acute fever, headache,
musculoskeletal pain, and rash) occur in a small proportion of cases, while the other 70% of
cases experience either very mild symptoms (inapparent) or no symptoms (asymptomatic) [26-
28]. Recently, it was empirically shown that human mobility patterns change throughout
symptomatic (febrile) dengue infection, with individuals visiting fewer locations and staying at
home more [29-31]. While disease-driven mobility changes significantly influence the spread of
directly transmitted pathogens, they have not yet been included in theoretical models of dengue
virus (DENV) transmission [32, 33]. For DENV, the impact of movement changes on an
individual’s mosquito contacts and onward transmission will likely depend on the distribution of
mosquitoes at their home and across the rest of their activity space [17, 21, 34]. At a population
level, human mobility changes could affect pathogen spread in a variety of ways depending upon
which individuals in the population experience symptoms and change their mobility and
potential exposure to Aedes aegypti mosquitoes.

For those DENV-infected individuals who experience symptoms, infectiousness tends to

peak during the first few days after symptom onset when mobility is restricted and most human-
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mosquito contacts are occurring at the individual’s home [35-37]. There are, however, a few
days before symptom onset when individuals have sufficient viremia levels to be infectious and
have not yet changed their movement patterns [35, 37]. A recent theoretical model of within-host
viral dynamics estimated that 24% of an individual’s onward transmission results from mosquito
bites during this presymptomatic phase [38]. We hypothesize that the presymptomatic period
could have a significant change in its contribution to transmission when accounting for the
decreased mobility levels during the rest of the infectiousness period. To test this hypothesis, we
examined the role of disease-driven mobility change in DENYV transmission by theoretically
exploring how day-to-day changes in a symptomatic individual’s mobility and human-mosquito
contacts, combined with heterogeneous attractiveness to mosquitoes, may impact population-

level dynamics of DENV transmission.

Methods

Original Model Framework

Our model builds on a previously published mathematical framework that describes
where and when human-mosquito contacts occur based on fine-scale human and mosquito
mobility [16]. In the original framework, a set of houses, {f}, and larval sites, {1}, were arranged
on a disc. Each house was assigned a number of residents equal to 2 plus a Poisson random
variable (A = 3.5), creating a two-person minimum per household. In order to assign the numbers
of mosquitoes/larvae at each house/larval site, mosquito movement and reproduction were
simulated for a total of 200 time steps, with the first 100 acting as a burn-in period. Counts of
mosquitoes and larvae at each location were averaged over the second 100 time steps, providing

the ‘equilibrium’ values. Poorly mixed mosquito movement was characterized by matrices L and
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F, giving the distance-based probabilities of an adult female mosquito moving from any house to
any larval site, and vice versa [16]. Human mobility was also determined using distance-based
probabilities, with the proportion of time each individual spent at each household documented in
the H matrix. Each row of the H matrix described where a single host spent time and each
column detailed all of the individuals spending time at a single household. Each individual was
also assigned a biting suitability score (which accounts for biting attractiveness, avoidance
behavior, and defensive behavior) using a random exponential draw with rate based on empirical
biting data [39]. Based on the mobility matrix, H, and biting suitability scores, a U matrix was
calculated to be the distribution of mosquito bites on all individuals at each house, where each
row gave the distribution of bites on all hosts at a single household and each column depicted the
bites distributed on a single individual across all households. A stochastic transmission model
was layered on top of this framework, which included a household-level SEI model for
mosquitoes and an individual-based SEIR model for hosts (Figure S4.1). Individuals
transitioned through multiple exposed (E) sub-stages, totaling the duration of pathogen latency in
terms of feeding-cycle-length time steps. Hosts also transitioned through multiple infectious (I)
sub-stages, until a random number draw from a probability distribution transitions them into the
recovered (R) stage. Transmission was initiated by moving a single human into the first
infectious (I) stage.

Model simulations had discrete time steps to capture the length of a mosquito feeding
cycle (~3 days). During each time step, hosts would allocate their time at houses based on H. The
mosquitoes at each house would take blood meals from possible hosts based on U matrix
probabilities and move to a larval site based on L probabilities. Eggs were laid based on a

Poisson distribution with mean equal to number of adult females at the site multiplied by average
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egg batch size. Adult mosquitoes then moved to a house searching for their next blood meal
based on F probabilities. During each time step, mosquito larvae also progressed through a set
number of stages based on site-specific density dependence until emerging into adult
mosquitoes. For both mosquitoes and humans, each time step also accounted for progression
through illness.
Updated Model Description

Our model was set up in a similar manner as the original model with a few modifications
to enable us to address our motivating questions. Parameters with set values were defined (Table
1), then houses and larval sites were placed on a disc, humans and mosquitoes were assigned
locations, and mosquito movement probabilities were determined (Figure 4.1a) (Table 4.2).
Rather than defining human mobility patterns based on distance, we generated a socially
structured human mobility matrix for each of 200 simulation runs (Figure 4.1b). First, a random
social network with household structure was constructed using the “configuration model” [40].
Each individual was assigned a number of “half-edges” (their degree) from a Poisson distribution
with rate A = 2.8, the mean number of residential locations visited in a data set described by
Perkins et al. [34]. Fifteen percent of individuals were given no half-edges and did not move
from their home [20]. Half-edges were then paired uniformly at random to form the edges of the
social network, making sure there were no self-loops, multiple edges, or loops within houses
(Figure 4.1b). This random network was represented as an |h|-by-|h| adjacency matrix SN, where
|h] is the size of the set of hosts {h}. A separate |h|-by-|f] presence/absence matrix, Homes, is
constructed, where Homes;,; denotes whether or not the i host lives at the j residential site.

Multiplying the SN and Homes matrices produced an |h|-by-|f] matrix, HM, denoting

which residential sites an individual will visit based on their social network (note that this matrix
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was not presence/absence, as when the i host was socially connected to multiple individuals at
the j* residential site, HM; ;> 1) (Figure 4.1b). This matrix was used to populate the human
mobility matrix, H, which calculated the proportion of time each host spent at each household in
the same way as the original model (Figure 4.2). Each host, i, spent 50% of their time at home, j,
(Hij = 0.5) and divided the remaining 50% of their time into the houses visited in HM (When
HM;;> 1, as mentioned above, a proportionally larger amount of time was allocated at that
residential location). For the 15% of individuals, i, who had no mobility outside their home, j, H;;
= 1. Based on this implicit mobility matrix and each individual’s biting suitability, the |f]-by-|h|
matrix U was created to describe the distribution of mosquito bites on all individuals at each
house, as in the original model [16].

The overlaid transmission model was similar to the original version; however, only one
exposed (E) stage was included (based on pathogen latency of DENV) and the maximum number
of infectious sub-stages was 5 (I1 — Is). Rather than use a single set value for human
infectiousness, values were chosen for each of these sub-stage (I1 — Is) based on data of mean
daily probability of mosquito infection for individuals with primary infections [38] (Figure 4.3).
For each 3-day infection time point in our model, we averaged these mean infectiousness values
(Table 3). The updated transmission model also defined the first time step in the human
infectiousness stage (1) as the “presymptomatic period” and all subsequent infectious time steps
(I> — Is) as the “symptomatic” period, where the presymptomatic period contributed to 25% of
infectiousness for individuals who progressed through all five infectiousness stage (I1 — Is)
before recovery.

After the model framework was set-up, at each time step of the simulation: hosts

allocated their time at houses based on H; mosquitoes moved to larval sites, laid eggs, had
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advancement in larval stages, moved back to houses, and took blood meals in the same format as
the original model. Both hosts and mosquitoes progressed through incubation (E), infectiousness
(D), and (for hosts) recovery (R) (Figure 4.3). Virus transmission occurred from infectious hosts
to susceptible mosquitoes and from infectious mosquitoes to susceptible hosts. At the end of
each time point, host mobility was changed for those hosts who were symptomatically
infectiousness.

Host Mobility Changes: Two different scenarios were considered to examine mobility changes:

(1) no symptomatic movement change and (2) movement change throughout symptomatic
infection. For scenario (1) no changes were made to the mobility matrix. For scenario (2), host
mobility changes occurred at each 3-day time step of symptomatic infection based on recently
published data on human mobility throughout symptomatic infection [31] (Table 4.3) (Figure
S4.2). As data from Schaber et al. [31] were grouped as days 1-3, 4-6, and 7-9 after symptom
onset, they corresponded to the I, I3, and I4 stages here. When individuals were in the first three
days after symptom onset, they were significantly more likely to spend all of their time at home
and visit no places. Accordingly, when an individual transitioned into symptomatic infection in
the simulation (I2), their movement was completely stopped (HM[1, ] = 0) and all time was spent
at home (HM[i, home] = 1). During days 4-6 after symptom onset (sub-stage I3), individuals
spent an average of 76% of time at home and visited approximately 1/3 of normally frequented
places. On days 7-9 after symptom onset (sub-stage 14) time at home and fraction of places being
visited averaged 69% and 2/3, respectively. Therefore, we set the time at home to be 80% (70%)
for the I3 (I4) stage and had individuals visiting 1/3 (2/3) of their originally frequented houses
(Table 4.3). The order in which houses were added back into an individual’s movements in

stages I3 and 14 was determined by random sample where a house’s probability of being chosen
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was weighted by its original HM value. This made it more likely that individuals would resume
visiting houses where they were socially connected to multiple residents. When individuals
reached the Is stage (days 10-12 after symptom onset), movement patterns and time at home
were reset to original values (Table 4.3). At the end of each time step, once these movement
changes were updated for all symptomatic individuals in the HM matrix, the H and U matrices
were recalculated as described above. We also considered a scenario where only 30% of
individuals (chosen from a random binomial draw) had symptomatic infection with mobility
change in order to determine whether the presence of asymptomatic infections had an impact on
symptomatic mobility changes.

Two other scenarios of interest that we accounted for were (1b) no movement change
with no presymptomatic period and (2b) movement change throughout symptomatic infection
with no presymptomatic period. For these scenarios the first stage of infectiousness (I1), the
presymptomatic period, was removed and individuals became immediately symptomatic with
infectiousness and movements corresponding to the I — I5 stages.

Model Outputs: Previously, multiple metrics were created to explore how mobile hosts and
mosquitoes contribute to pathogen dispersal [16]. Of particular interest was the matrix R, which
corresponded to the concept of effective reproductive number. This matrix gave the probability
that a primary infection in one host will result in a secondary infection in some other host, where
summing each row provided the number of expected secondary infections arising from a single
individual. The B matrix was also utilized to measure the expected number of bites per time step
on each host at each blood-feeding habitat (house). Each row of B provided the number of
expected bites on a single individual at all households and each column gave the expected

number of bites occurring on all individuals at a single household during one time step. At the
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population level, dynamics were examined using the simulation outputs of cumulative number of
infections at each time step and number of infectious hosts at each time step. We utilized these
original metrics and created versions that accounted for mobility change.

The B matrix could be used as a way to examine heterogeneity in human-mosquito
contact rates, not only across hosts/locations, but also throughout an individual’s infectiousness
period. As this metric was based on the distribution of bites across hosts at each site (U), and
therefore affected by the human mobility matrix (H), a list of B matrices was created to measure
biting pre-epidemic (with normal movements) and during each time step of infectiousness.
Within each simulation, Bnorm Was calculated for all individuals before infection spread began.
During disease spread, Bi[k,] was recorded for each host, k, at each infectiousness sub-stage (I1 —
I5), 1. This set of matrices gave us the expected number of mosquito bites on each host at each
house throughout infectiousness/mobility changes.

The previously-derived version of the R matrix, referred to as Rnorm, measured the
probability of host 1 receiving one or more secondary infectious bites arising from primary
infectious host, k. This accounts for the primary infectious host transmitting the virus to a
susceptible mosquito (the primary infectious bite) and that newly infectious mosquito then
transmitting the virus to a susceptible host (the secondary infectious bite). The R metric was
slightly adjusted to account for time-step-specific infectiousness where

Rk,l =1- e—bV(c1+ Ca+ C3+ C4t Cg)
with c; values representing an individual’s time-step-specific infectiousness values. The V matrix
gave the number of expected secondary bites on each host arising from primary bites on all other
hosts over one time step, where each row described the number of expected secondary bites on

all hosts from primary bites on a single individual and each column provides the number of
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expected secondary bites received by a single individual from primary bites on all other hosts
during one time step. Because the U matrix affected the V matrix, host mobility change was
accounted for by creating a set of matrices, Vi, for each sub-stage of infectiousness (I — Is).
When host k was infectious in the simulation, their Vi[k,] values were recorded for each I sub-
stage (I1 — Is). At the end of the simulation run a matrix referred to as Rmovement Was created,

where

Rovement = 1 — e~ b(Vic1+ Vaca+ Vaca+ Vycy+ Vscs)

In order to examine the importance of where the primary infectious bite occurs on host k,
we also divided Rmovement into two separate matrices, Rmovement (home), and Rmovement (other
houses). This was done by calculating Vi(home) and Vi(other houses), which derived the number
of expected secondary bites on each host arising from primary bites that occur at each time point
of infectiousness, i, on all other hosts at their home and everywhere but their home. These Vi
(home) and Vi (other houses) matrices were then used to derive Rmovement (home) and Rmovement
(other houses), respectively. Similarly, Rnorm Was divided into Rnorm (home) and Ruorm (other
houses) in order to compare the effect of where a primary infectious bite occurred when not
accounting for mobility.

A new metric that focused on the number of mosquitoes present in each individual’s
home was also considered. The number of mosquitoes in each individual’s home was recorded at
the beginning of the simulation run (pre-epidemic) and at each time point of infectiousness for
that individual. For each scenario a list was output with all of these metrics for each of 200
simulation runs.

Data Analysis:
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Analysis of simulation outputs had three main objectives: Determining the effects of
disease-driven mobility changes on (1) population-level outbreak dynamics, (2) onward
transmission, and (3) human-mosquito contacts.

For the first objective, determining the effects of mobility change on population-level
disease dynamics, we compared four scenarios: no mobility change; no mobility change and no
presymptomatic period; mobility change; mobility change and no presymptomatic period. The
effect of mobility changes could be determined by comparing the “no mobility change” and
“mobility change” scenarios. To determine the role of the presymptomatic period when mobility
changes occur, we compared the difference in ‘mobility change, presymptomatic’ and ‘mobility
change, no presymptomatic’ to the difference in ‘no mobility change, presymptomatic’ and ‘no
mobility change, no presymptomatic’ in order to account for the baseline effect of removing one
period of infectiousness (the presymptomatic period).

The number of infectious hosts at each time step was used to calculate the maximum
infection prevalence, the time to maximum prevalence, and the length of the epidemic (when the
number of infectious hosts was 0 without increasing again). The cumulative number of infections
at each time step was utilized to record the total percent of the population infected in an
epidemic, as well the time point when the percent of cumulative infections reached 10% and
65%. For the remaining two objectives, we focused our analysis on the scenario were a
presymptomatic period is present and mobility changes were occurring. In order to determine the
effect of these mobility changes on onward transmission, the Rnorm and Rmovment matrices were
utilized. Row sums of Rmovement and Rnorm gave the expected number of secondary infectious bites
arising from all primary bites on an individual host either with or without accounting for

movement changes. Similarly, row sums of Rmovement(home), Rmovement(other houses),



95

Ruorm(home), and Rnomm(other houses) determined the expected secondary bites arising from an
individual due to only primary bites at their home or only primary bites at other houses (with and
without movement changes). The distributions of Rmovement and Ruorm values were compared and
Rchange Was calculated to examine how accounting for mobility affects an individual’s R-value.

Possible predictor variables for onward transmission were examined using generalized
additive models (GAMs) [41]. Best-fit models were determined for Rmovement, Rmovement(home),
Rehange, and Rehange(home). Rehange Values were analyzed both as raw numbers and as percent
change relative to Rnorm values. The variables considered as predictors were an individual’s
biting suitability score, the number of mosquitoes in their home, the percent of expected
mosquito bites that occur at their home pre-exposure, and the number of places they visit pre-
exposure. Best-fit was determined with AAICc and the percent of deviance explained by each
model.

For the third objective, we calculated the expected number of mosquito contacts for each
individual pre-exposure and at each stage of infectiousness (I1 — Is). Expected counts were
calculated as row sums of Brorm and each By matrix. For all individuals that experienced infection,
the change in number of expected mosquito contacts was calculated for each infectiousness
stage, as compared to pre-exposure. Percent change was also calculated to account for variation

in healthy mosquito contact counts

Bi - Bnorm

Bnorm

We examined the importance of these variations in healthy mosquito contacts by
comparing those with the top 20% of expected contacts pre-exposure to the rest of the population
(bottom 80%). B matrices were also used to determine the percent of an individual’s mosquito

contacts that occurred at their home. Generalized additive models (GAMs) were examined for
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change in expected mosquitoes contacts, both as a number and a percent. Predictors and methods
for finding best-fit models are as mentioned above. All statistical analyses were performed in R

3.3.0 statistical computing software.

Results
Epidemic Dynamics

Among the 200 simulations run for each scenario, outbreaks occurred in 76% and 53.5%
when mobility changes were and were not considered, respectively (Table 4.2). When the
presymptomatic period was removed, only 55% and 39.5% of simulation led to outbreaks with
and without mobility change. In the simulations where outbreaks did not occur, the infection
only spread to a few people (maximum of 20) before leaving the population. For simulations
leading to epidemics, the inclusion of symptomatic mobility change increased the time to peak
infection by 8% (9 days) and increased the length of the epidemic by 5% (13.5 days) to reach the
epidemic’s end (Table 4.2) (Figure 4.3). These delays had minimal effects on the percent of the
population infected at peak prevalence and overall, with average changes of -0.7% and 0.2%,
respectively (Table 4.2, S4.1). Removing the presymptomatic period had minimal effects on
epidemic timing regardless of whether mobility changes were included, with epidemic length
decreasing by less than 3 days, on average (Table 4.2) (Figure 4.3). Without mobility change,
peak prevalence decreased by an average of 0.9% and total percent of individuals infected
decreased by an average 2.4% (Table 4.2, S4.3). In the presence of symptomatic mobility
changes, removal of the presymptomatic period caused a 5.7% decrease at peak prevalence and a
4% decrease in the percent of population infected, on average (Table 4.2, S4.3) (Figure 4.3).

Onward Transmission
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At a population level, the distributions of onward transmission (R) values were 5.4 (£ 5.1
SD) and 5.9 (+ 4.8 SD) without and with mobility change, respectively (Table 4.3) (Figure
S4.3). At an individual level, however, the average change in onward transmission when
mobility changes were considered (Rchange) was -15.1% (£ 29.9 SD) and the average change in
onward transmission for only primary bites at home (Rchange(home)) was 39.7% (£ 22.7 SD)
(Table 4.3) (Figure S4.4). Further, while Ryorm and Rmovement had similar values, primary bites at
home and at other locations seemed to contribute an equal amount to onward transmission for
Ruorm, Whereas primary bites at home had a much larger contribution for Rmovement (Table 4.3)
(Figure 4.4a). The majority of secondary infectious bites contributing to transmission occurred
at other houses for both Rnorm and Rmovement (Table 4.3) (Figure 4.4b).

The best-fit model for all of the onward transmission response variables was one
accounting for an individual’s biting suitability score, the number of mosquitoes in their home,
the percent of bites expected to occur at home pre-exposure, and all possible interactions
between these three (Table S4.4-S4.7, S4.9). There were, however, reduced models that
provided more straightforward trends to examine. For example, for models of onward
transmission (Rmovement) With single predictor variables, biting suitability score and number of
mosquitoes at home pre-exposure explained 32.3% and 27.7% of deviance, respectively, whereas
percent of bites expected at home pre-exposure only explained 9.3% of deviance (Table S4.5).
Further, 74.8% of deviance is explained in a model containing biting suitability, number of
mosquitoes at home, and their interaction, which is only 2.9% less than the best-fit model.
Independently, larger numbers of mosquitoes at home and higher biting suitability score both
increased the expected onward transmission value (Figure 4.5). Those individuals with larger

values of both saw an extra increase in expected onward transmission due to the interaction term,
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whereas those with high mosquito numbers and a low biting suitability score saw a decrease in
their expected effect (Figure 4.5). The effect was visible in the predicted values of onward
transmission, where increasing biting suitability score from 0 to 1 only increased predicted
onward transmission by 5 when there was a low mosquito count at home, compared to an
increase of 30 for those with high mosquito density at home (Figure 4.5).

Predictions of onward transmission without mobility change included (Ruorm) Were also
dependent on the interactions between biting suitability, number of mosquitoes present at home,
and percent of bites expected at home. Including a variable for the total number of mosquitoes in
all the houses an individual visited pre-exposure did not increase the fit of models (Table S4.4).
When an individual’s Rnorm value was accounted for, the percent change in onward transmission
due to mobility inclusion (Rchange) could be predicted by the percent of bites expected to occur at
home pre-exposure with 80.50% of deviance explained (Table S4.7). Accounting for the other
two variables and the interaction terms only increased explained deviance by 3.4% (Table S4.7).
When the percent of bites expected to occur at home pre-exposure was below 42%, there was a
predicted decrease in onward transmission, whereas those with greater than 42% of bites
expected at home pre-exposure saw increases in onward transmission when mobility was
accounted for (Figure 4.6a). The notable exception to this monotonically increasing effect was
the tempered increase in onward transmission for those who received their pre-exposure bites
almost exclusively at home (Figure 4.6a). When examining the change in onward transmission
only from primary bites at home (Rchange(home)), a majority of the deviance was explained in a
model with percent bites expected at home pre-exposure as well as biting suitability score, where
individuals with low biting suitability scores were predicted to have the biggest percent increases

in onward transmission when accounting for mobility (Table S4.7) (Figure 4.6b). When both
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variables were considered, the change in onward transmission from primary bites at home only
was predicted to be positive for all individuals, with the biggest percent increase for those with
low biting suitability scores and a small percent of bites at home pre-exposure and the most
tempered increase for those with almost all of their expected bites occurring at home pre-
exposure (Figure 4.6b). If Renange Was examined as a raw number rather than a percent change,
all three variables and their interaction terms were needed to achieve a good model fit (Table
S4.6).
Human-Mosquito Contacts During Illness

At the population level, the distribution of expected mosquito contacts appeared to be
similar throughout symptomatic mobility (Table S4.8) (Figure S4.5). When examining the
change in an individual’s expected contacts at each time point of symptoms, however, 57% of
individuals had a decrease in expected contact and 38% had an increased (Table 4.4) (Figure
S4.7-S4.8). Further, of those individuals who received the top 20% of expected mosquito
contacts pre-exposure, 24% had a large enough decrease in mosquito contacts on the first three
days after symptom onset to no longer be in the top 20% when symptomatic (Figure S4.6).

The percent change in expected mosquito contacts from pre-exposure to the first three
days after symptom onset was best explained by a GAM including biting suitability score,
number of mosquitoes at home pre-exposure, and percent of bites expected at home pre-
exposure, as well as their interactions, which explained 93% of deviance (Table S4.9). The
model with only a term for percent of bites expected at home pre-exposure, however, was able to
explain 92% of the deviance (Table S4.9). The effect of percent bites at home on percent change
in expected mosquito contacts was very similar to the effect on percent change in onward

transmission. Those with less than 42% of bites at home pre-exposure were predicted to have
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decreases in expected contacts on the first three days of symptoms while those with greater than
42% of bites at home pre-exposure were predicted to see increases in expected contacts (Figure
4.7). Individuals who received none of their bites at home pre-exposure were expected to have
the largest percent decrease, whereas those who received around 90% of their bites at home pre-
exposure had the largest percent increase (Figure 4.7). If change in expected mosquito contacts
was examined as a raw value rather than a percent change, all three variables and their
interactions were needed to provide an accurate prediction and explain a large amount of the
deviance (Table S4.9).

For the scenario where only 30% of cases experienced symptoms (and symptomatic
mobility change), the expected values and relative changes for onward transmission and human-
mosquito contacts had similar dynamics as in the case above where all individuals were

symptomatic (Table S4.10-S4.17, Figure S4.9-S4.15).

Discussion

Transmission of DENV is highly focal at the household level, likely due to the mobility
and biting behaviors of Ae. aegypti [23, 42-44]. Fine-scale human mobility has been shown to
expand this spatial scale and cause transmission to be characterized by human-mosquito contacts
at an individual’s home as well as the other houses they routinely visit (their activity space),
generating variation in exposure to mosquitoes [18, 20, 21, 30, 45]. This importance of both
primary bites at home and at other houses in contributing to onward transmission can be seen in
the distribution of Rnorm values when mobility changes are not included. While this may hold true
for the 70% of cases with inapparent infection, individuals with symptomatic infection

drastically change their movements during infectiousness [31]. These changes in mobility make
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an individual’s household mosquitoes contacts significantly more important for determining their
onward transmission potential, with the activity space playing a severely diminished role. This
shift in where mosquito contacts occur when an individual is infectious can lead to either
increased or decreased contact rates and onward transmission, largely based on what percent of
mosquito contacts were already expected to occur at home before mobility change.

An individual’s biting suitability has been previously identified as an important
determinant of their onward transmission potential [1]. While this held true in our analysis, we
found the effect to be dependent on the density of mosquitoes in an individual’s home. Those
with only a few mosquitoes in their home could go from lowest to highest biting suitability score
and cause 5 more secondary infections, whereas those with many mosquitoes in their home could
cause 30 more secondary cases. Indeed, individuals with low values in either biting suitability
score or number of mosquitoes at home were predicted to have low onward transmission,
partially due to the interaction effect of these two variables (Figure 4.5).

While an individual’s biting suitability cannot be changed, the number of mosquitoes in
their home can, which has significant implications for disease control. While reducing household
mosquitoes would be predicted to decrease onward transmission for all individuals, the effect
could be particularly drastic for those with high biting suitability given the synergistic effect of
the two factors on expected transmission. Further, those with a small number of mosquito bites
expected in their homes are predicted to see a decrease in onward transmission potential when
symptomatic mobility changes are accounted for.

One limitation of our study was the lack of an empirical social network to accurately
parameterize our model framework. However, using a random graph accounted for the

inhomogeneous nature of social interactions while still allowing conclusions to be generalized to
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multiple locations. Further, by wiring a new random social network at the beginning of each
simulation, it’s unlikely that outcomes will be caused by specific artifacts of the network
structure. The model was also limited by its size, being representative of a neighborhood rather
than an entire city. However, given that the most significant effects were seen at the individual
level (rather than the population-level), increasing the number of houses in the framework would
likely not have a drastic impact. While this model framework allowed for many different metrics
to be examined, there were limitations in what could be calculated from simulations due to the
stochastic nature. Further research should focus on possible advancements of the model and the
methods used to analyze the simulations.

There are numerous factors that can contribute an individual’s onward transmission
potential. In order to better understand the complex dynamics of disease transmission, we
developed a framework that examines the contribution of multiple heterogeneous factors, both
individually and in relation to each other. In particular, the coupling between mobility and
symptom severity was empirically parameterized to better understand its role in disease
dynamics. Symptomatic mobility change can have a significant impact on the relationship
between biting suitability, density of mosquitoes, and location where the majority of mosquito
contacts are occurring, leading to a spectrum of changes in expected mosquito contacts and
onward transmission potential. The interconnectedness of these factors may have an effect on the

relative contribution of symptomatic individuals to overall epidemic transmission dynamics.
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Tables

Table 4.1: Parameters that Vary by Infectiousness Stage. Values provided for individuals
when susceptible, and at each sub-stage of infectiousness based on data from [31, 38].

Stage of S I | I 1 I
infectiousness ! 2 3 4 3
Day of Symptoms - Presymptomatic | Days 1-3 Days 4-6 Days 7-9 | Days 10-12
Infectiousness —-—= 0.4 0.7 0.4 0.1 0.01
Time at home (%) 50% 50% 100% 80% 70% 50%
Fraction of original 1 1 0/3 1/3 2/3 1
houses being visited

Table 4.2: Infection Prevalence Based on Presence of Presymptomatic Period and/or
Mobility Changes. Infection prevalence data were analyzed from four scenarios: (1) no mobility
change occurred and the presymptomatic period was present, (2) no mobility change occurred
and no presymptomatic period was present, (3) mobility change occurred and the
presymptomatic period was present, and (4) mobility change occurred and no presymptomatic
period was present. For each scenario, the average time point was listed for when infection
prevalence reaches its maximum and reaches 0% at the end of epidemic. The percent of the
population infected during maximum infection prevalence was also listed, as well as the number
of simulations where an outbreak occurred. Time steps values were converted to days (1 time
step = 3 days).

Simulations Maximum When Maximum | Length of
Where Outbreak | Infection Prevalence Epidemic (days)
Occurred (of 200) | Prevalence (%) | Occurred (days)

No Changes 107 (53.5%) 19.8 (0.8) 112.5(11.1) 252.9 (24.3)

No Changes, 79 (39.5%) 18.9 (0.8) 112.2 (14.1) 255.9 (26.4)

No Presymptomatic

Mobility Changes 152 (76%) 19.1 (0.7) 121.5(13.8) 266.4 (26.1)

Mobility Changes, | 110 (55%) 13.4 (0.7) 124.2 (13.5) 268.8 (25.2)

No Presymptomatic
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Table 4.3: Average R Values With and Without Mobility Change and Change in R due to
Mobility Change Inclusion. Rnom values were calculated using an individual’s healthy
movement patterns, while Rmovement values accounted for changes in mobility throughout
infectiousness. Changes in R-values due to mobility inclusion were calculated for each
individual as a raw number and as a percent of Rnom value. Overall R-values were listed, as well
as R-values based on only primary bites occurring at home or at other houses.

Mean (sd) Onward Transmission

I

Mean (sd) Change in Onward

I Transmission with Movement Changes

| 9
Rnorm Rmovement I (#) (A)
1° bites at home 2.3(2.7) 4.3 (4.2) : 1.0(1.1) 39.74 (22.67)
1° bites at other 2.2(2.6) 1.1(1.2) ’ -1.9(1.9) -62.28 (9.13)
houses |
2° bites at infectious 0.3(0.4) 0.6 (0.7) ! 0.1(0.2) 31.86 (35.59)
individual’s home I
i
2° bites elsewhere 5.0 (4.7) 5.2(4.2) -1.5(3.2) -17.1 (28.97)
|
Total 5.4(5.1) 5.9 (4.8) -1.1(2.5) -15.14 (29.94)

Table 4.4: Average Change in Expected Mosquito Bites for Each Infectiousness Sub-stage
When Symptomatic Mobility Change is Occurring (I2— 14), Separated Based on Expected
Bite Values Pre-exposure. Average changes are given both as raw numbers and percent change
relative to number of expected bites pre-exposure.

Top 20% bites pre-exposure

Bottom 80% bites pre-exposure

symptom Onset

(#) (%) (#) (%)
Days 1-3 after -0.9 (3.8) -13.0 (48.9) -0.2 (0.7) -17.5(51.0)
symptom Onset
Days 4-6 after -0.3(2.7) -5.6 (37.1) -0.1(0.5) -8.7 (38.1)
symptom Onset
Days 7-9 after -0.1(1.6) -1.6 (22.1) -0.1(0.3) -4.9 (23.2)
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Figures

Figure 4.1: Diagram with Setup of Model Framework for Each Scenario and Each
Simulation Run. (a) For each scenario, (i) houses and larval sites are placed on a disc, humans
are assigned to each house, and mosquitoes are assigned to each house/larval site. (ii) Then,
distance-based mosquito mobility matrices are created with the probabilities of mosquitoes
moving from any house to any larval site (L) and any larval site to any house (F). (b) For each of
200 simulation runs, (i) a random social network (SN) is generated for humans by assigning each
person a degree (where 15% spend all of their time at home and have a degree of 0), then
randomly matching humans to each other while avoiding connections between members of the
same household. (ii) Using information on social network contacts and where each individual
lives, (iii) a human movement matrix, HM defines which houses individuals visit, weighted by
the number of social network contacts that live there. Using this mobility data, a matrix H is
created, which defines the proportion of time an individual spends at each house. Fifty percent of
time is spent at home and 50% of time is split between social contacts’ houses based on the edge
weights in HM. (c) Example of the human mobility network (H) configured for 50 houses is
provided. The top is the sub-network containing only connections between an individual and
their own home. The bottom is the sub-network containing only connections between an
individual and other houses. Blue square nodes represent houses and orange circle nodes
represent individuals. Edges between an individual and their own home are black and edges
connecting to other houses are gray. Edges are weighted by H matrix values, where thicker edges
reflect more time spent at a place.
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Figure 4.2: Diagram of Stochastic DENV Transmission Model. A household-level SEI model
is used for mosquitoes. For humans, an individual-based SEIR model is used. The I (infectious)
stage is divided into five sub-stages, each with their infectiousness value, shown here with
weighted arrows (shown in Table 3). Individuals can either progress to the next (I) infectious
sub-stage or move straight to the (R) recovered stage based on a probability function. The
probability of moving to the recovered stage is shown with weighted arrows.
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Figure 4.3: Proportion of Population Infected During Epidemic Simulations, by Scenario.
For each scenario and for each time step, the average proportion of infected hosts is calculated

across all simulation runs where an outbreak occurred. Standard deviations are included in the

shaded ribbons.
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Figure 4.4: Expected Onward Transmission Values With and Without Movement Changes
Accounted For, Separated by Where Primary Bites Occur and Where Secondary Bites
Occur. (a) gives onward transmission for primary bites occurring at home (red) and at other
houses (blue) both without (left) and with (right) movement change included. (from left to right:
Ruorm(home), Ruorm(other houses), Rmovement(home), and Rmovement(other houses)) (b) gives onward
transmission for secondary bites at the home of the primary infected individual (red) and at other

houses (blue).
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Figure 4.5: Smooth Functions and Predictions for Rmovement Based on a GAM Model
Containing Number of Mosquitoes in Home Pre-exposure, Biting Suitability Score, and
Their Interaction. On the left (i, ii, iii), the component smooths for each predictor variable are
provided. For the 1-d smooths (i, ii), the y-axis is the contribution of the predictor variable to the
fitted response, centered around 0 (with 0 denoted by a red dashed line). For the 2-d smooth for
the interaction term (iii), a heatmap with overlaid contours is provided. The values of the
contours represent the contribution of the interaction term to the fitted response. Positive values
are in red and negative values are in blue. On the right (iv) is the predicted values of onward
transmission based on biting suitability and number of mosquitoes at home pre-exposure,
presented as a heatmap with contours.
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Figure 4.6: Smooth Functions and Predictions for Percent Change in Rmovement and
Riovement(home) Based on GAM Models. (a) The smooth value for percent change in Rmovement,
predicted by percent of bites expected at home pre-exposure. As there is only one predictor
variable in this model, the y-axis represents the fitted response based on the predictor variable.
(b) Smooth values for percent change in Rmovement(home), predicted by biting suitability score
and percent of bites expected at home pre-exposure. On the left (i, i), the component smooths
for each predictor variable are provided. The y-axis is the contribution of the predictor variable
to the fitted response, centered around 0 (with 0 denoted by a red dashed line). On the right (iii)
is the predicted percent change in onward transmission from primary bites at home based on
biting suitability and percent of bites expected at home pre-exposure, presented as a heatmap

with contours.
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Supplemental materials

Table S4.1: Simulation Parameters with Set Values for All Scenarios.

Symbol | Value Definition

T 200 Number of time steps in simulation

v 10 Number of mosquito eggs per capita per feeding cycle

| f] 600 Number of houses

[1] 600 Number of aquatic habitats

g 4 Length of the larval stage (in feeding cycles)

SL 0.9 Mosquito survival between blood feeding (houses) and egg laying
Sg 0.9 Mosquito survival between egg laying and blood feeding (houses)
c 3 Pathogen incubation period in hosts

T 1 Pathogen incubation period in mosquitoes

Prnax 5 Maximum number of time steps for host infectiousness (I)

c(i) Host-to-mosquito transmission efficiency for infectiousness stage I;
b 0.75 Mosquito-to-host transmission efficiency

Table S4.2: Simulation Parameters Set for Each Scenario.

Definition

o Strength of density dependence on larval mosquitoes

Hh Number of hosts per house

L Probability of mosquito movement from house to larval site

F Probability of mosquito movement from larval site to house
larvae Number of larvae in each stage at each larval site

Smf Number of susceptible adult mosquitoes at each house

Sml Number of susceptible adult mosquitoes at each larval site

P Probability of host recovery at each stage of infectiousness

Host biting suitability

111
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Table S4.3: Cumulative New Infections Based on Presence of Presymptomatic Period
and/or Mobility Changes. Average time points when cumulative percent of new infections
reached 10%, 65%, and total percent infection. Average percent of the population infected was
also listed. Data were averaged across simulation runs for four scenarios: (1) no mobility change
occurred and the presymptomatic period was present, (2) no mobility change occurred and no
presymptomatic period was present, (3) mobility change occurred and the presymptomatic
period was present, and (4) mobility change occurred and no presymptomatic period was present.
Time steps values were converted to days (1 time step = 3 days).

Time When Cumulative
Percent of Population
Infected (days):

>10% > 65% Total Percent of
Population Infected
No Changes 81.6(10.8) |128.7(10.8) | 76.5(0.8)
No Changes, 82.8(13.5) |132.9(13.8) | 74.1(0.9)

No Presymptomatic
Mobility Changes 89.1(13.2) |137.7(13.8) | 76.7 (0.9)

Mobility Changes, 90.9(12.9) |150.9(13.5) |72.7 (0.9)
No Presymptomatic
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Table S4.4: Comparison of GAMs for Expected Onward Transmission Without Mobility
Change, Ruorm. Amount of deviance explained (%),degrees of freedom (DF), change in AICc
compared to the best fit model (AAICc), and model weight are provided for each model. The
best-fit model is highlighted in red.

Percent bites at home 0.54% 10.915 |5.47x10° | <0.001
Number of mosquitoes at home 13.57% 10.949 4,95 x105 | <0.001
Number of mosquitoes in activity space 2.97% 10.999 5.38 x10° | <0.001
Biting suitability score 37.69% 10.973 3.74 x10° | <0.001
Biting suitability score, 64.60% 37.925 1.65 x10° | <0.001

Number of mosquitoes at home,
Number of mosquitoes in activity space,
Percent bites at home

Biting suitability score, 69.13% 52.782 1.14 x10° | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Biting suitability score) X (Number of mosquitoes at home)

Biting suitability score, 65.40% 53.754 1.56 x10° | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Biting suitability score) X (Percent bites at home)

Biting suitability score, 67.25% 53.898 1.36 x10° | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Number of mosquitoes at home) X (Percent bites at home)

Biting suitability score, 77.35% 148.876 | 0.0 1.0
Number of mosquitoes at home,

Percent bites at home,

(Biting suitability score) X (Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.5: Comparison of GAMs for Expected Onward Transmission. Models are
Compared for Response Variables Rmovement and Rumovement(home). Amount of deviance
explained (%),degrees of freedom (DF), change in AICc compared to the best fit model (AAICc),
and model weight are provided for each model. The best-fit model is highlighted in red.

Percent bites at home 9.31% 10.960 4.22 x105 |<0.001 | 28.66% 10.997 5.09 x10° | <0.001
Number of mosquitoes at home | 27.73% 10.955 3.53x10° |<0.001 | 42.98% 10.974 4.26 x10° | <0.001
Biting suitability score 32.33% 10.949 3.33x105 |<0.001 | 20.02% 10.873 5.52 x105 | <0.001
Biting suitability score, 67.19% 28.742 1.16 x10° | <0.001 | 69.44% 28.872 1.95x105 | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 74.82% 43.336 3.59 x10% |<0.001 | 81.19% 44,528 1.55x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 69.41% 44.384 9.45 x10% | <0.001 | 76.21% 44.737 1.02 x10° | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 67.98% 44,901 1.08 x10° | <0.001 | 70.04% 44.207 1.88 x10° | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 77.67% 133.940 0.0 1.0 81.97% 120.327 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.6: Comparison of GAMs for Change in Expected Onward Transmission When
Mobility is Included. Models are Compared for Response Variables Rchange and
Rchange(home). Amount of deviance explained (%),degrees of freedom (DF), change in AICc
compared to the best fit model (AAICc), and model weight are provided for each model. The
best-fit model is highlighted in red.

Percent bites at home 32.10% 10.987 |2.57 x10° | <0.001 |32.78% 10.999 1.62x10° | <0.001
Number of mosquitoes at home | 8.74% 10.639 3.46 x10° | <0.001 | 26.46% 10.954 1.96 x105 | <0.001
Biting suitability score 17.59% 10.960 3.16 x10° | <0.001 | 6.34% 10.576 2.85x105 | <0.001
Biting suitability score, 54.48% 28.970 1.37 x10° | <0.001 | 49.99% 28.692 5.27 x10% | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 55.54% 43.868 1.30 x10° <0.001 |52.48% 43.806 3.38 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 61.33% 44,781 8.79 x10% | <0.001 |53.39% 44,521 2.67 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 59.28% 44,905 1.03 x10° | <0.001 |51.37% 44.580 4.24 x10* | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 71.14% 140.400 | 0.0 1.0 56.65% 121.847 | 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)




116

Table S4.7: Comparison of GAMs for Percent Change in Expected Onward Transmission
When Mobility is Included. Models are Compared for Response Variables Rchange and
Rechange(home) as Percentages. Amount of deviance explained (%),degrees of freedom (DF),
change in AICc compared to the best fit model (AAICc), and model weight are provided for each
model. The best-fit model is highlighted in red.

Percent bites at home 80.50% 10.999 |5.70 x10% | <0.001 | 40.24% 10999 |9.91x10* |<0.001
Number of mosquitoes at home | 46.61% 10.955 |3.60x10° | <0.001 | 4.78% 10.810 | 2.72x10° |<0.001
Biting suitability score 2.47% 10.243 |5.41x10° | <0.001 | 11.65% 10.825 | 2.44 x10° <0.001
Biting suitability score, 82.03% 28.689 |3.24 x10% | <0.001 | 52.63% 28.846 | 1.31x10* |<0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 82.86% 42,705 | 1.82x10% | <0.001 ] 52.83% 38.762 | 1.15x104 <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 83.58% 44142 | 5,18 x103 | <0.001 | 53.93% 44.231 | 2.78 x103 <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 82.16% 44.092 |3.01x10% | <0.001 | 52.79% 44416 |1.19x10° |<0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 83.87% 94979 | 0.0 1.0 54.29% 95.766 | 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)

Table S4.8: Average Expected Mosquito Bites for Each Sub-stage of Infectiousness After
Symptom Onset (I>— Is), Separated Based on Expected Bite Values Pre-exposure.

Top 20% bites Bottom 80% bites
pre-exposure pre-exposure
Pre-exposure 7.6(3.2) 1.6 (1.1)
Days 1-3 after 6.1(4.4) 1.2(1.1)
symptom Onset
Days 4-6 after 6.7 (4.0) 1.3(1.1)
symptom Onset
Days 7-9 after 7.2(3.5) 1.5(1.1)
symptom Onset
Days 10-12 after | 7.6 (3.3) 1.6(1.1)
symptom Onset
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Table S4.9: Comparison of GAMs for Change in Expected Mosquito Contacts in the First
Three Days After Symptom Onset When All Time is Spent at Home (sub-stage 12). Models
are Compared for Response Variable as a Raw Number and a Percentage. Amount of
deviance explained (%),degrees of freedom (DF), change in AICc compared to the best fit model
(AAICc), and model weight are provided for each model. The best-fit model is highlighted in
red.

Percent bites at home 24.58% 10.998 3.04 x10* |<0.001 | 92.08% 11.000 7.05 x10% | <0.001
Number of mosquitoes at home | 8.53% 10.053 3.75x10% |<0.001 |53.82% 10.958 7.21x105 | <0.001
Biting suitability score 7.21% 10.956 3.80 x105 |<0.001 | 1.66% 10.141 1.00 x10% | <0.001
Biting suitability score, 37.17% 28.962 2.36x10% | <0.001 |92.97% 28.646 2.66 x10% | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 39.72% 42.620 2.21x10% |<0.001 | 93.16% 43.992 1.62 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 46.37% 44.832 1.78 x103 | <0.001 | 93.38% 44317 4.25 x103 | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 46.69% 44.778 1.76 x10* | <0.001 | 93.02% 43.086 2.40 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 66.90% 139.163 0.0 1.0 93.46% 110.269 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Table 4.10: Average R Values With and Without Mobility Change and Change in R due to
Mobility Change Inclusion for Only Symptomatic Individuals in the Scenario with 70%
Asymptomatic Cases and 30% Symptomatic Cases. Rnom values were calculated using an
individual’s healthy movement patterns, while Rmovement values accounted for changes in mobility
throughout infectiousness. Changes in R-values due to mobility inclusion were calculated for
each individual as a raw number and as a percent of Rnom value. Overall R-values were listed, as
well as R-values based on only primary bites occurring at home or at other houses.

Mean (sd) Onward Transmission | Mean (sd) Change in Onward
| Transmission with Movement Changes
|
Rnorm Rmovement | (#) (%)

1° bites at home 3.3(3.3) 4.4(4.2) LT (1.1) 38.8 (21.0)
|

1° bites at other 3.1(3.1) 12(1.2) I19 (1.9) £62.3 (8.8)

houses |

2° bites at infectious 0.3(0.4) 0.5 (0.6) ' 0.0 (0.1) 31.9 (35.6)

individual’s home I
1

2° bites elsewhere 46 (4.3) 5.5(4.3) I 0.6 (1.8) -17.1(29.0)

Total 7.2 (5.5) 6.0 (4.8) I -11(2.4) -15.3 (29.2)
1
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Table S4.11: Comparison of GAMs for Expected Onward Transmission Without Mobility
Change, Rnorm, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic
Cases and 30% Symptomatic Cases. Amount of deviance explained (%),degrees of freedom
(DF), change in AICc compared to the best fit model (AAICc), and model weight are provided
for each model. The best-fit model is highlighted in red.

Percent bites at home 1.11% 10.849 | 4.96 x10° | <0.001
Number of mosquitoes at home 14.12% 10.976 4.51 x105 | <0.001
Number of mosquitoes in activity space 2.78% 10.694 4.91 x10° | <0.001
Biting suitability score 41.31% 10.969 3.29 x10° | <0.001
Biting suitability score, 67.43% 37.909 1.41 x10° | <0.001

Number of mosquitoes at home,
Number of mosquitoes in activity space,
Percentbites at home

Biting suitability score, 72.53% 52.877 8.63 x10* | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Biting suitability score) X (Number of mosquitoes at home)

Biting suitability score, 38.56% 53.765 | 1.30 x10° | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Biting suitability score) X (Percent bites at home)

Biting suitability score, 69.26% 53.764 | 1.22 x10° | <0.001
Number of mosquitoes at home,

Number of mosquitoes in activity space,

Percent bites at home,

(Number of mosquitoes at home) X (Percent bites at home)

Biting suitability score, 79.04% 142.323 | 0.0 1.0
Number of mosquitoes at home,

Percent bites at home,
(Biting suitability score) X (Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.12: Comparison of GAMs for Expected Onward Transmission for Only
Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and 30%
Symptomatic Cases. Models are Compared for Response Variables Rmovement and
Rumovement(home). Amount of deviance explained (%),degrees of freedom (DF), change in AICc
compared to the best fit model (AAICc), and model weight are provided for each model. The
best-fit model is highlighted in red.

Percent bites at home 10.57% 10.863 1.45 x10° | <0.001 | 29.22% 10.924 1.42 x105 | <0.001
Number of mosquitoes at home | 29.11% 10.784 1.22 x10° | <0.001 | 43.93% 10.841 1.20x105 | <0.001
Biting suitability score 34.15% 10.823 1.15 x10° | <0.001 | 20.96% 10.156 1.52 x105 | <0.001
Biting suitability score, 70.12% 28.580 3.99 x10% |<0.001 | 71.25% 28.480 5.56 x10% | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 78.15% 41.359 9.96 x103 |<0.001 | 83.20% 42.973 4.27 x10® | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 72.73% 43.812 3.12 x10% | <0.001 | 78.19% 44119 2.92 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 70.63% 44,508 3.82 x10% | <0.001 | 71.75% 41.929 5.40 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 80.34% 119.280 0.0 1.0 83.95% 89.401 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.13: Comparison of GAMs for Change in Expected Onward Transmission When
Mobility is Included for Only Symptomatic Individuals in the Scenario with 70%
Asymptomatic Cases and 30% Symptomatic Cases. Models are Compared for Response
Variables Rchange and Rcnange(home). Amount of deviance explained (%),degrees of freedom
(DF), change in AICc compared to the best fit model (AAICc), and model weight are provided
for each model. The best-fit model is highlighted in red.

Percent bites at home 35.47% 10970 | 8.35x10* |<0.001 |36.18% 10.999 5.44 x10* | <0.001
Number of mosquitoes at home | 10.79% 10.444 1.15 x10° | <0.001 | 30.81% 10.337 6.21 x10% | <0.001
Biting suitability score 20.24% 10.903 1.04 x10° | <0.001 | 7.84% 8.761 8.96 x10* | <0.001
Biting suitability score, 59.00% 28.916 4.02 x10* | <0.001 |56.72% 27.218 1.73 x10* | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 60.35% 41.236 3.70 x10* | <0.001 | 60.03% 41.357 9.73 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 66.63% 44,367 2.05 x10* | <0.001 | 60.39% 42.660 8.86 x103 | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 61.99% 44,797 3.30 x10* | <0.001 |58.10% 40.703 1.42 x10* | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 73.12% 132449 | 0.0 1.0 63.93% 94.946 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.14: Comparison of GAMs for Percent Change in Expected Onward Transmission
When Mobility is Included for Only Symptomatic Individuals in the Scenario with 70%
Asymptomatic Cases and 30% Symptomatic Cases. Models are Compared for Response
Variables Rchange and Rcnange(home) as Percentages. Amount of deviance explained
(%),degrees of freedom (DF), change in AICc compared to the best fit model (AAICc), and
model weight are provided for each model. The best-fit model is highlighted in red.

Percent bites at home 82.38% 10.999 |2.01 x10% | <0.001 | 44.05% 10995 | 3.02x10* |<0.001
Number of mosquitoes at home | 49.45% 10956 | 1.21 x10° | <0.001 | 4.84% 10422 | 8.10x10* |<0.001
Biting suitability score 2.50% 7.769 1.84 x105 | <0.001 | 12.48% 9.630 7.30 x10% <0.001
Biting suitability score, 83.83% 25.628 | 1.18 x10* | <0.001 | 57.44% 28.521 | 4.08 x103 <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 84.60% 38.348 | 7.21x103 | <0.001 | 57.58% 35.900 |3.78x103® |<0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 85.38% 41127 |2.26 x103 | <0.001 | 58.95% 41963 | 6.47 x10? <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 84.04% 39.580 | 1.06 x10* | <0.001 | 57.57% 42.877 | 3.81x10° |<0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 85.73% 87.289 | 0.0 1.0 59.25% 70.557 | 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Table S4.15: Average Expected Mosquito Bites for Each Sub-stage of Infectiousness After
Symptom Onset (I — Is) for Only Symptomatic Individuals in the Scenario with 70%
Asymptomatic Cases and 30% Symptomatic Cases, Separated Based on Expected Bite

Values Pre-exposure.

symptom Onset

Top 20% bites Bottom 80% bites
pre-exposure pre-exposure

Pre-exposure 7.4(3.1) 16(1.1)

Days 1-3 after 6.1(4.2) 1.2(1.1)

symptom Onset

Days 4-6 after 6.6 (3.8) 14 (1.1)

symptom Onset

Days 7-9 after 7.1(3.3) 1.5(1.1)

symptom Onset

Days 10-12 after | 7.5(3.1) 1.6 (1.1)

Table 4.16: Average Change in Expected Mosquito Bites for Each Infectiousness Sub-stage
When Symptomatic Mobility Change is Occurring (12— I4), for Only Symptomatic
Individuals in the Scenario with 70% Asymptomatic Cases and 30% Symptomatic Cases,
Separated Based on Expected Bite Values Pre-exposure. Average changes are given both as
raw numbers and percent change relative to number of expected bites pre-exposure.

Top 20% bites pre-exposure Bottom 80% bites pre-exposure
(#) (%) (#) (%)

Days 1-3 after -0.8 (3.6) -12.6 (47.2) 0.2 (0.7) -17.3 (49.9)
symptom Onset

Days 4-6 after -0.3 (2.5) 5.9 (35.5) 0.1 (0.5) -9.0 (36.9)
symptom Onset

Days 7-9 after -0.09 (1.5) -2.0(20.7) {0.05 (0.3) -5.0 (22.5)
symptom Onset




124

Table S4.17: Comparison of GAMs for Change in Expected Mosquito Contacts in the First
Three Days After Symptom Onset When All Time is Spent at Home (sub-stage I2) for Only
Symptomatic Individuals in the Scenario with 70% Asymptomatic Cases and 30%
Symptomatic Cases. Models are Compared for Response Variable as a Raw Number and a
Percentage. Amount of deviance explained (%),degrees of freedom (DF), change in AICc
compared to the best fit model (AAICc), and model weight are provided for each model. The
best-fit model is highlighted in red.

Percent bites at home 23.54% 10962 | 7.95x10* |<0.001 | 93.59% 11.000 | 2.12x10* |<0.001
Number of mosquitoes at home | 8.31% 10.402 9.68 x10* |<0.001 | 56.03% 10.951 2.05x10° | <0.001
Biting suitability score 7.38% 10.886 9.78 x10* |<0.001 | 1.71% 8392 2.81x10° | <0.001
Biting suitability score, 36.54% 28.872 6.18 x10* |<0.001 | 94.43% 25.907 7.86 x10® | <0.001

Number of mosquitoes at home,
Percent bites at home

Biting suitability score, 39.14% 40.747 5.78 x10% | <0.001 | 94.60% 39.624 5.01 x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)

Biting suitability score, 45.56% 44,163 4.72 x10* | <0.001 | 94.82% 41.467 1.00 x10® | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Percent bites at home)

Biting suitability score, 46.96% 44.717 4.47 x10* | <0.001 | 94.47% 39.000 7.25x10% | <0.001
Number of mosquitoes at home,
Percent bites at home,

(Number of mosquitoes at home)
X (Percent bites at home)

Biting suitability score, 66.90% 124530 | 0.0 1.0 94.49% 73.152 0.0 1.0
Number of mosquitoes at home,
Percent bites at home,

(Biting suitability score) X
(Number of mosquitoes at home)
X (Percent bites at home)
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Figure S4.1: Equations for human and mosquito transmission models, as seen in [16].
(A)Stochastic, individual-based SEIR dynamics for hosts. priiis a failure distribution that defines
the probability of recovering after i time steps. (B)Stochastic, household-level SEI dynamics for
mosquitoes. Bernoulli, Binomial, and Multinomial functions generate random numbers from
those distributions with the supplied parameters. See Tables S4.1-4.2 for parameter definitions.
A

S(t+ 1) =Bernoull (sm.(l b1 M“'"“°'““"“"'”“) B S(t+1)=Multinomial (A:(¢ +1),F)
+Multinomial(S"(r),LF)
Eo(t+1)=S5(1)—S(t+1)
S"(t+D)=S"(t+1)
E(t+1)=E._ (1) — Binomial(Multinomial(S'(t+ 1),U),cI(1))

Lt+1)=E; (1) Eo(t+1)=S8(t+1)—S"(t+1)

l,'(f+ 1)= Bemoulli(],-_|(t),l _pfail(i_ 1)) E'e([-f- l): Mullinomial(E",_ |(f) LF)

R+ D=RO+ (L HO+E )= JHE+D) gy Multinomial(I'(1)+ E'._, (2), LF)

Figure S4.2: Mobility Values During Illness (in 3-day Intervals).

(A) Average number of locations visited per 3-day period. (B) Average proportion of time spent
at home per 3-day period. Significant differences, denoted by letters, were detected using
pairwise paired Wilcoxon Sign Rank tests with Bonferroni’s correction to account for a family-
wise error-rate of 0.05. All significant differences had p-values < 0.05.
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Figure S4.3: Distribution of Ryorm and Rmovement Values. Outliers were removed.
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Figure S4.4: Distribution of Rchange, Rehange(home), and Rchange(other houses) Values. Outliers
were removed. The red line represents no change.
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Figure S4.5: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage.

I

Pre symptomatic Days 1-3 Days 4-6 Days 7-9 Days 10-12
Day of Symptoms

Figure S4.6: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage,
Separated Based on Top 20/Bottom 80% of Expected Bites Pre-exposure.
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Figure S4.7: Distribution of Change in Expected Mosquito Contacts at Each Infectious
Sub-stage Relative to Pre-exposure Values, Separated Based on Top 20/Bottom 80% of
Expected Bites Pre-exposure.
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Figure S4.8: Distribution of Percent Change in Expected Mosquito Contacts at Each
Infectious Sub-stage Relative to Pre-exposure Values, Separated Based on Top 20/Bottom

80% of Expected Bites Pre-exposure.
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Figure S4.9: Distribution of Rnorm and Rmovement Values for Only Symptomatic Individuals
in the Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases. Outliers were

removed.
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Figure S4.10: Distribution of Rchange, Rehange(home), and Rehange(0ther houses) values for
Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and 30%
Symptomatic Cases. Outliers were removed. The red line represents no change.
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Figure S4.11: Expected Onward Transmission Values With and Without Movement
Changes Accounted For, Separated by Where Primary Bites Occur and Where Secondary
Bites Occur, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic
Cases and 30% Symptomatic Cases. (a) gives onward transmission for primary bites occurring
at home (red) and at other houses (blue) both without (left) and with (right) movement change
included. (from left to right: Rnorm(home), Ruorm(other houses), Rmovement((home), and
Rmovement(Other houses)) (b) gives onward transmission for secondary bites at the home of the
primary infected individual (red) and at other houses (blue).
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Figure S4.12: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-stage
for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases and
30% Symptomatic Cases.
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Figure S4.13: Distribution of Expected Mosquito Contacts at Each Infectiousness Sub-
stage, for Only Symptomatic Individuals in the Scenario With 70% Asymptomatic Cases
and 30% Symptomatic Cases, Separated Based on Top 20/Bottom 80% of Expected Bites
Pre-exposure.
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Figure S4.14: Distribution of Change in Expected Mosquito Contacts at Each Infectious
Sub-stage Relative to Pre-exposure Values, for Only Symptomatic Individuals in the
Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases, Separated Based
on Top 20/Bottom 80% of Expected Bites Pre-exposure.
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Figure S4.15: Distribution of Percent Change in Expected Mosquito Contacts at Each
Infectious Sub-stage Relative to Pre-exposure Values, for Only Symptomatic Individuals in

the Scenario With 70% Asymptomatic Cases and 30% Symptomatic Cases, Separated
Based on Top 20/Bottom 80% of Expected Bites Pre-exposure.
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Chapter 5: Conclusion

Summary of Results

The overall goal of this research was to determine the importance of dynamic human
mobility on human-mosquito contact networks that lead to DENV transmission heterogeneity.
Chapters 2 and 3 describe the mobility changes seen for individuals with symptomatic dengue
infection in Iquitos, Peru and for their social network contacts. In Chapter 2, I found empirical
evidence of the coupling between human mobility and symptom severity, with symptomatic
dengue cases experiencing mobility changes throughout their illness period, dependent on both
the day of illness and their subjective sense of well-being. The largest decrease in mobility
occurred during the first three days of symptoms, which is also the time when infectiousness
peaks for dengue infection. Further, while individuals experienced changes in the types of
locations they visited, the proportion of residential location being visited stayed consistent
throughout illness.

In Chapter 3, I describe how symptomatic dengue infection can also cause mobility
changes for the social network contacts of the ill individual. These changes were, however, much
less common than expected. Contacts designated as “routine visitors” continued to visit the
symptomatic individual during illness, most with awareness of the illness. While the vast
majority of symptomatic individuals received help, most caregivers were housemates of the
individual and while they may have made slight mobility changes, only 28% made changes
drastic enough for their work to be affected. The largest effect was seen when female adults were
ill, likely because they acted as the caregiver of the house for their children and/or spouse,

whereas when they were ill the working spouse would have to change their schedule to help.
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Chapter 4 examines the impact that symptomatic mobility change can have on human-
mosquito contacts and onward transmission of DENV. When accounting for dynamic mobility
change throughout the illness period (parameterized based on Chapter 2), there were significant
changes in the number of expected mosquito bites an infectious individual would receive and the
location they would occur. Consequently, the vast majority of primary infectious bites (bites
where an infectious individual transmits DENV to a susceptible mosquito) contributing to an
individual’s expected onward transmission occurred in their home, with the rest of their activity
space playing a severely diminished role. Comparatively, when an individual was susceptible the
home and the activity space contributed equally to infectious mosquito exposure. Therefore,
accounting for mobility change when symptomatic leads to a disconnect between the exposure
and onward transmission processes.

This distinction between exposure and onward transmission is particularly important in
the lens of dengue prevention and control. A common control method is reactive insecticide
spraying, focusing on homes of reported dengue cases. This approach may help decrease onward
transmission of the virus by symptomatic individuals, due to the amplified role of the home;
however, it may only be marginally successful in preventing exposure to DENV, given the role
of the activity space. Further, the importance of the activity space for presymptomatic and
asymptomatic infectiousness will likely cause reactive spraying to fail in controlling an
epidemic. The best strategy for preventing an epidemic may be limiting exposure by practicing
avoidance behavior: susceptible individuals (or those without symptoms) not visiting houses
with infectious individuals (and likely infectious mosquitoes). We found in Chapter 3, however,
that this prevention practice was not very common for the social contacts of symptomatic dengue

casces.
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In this dissertation, I found empirical evidence of a coupling between human mobility
and symptom severity. This coupling, and other heterogeneous factors, were included in a model
of disease transmission in order to better understand how each factor impacts disease dynamics,
both individually and in relation to the other heterogeneities. The results emphasized the
importance of couplings in determining the people and places that drive disease transmission.

Future Work

The results of this research lead to multiple avenues for future exploration. Future studies
on the mobility changes of caregivers should also be considered. While only 28% of caregivers
have large enough changes for their work to be affected, there are likely smaller changes in
mobility that are occurring to accommodate the ill individual. While previous studies have been
done on caregiving behavior, they focus on the monetary effect of caregiving, rather than the
effect on daily patterns. Studies on the mobility changes of those living with symptomatically ill
individuals could provide more robust data to accurately predict the effect of mobility on DENV
transmission [1-6].

Further, given the predicted impacts of symptomatic mobility change on heterogeneous
DENYV transmission (seen in Chapter 4), it is imperative to also examine the possible effects of
mobility changes by the social network contacts of the ill individuals. In Chapter 4 our model
assumed the social contacts of a symptomatic individual stop visiting during the illness period. In
Chapter 3, however, routine visitors continued to visit throughout the individual’s illness.
Accounting for this could have a large effect on DENV transmission, as susceptible individuals
could be exposed to the infectious mosquitoes in the ill person’s home. Further, caregiving

behavior was shown to affect the work of approximately a third of helpers, the vast majority of
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whom were housemates. This is another mobility behavior that could affect DENV transmission
and should be further explored.

Another important line of research that should be considered is the role of
presymptomatic and asymptomatic individuals. Approximately 70% of dengue infections are
characterized by mild or no symptoms [7-9]. Further, DENV viremia reaches levels infectious to
mosquitoes a few days prior to symptom onset, leading to a pre-symptomatic infectious period
during which individuals’ routine is not impacted by illness [10, 11]. If individuals with
presymptomatic or asymptomatic infectiousness act as caregivers/visitors, spending time at the
home of the symptomatically ill individual and possibly decreasing time at other locations could
impact their expected onward transmission.

Human mobility patterns can be impacted in a variety of ways in the presence of
symptomatic dengue transmission, all of which have the ability to affect exposure to human-
mosquito contacts and onward DENV transmission. Here, we described the mobility changes of
the symptomatically ill individual and their social network contacts and examined the possible
impacts of symptomatic mobility changes. Further research can focus on the impact of social
network contacts changing their mobility, the importance of “hidden” infectiousness
(presymptomatic and asymptomatic infection), and the efficacy of reactive vector control in

order to better understand the complex interaction of symptoms, mobility, and infectiousness.
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