Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Zitong Pei

Date

The Reduced Unitary Whitehead Groups over Function Fields of p-adic Curves

By

Zitong Pei Doctor of Philosophy

Mathematics

Raman Parimala, Ph.D. Advisor

Suresh Venapally, Ph.D. Co-advisor Committee Member

Victoria Powers, Ph.D. Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D. Dean of the James T. Laney School of Graduate Studies

Date

The Reduced Unitary Whitehead Groups over Function Fields of *p*-adic Curves

By

Zitong Pei Master of Science

Advisor: Raman Parimala, Ph.D. Co-advisor: Suresh Venapally, Ph.D.

An abstract of A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics 2024

Abstract

Reduced Unitary Whitehead Groups over Function Fields of *p*-adic Curves By Zitong Pei

The study of the Whitehead groups of semi-simple simply connected groups is classical with an abundance of new open questions concerning the triviality of these groups. The Kneser-Tits conjecture on the triviality of these groups was answered in the negative by Platanov for general fields. There is a relation between reduced Whitehead groups and R-equivalence classes in algebraic groups.

Let G be an algebraic group over a field F. Let RG(F) be the equivalence class of the identity element in G(F). Then RG(F) is a normal subgroup of G(F) and the quotient G(F)/RG(F) is called the group of R-equivalence classes of G(F). It is well known that for the semi-simple simply connected isotropic group G over F, the Whitehead group W(G, F) is isomorphic to the group of R-equivalence classes.

Suppose that D_0 is a central division F_0 -algebra for a field F_0 . If the group $G(F_0)$ of rational points is given by $SL_n(D_0)$ for an integer n > 1, then $W(G, F_0)$ is the reduced Whitehead group of D_0 . Let F be a quadratic field extension of F_0 and D be a central division F-algebra. Suppose that D has an involution of second kind τ such that $F^{\tau} = F_0$. If the hermitian form h_{τ} of τ is isotropic and the group $G(F_0)$ is given by $SU(D, h_{\tau})$, then $W(G, F_0)$ is isomorphic to the reduced unitary Whitehead group of D.

Let F_0 be the function field of a *p*-adic curve. Let F/F_0 be a quadratic field extension. Let A be a central simple algebra over F. Assume that the period of A is 2 and A has a unitary F/F_0 involution. We provide a proof for the triviality of the reduced unitary Whitehead group of A.

The Reduced Unitary Whitehead Groups over Function Fields of *p*-adic Curves

By

Zitong Pei Master of Science

Advisor: Raman Parimala, Ph.D. Co-advisor: Suresh Venapally, Ph.D.

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics 2024

Acknowledgments

This thesis is the culmination of a journey that I could not have completed alone. I owe my deepest gratitude to those who have been part of this adventure.

To my advisors, Dr. Raman Parimala and Dr. Suresh Venapally, your wisdom, patience, and encouragement have been my guiding stars. Your belief in this topic, even when I wavered, kept me moving forward. Thank you for pushing me to think deeper and aim higher.

To the incredible members of my committee, Dr. Raman Parimala, Dr. Suresh Venapally, and Dr. Victoria Powers, your insights and feedback were invaluable. Each of your suggestions brought clarity and strength to my work. I am profoundly grateful for your time and effort.

To my teaching mentors, Dr. Juan Villeta-Garcia and Dr. Bree Ettinger, your guidance has been instrumental in shaping my teaching philosophy and career.

To my Emory Math Circle group, Dr. Juan Villeta-Garcia, Elle Buser, Sreejani Chaudhury, Andrew Kamin, Sabrina Li, and Alexis Newton, thank you for providing an enriching experience that has significantly contributed to my teaching journey. This invaluable experience has greatly enhanced my career.

To our esteemed Academic Degree Program Coordinator, Terry Ingram, your patient guidance has been profoundly supportive whenever I encountered challenges with procedural complexities.

A huge shout-out to my friends and colleagues, Jack Barlow, Nivedita Bhaskhar, Sreejani Chaudhury, Jayanth Guhan, Guangqiu Liang, Shilpi Mandal, and Sumit Mishra. Your camaraderie and support have been invaluable.

To my family, words cannot express my gratitude. Mom and Dad, you have been my pillars of strength. Your unwavering belief in me has been my driving force. Yanyu, your endless love and unwavering support have seen me through the toughest moments.

Contents

1	Introduction		1	
	1.1	An Introduction	1	
	1.2	Organization	3	
2	Alg	ebras with Involutions	4	
	2.1	Central Simple Algebras: An Introduction	4	
	2.2	Unitary Involutions: Existence Criterion and Properties	13	
3	Whitehead Groups			
	3.1	Reduced Whitehead Group: SK_1	20	
	3.2	Reduced Unitary Whitehead Group: SK_1U	22	
	3.3	$R\mathchar`-$ Equivalence and Whitehead Groups of Algebraic Groups	25	
4	Patching 28			
	4.1	Patching for Vector Spaces	28	
	4.2	Local-Global Principles over Arithmetic Curves	30	
5	SK_1U over Function Fields of <i>p</i> -adic Curves			
	5.1	The Plan of the proof	37	
	5.2	Preliminaries	39	
	5.3	Weak Approximations over Global Fields	41	
	5.4	Complete Discretely Valued Fields	44	

5.5	Two Dimensional Complete Fields	47
5.6	Choice at Nodal Points	52
5.7	Choices at Codimension One Points and Curve Points	54
5.8	Choice of U	60
5.9	The main theorem	62

Chapter 1

Introduction

1.1 An Introduction

The study of Whitehead groups of semi-simple, simply connected groups constitutes a classical field, yet it remains replete with numerous open questions concerning the triviality of these groups.

Let F_0 be a field. Typically, we assume that the characteristic of F_0 is not equal to 2 unless otherwise specified. We define X as an F_0 -variety when X is a geometrically integral and separable scheme of finite type over F_0 . X is said to be F_0 -rational if the function field of X is purely transcendental over F_0 . X is said to be F_0 -stably rational if $X \times_{F_0} \mathbb{A}_{F_0}^n$ is F_0 -rational. Let G be a smooth connected linear algebraic group over F_0 . G is said to be F_0 -(stably) rational if its underlying variety if F_0 -(stably) rational. Let $G(F_0)$ denote the group of F_0 -rational points of G. Two points $\alpha, \beta \in G(F_0)$ are defined to be R-equivalent if there is a rational map $f : \mathbb{A}_{F_0}^1 \dashrightarrow G$ such that $f(0) = \alpha$ and $f(1) = \beta$. The definition of R-equivalence was introduced by Manin [19] when studying cubic hypersurfaces.

For the smooth connected linear algebraic group G, R-equivalence is actually an equivalence relation; let $RG(F_0)$ denote the equivalent class of the identity $e \in$ $G(F_o)$. Then $RG(F_0)$ is a normal subgroup of $G(F_0)$; there is a bijection of sets $G(F_0)/RG(F_0) \longleftrightarrow G(F_0)/\sim (cf. [2], [28])$. Therefore, the quotient set $G(F_0)/\sim$ has a group structure. The group of R-equivalence classes, $G(F_0)/RG(F_0)$, is very useful while studying the rationality problem for linear algebraic groups. The rationality problems for linear algebraic groups have a long history. We are interested in the case when G is a semi-simple simply connected isotropic algebraic group. Let $G^+(F_0)$ denote the normal subgroup of $G(F_0)$ generated by the conjugates of F_0 -points of the unipotent radical of a proper F_0 parabolic subgroup of G. The factor group $G(F_0)/G^+(F_0)$, denoted by $Wh(G, F_0)$, is called the Whitehead group for G over F_0 . In this case, $Wh(G, F_o) \cong G(F_o)/RG(F_o)$ ([28]). There is a conjecture on the Whitehead group for G:

Conjecture (Kneser-Tits). Is it true that $Wh(G, F_o)$ is trivial?

We consider two special cases:

• Case I

Let A_0 be a central simple F_0 -algebra. Let $[A_0^*, A_0^*]$ denote the commutator subgroup of A_0 . Let $SL_1(A_0) = \{a_0 \in A_0 | Nrd_{A_0/F_0}(a_0) = 1\}$. Let $SK_1(A_0) =$ $SL_1(A_0)/[A_0^*, A_0^*]$. We call it the reduced Whitehead group of A_0 . If $G(F_0) =$ $SL_1(A_0)$, then $Wh(G, F_0) \cong G(F_0)/RG(F_0) \cong SK_1(A_0)$ ([28]).

• Case II

Let F/F_0 be a quadratic field extension. Let A be a central simple F-algebra. Assume that A has a unitary F/F_0 -involution τ . Let $\Sigma'_{\tau}(A) = \{a \in A^* | Nrd_{A/F}(a) \in F_0\}$; let $\Sigma_{\tau}(A)$ denote the subgroup of A^* generated by the set $\{a \in A^* | \tau(a) = a\}$. Assume that the hermitian form h_{τ} is non-singular and isotropic. Let $SK_1U(A,\tau) = \Sigma'_{\tau}(A)/\Sigma_{\tau}(A)$. We call it the reduced unitary Whitehead group of A. If $G(F_0) = SU(A,h_{\tau})$, then $Wh(G,F_0) \cong G(F_0)/RG(F_0) \cong SK_1U(A,\tau)([28])$. Platonov firstly proved that $SK_1(A_0)$ can be non-trivial; then Platonov & Yanchevskii proved that $SK_1U(A)$ can be non-trivial. See reference [4]. We will subsequently explore a result by Nivedita Bhaskhar ([3]), adding depth to our analysis.

Let p be a prime; let K be a p-adic field. Let C be a curve over K, i.e. a smooth, projective, and geometrically integral K-scheme of finite type with dimension 1; let F_0 be the function field of C. Let F/F_0 be a quadratic field extension; let A be a central simple F-algebra. Assume that the period of A is a prime ℓ ; assume that Ahas a unitary F/F_0 -involution τ_A . We start from a combined result from Nivedita and Yanchevskii.

Theorem 1.1.1 (cf. [3], [32]). If $\ell > 2, p \neq \ell$, and F contains a primitive ℓ^{2th} root of unity, then $SK_1U(A, \tau_A) = 1$.

Given the theorem, one might ask about the case when the period $\ell = 2$. We state the aim of the thesis, which includes the case $\ell = 2$.

Theorem 1.1.2. If $\ell = 2$ and $p \neq \ell$, then $SK_1U(A, \tau_A) = 1$.

1.2 Organization

Chapter 2 provides a detailed description of algebras with unitary involution, which serves as the foundational basis for our study.

Chapter 3 introduces the concepts of reduced Whitehead groups and reduced unitary Whitehead groups. Additionally, it includes a comprehensive discussion on R-equivalence.

Chapter 4 presents our primary methodological approach: patching. This technique, derived from algebraic geometry, is particularly advantageous in our case, especially when the base field is the function field of a p-adic curve.

Chapter 5 demonstrates a positive resolution to the main theorem utilizing the patching method.

Chapter 2

Algebras with Involutions

The focal point of this chapter is the exploration of basic objects known as central simple central algebras. While these entities can be analyzed within the broader framework of simple algebras, our discussion primarily revolves around the distinctive properties and principles governing central simple algebras. For those interested in delving deeper into related concepts, we suggest consulting authoritative texts such as [7] and [18], which offer comprehensive insights into general theories concerning simple algebras, separable algebras, and Azumaya algebras.

We assume that the characteristics of all the fields are not equal to 2.

2.1 Central Simple Algebras: An Introduction

Let F be a field, and let A be an F-algebra. We say that A is a *central simple* F-algebra if the following three conditions are satisfied:

(1) A has no nontrivial two-sided ideal;

- (2) The central of A is F;
- (3) The dimension of A as an F-vector space is finite.

For example, the ring of matrices $M_n(F)$ over a field F is a central simple Falgebra.

In fact, every central simple algebra can be regarded as a matrix algebra over a division ring D. We are prepared to present the structure theorem of central simple algebras.

Theorem 2.1.1 (Wedderburn, Theorem 3.2.6, [7]). Let A be a central simple algebra over a field F. Then A is isomorphic to a matrix algebra $M_n(D)$ over a finite dimensional central division F-algebra D. The central division algebra D and the number n are uniquely determined by the isomorphism.

There is a special case of the Theorem 2.1.1. Assume that F is an algebraic closed field. Then $A \cong M_n(D)$ for a finite dimensional central division F-algebra D. Assume that there is an element $d \in D \setminus F$. Then there is a sub-algebra of D generated by F and d, which is denoted by F[d]. Since D is a division ring and $\dim_F(D)$ is finite, F[d] is an integral domain and $\dim_F(F[d])$ is finite. Therefore, F[d] is a finite field extension of F. Since we assume that F is algebraic closed, F = F[d] = D and $A \cong M_n(F)$.

Let A and B be two central simple F-algebras. We say that A and B are similar if $A \cong M_{n_1}(D)$ and $B \cong M_{n_2}(D)$. We use the notation Br(F) to denote the set of similarity classes of central simple F-algebras, and use $[A] \in Br(F)$ to represent the similarity class of A. For example, $[F] = [M_s(F)]; [A] = [A \otimes_F M_n(F)].$

In fact, the set Br(F) has a group structure by the following theorem.

Theorem 2.1.2 (cf. Chapter 29, [18]). Let A, B, A', and B' be central simple F-algebras.

(1) $A \otimes_F B$ is a central simple F-algebra;

(2) Let A^{op} denote the opposite algebra of A, then A^{op} is a central simple F-algebra and $[A \otimes_F A^{op}] = [F] \in Br(F);$

(3) If
$$[A] = [A']$$
 and $[B] = [B']$, then $[A \otimes_F A'] = [B \otimes_F B'] \in Br(F)$.

Combined with the check of the associativity and commutativity, we obtain the

following corollary.

Corollary 2.1.3. Define an operation "+" on Br(F): $[A] + [B] = [A \otimes_F B]$. Then (Br(F), +) is a commutative group.

By Theorem 2.1.2, the identity element of Br(F), denoted by 0, is [F]; the inverse element of [A], denoted by -[A], is $[A^{op}]$. We call (Br(F), +) the Brauer group of the field F, and $[A] \in Br(F)$ the Brauer class of A.

In analogy to the property observed in vector spaces, wherein any base change results in another vector space, one may inquire whether such a principle extends to central simple algebras. We shall now proceed to elucidate the notion of base change for central simple algebras.

Proposition 2.1.4. Let A be an F-algebra, and let E be a field extension of F. Then $A \otimes_F E$ is a central simple E-algebra if and only if A is a central simple F-algebra.

Proof. cf. F12 & F15, Chapter 29, [18];

Therefore, there is a well-defined map induced by Proposition 2.1.4

$$Res_{E/F}: Br(F) \to Br(E),$$

which is called restriction map with respect to the field extension E/F. The kernel of the restriction map is denoted by Br(E/F). By definition, $Br(E/F) = \{[A] \in Br(F) | [A \otimes_F E] = 0\}$.

In general, we say that A is *split* over a field E or E is a *splitting field* of A if $[A \otimes_F E] = 0 \in Br(E).$

Let A be a central simple algebra over a field F. If we fix an algebraic closure F^{al} of F, then $A \otimes_F F^{al} \cong M_n(F^{al}) \in Br(F^{al}) = \{0\}$ by Proposition 2.1.4 and the discussion after Theorem 2.1.1. Thus F^{al} is a splitting field of A and $dim_F(A)$ is a square number. Since $A \cong M_n(D)$ by Theorem 2.1.1, $\sqrt{dim_F(A)} = n \cdot \sqrt{dim_F(D)}$.

In general, we use the notation $deg_F(A)$ to denote the square root $\sqrt{dim_F(A)}$ for a central simple *F*-algebra *A*, which is called the *degree* of *A*. Since the Brauer class [*A*] is uniquely determined by the isomorphism $A \cong M_n(D)$, we call $deg_F(D)$ the *index of* [*A*] and denote it by $ind_F(A)$.

Among the intriguing topics concerning splitting fields is the quest for a splitting field within sub-algebras of a central simple F-algebra A. This pursuit relies heavily on a renowned theorem known as the 'Centralizer Theorem.' For further elaboration, interested readers are directed to Theorem 14, Chapter 29 in [18]. At present, we shall confine our discussion to the outcomes pertaining to central division algebras.

Theorem 2.1.5 (cf. Theorem 17, Chapter 29, [18]). Let D be a finite dimensional central division F-algebra. Then D has a splitting field E such that E is a sub-algebra of D and $[E : F] = deg_F(D)$.

If $[A] = [D] \in Br(F)$, then A has a splitting field E such that $[E:F] = ind_F(A)$ by Theorem 2.1.5.

If our scope extends beyond sub-algebras of a central simple F-algebra A, we arrive at the following result.

Proposition 2.1.6. A has a splitting field L which is a finite Galois field extension of F. Such L cannot always be a sub-algebra of A.

Proof. cf. Corollary 2.2.12, [8]

It implies from Proposition 2.1.6 that

$$Br(F) = \bigcup_{L/F} Br(L/F)$$

where L/F range over all finite Galois extensions of F contained in an algebraic closure F^{al} .

Another famous result is the Skolem-Noether theorem of central simple algebras. Let A be an algebra over a field F. We say that a F-automorphism f of A is *inner* if there is an invertible element x of A such that $f(a) = x^{-1} \cdot a \cdot x$ for each $a \in A$.

Theorem 2.1.7 (Skolem-Noether). Let A be a central simple F-algebra. Let B_1 and B_2 be simple sub-algebras of A. Then every F-isomorphism between B_1 and B_2 is from an inner automorphism of A.

Proof. cf. Theorem 4.5.12, Chapter 5, [7].

By Theorem 2.1.7, we obtain that every F-automorphism of A is inner. There is also a general result on Azumaya algebras. Let R be a local ring and \mathcal{A} an Azumaya algebra over R. Then every R-automorphism of \mathcal{A} is inner. Refer to Section 8 of Chapter 7 in [7].

Fix an algebraic closure F^{al} of F. We know that $A \otimes_F F^{al} \cong M_n(F^{al})$. Then there is an F-homomorphism $i : A \to M_n(F^{al})$ which is an injection. For each $a \in A$, i(a)is a matrix over F^{al} . We denote the characteristic polynomial of the matrix i(a) by

$$Red_a(X) = X^n + c_1 X^{n-1} + c_2 X^{n-2} + \dots + c_n$$

Proposition 2.1.8.

(1) $Red_a(X)$ is a polynomial in the ring F[X] and is independent of the choice of the injection *i*;

- (2) The determinant of the matrix i(a) is $(-1)^n c_n$;
- (3) The trace of the matrix i(a) is $-c_1$;

Proof. cf. F23, [18].

The polynomial $Red_a(X) \in F[X]$ is called the *reduced characteristic polynomial* of a. We call $(-1)^n c_n$ the *reduced norm of a* and denote it by Nrd(a); we call $-c_1$ the reduced trace of a and denote it by Trd(a).

Therefore, we obtain a map $Nrd_F : A \to F$ which is called the *reduced norm map* of A, and $Trd_F : A \to F$ which is called the *reduced trace map of A*. It is not difficult to verify that the map Nrd_F is multiplicative and Trd_F is a F-linear map.

For $a \in A$, we also have a linear endomorphism $m_a : A \to A$ defined by $m_a(b) = ab$. We denote the characteristic polynomial of m_a , the norm of m_a , and the trace of m_a by $m_a ch(X)$, N(a), and Tr(a) respectively.

Proposition 2.1.9. $m_a ch(X) = (Red_a(X))^n$, $N(a) = (Nrd(a))^n$, and Tr(a) = n(Trd(a)).

Proof. cf. Proposition 2.6.3, [8].

To direct readers to additional results regarding the reduced norm map Nrd_F in number theory or class field theory, please consult Section 2.6 of [8].

Now we briefly introduce using group cohomology to describe Br(F), which is for the definition of cyclic algebras later. Since $Br(F) = \bigcup_{L/F} Br(L/F)$ for a fixed algebraic closure F^{al} , we can start from Br(L/F) with L/F a finite Galois field extension.

Let G denote the Galois group of a finite Galois field extension of L/F. Then G acts on the group L^{\times} , which satisfies g(xy) = g(x)g(y) for $g \in G$, $x \in L^{\times}$, and $y \in L^{\times}$.

Definition 2.1.10. A map $\sigma : G \times G \to L^{\times}$ is called a 2-cocycle of G in L^{\times} if σ satisfies

$$\sigma(g_1, g_2g_3) \cdot \sigma(g_2, g_3) = \sigma(g_1g_2, g_3) \cdot g_3(\sigma(g_1, g_2))$$

for $g_1, g_2, g_3 \in G$.

If σ is a 2-cocycle which is defined by

$$\sigma(g_1, g_2) = h(g_2) \cdot g_2(h(g_1)) \cdot h(g_1g_2)^{-1}$$

where $h: G \to L^{\times}$ is a map satisfying $h(Id_G) = 1$, we call such σ a 2-coboundary. Let $Z^2(G, L^{\times})$ denote the set of 2-cocyles of G in L^{\times} , and $B^2(G, L^{\times})$ the set of 2-coboundaries in $Z^2(G, L^{\times})$.

Proposition 2.1.11.

(1) $Z^2(G, L^{\times})$ is an abelian group with identity element the trivial map, and $B^2(G, L^{\times})$ is a subgroup of $Z^2(G, L^{\times})$; denote the factor group $Z^2(G, L^{\times})/B^2(G, L^{\times})$ by $H^2(G, L^{\times})$;

(2) There is an isomorphism of groups $\phi: H^2(G, L^{\times}) \cong Br(L/F);$

(3) If $G = \langle \xi \rangle$ is a finite cyclic group of degree n, then $H^2(G, L^{\times}) \cong Br(L/F) \cong L^{\times}/N_{L/F}(F^{\times})$ and each element $[A] \in Br(L/F)$ is the Brauer class of a central simple central F-algebra given by the form

$$\bigoplus_{j=0}^{n-1} y^j L$$

Moreover, $y^n = t$ for some $t \in F$ and $xy = y \cdot \xi(x)$ for each $x \in L$.

Proof. For the proof, refer to Chapter 30 of [18].

In the view Proposition 2.1.6, $Br(F) = \bigcup_{L/F} Br(L/F)$ where L/F range over all finite Galois extensions of under an algebraic closure. Then we can using (2) of Proposition 2.1.11 to imply the following theorem.

Theorem 2.1.12 (Theorem 3, Chapter 30, [18]). Let A be a central simple algebra over a field F. Then

(1) Br(F) is a torsion group and the order of $[A] \in Br(F)$ divides $ind_F(A)$;

(2) The order of [A] and $ind_F(A)$ have same prime factors.

We call the order of [A] in Br(F) the *exponent* of A and denote it by exp(A). By Theorem 2.1.12, exp(A) divides $ind_F(A)$. An application of Theorem 2.1.12 is the following decomposition theorem.

Theorem 2.1.13 (Primary Decomposition, cf. Proposition 2.8.13, [8]). Let A be a central simple F-algebra. If the prime decomposition of the degree of A is $deg_F(A) = p_1^{s_1} p_2^{s_2} \cdots p_t^{s_t}$, then A has a unique decomposition up to an isomorphism that

$$A \cong_F A_1 \otimes_F A_2 \otimes_F \cdots \otimes_F A_t$$

where each A_i is a central simple F-algebra of degree $p_i^{s_i}$ for all i = 1, 2, ..., t. Furthermore, A is a division algebra if and only if each A_i is a division algebra for all i = 1, 2, ..., t.

In the case (3) of Proposition 2.1.11, we call such a central simple *F*-algebra a *cyclic algebra* and denote it by (L, ξ, t) . For example, a cyclic algebra is a quaternion algebra if L/F is a degree 2 extension and $ch(F) \neq 2$. Finally, we provide an important property of a cyclic algebra.

Proposition 2.1.14 (cf. Chapter 30, [18]). Let L/F be a finite cyclic extension of degree n, and let $Gal(L/F) = \langle \xi \rangle$. Then any cyclic F-algebra (L, ξ, t) for some $t \in F$ has degree n and contains L as a maximal subfield.

We will heavily use many principles of cyclic algebras in Chapter 5, which are derived from Galois cohomology and class field theory. Readers can find information from [5], [18], [21].

In general, the behavior of Brauer group Br(F) will be very different when changing the base field F. For example, $Br(\mathbb{C}) = \{0\}$, $Br(\mathbb{R}) = \mathbb{Z}/2\mathbb{Z}$, $Br(\mathbb{F}_q) = \{0\}$, and $Br(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z}$. One can also use the language of central simple algebras to describe local class field theory. For reference, it can be found in [30].

We present several results regarding central simple algebras over complete discrete valued fields.

In the rest of this section, we assume that F is a field with a discrete valuation ω . Let O_F denote the valuation ring of F; let \overline{F} denote the residue field. Suppose that the characteristic of \overline{F} is not equal to 2.

Let D be a finite dimensional central division F-algebra. It is know that the valuation ω can be extended uniquely to a discrete valuation v on D, i.e. a map $v: D \to \mathbb{Z} \cup \infty$ satisfying

(1)
$$v(d_1 \cdot d_2) = v(d_1) + v(d_2);$$

(2) $v(d_1 + d_2) \ge \min(v(d_1), v(d_2));$
(3) $v(d_3) = \infty \Leftrightarrow d_3 = 0.$

Let O_D denote the valuation ring of D, i.e. $O_D = \{d \in D | v(d) \ge 0\}$; let $I_D = \{d \in D^* | v(d) > 0\}$. In fact, I_D is the unique two-sided maximal ideal of O_D . Let $\overline{D} = O_D/I_D$, which is called the *residue division ring*.

Definition 2.1.15.

(1) D is called *unramified* if $[D:F] = [\overline{D}:\overline{F}]$ and $Z(\overline{D}) = \overline{Z(D)} = \overline{F}$.

(2) D is called *nicely semi-ramified* if D has a maximal subfield E which is unramified over F and a totally ramified maximal subfield L over F satisfying \bar{v} : $H \cong v(L^*)/v(F^*)$ for some subgroup H of L^*/F^* .

(3) D is called *unramified split* if $D \otimes_F F^{nr}$ is split, where F^{nr} is the maximal unramified extension of F.

Here we have a decomposition of an unramified split D.

Theorem 2.1.16 (Lemma 5.14, [14]). Assume that D is unramified split. Then there are finite dimensional central F-algebras D_1 and D_2 such that

$$[D] = [D_1] + [D_2] \in Br(F),$$

where D_1 is unramified over F and D_2 is nicely semi-ramified over F.

2.2 Unitary Involutions: Existence Criterion and Properties

In this section, we introduce involutions on central simple algebras. Let A be a central simple algebra over a field F. The the transpose on the matrix algebra $M_n(F)$ is a classical example of an involution.

For the existence criterion, we will start from the algebra direction without using group cohomology. Therefore, readers can have a smooth transition from last section.

Definition 2.2.1. An *involution* on A is a map $\tau : A \to A$ satisfying conditions:

(a)
$$\tau(a+b) = \tau(a) + \tau(b)$$
 for $a, b \in A$

- (b) $\tau(ab) = \tau(b)\tau(a)$ for $a, b \in A$.
- (c) $\tau(\tau(a)) = a$ for $a \in A$.

Further,

(d) τ is called an *involution of the first kind* if $\tau(x) = x$ for every $x \in F$. Otherwise, τ is called an *involution of the second kind* or a *unitary involution*.

Let the couple (A, σ) denote a central simple *F*-algebra *A* with an involution *A*. For each morphism of *F*-algebras $f : (A, \sigma) \to (A', \sigma')$, we always assume that $f \circ \sigma = \sigma' \circ f$.

If τ is a unitary involution on A, we use F_0 to denote the subfield of F consisting of the τ -stable elements. Therefore, $\tau(x) = x$ for $x \in F_0$ and F/F_0 is a degree 2 field extension. In this situation, we also say that τ is an F/F_0 -involution.

For the existence of the involutions of the first kind, we have the following criterion.

Theorem 2.2.2 (Albert, cf. Theorem 3.1, [16]). Let A be a central simple F-algebra. There is an involution of the first kind on A if and only if $exp(A) \leq 2$.

We now mainly focus on unitary involutions. In order to discuss the existence, we begin from the construction of the *corestriction map*.

Let L/E be a field extension of degree 2, and let $G = Gal(L/E) = \langle \theta \rangle$ be the Galois group. Let B be an L-algebra. We introduce a new symbol $\theta(b)$ for each $b \in B$, and define

$$B_{\theta} = \{\theta(b) | b \in B\}.$$

The set B_{θ} is an *L*-algebra if we define operations:

(1) $\theta(b_1) + \theta(b_2) = \theta(b_1 + b_2),$ (2) $\theta(b_1)\theta(b_2) = \theta(b_1b_2),$ (3) $\ell \cdot \theta(b_1) = \theta(\theta(\ell) \cdot b_1),$

for $b_1, b_2 \in B$ and $\ell \in L$. The *L*-algebra B_{θ} is called the *conjugate algebra* of *B* with respect to L/E.

Let $V = B_{\theta} \otimes_L B$. We define a map $\beta : V \to V$ by $\beta(\theta(b_1) \otimes b_2) = \theta(b_2) \otimes b_1$.

Proposition 2.2.3 (cf. 3B, [16]).

(1) β is a θ-semilinear map of vector spaces over L, which has properties β(v₁ + v₂) = β(v₁) + β(v₂) and β(ℓ · v) = θ(ℓ) · β(v) for all v₁, v₂, v ∈ V and all ℓ ∈ L;
(2) β is an automorphism of E-algebras.

In (1) of Proposition 2.2.3, we call the map $\beta : V \to V$ the switch map of $V = B_{\theta} \otimes_L B$.

Now, we view $V = B_{\theta} \otimes_L B$ as an *E*-algebra and *B* still an *L*-algebra. Then denote $cor_{L/E}(B) = \{v \in V | \beta(v) = v\}$, which is an *E*-sub-algebra of $V = B_{\theta} \otimes_L B$ by (2) of Proposition 2.2.3.

If B is only a finite dimensional L-vector space, we can similarly define its conjugate vector space B_{θ} and thus the L-vector space $V = B_{\theta} \otimes_L B$. Proposition 2.2.3 will also be valid for such setting. Therefore, we have the switch map $\beta : V \to V$, and the E-sub-vector space $cor_{L/E}(B)$ of V.

Proposition 2.2.4 (cf. Proposition 3.13, [16]). Let B' be an L-algebra. Let W be a finite dimensional L-vector space. Then

(1) $\operatorname{cor}_{L/E}(B) \otimes_E L \cong_L V = B_{\theta} \otimes_L B; \operatorname{cor}_{L/E}(B_{\theta}) \cong_E \operatorname{cor}_{L/E}(B);$ (2) $\operatorname{cor}_{L/E}(B \otimes_L B') = \operatorname{cor}_{L/E}(B) \otimes_E \operatorname{cor}_{L/E}(B');$ (3) $\operatorname{cor}_{L/E}(End_L(W)) \cong_E End_E(\operatorname{cor}_{L/E}(W)).$

If B is a central simple L-algebra, then $B_{\theta} \otimes_L B$ is also a central simple L-algebra by Theorem 2.1.2. By (1) of Proposition 2.2.4 and Proposition 2.1.4, $cor_{L/E}(B)$ is a central simple E-algebra. If B' is a central simple L-algebra with $[B] = [B'] \in$ Br(L), then $[cor_{L/E}(B)] = [cor_{L/E}(B')] \in Br(E)$ by (2) and (3) of Proposition 2.2.4. Therefore, there is a map from Br(L) to Br(E) defined as follows.

Definition 2.2.5 (corestriction map). We define a map

$$Cor_{L/E}: Br(L) \to Br(E)$$

by

$$Cor_{L/E}([B]) = [cor_{L/E}(B)].$$

The map $Cor_{L/E}$ is called the *corestriction map* of Br(L) with respect to the quadratic extension L/E.

In the last section, we already have a restriction map $Res_{L/E} : Br(E) \to Br(L)$ induced by the base change L/E. Therefore, it is reasonable to study the composition of two maps.

Proposition 2.2.6 (Proposition 3.13 (5), [16]). Let \tilde{B} be a central simple *E*-algebra. Then

$$Cor_{L/E} \cdot Res_{L/E}([B]) = [B] + [B] \in Br(E).$$

Proof. cf. Proposition 3. 13 (5) in [16]. It is an algebraic version proof without using group cohomology. \Box

Now we step into unitary involutions. Let A be a central simple F-algebra. Assume that F_0 is a subfield of F and $[F : F_0] = 2$. We provide a criterion of the existence of an F/F_0 -involution on A.

Theorem 2.2.7 (Albert-Riehm-Scharlau). A has an F/F_0 -involution τ if and only if $Cor_{F/F_0}([A]) = 0 \in Br(F_0)$.

Notice that in the case of Theorem 2.2.7, the Galois group $G = Gal(F/F_0) = \langle \tau |_F \rangle$. Although we globally assume that $ch(F_0) \neq 2$, Theorem 2.2.7 is valid for any separable quadratic extension F/F_0 .

It is necessary to explain the construction of the corestriction map from purely algebraic aspect because we will frequently calculate the image of Cor_{F/F_0} in Chapter 5. Abstract results from Galois cohomology are not enough in this thesis.

By Theorem 2.1.1, $A \cong_F M_n(D)$ for some finite dimensional division *F*-algebra. By Theorem 2.2.7, *A* has an F/F_0 -involution if and only if the division algebra *D* has an F/F_0 -involution. Then we can investigate unitary involutions on finite dimensional division algebras, which will provide a reason why one also uses "unitary" to describe the involutions of the second kind.

Let D be a finite dimensional division F-algebra. Let M be a finitely generated right D-module. Assume that D has an F/F_0 -involution τ .

Definition 2.2.8. We say that a bi-additive map $h : M \times M \to D$ is a hermitian form on M with respect to τ if h satisfies:

(1)
$$h(ad_1, bd_2) = \tau(d_1)h(b, a)d_2$$
 for all $a, b \in M$ and $d_1, d_2 \in D$;

(2) $h(a,b) = \tau(h(b,a))$ for all $a, b \in M$.

The hermitian form h is called *regular or non-singular* if the only element $a \in M$ such that h(a, b) = 0 for all $b \in M$ is a = 0. An injective map of right D-modules $u : M \to M'$ is called an *isometry* if h' is a hermitian form on M' and h(a, b) =h'(u(a), u(b)) for all $a, b \in M$. All the bijective isometries of M form its unitary group $\mathbf{U}(M, h)$. We now assume that h is regular. Let M^* be the dual of the right D-module M. Although M^* can be a left D-module naturally, we hope to define a right D-module structure on M^* . For each element $\alpha \in M^*$ and $d \in D$, we define $(\alpha \cdot d)(a) =$ $\tau(d)(\alpha(a))$ for each $a \in M$. Then one can verify that M is a right D-module in this setting. Then we always consider M^* as a right D-module.

For each map $f \in End_D(M)$, we define a map $T_f : M^* \to M^*$ by $T_f(\alpha)(a) = \alpha \circ f(a)$ for all $a \in M$. In fact, $T_f \in End_D(M^*)$, and we call it the *transpose of* f.

Consider a map $\hat{h}: M \to M^*$ given by $\hat{h}(a): b \mapsto h(a, b)$ for all $a, b \in M$. Since we assume that h is regular and M is finite dimensional over D, we can very that \hat{h} is an isomorphism of right D-modules.

Theorem 2.2.9. Define a map $\tau_h : End_D(M) \to End_D(M)$ by $\tau_h(f) = \hat{h}^{-1} \circ T_f \circ \hat{h}$. Then:

- (1) τ_h is a unitary involution on $End_D(M)$;
- (2) $\tau_h(a) = \tau(a)$ for all $a \in F$;

(2) There is a one-to-one correspondence between regular hermitian forms on Mup to a multiplication of an element in F_0^{\times} and the unitary involutions on $End_D(M)$ whose restrictions on F agree with $\tau|_F$.

The involution τ_h in Theorem 2.2.9 is called the *adjoint involution* with respect to h.

We assume that A is a central simple F-algebra on which there are two unitary involutions τ_1 and τ_2 . We say that τ_2 is τ_1 -centered if $\tau_2|_F = \tau_1|_F$. Obviously, if τ_1 is an F/F_0 -involution then the same to τ_2 . For such τ_1 and τ_2 , we have the following results.

Lemma 2.2.10. τ_2 is τ_1 -centered if and only if $\tau_2 = Int(a) \circ \tau_1$ for some $a \in A^{\times}$. Moreover, $\tau_1(a) = a$.

Proof. One direction is obvious.

For another direction, we assume that $\tau_1|_F = \tau_2|_F$. By Theorem 2.1.7 (Skolem-Noether), there is an element $b \in A^{\times}$ such that $\tau_2 = Int(b) \circ \tau_1$. Then we have $\tau_1 \circ Int(b) = Int(\tau_1(b^{-1})) \circ \tau_1$, and then $\tau_2^2 = Int(b \cdot \tau_1(b^{-1})) = id_A$. Therefore, $b = c \cdot \tau_1(b)$ for some $c \in F$.

Since $\tau_1(c) \in F$, $b = c \cdot \tau_1(c \cdot \tau_1(b)) = c \cdot \tau_1(c) \cdot b$. Since $Gal(F/F_0) = \langle \tau_1|_F \rangle_F$ $N_{F/F_0}(c) = 1$. By Hilbert 90, there is an element $d \in F^{\times}$ such that $c = \tau_1(d) \cdot d^{-1}$.

Let a = bd. Then $\tau_1(a) = \tau_1(d)\tau_1(b) = cd\tau_1(b) = cdc^{-1}b = db = bd = a$. Meanwhile, for any element $x \in A$, we have $a\tau_1(x)a^{-1} = bd\tau_1(x)d^{-1}b^{-1} = b\tau_1(x)b^{-1}$.

Another useful property of unitary involutions is from reduced characteristic polynomials. As before, A is a central simple F-algebra.

Proposition 2.2.11. Let $a \in A$, and let $Red_a(X)$ denote the reduced characteristic polynomial of a. Assume that A has an F/F_0 -involution τ . Then $\tau|_F(Red_a(X)) = Red_{\tau(a)}(X) \in F[X]$.

Proof. cf. Corollary 2.16 in [16].

From Proposition 2.2.11, we directly obtain that the reduced norm $Nrd_F(\tau(a)) = \tau(Nrd_F(a)) \in F$ and the reduced trace $Trd_F(\tau(a)) = \tau(Trd_F(a)) \in F$.

If F_0^{sep} is a separable closure of F_0 , then $F \otimes_{F_0} F_0^{sep} \cong F_0^{sep} \times F_0^{sep}$ and $A \otimes_{F_0} F_0^{sep}$ becomes a semi-simple F_0^{sep} -algebra. Therefore, we can extend the discussion of unitary involutions to the case when $A = A_1 \times A_2$, where A_1 and A_2 are central simple F_0 -algebras. Similar definitions and properties can be found from 2.B, of [16].

Let Q be a quaternion algebra over a field F.

Then we can write Q as in the form of a cyclic algebra $(F(\sqrt{\alpha}), \xi, \beta)$ by the Section 2.1, where $F(\sqrt{\alpha})$ is a Galois field extension of F with $Gal(F(\sqrt{\alpha})/F) = \langle \xi \rangle$. Moreover, Q has an F-basis $\{1, i, j, k\}$ satisfying $i^2 = \alpha$, $j^2 = \beta$, and ij = -ji = k.

Then each element $a \in Q$ has a form that $a = a_0 + a_1i + a_2j + a_3k$ where $a_0, a_1, a_2, a_3 \in F$.

We consider the conjugation $\sigma: Q \to Q$ defined by $\sigma(a) = a_0 - a_1 i - a_2 j - a_3 k$. By a direct verification, we can prove that σ is an involution of the first kind on Q. We call it the *canonical involution* on Q.

Now we consider unitary involutions on the quaternion F-algebra Q. Let F_0 be a subfield of F with $[F:F_0] = 2$, and let $Gal(F/F_0) = <\eta >$.

Theorem 2.2.12 (Albert, cf. Proposition 2.22, [16]). Assume that the quaternion algebra Q has an F/F_0 -involution τ and $\tau|_F = \eta$. Then there is a unique quaternion F_0 -sub-algebra of Q, denoted by Q_0 , such that

- (1) $Q \cong_F Q_0 \otimes_{F_0} F;$
- (2) $\tau = \sigma_0 \otimes \eta$, where σ_0 is the canonical involution on Q_0 .

Chapter 3

Whitehead Groups

In this Chapter, we will discuss the reduced (unitary) Whitehead group of a central simple algebra. Then summarize connections among central simple algebras, linear algebraic groups, and rational problems on algebraic groups.

3.1 Reduced Whitehead Group: SK_1

Let A be central simple algebra over a field F. By Proposition 2.1.8 of last chapter, we have the reduced norm map $Nrd_F : A \to F$. Let $SL_1(A) = \{a \in A | Nrd_F(a) = 1\}$.

We focus on the multiplicative group A^{\times} of A. $SL_1(A)$ is a subgroup of A^{\times} . Let $[A^{\times}, A^{\times}]$ denote the commutator subgroup of A^{\times} . Then $[A^{\times}, A^{\times}]$ is a normal subgroup of $SL_1(A)$.

Definition 3.1.1. The factor group $SL_1(A)/[A^{\times}, A^{\times}]$ is called the *reduced Whitehead* group of the central simple *F*-algebra *A*, which is denoted by $SK_1(A)$.

There was a problem of Tannaka-Artin on the triviality of $SK_1(A)$ around the year 1943. Nakayama and Matsushima proved that $SK_1(A)$ is trivial if the base field F is a local field. Later, Wang, in [29], proved the triviality of $SK_1(A)$ when F is a global field. It also can be deduced from [29] that $SK_1(A)$ is trivial if $ind_F(A)$ is square free.

However, in [25], Platonov proved that $SK_1(A)$ can be non-trivial by constructing a specific example.

For the case that cohomological dimension $cd(F) \leq 3$ and $deg_F(A) = 4$, Rost proved that $SK_1(A)$ is trivial. Then Suslin made a conjecture: Is it true that $SK_1(A)$ is trivial for $cd(F) \leq 3$? The conjecture is still an open question. A special case of Suslin's conjecture was proved by Nivedita Bhaskhar.

Theorem 3.1.2 (Nivedita Bhaskhar, [3]). Let F be the function field of a p-adic curve, and let A be a central simple F-algebra. Assume that the exponent exp(A) is a prime ℓ . If $\ell \neq p$ and F contains a primitive ℓ^2 th root of unity, then $SK_1(A)$ is trivial.

By Theorem 2.1.1, $A \cong M_r(D)$ for a finite dimensional division *F*-algebra. $SK_1(A)$ only depends on the Brauer class $[D] \in Br(F)$.

Proposition 3.1.3. There is an isomorphism of groups $SK_1(A) \cong SK_1(D)$.

Proof. cf. $\S22$, $\S23$ in [6].

Moreover, we know that A has a primary decomposition by Theorem 2.1.13. Assume that $deg_F(A) = p_1^{s_1} p_2^{s_2} \cdots p_t^{s_t}$ is the decomposition of primes. Then we can write $A \cong_F A_1^{s_1} \otimes A_2^{s_2} \otimes \cdots \otimes A_t^{s_t}$, where each A_i is a finite dimensional central division F-algebra of degree $p_i^{s_i}$ for all i = 1, 2, ..., t. The next proposition provides a decomposition of $SK_1(A)$.

Proposition 3.1.4. There is an isomorphism of groups

$$SK_1(A) \cong SK_1(A_1) \times SK_1(A_2) \times \cdots \times SK_1(A_t).$$

Proof. cf. Lemma 5, Lemma 6, §23, [6].

The theory of $SK_1(A)$ is called the reduced K-theory. One can also define $SK_1(A)$ from the general algebraic K-theory.

3.2 Reduced Unitary Whitehead Group: SK_1U

Let A be a central division algebra over a field F. Now, we assume that A has an F/F_0 -involution τ . We continue to focus on the group A^{\times} .

The set $\{a \in A^{\times} | Nrd_F(a) \in F_0\}$ is actually a subgroup of A^{\times} , which is denoted by $\Sigma'_{\tau}(A)$. Another set $\{a \in A^{\times} | \tau(a) = a\}$ may not be a subgroup of A^{\times} , but we can have a subgroup of A^{\times} generated by the set and denote it by $\Sigma_{\tau}(A)$.

Lemma 3.2.1. $\Sigma_{\tau}(A)$ is a normal subgroup of $\Sigma'_{\tau}(A)$.

Proof. Let $a \in \Sigma_{\tau}(A)$, and let $b \in \Sigma'_{\tau}(A)$. Then $a = y_1 y_2 \cdots y_m$, where $\tau(y_i) = y_i$ for all i = 1, 2, ..., m. Since $Nrd_F(a) = Nrd_F(y_1 \cdots y_m) \in F$ and $Nrd_F(a) = \tau(Nrd_F(a))$, $a \in \Sigma'_{\tau}(A)$.

Since $Nrd_F(\tau(aba^{-1})) = Nrd_F(b) \in F_0$, $\Sigma_{\tau}(A)$ is a normal subgroup of $\Sigma'_{\tau}(A)$.

Definition 3.2.2. The factor group $\Sigma'_{\tau}(A)/\Sigma_{\tau}(A)$ is called the *reduced unitary White*head group of A with respect to τ , which is denoted by $SK_1U(A, \tau)$.

For $SK_1U(A, \tau)$, one can also have the question: Is it true that $SK_1U(A, \tau)$ is trivial? There are examples of trivial $SK_1U(A, \tau)$. V.P.Platonov and V.I.Yanchevskii proved that $SK_1U(A, \tau) = 1$ for global fields around the year 1973; V.I.Yanchevskii proved its triviality when F is perfect and $cd(F) \leq 2$. In [32], V.I.Yanchevskii discussed the case when F is an Henselian discretely valued field.

 $SK_1U(A,\tau)$ actually depends on the class of τ -centered involutions.

Lemma 3.2.3. Assume that A has two unitary involutions τ_1 and τ_2 . If τ_2 is τ_1 centered, then

(1)
$$\Sigma'_{\tau_1}(A) = \Sigma'_{\tau_2}(A);$$

(2) $\Sigma_{\tau_1}(A) = \Sigma_{\tau_2}(A).$
Therefore, $SK_1U(A, \tau_1) = SK_1U(A, \tau_2).$

Proof. (1) Since $\tau_1|_F = \tau_2|_F$, τ_2 is also an F/F_0 -involution. Then $\Sigma'_{\tau_1}(A) = \Sigma'_{\tau_2}(A)$.

(2) Let $x \in A^{\times}$ such that $\tau_1(x) = x$. Then $\tau_1(x) = a\tau_2(x)a^{-1} = x$ and $\tau_2(xa) = \tau_2(a)\tau_2(x) = a\tau_2(x) = ax$ by Lemma 2.2.10. Thus $x = (xa)a^{-1} \in \Sigma_{\tau_2}(A)$.

 $SK_1U(A,\tau)$ also depends on the Brauer class $[A] \in Br(F)$.

Theorem 3.2.4. Let D be a finite dimensional central division F-algebra such that $[D] = [A] \in Br(F)$. Then there is an F/F_0 -involution τ_D on D such that $SK_1U(D, \tau_D) \cong$ $SK_1U(A, \tau)$.

Proof. cf. Lemma 2 & Lemma 3, [15] .

Let $A = A_1 \otimes A_2 \otimes \cdots \otimes A_t$ be the primary decomposition of A by Theorem 2.1.13. Then we have an isomorphism.

Theorem 3.2.5. There exist an unitary involution τ_i on each primary component A_i for each i = 1, 2, ..., t such that

$$SK_1U(A,\tau) \cong SK_1U(A_1,\tau_1) \times \cdots \times SK_1U(A_t,\tau_t).$$

Since both $SK_1(A)$ and $SK_1U(A, \tau)$ depend on the Brauer class, we may mainly focus on a finite dimensional division F-algebra D satisfying $[D] = [A] \in Br(F)$ from now. We always assume that D has an F/F_0 -involution τ when mention $SK_1U(D, \tau)$.

There are some maps between $SK_1U(D, \tau)$ and $SK_1(D)$, which will provide ideas on calculating them.

For each $x \in \Sigma'_{\tau}(D)$, we have $x = \tau(x) \cdot a_x$ for some $a_x \in SL_1(D)$ since $Nrd_F(x) =$

 $Nrd_F(\tau(x)) \in F_o$. Then we define a map

$$\phi: SK_1U(D,\tau) \to SK_1(D) = SL_1(D)/[D^{\times}, D^{\times}]$$

by $\phi(\overline{x}) = \overline{a_x}$. We claim that ϕ is a homomorphism.

Lemma 3.2.6. The map ϕ defined above is a homomorphism of groups, and the exponent of the kernel of ϕ divides 2.

Proof. If $\overline{x} = \overline{y} \in SK_1U(D,\tau)$, then $x = z_1z_2\cdots z_my$ and z_1, \dots, z_m are τ -invariant elements in D^{\times} . Since $x = \tau(x)a_x$ and $y = \tau(y)a_y$ for some $a_x, a_y \in SL_1(D), a_xa_y^{-1} =$ $\tau(x^{-1})xy^{-1}\tau(y) = \tau(z_1\cdots z_my)^{-1}(z_1z_2\cdots z_m)\tau(y)$. By induction, it can be verified that $a_xa_y^{-1} \in [D^{\times}, D^{\times}]$. Then $\phi(\overline{x}) = \phi(\overline{y}) \in SK_1(D)$ if $\overline{x} = \overline{y} \in SK_1U(D,\tau)$.

Let $\overline{x_1}, \overline{x_2} \in SK_1U(D, \tau)$. Then $\phi(\overline{x_1}) \cdot \phi(\overline{x_2}) = \overline{a_{x_1}} \cdot \overline{a_{x_2}}$. Assume that $\phi(\overline{x_1} \cdot \overline{x_2}) = \overline{a_3}$, then $x_1x_2 = \tau(x_1x_2)a_3$.

By calculation, $\tau(x_1)a_1\tau(x_2) = \tau(x_2)\tau(x_1)a_3a_2^{-1}$ and then $(\tau(x_2^{-1})a_1\tau(x_2)a_1^{-1}) = (\tau(x_2^{-1})\tau(x_1^{-1})\tau(x_2)\tau(x_1))a_3(a_1a_2)^{-1}$. Therefore, $a_3(a_1a_2)^{-1} \in [D^{\times}, D^{\times}]$ and then ϕ is a homomorphism.

Suppose that $\phi(\overline{x}) = 0$. Then $x^2 = x \cdot \tau(x) \cdot a_x \in \Sigma_{\tau}(D)$. Since $[D^{\times}, D^{\times}] \subset \Sigma_{\tau}(D)$ (cf. Theorem 2, §2, Chapter 4, Part II [4]) and $x\tau(x) \in \Sigma_{\tau}(D)$, it follows that $x^2 \in \Sigma_{\tau}(D)$ and the exponent of $ker(\phi)$ divides 2.

Proposition 3.2.7.

- (1) Let n be the index of D. Then $a^n \in \Sigma_{\tau}(A)$ for each $a \in \Sigma'_{\tau}(A)$;
- (2) If n is odd and $SK_1(D) = 1$, then $SK_1U(D, \tau) = 1$.

Proof. For (1), refer to Corollary 2.5, [32].

(2) Suppose that n is odd and $SK_1(D)$ is trivial. Then by Lemma 3.2.6, the group $SK_1U(D,\tau)$ is 2-torsion. By (1), $SK_1U(D,\tau)$ is n-torsion. Since n is odd, $SK_1U(D,\tau)$ is trivial.

On the other hand, we can also construct a map from $SK_1(D)$ to $SK_1U(D,\tau)$.

Corollary 3.2.8. There is an exact sequence of groups:

$$SK_1(D) \xrightarrow{f_1} SK_1U(D,\tau) \xrightarrow{f_2} \frac{F_0^* \cap Nrd_{D/F}(D)}{\langle Nrd_{D/F}(a) | a \in \Sigma(D) \rangle} \to 1,$$

where f_1 is induced by $SL_1(D) \to SK_1U(D,\tau)$ and f_2 is induced by $Nrd_{D/F}$: $D^{\times} \to F^{\times}$.

Proof. For any element $\overline{x} \in SK_1(D)$, let $f_1(\overline{x}) = \overline{x} \in SK_1U(D, \tau)$. Since $[D^{\times}, D^{\times}] \subset \Sigma(D)$, f_1 is well defined.

For any element $\overline{y} \in SK_1U(D,\tau)$, let $f_2(\overline{y}) = \overline{Nrd_{D/F}(y)}$. Then f_2 is surjective. Since the definition of $SK_1(D) = SL_1(D)/[D^{\times}, D^{\times}]$, $im(f_1) \subset ker(f_2)$. Suppose that $\overline{y} \in ker(f_2)$. Then $y = a_y \cdot y'$ for some $a_y \in SL_1(D)$ and some

 $y' \in \Sigma(D)$. Therefore, $\overline{y} = \overline{a_y} = f_1(\overline{a_y}) \in SK_1U(D,\tau)$ and $ker(f_2) \subset im(f_1)$.

3.3 *R*-Equivalence and Whitehead Groups of Algebraic Groups

The R-equivalence is defined by Manin ([19]), which is an equivalence relation on the rational points of an algebraic variety.

Let F be a field. Let $X \to Spec(F)$ be a variety, which is separable, geometrically integral, and finite type. Assume that $a, b \in X(F)$. If there is an F-rational map $\phi : \mathbb{A}_F^1 \dashrightarrow X$ such that 0 maps to a and 1 maps to b, we say a, b are directly R-equivalence.

Definition 3.3.1. The equivalence relation generated by the directly *R*-equivalence on the set X(F) is called *R*-equivalence on X(F).

If a variety G/F is a connected linear algebraic group over F, then strictly Requivalence is same as R-equivalence. This can be proved by a right translation of G. In particular, we denote the equivalence class of the identity element in G(F) as RG(F). We can verify that RG(F) is a subgroup of G(F). Since a conjugation map on G is a rational map, RG(F) is moreover a normal subgroup of G(F).

Definition 3.3.2. The group G(F)/RG(F) is called the group of *R*-equivalence classes of G(F).

The group of R-equivalence classes, G(F)/RG(F), is very useful while studying the rationality problem for algebraic groups, i.e. the problem to determine whether the variety of an algebraic group is rational or stably rational.

For G, a smooth connected linear algebraic group defined over F, we say that Gis *rational* if its function field is purely transcendental over F. We say that G is Fstably rational if $G \times_F \mathbb{A}_F^n$ is rational for some $n \in \mathbb{N}$. If G is F-stably rational, then G(F)/RG(F) = 1. Thus, if one can establish non-triviality of the group G(E)/RG(E)just for one field extension E/F, the group G is not F-stably rational.

Let F_0 be a field. Let G be a semi-simple, simply connected, isotropic, and simple algebraic group over F_0 . Let $G(F_0)$ be the F_0 -rational points subgroup of G, and $G(F_0)^+$ be the normal subgroup of $G(F_0)$ generated by the F_0 -rational points of the unipotent radicals of parabolic F_0 -subgroups of G. We call $G(F_0)/G(F_0)^+$ the *Whitehead group* for G over F_0 , denoted by $W(G, F_0)$.

Theorem 3.3.3 (Voskresenskii, [28]).

(1) Suppose that D_0 is a central division F_0 -algebra. If $G(F_0) = SL_n(D_0)$ for some n > 1, then

$$W(G, F_0) \cong SK_1(D_0).$$

Let F be a quadratic field extension of F_0 and D be a central division F-algebra. (2)Suppose that D has an involution of second kind τ such that $F^{\tau} = F_0$. If the hermitian form h_{τ} is isotropic and $G(F_0) = SU(D, h_{\tau})$, then

$$W(G, F_0) \cong SK_1U(D, \tau).$$

The Kneser-Tits conjecture predicted the triviality of the group $W(G, F_0)$. Due to the former results on $SK_1(A)$ and $SK_1U(A, \tau)$, the Kneser-Tits conjecture is not valid in general. We refer to [9] for more details and a summary of $W(G, F_0)$.

Theorem 3.3.4 (Theorem 7.6, [24]). Let F be a non-Archimedean locally compact field. Then the Kneser-Tits conjecture holds for any simple simply connected Fisotropic group G, i.e. $W(G, F) = \{1\}$.

Over number fields, the conjecture is proven to be true (cf. [9]). Further the conjecture is also proven to hold for fields of cohomological dimension at most 2 (cf. [9]).

Chapter 4

Patching

Patching techniques were developed by Harbater, Hartmann and Krashen (cf. [10], [11], [12], [13]) to study torsors under linear algebraic groups. One of the arithmetic applications of patching is certain forms of 'local-global principles'. Firstly, I introduce the case on vector spaces over given fields, which is the base for this topic.

4.1 Patching for Vector Spaces

Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse system of fields and inclusions, whose inverse limit (in the category of rings) is a field F. For $i, j \in I$, we write $F_i \hookrightarrow F_j$ if $i \succ j$. We now define the *category of vector spaces patching problems for* \mathcal{F} , named PP(\mathcal{F}), as followings:

$$Object: \left(\mathcal{V} = \{ V_i \}_{i \in I} \quad ; \quad \nu_{i,j} : V_i \otimes_{F_i} F_j \cong_{F_j} V_j, i \succ j \right),$$

and

$$Morphism: \left(f: \{V_i\}_{i\in I} \to \{V'_i\}_{i\in I}\right) := \left\{\phi_i: V_i \to_{F_i} V'_i \middle| \phi_j \circ \nu_{i,j} = \nu'_{i,j} \circ (\phi_i \otimes_{F_i} F_j), i \succ j \right\}_{i,j\in I}$$
where each V_i is a finite dimensional F_i -vector space for each $i \in I$.

Then there is a functor

$$\beta : \operatorname{Vect}(F) \to \operatorname{PP}(\mathcal{F})$$
$$V \mapsto \mathcal{V} = \{ V \otimes_F F_i \}_{i \in I}$$

from the category of finite dimensional F-vector spaces to the category of vector space patching problems for \mathcal{F} .

Definition 4.1.1. We say that a vector space V over F is a solution to a patching problem \mathcal{V} if $\beta(V)$ is isomorphic to \mathcal{V} in the category $PP(\mathcal{F})$.

In my current research, it asks for more condition on the inverse system.

Definition 4.1.2 (cf. Definition 2.1, [13]). A factorization inverse system over a field F is a finite inverse system of fields whose inverse limit is F, and whose index set I has the following property: There is a partition $I = I_v \cup I_e$ into a disjoint union such that for each index $k \in I_e$, there are exactly two elements $i, j \in I_v$ for which $i, j \succ k$, and there are no other relation in I.

For example, let F_1 , F_2 , and $F = F_1 \cap F_2$ be sub-fields of a given field F_0 . Then $\mathcal{V} = \{F_i\}_{i \in I}$ with $I = \{0, 1, 2\}$ is a factorization inverse system with $\lim_{\leftarrow} F_i = F$.

Now we can describe the idea of patching for vector spaces. Let $\mathcal{F} = \{F_i\}_{i \in I}$ be a finite inverse system. The aim is to study the case where the functor β : Vect $(F) \rightarrow$ PP (\mathcal{F}) is an equivalence of categories, which can have the following motivation.

If $\mathcal{F} = \{F_i\}_{i \in I = I_e \cup I_v}$ is a factorization system, there is an ordered triple $(l, r, k)_{l \in I_v, r \in I_v, l, r \succ k \in I_e}$ for each $k \in I_e$. In fact, the factorization system is a finite multi-graph with an orientation for each (l, r, k) (cf. section 2.1, [12]). Assume that a vector space V over Fis a solution of a patching problem $\mathcal{V} = \{V_i\}_{i \in I}$. Then

$$\beta(V) \cong \left(\mathcal{V} = \{ V_i \}_{i \in I} \quad ; \quad \nu_{i,j} : V_i \otimes_{F_i} F_j \cong_{F_j} V_j, i \succ j \right)$$

$$= \left(\mathcal{V} = \{ V_i \}_{i \in I} \quad ; \quad \mu_k : V_l \otimes_{F_l} F_k \cong_{F_k} V_r \otimes_{F_r} F_k, (l, r, k)_{l \in I_v, r \in I_v, l, r \succ k \in I_e} \right),$$

where $\mu_k = \nu_{r,k}^{-1} \circ \nu_{l,k}$.

Then, we can recover the structure of V/F through the factorization system whose vector spaces satisfy the isomorphism condition over some common field extensions if β is an equivalence of categories. In fact, the idea is similar to the definition of 'sheaf'.

Before stating a general proposition on the equivalence of β , we need the following definition.

Definition 4.1.3 (cf. [13], Section 2). Let $\mathcal{F} = \{F_i\}_{i \in I = I_v \cup I_e}$ be a factorization inverse system with inverse limit a field F. Let G be a linear algebraic group over F. We say that simultaneous factorization holds for G over \mathcal{F} if for any collection of elements $A_k \in G(F_k)$, for $k \in I_e$, there exist elements $A_i \in G(F_i)$ for all $i \in I_v$ such that $A_k = A_r^{-1}A_l \in G(F_k)$ for each such triple $(l, r, k)_{l \in I_v, r \in I_v, l, r \succ k \in I_e}$.

Now, we have the following result:

Proposition 4.1.4 (Proposition 2.2, [13]). Let \mathcal{F} be a factorization inverse system over a field F. Then the functor β : Vect $(F) \rightarrow PP(\mathcal{F})$ is an equivalence if and only if simultaneous factorization holds for GL_n over \mathcal{F} for every $n \geq 1$.

4.2 Local-Global Principles over Arithmetic Curves

We will see that patching can be applied to linear algebraic groups defined over a function field of an arithmetic curve.

Resolution of Singularities

We state the general theory on resolution of singularities here, which can help to get an ideal model of a p-adic curve X and simplify the structure of a division algebra later(cf. [26]).

Let S be a Dedekind scheme. We call an integral, projective, flat S-scheme π : $\mathscr{X} \to S$ of dimension 2 a *fibered surface over* S. We have the following 'embedded resolution':

Theorem 4.2.1 (Theorem 9.2.26, [17]). Assume that $\mathscr{X} \to S$ is a regular fibered surface. Let D be an effective Cartier divisor on \mathscr{X} . Suppose that the scheme D is excellent. Then there exists a projective bi-rational morphism $f : \mathscr{X}' \to \mathscr{X}$ with \mathscr{X}' regular, such that $f^*(D)$ is a divisor with normal crossings.

Notice that any fibered surface \mathscr{X} is excellent if S is excellent. For example, S = Spec(R) for some complete discrete valuation ring R. We call a regular fibered surface $\mathscr{X} \to S$ over a Dedekind scheme S of dimension 1 an *arithmetic surface*. Then we have the following corollary:

Corollary 4.2.2 (Corollary 9.2.30, [17]). Let $\mathscr{X} \to S$ be an arithmetic surface that has only a finite number of singular fibers. Then there exists a projective bi-rational morphism $\mathscr{X}' \to \mathscr{X}$ such that $\mathscr{X}' \to S$ is an arithmetic surface with normal crossings.

Next, recall the definition of models of algebraic curves:

Definition 4.2.3 (cf. Chapter 10, [17]). Let S be a Dedekind scheme of dimension 1, with function field K. Let X be a normal, connected, projective curve over K. We call a normal fibered surface $\mathscr{X} \to S$ together with an isomorphism $f : \mathscr{X} \times_S Spec(K) \cong$ X a model of X over S.

For example, $Proj \mathbb{Z}[x, y, z]/(x^q + y^q + z^q)$ is a model of the projective curve over \mathbb{Q} defined by the same equation for some square free integer $q \ge 1$.

Since the above theorem is valid for regular fibered surfaces, we may ask if there is always some regular model of the given curve. In fact, we have a positive answer when S is affine. **Theorem 4.2.4** (Proposition 10.1.8, [17]). Suppose that S = Spec(R) is an affine Dedekind scheme of dimension 1, with function field K. Let X be a smooth projective curve of geometric genus $g \ge 1$ over K. Then X admits a regular model $\mathscr{X} \to S$ with normal crossings.

Branches

Let R be a complete discrete valuation ring with a uniformizer t. Let K denote the fraction field of R and k denote the residue field of R.

Let F be the function field of a smooth projective geometrically integral curve $X \to Spec(K)$. We assume that $\mathscr{X} \to Spec(R)$ is a regular model.

Let X_o denote the reduced closed fiber of \mathscr{X} . For each point $P \in X_o$, let $R_P = \mathscr{O}_{\mathscr{X},P}$. We denote the completion of R_P as $\widehat{R}_P = \lim_{\leftarrow} \frac{\mathscr{O}_{\mathscr{X},P}}{(\mathfrak{m}_{\mathscr{X},P})^n}$, and demote the fraction field $F_P = Frac(\widehat{R}_P)$.

For each generic point $\eta \in X_o$ and each non-empty open subset U of $\overline{\{\eta\}} \subset X_o$, we denote the set of regular functions on U by $R_U = \{f \in F | f \in \mathscr{O}_{\mathscr{X},Q} \text{ for each } Q \in U\}$. Denote the (t)-adic completion of R_U by \widehat{R}_U , and let $F_U = Frac(\widehat{R}_U)$. Then we have $F \subset F_U \subset F_\eta$ if $U \subset \overline{\{\eta\}} \subset X_o$.

If $P \in X_o$ is a closed point in X_o and $P \in \overline{\{U\}} = \overline{\{\eta\}} \subset X_0$ for some non-empty open subset $U \subset \overline{\{\eta\}}$, then we can find a height one prime ideal \mathfrak{P} of \widehat{R}_P containing t. We call such \mathfrak{P} a *branch* on U at P. Let $\widehat{R}_{\mathfrak{P}}$ denote the completion of the localization of \widehat{R}_P at \mathfrak{P} ; let $F_{\mathfrak{P}}$ denote the fraction field of $\widehat{R}_{\mathfrak{P}}$. Then we have $F \subset F_U, F_P \subset F_{\mathfrak{P}}$ in this case.

Now, let \mathscr{P} be a non-empty finite set of closed points of X_o that contains all the closed points in which distinct irreducible components of X_o meet and at least one point on each component of X_o . Let \mathscr{U} be the collection of irreducible components of $X_o \setminus \mathscr{P}$. Let \mathscr{B} be the collection of branches of X_o at points of \mathscr{P} . This yields a finite inverse system \mathcal{F} of fields F_P , F_U , $F_{\mathfrak{P}}$ for $P \in \mathscr{P}$, $U \in \mathscr{U}$, and $\mathfrak{P} \in \mathscr{B}$. In fact,

the inverse limit of \mathcal{F} is the field F (Proposition 3.3, [13]), and we have the following proposition:

Proposition 4.2.5 (Corollary 3.4, [13]). The finite inverse system \mathcal{F} given above is a factorization inverse system with inverse limit F. For this system, the base change functor β : Vect $(F) \rightarrow PP(\mathcal{F})$ is an equivalence of categories.

In [13], the above proposition can be proved if the set $\mathscr{P} = g^{-1}(\infty)$ for some finite morphism $g: \mathscr{X} \to \mathbb{P}^1_R$. We can always find such morphism g in our situation.

Proposition 4.2.6 (Proposition 3.3, [13]). Let W be finite set of closed points of \mathscr{X} . Write $\infty \in \mathbb{P}^1_k \subset \mathbb{P}^1_R$. There is a finite morphism $g : \mathscr{X} \to \mathbb{P}^1_R$ such that $g^{-1}(\infty) = W$ if and only if W meets each irreducible component of \mathscr{X} non-trivially.

Factorization for Rational Connected Linear Algebraic Group

We keep the above notations. A connected linear algebraic group G over F is rational if it is a rational F-variety, i.e. G is bi-rational to \mathbb{P}_F^N .

In the above proposition, we know that there exists a morphism $g : \mathscr{X} \to \mathbb{P}^1_R$ such that $\mathscr{P} = g^{-1}(\infty)$. Then let \mathscr{V} be the collection of irreducible components V of $g^{-1}(\mathbb{A}^1_k)$, and recall that \mathscr{B} is the collection of all branches \mathfrak{P} at the points of \mathscr{P} .

We have the following factorization theorem:

Theorem 4.2.7 (Theorem 3.6, [11]). Let G be a rational connected linear algebraic group over F. Suppose that there is an element $x_{\mathfrak{P}} \in G(F_{\mathfrak{P}})$ for each branch $\mathfrak{P} \in \mathscr{B}$. Then there is an element $x_P \in G(F_P)$ for each $P \in \mathscr{P}$, and an element $x_V \in G(F_V)$ for each $V \in \mathscr{V}$, such that $x_{\mathfrak{P}} = x_P \cdot x_V$ for every branch $\mathfrak{P} \in \mathscr{B}$ at a point $P \in \mathscr{P}$ with \mathfrak{P} lying on the closure of some $V \in \mathscr{V}$.

In the above theorem, each product $x_P \cdot x_V$ is taken in $G(F_{\mathfrak{P}})$ with respect to the inclusion $F_P, F_V \to F_{\mathfrak{P}}$.

We keep the notations. Assume that a linear algebraic group G acts on a variety H over a field E. We say that G acts transitively on the points of H if every field extension E' of E the induced action of the group G(E') on the set H(E') is transitive. Here we have a local-global principle for homogeneous spaces:

Theorem 4.2.8 (Theorem 3.7, [11]). Let G be a rational connected linear algebraic group over F which acts transitively on the points of an F-variety H. Then, $H(F) \neq \emptyset$ if and only if $H(F_P) \neq \emptyset$ for each $P \in \mathscr{P}$ and $H(F_V) \neq \emptyset$ for each $V \in \mathscr{V}$.

Local-Global Principles on X_o

We keep all the notations in **Branches**. In the classical case of local-global principles over a number field E, there is the obstruction

$$\operatorname{III}_{\Omega}(E,G) = ker\Big(H^1(E,G) \to \prod_{v \in \Omega} H^1(E_v,G)\Big)$$

to the validity of this local-global principle, where $G \to Spec(E)$ is a linear algebraic group.

In the case F, we have the similar situation if considering prime divisors on a regular model $\mathscr{X} \to Spec(R)$. Actually, we know that such a regular model always exists in our case. Then we can write:

$$\operatorname{III}(F,G) = ker\Big(H^1(F,G) \to \prod_{D \text{ prime}} H^1(F_{v_D},G)\Big)$$

If consider all the points of $X_o = (\mathscr{X} \times_{Spec(R)} Spec(k))_{red}$, we can define the obstruction

$$\operatorname{III}_{\mathscr{X},X_o}(F,G) = ker\Big(H^1(F,G) \to \prod_{P \in X_o} H^1(F_P,G)\Big).$$

Notice that P can be a generic point of X_o in the sense of **Branches**.

Now, we always assume that \mathscr{X} is a regular model with closed fiber X_o . For

each generic point η of X_o , there is a relation between the fields F_{η} and F_U for each non-empty open $U \subset \overline{\{\eta\}}$ in X_o . By Section 3.2.1 of [12], there is a procedure which is a kind of henselization.

Let $R_{\eta}^{h} = \lim_{\to} \widehat{R}_{V}$, where V ranges over the non-empty open subsets of X_{o} that do not meet any other irreducible component of X_{o} . Let $F_{\eta}^{h} = Frac(R_{\eta}^{h})$. Since $R_{V} \hookrightarrow R_{\eta}$ for each $V \in \overline{\{\eta\}}, F_{\eta}^{h} \hookrightarrow F_{\eta}$.

Lemma 4.2.9 (Lemma 3.2.1, [12]). Let $\overline{\{\eta\}} = C_{\eta} \subset X_{o}$ be an irreducible component, and $U_{\eta} \subset C_{\eta}$ be a non-empty open subset meeting no other component. Then R_{η}^{h} is a Henselian discrete valuation with respect to the η -adic valuation, having residue field $k(U_{\eta}) = k(C_{\eta})$. The field F_{η}^{h} is the filtered direct limit of the fields F_{V} , where Vranges over the non-empty open subsets of U_{η} .

Later, we will see that F_{η} can be approximated by $F_{U_{\eta}}$ with the help of the above lemma and our next results. Currently, we have another approximation result on smooth commutative group schemes.

Proposition 4.2.10 (Proposition 3.2.2, [12]). Let G be a smooth commutative group scheme over F. If $\alpha \in H^n(F_{U_\eta}, G)$ satisfies $\alpha \otimes F_\eta = 0$, then $\alpha \otimes F_V = 0$ for some Zariski open neighborhood V of η in U.

By the above proposition, we can shrink a open subset U_{η} .

Finally, there is a local-global principle on X_o .

Theorem 4.2.11 (Theorem 3.2.3, [12]). Let G be a commutative linear algebraic group over F, and $n \ge 1$. Assume that either

(1) $G = \mathbb{Z}/m\mathbb{Z}(r)$, where m is an integer not divisible by char(k), and where either r = n - 1 or else $[F(\mu_m) : F]$ is prime to m; or

(2) $G = \mathbb{G}_m$, char(k) = 0, and K contains a primitive m-th root of unity for all $m \ge 1$.

Then

$$0 \to H^n(F,G) \to \prod_{P \in X_o} H^n(F_P,G).$$

Chapter 5

SK_1U over Function Fields of *p*-adic Curves

In this chapter we prove the following theorem.

Theorem 5.0.1. Let K be a p-adic field with $p \ge 3$, i.e. a finite extension of \mathbb{Q}_p , R be the valuation ring of K, and k be the residue field. Let $X \to Spec(K)$ be a smooth projective curve and F_0 be the function field of X. Let F be a quadratic field extension of F_0 and $F = F_0(\sqrt{d})$. Let D be a central division algebra over F of period 2 with an F/F_0 -involution τ . Then the reduced unitary Whitehead group $SK_1U(D,\tau)$ is trivial.

5.1 The Plan of the proof

According to Corollary 3.2.8, there is an exact sequence of groups:

$$SK_1(D) \xrightarrow{f_1} SK_1U(D,\tau) \xrightarrow{f_2} \frac{F_0^* \cap Nrd_{D/F}(D)}{\langle Nrd_{D/F}(a) | a \in \Sigma(D) \rangle} \to 1$$

Since period of D is 2, We know that $SK_1(D) = 1$ [29]. We prove that the third item $\frac{F_0^* \cap Nrd_{D/F}(D)}{\langle Nrd_{D/F}(a) | a \in \Sigma(D) \rangle}$ is trivial.

We start from choosing a suitable model $\mathscr{X} \to Spec(R_0)$. By Theorem 10.1.8 of

[17], we can firstly assume that \mathscr{X} is regular.

Let $\mathscr{X}^{(1)}$ be the set of codimenson one points of \mathscr{X} . For $P \in \mathscr{X}$, let v_P denote the discrete valuation on F given by P. For any element $y \in F$, we define the *support* of y in \mathscr{X} as

$$supp_{\mathscr{X}}(y) = \{ P \in \mathscr{X}^{(1)} | v_P(y) \neq 0 \}$$

Since \mathscr{X} is proper over an affine scheme, $supp_{\mathscr{X}}(y)$ is a finite set.

Let $\tilde{\mathscr{X}}$ be the normal closure of \mathscr{X} in F. Since $p \neq 2$, each point $P \in \tilde{\mathscr{X}}^{(1)}$ induces a residue map $\partial_{v_P} : H^2(F, \mu_2) \to H^1(\kappa(P), \mathbb{Z}/2\mathbb{Z})$. We define the *ramification locus* of D in \mathscr{X} :

$$ram_{\mathscr{X}}(D) = \{ P \in \mathscr{X}^{(1)} | \partial_{v_{O}}([D]) \neq 0 \text{ for some } Q \in \mathscr{\tilde{X}} \text{ lying over } P \}.$$

Let $\lambda \in F_0^*$. We can choose $\mathscr{X} \to Spec(R)$ a regular model of X with the reduced special fibre X_0 such that $ram_{\mathscr{X}}(D) \cup supp_{\mathscr{X}}(\lambda) \cup supp_{\mathscr{X}}(d) \cup X_0$ is a union of normal crossing regular curves (ref). Since period of D is 2, by a theorem of

Suppose $\lambda \in F_0^* \cap Nrd_{D/F}(D)$. To show that $\lambda \in \langle Nrd_{D/F}(a) | a \in \Sigma(D) \rangle$, we construct three quadratic extensions L_i/F_0 and $\mu_i \in L_i^*$ such that

- i) $\prod_i N_{L_i/F_0}(\mu_i) = \lambda$
- ii) $\operatorname{ind}(D \otimes L_i) \leq 2$
- iii) $\mu_i \in L_i^* \cap Nrd(D \otimes L_i).$

Since $\operatorname{ind}(D \otimes L_i) \leq 2$, $\mu_i \in \operatorname{Nrd}_{D \otimes L_i/F \otimes L_i}(a) | a \in \Sigma(D \otimes L_i) > .$ Since $\prod_i N_{L_i/F_0}(\mu_i) = \lambda$, it follows that $\lambda \in \operatorname{Nrd}_{D/F}(a) | a \in \Sigma(D) > .$

To construct L_i and $\mu_i \in L_i$, using methods of Parimala, Preeti and Suresh ([21]), first we construct such extensions L_i and $\mu_i \in L_i$ locally over complete discretely valued fields and over fraction fields of two dimensional complete regular local rings of dimension 2 with some compatibility conditions. Then using the patching techniques of Harbater, Hartmann and Krashen. we get the required extensions L_i and $\mu_i \in L_i$ over F_0 .

5.2 Preliminaries

Lemma 5.2.1. Let R be a complete regular local ring with maximal ideal (π, δ) , field of fractions F and residue field κ . Suppose that $char(\kappa)$ not equal to 2. Let F_{π} be the completion of F at the discrete valuation given by (π) . Let $a = u\pi^{\epsilon}\delta^{\epsilon'} \in R$ with $u \in R$ a unit and $\epsilon, \epsilon' \in \mathbb{Z}$. Then for any element $\mu_{\pi} \in F_{\pi}(\sqrt{a})^*$, there exists $\mu \in F(\sqrt{a})^*$ such that $\mu = w\pi^r \delta^s \sqrt{a}^{s'}$ with $w \in R[\sqrt{a}]$ a unit, $r, s, s' \in \mathbb{Z}$ and $\mu_{\pi}\mu^{-1} \in F_{\pi}(\sqrt{a})$ is a unit at π and maps to 1 modulo π .

Proof. Note that if ϵ or ϵ' is even, then $R[\sqrt{a}]$ is a regular local ring with maximal ideal (π_1, δ_1) for some primes $\pi_1, \delta_1 \in {\pi, \delta, \sqrt{a}} \subset R[\sqrt{a}]$ (cf. Lemma 3.1, [22]). In this case $F_{\pi}(\sqrt{a})$ is a complete discretely valued field with π_1 as a parameter and residue field a complete discretely valued field with valuation ring $R/(\pi)[\sqrt{a}]$ and $\bar{\delta}_1$ as a parameter. Suppose both ϵ and ϵ' are odd. Then $F_{\pi}(\sqrt{a})$ is a complete discretely valued field with $\pi_1 = \sqrt{a}$ as a parameter and residue field is also a complete discretely valued field with valuation ring $R/(\pi)$ and $\bar{\delta}_1 = \bar{\delta}$ a parameter.

Let $\mu_{\pi} \in F_{\pi}(\sqrt{a})^*$. Then $\mu_{\pi} = \mu_1 \pi_1^r$ for some $\mu_1 \in F_{\pi}(\sqrt{a})^*$ a unit at π_1 and $r \in \mathbb{Z}$. Let $\bar{\mu}_1$ be the image of μ in the residue field of $F_{\pi}(\sqrt{a})$. Then, we have $\bar{\mu}_1 = \bar{w}\bar{\delta}_1^s$ for some unit $w \in R[\sqrt{a}]$. Let $\mu = w\pi_1^r\delta_1^s$. Then $\mu_{\pi}\mu^{-1} \in F_{\pi}[\sqrt{a}]$ is a unit at π and maps to 1 in $\kappa(\pi)$.

Lemma 5.2.2. Let R be a complete regular local ring with maximal ideal (π, δ) , field of fractions F and residue field κ . Suppose that $char(\kappa)$ not equal to 2. Let $\lambda = u\pi^r \delta^s \in F^*$ with $u \in R^*$. Let F_{π} be the completion of F at the discrete valuation given by (π) . Let $n \ge 1$, $a_{i\pi} \in F_{\pi}^*$ and $\mu_{i\pi} \in L_{i\pi} = F_{\pi}[X]/(X^2 - a_{i\eta})$ for $1 \le i \le n$ with $\prod_i N_{L_{i\pi}/F_{\pi}}(\mu_{i\pi}) = \lambda$. Then there exist $a_i = u_i \pi^{\epsilon_i} \delta^{\epsilon'_i} \in R$ with $u_i \in R^*$, $\mu_i = w_i \pi^{r_i} \delta^{s_i} \sqrt{a_i}^{s'_i}$ for some $w_i \in R[X]/(X^2 - a_i)^*$ such that i) $a_{i\pi}a_i^{-1} \in F_{\pi}^{*2}$ for all ii) $\prod_i N_{F[X]/(X^2 - a_i)/F}(\mu_i) = \lambda$

ii) there is an isomorphism $\phi_i : F_{\pi}[X]/(X^2 - a_{i\eta}) \to F_{\pi}[X]/(X^2 - a_i)$ with $\phi_i(\mu_{i\pi})\mu_i^{-1} \in F_{\pi}[X]/(X^2 - a_i)^{2^m}$ for all $m \ge 1$.

Proof. Applying (5.2.1) for $a_{i\pi}$ with a = 1, we get $a_i = u_i \pi^{\epsilon_i} \delta^{\epsilon'_i}$ with $u_i \in R^*$ such that $a_i a_{i\pi} \in F_{\pi}^{*2}$. Hence replacing $a_{i\pi}$ by a_i we assume that $\mu_i \in F_{\pi}[X]/(X^2 - a_i)$.

Let $1 \leq i \leq n$. Suppose a_i is a square in F. Then $F_{\pi}[X]/(X^2 - a_i) = F_{\pi} \times F_{\pi}$ and $\mu_{i\pi} = (\mu'_{i\pi}, \mu''_{i\pi})$. Let $\mu'_i, \mu''_i \in F$ be as in (5.2.1) corresponding to $\mu'_{i\pi}$ and $\mu''_{i\pi}$ and $\mu_i = (\mu'_i, \mu''_i) \in F[X]/(X^2 - a_i)$. Suppose a_i is not a square. Let $\mu_i \in F$ be as in (5.2.1) corresponding to $\mu_{i\pi}$. Then $\lambda^{-1} \prod_i N_{F[X]/(X^2 - a_i)/F}(\mu_i)$ is a unit in R and maps to 1 in the residue field κ of R. Since $\operatorname{char}(\kappa) \neq 2$, there exists $\theta \in R^*$ which maps to 1 in κ and $\lambda^{-1} \prod_i N_{F[X]/(X^2 - a_i)/F}(\mu_i) = \theta^2$. Replacing μ_1 by $\mu_1 \theta$, we have the required μ_i .

Lemma 5.2.3. Let R be a complete regular local ring with maximal ideal (π, δ) , field of fractions F and residue field κ . Suppose that κ is a finite field with char (κ) not equal to 2. Let D be a quaternion algebra over F which is unramified on R except possibly at (π) and (δ) . Let $a = u\pi^{\epsilon}\delta^{\epsilon} \in R$ with $u \in R^{*}$ and $\mu = w\pi^{r}\delta^{s}\sqrt{a^{s'}} \in F[X]/(X^{2} - a)$ for some $w \in R[X]/(X^{2} - a_{i})^{*}$. If μ is a reduced norm from $D \otimes F_{\pi}[X]/(X^{2} - a)$, then μ is a reduced norm from $D \otimes F[X]/(X^{2} - a)$.

Proof. Suppose that ϵ or ϵ' is even. Then $R[X]/(X^2 - a)$ is regular and the result follows from (Lemma 6.5, [21]).

Suppose both ϵ and ϵ' are odd. Then $a = u\pi\delta a_1^2$ for some $a_1 \in F^*$. Without loss of generality, we assume that $a = u\pi\delta$. Since κ is a finite field, we have $D = (v, \pi)$ or (v, δ) or $(v, \pi\delta)$ or $(v_1\pi, v_2\delta)$ for some units $v, v_1, v_2 \in R$ (cf. Lemma 3.6, [31]). Since $(v, \pi\delta) \otimes F[X]/(X^2 - a) \simeq (v, u) \otimes F[X]/(X^2 - a)$ is split and $(v_1\pi, v_2\delta) \otimes F[X]/(X^2 - a)$ $a) \simeq (v_1v_2u, \delta) \otimes F[X]/(X^2 - a)$, without loss of generality we assume that $D = (v, \pi)$ or (v, δ) for some unit $v \in R$. Since $(v, \pi) \otimes F[X]/(X^2 - a) \simeq (v, \delta) \otimes F[X]/(X^2 - a)$, we assume that $D = (v, \delta)$.

Suppose $D \otimes F_{\pi}[X]/(X^2-a)$ is split. Since $D = (v, \delta)$ is unramified and $F_{\pi}[X]/(X^2-a)$ is ramified at π , $D \otimes F_{\pi}$ is split by contradiction. Hence, by (Corollary 5.6, [21]), D is split and μ is a reduced norm D.

Suppose $D \otimes F_{\pi}[X]/(X^2-a)$ is non-split. Since $a = u\pi\delta$, we have $\mu = w\pi^r \delta^s \sqrt{u\pi\delta}^{s'} \in F[X]/(X^2-a)$ for some $w \in R^*$. Since $\sqrt{u\pi\delta}$ is a parameter in $F_{\pi}[X]/(X^2-a)$ and $D \otimes F_{\pi}[X]/(X^2-a) \simeq (v,\delta) \otimes F_{\pi}[X]/(X^2-a)$ is unramified at π , $\sqrt{u\pi\delta}$ is not a reduced norm from $D \otimes F_{\pi}[X]/(X^2-a)$. Hence s' is even and $w\pi^r\delta^s$ is a reduced norm from $D \otimes F_{\pi}[X]/(X^2-a)$. Since $D \otimes F[X]/(X^2-a) \simeq (v,\pi) \otimes F[X]/(X^2-a) \simeq (v,\pi) \otimes F[X]/(X^2-a)$. Since κ is a finite field and $u, v \in R^*$, $\pm u$ is a norm from $D \otimes F[X]/(X^2-a)$.

5.3 Weak Approximations over Global Fields

In this section we prove certain weak approximations over global fields.

Proposition 5.3.1. Let κ be a global field of characteristic not 2 and $d, w \in \kappa^*$. Let S be a finite set of paces of κ . Let $u \in N_{\kappa(\sqrt{d})/\kappa}(\kappa(\sqrt{d})^*)N_{\kappa(\sqrt{w})/\kappa}(\kappa(\sqrt{w})^*$. For each $\nu \in S$, let $y_{\nu} \in \kappa_{\nu}(\sqrt{d})$ and $z_{\nu} \in \kappa_{\nu}(\sqrt{w})$ be such that $N_{\kappa_{\nu}(\sqrt{d})/\kappa_{\nu}}(y_{\nu})N_{\kappa_{\nu}(\sqrt{w})/\kappa_{\nu}}(z_{\nu})$ is close to u. Then there exist $y \in \kappa(\sqrt{d})$ and $z \in \kappa(\sqrt{w})$ be such that y is close to y_{ν} and z is close to z_{ν} for all $\nu \in S$ and $N_{\kappa(\sqrt{d})/\kappa}(y)N_{\kappa(\sqrt{w})/\kappa}(z) = u$.

Proof. By the strong approximation theorem for global fields (cf. Section 15, Chapter II, [5]), there are elements $y \in \kappa(\sqrt{d})$ and $z \in \kappa(\sqrt{w})$ satisfying the required principles.

Lemma 5.3.2. Let κ be a global field of characteristic not 2. Let $d_0, w_0 \in \kappa^*$ and S_0 a finite set of places of κ . For each place $\nu \in S_0$, suppose that there are elements $x_{\nu} \in$ $\kappa_{\nu}^{*}, y_{\nu} \in \kappa_{1\nu} = \kappa_{\nu}(\sqrt{x_{\nu}}) \text{ such that } y_{\nu} \in N_{\kappa_{1\nu}(\sqrt{w_{0}})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{w_{0}})^{*})N_{\kappa_{1\nu}(\sqrt{d_{0}w_{0}})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{d_{0}w_{0}})^{*}).$ Then there exist $x \in \kappa$ and $y \in \kappa_{1} = \kappa(\sqrt{x})$ such that

i) x is close to
$$x_{\nu}$$
 and y is close to y_{ν} for all $\nu \in S$
ii) $y \in N_{\kappa_1(\sqrt{w_0})/\kappa_1}(\kappa_1(\sqrt{w_0})^*)N_{\kappa_1(\sqrt{d_0w_0})/\kappa_1}(\kappa_1(\sqrt{d_0w_0})^*).$

Proof. Let $x \in \kappa$ be close to x_{ν} for all $\nu \in S$ and $\kappa_1 = \kappa(\sqrt{x})$. Then $\kappa_1 \otimes \kappa_{\nu} = \kappa_{1\nu}$. Let $z_{1\nu} \in \kappa_{1\nu}(\sqrt{w_0})^*$ and $z_{2\nu} \in \kappa_{1\nu}(\sqrt{d_0w_0})^*$ such that

$$y_{\nu} = N_{\kappa_{1\nu}(\sqrt{w_0})/\kappa_{1\nu}}(z_{1\nu})N_{\kappa_{1\nu}(\sqrt{d_0w_0})/\kappa_{1\nu}}(z_{1\nu}).$$

Let $z_1 \in \kappa_1(\sqrt{w_0})^*$ and $z_2 \in \kappa_1(\sqrt{d_0w_0})^*$ close to $z_{1\nu}$ and $z_{2\nu}$ respectively for all $\nu \in S$. Let

$$y = N_{\kappa_1(\sqrt{w_0})/\kappa_1}(z_1) N_{\kappa_1(\sqrt{d_0w_0})/\kappa_1}(z_2).$$

Then x and y have the required properties.

Lemma 5.3.3. Let κ be a global field of characteristic not 2. Let $u_0, b_0, c_0, w_0, d_0 \in \kappa^*$ and S_0 a finite set of places of κ containing all the places where at least one of b_0 , c_0, d_0, w_0 and u_0 is not a unit. Suppose that $u_0 \in N_{\kappa(\sqrt{w_0},\sqrt{d_0})/\kappa(\sqrt{d_0})}(\kappa(\sqrt{w_0},\sqrt{d_0})^*)$. For each place $\nu \in S_0$, suppose we have given $x_{\nu} \in \kappa^*_{\nu}$, $y_{1\nu} \in \kappa_{1\nu} = \kappa_{\nu}(\sqrt{x_{\nu}})$, $y_{2\nu} \in \kappa_{2\nu} = \kappa_{\nu}(\sqrt{w_0})$ and $y_{3\nu} \in \kappa_3 = \kappa_{\nu}(\sqrt{d_0w_0})$ such that

 $i) \prod_{i} N_{\kappa_{i\nu}/\kappa_{\nu}}(y_{i\nu}) = u_0$

ii) $y_{1\nu} \in N_{\kappa_{1\nu}(\sqrt{w_0})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{w_0})^*)N_{\kappa_{1\nu}(\sqrt{d_0w_0})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{d_0w_0})^*).$

Then there exist $x \in \kappa^*$ and $y_1 \in \kappa_1 = \kappa(\sqrt{x}), y_2 \in \kappa_2 = \kappa(\sqrt{w_0}), y_3 \in \kappa_3 = \kappa(\sqrt{d_0w_0})$ such that

i) x is close to x_{ν} and y_i is close to $y_{i\nu}$ for all $\nu \in S$ and i = 1, 2, 3.

ii) $\prod_{i} N_{\kappa_{i}/\kappa}(y_{i}) = u_{0}$ *iii)* $y_{1} \in N_{\kappa_{1}(\sqrt{w_{0}})/\kappa_{1}}(\kappa_{1}(\sqrt{w_{0}})^{*})N_{\kappa_{1}(\sqrt{d_{0}w_{0}})/\kappa_{1}}(\kappa_{1}(\sqrt{d_{0}w_{0}})^{*}).$

Proof. By (5.3.2), there exist $x \in \kappa$ and $y_1 \in \kappa_1 = \kappa(\sqrt{x})$ such that x is close to

 x_{ν}, y_1 is close to $y_{1\nu}$ for all $\nu \in S$ and $y_1 = N_{\kappa_1(\sqrt{w_0})/\kappa_1}(z_1)N_{\kappa_1(\sqrt{d_0w_0})/\kappa_1}(z_2)$ for some $z_1 \in \kappa_1(\sqrt{w_0})^*$ and $z_2 \in \kappa_1(\sqrt{d_0w_0})^*$.

Let $u_1 = N_{\kappa_1/\kappa}(y_1)$, $u_{12} = N_{\kappa_1(\sqrt{w_0})/\kappa}(z_1)$ and $u_{13} = N_{\kappa_1(\sqrt{d_0w_0})/\kappa}(z_2)$. Then $u_1 = u_{12}u_{13}$ and $u_{12} \in N_{\kappa_2/\kappa}(\kappa_2^*)$ and $u_{13} \in N_{\kappa_3/\kappa}(\kappa_3^*)$.

Let $u_2 = u_0 u_1^{-1}$. Since y_1 is close to $y_{1\nu}$ for all $\nu \in S$, $N_{\kappa_{2\nu}/\kappa_{\nu}}(y_{2\nu})N_{\kappa_{3\nu}/\kappa_{\nu}}(y_{3\nu})$ is close to u_2 . Hence, by (5.3.1), there exist $y_2 \in \kappa_2$ and $y_3 \in \kappa_3$ which are close to $y_{2\nu}$ and $y_{3\nu}$ respectively for all $\nu \in S$ such that $N_{\kappa_2/\kappa}(y_2)N_{\kappa_3/\kappa}(y_3) = u_2$. Then x_1, y_1, y_2 and y_3 have the required properties.

Proposition 5.3.4. Let κ be a global field of characteristic not 2. Let $u_0, b_0, c_0 \in \kappa^*$ and S_0 a finite set of places of κ containing all the places where at least one of u_0 , b_0, c_0 is not a unit or (b_0, c_0) is nontrivial at ν . Suppose for every $\nu \in S$, we have given $x_{\nu}, w_{\nu} \in \kappa_{\nu}, y_{1\nu} \in \kappa_{1\nu} = \kappa_{\nu}[X]/(X^2 - x_{\nu})$ and $y_{2\nu} \in \kappa_{2\nu} = \kappa_{\nu}[X]/(X^2 - w_{\nu})$ such that

- *i*) $N_{\kappa_{1\nu}/\kappa_{\nu}}(y_{1\nu})N_{\kappa_{2\nu}/\kappa_{\nu}}(y_{2\nu}) = u_0$
- ii) (b_0, c_0) splits over $\kappa_{1\nu}$ and $\kappa_{2\nu}$.

Then there exist units $x, w \in \kappa^*$, $y_1 \in \kappa_1 = \kappa[X]/(X^2 - x)$ and $y_2 \in \kappa_2 = \kappa[X]/(X^2 - w)$ such that

- i) x, w, y_1 and y_2 are close to x_{ν} , w_{ν} , $y_{1\nu}$ and $y_{2\nu}$ respectively for all $\nu \in S$
- *ii)* $N_{\kappa_1/\kappa}(y_1)N_{\kappa_2/\kappa}(y_2) = u_0,$
- *iii)* (b_0, c_0) splits over κ_1 and κ_2 .

Proof. Let $x, w \in \kappa$ be close to x_{ν} and w_{ν} for all $\nu \in S$. Since (b_0, c_0) splits over κ_{ν} for places $\nu \notin S$ and (b_0, c_0) splits over $\kappa_{1\nu}$ and over $\kappa_{2\nu}$ for all $\nu \in S$, (b_0, c_0) splits over κ_1 and κ_2 .

Let $y_1 \in \kappa_1$ close to $y_{1\nu}$ for all $\nu \in S$. Let $u_1 = N_{\kappa_1/\kappa}(y_1)$. Then $N_{\kappa_{2\nu}/\kappa_{\nu}}(y_{2\nu})$ is close to $u_1^{-1}u_0$ for all $\nu \in S$. Hence there exists $y'_{2\nu} \in \kappa_{2\nu}$ which is close to $y_{2\nu}$ such that $N_{\kappa_{2\nu}/\kappa_{\nu}}(y'_{2\nu}) = u_1^{-1}u_0$. Since κ_2/κ is a quadratic extension, there exists $y_2 \in \kappa_2$ such that $N_{\kappa_2/\kappa}(y_2) = u_1^{-1}u_0$ and y_2 is close to $y'_{2\nu}$ for all $\nu \in S$. Hence x, w, y_1 and y_2 have the required properties.

5.4 Complete Discretely Valued Fields

Let R_0 be a complete discretely valued field with residue field κ a positive characteristic global field of characteristic not equal to 2 and F_0 the field of fractions. Let $d \in R_0$ be a non-square and $F = F_0(\sqrt{d})$. Then the residue field of F, denoted by κ_F , is a global field which is isomorphic to κ or $\kappa(\sqrt{d})$. Let R be the integral closure of R_0 in F. Let D be a central division algebra over F with a F/F_0 -involution τ .

Suppose that π_F is a parameter of F and per(D) = 2. Then there is an unramified cyclic extension E/F with $Gal(E/F) = \langle \sigma \rangle$ such that $[D] = [D'] + [(E, \sigma, \pi_F)] \in$ $H^2(F, \mu_2)$ and $ind(D) = ind(D' \otimes_F E) \cdot [E : F]$ for some $[D'] \in H^2_{nr}(F, \mu_2) \cong$ $H^2(\kappa_F, \mu_2)$ (cf. Lemma 4.2, [21]; Theorem 5.6, [14]). In particular, (E, σ, π_F) is a cyclic division F-algebra of $ind((E, \sigma, \pi_F)) \leq 2$ (cf. Section 4, [21]; Corollary d, Chapter 15, [23]). Since κ_F is a global field, $per(D') = ind(D') \leq 2$ (cf. 4.5, §4, Chapter 3, Part II, [4]). Then $ind(D) \leq 4$.

We know that $SK_1U(D,\tau)$ is trivial (cf. Corollary 4.16, Corollary 4.17, [32]). The aim of this section is to show that given $\lambda \in F_0^*$ which is a reduced norm from D, there exist $a_1, a_2, a_3 \in F_0^*$ and $\mu_i \in L_i = F_0[X]/(X^2 - a_i)$ which approximates some given elements such that $\prod_i N_{L_i/F_0}(\mu_i) = \lambda$ and $ind(D \otimes F_0L_i) \leq 2$. This is required for our main result and also this gives an alternative proof of the fact that $SK_1U(A,\tau)$ is trivial.

Lemma 5.4.1. Suppose that the valuation of d is even, then $D = (b, c) \otimes (w, \pi)$ for some units $b, c, w \in R_0$ and a parameter π of F_0 .

Proof. Assume that $[D] \neq 0 \in H^2(F, \mu_2)$. Since the valuation of $d \in F_0$ is even, the extension F/F_0 is unramified.

Let π_0 be a parameter of F_0 . By the discussion above, we can find an unramified

cyclic extension E/F with $Gal(E/F) = \langle \sigma \rangle$ such that $[D] = [D'] + [(E, \sigma, \pi_0)],$ $ind(D') \leq 2$, and $ind((E, \sigma, \pi_0)) \leq 2$.

Since D has a unitary F/F_0 -involution and F/F_0 is unramified, there are elements b, c, x, y in F_0 such that $[D'] = [(b, c) \otimes_{F_0} F] \in H^2_{nr}(F, \mu_2) \cong H^2(\kappa_F, \mu_2)$ and $[(E, \sigma, \pi_0)] = [(x, y) \otimes_{F_0} F] \in H^2(F, \mu_2)$ (cf. Proposition 2.22, [16]).

Assume that $[D'] \neq 0 \in H^2(F, \mu_2)$. Since $[D'] \in H^2_{nr}(F, \mu_2)$, b and c are units in R_0 (cf. Section 4, [21]).

Assume that $[(E, \sigma, \pi_0)] \neq 0 \in H^2(F, \mu_2)$. Also notice that the unramified extension E/F is a splitting field of the division F-algebra (E, σ, π_0) . Since $[(E, \sigma, \pi_0)] \notin$ $H^2_{nr}(F, \mu_2)$, $[(x, y) \otimes_{F_0} F] = [(u_1\pi_0, u_2\pi_0) \otimes_{F_0} F]$ or $[(u_3, u_4\pi_0) \otimes_{F_0} F]$ for some units u_1, u_2, u_3, u_4 in R_0 . The former case cannot happen since the non-split quaternion F-algebra $(u_1\pi_0, u_2\pi_0)$ is not split over any unramified extension of F. Therefore, we can let $w = u_3$ and $\pi = u_4\pi_0$.

Lemma 5.4.2. Suppose that the valuation of d is odd. Then D = (b, c) for some units $b, c \in R_0$.

Proof. Assume that $[D] \neq 0 \in H^2(F, \mu_2)$. Since the valuation of $d \in F_0$ is odd, there is a parameter π_0 of F_0 such that $F_0(\sqrt{\pi_0}) \cong F = F_0(\sqrt{d})$ and $\sqrt{\pi_0}$ is a parameter of F.

By (Lemma 4.2, [21]) and the discussion before Lemma 5.3.5, there is an unramified extension E/F with $Gal(E/F) = \langle \sigma \rangle$ such that $[D] = [D'] + [(E, \sigma, \sqrt{\pi_0})] \in$ $H^2(F, \mu_2), ind(D') \leq 2$, and $ind((E, \sigma, \sqrt{\pi_0})) \leq 2$.

Since D has a unitary F/F_0 -involution, there are elements b, c, x, y in F_0 such that $[D'] = [(b,c) \otimes_{F_0} F] \in H^2_{nr}(F,\mu_2) \cong H^2(\kappa,\mu_2)$ and $[(E,\sigma,\sqrt{\pi_0})] = [(x,y) \otimes_{F_0} F] \in$ $H^2(F,\mu_2)$ (cf. Proposition 2.22, [16]).

Assume that $[D'] \neq 0 \in H^2(F, \mu_2)$. Since $[D'] \in H^2_{nr}(F, \mu_2)$, b and c are units in R_0 .

Assume that $[(E, \sigma, \sqrt{\pi_0})] \neq 0 \in H^2(F, \mu_2)$. Since $F \cong F_0(\sqrt{\pi_0})$ and $[(E, \sigma, \sqrt{\pi_0})] \notin H^2_{nr}(F, \mu_2)$, the quaternion *F*-algebra $(x, y) \otimes_{F_0} F$ has to be split over *F*. Then $[D] \cong_F [(b, c)] \in H^2(F, \mu_2)$ for units b, c in R_0 .

Proposition 5.4.3. Suppose d is a unit in R_0 . Suppose $D = (b, c) \otimes (w, \pi)$ for some units $b, c, w \in R_0$, $\pi \in R_0$ a parameter. Let $u \in R_0$ be a unit. Let S_0 be a finite set of places of κ containing all the places $\{\nu\}$ where at least one of \bar{u} , $\bar{b}, \bar{c}, \bar{w}, \bar{d}$ is not a unit or (\bar{b}, \bar{c}) is not split. For each place $\nu \in S_0$, suppose that we have given $x_{\nu} \in \kappa_{\nu} - \kappa_{\nu}^{*2}, y_{1\nu} \in \kappa_{1\nu} = \kappa[X]/(X^2 - x_{\nu}), y_{2\nu} \in \kappa_{2\nu} = \kappa_{\nu}[X]/(X^2 - \bar{w})$ and $y_{3\nu} \in \kappa_{3\nu} = \kappa_{\nu}[X]/(X^2 - \bar{w}\bar{d})$ such that

- i) $\prod_i N_{\kappa_{i\nu}/\kappa_{\nu}}(y_{i\nu}) = \bar{u}$
- $ii) y_{1\nu} \in N_{\kappa_{1\nu}(\sqrt{\bar{w}},\sqrt{\bar{d}})/\kappa_{1\nu}(\sqrt{\bar{d}})}(\kappa_{1\nu}(\sqrt{\bar{w}},\sqrt{\bar{d}})^*).$

Then there exist units $a \in R_0$, $\mu_1 \in R_0[X]/(X^2 - a)$, $\mu_2 \in R_0[X]/(X^2 - w)$, $\mu_3 \in R_0[X]/(X^2 - wd)$ such that

- i) \bar{a} is close to x_{ν} , $\bar{\mu}_i$ is close to $y_{i\nu}$ for all $\nu \in S_0$ and i = 1, 2, 3
- *ii)* $\prod_i N_{L_i/F_0}(\mu_i) = u$, where $L_1 = F_0[X]/(X^2 a)$, $L_2 = F_0[X]/(X^2 w)$ and $L_3 = F_0[X]/(X^2 dw)$
- *iii)* $(b,c) \otimes L_1$ *is split*
- iv) μ_i is a reduced norm from $D \otimes_{F_0} L_i$ for i = 1, 2, 3.

Proof. Since $\kappa_{1\nu}(\sqrt{\bar{w}},\sqrt{\bar{d}})/\kappa_{1\nu}$ is a bi-quaternion extension, it can be verified that $N_{\kappa_{1\nu}(\sqrt{\bar{w}})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{\bar{w}})^*)\cdot N_{\kappa_{1\nu}(\sqrt{\bar{dw}})/\kappa_{1\nu}}(\kappa_{1\nu}(\sqrt{\bar{dw}})^*) = N_{\kappa_{1\nu}(\sqrt{\bar{w}},\sqrt{\bar{d}})/\kappa_{1\nu}(\sqrt{\bar{d}})}(\kappa_{1\nu}(\sqrt{\bar{w}},\sqrt{\bar{d}})^*).$ Then by (5.3.3), there exist $x \in \kappa$ and $y_1 \in \kappa_1 = \kappa(\sqrt{x}), y_2 \in \kappa_2 = \kappa(\sqrt{\bar{w}}),$ $y_3 \in \kappa_3 = \kappa(\sqrt{\bar{dw}})$ such that

i) x is close to x_{ν} and y_i is close to $y_{i\nu}$ for all $\nu \in S_0$ and i = 1, 2, 3.

ii) $\prod_{i} N_{\kappa_{i}/\kappa}(y_{i}) = \bar{u}$ iii) $y_{1} \in N_{\kappa_{1}(\sqrt{\bar{w}})/\kappa_{1}}(\kappa_{1}(\sqrt{\bar{w}})^{*})N_{\kappa_{1}(\sqrt{\bar{d}\bar{w}})/\kappa_{1}}(\kappa_{1}(\sqrt{\bar{d}\bar{w}})^{*}).$ Let ν be a place of κ . Suppose that $\nu \in S_0$. Then, by the choice, $[\kappa_{\nu}(\sqrt{x_{\nu}}), \kappa_{\nu}] = 2$. Since κ_{ν} is a local field, (\bar{b}, \bar{c}) is split over $\kappa_{\nu}(\sqrt{x_{\nu}}) = \kappa_{\nu}(\sqrt{x})$. Suppose that $\nu \notin S_0$. Then, by the choice of S_0 , (\bar{b}, \bar{c}) is split over κ_{ν} . Hence, by the theorem of Albert-Brauer-Hasse-Noether, (\bar{b}, \bar{c}) is split over $\kappa_1 = \kappa(\sqrt{x})$.

Let $a \in R_0$ be a lift of $x, \mu_1 \in R_0[X]/(X^2-a)$ a lift of y_1 and $\mu_2 \in R_0[X]/(X^2-w)$ a lift of y_2 . Since R_0 is complete, there exists $\mu_3 \in R_0[X]/(X^2-wd)$ which has a lift y_3 such that $\prod_i N_{L_i/F_0}(\mu_i) = u$.

Since R_0 is complete and (\bar{b}, \bar{c}) splits over $\kappa(\sqrt{x}), (b, c) \otimes L_1$ is split.

Since $y_1 \in N_{\kappa_1(\sqrt{w},\sqrt{d})/\kappa_1(\sqrt{d})}(\kappa_1(\sqrt{w},\sqrt{d})^*)$, R_0 is complete and μ_1 is a lift of y_1 , $\mu_1 \in N_{L_1(\sqrt{w},\sqrt{d})/L_1(\sqrt{d})}(L_1(\sqrt{w},\sqrt{d})^*)$. Since $(b,c) \otimes L_1$ is split, $D \otimes L_1 = (w,\pi) \otimes L_1(\sqrt{d})$. Hence μ_1 is a reduced norm from $D \otimes L_1$.

Let i = 2, 3. Since κ is a global field, y_i is a reduced norm from $(\overline{b}, \overline{c}) \otimes \kappa_i$. Since R_0 is complete, μ_i is a reduced norm from $(b, c) \otimes L_i(\sqrt{d}) = D \otimes L_i$.

Hence a_1, μ_1, μ_2, μ_3 have the required properties.

5.5 Two Dimensional Complete Fields

Let R_0 be a complete two dimensional regular local ring with $m = (\pi, \delta)$ the maximal ideal of R_0 , $\kappa_0 = R/m$ and F_0 field of fractions of R_0 . Suppose that κ_0 a finite field of char not equal to 2. Let $w \in R_0$ be a unit which is not a square in R_0 and d = w or π . Let $F = F_0(\sqrt{d})$ and R the integral closure of R_0 in F. Then R is a regular local ring with maximal ideal $m_R = (\pi', \delta)$ with $\pi' = \pi$ if d = w and $\pi' = \sqrt{\pi}$ if $d = \pi$ (cf. Lemma 3.1 & Lemma 3.2, [22]).

Let D/F be a central division algebra of period 2 which is unramified on R except possibly at (π') and (δ) . Since the residue field κ_0 is a finite field of $char(\kappa_0) \neq 2$, then the index of D is 2 (cf. Proposition 3.5, [31]).

Proposition 5.5.1. Suppose that D admits a F/F_0 -involution. Then there exists a

quaternion division algebra D_0/F_0 such that $D \simeq D_0 \otimes F$ and i) if d = w, then $D_0 = (\pi, \delta)$; ii) if $d = \pi$, then $D_0 = (w, \delta)$.

Proof. By (Proposition 2.22, [16]), there exists a quaternion division algebra D_0/F_0 such that $D \cong D_0 \otimes_{F_0} F$.

According to (Lemma 3.6 & Lemma 4.1, [31]) and considering the square classes of F_0 , D_0 has the form (π, δ) or (w, δ) .

Let $\lambda = u\pi^r \delta^s \in F_0$ with $u \in R_0$ a unit and $r, s \in \mathbb{Z}$. Suppose that λ is a reduced norm from D. In this section we construct quadratic extensions L_1, L_2, L_3 of F_0 and $\mu_i \in L_i$ with $\prod_i N_{L_i/F_0}(\mu_i) = \lambda$ and satisfying some other properties. These results are used in the proof of the main theorem. Let $\epsilon_1, \epsilon_2 \in \{0, 1\}$ such that $r = 2r_1 + \epsilon_1$ and $s = \epsilon_2 + 2s_1$ for some $r_1, s_1 \in \mathbb{Z}$. Then $\lambda = u\pi^{\epsilon_1} \delta^{\epsilon_2} (\pi^{r_1} \delta^{s_1})^2$.

We begin with the following.

Proposition 5.5.2. Let D_0 be a quaternion division algebra over F_0 which is unramified on R_0 except possibly at (π) and (δ) . Suppose that λ is a reduced norm from D_0 . Then there exist $a_i \in F_0^*$ and $\mu_i \in L_i = F_0[X]/(X^2 - a_i)$ for i = 1, 2 such that

1) $a_1 = v\pi^{\epsilon_1}\delta^{\epsilon_2} \in F_0^* \setminus F_0^{*2}$ with $v \in R_0^*$

2) $a_2 \in R_0$ which is a unit at (π) , (δ) , $\partial_{\pi}(D_0) = \bar{a}_2 \in \kappa(\pi)^* / \kappa(\pi)^{*2}$ and $\partial_{\delta}(D_0) = \bar{a}_2 \in \kappa(\delta)^* / \kappa(\delta)^{*2}$

- 3) $N_{L_1/F_0}(\mu_1)N_{L_2/F_0}(\mu_2) = \lambda$
- 4) μ_i is a reduced from from $D_0 \otimes L_i$ for i = 1, 2
- 5) $\mu_2 \in R_0[X]/(X^2 a_2)$ a unit.

Proof. By (Lemma 3.6 & Lemma 4.2, [31]), we have $D_0 = (v, \pi)$, (v, δ) , $(v, \pi\delta)$ or $(v_1\pi, v_2\delta)$ for some units $v, v_1, v_2 \in R_0$. If $D_0 = (v, \pi)$, let $a_2 = v\delta^2 + \pi$. If $D_0 = (v, \delta)$, let $a_2 = v\pi^2 + \delta$. If $D_0 = (v, \pi\delta)$, let $a_2 = v$. If $D_0 = (v_1\pi, v_2\delta)$, let $a_2 = v_1\pi + v_2\delta$. Then a_2 satisfies the property 5). By checking the square classes, $D_0 \otimes L_2$ is trivial.

Suppose $\pm \lambda$ are not squares in F_0 . Let $a_1 = -u\pi^{\epsilon_1}\delta^{\epsilon_2}$, $\mu_1 = \pi^{r_1}\delta^{s_1}\sqrt{a_1}$. Then, by (Lemma 6.2, [21]), a_1, a_2, μ_1 and $\mu_2 = 1$ have the required properties.

Suppose that one of $\pm \lambda$ is a square in F_0 . Suppose λ is a square. Then $\epsilon_1 = \epsilon_2 = 0$, $u = u_1^2$ for some $u_1 \in R_0$ and $\lambda = u_1^2 \pi^{2r_1} \delta^{2s_1}$. Suppose $D_0 = (v_1 \pi, v_2 \delta)$. Let $a_1 = w$, $\mu_1 = v_1^{r_1} v_2^{s_1} \pi^{r_1} \delta^{s_1}$ and $\mu_2 = u_1 v_1^{-r_1} v_2^{-s_1}$. Then a_1, a_2, μ_1 and μ_2 have the required properties. Suppose $D_0 \neq (v_1 \pi, v_2 \delta)$. Let $a_1 = w$. Then $D_0 \otimes L_1$ is trivial. Hence $a_1, a_2, \mu_1 = u_1 \pi^{r_1} \delta^{s_1}$ and $\mu_2 = 1$ have the required properties.

Suppose λ is not a square in F_0 . Then $-\lambda$ is a square in F_0 . Then $\epsilon_1 = \epsilon_2 = 0$, $u = -u_1^2$ for some $u_1 \in R_0$, -1 is not a square in F_0 and $\lambda = -u_1^2 \pi^{2r_1} \delta^{2s_1}$. In particular -1 is a reduced norm from D_0 . Since -1 is not a square in F_0 , it follows that $D_0 \neq (v_1\pi, v_2\delta)$. Let $a_1 = -1$. Since κ_0 is a finite field, there exists $\mu' \in F_0[X]/(X^2 + 1)$ such that $N_{L_1/F_0}(\mu') = -1$. Then $a_1 = -1$ $\mu_1 = \mu' u_1 \pi^{r_1} \delta^{s_1}$ and $\mu_2 = 1$ have the required properties.

Lemma 5.5.3. Suppose that d = w. Let $a_2 = \pi + \delta$ and $a_3 = da_2$. There exist $a_1 = v\pi^{\epsilon_1}\delta^{\epsilon_2} \in F_0^* \setminus F_0^{*2}$ with $v \in R_0^*$ and $\mu_i \in L_i = F_0[X]/(x^2 - a_i)$ such that

- 1) $\prod_{i=1}^{3} N_{L_i/F_0}(\mu_i) = \lambda$
- 2) μ_i is a reduced from from $D \otimes_F FL_i$
- 3) $\mu_i \in L_i$ are units at π and δ for i = 1, 2.

Proof. Since κ is a finite field, R_0^*/R_0^{*2} has only one non trivial class and it is given by d = w. Since $F = F_0(\sqrt{d})$, every element in R_0^* is a square in R. In particular $-1 \in R^{*2}$ and $\lambda = u_1^2 \pi^r \delta^s$ for some $u_1 \in R$ with $u_1^2 = u$. Further $D_0 = (\pi, \delta)$.

Suppose that λ is not a square in F^* . Then $\lambda = \pi^{\epsilon_1} \delta^{\epsilon_2} u_1^2 \pi^{2r_1} \delta^{2s_1}$. Since $-1 \in F^{*2}$, both $\pm \lambda$ are not squares in F^* . Hence, by (Lemma 6.2, [21]), $a_1 = -u\pi^{\epsilon_1}\delta^{\epsilon_2}$, $\mu_1 = \pi^{r_1}\delta^{s_1}\sqrt{a_1}$, and $\mu_2 = \mu_3 = 1$ have the required properties.

Suppose that λ is a square in F^* . Then $r = 2r_1$ and $s = 2s_1$. Suppose λ is a square in F_0 . Then $u_1 \in R_0^*$. Since π and δ are reduced norms from D_0 and $D_0 \otimes F_0(\sqrt{a_2})$ is split, $a_1 = w$, $\mu_1 = \pi^{r_1} \delta^{s_1}$, $\mu_2 = u_1$ and $\mu_3 = 1$ have the required properties. Suppose that $\lambda \notin F_0^{*2}$. Then $u = du_2^2$ for some unit $u_2 \in R_0$. Then $a_1 = w$, $\mu_1 = \pi^{r_1} \delta^{s_1}, \ \mu_2 = \sqrt{a_2}^{-1}, \ \mu_3 = u_2 \sqrt{a_3}$ have the required properties. \Box

Lemma 5.5.4. Suppose that $d = \pi$. There exist $a_1 = v\pi^{\epsilon_1}\delta^{\epsilon_2} \in F_0^* \setminus F_0^{*2}$ with $v \in R_0^*$ and $\mu_1 \in L_1 = F_0[X]/(x^2 - a_1)$ and $\mu_2 \in L_2 = F_0[X]/(x^2 - w)$ such that

- *i*) $N_{L_1/F_0}(\mu_1)N_{L_2/F_0}(\mu_2) = \lambda$
- *ii)* μ_i *is a reduced from from* $D \otimes_F FL_i$
- *iii*) $\mu_2 \in R_0[X]/(X^2 w)^*$.

Proof. Since $d = \pi$, we have $D_0 = (w, \delta)$ (5.5.1).

Suppose both $\pm \lambda$ are not squares in F. Then $a_1 = -u\pi^{\epsilon_1}\delta^{\epsilon_2}$, $\mu_1 = \pi^{r_1}\delta^{s_1}\sqrt{a_1}$ and $\mu_2 = 1$ have the required properties (Lemma 6.2, [21]).

Suppose that only one of $\pm \lambda$ is a square in F. Then $-1 \notin F_0^{*2}$ and $\lambda = \pm 1 \in F_0^*/F_0^{*2}$ or $\lambda = \pm \pi \in F_0^*/F_0^{*2}$. Further $D_0 = (-1, \delta)$.

Suppose $\lambda = \pm 1 \in F_0^*/F_0^{*2}$. Then $\lambda = \pm u_1^2 \pi^{2r_1} \delta^{2s_1}$ for some $u_1 \in R_0^*$. Let $a_1 = -1$ Since κ is a finite field, there exists $\mu'_1 \in L_1 = F_0(\sqrt{a_1})$ with $N_{L_1/F_0}(\mu_1) = \pm 1$. Then $a_1, \mu_1 = u_1 \pi^{r_1} \delta^{s_1} \mu'_1$, and $\mu_2 = 1$ have the required properties.

Suppose $\lambda = \pm \pi \in F_0^*/F_0^{*2}$. Then $\epsilon_1 = 1$, $\epsilon_2 = 0$ and $\lambda = \epsilon \pi u_1^2 \pi^{2r_1} \delta^{2s_1}$ for some $u_1 \in R_0^*$ and $\epsilon = \pm 1$. Then $a_1 = -\pi$, $\mu_1 = u_1 \pi^{r_1} \delta^{s_1} \sqrt{-\pi}$, and $\mu_2 \in L_2 = F_0(\sqrt{-1})$ with $N_{L_2/F_0}(\mu_2) = \epsilon$ have the required properties.

Suppose both $\pm \lambda$ are squares in F. Then $-1 \in F^{*2}$. Since $d = \pi, -1 \in F_0^{*2}$.

Suppose λ is a square in F_0 . Then $a_1 = w$, $\mu_1 = \sqrt{\lambda}$ and $\mu_2 = 1$ have the required properties.

Suppose that λ is not a square in F_0^* . Then $d\lambda \in F_0^{*2}$ and hence $\lambda = \pi u_1^2 \pi^{2r_1} \delta^{2s_1}$ for some $u_1 \in R_0^*$. Then $a_1 = w\pi$, $\mu_1 = u_1 \pi^{r_1} \delta^{s_1} \sqrt{w\pi}$, and $\mu_2 \in L_2$ with $N_{L_2/F_0}(\mu_2) = -w^{-1}$ have the required properties.

Lemma 5.5.5. Suppose d is not a square and D is ramified on R at most at π . Then $D \otimes F_{\pi}$ is split.

Proof. Suppose d = w. Suppose D is non split. Then, by (5.5.1), $D \simeq (\pi, \delta) \otimes F$. Then D is ramified both at (π) and (δ) . This contradicts the assumption that D is ramified at most at π . Hence D is split.

Suppose $d = \pi$. Suppose D is non split. Then, by (5.5.1), $D \simeq (w, \delta) \otimes F$ for unit $w \in R_0$ which is not a square. Since F/F_0 is ramified, $w \in R$ is not a square. In particular D is ramified at δ . This contradicts the assumption that D is ramified at most at π . Hence D is split. \Box

We end this section with the following.

Proposition 5.5.6. Suppose that D is ramified on R at most at π . Let $n \ge 1$. Suppose there exist $a_{i\pi} \in F_{0\pi}$ and $\mu_{i\pi} \in L_{i\pi} = F_{0\pi}[X]/(X^2 - a_{i\pi})$ for $1 \le i \le n$ such that

i) $\prod_{i} N_{L_{i\pi}/F_{0\pi}}(\mu_{i\pi}) = \lambda$

ii) $\mu_{i\pi}$ is a reduced norm from $D \otimes L_{i\pi}$ for $1 \leq i \leq n$.

Then there exist $a_i \in F_0$ and $\mu_i \in L_i = F_0[X]/(X^2 - a_i)$ for $1 \le i \le n$ such that $i) \prod_i N_{L_i/F_0}(\mu_i) = \lambda$

- *ii)* μ_i *is a reduced norm from* $D \otimes L_i$ *for* $1 \leq i \leq n$
- *iii)* $a_{i\pi}a_i \in F_{0,\pi}^{*2}$ for $1 \le i \le n$
- iv) there is an isomorphism

$$\phi_i: L_{i\pi} \simeq L_i \otimes F_{\pi}$$

such that $\phi_i(\mu_{i\pi})^{-1}\mu_i \in (L_i \otimes F_{0\pi})^{2^m}$ for all $m \ge 1$ and $1 \le i \le n$.

Proof. Apply (5.2.2) to R_0 , F_0 and $a_{i\pi}$ with a = 1, and get $a_i \in F_0$ as in (5.2.2). Apply once again (5.2.2) to R_0 , F_0 , a_i and $\mu_{i\pi}$, get $\mu_i \in L_i = F_0[X]/(X^2 - a_i)$ as in (5.2.2).

Suppose d is not a square in F_0 . Then, by (5.5.5), D is split and hence μ_i are reduced norms from D.

Suppose d is a square in F_0 . Then $F = F_0 \times F_0$ and $D = D_0 \otimes F = D_0 \times D_0$. Since $\mu_{i\pi}$ are reduced norms from $D \otimes_F FL_i = D_0 \otimes L_i \times D_0 \otimes L_i$. Hence $\mu_{i\pi}$ are reduced norms from $D_0 \otimes L_i$ and by (5.2.3), μ_i are reduced norms from $D \otimes L_i$. \Box

5.6 Choice at Nodal Points

Let $p \geq 3$ be a prime and K be a p-adic field. Let F_0 be the function field of a curve over K and $F = F_0(\sqrt{d})$ a quadratic field extension. Let D be a central division algebra over F with a F/F_0 -involution. Let $\lambda \in F_0^* \cap Nrd(D)^*$.

Let T be the valuation ring of K and k the residue field of K. Let \mathscr{X}_0 be regular proper model of F_0 over T with the union of the ramification locus of D, support of d, support of λ and the closed fibre X_0 of \mathscr{X}_0 is a union of regular curves with normal crossings. Further the integral closure \mathscr{X} of \mathscr{X}_0 in F is a is a regular proper model of F (Proposition 8.3.8, [17]). Let \mathscr{D} be the set of codimension one points of \mathscr{X}_0 consisting of support of d, support of λ , the closed fibre X_0 and the ramification locus of D on \mathscr{X}_0 . Let $P \in \mathscr{X}_0$ be a closed point. Then, by the choice of \mathscr{X}_0 , there exist at most two codimension one points of \mathscr{X}_0 which are in \mathscr{D} and passes through P. Further, since \mathscr{X} is regular, there exists at most one codimension one point η of \mathscr{X}_0 passing through P such that $\nu_{\eta}(d)$ is odd.

Let $P \in \mathscr{X}_0$ be a closed point. Let \hat{R}_{0P} be the completion of the local ring at P on \mathscr{X}_0, m_P the maximal ideal \hat{R}_{0P}, F_{0P} the field of fractions of \hat{R}_{0P} and $F_P = F_{0P} \otimes F$. Let $w_P \in \hat{R}_{0P}$ be a unit which is not a square in \hat{R}_{0P} . Since the residue field $\kappa(P)$ at P is a finite field, any unit in \hat{R}_{0P} is a square or w_P times a square.

Let \mathscr{P}_0 be the finite set of closed points of \mathscr{X}_0 consisting of the points of intersection of two distinct codimension one points in \mathscr{D} .

Let $P \in \mathscr{P}_0$ and $\eta_1, \eta_2 \in \mathscr{D}$ such that $P \in \overline{\{\eta_1\}} \cap \overline{\{\eta_2\}}$. Then $m_P = (\pi_P, \delta_P)$ with η_1 and η_2 are given by primes π_P and δ_P respectively at $P, d = d_1^2$ or $d = w_P d_1^2$ or

 $d = w_P \pi_P d_1^2$ and $\lambda = u_P \pi_P^r \delta_P^s$ and D is unramified at P except possibly at (π_P) and (δ_P) , for some $u_P \in \hat{R}_{0P}$ units, $d_1 \in F_0^*$, $r = \nu_{\eta_1}(\lambda)$, $s = \nu_{\eta_2}(\lambda)$. Let $\epsilon_1, \epsilon_2 \in \{0, 1\}$ and $r_1, s_1 \in \mathbb{Z}$ such that $r = 2r_1 + \epsilon_1$ and $s = 2s_1 + \epsilon_2$. Then $\lambda = u_P \pi_P^{\epsilon_1} \delta_P^{\epsilon_2} (\pi_P^{r_1} \delta_P^{s_1})^2$.

Suppose that period of D is 2. Then $\operatorname{ind}(D) \leq 4$ (cf. [26]) and $\operatorname{ind}(D \otimes F_{0P}) \leq 2$ (cf. [20]). Then, there exists a central simple algebra D_{0P} over F_{0P} such that $D \otimes F_{0P} = D_{0P} \otimes F_P$ and D_{0P} is unramified at P except possibly at η_1 and η_2 . Further if $D \otimes F_{0P}$ is a split algebra, we choose $D_{0P} = F_{0P}$ and if $D \otimes F_{0P}$ is not a split algebra, D_{0P} be as in (5.5.1).

Proposition 5.6.1. Suppose $\nu_{\eta_1}(d)$ and $\nu_{\eta_2}(d)$ are even. Then there exist a_{iP} , μ_{iP} , i = 1, 2, 3 such that

a_{1P} = v_Pπ^{ε₁}_Pδ^{ε₂}_P ∈ F_{0P} \ F^{*2}_{0P}, v_P a unit at P, μ_{1P} ∈ L_{1P} = F_{0P}[X]/(X² - a_{1P})
 a_{2P} ∈ R̂_{0P} a unit at η₁ and η₂ and ∂_{ηi}(D_{0P}) = ā_{2P} ∈ κ(η_i)*/κ(η_i)*² for i = 1, 2
 a_{3P} = da_{2P},
 μ_{iP} ∈ F_{0P}[X]/(X² - a_{iP})* unit along π and δ for i = 2, 3
 ∏_i N<sub>L_{iP}/F_{0P}(μ_{iP}) = λ, where L_{iP} = F₀[X]/(X² - a_i) for i = 1, 2, 3
 μ_{iP} is a reduced norm from D ⊗ L_{iP} for i = 1, 2, 3
</sub>

Proof. Suppose $D \otimes F_{0P}$ is a split algebra. Let v_P a unit at P such that $a_{1P} = v_P \pi_P^{\epsilon_1} \delta_P^{\epsilon_2} \in F_{0P} \setminus F_{0P}^{*2}$. Then $\mu_{1P} = \pi_P^{r_1} \delta_P^{s_1} \sqrt{a_{1P}}$, $a_{2P} = 1$, $\mu_{2P} = (-v_P^{-1}u_P, 1) = F_{0P} \times F_{0P} = F_{0P}[X]/(X^2 - 1)$ and $\mu_{3P} = 1$ have the required properties.

Suppose that $D \otimes F_{0P}$ is not a split algebra. Suppose d is not a square in F_{0P} . Since $\nu_{\eta_1}(d)$ and $\nu_{\eta_2}(d)$ are even, $d = w_P d_1^2$ for some $d_1 \in F_{0P}^*$. Then, by (5.5.1), $D_{0P} = (\pi_P, \delta_P)$. Then a_{1P}, a_{2P}, μ_{iP} as in (5.5.3) have the required properties.

Suppose d is a square in F_{0P} . Then $F \otimes F_{0P} = F_{0P} \times F_{0P}$ and $D \otimes F_{0P} = D_{0P} \times D_{0P}^{op}$ for some quaternion algebra D_{0P} over F_{0P} . Further D_{0P} is unramified at P except possibly at (π_P) and (δ_P) . Let a_{1P} , a_{2P} and $\mu_i \in L_{iP}$ be as in (5.5.2). Let $\mu_{3P} = 1$. Then a_{1P} , a_{2P} and μ_{iP} , i = 1, 2, 3 have the required properties. **Proposition 5.6.2.** Suppose $\nu_{\eta_1}(d)$ is odd. Then there exist a_{1P} , a_{2P} , μ_{1P} , μ_{2P} such that

a_{1P} = v_Pπ^{ε₁}_Pδ^{ε₂} ∈ F_{0P} \ F^{*2}_{0P}, v_P a unit at P, μ_{1P} ∈ L_{1P} = F_{0P}[X]/(X² - a_{1P})
 a_{2P} ∈ R̂_{0P} a unit at P and ∂_{η2}(D_{0P}) = ā_{2P} ∈ κ(η₂)*/κ(η₂)*²
 μ_{2P} ∈ R̂_{0P}[X]/(X² - a_{2P})*
 N<sub>L_{1P}/F_{0P}(μ_{1P})N<sub>L_{2P}/F_{0P}(μ_{2P}) = λ, where L_{iP} = F₀[X]/(X² - a_i) for i = 1, 2
 μ_{iP} is a reduced norm from D ⊗ L_{iP} for i = 1, 2
</sub></sub>

Proof. Suppose $D \otimes F_{0P}$ is a split algebra. Let v_P a unit at P such that $a_{1P} = v_P \pi_P^{\epsilon_1} \delta_P^{\epsilon_2} \in F_{0P} \setminus F_{0P}^{*2}$. Then $\mu_{1P} = \pi_P^{r_1} \delta_P^{s_1} \sqrt{a_{1P}}$, $a_{2P} = 1$ and $\mu_{2P} = (-v_P^{-1}u_P, 1) = F_{0P} \times F_{0P} = F_{0P}[X]/(X^2 - 1)$ have the required properties.

Suppose $D \otimes F_{0P}$ is not a split algebra. Since $\nu_{\eta_1}(d)$ is even, by the choice of $\mathscr{X}_0, \nu_{\eta_2}(d)$ is even. Hence $d = v_P \pi_P d_1^2$ for some $v_1 \in \hat{R}_{0P}$ a unit and $d_1 \in F_0^*$. In particular $D_{0P} = (w_P, \delta_P)$. Let $a_{2P} = w_P$. Hence, by (5.5.4), there exist $a_{1P} = v_P \pi^{\epsilon_1} \delta^{\epsilon_2} \in F_{0P}^* \setminus F_{0P}^{*2}$ with $v_P \in \hat{R}_{0P}^*$ and $\mu_{1P} \in L_{1P} = F_{0P}[X]/(x^2 - a_{1P})$ and $\mu_{2P} \in L_{2P} = F_{0P}[X]/(x^2 - a_{2P})$ such that

i)
$$N_{L_{1P}/F_{0P}}(\mu_{1P})N_{L_{2P}/F_{0P}}(\mu_{2P}) = \lambda$$

ii) μ_{iP} is a reduced from from $D \otimes L_{iP}$ for i = 1, 2

iii)
$$\mu_{2P} \in \hat{R}_{0P}[X]/(X^2 - a_{2P})^*$$
.

Then a_{1P} , a_{2P} , μ_{1P} and μ_{2P} have the required properties.

5.7 Choices at Codimension One Points and Curve Points

Let $p \geq 3$ be a prime and K be a p-adic field. Let F_0 be the function field of a curve over K and $F = F_0(\sqrt{d})$ a quadratic field extension. Let D be a central division algebra over F with a F/F_0 -involution. Suppose that period of D is 2. Let $\lambda \in F_0^* \cap Nrd(D)^*$. Let $\mathscr{X}_0, \mathscr{X}, \mathscr{D}$ and \mathscr{P}_0 be as in section 5.4. Let $\eta \in X_0$ be a codimension zero point. Let π be a parameter at η . Then, by (5.4.1) and (5.4.2), we have $D \otimes F_{0\eta} =$ $(b,c) \otimes (w,\pi)$ for some $b,c,w \in F_{0\eta}$. Let $D_{0\eta} = (b,c) \otimes (w,\pi)$. Write $\lambda = u\pi^r$ for some $u \in F_{0\eta}$ with $\nu_{\eta}(u) = 0$. Let $\epsilon \in \{0,1\}$ and $r_1 \in \mathbb{Z}$ such that $r = 2r_1 + \epsilon$. Then $\lambda = u\pi^{\epsilon}(\pi^{r_1})^2$. Let $\mathscr{P}_{\eta} = \mathscr{P}_0 \cap \overline{\{\eta\}}$.

Proposition 5.7.1. Let $\eta \in X_0$ be a codimension zero point. Suppose $\nu_{\eta}(d)$ and $\nu_{\eta}(\lambda)$ are even. For each $P \in \mathscr{P}_{\eta}$, if d is a unit at P up to a square F_{0P} , let a_{iP} and μ_{iP} , i = 1, 2, 3 be as in (5.6.1) and if d is not a unit at P up to a square in F_{0P} , let a_{iP} and μ_{iP} , i = 1, 2 be as in (5.6.2), $a_{3P} = da_{2P}$ and $\mu_{3P} = 1$. Then there exist $a_{1\eta}, a_{2\eta}, a_{3\eta} \in F_{0\eta}$ units at η and $\mu_{i\eta} \in F_{0\eta}[X]/(X^2 - a_{i\eta})$ such that

i) $\prod_{i} N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta}) = \lambda$ ii) $\mu_{i\eta}$ is a reduced norm from $D \otimes L_{i\eta}$ for i = 1, 2, 3iii) $ind(D \otimes F_{i\eta}) \leq 2^{m}$ for all $m \geq 1$, $P \in \mathscr{P}_{\eta}$, i = 1, 2, 3iv) $a_{i\eta}a_{iP} \in F_{0P,\eta}^{*2}$ for i = 1, 2, 3v) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism

$$\phi_{iP,\eta}: F_{0P,\eta}[X]/(X^2 - a_{i\eta}) \to F_{0P,\eta}[X]/(X^2 - a_{iP})$$

such that

$$\phi_{iP,\eta}(\mu_{i\eta})\mu_{iP}^{-1} \in (F_{0P,\eta}[X]/(X^2 - a_{iP}))^{2^n}$$

for all $m \ge 1$ and i = 1, 2, 3.

Proof. Since $\nu_{\eta}(d)$ is even, replacing d by d times a square in $F_{0\eta}$, we assume that $\nu_{\eta}(d) = 0$.

Let π_{η} be a parameter at η such that for every $P \in \mathscr{P}_{\eta}$, the maximal ideal at P is given by (π_{η}, δ_{P}) for some prime δ_{P} because of normal crossings.

By (5.4.1) and (5.4.2), we have $D \otimes F_{\eta} = (b, c) \otimes (w, \pi_{\eta})$ for some $b, c, w \in F_{0\eta}$ which are units at η . Let $D_{0\eta} = (b, c) \otimes (w, \pi_{\eta})$, u_0 , b_0 , c_0 , d_0 and w_0 be the images of u, b, c, d, w in $\kappa(\eta)$. Since $\lambda = u\pi^r$ with $u \in F_{0\eta}$ a unit at η and λ is a reduced norm from $D \otimes F_{\eta}$, by the norm principle of bi-quadratic extensions, we have $u \in$ $N_{F_{0\eta}(\sqrt{d},\sqrt{w})/F_{0\eta}(\sqrt{d})}((F_{0\eta}(\sqrt{d},\sqrt{w})^*)$. Hence $u_0 \in N_{\kappa(\eta)(\sqrt{d_0},\sqrt{w_0})/F_0(\sqrt{d_0}}(\kappa(\eta)(\sqrt{d_0},\sqrt{w_0})^*)$.

Since $\nu_{\eta}(\lambda) = 2r_1$, by the choice of a_{1P} (5.6.1, 5.6.2), we have $a_{1P} = v_P \delta_P^{\epsilon_2}$ for some unit v_P at P and $\epsilon_2 \in \{0, 1\}$. Further a_{1P} is not square in F_{0P} . Since $F_{0P,\eta}$ is the completion of F_{0P} at η , a_{1P} is not a square in $F_{0P,\eta}$. Let $x_P = \bar{a}_{1P} = \bar{v}_P \bar{\delta}_P^{\epsilon_2}$.

Since $\mu_{iP} \in R_{0P}[X]/(X^2 - a_{iP})$ are units along η for i = 2, 3 and $\prod_{1}^{3} N_{L_{iP}/F_{0P}}(\mu_{iP}) = \lambda$, it follows that $\nu_{\eta}(N_{L_{1P}/F_{0P}}(\mu_{iP})) = \nu_{\eta}(\lambda)$. Since $L_{1P} \otimes F_{0P,\eta} = F_{0P,\eta}[X]/(X^2 - a_{1P})$ is unramified and $\nu_{\eta}(N_{L_{1P}/F_{0P}}(\mu_{1P})) = \nu_{\eta}(\lambda) = 2r_1$, we have $\mu_{1P} = y'_P \pi_{\eta}^{r_1}$ for some $y'_P \in L_{1P} \otimes F_{0P,\eta}$ unit in the valuation ring. Let $y_{1P} = \bar{y'}_P \in \kappa(\eta)_{1P} = \kappa(\eta)_P[X]/(X^2 - x_P)$.

For i = 2, 3, let y_{iP} be the image of μ_{iP} in $\kappa(\eta)_P[X]/(X^2 - \bar{a}_{2P})$. By the choice (5.6.1, 5.6.2), we have $a_{2P} = \partial_{\eta}(D_{0\eta}) = \bar{w}$ and $a_{3P} = da_{2P}$. Then $y_{2P} = \bar{\mu}_{2P} \in \kappa(\eta)_{2P} = \kappa(\eta)_P[X]/(X^2 - \bar{a}_{2P}) = \kappa(\eta)_P[X]/(X^2 - \bar{w})$ and $y_{3P} = \bar{\mu}_{3P} \in \kappa(\eta)_{3P} = \kappa(\eta)_P[X]/(X^2 - \bar{a}_{3P}) = \kappa_{\nu}[X]/(X^2 - \bar{d}\bar{w})$.

Further we have

- i) $\prod_i N_{\kappa(\eta)_{iP}/\kappa(\eta)_P}(y_{iP}) = \bar{u}.$
- ii) $y_{1P} \in N_{\kappa(\eta)_P(\sqrt{d},\sqrt{w})/\kappa(\eta)_P}(\kappa(\eta)_P(\sqrt{d},\sqrt{w})^*).$

Hence, by (5.4.3), there exists $a \in \hat{R}_{0\eta}^*$, $\mu_1 \in \hat{R}_{0\eta}[X]/(X^2 - a)$, $\mu_2 \in \hat{R}_{0\eta}[X]/(X^2 - w)$ and $\mu_3 \in \hat{R}_{0\eta}[X]/(X^2 - dw)$ such that

i) \bar{a} is close to x_P and $\bar{\mu}_i$ is close to y_{iP} for all $P \in \mathscr{P}_0$ and i = 1, 2, 3

ii) $\prod_i N_{L_{i\eta}/F_{0\eta}}(\mu_i) = u$, where $L_{1\eta} = F_{0\eta}[X]/(X^2 - a)$, $L_{2\eta} = F_{0\eta}[X]/(X^2 - w)$ and $L_{3\eta} = F_{0\eta}[X]/(X^2 - dw)$

- iii) $(b,c) \otimes L_{1\eta}$ is split
- iv) μ_i is a reduced norm from $D \otimes_{F_{0\eta}} L_{i\eta}$ for i = 1, 2, 3.

Since $D \otimes L_{1\eta} = ((b, c) \otimes L_{1\eta}) \otimes (w, \pi_{\eta}) \otimes L_{1\eta}) = (w, \pi_{\eta}) \otimes L_{1\eta}), \pi_{\eta}$ is a reduced norm from $D \otimes L_{1\eta}$. Hence $a_{1\eta} = a, a_{2\eta} = w, a_{3\eta} = wd, \mu_{1\eta} = \mu_1 \pi_{\eta}^{r_1}, \mu_{2\eta} = \mu_2$ and $\mu_{3\eta} = \mu_3$ have the required properties.

Proposition 5.7.2. Let $\eta \in X_0$ be a codimension zero point. Suppose $\nu_{\eta}(d)$ is even and $\nu_{\eta}(\lambda)$ is odd. For each $P \in \mathscr{P}_{\eta}$, if d is a unit at P up to a square F_{0P} , let a_{iP} and μ_{iP} , i = 1, 2, 3 be as in (5.6.1) and if d is not a unit at P up to a square in F_{0P} , let a_{iP} and μ_{iP} , i = 1, 2 be as in (5.6.2), $a_{3P} = da_{2P}$ and $\mu_{3P} = 1$. Then there exist $a_{1\eta}, a_{2\eta}, a_{3\eta} \in F_{0\eta}$ and $\mu_{i\eta} \in F_{0\eta}[X]/(X^2 - a_{i\eta})$ such that

i) $\prod_{i} N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta}) = \lambda$ ii) $\mu_{i\eta}$ is a reduced norm from $D \otimes L_{i\eta}$ for i = 1, 2, 3iii) $ind(D \otimes F_{i\eta}) \leq 2$ for i = 1, 2, 3iv) $a_{i\eta}a_{iP} \in F_{0P,\eta}^{*2}$ for i = 1, 2, 3v) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism

$$\phi_{iP,\eta}: F_{0P,\eta}[X]/(X^2 - a_{i\eta}) \to F_{0P,\eta}[X]/(X^2 - a_{iP})$$

such that

$$\phi_{iP,\eta}(\mu_{i\eta})\mu_{iP}^{-1} \in (F_{0P,\eta}[X]/(X^2 - a_{iP}))^{2^n}$$

for all $m \ge 1$ and i = 1, 2, 3.

Proof. Since $\nu_{\eta}(\lambda)$ is odd, $\operatorname{ind}(D)$ is at most 2 and $D \otimes F_{0\eta} = (w, \pi_{\eta})$ for some parameter π_{η} at η and $w \in F_0^*$ a unit at η (cf. Lemma 5.3.6; Corollary 5.6, [21]).

Since $\nu(\lambda)$ is odd, $\pm \lambda$ is not a square in F_{0P} for all $P \in \mathscr{P}_{\eta}$. Hence, by the choice of a_{1P} and μ_{iP} , we have $a_{1P}\lambda \in F_{0P,\eta}^{*2}$, $\mu_{1P}\sqrt{\lambda} \in F_{P\eta}(\sqrt{a_{1P}})^{*2}$. Further $wa_{2P} \in F_{0P,\eta}^{*2}$, $a_{3P} = a_{2P}d$, $\mu_{1P} = \mu_{2P} = 1$.

Let $a_{1\eta} = -\lambda$, $a_{2\eta} = w$, $a_{3\eta} = dw$, $\mu_{1\eta} = \sqrt{-\lambda}$ and $\mu_{2\eta} = \mu_{2\eta} = 1$. Since λ is a reduced norm from D, we have $(\lambda) \cdot D = 0 \in H^3(F, \mu_2)$. Since $\nu(\lambda)$ is odd, if $D \otimes F_{\eta}$ is not split, then by (Lemma 4.7, [21]), $\operatorname{ind}(D \otimes F(\sqrt{a_{1\eta}}) < \operatorname{ind}(D \otimes F_{\eta})$. In particular $D \otimes F_{\eta}(\sqrt{a_{1\eta}})$ is split. Hence $a_{1\eta} = -\lambda$, $a_{2\eta} = w$, $a_{3\eta} = dw$, $\mu_{1\eta} = \sqrt{-a_{1\eta}}$ and $\mu_{2\eta} = \mu_{3\eta} = 1$ have the required properties.

Proposition 5.7.3. Let $\eta \in X_0$ be a codimension zero point. Suppose $\nu_{\eta}(d)$ is odd. For each $P \in \mathscr{P}_{\eta}$, let a_{iP} and μ_{iP} , i = 1, 2 be as in (5.6.2). Then there exist $a_{1\eta}, a_{2\eta} \in F_{0\eta}$ and $\mu_{i\eta} \in F_{0\eta}[X]/(X^2 - a_{i\eta})$ such that

- 1) $\prod_{i} N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta}) = \lambda$ 2) $\mu_{i\eta}$ is a reduced norm from $D \otimes L_{i\eta}$ for i = 1, 23) $ind(D \otimes F_{i\eta}) \leq 2$ for i = 1, 24) $a_{i\eta}a_{iP} \in F_{0P,\eta}^{*2}$ for i = 1, 2
- 5) for $P \in \mathscr{P}_{\eta}$, there is an isomorphism

$$\phi_{iP,\eta}: F_{0P,\eta}[X]/(X^2 - a_{i\eta}) \to F_{0P,\eta}[X]/(X^2 - a_{iP})$$

such that

$$\phi_{iP,\eta}(\mu_{i\eta})\mu_{iP}^{-1} \in (F_{0P,\eta}[X]/(X^2 - a_{iP}))^{2^n}$$

for all $m \geq 1$ and i = 1, 2.

Proof. By (5.4.1) and (5.4.2), we have $D \otimes F_{\eta} = (b, c)$ for some $b, c \in F_{0\eta}$ which are units at η . Let $D_{0\eta} = (b, c)$ and u_0, b_0, c_0 be the images of u, b, c in $\kappa(\eta)$.

Write $r = 2r_1 + \epsilon_1$ for some $r_1 \in \mathbb{Z}$ and $\epsilon_1 \in \{0, 1\}$. By the choice of a_{1P} , we have $a_{1P} = w_P^{\epsilon_P} \pi_\eta^{\epsilon_1}$ for some $w_P \in F_{0P,\eta}$ unit at η . Let $x \in \kappa(\eta)$ be close to \bar{w}_P for all $P \in \mathscr{P}_\eta$. Let $a \in F_{0\eta}$ which maps to x in $\kappa(\eta)$ and $a_{1\eta} = a\pi_\eta^{\epsilon_1}$. Then $a_{1\eta}a_{1P} \in F_{0P,\eta}^{*2}$ for all $P \in \mathscr{P}_\eta$. Let $L_{1\eta} = F_{0\eta}(\sqrt{a_{1\eta}})$ and $L_{1P,\eta} = F_{0P,\eta}(\sqrt{a_{1P}})$. Then $L_{1\eta} \otimes F_{0P,\eta} = L_{1P,\eta}$. Let $\kappa(\eta)_1$ be the residue field of $L_{1\eta}$. Then $\kappa(\eta)_{1P}$ is the residue field of $F_{0P,\eta}(\sqrt{a_{1P}})$.

Since $\mu_{2P} \in R_{0P}[X]/(X^2 - a_{2P})$ is a unit along η and $N_{L_{1P}/F_{0P}}(\mu_{1P})N_{L_{2P}/F_{0P}}(\mu_{2P}) = \lambda$, it follows that $\nu_{\eta}(N_{L_{1P}/F_{0P}}(\mu_{1P})) = \nu_{\eta}(\lambda) = 2r_1 + \epsilon_1$.

Suppose $\epsilon_1 = 0$. Then $L_{1\eta}/F_{0,\eta}$ is unramified and π_η is a parameter in $F_{0P,\eta}(\sqrt{a_{1P}})$. Hence $\mu_{1P} = \theta_P \pi_\eta^{r_1}$ for some $\theta_P \in F_{0P,\eta}(\sqrt{a_{1P}})$ a unit at η . Suppose $\epsilon_1 = 1$. Then $L_{1\eta}/F_{0\eta}$ is ramified and $\sqrt{a_{1\eta}}$ is a parameter. Hence $\mu_{1P} = \theta_P \pi_\eta^{r_1} \sqrt{a_{1\eta}}$ for some $\theta_P \in F_{0P,\eta}(\sqrt{a_{1P}})$ a unit at η . In both cases, let $\theta \in \kappa(\eta)_1$ close to $\bar{\theta}_P$ for all $P \in \mathscr{P}_\eta$ and $\theta_1 \in L_{1\eta}$ which lifts θ . If $\epsilon_1 = 0$, let $\mu_{1\eta} = \theta_1 \pi_\eta^{r_1}$ and if $\epsilon_1 = 1$, let $\mu_{1\eta} = \theta_1 \pi_\eta^{r_1} \sqrt{a_{1\eta}}$. Then $\mu_{1\eta}\mu_{1P} \in L_{1\eta,P}^{*2}$ and $\lambda N_{L_{1\eta}/F_{0\eta}}(\mu_{1\eta})^{-1}$ is a unit at η . Since $\nu(d)$ is odd, F/F_0 is ramified at η and hence $\mu_{1\eta} = \mu'_{1\eta}g_\eta^2$ for some $\mu'_{1\eta} \in F \otimes L_{1\eta}$ a unit at η and $g_\eta \in F \otimes L_{1\eta}$. Since $\kappa(\eta)_1$ is a global field, $\bar{\mu}'_{1\eta} \in \kappa(\eta)_1$ is a reduced norm from $(b_0, c_0) \otimes \kappa(\eta)_1$ (Albert-Brauer-Hasse-Noether). Hence $\mu_{1\eta}$ is a reduced norm from $D \otimes L_{1\eta}$.

Let $z_1 \in \kappa(\eta)$ be the image of $\lambda N_{L_{1\eta}/F_{0\eta}}(\mu_{1\eta})^{-1}$ and y_{2P} be the image of μ_{2P} in $\kappa(\eta)_{2P} = \kappa(\eta)_P[X]/(X^2 - \bar{a}_{2P})$. By the choice of $\mu_{1\eta}$, it follows that $N_{\kappa(\eta)_{2P}/\kappa(\eta)_P}(y_{2P})$ is close to z_1 . Hence, replacing y_{2P} by some element which is close to y_{2P} , we assume that $N_{\kappa(\eta)_{2P}/\kappa(\eta)_P}(y_{2P}) = z_1$. In particular the quaternion algebra (\bar{a}_{2P}, z_1) is split over $\kappa(\eta)_P$ for all $P \in \mathscr{P}_{\eta}$. Hence \bar{a}_{2P} is a norm from the extension $\kappa(\eta)_P[X]/(X^2 - z_1)$. Let $\tilde{a}_{2P} \in \kappa(\eta)_P[X]/(X^2 - z_1)$ with norm equal to \bar{a}_{2P} . Let $\tilde{a}_2 \in \kappa(\eta)[X]/(X^2 - z_1)$ be close to \tilde{a}_{2P} for all $P \in \mathscr{P}_{\eta}$ and \bar{a}_2 be the norm of \tilde{a}_2 . Then \bar{a}_2 is close to \bar{a}_{2P} for all $P \in \mathscr{P}_{\eta}$. Since the quaternion algebra (\bar{a}_2, z_1) is split, z_1 is a norm from the extension $\kappa(\eta)_2 = \kappa(\eta)[X]/(X^2 - \bar{a}_2)$.

There exists $y_2 \in \kappa(\eta)_2$ which is close to y_{2P} for all $P \in \mathscr{P}_\eta$ such that $N_{\kappa(\eta)_2/\kappa(\eta)}(y_2) = z_1$ since $\kappa(\eta)_2$ is a global field. Let $a_{2\eta} \in F_{0\eta}$ be a lift of $\bar{a}_2 \in \kappa(\eta)$ and $\mu_{2\eta} \in L_{2\eta} = F_{0\eta}[X]/(X^2 - a_{2\eta})$ be such that $N_{L_{2\eta}/F_{0\eta}}(\mu_{2\eta}) = \lambda N_{L_{1\eta}/F_{0\eta}}(\mu_{1\eta})^{-1}$. Since $\mu_{2\eta}$ is a unit at η and D is unramified at η , as above, $\mu_{2\eta}$ is a reduced norm from $D \otimes L_{2\eta}$.

Hence $a_{1\eta}$, $a_{2\eta}$, $\mu_{1\eta}$ and $\mu_{2\eta}$ have the required properties.

Proposition 5.7.4. Let $P \in \mathscr{X}_0$ be a closed point. Suppose that $P \notin \mathscr{P}_0$. Let $\eta \in D$ be the unique codimension one point with $P \in \overline{\{\eta\}}$. Let $a_{i\eta} \in F_{0\eta}$ and $\mu_{i\eta} \in L_{i\eta} = F_{0\eta}[X]/(X^2 - a_{i\eta})$ be as in (5.7.1, 5.7.2, 5.7.3). Then there exist $a_{iP} \in F_{0P}$

and $\mu_{iP} \in L_{iP} = F_{0P}[X]/(X^2 - a_{iP})$ such that i) $\prod_i N_{L_{iP}/F_{0P}}(\mu_{iP}) = \lambda$ ii) μ_{iP} is a reduced norm from $D \otimes L_{iP}$ iii) $a_{i\eta}a_{iP} \in F_{0P,\eta}^{*2}$ iv) there is an isomorphism

$$\phi_{iP,\eta}: F_{0P,\eta}[X]/(X^2 - a_{i\eta}) \to F_{0P,\eta}[X]/(X^2 - a_{iP})$$

such that

$$\phi_{iP,\eta}(\mu_{i\eta})\mu_{iP}^{-1} \in (F_{0P,\eta}[X]/(X^2 - a_{iP}))^{2^n}$$

for all $m \geq 1$.

Proof. Let π_P be a prime defining η at P. Since there is a unique codimension one point in \mathscr{D} , the support of d at P and the ramification locus of at P is at most η . Hence, by (5.5.6), we have the required a_{iP} and μ_{iP} .

5.8 Choice of U

Let T be a complete discrete valuation ring with field of fractions K and residue field k. Let F_0 be the function field of a curve over K and $F = F_0(\sqrt{d})$ a quadratic étale extension. Let D be a central division algebra over F with period(D) coprime to char(k).

Proposition 5.8.1. Let \mathscr{X}_0 be a normal proper model of F_0 over T and X_0 the closed fibre of \mathscr{X}_0 . Let $\eta \in X_0$ be a codimension zero point. Let $\lambda \in F_0^* \cap Nrd(D)^*$, $m \geq 2$ and $M \geq 1$. Suppose that for $1 \leq i \leq m$, there exist $a_{i\eta} \in F_{0\eta}$, $\mu_{i\eta} \in L_{i\eta} = F_{0\eta}[X]/(X^2 - a_{i\eta})$ such that

- i) $\prod_{1}^{m} N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta}) = \lambda$
- *ii)* $\mu_{i\eta}$ *is a reduced norm from* $D \otimes L_{i\eta}$ *for all i*

iii) $ind(D \otimes L_{i\eta}) < M$ for all i.

Then there exist a non-empty open proper subset U of $\overline{\{\eta\}}$ and $a_{iU} \in F_{0U}, \mu_{iU} \in L_{iU} = F_{0U}[X]/(X^2 - a_{iU})$ such that i) $a_{iU}a_{i\eta} \in F_{0\eta}^{*2}$

ii) there is an isomorphism

$$\phi_{i,U_{\eta}}: F_{0,\eta}[X]/(X^2 - a_{iU}) \to F_{0,\eta}[X]/(X^2 - a_{i\eta})$$

such that

$$\phi_{i,\eta}(\mu_{iU})\mu_{in}^{-1} \in (F_{0P,\eta}[X]/(X^2 - a_{i\eta}))^{*2^n}$$

for all $m \ge 1$ and i = 1, 2, 3.

iii) $\prod_{1}^{m} N_{L_{iU}/F_{0U}}(\mu_{iU}) = \lambda$ for all *i* ii) μ_{iU} is a reduced norm from $D \otimes L_{iU}$ for all *i* iii) $ind(D \otimes L_{iU}) < M$ for all *i*.

Proof. Since $F_{0\eta}$ is the completion of F_0 and $\operatorname{char}(k) \neq 2$, there exists $a_i \in F_0^*$ such that $a_i a_{i\eta} \in F_{0\eta}^{*2}$. Thus, replacing $a_{i\eta}$ by a_i , we assume that $a_{i\eta} = a_i \in F_0^*$.

Since $L_{i\eta} = F_{0\eta}(\sqrt{a_i})$ is the completion of $L_i = F_0(\sqrt{a_i})$, there exists $\mu_i \in L_i$ close to $\mu_{i\eta}$ in $L_{i\eta}$. In particular $\theta_i = N_{L_i/F_0}(\mu_i)^{-1}N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta})$ is close to 1 in $F_{0\eta}$. Then $\theta = \prod_1^{m-1} \theta_i$ is close to 1 in $F_{0\eta}$. Let $\lambda_1 = \lambda(\prod_1^{m-1} N_{L_i/F_0}(\mu_i))^{-1} \in F_0$. Since $\prod_1^m N_{L_{i\eta}/F_{0\eta}}(\mu_{i\eta}) = \lambda$, we have

$$N_{L_m/F_0}(\mu_{m\eta}) = \lambda_1 \theta^{-1}.$$

Since $\theta^{-1} \in F_{0\eta}$ is close to 1, $\theta^{-1} = N_{L_{m\eta}/F_{0\eta}}(\theta')$ for some $\theta' \in L_{m\eta}$ which is close to 1. In particular θ' is a reduced norm from $D \otimes L_{i\eta}$. Hence replacing $\mu_{m\eta}$ by $\mu_{m\eta}\theta'$, we assume that

$$N_{L_m/F_0}(\mu_{m\eta}) = \lambda_1$$

Hence, by (Lemma 7.2, [21]), there exists a nonempty proper open subset U_0 of $\{\eta\}$ and $\mu_{mU_0} \in L_m \otimes F_{0U_0}$ such that $\lambda_1 = N_{L_m/F_0}(\mu_{mU_0})$ and μ_{mU_0} is close to $\mu_{m\eta}$ in $L_m \otimes F_{0\eta}$.

Since $\operatorname{ind}(D \otimes L_{i\eta}) < M$ for all *i*, there exist nonempty proper open subsets U_i of $\overline{\{\eta\}}$ such that $\operatorname{ind}(D \otimes L_{iU}) < M$ for all *i*.

Then $U = (\cap_i U_i) \cap U$, $a_{iU} = a_i$ for all i, $\mu_{iU} = \mu_i$ for $1 \le i \le m-1$ and $\mu_{mU} = \mu_{mU_0}$ have the required properties.

5.9 The main theorem

Theorem 5.9.1. Let $p \ge 3$ be a prime and K be a p-adic field. Let F_0 be the function field of a curve over K and $F = F_0(\sqrt{d})$ a quadratic field extension. Let D be a central division algebra over F with a F/F_0 -involution. Suppose that period of D is 2. Let $\lambda \in F_0^* \cap Nrd(D)^*$. Then there exist $a_i \in F_0^*$ and $\mu_i \in L_i = F_0[X]/(X^2 - a_i)$ for i = 1, 2, 3 such that

- i) $\prod_i N_{L_i/F_0}(\mu_i) = \lambda$
- ii) μ_i is a reduced norm from $D \otimes L_i$ for i = 1, 2, 3
- iii) $ind(D \otimes L_i) \leq 2$.

Proof. Let T be the valuation ring of K and k the residue field of K. Let \mathscr{X}_0 be a regular proper model of F_0 over T with the union of the ramification locus of D, support of d, support of λ and the closed fibre X_0 of \mathscr{X}_0 is a union of regular curves with normal crossings. Further the integral closure \mathscr{X} of \mathscr{X}_0 in F is a is a regular proper model of F.

Let \mathscr{D} be the set of codimension one points of \mathscr{X}_0 consisting of support of d, support of λ , the closed fibre X_0 and the ramification locus of D on \mathscr{X}_0 . Let $P \in \mathscr{X}_0$ be a closed point. Then, by the choice of \mathscr{X}_0 , there exist at most two codimension one points of \mathscr{X}_0 which are in \mathscr{D} and passes through P. Further, since \mathscr{X} is regular, there exists at most one codimension one point η of \mathscr{X}_0 passing through P such that $\nu_{\eta}(d)$ is odd.

Let \mathscr{P}_0 be the finite set of closed points of \mathscr{X}_0 consisting of points of the intersection of the closures of any two distinct codimension one points in \mathscr{D} .

Let $P \in \mathscr{P}_0$ and $\eta_1, \eta_2 \in \mathscr{D}$ with $P \in \overline{\{\eta_1\}} \cap \overline{\{\eta_2\}}$. If $\nu_1(d)$ and $\nu_2(d)$ are even, then let a_{iP}, μ_{iP} for i = 1, 2, 3 be as in (5.6.1). If either $\nu_1(d)$ or $\nu_2(d)$ is odd, let a_{iP}, μ_{iP} for i = 1, 2 be as in (5.6.2) and $a_{3P} = da_{2P}, \mu_{3P} = 1$.

Let $\eta \in X_0$ be a codimension zero point. If $\nu(d)$ and $\nu(\lambda)$ are even, then let $a_{i\eta}, \mu_{i\eta}$ be as in (5.7.1) for i = 1, 2, 3. If $\nu(d)$ is even and $\nu(\lambda)$ is odd, then let $a_{i\eta}, \mu_{i\eta}$ be as in (5.7.2) for i = 1, 2, 3. If $\nu(d)$ is odd, then let $a_{i\eta}, \mu_{i\eta}$ be as in (5.7.3) for i = 1, 2and $a_{3\eta} = a_{2\eta}d, \mu_{3\eta} = 1$.

Let U_{η} , $a_{iU_{\eta}}$ and $\mu_{iU_{\eta}}$ be as in (5.8.1). If necessary, replacing each U_{η} by a open subset of U_{η} , we assume that $\mathscr{P}_0 \cap U_{\eta} = \emptyset$. Let $\mathscr{U} = \{U_{\eta}\}$.

Let $\mathscr{P} = X_0 \setminus \bigcup_{\eta} U_{\eta}$. Then \mathscr{P}_0 is a finit set of closed points of $\mathscr{P}_0 \subseteq \mathscr{P}$.

Let $P \in \mathscr{P} \setminus \mathscr{P}_0$. Then there is a unique codimension one point $\eta \in \mathscr{D}$. Let a_{iP} and μ_{iP} for i = 1, 2, 3 be as in (5.7.4).

Let $P \in \mathscr{P}$ and $U \in \mathscr{U}$ with $P \in \overline{\{\eta\}}$. Then, by the choice of a_{iP} and a_{iU} we have $a_{iP} = \theta_{iP,\eta}^2 a_{iU}$ for some $\theta_{iP,U} \in F_{0U,P}^*$. Hence, by (Proposition 7.4, [21]), there exist $\theta_{iP} \in F_{0P}^*$ and $\theta_{iU} \in F_{0U}^*$ such that $\theta_{iP,\eta} = \theta_{iP}\theta_{iU}$. Thus $a_{iP}\theta_{iP}^{-2} = a_{iU}\theta_{iU}^2$ for all branches (U, P). Hence there exist $a_i \in F_0^*$ such that $a_i = a_{iP} \in F_{0P}^*/F_{0P}^{*2}$ and $a_i = a_{iU} \in F_{0U}^*/F_{0U}^{*2}$. Let $L_i = F_0[X]/(X^2 - a_i)$. Then, by (Theorem 5.1, [11]), ind $(D \otimes L_i) \leq 2$ for all i.

Let $P \in X_0$ be a closed. Since $\kappa(P)$ is a finite field, there exists $t_P \ge 2$ such that $\kappa(P)$ has no 2^{t_p} th primitive root of unity. Let $t > 2t_P$ for all $P \in \mathscr{P}$.

Let $P \in \mathscr{P}$. We have $\mu_{iP} \in F_{0P}[X]/(X^2 - a_i)$ and $\mu_{iU} \in F_{0U}[X]/(X^2 - a_i)$ such

that $\mu_{iP}\mu_{iU}^{-1} \in (F_{0U,P}[X]/(X^2 - a_i))^{*2^m}$ for all $m \ge 1$. Hence $\mu_{iP} = \mu_{iU}\beta_{iU,P}^{2^2t}$ for some $\beta_{iU,P} \in L_i \otimes F_{0U,P}$. By (Proposition 7.4, [27]), there exist $\beta_{iP} \in L_i \otimes F_{0P}$ and $\beta_{iU} \in L_i \otimes F_{0U}$ such that $\beta_{iU,P} = \beta_{iU}\beta_{iP}$. In particular we have $\mu_{iP}\beta_{iP}^{-2^{2t}} = \mu_{iU}\beta_{iU}^{2^{2t}}$ for all branches (U, P). Hence, by (Proposition 6.3, [10]), there exist $\mu_i \in L_i$ such that $\mu_i = \mu_{iP}\beta_{iP}^{-2^{2t}} = \mu_{iU}\beta_{iU}^{2^{2t}}$.

Let
$$\lambda_1 = \lambda N_{L_1/F_0}(\mu_1)^{-1} N_{L_2/F_0}(\mu_2)^{-1}$$
. For $\zeta \in \mathscr{P} \cup \mathscr{U}$, we have

$$\lambda_{1} = \lambda N_{L_{1}/F_{0}}(\mu_{1})^{-1} N_{L_{2}/F_{0}}(\mu_{2})^{-1}$$

$$= N_{L_{1\zeta}/F_{0\zeta}}(\mu_{1\zeta}) N_{L_{2\zeta}/F_{0\zeta}}(\mu_{2\zeta}) N_{L_{3\zeta}/F_{0\zeta}}(\mu_{3\zeta}) N_{L_{1}/F_{0}}(\mu_{1})^{-1} N_{L_{1}/F_{0}}(\mu_{2})^{-1}$$

$$= N_{L_{1\zeta}/F_{0\zeta}}(\mu_{1\zeta}\mu_{1}^{-1}) N_{L_{2\zeta}/F_{0\zeta}}(\mu_{2\zeta}\mu_{2}^{-1}) N_{L_{3\zeta}/F_{0\zeta}}(\mu_{3\zeta})$$

Since $N_{L_{1\zeta}/F_{0\zeta}}(\mu_{1\zeta}\mu_{1}^{-1})N_{L_{2\zeta}/F_{0\zeta}}(\mu_{2\zeta}\mu_{2}^{-1}) = x_{\zeta}^{2^{2t}}$ for some $x_{\zeta} \in F_{0\zeta}$, we have $\lambda_{1} = N_{L_{3\zeta}/F_{0\zeta}}(x_{\zeta}^{2^{2t-1}}\mu_{3\zeta})$. Since $\operatorname{ind}(D \otimes L_{3\zeta}) \leq 2$ and $\mu_{3\zeta}$ is a reduced norm from $D \otimes L_{3\zeta}$, $x_{\zeta}^{2^{2t-1}}\mu_{3\zeta}$ is a reduced norm from $D \otimes L_{3\zeta}$. Further, for every branch (U, P), we have $x_{P}^{2^{2t-1}}\mu_{3P}x_{U}^{-2^{2t-1}}\mu_{3U}^{-1} \in (F_{0U,P}[X]/(X^{2}-a_{i}))^{*2^{2t-1}}$.

Replacing $\mu_{3\zeta}$ by $x_{\zeta}^2 \mu_{3\zeta}$ we assume that $N_{L_{3\zeta}}(\mu_{3\zeta}) = \lambda_1, \mu_{3P} \mu_{3U}^{-1} \in (F_{0U,P}[X]/(X^2 - a_3))^{*2^{2t-1}}$ and $\mu_{3\zeta}$ is a reduced norm from $D \otimes L_{3\zeta}$ for all $\zeta \in \mathscr{P} \cup \mathscr{U}$.

Hence, as in (Proposition 6.3, [10]; Theorem 3.2.3, [13]), there exists $\mu_3 \in L_3 = F_0[X]/(X^2 - a_3)$ such that $N_{L_3/F_0}(\mu_3) = \lambda_1$ and μ_3 is a reduced norm from $D \otimes L_3$. Therefore a_i and μ_i have the required properties.

Corollary 5.9.2. Let K be a p-adic field and F_0 a function field of a curve over K. Let A be a central simple algebra over a quadratic extension F of F_0 with period of A equal to 2 with a F/F_0 -involution τ . If $p \ge 3$, then $SK_1U(A, \tau)$ is trivial.

Proof. By (Lemma 2, [15]), it can be reduced to the case that A is a central division algebra over F. Choose an element $a \in \Sigma'_{\tau}(A^*)$ arbitrarily and write $\lambda = Nrd_{A/F}(a)$. Then $\lambda \in F_0^* \cap Nrd(D)^*$.

By Theorem 5.7.1, there are extensions L_i of F satisfying $ind(A \otimes_{F_0} L_i) \leq 2$ for
i = 1, 2, 3. Let $\widetilde{L}_i = L_i \otimes_{F_0} F$ and $\widetilde{A}_i = A \otimes_{F_0} L_i = A \otimes_F \widetilde{L}_i$ for i = 1, 2, 3. Considering the elements μ_1 , μ_2 , and μ_3 founded in Theorem 5.7.1, let $Nrd_{\widetilde{A}_i/\widetilde{L}_i}(\widetilde{d}_i) = \mu_i$ for i = 1, 2, 3 and some $\widetilde{d}_i \in \widetilde{A}_i^*$.

Since $SUK_1(\widetilde{A_i}, \tau \otimes id)$ is trivial (Proposition 17.27, [16]) and $\mu_i \in L_i$ for i = 1, 2, 3, we have $\widetilde{d_i} \in \Sigma_{\tau \otimes id}(\widetilde{A_i}^*)$. By (Proposition 4.3, [1]), $N_{L_i/F_0}(\mu_i) = Nrd_{A/F}(d_i)$ for some $d_i \in \Sigma_{\tau}(A^*)$ where i = 1, 2, or 3. Therefore, by Theorem 5.7.1, $\lambda = \prod_i N_{L_i/F_0}(\mu_i) = Nrd_{A/F}(\prod_i d_i) = Nrd_{A/F}(a)$.

Since $ind(D) \leq 4$ and $cd(F) \leq 3$, $SK_1(A)$ is trivial (cf. [20], Chapter 17 of [16]). Then $a^{-1} \cdot \prod_i d_i \in SL_1(A) = [A^*, A^*] \subset \Sigma_{\tau}(A^*)$ (Proposition 17.26, [4]). Since $\prod_i d_i \in \Sigma_{\tau}(A^*), a \in \Sigma_{\tau}(A^*)$.

Bibliography

- E. Bayer-Fluckiger and R. Parimala. Classical groups and the Hasse principle. Ann. Math. (2), 147(3):651–693, 1998.
- [2] Nivedita Bhaskhar. R-equivalence and norm principles in algebraic groups. August 2018.
- [3] Nivedita Bhaskhar. Reduced whitehead groups of prime exponent algebras over p-adic curves. Documenta Mathematica, 2018.
- [4] R.W. Carter, P.M. Cohn, A.I. Kostrikin, I.R. Shafarevich, V.P. Platonov, and V.I. Yanchevskii. Algebra IX: Finite Groups of Lie Type Finite-Dimensional Division Algebras. Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 2013.
- [5] J.W.S. Cassels and A. Fröhlich. Algebraic Number Theory: Proceedings of an Instructional Conference Organized by the London Mathematical Society (a NATO Advanced Study Institute) with the Support of the International Mathematical Union. London Mathematical Society, 2010.
- [6] P.K. Draxl. Skew Fields. Lecture note series / London mathematical society. Cambridge University Press, 1983.
- [7] T.J. Ford. Separable Algebras. Graduate Studies in Mathematics. American Mathematical Society, 2017.

- [8] P. Gille and T. Szamuely. Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006.
- [9] Philippe Gille. Le Problème de Kneser-Tits. In Séminaire Bourbaki Volume 2007/2008 Exposés 982-996, number 326 in Astérisque, pages 39–81. Société mathématique de France, 2009. talk:983.
- [10] David Harbater and Julia Hartmann. Patching over fields. Israel Journal of Mathematics, 176, 11 2007.
- [11] David Harbater, Julia Hartmann, and Daniel Krashen. Applications of patching to quadratic forms and central simple algebras. *Inventiones mathematicae*, 178(2):231–263, 2009.
- [12] David Harbater, Julia Hartmann, and Daniel Krashen. Local-global principles for galois cohomology. *Commentarii Mathematici Helvetici*, 89(1), 2014.
- [13] David Harbater, Julia Hartmann, and Daniel Krashen. Local-global principles for torsors over arithmetic curves. *American Journal of Mathematics*, 137(6):1559– 1612, 2015.
- [14] Bill Jacob and Adrian Wadsworth. Division algebras over henselian fields. Journal of Algebra, 128(1):126–179, 1990.
- [15] V Jančevskii. Simple algebras with involution, and unitary groups. Mathematics of the USSR-Sbornik, 22:372, 10 2007.
- [16] M.A. Knus. The Book of Involutions. Number v. 44 in American Mathematical Society colloquium publications. American Mathematical Soc., 1998.
- [17] Q. Liu. Algebraic Geometry and Arithmetic Curves. Oxford graduate texts in mathematics. Oxford University Press, 2006.

- [18] F. Lorenz and S. Levy. Algebra: Volume II: Fields with Structure, Algebras and Advanced Topics. Universitext. Springer New York, 2007.
- [19] Y.I. Manin. Cubic Forms: Algebra, Geometry, Arithmetic. ISSN. Elsevier Science, 1986.
- [20] Alexander Merkurjev. Invariants of algebraic groups. Journal f
 ür die reine und angewandte Mathematik, 1999(508):127–156, 1999.
- [21] R. Parimala, R. Preeti, and V. Suresh. Local–global principle for reduced norms over function fields of *p*-adic curves. *Compositio Mathematica*, 154(2):410–458, 2018.
- [22] R. Parimala and Suresh Venapally. Period-index and u-invariant questions for function fields over complete discretely valued fields. *Inventiones mathematicae*, 197, 04 2013.
- [23] R.S. Pierce. Associative Algebras. Graduate Texts in Mathematics. Springer New York, 2012.
- [24] V. Platonov, A. Rapinchuk, and R. Rowen. Algebraic Groups and Number Theory. ISSN. Elsevier Science, 1993.
- [25] V. P. Platonov. Das Tannaka-Artinsche Problem und reduzierte K-Theorie. Izv. Akad. Nauk SSSR, Ser. Mat., 40:227–261, 1976.
- [26] David J. Saltman. Cyclic algebras over p-adic curves. Journal of Algebra, 314(2):817–843, 2007.
- [27] J. Tits. Algebraic and abstract simple groups. Annals of Mathematics, 80(2):313– 329, 1964.
- [28] V. E. Voskresenskii. Über die reduzierte Whiteheadgruppe einer einfachen Algebra. Usp. Mat. Nauk, 32(6(198)):247–248, 1977.

- [29] Shianghaw Wang. On the commutator group of a simple algebra. American Journal of Mathematics, 72:323, 1950.
- [30] André Weil. Basic number theory. Springer Science & Business Media, 2012.
- [31] Zhengyao Wu. Hasse principle for hermitian spaces over semi-global fields. Journal of Algebra, 458:171–196, 2016.
- [32] V. I. Yanchevskij. Reduced unitary K-theory and division rings over discretely valued Hensel fields. *Math. USSR*, *Izv.*, 13:175–213, 1979.