
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for
an advanced degree from Emory University, I hereby grant to Emory University and
its agents the non-exclusive license to archive, make accessible, and display my thesis
or dissertation in whole or in part in all forms of media, now or hereafter known,
including display on the world wide web. I understand that I may select some access
restrictions as part of the online submission of this thesis or dissertation. I retain
all ownership rights to the copyright of the thesis or dissertation. I also retain the
right to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Zitong Pei Date



The Reduced Unitary Whitehead Groups over Function Fields of p-adic Curves

By

Zitong Pei
Doctor of Philosophy

Mathematics

Raman Parimala, Ph.D.
Advisor

Suresh Venapally, Ph.D.
Co-advisor

Committee Member

Victoria Powers, Ph.D.
Committee Member

Accepted:

Kimberly Jacob Arriola, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date



The Reduced Unitary Whitehead Groups over Function Fields of p-adic Curves

By

Zitong Pei
Master of Science

Advisor: Raman Parimala, Ph.D.
Co-advisor: Suresh Venapally, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Mathematics

2024



Abstract

Reduced Unitary Whitehead Groups over Function Fields of p-adic Curves
By Zitong Pei

The study of the Whitehead groups of semi-simple simply connected groups is classi-
cal with an abundance of new open questions concerning the triviality of these groups.
The Kneser-Tits conjecture on the triviality of these groups was answered in the neg-
ative by Platanov for general fields. There is a relation between reduced Whitehead
groups and R-equivalence classes in algebraic groups.

Let G be an algebraic group over a field F . Let RG(F ) be the equivalence class
of the identity element in G(F ). Then RG(F ) is a normal subgroup of G(F ) and
the quotient G(F )/RG(F ) is called the group of R-equivalence classes of G(F ). It is
well known that for the semi-simple simply connected isotropic group G over F , the
Whitehead group W (G,F ) is isomorphic to the group of R-equivalence classes.

Suppose that D0 is a central division F0-algebra for a field F0. If the group G(F0)
of rational points is given by SLn(D0) for an integer n > 1, then W (G,F0) is the
reduced Whitehead group of D0. Let F be a quadratic field extension of F0 and D
be a central division F -algebra. Suppose that D has an involution of second kind τ
such that F τ = F0. If the hermitian form hτ of τ is isotropic and the group G(F0) is
given by SU(D, hτ ), then W (G,F0) is isomorphic to the reduced unitary Whitehead
group of D.

Let F0 be the function field of a p-adic curve. Let F/F0 be a quadratic field
extension. Let A be a central simple algebra over F . Assume that the period of A is
2 and A has a unitary F/F0 involution. We provide a proof for the triviality of the
reduced unitary Whitehead group of A.
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Chapter 1

Introduction

1.1 An Introduction

The study of Whitehead groups of semi-simple, simply connected groups constitutes

a classical field, yet it remains replete with numerous open questions concerning the

triviality of these groups.

Let F0 be a field. Typically, we assume that the characteristic of F0 is not equal to

2 unless otherwise specified. We define X as an F0-variety when X is a geometrically

integral and separable scheme of finite type over F0. X is said to be F0-rational if the

function field of X is purely transcendental over F0. X is said to be F0-stably rational

if X ×F0 An
F0

is F0-rational. Let G be a smooth connected linear algebraic group over

F0. G is said to be F0-(stably) rational if its underlying variety if F0-(stably) rational.

Let G(F0) denote the group of F0-rational points of G. Two points α, β ∈ G(F0) are

defined to be R-equivalent if there is a rational map f : A1
F0

99K G such that f(0) = α

and f(1) = β. The definition of R-equivalence was introduced by Manin [19] when

studying cubic hypersurfaces.

For the smooth connected linear algebraic group G, R-equivalence is actually

an equivalence relation; let RG(F0) denote the equivalent class of the identity e ∈
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G(Fo). Then RG(F0) is a normal subgroup of G(F0); there is a bijection of sets

G(F0)/RG(F0)←→ G(F0)/ ∼ (cf. [2], [28]). Therefore, the quotient set G(F0)/ ∼ has

a group structure. The group of R-equivalence classes, G(F0)/RG(F0), is very useful

while studying the rationality problem for linear algebraic groups. The rationality

problems for linear algebraic groups have a long history. We are interested in the

case when G is a semi-simple simply connected isotropic algebraic group. Let G+(F0)

denote the normal subgroup of G(F0) generated by the conjugates of F0-points of

the unipotent radical of a proper F0 parabolic subgroup of G. The factor group

G(F0)/G
+(F0), denoted by Wh(G,F0), is called the Whitehead group for G over

F0. In this case, Wh(G,Fo) ∼= G(Fo)/RG(Fo) ([28]). There is a conjecture on the

Whitehead group for G:

Conjecture (Kneser-Tits). Is it true that Wh(G,Fo) is trivial?

We consider two special cases:

• Case I

Let A0 be a central simple F0-algebra. Let [A∗0, A
∗
0] denote the commutator

subgroup of A0. Let SL1(A0) = {a0 ∈ A0|NrdA0/F0(a0) = 1}. Let SK1(A0) =

SL1(A0)/[A
∗
0, A

∗
0]. We call it the reduced Whitehead group of A0. If G(F0) =

SL1(A0), then Wh(G,F0) ∼= G(F0)/RG(F0) ∼= SK1(A0) ([28]).

• Case II

Let F/F0 be a quadratic field extension. Let A be a central simple F -algebra.

Assume that A has a unitary F/F0-involution τ . Let Σ′τ (A) = {a ∈ A∗|NrdA/F (a) ∈

F0}; let Στ (A) denote the subgroup of A∗ generated by the set {a ∈ A∗|τ(a) =

a}. Assume that the hermitian form hτ is non-singular and isotropic. Let

SK1U(A, τ) = Σ′τ (A)/Στ (A). We call it the reduced unitary Whitehead group

of A. If G(F0) = SU(A, hτ ), then Wh(G,F0) ∼= G(F0)/RG(F0) ∼= SK1U(A, τ)([28]).
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Platonov firstly proved that SK1(A0) can be non-trivial; then Platonov & Yanchevskii

proved that SK1U(A) can be non-trivial. See reference [4]. We will subsequently ex-

plore a result by Nivedita Bhaskhar ([3]), adding depth to our analysis.

Let p be a prime; let K be a p-adic field. Let C be a curve over K, i.e. a smooth,

projective, and geometrically integral K-scheme of finite type with dimension 1; let

F0 be the function field of C. Let F/F0 be a quadratic field extension; let A be a

central simple F -algebra. Assume that the period of A is a prime ℓ; assume that A

has a unitary F/F0-involution τA. We start from a combined result from Nivedita

and Yanchevskii.

Theorem 1.1.1 (cf. [3], [32]). If ℓ > 2, p ̸= ℓ, and F contains a primitive ℓ2th root

of unity, then SK1U(A, τA) = 1.

Given the theorem, one might ask about the case when the period ℓ = 2. We state

the aim of the thesis, which includes the case ℓ = 2.

Theorem 1.1.2. If ℓ = 2 and p ̸= ℓ, then SK1U(A, τA) = 1.

1.2 Organization

Chapter 2 provides a detailed description of algebras with unitary involution, which

serves as the foundational basis for our study.

Chapter 3 introduces the concepts of reduced Whitehead groups and reduced

unitary Whitehead groups. Additionally, it includes a comprehensive discussion on

R-equivalence.

Chapter 4 presents our primary methodological approach: patching. This tech-

nique, derived from algebraic geometry, is particularly advantageous in our case,

especially when the base field is the function field of a p-adic curve.

Chapter 5 demonstrates a positive resolution to the main theorem utilizing the

patching method.
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Chapter 2

Algebras with Involutions

The focal point of this chapter is the exploration of basic objects known as central

simple central algebras. While these entities can be analyzed within the broader

framework of simple algebras, our discussion primarily revolves around the distinctive

properties and principles governing central simple algebras. For those interested in

delving deeper into related concepts, we suggest consulting authoritative texts such

as [7] and [18], which offer comprehensive insights into general theories concerning

simple algebras, separable algebras, and Azumaya algebras.

We assume that the characteristics of all the fields are not equal to 2.

2.1 Central Simple Algebras: An Introduction

Let F be a field, and let A be an F -algebra. We say that A is a central simple

F -algebra if the following three conditions are satisfied:

(1) A has no nontrivial two-sided ideal;

(2) The central of A is F ;

(3) The dimension of A as an F -vector space is finite.

For example, the ring of matrices Mn(F ) over a field F is a central simple F -

algebra.
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In fact, every central simple algebra can be regarded as a matrix algebra over a

division ring D. We are prepared to present the structure theorem of central simple

algebras.

Theorem 2.1.1 (Wedderburn, Theorem 3.2.6, [7]). Let A be a central simple algebra

over a field F . Then A is isomorphic to a matrix algebra Mn(D) over a finite dimen-

sional central division F -algebra D. The central division algebra D and the number

n are uniquely determined by the isomorphism.

There is a special case of the Theorem 2.1.1. Assume that F is an algebraic closed

field. Then A ∼= Mn(D) for a finite dimensional central division F -algebra D. Assume

that there is an element d ∈ D \ F . Then there is a sub-algebra of D generated by

F and d, which is denoted by F [d]. Since D is a division ring and dimF (D) is finite,

F [d] is an integral domain and dimF (F [d]) is finite. Therefore, F [d] is a finite field

extension of F . Since we assume that F is algebraic closed, F = F [d] = D and

A ∼= Mn(F ).

Let A and B be two central simple F -algebras. We say that A and B are similar

if A ∼= Mn1(D) and B ∼= Mn2(D). We use the notation Br(F ) to denote the set of

similarity classes of central simple F -algebras, and use [A] ∈ Br(F ) to represent the

similarity class of A. For example, [F ] = [Ms(F )]; [A] = [A⊗F Mn(F )].

In fact, the set Br(F ) has a group structure by the following theorem.

Theorem 2.1.2 (cf. Chapter 29, [18] ). Let A, B, A′, and B′ be central simple

F -algebras.

(1) A⊗F B is a central simple F -algebra;

(2) Let Aop denote the opposite algebra of A, then Aop is a central simple F -algebra

and [A⊗F Aop] = [F ] ∈ Br(F );

(3) If [A] = [A′] and [B] = [B′], then [A⊗F A′] = [B ⊗F B′] ∈ Br(F ).

Combined with the check of the associativity and commutativity, we obtain the
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following corollary.

Corollary 2.1.3. Define an operation "+" on Br(F ): [A] + [B] = [A ⊗F B]. Then

(Br(F ),+) is a commutative group.

By Theorem 2.1.2, the identity element of Br(F ), denoted by 0, is [F ]; the inverse

element of [A], denoted by −[A], is [Aop]. We call (Br(F ),+) the Brauer group of the

field F , and [A] ∈ Br(F ) the Brauer class of A.

In analogy to the property observed in vector spaces, wherein any base change

results in another vector space, one may inquire whether such a principle extends to

central simple algebras. We shall now proceed to elucidate the notion of base change

for central simple algebras.

Proposition 2.1.4. Let A be an F -algebra, and let E be a field extension of F . Then

A⊗F E is a central simple E-algebra if and only if A is a central simple F -algebra.

Proof. cf. F12 & F15, Chapter 29, [18];

Therefore, there is a well-defined map induced by Proposition 2.1.4

ResE/F : Br(F )→ Br(E),

which is called restriction map with respect to the field extension E/F . The kernel

of the restriction map is denoted by Br(E/F ). By definition, Br(E/F ) = {[A] ∈

Br(F )|[A⊗F E] = 0}.

In general, we say that A is split over a field E or E is a splitting field of A if

[A⊗F E] = 0 ∈ Br(E).

Let A be a central simple algebra over a field F . If we fix an algebraic closure

F al of F , then A ⊗F F al ∼= Mn(F
al) ∈ Br(F al) = {0} by Proposition 2.1.4 and the

discussion after Theorem 2.1.1. Thus F al is a splitting field of A and dimF (A) is a

square number. Since A ∼= Mn(D) by Theorem 2.1.1,
√

dimF (A) = n ·
√

dimF (D).
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In general, we use the notation degF (A) to denote the square root
√
dimF (A) for

a central simple F -algebra A, which is called the degree of A. Since the Brauer class

[A] is uniquely determined by the isomorphism A ∼= Mn(D), we call degF (D) the

index of [A] and denote it by indF (A).

Among the intriguing topics concerning splitting fields is the quest for a splitting

field within sub-algebras of a central simple F -algebra A. This pursuit relies heavily

on a renowned theorem known as the ’Centralizer Theorem.’ For further elaboration,

interested readers are directed to Theorem 14, Chapter 29 in [18]. At present, we

shall confine our discussion to the outcomes pertaining to central division algebras.

Theorem 2.1.5 (cf. Theorem 17, Chapter 29, [18]). Let D be a finite dimensional

central division F -algebra. Then D has a splitting field E such that E is a sub-algebra

of D and [E : F ] = degF (D).

If [A] = [D] ∈ Br(F ), then A has a splitting field E such that [E : F ] = indF (A)

by Theorem 2.1.5.

If our scope extends beyond sub-algebras of a central simple F -algebra A, we

arrive at the following result.

Proposition 2.1.6. A has a splitting field L which is a finite Galois field extension

of F . Such L cannot always be a sub-algebra of A.

Proof. cf. Corollary 2.2.12, [8]

It implies from Proposition 2.1.6 that

Br(F ) =
⋃
L/F

Br(L/F )

where L/F range over all finite Galois extensions of F contained in an algebraic

closure F al.
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Another famous result is the Skolem-Noether theorem of central simple algebras.

Let A be an algebra over a field F . We say that a F -automorphism f of A is inner

if there is an invertible element x of A such that f(a) = x−1 · a · x for each a ∈ A.

Theorem 2.1.7 (Skolem-Noether). Let A be a central simple F -algebra. Let B1 and

B2 be simple sub-algebras of A. Then every F -isomorphism between B1 and B2 is

from an inner automorphism of A.

Proof. cf. Theorem 4.5.12, Chapter 5, [7].

By Theorem 2.1.7, we obtain that every F -automorphism of A is inner. There is

also a general result on Azumaya algebras. Let R be a local ring and A an Azumaya

algebra over R. Then every R-automorphism of A is inner. Refer to Section 8 of

Chapter 7 in [7].

Fix an algebraic closure F al of F . We know that A⊗F F
al ∼= Mn(F

al). Then there

is an F -homomorphism i : A→ Mn(F
al) which is an injection. For each a ∈ A, i(a)

is a matrix over F al. We denote the characteristic polynomial of the matrix i(a) by

Reda(X) = Xn + c1X
n−1 + c2X

n−2 + · · ·+ cn.

Proposition 2.1.8.

(1) Reda(X) is a polynomial in the ring F [X] and is independent of the choice of

the injection i;

(2) The determinant of the matrix i(a) is (−1)ncn;

(3) The trace of the matrix i(a) is −c1;

Proof. cf. F23, [18].

The polynomial Reda(X) ∈ F [X] is called the reduced characteristic polynomial

of a. We call (−1)ncn the reduced norm of a and denote it by Nrd(a); we call −c1

the reduced trace of a and denote it by Trd(a).
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Therefore, we obtain a map NrdF : A→ F which is called the reduced norm map

of A, and TrdF : A→ F which is called the reduced trace map of A. It is not difficult

to verify that the map NrdF is multiplicative and TrdF is a F -linear map.

For a ∈ A, we also have a linear endomorphism ma : A→ A defined by ma(b) = ab.

We denote the characteristic polynomial of ma , the norm of ma, and the trace of ma

by mach(X), N(a), and Tr(a) respectively.

Proposition 2.1.9. mach(X) = (Reda(X))n, N(a) = (Nrd(a))n, and Tr(a) =

n(Trd(a)).

Proof. cf. Proposition 2.6.3, [8].

To direct readers to additional results regarding the reduced norm map NrdF in

number theory or class field theory, please consult Section 2.6 of [8].

Now we briefly introduce using group cohomology to describe Br(F ), which is

for the definition of cyclic algebras later. Since Br(F ) =
⋃

L/F Br(L/F ) for a fixed

algebraic closure F al, we can start from Br(L/F ) with L/F a finite Galois field

extension.

Let G denote the Galois group of a finite Galois field extension of L/F . Then

G acts on the group L×, which satisfies g(xy) = g(x)g(y) for g ∈ G, x ∈ L×, and

y ∈ L×.

Definition 2.1.10. A map σ : G × G → L× is called a 2-cocycle of G in L× if σ

satisfies

σ(g1, g2g3) · σ(g2, g3) = σ(g1g2, g3) · g3
(
σ(g1, g2)

)
for g1, g2, g3 ∈ G.

If σ is a 2-cocycle which is defined by

σ(g1, g2) = h(g2) · g2
(
h(g1)

)
· h(g1g2)−1
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where h : G → L× is a map satisfying h(IdG) = 1, we call such σ a 2-coboundary.

Let Z2(G,L×) denote the set of 2-cocyles of G in L×, and B2(G,L×) the set of

2-coboundaries in Z2(G,L×).

Proposition 2.1.11.

(1) Z2(G,L×) is an abelian group with identity element the trivial map, and

B2(G,L×) is a subgroup of Z2(G,L×); denote the factor group Z2(G,L×)/B2(G,L×)

by H2(G,L×);

(2) There is an isomorphism of groups ϕ : H2(G,L×) ∼= Br(L/F );

(3) If G =< ξ > is a finite cyclic group of degree n, then H2(G,L×) ∼= Br(L/F ) ∼=

L×/NL/F (F
×) and each element [A] ∈ Br(L/F ) is the Brauer class of a central simple

central F -algebra given by the form

n−1⊕
j=0

yjL.

Moreover, yn = t for some t ∈ F and xy = y · ξ(x) for each x ∈ L.

Proof. For the proof, refer to Chapter 30 of [18].

In the view Proposition 2.1.6, Br(F ) =
⋃

L/F Br(L/F ) where L/F range over

all finite Galois extensions of under an algebraic closure. Then we can using (2) of

Proposition 2.1.11 to imply the following theorem.

Theorem 2.1.12 (Theorem 3, Chapter 30, [18]). Let A be a central simple algebra

over a field F . Then

(1) Br(F ) is a torsion group and the order of [A] ∈ Br(F ) divides indF (A);

(2) The order of [A] and indF (A) have same prime factors.

We call the order of [A] in Br(F ) the exponent of A and denote it by exp(A). By

Theorem 2.1.12, exp(A) divides indF (A). An application of Theorem 2.1.12 is the

following decomposition theorem.
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Theorem 2.1.13 (Primary Decomposition, cf. Proposition 2.8.13, [8]). Let A be a

central simple F -algebra. If the prime decomposition of the degree of A is degF (A) =

ps11 ps22 · · · pstt , then A has a unique decomposition up to an isomorphism that

A ∼=F A1 ⊗F A2 ⊗F · · · ⊗F At

where each Ai is a central simple F -algebra of degree psii for all i = 1, 2, ..., t. Fur-

thermore, A is a division algebra if and only if each Ai is a division algebra for all

i = 1, 2, ..., t.

In the case (3) of Proposition 2.1.11, we call such a central simple F -algebra a

cyclic algebra and denote it by (L, ξ, t). For example, a cyclic algebra is a quater-

nion algebra if L/F is a degree 2 extension and ch(F ) ̸= 2. Finally, we provide an

important property of a cyclic algebra.

Proposition 2.1.14 (cf. Chapter 30, [18]). Let L/F be a finite cyclic extension of

degree n, and let Gal(L/F ) =< ξ >. Then any cyclic F -algebra (L, ξ, t) for some

t ∈ F has degree n and contains L as a maximal subfield.

We will heavily use many principles of cyclic algebras in Chapter 5, which are

derived from Galois cohomology and class field theory. Readers can find information

from [5], [18], [21].

In general, the behavior of Brauer group Br(F ) will be very different when chang-

ing the base field F . For example, Br(C) = {0}, Br(R) = Z/2Z, Br(Fq) = {0}, and

Br(Qp) = Q/Z. One can also use the language of central simple algebras to describe

local class field theory. For reference, it can be found in [30].

We present several results regarding central simple algebras over complete discrete

valued fields.

In the rest of this section, we assume that F is a field with a discrete valuation ω.

Let OF denote the valuation ring of F ; let F denote the residue field. Suppose that
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the characteristic of F is not equal to 2.

Let D be a finite dimensional central division F -algebra. It is know that the

valuation ω can be extended uniquely to a discrete valuation v on D, i.e. a map

v : D → Z ∪∞ satisfying

(1) v(d1 · d2) = v(d1) + v(d2);

(2) v(d1 + d2) ≥ min(v(d1), v(d2));

(3) v(d3) =∞⇔ d3 = 0.

Let OD denote the valuation ring of D, i.e. OD = {d ∈ D|v(d) ≥ 0}; let ID =

{d ∈ D∗|v(d) > 0}. In fact, ID is the unique two-sided maximal ideal of OD. Let

D = OD/ID, which is called the residue division ring.

Definition 2.1.15.

(1) D is called unramified if [D : F ] = [D : F ] and Z(D) = Z(D) = F .

(2 ) D is called nicely semi-ramified if D has a maximal subfield E which is

unramified over F and a totally ramified maximal subfield L over F satisfying v̄ :

H ∼= v(L∗)/v(F ∗) for some subgroup H of L∗/F ∗.

(3) D is called unramified split if D ⊗F F nr is split, where F nr is the maximal

unramified extension of F .

Here we have a decomposition of an unramified split D.

Theorem 2.1.16 (Lemma 5.14, [14]). Assume that D is unramified split. Then there

are finite dimensional central F -algebras D1 and D2 such that

[D] = [D1] + [D2] ∈ Br(F ),

where D1 is unramified over F and D2 is nicely semi-ramified over F .
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2.2 Unitary Involutions: Existence Criterion and Prop-

erties

In this section, we introduce involutions on central simple algebras. Let A be a central

simple algebra over a field F . The the transpose on the matrix algebra Mn(F ) is a

classical example of an involution.

For the existence criterion, we will start from the algebra direction without using

group cohomology. Therefore, readers can have a smooth transition from last section.

Definition 2.2.1. An involution on A is a map τ : A→ A satisfying conditions:

(a) τ(a+ b) = τ(a) + τ(b) for a, b ∈ A.

(b) τ(ab) = τ(b)τ(a) for a, b ∈ A.

(c) τ(τ(a)) = a for a ∈ A.

Further,

(d) τ is called an involution of the first kind if τ(x) = x for every x ∈ F . Otherwise,

τ is called an involution of the second kind or a unitary involution.

Let the couple (A, σ) denote a central simple F -algebra A with an involution

A. For each morphism of F -algebras f : (A, σ) → (A′, σ′) , we always assume that

f ◦ σ = σ′ ◦ f .

If τ is a unitary involution on A, we use F0 to denote the subfield of F consisting

of the τ -stable elements. Therefore, τ(x) = x for x ∈ F0 and F/F0 is a degree 2 field

extension. In this situation, we also say that τ is an F/F0-involution.

For the existence of the involutions of the first kind, we have the following criterion.

Theorem 2.2.2 (Albert, cf. Theorem 3.1, [16]). Let A be a central simple F -algebra.

There is an involution of the first kind on A if and only if exp(A) ≤ 2.

We now mainly focus on unitary involutions. In order to discuss the existence, we

begin from the construction of the corestriction map.
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Let L/E be a field extension of degree 2, and let G = Gal(L/E) =< θ > be

the Galois group. Let B be an L-algebra. We introduce a new symbol θ(b) for each

b ∈ B, and define

Bθ = {θ(b)|b ∈ B}.

The set Bθ is an L-algebra if we define operations:

(1) θ(b1) + θ(b2) = θ(b1 + b2),

(2) θ(b1)θ(b2) = θ(b1b2),

(3) ℓ · θ(b1) = θ
(
θ(ℓ) · b1

)
,

for b1, b2 ∈ B and ℓ ∈ L. The L-algebra Bθ is called the conjugate algebra of B

with respect to L/E.

Let V = Bθ ⊗L B. We define a map β : V → V by β
(
θ(b1)⊗ b2

)
= θ(b2)⊗ b1.

Proposition 2.2.3 (cf. 3B, [16]).

(1) β is a θ-semilinear map of vector spaces over L, which has properties β(v1 +

v2) = β(v1) + β(v2) and β(ℓ · v) = θ(ℓ) · β(v) for all v1, v2, v ∈ V and all ℓ ∈ L;

(2) β is an automorphism of E-algebras.

In (1) of Proposition 2.2.3, we call the map β : V → V the switch map of V =

Bθ ⊗L B.

Now, we view V = Bθ ⊗L B as an E-algebra and B still an L-algebra. Then

denote corL/E(B) = {v ∈ V |β(v) = v}, which is an E-sub-algebra of V = Bθ ⊗L B

by (2) of Proposition 2.2.3.

If B is only a finite dimensional L-vector space, we can similarly define its con-

jugate vector space Bθ and thus the L-vector space V = Bθ ⊗L B. Proposition 2.2.3

will also be valid for such setting. Therefore, we have the switch map β : V → V ,

and the E-sub-vector space corL/E(B) of V .

Proposition 2.2.4 (cf. Proposition 3.13, [16]). Let B′ be an L-algebra. Let W be a

finite dimensional L-vector space. Then
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(1) corL/E(B)⊗E L ∼=L V = Bθ ⊗L B; corL/E(Bθ) ∼=E corL/E(B);

(2) corL/E(B ⊗L B′) = corL/E(B)⊗E corL/E(B
′);

(3) corL/E
(
EndL(W )

) ∼=E EndE
(
corL/E(W )

)
.

If B is a central simple L-algebra, then Bθ⊗LB is also a central simple L-algebra

by Theorem 2.1.2. By (1) of Proposition 2.2.4 and Proposition 2.1.4, corL/E(B) is

a central simple E-algebra. If B′ is a central simple L-algebra with [B] = [B′] ∈

Br(L), then [corL/E(B)] = [corL/E(B
′)] ∈ Br(E) by (2) and (3) of Proposition 2.2.4.

Therefore, there is a map from Br(L) to Br(E) defined as follows.

Definition 2.2.5 (corestriction map). We define a map

CorL/E : Br(L)→ Br(E)

by

CorL/E([B]) = [corL/E(B)].

The map CorL/E is called the corestriction map of Br(L) with respect to the quadratic

extension L/E.

In the last section, we already have a restriction map ResL/E : Br(E) → Br(L)

induced by the base change L/E. Therefore, it is reasonable to study the composition

of two maps.

Proposition 2.2.6 (Proposition 3.13 (5), [16]). Let B̃ be a central simple E-algebra.

Then

CorL/E ·ResL/E([B̃]) = [B̃] + [B̃] ∈ Br(E).

Proof. cf. Proposition 3. 13 (5) in [16]. It is an algebraic version proof without using

group cohomology.

Now we step into unitary involutions. Let A be a central simple F -algebra. As-

sume that F0 is a subfield of F and [F : F0] = 2. We provide a criterion of the
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existence of an F/F0-involution on A.

Theorem 2.2.7 (Albert-Riehm-Scharlau). A has an F/F0-involution τ if and only

if CorF/F0([A]) = 0 ∈ Br(F0).

Proof. cf. 3.B. [16].

Notice that in the case of Theorem 2.2.7, the Galois group G = Gal(F/F0) =<

τ |F > . Although we globally assume that ch(F0) ̸= 2, Theorem 2.2.7 is valid for any

separable quadratic extension F/F0.

It is necessary to explain the construction of the corestriction map from purely

algebraic aspect because we will frequently calculate the image of CorF/F0 in Chapter

5. Abstract results from Galois cohomology are not enough in this thesis.

By Theorem 2.1.1, A ∼=F Mn(D) for some finite dimensional division F -algebra.

By Theorem 2.2.7, A has an F/F0-involution if and only if the division algebra D has

an F/F0-involution. Then we can investigate unitary involutions on finite dimensional

division algebras, which will provide a reason why one also uses "unitary" to describe

the involutions of the second kind.

Let D be a finite dimensional division F -algebra. Let M be a finitely generated

right D-module. Assume that D has an F/F0-involution τ .

Definition 2.2.8. We say that a bi-additive map h : M ×M → D is a hermitian

form on M with respect to τ if h satisfies:

(1) h(ad1, bd2) = τ(d1)h(b, a)d2 for all a, b ∈M and d1, d2 ∈ D;

(2) h(a, b) = τ
(
h(b, a)

)
for all a, b ∈M .

The hermitian form h is called regular or non-singular if the only element a ∈M

such that h(a, b) = 0 for all b ∈ M is a = 0. An injective map of right D-modules

u : M → M ′ is called an isometry if h′ is a hermitian form on M ′ and h(a, b) =

h′
(
u(a), u(b)

)
for all a, b ∈ M . All the bijective isometries of M form its unitary

group U(M,h).
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We now assume that h is regular. Let M∗ be the dual of the right D-module M .

Although M∗ can be a left D-module naturally, we hope to define a right D-module

structure on M∗. For each element α ∈ M∗ and d ∈ D, we define (α · d)(a) =

τ(d)
(
α(a)

)
for each a ∈ M . Then one can verify that M is a right D-module in this

setting. Then we always consider M∗ as a right D-module.

For each map f ∈ EndD(M), we define a map Tf : M∗ → M∗ by Tf (α)(a) =

α ◦ f(a) for all a ∈M. In fact, Tf ∈ EndD(M
∗), and we call it the transpose of f .

Consider a map ĥ : M → M∗ given by ĥ(a) : b 7→ h(a, b) for all a, b ∈ M . Since

we assume that h is regular and M is finite dimensional over D, we can very that ĥ

is an isomorphism of right D-modules.

Theorem 2.2.9. Define a map τh : EndD(M)→ EndD(M) by τh(f) = ĥ−1 ◦ Tf ◦ ĥ.

Then:

(1) τh is a unitary involution on EndD(M);

(2) τh(a) = τ(a) for all a ∈ F ;

(2) There is a one-to-one correspondence between regular hermitian forms on M

up to a multiplication of an element in F×0 and the unitary involutions on EndD(M)

whose restrictions on F agree with τ |F .

The involution τh in Theorem 2.2.9 is called the adjoint involution with respect

to h.

We assume that A is a central simple F -algebra on which there are two unitary

involutions τ1 and τ2. We say that τ2 is τ1-centered if τ2|F = τ1|F . Obviously, if τ1 is

an F/F0-involution then the same to τ2. For such τ1 and τ2, we have the following

results.

Lemma 2.2.10. τ2 is τ1-centered if and only if τ2 = Int(a) ◦ τ1 for some a ∈ A×.

Moreover, τ1(a) = a.

Proof. One direction is obvious.
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For another direction, we assume that τ1|F = τ2|F . By Theorem 2.1.7 (Skolem-

Noether), there is an element b ∈ A× such that τ2 = Int(b) ◦ τ1. Then we have

τ1 ◦ Int(b) = Int(τ1(b
−1)) ◦ τ1, and then τ 22 = Int(b · τ1(b−1)) = idA. Therefore,

b = c · τ1(b) for some c ∈ F .

Since τ1(c) ∈ F , b = c · τ1
(
c · τ1(b)

)
= c · τ1(c) · b. Since Gal(F/F0) =< τ1|F >,

NF/F0(c) = 1. By Hilbert 90, there is an element d ∈ F× such that c = τ1(d) · d−1.

Let a = bd. Then τ1(a) = τ1(d)τ1(b) = cdτ1(b) = cdc−1b = db = bd = a. Mean-

while, for any element x ∈ A, we have aτ1(x)a
−1 = bdτ1(x)d

−1b−1 = bτ1(x)b
−1.

Another useful property of unitary involutions is from reduced characteristic poly-

nomials. As before, A is a central simple F -algebra.

Proposition 2.2.11. Let a ∈ A, and let Reda(X) denote the reduced characteristic

polynomial of a. Assume that A has an F/F0-involution τ . Then τ |F
(
Reda(X)

)
=

Redτ(a)(X) ∈ F [X].

Proof. cf. Corollary 2.16 in [16].

From Proposition 2.2.11, we directly obtain that the reduced norm NrdF
(
τ(a)

)
=

τ
(
NrdF (a)

)
∈ F and the reduced trace TrdF

(
τ(a)

)
= τ

(
TrdF (a)

)
∈ F .

If F sep
0 is a separable closure of F0, then F ⊗F0 F

sep
0
∼= F sep

0 ×F sep
0 and A⊗F0 F

sep
0

becomes a semi-simple F sep
0 -algebra. Therefore, we can extend the discussion of

unitary involutions to the case when A = A1 × A2, where A1 and A2 are central

simple F0-algebras. Similar definitions and properties can be found from 2.B, of [16].

Let Q be a quaternion algebra over a field F .

Then we can write Q as in the form of a cyclic algebra (F (
√
α), ξ, β) by the Section

2.1, where F (
√
α) is a Galois field extension of F with Gal(F (

√
α)/F ) =< ξ >.

Moreover, Q has an F -basis {1, i, j, k} satisfying i2 = α, j2 = β, and ij = −ji = k.
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Then each element a ∈ Q has a form that a = a0+a1i+a2j+a3k where a0, a1, a2, a3 ∈

F.

We consider the conjugation σ : Q → Q defined by σ(a) = a0 − a1i − a2j − a3k.

By a direct verification, we can prove that σ is an involution of the first kind on Q.

We call it the canonical involution on Q.

Now we consider unitary involutions on the quaternion F -algebra Q. Let F0 be a

subfield of F with [F : F0] = 2, and let Gal(F/F0) =< η >.

Theorem 2.2.12 (Albert, cf. Proposition 2.22, [16]). Assume that the quaternion

algebra Q has an F/F0-involution τ and τ |F = η. Then there is a unique quaternion

F0-sub-algebra of Q, denoted by Q0, such that

(1) Q ∼=F Q0 ⊗F0 F ;

(2) τ = σ0 ⊗ η, where σ0 is the canonical involution on Q0.
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Chapter 3

Whitehead Groups

In this Chapter, we will discuss the reduced (unitary) Whitehead group of a central

simple algebra. Then summarize connections among central simple algebras, linear

algebraic groups, and rational problems on algebraic groups.

3.1 Reduced Whitehead Group: SK1

Let A be central simple algebra over a field F . By Proposition 2.1.8 of last chapter,

we have the reduced norm map NrdF : A→ F . Let SL1(A) = {a ∈ A|NrdF (a) = 1}.

We focus on the multiplicative group A× of A. SL1(A) is a subgroup of A×.

Let [A×, A×] denote the commutator subgroup of A×. Then [A×, A×] is a normal

subgroup of SL1(A).

Definition 3.1.1. The factor group SL1(A)/[A
×, A×] is called the reduced Whitehead

group of the central simple F -algebra A, which is denoted by SK1(A).

There was a problem of Tannaka-Artin on the triviality of SK1(A) around the

year 1943. Nakayama and Matsushima proved that SK1(A) is trivial if the base field

F is a local field. Later, Wang, in [29], proved the triviality of SK1(A) when F is

a global field. It also can be deduced from [29] that SK1(A) is trivial if indF (A) is
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square free.

However, in [25], Platonov proved that SK1(A) can be non-trivial by constructing

a specific example.

For the case that cohomological dimension cd(F ) ≤ 3 and degF (A) = 4, Rost

proved that SK1(A) is trivial. Then Suslin made a conjecture: Is it true that SK1(A)

is trivial for cd(F ) ≤ 3? The conjecture is still an open question. A special case of

Suslin’s conjecture was proved by Nivedita Bhaskhar.

Theorem 3.1.2 (Nivedita Bhaskhar, [3]). Let F be the function field of a p-adic

curve, and let A be a central simple F -algebra. Assume that the exponent exp(A) is

a prime ℓ. If ℓ ̸= p and F contains a primitive ℓ2th root of unity, then SK1(A) is

trivial.

By Theorem 2.1.1, A ∼= Mr(D) for a finite dimensional division F -algebra. SK1(A)

only depends on the Brauer class [D] ∈ Br(F ).

Proposition 3.1.3. There is an isomorphism of groups SK1(A) ∼= SK1(D).

Proof. cf. §22, §23 in [6].

Moreover, we know that A has a primary decomposition by Theorem 2.1.13. As-

sume that degF (A) = ps11 ps22 · · · pstt is the decomposition of primes. Then we can

write A ∼=F As1
1 ⊗ As2

2 ⊗ · · · ⊗ Ast
t , where each Ai is a finite dimensional central di-

vision F -algebra of degree psii for all i = 1, 2, ..., t. The next proposition provides a

decomposition of SK1(A).

Proposition 3.1.4. There is an isomorphism of groups

SK1(A) ∼= SK1(A1)× SK1(A2)× · · · × SK1(At).

Proof. cf. Lemma 5, Lemma 6, §23, [6].
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The theory of SK1(A) is called the reduced K-theory. One can also define SK1(A)

from the general algebraic K-theory.

3.2 Reduced Unitary Whitehead Group: SK1U

Let A be a central division algebra over a field F . Now, we assume that A has an

F/F0-involution τ . We continue to focus on the group A×.

The set {a ∈ A×|NrdF (a) ∈ F0} is actually a subgroup of A×, which is denoted

by Σ′τ (A). Another set {a ∈ A×|τ(a) = a} may not be a subgroup of A×, but we can

have a subgroup of A× generated by the set and denote it by Στ (A).

Lemma 3.2.1. Στ (A) is a normal subgroup of Σ′τ (A).

Proof. Let a ∈ Στ (A), and let b ∈ Σ′τ (A). Then a = y1y2 · · · ym, where τ(yi) = yi for

all i = 1, 2, ...,m. Since NrdF (a) = NrdF (y1 · · · ym) ∈ F and NrdF (a) = τ
(
NrdF (a)

)
,

a ∈ Σ′τ (A).

Since NrdF
(
τ(aba−1)

)
= NrdF (b) ∈ F0, Στ (A) is a normal subgroup of Σ′τ (A).

Definition 3.2.2. The factor group Σ′τ (A)/Στ (A) is called the reduced unitary White-

head group of A with respect to τ , which is denoted by SK1U(A, τ).

For SK1U(A, τ), one can also have the question: Is it true that SK1U(A, τ) is

trivial? There are examples of trivial SK1U(A, τ). V.P.Platonov and V.I.Yanchevskii

proved that SK1U(A, τ) = 1 for global fields around the year 1973; V.I.Yanchevskii

proved its triviality when F is perfect and cd(F ) ≤ 2. In [32], V.I.Yanchevskii dis-

cussed the case when F is an Henselian discretely valued field.

SK1U(A, τ) actually depends on the class of τ -centered involutions.

Lemma 3.2.3. Assume that A has two unitary involutions τ1 and τ2. If τ2 is τ1-

centered, then
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(1) Σ′τ1(A) = Σ′τ2(A);

(2) Στ1(A) = Στ2(A).

Therefore, SK1U(A, τ1) = SK1U(A, τ2).

Proof. (1) Since τ1|F = τ2|F , τ2 is also an F/F0-involution. Then Σ′τ1(A) = Σ′τ2(A).

(2) Let x ∈ A× such that τ1(x) = x. Then τ1(x) = aτ2(x)a
−1 = x and τ2(xa) =

τ2(a)τ2(x) = aτ2(x) = ax by Lemma 2.2.10. Thus x = (xa)a−1 ∈ Στ2(A).

SK1U(A, τ) also depends on the Brauer class [A] ∈ Br(F ).

Theorem 3.2.4. Let D be a finite dimensional central division F -algebra such that

[D] = [A] ∈ Br(F ). Then there is an F/F0-involution τD on D such that SK1U(D, τD) ∼=

SK1U(A, τ).

Proof. cf. Lemma 2 & Lemma3, [15] .

Let A = A1⊗A2⊗· · ·⊗At be the primary decomposition of A by Theorem 2.1.13.

Then we have an isomorphism.

Theorem 3.2.5. There exist an unitary involution τi on each primary component Ai

for each i = 1, 2, ..., t such that

SK1U(A, τ) ∼= SK1U(A1, τ1)× · · · × SK1U(At, τt).

Since both SK1(A) and SK1U(A, τ) depend on the Brauer class, we may mainly

focus on a finite dimensional division F -algebra D satisfying [D] = [A] ∈ Br(F ) from

now. We always assume that D has an F/F0-involution τ when mention SK1U(D, τ).

There are some maps between SK1U(D, τ) and SK1(D), which will provide ideas

on calculating them.

For each x ∈ Σ′τ (D), we have x = τ(x) ·ax for some ax ∈ SL1(D) since NrdF (x) =
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NrdF (τ(x)) ∈ Fo. Then we define a map

ϕ : SK1U(D, τ)→ SK1(D) = SL1(D)/[D×, D×]

by ϕ(x) = ax. We claim that ϕ is a homomorphism.

Lemma 3.2.6. The map ϕ defined above is a homomorphism of groups, and the

exponent of the kernel of ϕ divides 2.

Proof. If x = y ∈ SK1U(D, τ), then x = z1z2 · · · zmy and z1, ..., zm are τ -invariant

elements in D×. Since x = τ(x)ax and y = τ(y)ay for some ax, ay ∈ SL1(D), axa−1y =

τ(x−1)xy−1τ(y) = τ(z1 · · · zmy)−1(z1z2 · · · zm)τ(y). By induction, it can be verified

that axa
−1
y ∈ [D×, D×]. Then ϕ(x) = ϕ(y) ∈ SK1(D) if x = y ∈ SK1U(D, τ).

Let x1, x2 ∈ SK1U(D, τ). Then ϕ(x1) ·ϕ(x2) = ax1 ·ax2 . Assume that ϕ(x1 ·x2) =

a3, then x1x2 = τ(x1x2)a3.

By calculation, τ(x1)a1τ(x2) = τ(x2)τ(x1)a3a
−1
2 and then

(
τ(x−12 )a1τ(x2)a

−1
1

)
=(

τ(x−12 )τ(x−11 )τ(x2)τ(x1)
)
a3(a1a2)

−1. Therefore, a3(a1a2)−1 ∈ [D×, D×] and then ϕ is

a homomorphism.

Suppose that ϕ(x) = 0. Then x2 = x · τ(x) ·ax ∈ Στ (D). Since [D×, D×] ⊂ Στ (D)

(cf. Theorem 2, §2, Chapter 4, Part II [4] ) and xτ(x) ∈ Στ (D), it follows that

x2 ∈ Στ (D) and the exponent of ker(ϕ) divides 2.

Proposition 3.2.7.

(1) Let n be the index of D. Then an ∈ Στ (A) for each a ∈ Σ′τ (A);

(2) If n is odd and SK1(D) = 1, then SK1U(D, τ) = 1 .

Proof. For (1), refer to Corollary 2.5, [32].

(2) Suppose that n is odd and SK1(D) is trivial. Then by Lemma 3.2.6, the

group SK1U(D, τ) is 2-torsion. By (1), SK1U(D, τ) is n-torsion. Since n is odd,

SK1U(D, τ) is trivial.
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On the other hand, we can also construct a map from SK1(D) to SK1U(D, τ).

Corollary 3.2.8. There is an exact sequence of groups:

SK1(D)
f1−→ SK1U(D, τ)

f2−→
F ∗0 ∩NrdD/F (D)

< NrdD/F (a)|a ∈ Σ(D) >
→ 1,

where f1 is induced by SL1(D) → SK1U(D, τ) and f2 is induced by NrdD/F :

D× → F×.

Proof. For any element x ∈ SK1(D), let f1(x) = x ∈ SK1U(D, τ). Since [D×, D×] ⊂

Σ(D), f1 is well defined.

For any element y ∈ SK1U(D, τ), let f2(y) = NrdD/F (y). Then f2 is surjective.

Since the definition of SK1(D) = SL1(D)/[D×, D×], im(f1) ⊂ ker(f2).

Suppose that y ∈ ker(f2). Then y = ay · y′ for some ay ∈ SL1(D) and some

y′ ∈ Σ(D). Therefore, y = ay = f1(ay) ∈ SK1U(D, τ) and ker(f2) ⊂ im(f1).

3.3 R-Equivalence and Whitehead Groups of Alge-

braic Groups

The R-equivalence is defined by Manin ([19]), which is an equivalence relation on the

rational points of an algebraic variety.

Let F be a field. Let X → Spec(F ) be a variety, which is separable, geometrically

integral, and finite type. Assume that a, b ∈ X(F ). If there is an F -rational map

ϕ : A1
F 99K X such that 0 maps to a and 1 maps to b, we say a, b are directly

R-equivalence.

Definition 3.3.1. The equivalence relation generated by the directly R-equivalence

on the set X(F ) is called R-equivalence on X(F ).
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If a variety G/F is a connected linear algebraic group over F , then strictly R-

equivalence is same as R-equivalence. This can be proved by a right translation of

G. In particular, we denote the equivalence class of the identity element in G(F ) as

RG(F ). We can verify that RG(F ) is a subgroup of G(F ). Since a conjugation map

on G is a rational map, RG(F ) is moreover a normal subgroup of G(F ).

Definition 3.3.2. The group G(F )/RG(F ) is called the group of R-equivalence

classes of G(F ).

The group of R-equivalence classes, G(F )/RG(F ), is very useful while studying

the rationality problem for algebraic groups,i.e. the problem to determine whether

the variety of an algebraic group is rational or stably rational.

For G, a smooth connected linear algebraic group defined over F , we say that G

is rational if its function field is purely transcendental over F . We say that G is F -

stably rational if G×F An
F is rational for some n ∈ N. If G is F -stably rational, then

G(F )/RG(F ) = 1. Thus, if one can establish non-triviality of the group G(E)/RG(E)

just for one field extension E/F , the group G is not F -stably rational.

Let F0 be a field. Let G be a semi-simple, simply connected, isotropic, and simple

algebraic group over F0. Let G(F0) be the F0-rational points subgroup of G, and

G(F0)
+ be the normal subgroup of G(F0) generated by the F0-rational points of

the unipotent radicals of parabolic F0-subgroups of G. We call G(F0)/G(F0)
+ the

Whitehead group for G over F0, denoted by W (G,F0).

Theorem 3.3.3 (Voskresenskii, [28]).

(1) Suppose that D0 is a central division F0-algebra. If G(F0) = SLn(D0) for

some n > 1, then

W (G,F0) ∼= SK1(D0).

Let F be a quadratic field extension of F0 and D be a central division F -algebra.

(2)Suppose that D has an involution of second kind τ such that F τ = F0. If the
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hermitian form hτ is isotropic and G(F0) = SU(D, hτ ), then

W (G,F0) ∼= SK1U(D, τ).

The Kneser-Tits conjecture predicted the triviality of the group W (G,F0). Due

to the former results on SK1(A) and SK1U(A, τ), the Kneser-Tits conjecture is not

valid in general. We refer to [9] for more details and a summary of W (G,F0).

Theorem 3.3.4 (Theorem 7.6, [24]). Let F be a non-Archimedean locally compact

field. Then the Kneser-Tits conjecture holds for any simple simply connected F -

isotropic group G, i.e. W (G,F ) = {1}.

Over number fields, the conjecture is proven to be true (cf. [9]). Further the

conjecture is also proven to hold for fields of cohomological dimension at most 2 (cf.

[9]).
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Chapter 4

Patching

Patching techniques were developed by Harbater, Hartmann and Krashen (cf. [10],

[11], [12], [13]) to study torsors under linear algebraic groups. One of the arithmetic

applications of patching is certain forms of ’local-global principles’. Firstly, I introduce

the case on vector spaces over given fields, which is the base for this topic.

4.1 Patching for Vector Spaces

Let F = {Fi}i∈I be a finite inverse system of fields and inclusions, whose inverse limit

(in the category of rings) is a field F . For i, j ∈ I, we write Fi ↪→ Fj if i ≻ j. We

now define the category of vector spaces patching problems for F , named PP(F), as

followings:

Object :
(
V = {Vi}i∈I ; νi,j : Vi ⊗Fi

Fj
∼=Fj

Vj, i ≻ j
)
,

and

Morphism :
(
f : {Vi}i∈I → {V ′i }i∈I

)
:=

{
ϕi : Vi →Fi

V ′i

∣∣∣ϕj◦νi,j = ν ′i,j◦(ϕi⊗Fi
Fj), i ≻ j

}
i,j∈I

,
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where each Vi is a finite dimensional Fi-vector space for each i ∈ I.

Then there is a functor

β : Vect(F )→ PP(F)

V 7→ V = {V ⊗F Fi}i∈I

from the category of finite dimensional F -vector spaces to the category of vector space

patching problems for F .

Definition 4.1.1. We say that a vector space V over F is a solution to a patching

problem V if β(V ) is isomorphic to V in the category PP(F).

In my current research, it asks for more condition on the inverse system.

Definition 4.1.2 (cf. Definition 2.1, [13]). A factorization inverse system over a field

F is a finite inverse system of fields whose inverse limit is F , and whose index set I

has the following property: There is a partition I = Iv ∪ Ie into a disjoint union such

that for each index k ∈ Ie, there are exactly two elements i, j ∈ Iv for which i, j ≻ k,

and there are no other relation in I.

For example, let F1, F2, and F = F1 ∩ F2 be sub-fields of a given field F0. Then

V = {Fi}i∈I with I = {0, 1, 2} is a factorization inverse system with lim
←

Fi = F .

Now we can describe the idea of patching for vector spaces. Let F = {Fi}i∈I be a

finite inverse system. The aim is to study the case where the functor β : Vect(F )→

PP(F) is an equivalence of categories, which can have the following motivation.

If F = {Fi}i∈I=Ie∪Iv is a factorization system, there is an ordered triple (l, r, k)l∈Iv ,r∈Iv ,l,r≻k∈Ie

for each k ∈ Ie. In fact, the factorization system is a finite multi-graph with an ori-

entation for each (l, r, k)(cf. section 2.1, [12]). Assume that a vector space V over F

is a solution of a patching problem V = {Vi}i∈I . Then

β(V ) ∼=
(
V = {Vi}i∈I ; νi,j : Vi ⊗Fi

Fj
∼=Fj

Vj, i ≻ j
)
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=
(
V = {Vi}i∈I ; µk : Vl ⊗Fl

Fk
∼=Fk

Vr ⊗Fr Fk, (l, r, k)l∈Iv ,r∈Iv ,l,r≻k∈Ie

)
,

where µk = ν−1r,k ◦ νl,k.

Then, we can recover the structure of V/F through the factorization system whose

vector spaces satisfy the isomorphism condition over some common field extensions

if β is an equivalence of categories. In fact, the idea is similar to the definition of

’sheaf’.

Before stating a general proposition on the equivalence of β, we need the following

definition.

Definition 4.1.3 (cf. [13], Section 2). Let F = {Fi}i∈I=Iv∪Ie be a factorization

inverse system with inverse limit a field F . Let G be a linear algebraic group over

F . We say that simultaneous factorization holds for G over F if for any collection of

elements Ak ∈ G(Fk), for k ∈ Ie, there exist elements Ai ∈ G(Fi) for all i ∈ Iv such

that Ak = A−1r Al ∈ G(Fk) for each such triple (l, r, k)l∈Iv ,r∈Iv ,l,r≻k∈Ie .

Now, we have the following result:

Proposition 4.1.4 (Proposition 2.2, [13]). Let F be a factorization inverse system

over a field F . Then the functor β : Vect(F )→ PP(F) is an equivalence if and only

if simultaneous factorization holds for GLn over F for every n ≥ 1.

4.2 Local-Global Principles over Arithmetic Curves

We will see that patching can be applied to linear algebraic groups defined over a

function field of an arithmetic curve.

Resolution of Singularities

We state the general theory on resolution of singularities here, which can help to get

an ideal model of a p-adic curve X and simplify the structure of a division algebra
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later(cf. [26]).

Let S be a Dedekind scheme. We call an integral, projective, flat S-scheme π :

X → S of dimension 2 a fibered surface over S. We have the following ’embedded

resolution’:

Theorem 4.2.1 (Theorem 9.2.26, [17]). Assume that X → S is a regular fibered

surface. Let D be an effective Cartier divisor on X . Suppose that the scheme D is

excellent. Then there exists a projective bi-rational morphism f : X ′ →X with X ′

regular, such that f ∗(D) is a divisor with normal crossings.

Notice that any fibered surface X is excellent if S is excellent. For example,

S = Spec(R) for some complete discrete valuation ring R. We call a regular fibered

surface X → S over a Dedekind scheme S of dimension 1 an arithmetic surface.

Then we have the following corollary:

Corollary 4.2.2 (Corollary 9.2.30, [17]). Let X → S be an arithmetic surface that

has only a finite number of singular fibers. Then there exists a projective bi-rational

morphism X ′ → X such that X ′ → S is an arithmetic surface with normal cross-

ings.

Next, recall the definition of models of algebraic curves:

Definition 4.2.3 (cf. Chapter 10, [17]). Let S be a Dedekind scheme of dimension 1,

with function field K. Let X be a normal, connected, projective curve over K. We call

a normal fibered surface X → S together with an isomorphism f : X ×S Spec(K) ∼=

X a model of X over S.

For example, Proj Z[x, y, z]/(xq + yq + zq) is a model of the projective curve over

Q defined by the same equation for some square free integer q ≥ 1.

Since the above theorem is valid for regular fibered surfaces, we may ask if there

is always some regular model of the given curve. In fact, we have a positive answer

when S is affine.
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Theorem 4.2.4 (Proposition 10.1.8, [17]). Suppose that S = Spec(R) is an affine

Dedekind scheme of dimension 1, with function field K. Let X be a smooth projective

curve of geometric genus g ≥ 1 over K. Then X admits a regular model X → S

with normal crossings.

Branches

Let R be a complete discrete valuation ring with a uniformizer t. Let K denote the

fraction field of R and k denote the residue field of R.

Let F be the function field of a smooth projective geometrically integral curve

X → Spec(K). We assume that X → Spec(R) is a regular model.

Let Xo denote the reduced closed fiber of X . For each point P ∈ Xo, let RP =

OX ,P . We denote the completion of RP as R̂P = lim
←

OX ,P

(mX ,P )n
, and demote the fraction

field FP = Frac(R̂P ).

For each generic point η ∈ Xo and each non-empty open subset U of {η} ⊂ Xo, we

denote the set of regular functions on U by RU = {f ∈ F |f ∈ OX ,Q for each Q ∈ U}.

Denote the (t)-adic completion of RU by R̂U , and let FU = Frac(R̂U). Then we have

F ⊂ FU ⊂ Fη if U ⊂ {η} ⊂ Xo.

If P ∈ Xo is a closed point in Xo and P ∈ {U} = {η} ⊂ X0 for some non-empty

open subset U ⊂ {η} , then we can find a height one prime ideal P of R̂P containing t.

We call such P a branch on U at P . Let R̂P denote the completion of the localization

of R̂P at P; let FP denote the fraction field of R̂P. Then we have F ⊂ FU , FP ⊂ FP

in this case.

Now, let P be a non-empty finite set of closed points of Xo that contains all the

closed points in which distinct irreducible components of Xo meet and at least one

point on each component of Xo. Let U be the collection of irreducible components

of Xo\P. Let B be the collection of branches of Xo at points of P. This yields a

finite inverse system F of fields FP , FU , FP for P ∈P, U ∈ U , and P ∈ B. In fact,
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the inverse limit of F is the field F (Proposition 3.3, [13]), and we have the following

proposition:

Proposition 4.2.5 (Corollary 3.4, [13]). The finite inverse system F given above is

a factorization inverse system with inverse limit F . For this system, the base change

functor β : Vect(F )→ PP(F) is an equivalence of categories.

In [13], the above proposition can be proved if the set P = g−1(∞) for some finite

morphism g : X → P1
R . We can always find such morphism g in our situation.

Proposition 4.2.6 (Proposition 3.3, [13]). Let W be finite set of closed points of X .

Write ∞ ∈ P1
k ⊂ P1

R. There is a finite morphism g : X → P1
R such that g−1(∞) = W

if and only if W meets each irreducible component of X non-trivially.

Factorization for Rational Connected Linear Algebraic Group

We keep the above notations. A connected linear algebraic group G over F is rational

if it is a rational F -variety, i.e. G is bi-rational to PN
F .

In the above proposition, we know that there exists a morphism g : X → P1
R

such that P = g−1(∞). Then let V be the collection of irreducible components V of

g−1(A1
k), and recall that B is the collection of all branches P at the points of P.

We have the following factorization theorem:

Theorem 4.2.7 (Theorem 3.6, [11]). Let G be a rational connected linear algebraic

group over F . Suppose that there is an element xP ∈ G(FP) for each branch P ∈ B.

Then there is an element xP ∈ G(FP ) for each P ∈P, and an element xV ∈ G(FV )

for each V ∈ V , such that xP = xP · xV for every branch P ∈ B at a point P ∈ P

with P lying on the closure of some V ∈ V .

In the above theorem, each product xP · xV is taken in G(FP) with respect to the

inclusion FP , FV → FP.
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We keep the notations. Assume that a linear algebraic group G acts on a variety

H over a field E. We say that G acts transitively on the points of H if every field

extension E ′ of E the induced action of the group G(E ′) on the set H(E ′) is transitive.

Here we have a local-global principle for homogeneous spaces:

Theorem 4.2.8 (Theorem 3.7, [11]). Let G be a rational connected linear algebraic

group over F which acts transitively on the points of an F -variety H. Then, H(F ) ̸= ∅

if and only if H(FP ) ̸= ∅ for each P ∈P and H(FV ) ̸= ∅ for each V ∈ V .

Local-Global Principles on Xo

We keep all the notations in Branches. In the classical case of local-global principles

over a number field E, there is the obstruction

XΩ(E,G) = ker
(
H1(E,G)→

∏
v∈Ω

H1(Ev, G)
)

to the validity of this local-global principle, where G→ Spec(E) is a linear algebraic

group.

In the case F , we have the similar situation if considering prime divisors on a

regular model X → Spec(R). Actually, we know that such a regular model always

exists in our case. Then we can write:

X(F,G) = ker
(
H1(F,G)→

∏
D prime

H1(FvD , G)
)
.

If consider all the points of Xo = (X ×Spec(R) Spec(k))red, we can define the

obstruction

XX ,Xo(F,G) = ker
(
H1(F,G)→

∏
P∈Xo

H1(FP , G)
)
.

Notice that P can be a generic point of Xo in the sense of Branches.

Now, we always assume that X is a regular model with closed fiber Xo. For
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each generic point η of Xo, there is a relation between the fields Fη and FU for each

non-empty open U ⊂ {η} in Xo. By Section 3.2.1 of [12], there is a procedure which

is a kind of henselization.

Let Rh
η = lim

→
R̂V , where V ranges over the non-empty open subsets of Xo that

do not meet any other irreducible component of Xo. Let F h
η = Frac(Rh

η). Since

RV ↪→ Rη for each V ∈ {η}, F h
η ↪→ Fη.

Lemma 4.2.9 (Lemma 3.2.1, [12]). Let {η} = Cη ⊂ Xo be an irreducible component,

and Uη ⊂ Cη be a non-empty open subset meeting no other component. Then Rh
η

is a Henselian discrete valuation with respect to the η-adic valuation, having residue

field k(Uη) = k(Cη). The field F h
η is the filtered direct limit of the fields FV , where V

ranges over the non-empty open subsets of Uη.

Later, we will see that Fη can be approximated by FUη with the help of the above

lemma and our next results. Currently, we have another approximation result on

smooth commutative group schemes.

Proposition 4.2.10 (Proposition 3.2.2, [12]). Let G be a smooth commutative group

scheme over F . If α ∈ Hn(FUη , G) satisfies α ⊗ Fη = 0, then α ⊗ FV = 0 for some

Zariski open neighborhood V of η in U .

By the above proposition, we can shrink a open subset Uη.

Finally, there is a local-global principle on Xo.

Theorem 4.2.11 (Theorem 3.2.3, [12]). Let G be a commutative linear algebraic

group over F , and n ≥ 1. Assume that either

(1) G = Z/mZ(r), where m is an integer not divisible by char(k), and where either

r = n− 1 or else [F (µm) : F ] is prime to m; or

(2) G = Gm, char(k) = 0, and K contains a primitive m-th root of unity for all

m ≥ 1.
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Then

0→ Hn(F,G)→
∏

P∈Xo

Hn(FP , G).
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Chapter 5

SK1U over Function Fields of p-adic

Curves

In this chapter we prove the following theorem.

Theorem 5.0.1. Let K be a p-adic field with p ≥ 3, i.e. a finite extension of Qp, R

be the valuation ring of K, and k be the residue field. Let X → Spec(K) be a smooth

projective curve and F0 be the function field of X. Let F be a quadratic field extension

of F0 and F = F0(
√
d). Let D be a central division algebra over F of period 2 with an

F/F0-involution τ . Then the reduced unitary Whitehead group SK1U(D, τ) is trivial.

5.1 The Plan of the proof

According to Corollary 3.2.8, there is an exact sequence of groups:

SK1(D)
f1−→ SK1U(D, τ)

f2−→
F ∗0 ∩NrdD/F (D)

< NrdD/F (a)|a ∈ Σ(D) >
→ 1.

Since period of D is 2, We know that SK1(D) = 1 [29]. We prove that the third

item F ∗
0 ∩NrdD/F (D)

<NrdD/F (a)|a∈Σ(D)>
is trivial.

We start from choosing a suitable model X → Spec(R0). By Theorem 10.1.8 of
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[17], we can firstly assume that X is regular.

Let X (1) be the set of codimenson one points of X . For P ∈ X , let vP denote

the discrete valuation on F given by P . For any element y ∈ F , we define the support

of y in X as

suppX (y) = {P ∈X (1)|vP (y) ̸= 0}.

Since X is proper over an affine scheme, suppX (y) is a finite set.

Let X̃ be the normal closure of X in F . Since p ̸= 2, each point P ∈ X̃ (1) induces

a residue map ∂vP : H2(F, µ2) → H1(κ(P ),Z/2Z). We define the ramification locus

of D in X :

ramX (D) = {P ∈X (1)|∂vQ([D]) ̸= 0 for some Q ∈ X̃ lying over P}.

Let λ ∈ F ∗0 . We can choose X → Spec(R) a regular model of X with the reduced

special fibre X0 such that ramX (D)∪suppX (λ)∪suppX (d)∪X0 is a union of normal

crossing regular curves (ref). Since period of D is 2, by a theorem of

Suppose λ ∈ F ∗0 ∩ NrdD/F (D). To show that λ ∈< NrdD/F (a)|a ∈ Σ(D) >, we

construct three quadratic extensions Li/F0 and µi ∈ L∗i such that

i)
∏

i NLi/F0(µi) = λ

ii) ind(D ⊗ Li) ≤ 2

iii) µi ∈ L∗i ∩Nrd(D ⊗ Li).

Since ind(D ⊗ Li) ≤ 2, µi ∈< NrdD⊗Li/F⊗Li
(a)|a ∈ Σ(D ⊗ Li) > . Since∏

i NLi/F0(µi) = λ, it follows that λ ∈< NrdD/F (a)|a ∈ Σ(D) >.

To construct Li and µi ∈ Li, using methods of Parimala, Preeti and Suresh ([21]),

first we construct such extensions Li and µi ∈ Li locally over complete discretely

valued fields and over fraction fields of two dimensional complete regular local rings of

dimension 2 with some compatibility conditions. Then using the patching techniques

of Harbater, Hartmann and Krashen. we get the required extensions Li and µi ∈ Li
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over F0.

5.2 Preliminaries

Lemma 5.2.1. Let R be a complete regular local ring with maximal ideal (π, δ), field

of fractions F and residue field κ. Suppose that char(κ) not equal to 2. Let Fπ be the

completion of F at the discrete valuation given by (π). Let a = uπϵδϵ
′ ∈ R with u ∈ R

a unit and ϵ, ϵ′ ∈ Z. Then for any element µπ ∈ Fπ(
√
a)∗, there exists µ ∈ F (

√
a)∗

such that µ = wπrδs
√
a
s′ with w ∈ R[

√
a] a unit, r, s, s′ ∈ Z and µπµ

−1 ∈ Fπ(
√
a) is

a unit at π and maps to 1 modulo π.

Proof. Note that if ϵ or ϵ′ is even, then R[
√
a] is a regular local ring with maximal

ideal (π1, δ1) for some primes π1, δ1 ∈ {π, δ,
√
a} ⊂ R[

√
a](cf. Lemma 3.1, [22]). In

this case Fπ(
√
a) is a complete discretely valued field with π1 as a parameter and

residue field a complete discretely valued field with valuation ring R/(π)[
√
ā] and δ̄1

as a parameter. Suppose both ϵ and ϵ′ are odd. Then Fπ(
√
a) is a complete discretely

valued field with π1 =
√
a as a parameter and residue field is also a complete discretely

valued field with valuation ring R/(π) and δ̄1 = δ̄ a parameter.

Let µπ ∈ Fπ(
√
a)∗. Then µπ = µ1π

r
1 for some µ1 ∈ Fπ(

√
a)∗ a unit at π1 and

r ∈ Z. Let µ̄1 be the image of µ in the residue field of Fπ(
√
a). Then, we have

µ̄1 = w̄δ̄s1 for some unit w ∈ R[
√
a]. Let µ = wπr

1δ
s
1. Then µπµ

−1 ∈ Fπ[
√
a] is a unit

at π and maps to 1 in κ(π).

Lemma 5.2.2. Let R be a complete regular local ring with maximal ideal (π, δ),

field of fractions F and residue field κ. Suppose that char(κ) not equal to 2. Let

λ = uπrδs ∈ F ∗ with u ∈ R∗. Let Fπ be the completion of F at the discrete valuation

given by (π). Let n ≥ 1, aiπ ∈ F ∗π and µiπ ∈ Liπ = Fπ[X]/(X2 − aiη) for 1 ≤ i ≤ n

with
∏

i NLiπ/Fπ(µiπ) = λ. Then there exist ai = uiπ
ϵiδϵ

′
i ∈ R with ui ∈ R∗, µi =

wiπ
riδsi
√
ai

s′i for some wi ∈ R[X]/(X2 − ai)
∗ such that
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i) aiπa
−1
i ∈ F ∗2π for all i

i)
∏

i NF [X]/(X2−ai)/F (µi) = λ

ii) there is an isomorphism ϕi : Fπ[X]/(X2 − aiη) → Fπ[X]/(X2 − ai) with

ϕi(µiπ)µ
−1
i ∈ Fπ[X]/(X2 − ai)

2m for all m ≥ 1.

Proof. Applying (5.2.1) for aiπ with a = 1, we get ai = uiπ
ϵiδϵ

′
i with ui ∈ R∗ such

that aiaiπ ∈ F ∗2π . Hence replacing aiπ by ai we assume that µi ∈ Fπ[X]/(X2 − ai).

Let 1 ≤ i ≤ n. Suppose ai is a square in F . Then Fπ[X]/(X2 − ai) = Fπ × Fπ

and µiπ = (µ′iπ, µ
′′
iπ). Let µ′i, µ

′′
i ∈ F be as in (5.2.1) corresponding to µ′iπ and µ′′iπ

and µi = (µ′i, µ
′′
i ) ∈ F [X]/(X2 − ai). Suppose ai is not a square. Let µi ∈ F be as

in (5.2.1) corresponding to µiπ. Then λ−1
∏

i NF [X]/(X2−ai)/F (µi) is a unit in R and

maps to 1 in the residue field κ of R. Since char(κ) ̸= 2, there exists θ ∈ R∗ which

maps to 1 in κ and λ−1
∏

i NF [X]/(X2−ai)/F (µi) = θ2. Replacing µ1 by µ1θ, we have

the required µi.

Lemma 5.2.3. Let R be a complete regular local ring with maximal ideal (π, δ), field

of fractions F and residue field κ. Suppose that κ is a finite field with char(κ) not equal

to 2. Let D be a quaternion algebra over F which is unramified on R except possibly

at (π) and (δ). Let a = uπϵδϵ ∈ R with u ∈ R∗ and µ = wπrδs
√
a
s′ ∈ F [X]/(X2 − a)

for some w ∈ R[X]/(X2 − ai)
∗. If µ is a reduced norm from D ⊗ Fπ[X]/(X2 − a),

then µ is a reduced norm from D ⊗ F [X]/(X2 − a).

Proof. Suppose that ϵ or ϵ′ is even. Then R[X]/(X2 − a) is regular and the result

follows from (Lemma 6.5, [21]).

Suppose both ϵ and ϵ′ are odd. Then a = uπδa21 for some a1 ∈ F ∗. Without loss

of generality, we assume that a = uπδ. Since κ is a finite field, we have D = (v, π) or

(v, δ) or (v, πδ) or (v1π, v2δ) for some units v, v1, v2 ∈ R (cf. Lemma 3.6, [31]). Since

(v, πδ)⊗F [X]/(X2−a) ≃ (v, u)⊗F [X]/(X2−a) is split and (v1π, v2δ)⊗F [X]/(X2−

a) ≃ (v1v2u, δ)⊗F [X]/(X2−a), without loss of generality we assume that D = (v, π)
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or (v, δ) for some unit v ∈ R. Since (v, π)⊗F [X]/(X2−a) ≃ (v, δ)⊗F [X]/(X2−a),

we assume that D = (v, δ).

Suppose D⊗Fπ[X]/(X2−a) is split. Since D = (v, δ) is unramified and Fπ[X]/(X2−

a) is ramified at π, D ⊗ Fπ is split by contradiction. Hence, by (Corollary 5.6, [21]),

D is split and µ is a reduced norm D.

Suppose D⊗Fπ[X]/(X2−a) is non-split. Since a = uπδ, we have µ = wπrδs
√
uπδ

s′ ∈

F [X]/(X2 − a) for some w ∈ R∗. Since
√
uπδ is a parameter in Fπ[X]/(X2 − a) and

D ⊗ Fπ[X]/(X2 − a) ≃ (v, δ) ⊗ Fπ[X]/(X2 − a) is unramified at π,
√
uπδ is not a

reduced norm from D ⊗ Fπ[X]/(X2 − a). Hence s′ is even and wπrδs is a reduced

norm from D⊗Fπ[X]/(X2−a). Since D⊗F [X]/(X2−a) ≃ (v, π)⊗F [X]/(X2−a) ≃

(v, π) ⊗ F [X]/(X2 − a), −π and −δ are reduced norms from D ⊗ F [X]/(X2 − a).

Since κ is a finite field and u, v ∈ R∗, ±u is a norm from the extension F (
√
v) and

hence λ is a reduced norm from D ⊗ F [X]/(X2 − a).

5.3 Weak Approximations over Global Fields

In this section we prove certain weak approximations over global fields.

Proposition 5.3.1. Let κ be a global field of characteristic not 2 and d, w ∈ κ∗. Let

S be a finite set of paces of κ. Let u ∈ Nκ(
√
d)/κ(κ(

√
d)∗)Nκ(

√
w)/κ(κ(

√
w)∗. For each

ν ∈ S, let yν ∈ κν(
√
d) and zν ∈ κν(

√
w) be such that Nκν(

√
d)/κν

(yν)Nκν(
√
w)/κν

(zν) is

close to u. Then there exist y ∈ κ(
√
d) and z ∈ κ(

√
w) be such that y is close to yν

and z is close to zν for all ν ∈ S and Nκ(
√
d)/κ(y)Nκ(

√
w)/κ(z) = u.

Proof. By the strong approximation theorem for global fields (cf. Section 15, Chapter

II, [5]), there are elements y ∈ κ(
√
d) and z ∈ κ(

√
w) satisfying the required principles.

Lemma 5.3.2. Let κ be a global field of characteristic not 2. Let d0, w0 ∈ κ∗ and S0

a finite set of places of κ. For each place ν ∈ S0, suppose that there are elements xν ∈
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κ∗ν, yν ∈ κ1ν = κν(
√
xν) such that yν ∈ Nκ1ν(

√
w0)/κ1ν (κ1ν(

√
w0)

∗)Nκ1ν(
√
d0w0)/κ1ν

(κ1ν(
√
d0w0)

∗).

Then there exist x ∈ κ and y ∈ κ1 = κ(
√
x) such that

i) x is close to xν and y is close to yν for all ν ∈ S

ii) y ∈ Nκ1(
√
w0)/κ1(κ1(

√
w0)

∗)Nκ1(
√
d0w0)/κ1

(κ1(
√
d0w0)

∗).

Proof. Let x ∈ κ be close to xν for all ν ∈ S and κ1 = κ(
√
x). Then κ1 ⊗ κν = κ1ν .

Let z1ν ∈ κ1ν(
√
w0)

∗ and z2ν ∈ κ1ν(
√
d0w0)

∗ such that

yν = Nκ1ν(
√
w0)/κ1ν (z1ν)Nκ1ν(

√
d0w0)/κ1ν

(z1ν).

Let z1 ∈ κ1(
√
w0)

∗ and z2 ∈ κ1(
√
d0w0)

∗ close to z1ν and z2ν respectively for all

ν ∈ S. Let

y = Nκ1(
√
w0)/κ1(z1)Nκ1(

√
d0w0)/κ1

(z2).

Then x and y have the required properties.

Lemma 5.3.3. Let κ be a global field of characteristic not 2. Let u0, b0, c0, w0, d0 ∈ κ∗

and S0 a finite set of places of κ containing all the places where at least one of b0,

c0, d0, w0 and u0 is not a unit. Suppose that u0 ∈ Nκ(
√
w0,
√
d0)/κ(

√
d0)(κ(

√
w0,
√
d0)
∗).

For each place ν ∈ S0, suppose we have given xν ∈ κ∗ν, y1ν ∈ κ1ν = κν(
√
xν),

y2ν ∈ κ2ν = κν(
√
w0) and y3ν ∈ κ3 = κν(

√
d0w0) such that

i)
∏

i Nκiν/κν (yiν) = u0

ii) y1ν ∈ Nκ1ν(
√
w0)/κ1ν (κ1ν(

√
w0)

∗)Nκ1ν(
√
d0w0)/κ1ν

(κ1ν(
√
d0w0)

∗).

Then there exist x ∈ κ∗ and y1 ∈ κ1 = κ(
√
x), y2 ∈ κ2 = κ(

√
w0), y3 ∈ κ3 =

κ(
√
d0w0) such that

i) x is close to xν and yi is close to yiν for all ν ∈ S and i = 1, 2, 3.

ii)
∏

iNκi/κ(yi) = u0

iii) y1 ∈ Nκ1(
√
w0)/κ1(κ1(

√
w0)

∗)Nκ1(
√
d0w0)/κ1

(κ1(
√
d0w0)

∗).

Proof. By (5.3.2), there exist x ∈ κ and y1 ∈ κ1 = κ(
√
x) such that x is close to
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xν , y1 is close to y1ν for all ν ∈ S and y1 = Nκ1(
√
w0)/κ1(z1)Nκ1(

√
d0w0)/κ1

(z2) for some

z1 ∈ κ1(
√
w0)

∗ and z2 ∈ κ1(
√
d0w0)

∗.

Let u1 = Nκ1/κ(y1), u12 = Nκ1(
√
w0)/κ(z1) and u13 = Nκ1(

√
d0w0)/κ(z2). Then u1 =

u12u13 and u12 ∈ Nκ2/κ(κ
∗
2) and u13 ∈ Nκ3/κ(κ

∗
3).

Let u2 = u0u
−1
1 . Since y1 is close to y1ν for all ν ∈ S, Nκ2ν/κν (y2ν)Nκ3ν/κν (y3ν) is

close to u2. Hence, by (5.3.1), there exist y2 ∈ κ2 and y3 ∈ κ3 which are close to y2ν

and y3ν respectively for all ν ∈ S such that Nκ2/κ(y2)Nκ3/κ(y3) = u2. Then x1, y1, y2

and y3 have the required properties.

Proposition 5.3.4. Let κ be a global field of characteristic not 2. Let u0, b0, c0 ∈ κ∗

and S0 a finite set of places of κ containing all the places where at least one of u0,

b0, c0 is not a unit or (b0, c0) is nontrivial at ν. Suppose for every ν ∈ S, we have

given xν , wν ∈ κν, y1ν ∈ κ1ν = κν [X]/(X2 − xν) and y2ν ∈ κ2ν = κν [X]/(X2 − wν)

such that

i) Nκ1ν/κν (y1ν)Nκ2ν/κν (y2ν) = u0

ii) (b0, c0) splits over κ1ν and κ2ν.

Then there exist units x,w ∈ κ∗, y1 ∈ κ1 = κ[X]/(X2 − x) and y2 ∈ κ2 =

κ[X]/(X2 − w) such that

i) x, w, y1 and y2 are close to xν, wν, y1ν and y2ν respectively for all ν ∈ S

ii) Nκ1/κ(y1)Nκ2/κ(y2) = u0,

iii) (b0, c0) splits over κ1 and κ2.

Proof. Let x,w ∈ κ be close to xν and wν for all ν ∈ S. Since (b0, c0) splits over κν

for places ν ̸∈ S and (b0, c0) splits over κ1ν and over κ2ν for all ν ∈ S, (b0, c0) splits

over κ1 and κ2 .

Let y1 ∈ κ1 close to y1ν for all ν ∈ S. Let u1 = Nκ1/κ(y1). Then Nκ2ν/κν (y2ν) is

close to u−11 u0 for all ν ∈ S. Hence there exists y′2ν ∈ κ2ν which is close to y2ν such

that Nκ2ν/κν (y
′
2ν) = u−11 u0. Since κ2/κ is a quadratic extension, there exists y2 ∈ κ2

such that Nκ2/κ(y2) = u−11 u0 and y2 is close to y′2ν for all ν ∈ S.
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Hence x,w, y1 and y2 have the required properties.

5.4 Complete Discretely Valued Fields

Let R0 be a complete discretely valued field with residue field κ a positive charac-

teristic global field of characteristic not equal to 2 and F0 the field of fractions. Let

d ∈ R0 be a non-square and F = F0(
√
d). Then the residue field of F , denoted by

κF , is a global field which is isomorphic to κ or κ(
√
d̄). Let R be the integral closure

of R0 in F . Let D be a central division algebra over F with a F/F0-involution τ .

Suppose that πF is a parameter of F and per(D) = 2. Then there is an unramified

cyclic extension E/F with Gal(E/F ) =< σ > such that [D] = [D′] + [(E, σ, πF )] ∈

H2(F, µ2) and ind(D) = ind(D′ ⊗F E) · [E : F ] for some [D′] ∈ H2
nr(F, µ2) ∼=

H2(κF , µ2) (cf. Lemma 4.2, [21]; Theorem 5.6, [14]). In particular, (E, σ, πF ) is

a cyclic division F -algebra of ind
(
(E, σ, πF )

)
≤ 2 (cf. Section 4, [21]; Corollary d,

Chapter 15, [23]). Since κF is a global field, per(D′) = ind(D′) ≤ 2 (cf. 4.5, §4,

Chapter 3, Part II, [4]). Then ind(D) ≤ 4.

We know that SK1U(D, τ) is trivial (cf. Corollary 4.16, Corollary 4.17, [32]).

The aim of this section is to show that given λ ∈ F ∗0 which is a reduced norm from

D, there exist a1, a2, a3 ∈ F ∗0 and µi ∈ Li = F0[X]/(X2 − ai) which approximates

some given elements such that
∏

iNLi/F0(µi) = λ and ind(D ⊗ F0Li) ≤ 2. This is

required for our main result and also this gives an alternative proof of the fact that

SK1U(A, τ) is trivial.

Lemma 5.4.1. Suppose that the valuation of d is even, then D = (b, c)⊗ (w, π) for

some units b, c, w ∈ R0 and a parameter π of F0.

Proof. Assume that [D] ̸= 0 ∈ H2(F, µ2). Since the valuation of d ∈ F0 is even, the

extension F/F0 is unramified.

Let π0 be a parameter of F0. By the discussion above, we can find an unramified
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cyclic extension E/F with Gal(E/F ) =< σ > such that [D] = [D′] + [(E, σ, π0)],

ind(D′) ≤ 2, and ind
(
(E, σ, π0)

)
≤ 2.

Since D has a unitary F/F0-involution and F/F0 is unramified, there are ele-

ments b, c, x, y in F0 such that [D′] = [(b, c) ⊗F0 F ] ∈ H2
nr(F, µ2) ∼= H2(κF , µ2) and

[(E, σ, π0)] = [(x, y)⊗F0 F ] ∈ H2(F, µ2) (cf. Proposition 2.22, [16]).

Assume that [D′] ̸= 0 ∈ H2(F, µ2). Since [D′] ∈ H2
nr(F, µ2), b and c are units in

R0 (cf. Section 4, [21]).

Assume that [(E, σ, π0)] ̸= 0 ∈ H2(F, µ2). Also notice that the unramified exten-

sion E/F is a splitting field of the division F -algebra (E, σ, π0). Since [(E, σ, π0)] /∈

H2
nr(F, µ2), [(x, y) ⊗F0 F ] = [(u1π0, u2π0) ⊗F0 F ] or [(u3, u4π0) ⊗F0 F ] for some units

u1, u2, u3, u4 in R0. The former case cannot happen since the non-split quaternion

F -algebra (u1π0, u2π0) is not split over any unramified extension of F . Therefore, we

can let w = u3 and π = u4π0.

Lemma 5.4.2. Suppose that the valuation of d is odd . Then D = (b, c) for some

units b, c ∈ R0.

Proof. Assume that [D] ̸= 0 ∈ H2(F, µ2). Since the valuation of d ∈ F0 is odd, there

is a parameter π0 of F0 such that F0(
√
π0) ∼= F = F0(

√
d) and

√
π0 is a parameter of

F .

By (Lemma 4.2, [21]) and the discussion before Lemma 5.3.5, there is an unram-

ified extension E/F with Gal(E/F ) =< σ > such that [D] = [D′] + [(E, σ,
√
π0)] ∈

H2(F, µ2), ind(D′) ≤ 2, and ind
(
(E, σ,

√
π0)

)
≤ 2.

Since D has a unitary F/F0-involution, there are elements b, c, x, y in F0 such that

[D′] = [(b, c) ⊗F0 F ] ∈ H2
nr(F, µ2) ∼= H2(κ, µ2) and [(E, σ,

√
π0)] = [(x, y) ⊗F0 F ] ∈

H2(F, µ2) (cf. Proposition 2.22, [16]).

Assume that [D′] ̸= 0 ∈ H2(F, µ2). Since [D′] ∈ H2
nr(F, µ2), b and c are units in

R0.



46

Assume that [(E, σ,
√
π0)] ̸= 0 ∈ H2(F, µ2). Since F ∼= F0(

√
π0) and [(E, σ,

√
π0)] /∈

H2
nr(F, µ2), the quaternion F -algebra (x, y) ⊗F0 F has to be split over F . Then

[D] ∼=F [(b, c)] ∈ H2(F, µ2) for units b, c in R0.

Proposition 5.4.3. Suppose d is a unit in R0. Suppose D = (b, c)⊗ (w, π) for some

units b, c, w ∈ R0, π ∈ R0 a parameter. Let u ∈ R0 be a unit. Let S0 be a finite

set of places of κ containing all the places {ν} where at least one of ū, b̄, c̄, w̄, d̄ is

not a unit or (b̄, c̄) is not split. For each place ν ∈ S0, suppose that we have given

xν ∈ κν − κ∗2ν , y1ν ∈ κ1ν = κ[X]/(X2 − xν), y2ν ∈ κ2ν = κν [X]/(X2 − w̄) and

y3ν ∈ κ3ν = κν [X]/(X2 − w̄d̄) such that

i)
∏

i Nκiν/κν (yiν) = ū

ii) y1ν ∈ Nκ1ν(
√
w̄,
√
d̄)/κ1ν(

√
d̄)(κ1ν(

√
w̄,
√
d̄)∗).

Then there exist units a ∈ R0, µ1 ∈ R0[X]/(X2 − a), µ2 ∈ R0[X]/(X2 − w),

µ3 ∈ R0[X]/(X2 − wd) such that

i) ā is close to xν, µ̄i is close to yiν for all ν ∈ S0 and i = 1, 2, 3

ii)
∏

iNLi/F0(µi) = u, where L1 = F0[X]/(X2 − a), L2 = F0[X]/(X2 − w) and

L3 = F0[X]/(X2 − dw)

iii) (b, c)⊗ L1 is split

iv) µi is a reduced norm from D ⊗F0 Li for i = 1, 2, 3.

Proof. Since κ1ν(
√
w̄,
√
d̄)
/
κ1ν is a bi-quaternion extension, it can be verified that

Nκ1ν(
√
w̄)/κ1ν

(κ1ν(
√
w̄)∗)·N

κ1ν(
√

dw)/κ1ν

(κ1ν(
√
dw)∗) = Nκ1ν(

√
w̄,
√
d̄)/κ1ν(

√
d̄)(κ1ν(

√
w̄,
√
d̄)∗).

Then by (5.3.3), there exist x ∈ κ and y1 ∈ κ1 = κ(
√
x), y2 ∈ κ2 = κ(

√
w̄),

y3 ∈ κ3 = κ(
√
d̄w̄) such that

i) x is close to xν and yi is close to yiν for all ν ∈ S0 and i = 1, 2, 3.

ii)
∏

i Nκi/κ(yi) = ū

iii) y1 ∈ Nκ1(
√
w̄)/κ1

(κ1(
√
w̄)∗)Nκ1(

√
d̄w̄)/κ1

(κ1(
√
d̄w̄)∗).
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Let ν be a place of κ. Suppose that ν ∈ S0. Then, by the choice, [κν(
√
xν), κν ] = 2.

Since κν is a local field, (b̄, c̄) is split over κν(
√
xν) = κν(

√
x). Suppose that ν ̸∈ S0.

Then, by the choice of S0, (b̄, c̄) is split over κν . Hence, by the theorem of Albert-

Brauer-Hasse-Noether, (b̄, c̄) is split over κ1 = κ(
√
x).

Let a ∈ R0 be a lift of x, µ1 ∈ R0[X]/(X2−a) a lift of y1 and µ2 ∈ R0[X]/(X2−w)

a lift of y2. Since R0 is complete, there exists µ3 ∈ R0[X]/(X2 −wd) which has a lift

y3 such that
∏

i NLi/F0(µi) = u.

Since R0 is complete and (b̄, c̄) splits over κ(
√
x), (b, c)⊗ L1 is split.

Since y1 ∈ Nκ1(
√
w̄,
√
d̄)/κ1(

√
d̄)(κ1(

√
w̄,
√
d̄)∗), R0 is complete and µ1 is a lift of y1,

µ1 ∈ NL1(
√
w,
√
d)/L1(

√
d)(L1(

√
w,
√
d)∗). Since (b, c) ⊗ L1 is split, D ⊗ L1 = (w, π) ⊗

L1(
√
d). Hence µ1 is a reduced norm from D ⊗ L1.

Let i = 2, 3. Since κ is a global field, yi is a reduced norm from (b̄, c̄)⊗ κi. Since

R0 is complete, µi is a reduced norm from (b, c)⊗ Li(
√
d) = D ⊗ Li.

Hence a1, µ1, µ2, µ3 have the required properties.

5.5 Two Dimensional Complete Fields

Let R0 be a complete two dimensional regular local ring with m = (π, δ) the maximal

ideal of R0, κ0 = R/m and F0 field of fractions of R0. Suppose that κ0 a finite field of

char not equal to 2. Let w ∈ R0 be a unit which is not a square in R0 and d = w or

π. Let F = F0(
√
d) and R the integral closure of R0 in F . Then R is a regular local

ring with maximal ideal mR = (π′, δ) with π′ = π if d = w and π′ =
√
π if d = π (cf.

Lemma 3.1 & Lemma 3.2, [22]).

Let D/F be a central division algebra of period 2 which is unramified on R except

possibly at (π′) and (δ). Since the residue field κ0 is a finite field of char(κ0) ̸= 2,

then the index of D is 2 (cf. Proposition 3.5, [31]).

Proposition 5.5.1. Suppose that D admits a F/F0-involution. Then there exists a
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quaternion division algebra D0/F0 such that D ≃ D0 ⊗ F and

i) if d = w, then D0 = (π, δ);

ii) if d = π, then D0 = (w, δ).

Proof. By (Proposition 2.22, [16]), there exists a quaternion division algebra D0/F0

such that D ∼= D0 ⊗F0 F .

According to (Lemma 3.6 & Lemma 4.1, [31]) and considering the square classes

of F0, D0 has the form (π, δ) or (w, δ).

Let λ = uπrδs ∈ F0 with u ∈ R0 a unit and r, s ∈ Z. Suppose that λ is a reduced

norm from D. In this section we construct quadratic extensions L1, L2, L3 of F0 and

µi ∈ Li with
∏

iNLi/F0(µi) = λ and satisfying some other properties. These results

are used in the proof of the main theorem. Let ϵ1, ϵ2 ∈ {0, 1} such that r = 2r1 + ϵ1

and s = ϵ2 + 2s1 for some r1, s1 ∈ Z. Then λ = uπϵ1δϵ2(πr1δs1)2.

We begin with the following.

Proposition 5.5.2. Let D0 be a quaternion division algebra over F0 which is unram-

ified on R0 except possibly at (π) and (δ). Suppose that λ is a reduced norm from D0.

Then there exist ai ∈ F ∗0 and µi ∈ Li = F0[X]/(X2 − ai) for i = 1, 2 such that

1) a1 = vπϵ1δϵ2 ∈ F ∗0 \ F ∗20 with v ∈ R∗0

2) a2 ∈ R0 which is a unit at (π), (δ), ∂π(D0) = ā2 ∈ κ(π)∗/κ(π)∗2 and ∂δ(D0) =

ā2 ∈ κ(δ)∗/κ(δ)∗2

3) NL1/F0(µ1)NL2/F0(µ2) = λ

4) µi is a reduced from from D0 ⊗ Li for i = 1, 2

5) µ2 ∈ R0[X]/(X2 − a2) a unit.

Proof. By (Lemma 3.6 & Lemma 4.2, [31]), we have D0 = (v, π), (v, δ), (v, πδ) or

(v1π, v2δ) for some units v, v1, v2 ∈ R0. If D0 = (v, π), let a2 = vδ2+π. If D0 = (v, δ),

let a2 = vπ2 + δ. If D0 = (v, πδ), let a2 = v. If D0 = (v1π, v2δ), let a2 = v1π + v2δ.

Then a2 satisfies the property 5). By checking the square classes, D0 ⊗ L2 is trivial.
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Suppose ±λ are not squares in F0. Let a1 = −uπϵ1δϵ2 , µ1 = πr1δs1
√
a1. Then, by

(Lemma 6.2, [21]), a1, a2, µ1 and µ2 = 1 have the required properties.

Suppose that one of ±λ is a square in F0. Suppose λ is a square. Then ϵ1 = ϵ2 = 0,

u = u2
1 for some u1 ∈ R0 and λ = u2

1π
2r1δ2s1 . Suppose D0 = (v1π, v2δ). Let a1 = w,

µ1 = vr11 vs12 πr1δs1 and µ2 = u1v
−r1
1 v−s12 . Then a1, a2, µ1 and µ2 have the required

properties. Suppose D0 ̸= (v1π, v2δ). Let a1 = w. Then D0 ⊗ L1 is trivial. Hence

a1, a2, µ1 = u1π
r1δs1 and µ2 = 1 have the required properties.

Suppose λ is not a square in F0. Then −λ is a square in F0. Then ϵ1 = ϵ2 = 0,

u = −u2
1 for some u1 ∈ R0, −1 is not a square in F0 and λ = −u2

1π
2r1δ2s1 . In particular

−1 is a reduced norm from D0. Since −1 is not a square in F0, it follows that D0 ̸=

(v1π, v2δ). Let a1 = −1. Since κ0 is a finite field, there exists µ′ ∈ F0[X]/(X2 + 1)

such that NL1/F0(µ
′) = −1. Then a1 = −1 µ1 = µ′u1π

r1δs1 and µ2 = 1 have the

required properties.

Lemma 5.5.3. Suppose that d = w. Let a2 = π + δ and a3 = da2. There exist

a1 = vπϵ1δϵ2 ∈ F ∗0 \ F ∗20 with v ∈ R∗0 and µi ∈ Li = F0[X]/(x2 − ai) such that

1)
∏3

i=1NLi/F0(µi) = λ

2) µi is a reduced from from D ⊗F FLi

3) µi ∈ Li are units at π and δ for i = 1, 2.

Proof. Since κ is a finite field, R∗0/R∗20 has only one non trivial class and it is given

by d = w. Since F = F0(
√
d), every element in R∗0 is a square in R. In particular

−1 ∈ R∗2 and λ = u2
1π

rδs for some u1 ∈ R with u2
1 = u. Further D0 = (π, δ).

Suppose that λ is not a square in F ∗. Then λ = πϵ1δϵ2u2
1π

2r1δ2s1 . Since −1 ∈ F ∗2,

both ±λ are not squares in F ∗. Hence, by (Lemma 6.2, [21]), a1 = −uπϵ1δϵ2 , µ1 =

πr1δs1
√
a1, and µ2 = µ3 = 1 have the required properties.

Suppose that λ is a square in F ∗. Then r = 2r1 and s = 2s1. Suppose λ is a square

in F0. Then u1 ∈ R∗0. Since π and δ are reduced norms from D0 and D0 ⊗ F0(
√
a2)

is split, a1 = w, µ1 = πr1δs1 , µ2 = u1 and µ3 = 1 have the required properties.
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Suppose that λ ̸∈ F ∗20 . Then u = du2
2 for some unit u2 ∈ R0. Then a1 = w,

µ1 = πr1δs1 , µ2 =
√
a2
−1, µ3 = u2

√
a3 have the required properties.

Lemma 5.5.4. Suppose that d = π. There exist a1 = vπϵ1δϵ2 ∈ F ∗0 \F ∗20 with v ∈ R∗0

and µ1 ∈ L1 = F0[X]/(x2 − a1) and µ2 ∈ L2 = F0[X]/(x2 − w) such that

i) NL1/F0(µ1)NL2/F0(µ2) = λ

ii) µi is a reduced from from D ⊗F FLi

iii) µ2 ∈ R0[X]/(X2 − w)∗.

Proof. Since d = π, we have D0 = (w, δ) (5.5.1).

Suppose both ±λ are not squares in F . Then a1 = −uπϵ1δϵ2 , µ1 = πr1δs1
√
a1 and

µ2 = 1 have the required properties (Lemma 6.2, [21]).

Suppose that only one of ±λ is a square in F . Then −1 ̸∈ F ∗20 and λ = ±1 ∈

F ∗0 /F
∗2
0 or λ = ±π ∈ F ∗0 /F

∗2
0 . Further D0 = (−1, δ).

Suppose λ = ±1 ∈ F ∗0 /F
∗2
0 . Then λ = ±u2

1π
2r1δ2s1 for some u1 ∈ R∗0. Let a1 = −1

Since κ is a finite field, there exists µ′1 ∈ L1 = F0(
√
a1) with NL1/F0(µ1) = ±1. Then

a1, µ1 = u1π
r1δs1µ′1, and µ2 = 1 have the required properties.

Suppose λ = ±π ∈ F ∗0 /F
∗2
0 . Then ϵ1 = 1, ϵ2 = 0 and λ = ϵπu2

1π
2r1δ2s1 for some

u1 ∈ R∗0 and ϵ = ±1. Then a1 = −π, µ1 = u1π
r1δs1
√
−π , and µ2 ∈ L2 = F0(

√
−1)

with NL2/F0(µ2) = ϵ have the required properties.

Suppose both ±λ are squares in F . Then −1 ∈ F ∗2. Since d = π, −1 ∈ F ∗20 .

Suppose λ is a square in F0. Then a1 = w, µ1 =
√
λ and µ2 = 1 have the required

properties.

Suppose that λ is not a square in F ∗0 . Then dλ ∈ F ∗20 and hence λ = πu2
1π

2r1δ2s1

for some u1 ∈ R∗0. Then a1 = wπ, µ1 = u1π
r1δs1
√
wπ , and µ2 ∈ L2 with NL2/F0(µ2) =

−w−1 have the required properties.

Lemma 5.5.5. Suppose d is not a square and D is ramified on R at most at π. Then

D ⊗ Fπ is split.
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Proof. Suppose d = w . Suppose D is non split. Then, by (5.5.1), D ≃ (π, δ) ⊗ F .

Then D is ramified both at (π) and (δ). This contradicts the assumption that D is

ramified at most at π. Hence D is split.

Suppose d = π. Suppose D is non split. Then, by (5.5.1), D ≃ (w, δ) ⊗ F for

unit w ∈ R0 which is not a square. Since F/F0 is ramified, w ∈ R is not a square. In

particular D is ramified at δ. This contradicts the assumption that D is ramified at

most at π. Hence D is split.

We end this section with the following.

Proposition 5.5.6. Suppose that D is ramified on R at most at π. Let n ≥ 1.

Suppose there exist aiπ ∈ F0π and µiπ ∈ Liπ = F0π[X]/(X2 − aiπ) for 1 ≤ i ≤ n such

that

i)
∏

i NLiπ/F0π(µiπ) = λ

ii) µiπ is a reduced norm from D ⊗ Liπ for 1 ≤ i ≤ n.

Then there exist ai ∈ F0 and µi ∈ Li = F0[X]/(X2 − ai) for 1 ≤ i ≤ n such that

i)
∏

i NLi/F0(µi) = λ

ii) µi is a reduced norm from D ⊗ Li for 1 ≤ i ≤ n

iii) aiπai ∈ F ∗20,π for 1 ≤ i ≤ n

iv) there is an isomorphism

ϕi : Liπ ≃ Li ⊗ Fπ

such that ϕi(µiπ)
−1µi ∈ (Li ⊗ F0π)

2m for all m ≥ 1 and 1 ≤ i ≤ n.

Proof. Apply (5.2.2) to R0, F0 and aiπ with a = 1, and get ai ∈ F0 as in (5.2.2).

Apply once again (5.2.2) to R0, F0, ai and µiπ, get µi ∈ Li = F0[X]/(X2− ai) as in (

5.2.2).

Suppose d is not a square in F0. Then, by (5.5.5), D is split and hence µi are

reduced norms from D.
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Suppose d is a square in F0. Then F = F0 × F0 and D = D0 ⊗ F = D0 × D0.

Since µiπ are reduced norms from D ⊗F FLi = D0 ⊗ Li × D0 ⊗ Li. Hence µiπ are

reduced norms from D0 ⊗ Li and by (5.2.3), µi are reduced norms from D ⊗ Li.

5.6 Choice at Nodal Points

Let p ≥ 3 be a prime and K be a p-adic field. Let F0 be the function field of a curve

over K and F = F0(
√
d) a quadratic field extension. Let D be a central division

algebra over F with a F/F0-involution. Let λ ∈ F ∗0 ∩Nrd(D)∗.

Let T be the valuation ring of K and k the residue field of K. Let X0 be regular

proper model of F0 over T with the union of the ramification locus of D, support

of d, support of λ and the closed fibre X0 of X0 is a union of regular curves with

normal crossings. Further the integral closure X of X0 in F is a is a regular proper

model of F (Proposition 8.3.8, [17]). Let D be the set of codimension one points of

X0 consisting of support of d, support of λ, the closed fibre X0 and the ramification

locus of D on X0. Let P ∈ X0 be a closed point. Then, by the choice of X0, there

exist at most two codimension one points of X0 which are in D and passes through

P . Further, since X is regular, there exists at most one codimension one point η of

X0 passing through P such that νη(d) is odd.

Let P ∈X0 be a closed point. Let R̂0P be the completion of the local ring at P on

X0, mP the maximal ideal R̂0P , F0P the field of fractions of R̂0P and FP = F0P ⊗ F .

Let wP ∈ R̂0P be a unit which is not a square in R̂0P . Since the residue field κ(P ) at

P is a finite field, any unit in R̂0P is a square or wP times a square.

Let P0 be the finite set of closed points of X0 consisting of the points of inter-

section of two distinct codimension one points in D .

Let P ∈P0 and η1, η2 ∈ D such that P ∈ {η1} ∩ {η2}. Then mP = (πP , δP ) with

η1 and η2 are given by primes πP and δP respectively at P , d = d21 or d = wPd
2
1 or
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d = wPπPd
2
1 and λ = uPπ

r
P δ

s
P and D is unramified at P except possibly at (πP ) and

(δP ), for some uP ∈ R̂0P units, d1 ∈ F ∗0 , r = νη1(λ), s = νη2(λ). Let ϵ1, ϵ2 ∈ {0, 1}

and r1, s1 ∈ Z such that r = 2r1 + ϵ1 and s = 2s1 + ϵ2. Then λ = uPπ
ϵ1
P δϵ2P (πr1

P δs1P )2.

Suppose that period of D is 2. Then ind(D) ≤ 4 (cf. [26]) and ind(D ⊗ F0P ) ≤

2 (cf. [20]). Then, there exists a central simple algebra D0P over F0P such that

D ⊗ F0P = D0P ⊗ FP and D0P is unramified at P except possibly at η1 and η2.

Further if D ⊗ F0P is a split algebra, we choose D0P = F0P and if D ⊗ F0P is not a

split algebra, D0P be as in (5.5.1).

Proposition 5.6.1. Suppose νη1(d) and νη2(d) are even. Then there exist aiP , µiP ,

i = 1, 2, 3 such that

1) a1P = vPπ
ϵ1
P δϵ2P ∈ F0P \ F ∗20P , vP a unit at P , µ1P ∈ L1P = F0P [X]/(X2 − a1P )

2) a2P ∈ R̂0P a unit at η1 and η2 and ∂ηi(D0P ) = ā2P ∈ κ(ηi)
∗/κ(ηi)

∗2 for i = 1, 2

3) a3P = da2P ,

4) µiP ∈ F0P [X]/(X2 − aiP )
∗ unit along π and δ for i = 2, 3

5)
∏

i NLiP /F0P
(µiP ) = λ, where LiP = F0[X]/(X2 − ai) for i = 1, 2, 3

6) µiP is a reduced norm from D ⊗ LiP for i = 1, 2, 3

Proof. Suppose D ⊗ F0P is a split algebra. Let vP a unit at P such that a1P =

vPπ
ϵ1
P δϵ2P ∈ F0P \ F ∗20P . Then µ1P = πr1

P δs1P
√
a1P , a2P = 1, µ2P = (−v−1P uP , 1) =

F0P × F0P = F0P [X]/(X2 − 1) and µ3P = 1 have the required properties.

Suppose that D ⊗ F0P is not a split algebra. Suppose d is not a square in F0P .

Since νη1(d) and νη2(d) are even, d = wPd
2
1 for some d1 ∈ F ∗0P . Then, by (5.5.1),

D0P = (πP , δP ). Then a1P , a2P , µiP as in (5.5.3) have the required properties.

Suppose d is a square in F0P . Then F⊗F0P = F0P×F0P and D⊗F0P = D0P×Dop
0P

for some quaternion algebra D0P over F0P . Further D0P is unramified at P except

possibly at (πP ) and (δP ). Let a1P , a2P and µi ∈ LiP be as in (5.5.2). Let µ3P = 1.

Then a1P , a2P and µiP , i = 1, 2, 3 have the required properties.
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Proposition 5.6.2. Suppose νη1(d) is odd. Then there exist a1P , a2P , µ1P , µ2P such

that

1) a1P = vPπ
ϵ1
P δϵ2P ∈ F0P \ F ∗20P , vP a unit at P , µ1P ∈ L1P = F0P [X]/(X2 − a1P )

2) a2P ∈ R̂0P a unit at P and ∂η2(D0P ) = ā2P ∈ κ(η2)
∗/κ(η2)

∗2

3) µ2P ∈ R̂0P [X]/(X2 − a2P )
∗

4) NL1P /F0P
(µ1P )NL2P /F0P

(µ2P ) = λ, where LiP = F0[X]/(X2 − ai) for i = 1, 2

5) µiP is a reduced norm from D ⊗ LiP for i = 1, 2

Proof. Suppose D ⊗ F0P is a split algebra. Let vP a unit at P such that a1P =

vPπ
ϵ1
P δϵ2P ∈ F0P \ F ∗20P . Then µ1P = πr1

P δs1P
√
a1P , a2P = 1 and µ2P = (−v−1P uP , 1) =

F0P × F0P = F0P [X]/(X2 − 1) have the required properties.

Suppose D ⊗ F0P is not a split algebra. Since νη1(d) is even, by the choice of

X0, νη2(d) is even. Hence d = vPπPd
2
1 for some v1 ∈ R̂0P a unit and d1 ∈ F ∗0 . In

particular D0P = (wP , δP ). Let a2P = wP . Hence, by (5.5.4), there exist a1P =

vPπ
ϵ1δϵ2 ∈ F ∗0P \ F ∗20P with vP ∈ R̂∗0P and µ1P ∈ L1P = F0P [X]/(x2 − a1P ) and

µ2P ∈ L2P = F0P [X]/(x2 − a2P ) such that

i) NL1P /F0P
(µ1P )NL2P /F0P

(µ2P ) = λ

ii) µiP is a reduced from from D ⊗ LiP for i = 1, 2

iii) µ2P ∈ R̂0P [X]/(X2 − a2P )
∗.

Then a1P , a2P , µ1P and µ2P have the required properties.

5.7 Choices at Codimension One Points and Curve

Points

Let p ≥ 3 be a prime and K be a p-adic field. Let F0 be the function field of

a curve over K and F = F0(
√
d) a quadratic field extension. Let D be a central

division algebra over F with a F/F0-involution. Suppose that period of D is 2. Let

λ ∈ F ∗0 ∩Nrd(D)∗.
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Let X0, X , D and P0 be as in section 5.4. Let η ∈ X0 be a codimension zero

point. Let π be a parameter at η. Then, by (5.4.1) and (5.4.2), we have D ⊗ F0η =

(b, c) ⊗ (w, π) for some b, c, w ∈ F0η. Let D0η = (b, c) ⊗ (w, π). Write λ = uπr for

some u ∈ F0η with νη(u) = 0. Let ϵ ∈ {0, 1} and r1 ∈ Z such that r = 2r1 + ϵ. Then

λ = uπϵ(πr1)2. Let Pη = P0 ∩ {η}.

Proposition 5.7.1. Let η ∈ X0 be a codimension zero point. Suppose νη(d) and

νη(λ) are even. For each P ∈Pη, if d is a unit at P up to a square F0P , let aiP and

µiP , i = 1, 2, 3 be as in (5.6.1) and if d is not a unit at P up to a square in F0P ,

let aiP and µiP , i = 1, 2 be as in (5.6.2), a3P = da2P and µ3P = 1. Then there exist

a1η, a2η, a3η ∈ F0η units at η and µiη ∈ F0η[X]/(X2 − aiη) such that

i)
∏

i NLiη/F0η(µiη) = λ

ii) µiη is a reduced norm from D ⊗ Liη for i = 1, 2, 3

iii) ind(D ⊗ Fiη) ≤ 2m for all m ≥ 1, P ∈Pη, i = 1, 2, 3

iv) aiηaiP ∈ F ∗20P,η for i = 1, 2, 3

v) for P ∈Pη, there is an isomorphism

ϕiP,η : F0P,η[X]/(X2 − aiη)→ F0P,η[X]/(X2 − aiP )

such that

ϕiP,η(µiη)µ
−1
iP ∈ (F0P,η[X]/(X2 − aiP ))

2m

for all m ≥ 1 and i = 1, 2, 3.

Proof. Since νη(d) is even, replacing d by d times a square in F0η, we assume that

νη(d) = 0.

Let πη be a parameter at η such that for every P ∈ Pη, the maximal ideal at P

is given by (πη, δP ) for some prime δP because of normal crossings.
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By (5.4.1) and (5.4.2), we have D ⊗ Fη = (b, c) ⊗ (w, πη) for some b, c, w ∈ F0η

which are units at η. Let D0η = (b, c) ⊗ (w, πη), u0, b0, c0, d0 and w0 be the images

of u, b, c, d, w in κ(η). Since λ = uπr with u ∈ F0η a unit at η and λ is a reduced

norm from D ⊗ Fη, by the norm principle of bi-quadratic extensions, we have u ∈

NF0η(
√
d,
√
w)/F0η(

√
d)((F0η(

√
d,
√
w)∗). Hence u0 ∈ Nκ(η)(

√
d0,
√
w0)/F0(

√
d0(κ(η)(

√
d0,
√
w0)

∗).

Since νη(λ) = 2r1, by the choice of a1P (5.6.1, 5.6.2), we have a1P = vP δ
ϵ2
P for

some unit vP at P and ϵ2 ∈ {0, 1}. Further a1P is not square in F0P . Since F0P,η is

the completion of F0P at η, a1P is not a square in F0P,η. Let xP = ā1P = v̄P δ̄
ϵ2
P .

Since µiP ∈ R0P [X]/(X2−aiP ) are units along η for i = 2, 3 and
∏3

1NLiP /F0P
(µiP ) =

λ, it follows that νη(NL1P /F0P
(µiP )) = νη(λ). Since L1P ⊗F0P,η = F0P,η[X]/(X2−a1P )

is unramified and νη(NL1P /F0P
(µ1P )) = νη(λ) = 2r1, we have µ1P = y′Pπ

r1
η for

some y′P ∈ L1P ⊗ F0P,η unit in the valuation ring. Let y1P = ȳ′P ∈ κ(η)1P =

κ(η)P [X]/(X2 − xP ).

For i = 2, 3, let yiP be the image of µiP in κ(η)P [X]/(X2 − ā2P ). By the choice

(5.6.1, 5.6.2), we have a2P = ∂η(D0η) = w̄ and a3P = da2P . Then y2P = µ̄2P ∈

κ(η)2P = κ(η)P [X]/(X2 − ā2P ) = κ(η)P [X]/(X2 − w̄) and y3P = µ̄3P ∈ κ(η)3P =

κ(η)P [X]/(X2 − ā3P ) = κν [X]/(X2 − d̄w̄).

Further we have

i)
∏

iNκ(η)iP /κ(η)P (yiP ) = ū.

ii) y1P ∈ Nκ(η)P (
√
d̄,
√
w̄)/κ(η)P

(κ(η)P (
√
d̄,
√
w̄)∗).

Hence, by (5.4.3), there exists a ∈ R̂∗0η, µ1 ∈ R̂0η[X]/(X2−a), µ2 ∈ R̂0η[X]/(X2−

w) and µ3 ∈ R̂0η[X]/(X2 − dw) such that

i) ā is close to xP and µ̄i is close to yiP for all P ∈P0 and i = 1, 2, 3

ii)
∏

i NLiη/F0η(µi) = u, where L1η = F0η[X]/(X2 − a), L2η = F0η[X]/(X2 − w)

and L3η = F0η[X]/(X2 − dw)

iii) (b, c)⊗ L1η is split

iv) µi is a reduced norm from D ⊗F0η Liη for i = 1, 2, 3.
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Since D ⊗ L1η = ((b, c) ⊗ L1η) ⊗ (w, πη) ⊗ L1η) = (w, πη) ⊗ L1η), πη is a reduced

norm from D ⊗ L1η. Hence a1η = a, a2η = w, a3η = wd, µ1η = µ1π
r1
η , µ2η = µ2 and

µ3η = µ3 have the required properties.

Proposition 5.7.2. Let η ∈ X0 be a codimension zero point. Suppose νη(d) is even

and νη(λ) is odd. For each P ∈ Pη, if d is a unit at P up to a square F0P , let aiP

and µiP , i = 1, 2, 3 be as in (5.6.1) and if d is not a unit at P up to a square in F0P ,

let aiP and µiP , i = 1, 2 be as in (5.6.2), a3P = da2P and µ3P = 1. Then there exist

a1η, a2η, a3η ∈ F0η and µiη ∈ F0η[X]/(X2 − aiη) such that

i)
∏

i NLiη/F0η(µiη) = λ

ii) µiη is a reduced norm from D ⊗ Liη for i = 1, 2, 3

iii) ind(D ⊗ Fiη) ≤ 2 for i = 1, 2, 3

iv) aiηaiP ∈ F ∗20P,η for i = 1, 2, 3

v) for P ∈Pη, there is an isomorphism

ϕiP,η : F0P,η[X]/(X2 − aiη)→ F0P,η[X]/(X2 − aiP )

such that

ϕiP,η(µiη)µ
−1
iP ∈ (F0P,η[X]/(X2 − aiP ))

2m

for all m ≥ 1 and i = 1, 2, 3.

Proof. Since νη(λ) is odd, ind(D) is at most 2 and D ⊗ F0η = (w, πη) for some

parameter πη at η and w ∈ F ∗0 a unit at η (cf. Lemma 5.3.6; Corollary 5.6, [21] ).

Since ν(λ) is odd, ±λ is not a square in F0P for all P ∈Pη. Hence, by the choice

of a1P and µiP , we have a1Pλ ∈ F ∗20P,η, µ1P

√
λ ∈ FPη(

√
a1P )

∗2. Further wa2P ∈ F ∗20P,η,

a3P = a2Pd, µ1P = µ2P = 1.

Let a1η = −λ, a2η = w, a3η = dw, µ1η =
√
−λ and µ2η = µ2η = 1. Since λ

is a reduced norm from D, we have (λ) · D = 0 ∈ H3(F, µ2). Since ν(λ) is odd, if
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D ⊗ Fη is not split, then by (Lemma 4.7, [21]), ind(D ⊗ F (
√
a1η) < ind(D ⊗ Fη). In

particular D ⊗ Fη(
√
a1η) is split. Hence a1η = −λ, a2η = w, a3η = dw, µ1η =

√−a1η

and µ2η = µ3η = 1 have the required properties.

Proposition 5.7.3. Let η ∈ X0 be a codimension zero point. Suppose νη(d) is odd.

For each P ∈ Pη, let aiP and µiP , i = 1, 2 be as in (5.6.2). Then there exist

a1η, a2η ∈ F0η and µiη ∈ F0η[X]/(X2 − aiη) such that

1)
∏

i NLiη/F0η(µiη) = λ

2) µiη is a reduced norm from D ⊗ Liη for i = 1, 2

3) ind(D ⊗ Fiη) ≤ 2 for i = 1, 2

4) aiηaiP ∈ F ∗20P,η for i = 1, 2

5) for P ∈Pη, there is an isomorphism

ϕiP,η : F0P,η[X]/(X2 − aiη)→ F0P,η[X]/(X2 − aiP )

such that

ϕiP,η(µiη)µ
−1
iP ∈ (F0P,η[X]/(X2 − aiP ))

2m

for all m ≥ 1 and i = 1, 2.

Proof. By (5.4.1) and (5.4.2), we have D ⊗ Fη = (b, c) for some b, c ∈ F0η which are

units at η. Let D0η = (b, c) and u0, b0, c0 be the images of u, b, c in κ(η).

Write r = 2r1 + ϵ1 for some r1 ∈ Z and ϵ1 ∈ {0, 1}. By the choice of a1P , we

have a1P = wϵP
P πϵ1

η for some wP ∈ F0P,η unit at η. Let x ∈ κ(η) be close to w̄P for all

P ∈Pη. Let a ∈ F0η which maps to x in κ(η) and a1η = aπϵ1
η . Then a1ηa1P ∈ F ∗20P,η for

all P ∈Pη. Let L1η = F0η(
√
a1η) and L1P,η = F0P,η(

√
a1P ). Then L1η⊗F0P,η = L1P,η.

Let κ(η)1 be the residue field of L1η. Then κ(η)1P is the residue field of F0P,η(
√
a1P ).

Since µ2P ∈ R0P [X]/(X2−a2P ) is a unit along η and NL1P /F0P
(µ1P )NL2P /F0P

(µ2P ) =

λ, it follows that νη(NL1P /F0P
(µ1P )) = νη(λ) = 2r1 + ϵ1.
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Suppose ϵ1 = 0. Then L1η/F0,η is unramified and πη is a parameter in F0P,η(
√
a1P ).

Hence µ1P = θPπ
r1
η for some θP ∈ F0P,η(

√
a1P ) a unit at η. Suppose ϵ1 = 1. Then

L1η/F0η is ramified and √a1η is a parameter. Hence µ1P = θPπ
r1
η
√
a1η for some

θP ∈ F0P,η(
√
a1P ) a unit at η. In both cases, let θ ∈ κ(η)1 close to θ̄P for all P ∈Pη

and θ1 ∈ L1η which lifts θ. If ϵ1 = 0, let µ1η = θ1π
r1
η and if ϵ1 = 1, let µ1η = θ1π

r1
η
√
a1η.

Then µ1ηµ1P ∈ L∗21η,P and λNL1η/F0η(µ1η)
−1 is a unit at η. Since ν(d) is odd, F/F0

is ramified at η and hence µ1η = µ′1ηg
2
η for some µ′1η ∈ F ⊗ L1η a unit at η and

gη ∈ F ⊗ L1η. Since κ(η)1 is a global field, µ̄′1η ∈ κ(η)1 is a reduced norn from

(b0, c0) ⊗ κ(η)1 (Albert-Brauer-Hasse-Noether). Hence µ1η is a reduced norm from

D ⊗ L1η.

Let z1 ∈ κ(η) be the image of λNL1η/F0η(µ1η)
−1 and y2P be the image of µ2P in

κ(η)2P = κ(η)P [X]/(X2− ā2P ). By the choice of µ1η, it follows that Nκ(η)2P /κ(η)P (y2P )

is close to z1. Hence, replacing y2P by some element which is close to y2P , we assume

that Nκ(η)2P /κ(η)P (y2P ) = z1. In particular the quaternion algebra (ā2P , z1) is split over

κ(η)P for all P ∈Pη. Hence ā2P is a norm from the extension κ(η)P [X]/(X2 − z1).

Let ã2P ∈ κ(η)P [X]/(X2 − z1) with norm equal to ā2P . Let ã2 ∈ κ(η)[X]/(X2 − z1)

be close to ã2P for all P ∈ Pη and ā2 be the norm of ã2. Then ā2 is close to ā2P

for all P ∈ Pη. Since the quaternion algebra (ā2, z1) is split, z1 is a norm from the

extension κ(η)2 = κ(η)[X]/(X2 − ā2).

There exists y2 ∈ κ(η)2 which is close to y2P for all P ∈Pη such that Nκ(η)2/κ(η)(y2) =

z1 since κ(η)2 is a global field. Let a2η ∈ F0η be a lift of ā2 ∈ κ(η) and µ2η ∈ L2η =

F0η[X]/(X2− a2η) be such that NL2η/F0η(µ2η) = λNL1η/F0η(µ1η)
−1. Since µ2η is a unit

at η and D is unramified at η, as above, µ2η is a reduced norm from D ⊗ L2η.

Hence a1η, a2η, µ1η and µ2η have the required properties.

Proposition 5.7.4. Let P ∈ X0 be a closed point. Suppose that P ̸∈ P0. Let

η ∈ D be the unique codimension one point with P ∈ {η}. Let aiη ∈ F0η and

µiη ∈ Liη = F0η[X]/(X2−aiη) be as in (5.7.1, 5.7.2, 5.7.3). Then there exist aiP ∈ F0P
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and µiP ∈ LiP = F0P [X]/(X2 − aiP ) such that

i)
∏

i NLiP /F0P
(µiP ) = λ

ii) µiP is a reduced norm from D ⊗ LiP

iii) aiηaiP ∈ F ∗20P,η

iv) there is an isomorphism

ϕiP,η : F0P,η[X]/(X2 − aiη)→ F0P,η[X]/(X2 − aiP )

such that

ϕiP,η(µiη)µ
−1
iP ∈ (F0P,η[X]/(X2 − aiP ))

2m

for all m ≥ 1.

Proof. Let πP be a prime defining η at P . Since there is a unique codimension one

point in D , the support of d at P and the ramification locus of at P is at most η.

Hence, by (5.5.6), we have the required aiP and µiP .

5.8 Choice of U

Let T be a complete discrete valuation ring with field of fractions K and residue field

k. Let F0 be the function field of a curve over K and F = F0(
√
d) a quadratic étale

extension. Let D be a central division algebra over F with period(D) coprime to

char(k).

Proposition 5.8.1. Let X0 be a normal proper model of F0 over T and X0 the

closed fibre of X0. Let η ∈ X0 be a codimension zero point. Let λ ∈ F ∗0 ∩ Nrd(D)∗,

m ≥ 2 and M ≥ 1. Suppose that for 1 ≤ i ≤ m, there exist aiη ∈ F0η, µiη ∈ Liη =

F0η[X]/(X2 − aiη) such that

i)
∏m

1 NLiη/F0η(µiη) = λ

ii) µiη is a reduced norm from D ⊗ Liη for all i
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iii) ind(D ⊗ Liη) < M for all i.

Then there exist a non-empty open proper subset U of {η} and aiU ∈ F0U , µiU ∈

LiU = F0U [X]/(X2 − aiU) such that

i) aiUaiη ∈ F ∗20η

ii) there is an isomorphism

ϕi,Uη : F0,η[X]/(X2 − aiU)→ F0,η[X]/(X2 − aiη)

such that

ϕi,η(µiU)µ
−1
iη ∈ (F0P,η[X]/(X2 − aiη))

∗2m

for all m ≥ 1 and i = 1, 2, 3.

iii)
∏m

1 NLiU/F0U
(µiU) = λ for all i

ii) µiU is a reduced norm from D ⊗ LiU for all i

iii) ind(D ⊗ LiU) < M for all i.

Proof. Since F0η is the completion of F0 and char(k) ̸= 2, there exists ai ∈ F ∗0 such

that aiaiη ∈ F ∗20η . Thus, replacing aiη by ai, we assume that aiη = ai ∈ F ∗0 .

Since Liη = F0η(
√
ai) is the completion of Li = F0(

√
ai), there exists µi ∈ Li

close to µiη in Liη. In particular θi = NLi/F0(µi)
−1NLiη/F0η(µiη) is close to 1 in F0η.

Then θ =
∏m−1

1 θi is close to 1 in F0η. Let λ1 = λ(
∏m−1

1 NLi/F0(µi))
−1 ∈ F0. Since∏m

1 NLiη/F0η(µiη) = λ, we have

NLm/F0(µmη) = λ1θ
−1.

Since θ−1 ∈ F0η is close to 1, θ−1 = NLmη/F0η(θ
′) for some θ′ ∈ Lmη which is close

to 1. In particular θ′ is a reduced norm from D⊗Liη. Hence replacing µmη by µmηθ
′,
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we assume that

NLm/F0(µmη) = λ1.

Hence, by (Lemma 7.2, [21]), there exists a nonempty proper open subset U0 of {η}

and µmU0 ∈ Lm ⊗ F0U0 such that λ1 = NLm/F0(µmU0) and µmU0 is close to µmη in

Lm ⊗ F0η.

Since ind(D⊗Liη) < M for all i, there exist nonempty proper open subsets Ui of

{η} such that ind(D ⊗ LiU) < M for all i.

Then U = (∩iUi) ∩ U , aiU = ai for all i, µiU = µi for 1 ≤ i ≤ m − 1 and

µmU = µmU0 have the required properties.

5.9 The main theorem

Theorem 5.9.1. Let p ≥ 3 be a prime and K be a p-adic field. Let F0 be the function

field of a curve over K and F = F0(
√
d) a quadratic field extension. Let D be a central

division algebra over F with a F/F0-involution. Suppose that period of D is 2. Let

λ ∈ F ∗0 ∩ Nrd(D)∗. Then there exist ai ∈ F ∗0 and µi ∈ Li = F0[X]/(X2 − ai) for

i = 1, 2, 3 such that

i)
∏

i NLi/F0(µi) = λ

ii) µi is a reduced norm from D ⊗ Li for i = 1, 2, 3

iii) ind(D ⊗ Li) ≤ 2.

Proof. Let T be the valuation ring of K and k the residue field of K. Let X0 be

a regular proper model of F0 over T with the union of the ramification locus of D,

support of d, support of λ and the closed fibre X0 of X0 is a union of regular curves

with normal crossings. Further the integral closure X of X0 in F is a is a regular

proper model of F .

Let D be the set of codimension one points of X0 consisting of support of d,

support of λ, the closed fibre X0 and the ramification locus of D on X0. Let P ∈X0
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be a closed point. Then, by the choice of X0, there exist at most two codimension

one points of X0 which are in D and passes through P . Further, since X is regular,

there exists at most one codimension one point η of X0 passing through P such that

νη(d) is odd.

Let P0 be the finite set of closed points of X0 consisting of points of the inter-

section of the closures of any two distinct codimension one points in D .

Let P ∈ P0 and η1, η2 ∈ D with P ∈ {η1} ∩ {η2}. If ν1(d) and ν2(d) are even,

then let aiP , µiP for i = 1, 2, 3 be as in (5.6.1). If either ν1(d) or ν2(d) is odd, let

aiP , µiP for i = 1, 2 be as in (5.6.2) and a3P = da2P , µ3P = 1.

Let η ∈ X0 be a codimension zero point. If ν(d) and ν(λ) are even, then let aiη, µiη

be as in (5.7.1) for i = 1, 2, 3. If ν(d) is even and ν(λ) is odd, then let aiη, µiη be as

in (5.7.2) for i = 1, 2, 3. If ν(d) is odd, then let aiη, µiη be as in (5.7.3) for i = 1, 2

and a3η = a2ηd, µ3η = 1.

Let Uη, aiUη and µiUη be as in (5.8.1). If necessary, replacing each Uη by a open

subset of Uη, we assume that P0 ∩ Uη = ∅. Let U = {Uη}.

Let P = X0 \ ∪ηUη. Then P0 is a finit set of closed points of P0 ⊆P.

Let P ∈ P \P0. Then there is a unique codimension one point η ∈ D . Let aiP

and µiP for i = 1, 2, 3 be as in (5.7.4).

Let P ∈ P and U ∈ U with P ∈ {η}. Then, by the choice of aiP and aiU we

have aiP = θ2iP,ηaiU for some θiP,U ∈ F ∗0U,P . Hence, by (Proposition 7.4, [21]), there

exist θiP ∈ F ∗0P and θiU ∈ F ∗0U such that θiP,η = θiP θiU . Thus aiP θ
−2
iP = aiUθ

2
iU for

all branches (U, P ). Hence there exist ai ∈ F ∗0 such that ai = aiP ∈ F ∗0P/F
∗2
0P and

ai = aiU ∈ F ∗0U/F
∗2
0U . Let Li = F0[X]/(X2 − ai). Then, by (Theorem 5.1, [11]),

ind(D ⊗ Li) ≤ 2 for all i.

Let P ∈ X0 be a closed. Since κ(P ) is a finite field, there exists tP ≥ 2 such that

κ(P ) has no 2tpth primitive root of unity. Let t > 2tP for all P ∈P.

Let P ∈P. We have µiP ∈ F0P [X]/(X2 − ai) and µiU ∈ F0U [X]/(X2 − ai) such
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that µiPµ
−1
iU ∈ (F0U,P [X]/(X2 − ai))

∗2m for all m ≥ 1. Hence µiP = µiUβ
22t
iU,P for

some βiU,P ∈ Li ⊗ F0U,P . By (Proposition 7.4, [27]), there exist βiP ∈ Li ⊗ F0P and

βiU ∈ Li⊗F0U such that βiU,P = βiUβiP . In particular we have µiPβ
−22t
iP = µiUβ

22t

iU for

all branches (U, P ). Hence, by (Proposition 6.3, [10]), there exist µi ∈ Li such that

µi = µiPβ
−22t
iP = µiUβ

22t

iU .

Let λ1 = λNL1/F0(µ1)
−1NL2/F0(µ2)

−1. For ζ ∈P ∪U , we have

λ1 = λNL1/F0(µ1)
−1NL2/F0(µ2)

−1

= NL1ζ/F0ζ
(µ1ζ)NL2ζ/F0ζ

(µ2ζ)NL3ζ/F0ζ
(µ3ζ)NL1/F0(µ1)

−1NL1/F0(µ2)
−1

= NL1ζ/F0ζ
(µ1ζµ

−1
1 )NL2ζ/F0ζ

(µ2ζµ
−1
2 )NL3ζ/F0ζ

(µ3ζ)

Since NL1ζ/F0ζ
(µ1ζµ

−1
1 )NL2ζ/F0ζ

(µ2ζµ
−1
2 ) = x22t

ζ for some xζ ∈ F0ζ , we have λ1 =

NL3ζ/F0ζ
(x22t−1

ζ µ3ζ). Since ind(D⊗L3ζ) ≤ 2 and µ3ζ is a reduced norm from D⊗L3ζ ,

x22t−1

ζ µ3ζ is a reduced norm from D ⊗ L3ζ . Further, for every branch (U, P ), we have

x22t−1

P µ3Px
−22t−1

U µ−13U ∈ (F0U,P [X]/(X2 − ai))
∗22t−1 .

Replacing µ3ζ by x2
ζµ3ζ we assume that NL3ζ

(µ3ζ) = λ1, µ3Pµ
−1
3U ∈ (F0U,P [X]/(X2−

a3))
∗22t−1 and µ3ζ is a reduced norm from D ⊗ L3ζ for all ζ ∈P ∪U .

Hence, as in (Proposition 6.3, [10]; Theorem 3.2.3, [13]), there exists µ3 ∈ L3 =

F0[X]/(X2 − a3) such that NL3/F0(µ3) = λ1 and µ3 is a reduced norm from D ⊗ L3.

Therefore ai and µi have the required properties.

Corollary 5.9.2. Let K be a p-adic field and F0 a function field of a curve over K.

Let A be a central simple algebra over a quadratic extension F of F0 with period of A

equal to 2 with a F/F0-involution τ . If p ≥ 3, then SK1U(A, τ) is trivial.

Proof. By (Lemma 2, [15]), it can be reduced to the case that A is a central division

algebra over F . Choose an element a ∈ Σ′τ (A
∗) arbitrarily and write λ = NrdA/F (a).

Then λ ∈ F ∗0 ∩Nrd(D)∗.

By Theorem 5.7.1, there are extensions Li of F satisfying ind(A ⊗F0 Li) ≤ 2 for
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i = 1, 2, 3. Let L̃i = Li⊗F0F and Ãi = A⊗F0Li = A⊗F L̃i for i = 1, 2, 3. Considering

the elements µ1, µ2, and µ3 founded in Theorem 5.7.1, let NrdÃi/L̃i
(d̃i) = µi for

i = 1, 2, 3 and some d̃i ∈ Ãi

∗
.

Since SUK1(Ãi, τ⊗id) is trivial (Proposition 17.27, [16]) and µi ∈ Li for i = 1, 2, 3,

we have d̃i ∈ Στ⊗id(Ãi

∗
) . By (Proposition 4.3, [1]), NLi/F0(µi) = NrdA/F (di) for some

di ∈ Στ (A
∗) where i = 1, 2,or 3 . Therefore, by Theorem 5.7.1, λ =

∏
i NLi/F0(µi) =

NrdA/F (
∏

i di) = NrdA/F (a).

Since ind(D) ≤ 4 and cd(F ) ≤ 3, SK1(A) is trivial (cf. [20], Chapter 17 of

[16]). Then a−1 ·
∏

i di ∈ SL1(A) = [A∗, A∗] ⊂ Στ (A
∗) (Proposition 17.26, [4]). Since∏

i di ∈ Στ (A
∗), a ∈ Στ (A

∗).
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