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Abstract 

Applications of Modular Forms to Elliptic Curves and Representation Theory 

By Tessa Cotron 

The theory of modular forms has many applications throughout number theory. In a 

recent paper [3], Bacher and de la Harpe study finitary permutation groups and the 

relations between their conjugacy growth series and p(n), the partition function, and 

p(n)e, a generalized partition function. The authors in [3] conjecture over 200 

congruences for p(n)e which are analogous to the Ramanujan congruences for p(n). 

Along with this, the study of asymptotics for these formulas is motivated by the group 

theory of [3]. We prove all of the conjectured congruences from [3] and give 

asymptotic formulas for all of the p(n)e. Modular form congruences also play a role in 

the theory of elliptic curves. In [11], the authors look at modular forms and other 

polynomials which reduce modulo p to the supersingular polynomial ssp(j) for a given 

elliptic curve E over a field Fq. We look at these results, which give four modular 

forms that reduce to the supersingular polynomial ssp(j). We also look at the Atkin 

orthogonal polynomials which give another way of finding polynomials that reduce 

modulo p to ssp(j), and we examine the hypergeometric properties of these 

polynomials and modular forms.     
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1. Introduction

The theory of congruences arise in many different areas of math, and in particular

all throughout number theory. Recall that two integers a and b are congruent modulo

an integer n if n divides a − b. Although this is a rather simple concept, it proves

to be an extremely useful tool with many applications. Two areas of number theory

which rely heavily on the theory of congruences is the study of partition functions

as well as the study of elliptic curves. This paper will focus on specific applications

of the theory of congruences in regards to these two subjects. The first half of the

paper will look at the arithmetic of supersingular elliptic curves, while the second

half of the paper will focus on congruences which arise from finitary permutation

groups.

1.1. Elliptic Curves. An elliptic curve over a field K is given by y2 = f(x) where

f(x) is a cubic without repeated roots. Finding the K-rational points on a given

elliptic curve has long been a question of study. If one is given two points on the

curve, there is a nice way of adding them to produce a third point. It turns out that

the K-rational points on an elliptic curve form a group, and this nice way of adding

two given points to produce a third will be defined as the group law in Section 3. For

our purpose the field K will be taken to be a finite field, namely K = Fq, for the first

half of this paper. There are two useful numbers attached to a given elliptic curve

E called the j-invariant and the discriminant of E. These will be defined in Section

3. The j-invariant is important in the study of elliptic curves for many reasons, one

being that the j-invariant identifies an elliptic curve up to isomorphism.

There exists a special class of elliptic curves over a finite field known as supersin-

gular elliptic curves. Given that the finite field has characteristic p prime, an elliptic

curve can be identified as supersingular based on whether or not it has p-torsion over

the algebraic closure of Fp. This will be explained in more detail in Section 3. An

elliptic curve over the rationals Q is supersingular modulo infinitely many primes.
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However, the probability that an elliptic curve over a finite field Fq is supersingular

is Õ(1/
√
q), making them very rare. Whether or a not a given elliptic curve E is

supersingular depends only on its j-invariant. It is a known fact that only finitely

many supersingular j-invariants exist in the algebraic closure of a finite field of char-

acteristic p. For a supersingular elliptic curve E, the j-invariant of E is contained in

Fp2 , and there are approximately p
12 supersingular j-invariants in Fp2 . Using these

j-invariants one can define the supersingular polynomial ssp, which will be stated

in Section 3. The first half of this paper will focus primarily on polynomials that

reduce modulo p to the supersingular polynomial ssp(j).

The theory of modular forms will play a significant role in this process, and in

the study of elliptic curves in general. Section 2 will give the necessary background

on modular forms. Two very special functions in the theory of modular forms are

the Delta function ∆ and the modular j-invariant j(τ). Given a modular form f , it

can be written in terms of the delta function and what will be defined as the divisor

polynomial f̃ of the modular form f with exponents in terms of δ and ε which will

be determined by f . We will define in section 4 four special modular forms Ek, Gk,

Fk, and Hk, which will give us the following theorem.

Theorem 1.1. Let k = p − 1 where p ≥ 5 is prime and let f be any of the four

modular forms Ek, Fk, Gk, Hk, then the coefficients of the associated polynomial f̃

are p-integral and

(1.1) ssp(j) ≡ ±jδ(j − 1728)εf̃(j) (mod p).

In particular, for p ≥ 5 prime, then we have that

(1.2) Ẽp−1(j) ≡ F̃p−1(j) ≡ (−1)δ+εG̃p−1(j) ≡ (−1)δ+εH̃p−1(j) (mod p).
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Example 1.2. Suppose that p = 13, then k = 12; for this k, we will get that

ε = δ = 0. Therefore

ssp(j) ≡ Ẽ12(j) ≡ F̃12(j) ≡ G̃12(j) ≡ H̃12(j) (mod p).

Along with this, we will give in section 2 a way of showing that

Ẽ12 =
E12

∆
, G̃12 =

G12

∆
, H̃12 =

H12

∆
, F̃12 =

F12

∆
.

Example 1.3. For p = 23, we have that k = 22, and ε = δ = 1, so

ssp(j) ≡ j(j − 1728)Ẽ22(j) ≡ j(j − 1728)G̃22(j)

≡ j(j − 1728)H̃22(j) ≡ j(j − 1728)F̃22 (mod p),

and

Ẽ22 =
E22

∆E4E6
, G̃22 =

G22

∆E4E6
, H̃22 =

H22

∆E4E6
, F̃22 =

F22

∆E4E6
.

In Section 2 we will revisit these examples to look at how to calculate the values

of ε, δ, and f̃(j).

The Hecke operator will be defined in Section 2, and will be important for the

next theorem. If one lets V be the space of polynomials in j where j is the modular

j-invariant, then the following theorem and proposition are both true.

Theorem 1.4. There is a unique function, up to a scalar multiple, φ on V for

which all Hecke operators Tn : V → V , n ∈ N, are self-adjoint with respect to the

associated scalar product (f, g) = φ(fg), and a unique family of monic polynomials

An(j) of degree n = 0, 1, 2, ... which are orthogonal with respect to this scalar product.

Proposition 1.5. The following definitions of a scalar product on V coincide:

i) (f, g) = constant term of fg as a Laurent series in V ;

ii) (f, g) = constant term of fgE2E4/E6 as a Laurent series in j−1

iii) (f, g) = constant term of fgE2 as a Laurent series in q;
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iv) (f, g) = 6
π

∫ π/2
π/3 f(eiθ)g(eiθ)dθ

The An in Theorem 1.4 will be known as the Atkin polynomials, and will be

discussed in detail in section 5. These polynomials can be described in several

explicit ways given in the next theorem.

Theorem 1.6. The Atkin polynomials An are defined as follows.

i) Recursion Relation:

An+1(j) =
(
j − 24

144n2 − 29

(2n+ 1)(2n− 1)

)
An(j)

− 36
(12n− 13)(12n− 7)(12n− 5)(12n+ 1)

n(n− 1)(2n− 1)2
An−1(j)

(1.3)

for n ≥ 2 with A0(j) = 1, A1(j) = j − 720, and A2(j) = j2 − 1640j + 269280;

ii) Closed Formula:

(1.4)

An(j) =
n∑

m=0

123m
[ m∑
j=0

(−1)j
(
− 1

12

m− j

)(
− 5

12

m− j

)(
n+ 1

12

j

)(
n− 7

12

j

)
]

(
2n− 1

j

)−1]
jn−1;

iii) Differential Equation:

j2(j − c)2(n2j − 144)A
′′′′
n + j(j − c)[6n2j2 − 144(36n2 + 7)j + c2/3]A

′′′
n

− [(2n4 − 7n2)j3 − 48(72n4 − 254n2 − 30)j2 − 4c(240n2 + 413)j + 320c2]A
′′
n

− [(2n4 − n2)j2 − 24(72n4 − 13n2 − 12)j + 2c(192n2 − 107)A
′
n]

+ [n6j − 24(18n4 − n2)]An

(1.5)

where c=1728 and An is the unique polynomial solution of this equation.

The first five Atkin polynomials are listed below, and can be found using either

the explicit formulas just given, or through the Gram-Schmidt orthogonalization
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process, as will be shown in Section 5.

A0(j) = 1,

A1(j) = j − 720

A2(j) = j2 − 1640j + 269280,

A3(j) = j3 − 12576

5
j2 + 1526958j − 107765856,

A4(j) = j4 − 3384j3 + 3528552j2 − 113263680j + 44184000960.

In general the coefficients of the Atkin polynomials An are rational, but for primes

p > 2n they are p-integral. It will be shown that there is a nice relation between

the Atkin polynomials An and the supersingular polynomial ssp, which is given by

the following theorem.

Theorem 1.7. Let p be prime, then ssp(j) ≡ Anp(j) (mod p) where np ≈ p
12 is the

degree of the supersingular polynomial, and Anp(j) has p-integral coefficients.

This theorem implies that one Atkin polynomial may work for as many as four

supersingular polynomials.

Example 1.8. In the case that 12n−13, 12n−7, 12n−5, and 12n+1 are all prime,

the supersingular polynomial for each of the four primes is the mod p reduction of

the same Atkin polynomial. In particular, this will be the case for the primes

p = 23, 29, 31, 37. For p = 29 one gets that A3(j) ≡ j3 + 2j2 + 21j (mod p).

1.2. Partition Functions and Finitary Permutation Groups. Bacher and de

la Harpe, in [3], study infinite permutation groups that are locally finite. They

investigate word length statistics for such groups with respect to various generating

sets of transpositions. Given a nonempty set X and a permutation g of X, the

support of g is sup(g) := {x ∈ X : g(x) 6= x}. The group of permutations with

finite support is called finitary symmetric group of X, denoted by Sym(X). The
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subgroup of Sym(X) with even signature permutations is the finitary alternating

group Alt(X). Given a group G and a generating set S, for g ∈ G, the word

length `G,S(g) is the smallest non-negative integer n such that g = s1s2 · · · sn where

s1, s2, . . . , sn ∈ S ∪ S−1. The smallest integer n such that there exists h in the

conjugacy class of g where `G,S(h) = n is called the conjugacy length κG,S(g). Denote

the number of conjugacy classes in G made up of elements g where κG,S(g) = n for

n ∈ N by γG,S(n) ∈ N∪{0}∪{∞}. If γG,S(n) is finite for all n ∈ N for a pair (G,S),

then define the conjugacy growth series to be

(1.6) CG,S(q) :=

∞∑
n=0

γG,S(n)qn.

By classical facts on symmetric groups, there exists a bijection between between

conjugacy classes of Sn(X) with sets of integer partitions. Recall that a partition

of a positive integer n is a non-increasing sequence λ := (λ1, λ2, . . .) such that∑
j≥1 λj = n. The partition function p(n) counts the number of partitions of n.

This function has been studied both for its uses in number theory and combinatorics.

The generating function for the partition function is given by

(1.7)
∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
.

Bacher and de la Harpe, motivated by their study of subgroups of Sym(X), define

generalized partition functions, which are defined given a vector e := (e1, e2, . . . , ek) ∈

Zk. Given such a vector, the corresponding generalized partition function p(n)e is

defined as the coefficients of the power series

∞∑
n=0

p(n)eq
n =

k∏
m=1

∞∏
n=1

1

(1− qmn)em
=

∞∏
n=1

1

(1− qn)e1 · · · (1− qkn)ek
.(1.8)

Observe that p(n) = p(n)(1). This function p(n)e can be interpreted as multi-

partition numbers with constraints on the parts.
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The study of the asymptotics of these power series is motivated by the group

theory in [3], while the classical work of Ramanujan motivates the study of their

congruences.

Bacher and de la Harpe define the exponential rate of conjugacy growth, given a

group G with generating set S, to be

Hconj
G,S = lim sup

n→∞

log γG,S(n)

n
.

The values of Hconj
G,S are 0 for the specific cases we study; thus, define the modified

exponential rate of conjugacy growth to be

(1.9) H̃conj
G,S = lim sup

n→∞

log γG,S(n)√
n

.

Let S ⊂ Sym(N) be a generating set such that SCox
N ⊂ S ⊂ TN, where

(1.10) SCox
N = {(i, i+ 1) : i ∈ N}

is such that (Sym(N), SCox
N ) is a Coxeter system, and

(1.11) TN = {(x, y) ∈ Sym(N) : x, y ∈ N are distinct}

is the conjugacy class of all transpositions in Sym(N). More information on Cox-

eter systems can be found in [5]. With S a generating set defined in this way, by

Proposition 1 in [3], the generating function for p(n) given by (1.7) corresponds to

the conjugacy growth series CSym(N),S(q) namely

(1.12) CSym(N),S(q) =
∞∏
n=1

1

1− qn
.

Given this conjugacy growth series of the finitary symmetric group, one has that

the famous Hardy-Ramanujan asymptotic formula

(1.13) p(n) ∼ eπ
√

2n/3

4n
√

3
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as n → ∞ implies that the coefficients of the conjugacy growth series defined by a

set S, γSym(N),S(n), approach the right-hand side of (1.13) as n→∞.

Now let S′ ⊂ Alt(N) be a generating set of Alt(N) such that SAN ⊂ S′ ⊂ TAN ,

where we define

(1.14) SAN := {(i, i+ 1, i+ 2) ∈ Alt(N) : i ∈ N}

and

(1.15) TAN := ∪g∈Alt(N)gS
A
N g
−1.

By Proposition 11 in [3], the conjugacy growth series for the pair (Alt(N), S′) is

given by

CAlt(N),S′(q) =
1

2

∞∑
n=0

p
(n

2

)
qn +

1

2

∞∑
n=0

p2(n)qn(1.16)

=
1

2

∞∏
n=1

1

1− q2n
+

1

2

∞∏
n=1

1

(1− qn)2
,

where p
(
n
2

)
= 0 for all odd n and p2(n) denotes the number of 2-colored partitions

of n. By combining (1.12) and (1.16), one gets that

2γAlt(N),S′(2n) = p(n) + p2(2n)(1.17)

= γSym(N),S(n) + p2(2n).

In Section 7 we will define quantities δ and γ, which will give us the following

theorem.

Theorem 1.9. Given a nonzero vector e := (e1, e2, . . . , ek) ∈ Zk where em ≥ 0 for

all m, as n→∞, we have that

p(dn)e ∼
λA

1+γ
4

2
√
πn

3+γ
4

e2
√
An,
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where

λ :=
k∏

m=1

(m
2π

) edm
2

and

A :=
π2δ

6
.

Example 1.10. Let e = (1). Then d = 1, γ = 1, and δ = 1, so λ = 1√
2π

and

A = π2

6 . Then as n→∞, we have that

p(n)(1) ∼
eπ
√

2n/3

4n
√

3
,

and our asymptotic coincides with (1.13).

Along with finding generalized asymptotic formulas, we study generalized forms

of Ramanujan’s congruences including those conjectured by Bacher and de la Harpe

in [3]. The Ramanujan congruences are [4]:

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 6) ≡ 0 (mod 11).

Definition 1.11. With the definition of generalized partition numbers, Bacher and

de la Harpe define a generalized Ramanujan congruence as:

(i) a nonzero integer vector e := (e1, e2, . . . , ek) ∈ Zk,

(ii) an arithmetic progression (An+B)n≥0 with A ≥ 2 and 1 ≤ B ≤ A− 1, and

(iii) a prime power `f with ` prime and f ≥ 1

such that

p(An+B)e ≡ 0 (mod `f )

for all n ≥ 0.
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Remark. Note that in Theorem 1.9 the em’s must be nonnegative, whereas here

the em’s are allowed to take on negative values.

Bacher and de la Harpe conjectured over two hundred generalized Ramanujan

congruences for p(n)e. They observe that the coefficients of conjugacy growth series

satisfy congruence relations similar to the classic Ramanujan congruences for the

partition function, then use these congruences to analyze the finitary alternating

group.

Two types of congruences appear in [3], both of the form p(`n+B)e ≡ 0 (mod `).

The value of B is uniquely determined by the vector e for the first type of congru-

ences. The second type consists of sets of congruences of the form p(`n + B)e ≡ 0

(mod `) with varying values of B using the same values of ` and e.

Example 1.12. One example of the first type of congruence is the conjectured

congruence

p(5n+ 2)(2,0,0,4) ≡ 0 (mod 5)

for all n ≥ 0.

Example 1.13. A set of the second type of congruence is the pair of conjectured

congruences

p(5n+ 2)(2,0,0,2) ≡ p(5n+ 3)(2,0,0,2) ≡ 0 (mod 5)

for all n ≥ 0.

In Section 8.2 we give an algorithm for determining the number of values of p(n)e

that must be computed in order to guarantee a congruence.
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Given a vector e := (e1, e2, . . . , ek) ∈ Zk and a prime ` ≥ 5, we construct a vector

of nonnegative integers ce := (c1, c2, . . . , ck). Let e′ := e− `ce. We then define

(1.18) w := −1

2

k∑
m=1

e′m

and

(1.19) N := 24N0 gcd(24,

k∑
m=1

N0

m
e′m)−1,

where N0 := lcm{m : e′m 6= 0}. The vector e′ satisfies the following conditions:

(i) e′m ≤ 0 for all m,

(ii)
∑k

m=1me
′
m ≡ 0 (mod 24),

(iii) w ∈ Z, and

(iv)
∑k

m=1
N
me
′
m ≡ 0 (mod 24).

Now define

(1.20) Ke :=

 w
12
N
∏
p|N

(
1 +

1

p

)
where the product runs over all prime divisors of N .

For the first type of congruences conjectured in [3], the vector e determines the

value of B as follows: define

(1.21) α :=
k∑

m=1

mem

and

(1.22) δ` :=


α
24 (mod `) ` - 24

0 ` | 24

where 1
24 is taken as the multiplicative inverse of 24 (mod `). Using this notation,

we arrive at the following theorem:
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Theorem 1.14. Assume the notation above. Let ` ≥ 5 be prime. Then p(`n+δ`)e ≡

0 (mod `) for all n if and only if p(`n+ δ`)e ≡ 0 (mod `) for all 0 ≤ n ≤ Ke.

The second type of congruence conjectured in [3] relies on a similar method, but

requires using the Legendre symbol with respect to the prime `. Define two sets as

follows:

(1.23) S+ :=

{
γ` ∈ Z :

(
γ` − δ`
`

)
= 1 and 0 ≤ γ` ≤ `− 1

}
and

(1.24) S− :=

{
γ` ∈ Z :

(
γ` − δ`
`

)
= −1 and 0 ≤ γ` ≤ `− 1

}
.

We then define

(1.25) K ′e :=

 w
12
N`2

∏
p|N`2

(
1 +

1

p

) ,
where the product runs over all prime divisors of N`2.

Theorem 1.15. Assume the notation above. Let ` ≥ 2 be prime where if ` = 2 or

3, α ≡ 0 (mod `). Then p(`n + γ`)e ≡ 0 (mod `) for all n and all γ` ∈ S+ (resp.

S−) if and only if p(`n+ γ`)e ≡ 0 (mod `) for all 0 ≤ n ≤ K ′e and all γ` ∈ S+ (resp.

S−).

With Theorems 1.14 and 1.15, we obtain the next corollary.

Corollary 1.16. All of the conjectured congruences in [3] are true.

It is natural to ask whether their are congruence relations between the coefficients

of the conjugacy growth series of the finitary symmetric group and the finitary alter-

nating group. By (1.17), there exist congruences modulo powers of primes between

2γAlt(N),S′(2n) and γSym(N),S(n) whenever the “discrepancy function,” p2(2n), is con-

gruent to 0. Using the previous theorem we get the following examples.
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Example 1.17. For all n ≡ 2, 3, 4 (mod 5), we have that

2γAlt(N),S′(2n) ≡ γSym(N),S(n) (mod 5).

Example 1.18. For all n ≡ 17, 31, 38, 45 (mod 49), we have that

2γAlt(N),S′(2n) ≡ γSym(N),S(n) (mod 7).

Ramanujan stated congruences for the partition function p(n) modulo powers of

5, 7, and 11, which were proved by Watson in [18]. Atkin also proved the existence

of congruences for the function p2(n) modulo powers of the primes 5, 7, and 13

in [2]. Using these results, we obtain congruences between the coefficients of the

conjugacy growth series for these groups modulo powers of 5 and 7.

We will let S ⊂ Sym(N) be a generating set of Sym(N) such that SCox
N ⊂ S ⊂ TN,

where SCox
N and TN are defined by (1.10) and (1.11), respectively. In addition, we

let S′ ⊂ Alt(N) be a generating set for Alt(N) such that SAN ⊂ S′ ⊂ TAN , where SAN

and TAN are defined by (1.14) and (1.15), respectively. Using this notation, we arrive

at the following theorem.

Theorem 1.19. Assume the notation above. Let ` = 5 or 7 and let j ≥ 1. Then

for all 24n ≡ 1 (mod `j), we have that

γAlt(N),S′(2n) ≡ γSym(N),S(n) ≡ 0 (mod `bj/2−1c).

Example 1.20. For example, modulo 5, 25, and 125, we obtain for all n ≥ 0 that

γAlt(N),S′(2 · 54n+ 1198) ≡ 0 (mod 5)

γAlt(N),S′(2 · 56n+ 29948) ≡ 0 (mod 25)

γAlt(N),S′(2 · 58n+ 748698) ≡ 0 (mod 125).
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Likewise, modulo 7, 49, and 343, we obtain for all n ≥ 0 that

γAlt(N),S′(2 · 74n+ 4602) ≡ 0 (mod 7)

γAlt(N),S′(2 · 76n+ 225494) ≡ 0 (mod 49)

γAlt(N),S′(2 · 78n+ 11049202) ≡ 0 (mod 343).

We would also like to ask what holds for general primes ` 6∈ {5, 7}. Following the

work of Treneer [17], we prove congruences between the coefficients of the conjugacy

growth series for (Alt(N), S′) and (Sym(N), S) modulo arbitrary powers of primes

` ≥ 5. Treneer’s work gives general congruences for coefficients of various types of

modular forms. We follow her method and make it explicit.

Let ` ≥ 5 be prime. We then define

(1.26) m` :=


2 5 ≤ ` ≤ 23

1 ` ≥ 29,

(1.27) δ` :=
Q`m`β` + 1

24
,

and

(1.28) β` :=
23

Q`m`
(mod 24).

Using this notation, we arrive at the following theorem.

Theorem 1.21. Assume the above notation. Let ` ≥ 5 be prime and let j ≥ 1.

Then for a positive proportion of primes Q ≡ −1 (mod 144`j), we have that

2γAlt(N),S′(2Q`
m`n+ 2δ`) ≡ γSym(N),S(Q`m`n+ δ`) (mod `j)

for all 24n+ β` coprime to Q`.
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In Section 2 we will cover the necessary background on modular forms including

Hecke operators, eta functions, and divisor polynomials. Section 3 covers the general

background on elliptic curves and give a way of determining whether an elliptic

curve is supersingular or not. We prove Theorem 1.1 in Section 4. Section 5 covers

results on orthogonal polynomials, then we prove Theorem 1.4, Proposition 1.5,

Theorem 1.6, and finally Theorem 1.7. In Section 6 we look at the hypergeometric

properties of the modular form Fk from Theorem 1.1. We look at asymptotics

for the generalized partition functions and prove Theorem 1.9 in Section 7. We

give an algorithm for computing the vector ce in Section 8 and then give proofs of

Theorems 1.14 and 1.15. We prove Theorem 1.19 in Section 9. In Section 10 we use

our results to look at congruences for p2(n) and give a proof of Theorem 1.21. The

final section, Section 11, is an appendix with a list of the conjectured congruences

from [3].

2. Modular Forms

Modular forms play an important role in the theory of elliptic curves. Here we

will discuss the necessary background on modular forms. The information discussed

here along with more on modular forms can be found in [13] and [12].

The group SL2(Z) is the group of 2 × 2 matrices with integer entries and deter-

minant equal to 1. This group is important in the study of modular forms, and is

generated by the matrices

S =

0 −1

1 0

 , T =

1 1

0 1

 .

The standard fundamental domain for the action of SL2(Z) is given by

(2.1) F = {τ :
−1

2
≤ <(τ) ≤ 0 and |τ | ≥ 1} ∪ {τ : 0 < <(τ) <

1

2
and |τ | > 1}.
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In order to give the definition of a modular form, we must first define the notion

of a congruence subgroup.

Definition 2.1. For N ∈ Z+, the level N congruence subgroups Γ0(N), Γ1(N), and

Γ(N) are defined as

Γ0(N) :=
{a b

c d

 ∈ SL2(Z) : c ≡ 0 (mod N)
}

Γ1(N) :=
{a b

c d

 ∈ SL2(Z) a ≡ d ≡ 1 (mod N), and c ≡ 0 (mod N)
}

Γ(N) :=
{a b

c d

 ∈ SL2(Z) a ≡ d ≡ 1 (mod N), and b ≡ c ≡ 0 (mod N)
}
.

Given Γ a congruence subgroup of SL2(Z), then a cusp of Γ is an equivalence

class in P1(Q) = Q ∪∞.

Example 2.2. If Γ = SL2(Z), then there is only one cusp; it is customary to choose

the point at ∞ to be its representative.

We will need the following fact about congruence subgroups from [13, p. 2]:

Proposition 2.3. If N is a positive integer, then

[Γ0(1) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)

where the products are over the prime divisors of N .

Given f(τ) a meromorphic function on H and k ∈ Z, the “slash” operator |k is

defined by

(f |kγ)(τ) := (det γ)k/2(cτ + d)−kf(γτ),

for

γτ :=
aτ + b

cτ + d
.
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Using these notions we can now give the definition of a modular form, which will

be essential to the rest of the paper.

Definition 2.4. Given a meromorphic function f(τ) on the upper half plane H,

k ∈ Z, and Γ a congruence subgroup of level N , then f(τ) is a modular form if the

following properties hold.

(1) For all τ ∈ H and all

a b

c d

 ∈ Γ one gets

f
(aτ + b

cτ + d

)
= (cτ + d)kf(τ).

(2) Given γ0 ∈ SL2(Z), then (f |kγ0)(z) has a Fourier expansion of the form

(f |kγ0)(τ) =
∑
n≥nγ0

aγ0(n)dnN ,

where qN := e2πiz/N and aγ0 6= 0.

2.1. Eisenstein Series. The weight k Eisenstein series Ek(τ) plays an important

role in the theory of modular forms. Before giving the definition of Ek(τ), define

Bk as the kth Bernoulli number, namely the kth coefficient given by the series

(2.2)

∞∑
k=0

Bk ·
tk

k!
=

t

et − 1
= 1− 1

2
t+

1

12
t2 + ...,

Using this definition, we can now define Ek(τ) as follows.

Definition 2.5. For even k, the kth Eisenstein series is defined by

(2.3) Ek(τ) = 1− 2k

Bk

∞∑
n=1

(∑
d|n

dk−1

)
qn,

where q = e2πiτ .

Proposition 2.6. Ek is a modular form of weight k for k ≥ 4 and k even. In the

case k = 2, Ek is not modular.
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Proof. There is a classical calculation, which can be found in [12, pg. 110], that

implies

(2.4) 2ζ(k)Ek(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(mτ + n)k
,

where ζ(s) is the Riemann zeta-function. The double sum given here must be

absolutely convergent since k ≥ 4, and in any compact subset of H is uniformly

convergent. This gives that Ek(τ) is a holomorphic function on H.

Along with this, observe that by (2.4) one gets that

Ek(τ + 1) =
1

2ζ(k)

∑
(m,n)∈Z2−{(0,0)}

1

(m(τ + 1) + n)k

=
1

2ζ(k)

∑
(m,n)∈Z2−{(0,0)}

1

(mτ + (m+ τ))k

= Ek(τ)

(2.5)

and

Ek(−
1

τ
) =

1

2ζ(k)

∑
(m,n)∈Z2−{(0,0)}

1

(m(−1/τ) + n)k

=
1

2ζ(k)

∑
(m,n)∈Z2−{(0,0)}

τk

(nτ −m)k

= τkEk(τ).

(2.6)

This implies, since

S =

0 −1

1 0

 and T =

1 1

0 1


generate SL2(Z), that Ek(τ) ∈Mk. Therefore, for k ≥ 4 and k even, Ek is a modular

form.

In the case k = 2, observe that

E2(τ) = 1− 24
∞∑
n=1

σ1(n)qn,
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where

σk−1(n) :=
∑

1≤d|n

dk−1.

For τ ∈ H,

(2.7) τ−2E2(−1/τ) = E2(τ) +
12

2πiτ
,

thus E2 is not modular. �

Even though E2(τ) is not a modular form, it does play an important role in the

theory of modular forms, and is considered to be“nearly modular”. More precisely

this means

(2.8) E2

(aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6

πi
c(cτ + d),

for ( a bc d ) ∈ Γ.

Along with this, define the Delta-function as

(2.9) ∆ :=
E3

4 − E2
6

1728

and the modular j-invariant as

(2.10) j(τ) :=
E4(τ)3

∆(τ)
.

The next proposition relates E2, E4, E6 and ∆ by their derivatives, but first recall

that the theta operator is as follows

(2.11) Θ = q
d

dq
=

1

2πi

d

dτ
.

The following theorem and proof are also stated in [4], and more information on the

special equations used in the proof can be found there.
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Proposition 2.7. The derivatives of E2, E4, E6, ∆, and j are given by the following

(2.12)

E
′
2 =

E2
2 − E4

12
, E

′
4 =

E2E4 − E6

3
, E

′
6 =

E2E6 − E2
4

2
, ∆

′
= E2∆, j′ =

−E2
4E6

∆
.

Proof. Ramanujan defined the following equation

Φr,s(q) :=
∞∑

(k,n)=1

krnsqkn;

Eisenstein series are special cases of this function as is discussed in further detail in

[4]. Now define the equation

(2.13) Sr :=
−Br+1

2(r + 1)
+ Φ0,r(q) =

−Br+1

2(r + 1)
+
∞∑
k=1

krqk

1− qk
,

then

E2(q) = −24S1, E4(q) = 240S3, E6(q) = −504S5.

From this one can derive the three following equations

(2.14) q
dE2(q)

dq
= −24Φ1,2(q),

(2.15) q
dE4(q)

dq
= 240Φ1,4,

(2.16) q
dE6(q)

dq
= −504Φ1,6.

Recall the identity cot2(θ) = −(1 + d
dθ cot(θ)) and observe that

x

2
cot
(x

2

)
=
−ix

2
− ix

e−ix − 1

=
−ix

2
+

∞∑
m=0

Bm
(−ix)m

m!

=
∞∑
n=0

(−1)nB2nx
2n

(2n)!
,
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where the last step is possible due to the fact that B1 = −1/2 and B2n+1 = 0 for

n ≥ 1.

Using these one can derive the following

1

16
cot2

(1

2
θ
)

=
1

4θ2
− 1

24
+

1

4

∞∑
n=1

(−1)nB2n+2(2n+ 1)θ2n

(2n+ 2)!
.

Use the Maclaurin series for sin(x) and cos(x), namely

sin(x) =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, cos(x) =

∞∑
n=0

(−1)nx2n

(2n)!
,

and let x go to kθ to obtain(
1

2θ
+

1

2

∞∑
n=1

(−1)nB2nθ
2n−1

(2n)!
+

∞∑
k=1

qk

1− qk
∞∑
n=0

(−1)nk2n+1θ2n+1

(2n+ 1)!

)2

=
1

4θ2
− 1

24
+

1

4

∞∑
n=1

(−1)nB2n+2

(2n)!(2n+ 2)
θ2n +

∞∑
k=1

qk

(1− qk)2

∞∑
n=0

(−1)nk2nθ2n

(2n)!

+
1

2

∞∑
k=1

kqk

1− qk
∞∑
n=1

(−1)n−1k2n

(2n)!
θ2n.

Collect common powers of θ, and use (2.13) and

Φ1,2n(q) =

∞∑
m,k=1

mk2nqmk =

∞∑
k=1

k2nqk

(1− qk)2
,

to get that( 1

2θ
+
S1

1!
θ3 − S3

3!
θ +

S5

5!
θ5 − ...

)2

=
1

4θ2
+ S1 −

Φ1,2

2!
θ2 +

Φ1,4

4!
θ4 − ...+ 1

2

(S3

2!
θ2 − S5

4!
θ4 +

S7

6!
θ6 − ...

)
.

Again equate coefficients, this time of θ2n for n ≥ 1, to get

(−1)n−1

2

S2n+1

(2n)!
+

(−1)n

(2n)!
Φ1,2n

= (−1)n−1
(S1

1!

S2n−1

(2n− 1)!
+
S3

3!

S2n−3

(2n− 3)!
+ ...+

S2n−1

(2n− 1)!

S1

1!

)
+

(−1)nS2n+1

(2n+ 1)!
,
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which simplifies to

(2.17)
(2n+ 3)

2(2n+ 1)
S2n+1 − Φ1,2n =

n∑
k=1

(
2n

2k − 1

)
S2n−2k+1.

Set n = 1 in (2.17) to get

(2.18) 288Φ1,2 = E4(q)− E2(q)2;

set n = 2 in (2.17) to get

(2.19) 720Φ1,4 = E2(q)E4(q)− E6(q);

set n = 3 in (2.17) to get

(2.20) 1008Φ1,6 = E4(q)2 − E2(q)E6(q).

Substitute (2.18) into (2.14) to get

(2.21) q
dE2(q)

dq
=
E2(q)2 − E4(q)

12

substitute (2.19) into (2.15) to get

(2.22) q
dE4(q)

dq
=
E2(q)E4(q)− E6(q)

3
;

substitute (2.20) into (2.16) to get

(2.23) q
dE6(q)

dq
=
E2(q)E6(q)− E4(q)2

2
.

Now since ∆ is defined as in (2.9), one gets that

∆
′

=
3E2

4E
′
4 − 2E6E

′
6

1728
,

substituting in for E
′
4 and E

′
6 we get

(2.24)
E2(q)(E4(q)3 − E6(q)2)

1728
= E2(q)∆(q).
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Recall j is define by (2.10) so

j′ =
∆3E2

4E
′
4 − E3

4∆′

∆2
,

by substituting in the equations for E′4 and ∆′ this becomes

∆E2
4(E2E4 − E6)− E3

4(E2∆)

∆2
=
−E2

4E6

∆
.

�

2.2. Eta Functions. One modular form which will be important for the second

half of this paper is Dedekind’s eta-function, a weight 1/2 modular form defined as

the infinite product

η(z) := q1/24
∞∏
n=1

(1− qn),

where q := e2πiz and z ∈ H. A useful fact about the eta-function is that it has the

following transformation property as described in [13, p. 17]:

(2.25) η

(
−1

z

)
= (−iz)

1
2 η (z) .

Definition 2.8. An eta-quotient is a function f(z) of the form

f(z) :=
∏
δ|N

η(δz)rδ ,

where N ≥ 1 and each rδ is an integer. If each rδ ≥ 0, then f(z) is known as an

eta-product.

The following proposition regards properties of eta quotients.

Proposition 2.9. If f(z) =
∏
δ|N

η(δz)rδ has integer weight k = 1
2

∑
δ|N

rδ, with the

additional properties that ∑
δ|N

δrδ ≡ 0 (mod 24)
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and ∑
δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

(2.26) f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z)

for every

a b

c d

 ∈ Γ0(N) where the character χ is defined by χ(d) :=
(

(−1)ks
d

)
,

where s :=
∏
δ|N δ

rδ .

2.3. Operators on Modular Forms. Any modular form that is holomorphic

(resp. vanishes) at all cusps of Γ0(N) and satisfies (2.26) is said to have Nebentypus

character χ. The space of these forms is denotedMk(Γ0(N), χ) (resp. Sk(Γ0(N), χ)).

If k is a positive integer and f(z) satisfies the conditions of Proposition 2.9 and is

holomorphic (resp. vanishes) at all of the cusps of Γ0(N), then f(z) ∈Mk(Γ0(N), χ)

(resp. Sk(Γ0(N), χ)). If f(z) satisfies the conditions of Proposition 2.9 but has poles

at the cusps of Γ0(N), then call f(z) a weakly holomorphic modular form; the space

of such forms is denoted M !
k(Γ0(N), χ).

Definition 2.10. If f(z) =
∑∞

n=n0
a(n)qn is a weight k modular form, then the

action of the U-operator U(d) on f(z) is defined by

f(z) | U(d) := d
k
2
−1

d−1∑
v=0

f(z) |k σv,d =
∞∑

n=n0

a(dn)qn.

Likewise, the action of the V-operator V (d) is defined by

f(z) | V (d) := d−
k
2 f(z) |k

d 0

0 1

 =

∞∑
n=n0

a(n)qdn.

Let Vk denote the space of holomorphic functions inH that transform like modular

forms of weight k with at most exponential growth at infinity for f ∈ Vk. Define
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the Hecke operators on Vk by

(2.27) (f |kTn)(τ) := nk/2
∑
A

1

(cτ + d)k
f
(aτ + b

cτ + d

)
,

where A = ( a bc d ) ∈ Γ \Mn for n ∈ N andMn the set of 2× 2 matrices with integral

coefficients and determinant equal to n.

More precisely, we can define the Hecke operator in regards to the character χ of

a modular form and a prime p as follows in the next definition.

Definition 2.11. If f(z) =
∑∞

n=0 a(n)qn ∈Mk(Γ0(N), χ) and p is prime, then the

action of the Hecke operator Tp,k,χ on f(z) is defined by

f(z) | Tp,k,χ :=
∞∑
n=0

(a(pn) + χ(p)pk−1a(n/p))qn,

where a(n/p) = 0 if p - n.

The Hecke operator only makes sense for f ∈ Vk, but for any 1-periodic function

f , define the Hecke operator at infinty as

(2.28) (f |kT∞n ) := nk/2
∑
ad=n
a,d>0

∑
b(mod)d

d−kf
(aτ + b

d

)
.

Since the matrices ( a b0 d ) with 0 ≤ b < d = n
a are set representatives for Γ \Mn, the

operator at infinity agrees with |kTn for f ∈ Vk.

Now recall the following result from [13, p. 21,28]:

Proposition 2.12. Suppose that f(z) ∈Mk(Γ0(N), χ).

(1) If d | N , then

f(z) | U(d) ∈Mk(Γ0(N), χ).

(2) If d is a positive integer, then

f(z) | V (d) ∈Mk(Γ0(Nd), χ).
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(3) If p is prime, then

f(z) | Tp,k,χ ∈Mk(Γ0(N), χ).

Note that when one hits with the U and V operators, or multiplies by another

modular form, that the character χ is apt to change. For more information on these

operators see [13, pg. 28].

We now recall the notion of a “twist” of a modular form. Suppose that f(z) =∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ). If ψ is a Dirichlet character (mod m), then the

ψ-twist of f(z) is defined by

fψ(z) :=

∞∑
n=0

ψ(n)a(n)qn.

Recall that ψ(n) = 0 if gcd(n,m) 6= 1. We will use a property of “twists” from [13, p.

23]:

Proposition 2.13. Suppose that f(z) =
∑∞

n=0 a(n)qn ∈ Mk(Γ0(N), χ). If ψ is a

Dirichlet character with modulus m, then

fψ(z) ∈Mk(Γ0(Nm2), χψ2).

2.4. Divisor Polynomials. Now the notion of a divisor polynomial of a modular

form will be defined as given in [13, p. 31]. Define Ẽk as

(2.29) Ẽk(τ) :=



1 if k ≡ 0 (mod 12),

E4(τ)2E6(τ) if k ≡ 2 (mod 12),

E4(τ) if k ≡ 4 (mod 12),

E6(τ) if k ≡ 6 (mod 12),

E4(τ)2 if k ≡ 8 (mod 12),

E4(τ)E6(τ) if k ≡ 10 (mod 12),
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and m(k) as

(2.30) m(k) :=


⌊
k
12

⌋
if k 6≡ 2 (mod 12),⌊

k
12

⌋
− 1 if k ≡ 2 (mod 12).

Now given f(τ) ∈Mk with F̃ (f, x) the unique rational function in x such that

f(τ) = ∆(τ)m(k)Ẽk(τ)F̃ (f, j(z)),

then F̃ (f, x) is a polynomial. Further, define the divisor polynomial of f by

(2.31) F (f, x) := hk(x)F̃ (f, x),

where hk(x) is given by

(2.32) hk(x) :=



1 if k ≡ 0 (mod 12),

x2(x− 1728) if k ≡ 2 (mod 12),

x if k ≡ 4 (mod 12),

x− 1728 if k ≡ 6 (mod 12),

x2 if k ≡ 8 (mod 12),

x(x− 1728) if k ≡ 10 (mod 12).

Now recall that in examples (1.2) and (1.3) found in section (1.1), we gave F (f, x)

and F̃ (f, j(τ)) for f = Ek, Gk, Hk, Fk without showing where we had obtained these

values. In the following example we will work through the calculations for the case

p = 23 using the definitions of Ẽk, m(k), and hk(x).

Example 2.14. In the case p = 23 we have that k = 22 ≡ 10 (mod 12), so we have

that

Ẽ22(τ) = E4(τ)E6(τ), m(22) =

⌊
22

12

⌋
= 1, h22(j(τ)) = j(τ)(j(τ)− 1728).
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This gives that

E22(τ) = ∆(τ)E4(τ)E6(τ)F̃ (E22, j(τ)),

G22(τ) = ∆(τ)G4(τ)E6(τ)F̃ (G22, j(τ)),

H22(τ) = ∆(τ)E4(τ)E6(τ)F̃ (H22, j(τ)),

F22(τ) = ∆(τ)E4(τ)E6(τ)F̃ (F22, j(τ)),

where Ek is the Eisenstein series defined in this section, and Gk, Hk, Fk are modular

forms that will be defined in section 4.

Using these equations we get that

F̃ (E22, j(τ)) =
E22(τ)

∆E4(τ)E6(τ)
,

F̃ (G22, j(τ)) =
G22(τ)

∆E4(τ)E6(τ)
,

F̃ (H22, j(τ)) =
H22(τ)

∆E4(τ)E6(τ)
,

F̃ (F22, j(τ)) =
F22(τ)

∆E4(τ)E6(τ)
,

which gives that the divisor polynomials for these modular forms are

F (E22, j(τ)) = j(τ)(j(τ)− 1728)
E22(τ)

∆(τ)E4(τ)E6(τ)
,

F (G22, j(τ)) = j(τ)(j(τ)− 1728)
G22(τ)

∆(τ)E4(τ)E6(τ)
,

F (H22, j(τ)) = j(τ)(j(τ)− 1728)
H22(τ)

∆(τ)E4(τ)E6(τ)
,

F (F22, j(τ)) = j(τ)(j(τ)− 1728)
F22(τ)

∆(τ)E4(τ)E6(τ)
.

The divisor polynomial is important for reducing certain modular forms modulo

p to the supersingular polynomial ssp(j), which will be defined in the next section.
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3. Elliptic Curves

In [12], an elliptic curve over a field K is defined by a cubic polynomial y2 = f(x)

with coefficients in K with distinct roots. The K ′ points of the elliptic curve are

the solutions to the equation y2 = f(x). The fact that the curve has no multiple

roots makes it a smooth curve, i.e. the partial derivatives do not vanish at any point

on the curve. Along with this, an elliptic curve has what will be called the point

at infinity. In order to properly define the point at infinity we will briefly discuss

projective coordinates.

Given a curve y2 = f(x) we can rewrite it as F (x, y) = 0. Given a term xiyj ,

the total degree is i + j. If the maximum total degree of F (x, y) is n, define the

homogeneous polynomial F̃ (x, y, z) to be the polynomial obtained by multiplying

each monomial xiyj in F (x, y) by zn−i−j . This brings the total degree in three

variables x, y, z to n. More precisely one gets

F̃ (x, y, z) = znF (x, y).

Now, for any λ ∈ K one has that

(3.1) F̃ (λx, λy, λz) = λnF̃ (x, y, z),

and for any nonzero λ ∈ K we have F̃ (λx, λy, λz) = 0 if and only if F̃ (x, y, z) = 0.

More precisely, for z 6= 0, F̃ (x, y, z) = 0 if and only if F (x/z, y/z) = 0. This makes

it natural to say that two points (x, y, z) and (x′, y′, z′) are equivalent if there is a

nonzero λ ∈ K such that (x′, y′, z′) = λ(x, y, z). The projective plane P2
K is then

the set of equivalence classes of triples (x, y, z) under this relation and omitting the

point (0, 0, 0). Observe that every equivalence class (x, y, z), with nonzero z, has a

unique point (x, y, 1), thus one can think of such equivalence classes as points in the

xy-plane. The left over points (x, y, 0) form the line at infinity. This line at infinity

can be taken as an ordinary line made up of the equivalence classes with nonzero y,
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which must contain a unique point of the form (x, 1, 0), along with the single point

(1, 0, 0) which is called the point at infinity. This allows one to think of P2
K as the

plane (x, y, 1) with a projective line at infinity consisting of the line (x, 1, 0) and its

point at infinity (1, 0, 0).

Therefore given F̃ (x, y, z) with x, y, z ∈ K one can look at the solutions (x, y, z)

in P2
K to the equation F̃ (x, y, z) = 0. The solutions to this equation with z 6= 0 are

the points (x, y, 1) such that F̃ (x, y, 1) = F (x, y) = 0. The left over points are on

the line at infinity.

Example 3.1. Let f(x) = x3−n2x, then the elliptic curve y2 = x3−n2x corresponds

to the equation y2z = x3 − n2xz2. So using this we have

F (x, y) = y2 − x3 + n2x and F̃ (x, y, z) = y2z − x3 + n2xz2.

The points at infinity for this curve are the equivalence classes (x, y, 0) where 0 =

F̃ (x, y, 0) = −x3, namley x = 0. This in turn gives the equivalence class (0, 1, 0).

Note that any elliptic curve y2 = f(x) will have exactly one point at infinity and

it will be the same point seen in the example: (0, 1, 0). For more information on

this see [12].

Every elliptic curve E over K can be written in terms of an affine equation, i.e.

a nonhomogeneous linear equation, of the form

(3.2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a0,

where each ai is in K. This equation is the generalized Weierstrass equation of E.

The characteristic of K, denoted char(K), is the minimal m ∈ Z such that m

times the identity element of K equals zero. When char(K) 6= 2 or 3, the curve E

can be written, through a change of variables, in a reduced version of this equation
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known as the Weierstrass equation. The Weierstrass equation of E is of the form

y2 = x3 + ax+ b

with a, b ∈ K. For more on the Weierstrass equations of an elliptic curve, see [7].

Example 3.2. The equation y2 = x3 +1 is an elliptic curve since it has no multiple

roots. The graph of this curve is given in the following figure.

Figure 1. y2 = x3 + 1

Example 3.3. The equation y2 = x3 − 3x + 2 = (x − 1)2(x + 2) is not an elliptic

curve since 1 is a multiple root of the equation.

There exists a group law under which the points with coordinates in K on an

elliptic curve E over K in union with the point at infinity form an abelian group

which is denoted E(K). Suppose you are given two points already on the curve,

P1 = (x1, y1) and P2 = (x2, y2), then there exists a group law which will give you a

third point P3 = (x3, y3). Begin by looking at the line which connects P1 and P2.

This line is as follows

y = λx+ v, where λ =
y2 − y1

x2 − x1
and v = y1 − λx1 = y2 − λx2.

Now substitute y = λx+ v into the equation for the curve to get

y2 = (λx+ v)2 = x3 + ax2 + bx+ c,
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which becomes

0 = x3 + (a− λ2)x2 + (b− 2λv)x+ (c− v2).

The three roots x1, x2, x3 of this cubic equation give the x-coordinates of the three

intersection points of the line with the curve, therefore

x3 + (a− λ2)x2 + (b− 2λv)x+ (c− v2) = (x− x1)(x− x2)(x− x3).

By equating coefficients of x2 on either side, one gets

a− λ2 = −x1 − x2 − x3,

thus

x3 = λ2 − a− x1 − x2 and y3 = λx3 + v.

This construction and the following example come from [16, p. 23-27].

Example 3.4. Let our elliptic curve be given by the following equation

y2 = x3 + 17,

and our initial points be

P1 = (−1, 4) and P2 = (2, 5).

The line through these points along with λ and v are given by

y =
1

3
x+

13

3
with λ =

1

3
and v =

13

3
.

Therefore using the equations for x3 and y3 we get

x3 = −8

9
and y3 =

109

27
,

so P3 = (−8
9 ,

109
27 ).
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Two important quantities related to elliptic curves are the j-invariant and dis-

criminant of E. Given that E is written in the form y2 = x3 +ax+b, the j-invariant

and discriminant of E are defined in [14] as

(3.3) j(E) :=
(−48a)3

∆(E)
, ∆(E) := −16(4a3 + 27b2).

The j-invariant identifies E up to isomorphism over F̄q. More precisely, if E1 and

E2 are two elliptic curves over the field K, then there is an isomorphism from E1

to E2 over the algebraic closure K if and only if their j-invariants are the same, i.e.

j(E1) = j(E2). See [15, p. 45-47] for a proof of this.

3.1. Supersingular Elliptic Curves. From here on out it is assumed that the

field K is of the form Fq for q = pr where p is prime, i.e. the field K will be taken

to be a finite field of characteristic p.

Definition 3.5. Given an elliptic curve E over Fq, the N -torsion of E is defined in

[14] as

E[N ] := {P ∈ E(F̄q) : NP = OE}.

Definition 3.6. An elliptic curve E over a field Fq, where q = pr for some prime

p, is supersingular if any of the following equivalent statements are true [14]:

i) #E(Fq) ≡ 1 (mod p),

ii) E(F̄q) has no p-torsion,

iii) End(Fq) is non-commutative.

If E is not supersingular, then it is called ordinary.

Note that supersingularity depends on the j-invariant of E, and if E is super-

singular then the j-invariant of E is contained in Fp2 [15, pg. 148]. There are

approximately p
12 supersingular j-invariants in Fp2 .



34

Let Gal(Fq/Fp) be the set of automorphisms of Fq that map every element of Fp

to itself, then

NFq/Fp(x) :=
∏

σ∈Gal(Fq/Fp)

σ(x).

Using these notations, the following proposition gives a way to determine whether

an elliptic curve E is supersingular or not.

Proposition 3.7. Take E to be an elliptic curve over Fq defined by the equation y2 =

f(x) for f(x) ∈ Fq[x] of degree 3. Let ap be the coefficient of xp−1 in f(x)(p−1)/2,

then |E(Fq)| ≡ 1−NFq/Fp(ap).

Proof. For x ∈ Fq, observe that

f(x)(q−1)/2 =
(f(x)

p

)
=


−1 if f(x) 6∈ (Fq)2

0 if f(x) = 0

1 if f(x) ∈ (F×q )2.

Therefore the number of solutions to y2 = f(x) given such an x ∈ Fq equals

1 + f(x)(q−1)/2 =


0 if f(x) 6∈ (Fq)2

1 if f(x) = 0

2 if f(x) ∈ (F×q )2.

Counting the point at infinity this gives

|E(Fq)| = 1 +
∑
x∈Fq

(1 + f(x)(q−1)/2) in Fq.

Now define the sum over elements in Fq to the jth power by Sn :=
∑
x∈Fq

xn. If n = 0,

then Sn = pn · 1 = 0. If n ≥ 1 with (q− 1)|n then 0n = 0 and xn = 1 for x 6= 1, thus

Sn = (q − 1) · 1 = −1. If n ≥ 1 but (q − 1) - n then there exists some y ∈ Fq such
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that yn 6= 1, but

ynSn = yn
∑
x∈Fq

xn =
∑
x∈Fq

ynxn =
∑
x∈Fq

(yx)n.

Since yx ranges over the field when x does, this gives that the last sum is equal to

Sn, thus

ynSn = Sn,

which implies that in this case Sn = 0. Therefore, the sum
∑
x∈Fq

xn is equal to −1

when n|(q − 1) and n 6= 0, otherwise the sum is equal to 0.

Since f(x) is a polynomial of degree 3, in the expansion of f(x)(q−1)/2 every term

is of the form xn for 0 ≤ n ≤ 3
2(q − 1). This implies that

∑
x∈Fq

(1 + f(x)(q−1)/2) = −aq,

where aq is the coefficient of x(q−1) in the sum, thus

|E(Fq)| = 1− aq in Fq.

On the other hand, for q = pr, the expansion

f(x)
q−1
2 = f(x)

p−1
2

(1+p+...+pr) = f(x)
p−1
2 f (p)(xp)

p−1
2 ...f (pr−1)(xp

r−1
)
p−1
2 ,

where f (pn) is the polynomial obtained by raising the coefficients of f to the pnth

power, implies that

aq = a1+p+...+pr

p =
∏

σ∈Gal(Fq/Fp)

σ(ap) = NFq/Fp(ap),

which completes the proof of the proposition. �

Corollary 3.8. E is supersingular if and only if ap = 0.



36

Proof. If ap = 0 then |E(Fq)| ≡ 1 (mod p), thus E has no p-torsion over F̄p and is

supersingular. On the other hand if ap 6= 0 then |E(Fqn)| ≡ 1 − (NFq/Fp(ap))
n. If

the order of NFq/Fp(ap) divides n, then 1− (NFq/Fp(ap))
n is divisible by p. Therefore

1− (NFq/Fp(ap))
n ≡ 0 (mod p), so E does have p-torsion and is ordinary. �

Example 3.9. Take E : y2 = x3 − x, and assume p ≡ 3 (mod 4) for p prime, then

ap = 0 for ap as in Proposition 3.7. This gives that |E(Fpr)| ≡ 1 (mod p), which

gives that E is supersingular over Fp2 .

Given an elliptic curve E over Fq of characteristic p, the supersingular polynomial

is given by

(3.4) ssp(j) =
∏
E/F̄p

E supersingular

(j − j(E)) ∈ Fp[j].

Majority of the first half of this paper will focus on ways of reducing polynomials

to ssp modulo p prime.

4. Polynomials That Reduce to the Supersingular Polynomial

In [11] the authors are interested in ways of computing the supersingular poly-

nomials for elliptic curves, which was defined in equation (3.4). Zagier and Kaneko

describe several ways of constructing canonical polynomials in Q[j] that reduce mod-

ulo p to ssp(j). They begin by showing that there exists a family of polynomials

that come from special modular forms of weight p− 1 that reduce to ssp.

Let Mk be the space of modular forms of weight k on Γ = PSL(2,Z). Then k can

be written uniquely as

(4.1) k = 12m+ 4δ + 6ε, m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1}.
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The dimension of Mk dimMk is equal to m + 1 and the modular forms in Mk can

be uniquely written as

(4.2) f(τ) = ∆(τ)mE4(τ)δE6(τ)εf̃(j(τ))

where f̃ is a polynomial of degree ≤ m in j(τ), and the coefficient of jm in f̃ is

equal to the constant term of the Fourier expansion of f . Note that the values of

m, δ, ε and f̃ can be found using (2.29) and (2.30), (2.31), and (2.32). For each k,

define the four modular forms Ek, Gk, Hk, Fk as follows:

• Ek := the normalized Eisenstein series of weight k;

• Gk := the coefficient of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)−1/2;

• Hk := the coefficient of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)k/2;

• Fk, for k 6≡ 2 (mod 3), is the unique normalized solution in Mk of the

differential equation ϑk+1ϑkFk = k(k+2)
144 E4Fk. Let ϑk : Mk → Mk+2 given

by f → f
′ − kE2f/12 with f

′
= (2πi)−1df/dτ = qdf/dq. Note, E2 is the

nearly modular Eisenstein series of weight 2.

Definition 4.1. Given a prime p, and a nonzero t ∈ Q, then t can be written

uniquely in the form t = a
bp
r for some a, b, r ∈ Z with b > 0, and gcd(p, ab) =

gcd(a, b) = 1. The p-adic norm of t is then given by

(4.3) |t|p :=


p−r t 6= 0

0 t = 0.

Using the the p-adic norm, one can define the notion of p-integrality as follows.

Definition 4.2. Given t ∈ Q, call t p-integral if |t|p ≤ 1, and call a polynomial

f(x) ∈ Q[x] p-integral if all of the coefficients of f(x) are p-integral.

Following the notations just given we get Theorem 1.1, which we will now prove.
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4.1. Proof of Theorem 1.1. Recall that (2.12) gives E′2, E′4, E′6, and ∆′, and

note that more generally one gets that ϑk(f) = f
′ − k

12E2f ∈Mk+2 for all f ∈Mk,

and where
′

denotes differentiation with respect to 2πiτ . With k as in (4.1), any

f ∈ Mk has a zero of multiplicity ≥ δ at τ = eπi/3 and a zero of multiplicity ≥ ε

at τ = eπi/2. This gives that Eδ4E
ε
6 divides f , and that there exists a polynomial

f̃ of degree ≤ m as in (4.2) which represents f . If k 6≡ 0 (mod 3), then E4 divides

every element of Mk+4. This implies that there exists an endomorphism φk of Mk

defined by φk(f) = E−1
4 ϑk+2(ϑk(f)). However, κk := k(k+2)

144 times the constant

term of f is the constant term of φk(f), thus the map preserves the codimension 1

subspace of cusp forms and induces the map multiplication by κk on the quotient

space. Therefore, κk is an eigenvalue of φk. Let Fk be a corresponding eigenvector;

the other eigenvectors are then the modular forms ∆iFk−12i for i ∈ [1,m] with the

eigenvalues κk−12i 6= κk since ϑk · ∆i = ∆i · ϑk−12i. This gives that Fk, up to a

normalizing factor, is unique.

Now let p ≥ 5 be prime, then for any elliptic curve E over Fq of characteristic p,

E can be written in Weirstrass form as

E : y2 = x3 − 3Qx+ 2R.

If Q has degree four and R has degree six, define a graded homogeneous polynomial

Hp−1(Q,R) of degree p−1 as the coefficient of xp−1 in (x3−3Qx+2R)(p−1)/2. Note

that if Q = E4(τ) and R = E6(τ), then Hp−1(E4(τ), E6(τ)) is equal to Hp−1(τ)

defined at the beginning of Section 4.

As was noted at the beginning of Section 4, Hp−1(Q,R) can be written as

Hp−1(Q,R) = ∆mQδRεH̃p−1(j)
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for some H̃p−1 ∈ Z[j]. Using equations (2.29) and (2.30) for Hp−1(Q,R) one gets

that for k = p− 1,

m =
⌊ p

12

⌋
, δ =


0 if p ≡ 1 (mod 3),

1 if p ≡ 2 (mod 3),

ε =


0 if p ≡ 0 (mod 4),

1 if p ≡ 1 (mod 4).

Along with this, ap from Corollary 3.8 is given by the divisor polynomial, found

using (2.31), thus E is supersingular if and only if jδ(j − 1728)εH̃p−1(j) = 0. If this

is the case, then

ssp(j)|jδ(j − 1728)εH̃p−1(j).

Since ssp and jδ(j − 1728)εH̃p−1(j) have the same zeros, it suffices to show that

jδ(j − 1728)εH̃p−1(j) has no multiple roots since ssp is by definition square free.

By the expansion

(x3 − 3Qx+ 2R) = (x3 + 2R)(p−1)/2 − 3
p− 1

2
Qx(x3 + 2R)(p−3)/2 +O(Q2)

one gets that

Hp−1(x) =


( p−1

2
p−1
3

)
+O(Q) if p ≡ 1 (mod 3)

−3p−1
2

( p−3
2
p−2
3

)
2R

p−5
6 Q+O(Q2) if p ≡ 2 (mod 3).

This implies that H̃p−1(0) 6≡ 0 (mod p) and by a similar argument H̃p−1(1728) 6≡ 0

(mod p). Along with this, since Hp−1(Q,R) satisfies a second order linear differential

equation with polynomial coefficients and leading coefficient j(j − 1728), no x ∈ F̄p

is a multiple zero. Namely a common zero in F̄p \ {0, 1728} of H̃p−1 and its first

derivative would be a zero of every higher derivative, and thus would have infinite

order, but this is not possible.

More precisely, it will now be shown that

(4.4) ssp ≡ (−1)δ+εjδ(j − 1728)εH̃p−1(j) (mod p).
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To get the constant factor (−1)δ+ε, since ssp is monic, it suffice to compute the

leading coefficient of H̃p−1. For all f ∈Mk the leading the coefficient of f̃(j) is the

constant term of the Fourier expansion of f , namely the limiting value of f as q

goes to 0. Since E4 and E6 both go to 1 as q goes to 0, the required value for H̃p−1

is just the coefficient of xp−1 in (1− 3x4 + 2x6)(p−1)/2.

Observe that 1−3x4 +2x6 factors as (1−x)2(1+x)2(1+2x2) = (1−x2)2(1+2x2).

Recursively it is then shown that

(1− 3x4 + 2x6)n = (1− x)2n(1 + x)2n(1 + 2x2)n

= (1− x2)2n(1 + 2x2)n,

which gives (1− 3x4 + 2x6)(p−1)/2 = (1− x2)(p−1)(1 + 2x2)(p−1)/2. Along with this,

(1− x2)p−1 = (1− x2)p(1− x2)−1 ≡ 1−x2p
1−x2 , thus

(1− x2)p−1(1 + 2x2)(p−1)/2 ≡ 1− x2p

1− x2

[
(1 + 2x2)(p−1)/2 − 3

p−1
2 + 3

p−1
2

]
≡ (1− x2p)

[
(1 + cxp−1)(1− x−2)− 3

p−1
2 (1− x−2)

]
+
(3

p

)1− x2p

1− x2

≡ (1− x2p)(poly. of degree 3) +
(3

p

)1− x2p

1− x2
(mod p),

(4.5)

where, in line 2, c is some coefficient. This gives that the desired coefficient is

congruent to
(

3
p

)
= (−1)δ+ε modulo p. Therefore, as claimed,

ssp ≡ (−1)δ+εjδ(j − 1728)εH̃p−1(j) (mod p).

To show that G̃p−1 ≡ H̃p−1 recall that

Gk = the coefficient of xk in (1− 3E4x
4 + 2E6x

6)−1/2

Hk = the coefficient of xk in (1− 3E4x
4 + 2E6x

6)k/2.
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By this, Hk and Gk differ by a facotr of (1− 3E4x
4 + 2E6x

6)p/2 since in the case we

are looking at k = p− 1. However

(1− 3E4x
4 + 2E6x

6)p/2 ≡ 1− (3E4)p/2x2p + (2E6)p/2x3p (mod p)

≡ 1 +O(xp) (mod p),

which implies the desired congruence.

Now the congruence between G̃p − 1 and Ẽp − 1 will be shown. Take E : y2 =

x3 − 3E4x+ 2E6 over C. This can be parameterized by the Weierstrass ℘ function

in order to keep the coefficients rational. More details on this function and the

parameterization process can be found in [12, p. 16].

There exists a map ψ : C→ E by ψ(u) = (P (u),−1/2P (u)) where

(4.6) P (u) =
1

u2
+
∑
n≥4
n even

12n/2Bn
n(n− 2)!

En(τ)un−2.

Since Gk equals the coefficient of xk in (1 − 3E4x
4 + 2E6x

6)−1/2, this implies Gk

equals the coefficient of x−1 in x−k−1(1− 3E4x
4 + 2E6x

6)−1/2. But this is equal to

Resx=0
dx

xk+1
√

1− 3E4x4 + 2E6x6
.

Letting x equal P (u)−1/2 this gives

Resu=0
d(P (u)−1/2)

P (u)
−(k+1)

2

√
1− 3E4P (u)−2 + 2E6P (u)−3

= Resu=0 P (u)
k+1
2

= coeff. of uk in

(
1−

∑
n≥4
n even

12n/2Bn
n(n− 2)!

Enu
n

) k+1
2

.
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For n < p − 1, one gets that BnEn
n! is a polynomials in E4 and E6 with p-integral

coefficients. Along with this,
pBp−1

(p−1)! ≡ 1 (mod p), therefore with k = p− 1,

(
1−

∑
n≥4
n even

12n/2Bn
n(n− 2)!

Enu
n

)p/2
≡ 1 + 12

p−1
2 Ep−1u

p−1 +O(up) (mod p).

However, 12
p−1
2 ≡

(
12
p

)
= (−1)δ+ε, thus the congruence for Gp−1 is obtained.

Recall that Fk was defined up to a constant as the unique modular form anni-

hilated by the operator ϑk+1ϑk − κkE4. If k = p − 1, the eigenvalues κk−12r for

f ∈ [0, k/12] of the operator E−1
4 ϑk+1ϑk are still distinct after reducing modulo

p. Therefore this characterization is still valid in characteristic p. Applying the

definition of ϑk and using (2.12) one gets that

ϑk+2ϑkf − κkE4f = ϑk+2

(
f ′k − kE2

fk
12

)
− k(k + 2)

144

= f
′′ − kE2

f ′

12
− kE′2

f

12
− (k + 2)E2

( f ′
12
− kE2

f

144

)
− k(k + 2)

144
E4f

= f ′′ − f ′E2
k + 1

6
− kf E

2
2 − E4

144
+ f

k(k + 2)E2
2

144
− f k(k + 2)E4

144

= f
′′ − k + 1

6
E2f

′
+
k(k + 1)

12
E
′
2f,

(4.7)

but if k = p− 1 and f is Ep−1, this vanishes modulo p since the Fourier expansion

of f reduces to 1 modulo p. This then gives the proportionality of Ep−1 and Fp−1

modulo p.

The exact constant of proportionality in (1.2) is found by normalizing Fk. This

is done by

(4.8) constant term of the Fourier expansion of Fk(τ) = (−1)m
(k−5

6

m

)
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for m defined as in (4.1). The reasoning behind this will be shown in Section 6. The

right hand side of (4.8) is congruent to 1 modulo p if k = p − 1, thus we get the

desired constant of proportionality.

5. The Atkin Orthogonal Polynomials

Several results of Atkin are discussed by the authors in [11]. Atkin defines a

sequence of orthogonal polynomials An(j) ∈ Q[j], one in each degree n, with respect

to a special scalar product.

5.1. Orthogonal Polynomials. Given a vector space V over a field K and ( , )

a scalar product on V such that (f, g) = φ(fg) for φ : V → K a linear functional.

Let φ have the form φ(f) =
∫ b
a f(X)w(X)dX for a, b real numbers such that a < b,

and w a positive function on (a, b). Given a basis {Xn}n≥0 of V , by applying the

Gram-Schmidt process a unique basis of monic orthogonal polynomials Pn are found

by

(5.1) Pn(X) = Xn −
n−1∑
m=0

(Xn, Pm)

(Pm, Pm)
Pm(X)

as long as the scalar product (Pn, Pn) is not zero. Assuming that the non-degeneracy

condition holds, the following proposition is true.

Proposition 5.1. Assuming the notation above, the following are true:

i) The polynomials Pn satisfy a three term recursion of the form

(5.2) Pn+1(X) = (X − an)Pn(X)− bnPn−1(X)

for an, bn ∈ K, bn = (Pn,Pn)
(Pn−1,Pn−1) 6= 0.

ii) Define a second sequence of polynomials {Qn}n≥0 in K[X] by the same recurrence

as in i), but with Q0 = 0 and Q1 = φ(1). Then

(5.3)
Qn(X)

Pn(X)
= Φ(X) +O(X−2n−1) ∈ K[[X−1]]
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where

(5.4) Φ(X) =
∞∑
n=0

gnX
−n−1 ∈ K[[X−1]], gn = (Xn, 1) = φ(Xn).

This property characterizes Pn and Qn uniquely.

iii) Define λn ∈ K (n ≥ 1) by the continued fraction expansion

(5.5) g0 + g1x+ g2x
2 + ... =

g0

1− λ1x

1−λ2x
...

∈ K[[X]].

Then all λn are non-zero and an = λ2n + λ2n+1, bn = λ2n−1λ2n for n ≥ 1.

Proof. i) Since all of the Pn(x) are monic, this gives XPn = Pn+1 + annPn +

ann−1Pn−1 + ... + an0P0 where each aij ∈ K. By the orthogonality of the Pn and

the fact that the scalar product of two polynomials only depends on their product,

this gives

anm(Pm, Pm) = (anmPm, Pm) = (XPn, Pm) = (Pn, XPm) =


0 if m ≤ n− 2

(Pn, Pn) if m = n− 1.

Taking ann = an and ann−1 = bn this gives that XPn = Pn+1 + anPn + bnPn−1, and

thus that Pn+1 = (X − an)Pn − bnPn−1.

ii) Since Pn is orthogonal to all monomials of degree less than n,

Pn(X)Φ(X) = Pn(X)
∑
m≥0

φ(Xm)X−m−1

=
∑
m≥0

X−m−1Pn

∫ b

a
Xmw(X)dX

=
∑
m≥0

X−m−1

∫ b

a
PnX

mw(X)dx

=
∑
m≥

X−m−1(Pn, X
m),

(5.6)
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thus the coefficient of X−m−1 = 0 for m ∈ [0, n− 1]. This gives that

(5.7) Pn(X)Φ(X) = Qn(X) +O(X−n−1) ∈ K[X,X−1]]

where Qn(X) is a polynomial of degree n − 1 and K[X,X−1]] is the ring of Lau-

rent series in X−1, namely sums of polynomials in X and power series in X−1.

Furthermore, this gives that

Qn(X)

Pn(X)
= Φ(X) +O(X−2n−1.

On the other hand, given Pn(X)Φ(X) = Qn(X)+O(X−n−1) for Qn a polynomial

of degree n− 1, by the same work done in (5.6), one gets that for m ∈ [0, n− 1] the

coefficient of x−m−1 vanishes, namely that (Pn, X
m) = 0, thus Pn is orthogonal to

all monomials of lower degree. Thus (5.7) characterizes Pn completely.

Along with this, using (5.2) one gets that

Qn+1 +O(x−n−2) = [(x− an)Pn − bnPn−1]Φ(X),

which by (5.7) gives

Qn+1(X) = Φ(X)

[
(X − an)

Qn(X) +O(X−n−1)

Φ(X)
− bn

Qn−1(X) +O(X−n)

Φ(X)

]
+O(x−n−2)

= (x− an)Qn(X)− bnQn−1(X) +O(x−n),

which must vanish for n ≥ 1. Therefore the polynomials Qn satisfy the same

recursion as the Pn with Q0 = 0 and Q1 = g0.

iii) Define the vector space V ∗ as K[Y ] with a scalar product (f, g) = ψ(fg),

where

ψ(Y n) =


0 if n odd

gn/2 if n even.

By the same construction used for Pn, we get a family of orthogonal polynomials

P ∗n(Y ). Since odd and even polynomials in Y are orthogonal to each other, P+n∗(Y )
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has parity n for all n, namely even indexed polynomials are even and odd indexed

polynomials are odd. By part i) if the proposition applied to (V ∗, Y ),

(5.8) P ∗n+1 = Y P ∗n(Y )− λnP ∗n−1

for nonzero constant λn = (P ∗n ,P
∗
n)

(P ∗n−1,P
∗
n−1) ∈ K. Part ii) of the proposition gives that

there are companion polynomials Q∗n to P ∗n of degree n − 1, thus opposite parity,

and that the Q∗n satisfy the recursion Q∗n+1 = Y Q∗n − λnQ∗n−1. Along with this, Q∗n
P ∗n

are the best approximations to
∑
gkY

−2k−1 at infinity.

By induction on n the following equation is derived

(5.9)

Q∗n+1 Q∗n

P ∗n+1 P ∗n

 =

g0 0

Y 1

 Y 1

−λ1 0

 · · ·
 Y 1

−λn 0

 .

This in turn gives that

g0Y
−1

1− λ1Y −2

1− λ2Y
−2

...
1−λnY−2

=
Q∗n+1

P ∗n+1

=
g0

Y
+
g1

Y 3
+ · · ·+ gn

Y 2n+1
+O(

1

y2n+3
).

By setting X = Y −2 and letting n go to infinity this gives (5.5). Along with this,

the recursion of P ∗n implies the recursion

(5.10) P ∗n+2 = (Y 2 − λn − λn+1)P ∗n − λn−1λnP
∗
n−2

for P ∗n of a given parity. On the other hand V can be identified with the even part

of V ∗ by setting X = Y 2 and with compatible scalar products. This implies that

P ∗2n(Y ) = Pn(Y 2) = Pn(X), which by (5.10) gives that

Pn+1(X) = (X − (λn + λn+1))Pn(X)− λnλn−1Pn−1(X),

thus an = λn+λn+1 and bn = λnλn−1, which completes the proof of the proposition.

�
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5.2. The Atkin Polynomials. Let V be the space of polynomials in j where j is

the modular invariant j(τ) = q−1 + 744 + · · · , then V can be identified with the

space of holomorphic Γ-invariant functions in the upper half plane H that grow at

infinity by at most q−N . These functions are meromorphic at infinity, i.e. for all

( a bc d ) ∈ Γ, f(aτ+b
cτ+d) = f(τ) and f has a Laurent series expansion f(τ) =

∑
n�−∞

cnq
n.

More precisely, the set of polynomials in j coincide with V , and either q = e2πiτ ,

j = j(τ) = q−1 + 744 + 19688q + · · · , or ∆ = q − 24q2 + 252q3 + · · · can be taken

as a local parameter at infinity.

We will now give the proof of Proposition 1.5 before giving the proof of Theorem

1.4.

Proof of Proposition 1.5. Observe that by (2.12),

d∆(τ)

∆(τ)
= 2πiE2(τ)dτ,

and since q = e2πiτ

dq

q
= 2πie2πidτ,

one gets
d∆(τ)

∆(τ)
= 2πiE2(τ)dτ = E2(τ)

dq

q
.

Now recall that the definition of j is given in (2.10), which gives that

dj(τ) =
3E4(τ)E

′
4(τ)∆(τ)− E3

4(τ)∆
′
(τ)

∆2(τ)
2πidτ.

Using (2.12), this becomes
−E2

4(τ)E6(τ)

∆(τ)
2πidτ,

which gives that
dj(τ)

j(τ)
=
−E6(τ)

E4(τ)
2πidτ.
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Multiplying by −E2E4/E6 gives E2(τ)2πidτ , thus

d∆(τ)

∆(τ)
= 2πiE2(τ)dτ = E2(τ)

dq

q
=
−E2(τ)E4(τ)

E6(τ)

dj(τ)

j(τ)
.

Therefore i-iii of the proposition are attained by writing the constant terms as 1
2πi

times the corresponding residues and using the equations derived above.

For part iv of the proposition use the global residue theorem. Let Fa be the

standard fundamental domain of Γ truncated at some height a > 1. Namely the

domain given by |x| ≤ ±1
2 , x2 + y2 ≥ 1, y ≤ a, where τ = x + iy. Observe that

the integral of f(τ)g(τ)E2(τ) = (f, g) by iii. Due to the holomorphy of fgE2, (f, g)

must also be given by the sum of the integrals over the other three edges of the

domain. Since fgE2 is periodic of period 1, this gives that the integrals along the

vertical edges, i.e. |x| = ±1
2 , cancel. Observe that f and g are invariant under

the transformation obtained by replacing τ with −1/τ . Therefore, replace τ with

−1/τ along the left half of the bottom edge. This implies that (f, g) is equal to the

integral along the arc from eπi/3 to eπi/2 of

[E2(τ)− τ−2E2(−1/τ)]f(τ)g(τ)dτ.

By (2.8) the part of this equation in square brackets is equal to −6i
πτ , which gives

that (f, g) is equal to the following integral∫ eπi/2

eπi/3

−6i

πτ
f(τ)g(τ)dτ.

When τ = eiθ, this integral becomes

6

π

∫ π/2

π/3
f(eiθ)g(eiθ)dθ,

with is iv of the proposition thus all four definitions of the scalar product coincide

on V . �

Corollary 5.2. The scalar product ( , ) is positive definite on VR = R[j].
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Proof. The proof of this corollary follows from definition iv of the scalar product

since j(eiθ) is real for θ ∈ [π/3, π/2]. Therefore
∫ π/2
π/3 f(eiθ)2dθ is greater than 0 as

long as f(τ) is a nonzero polynomial in j(τ) with real coefficients. �

The results of Proposition 5.1 applied to this scalar product imply that there is a

unique sequence of monic orthogonal polynomials An(j) of degree n. These are the

Atkin orthogonal polynomials. Along with this the proposition gives that the scalar

product of two monomials jn and jm equals gn+m for gn the coefficient of j−n−1 in

Φ(τ) =
E2(τ)E4(τ)

E6(τ)j(τ)
= q − 24q2 + 196812q3 + ... =

1

j(τ)
+

720

j(τ)2
+ ...,

and that the denominators of the best rational approximations to Φ are given by

the polynomials An. Lastly, the results of Proposition (5.1) give that the Atkin

polynomials satisfy the following recursion

An+1(j) = (j − (λ2n + λ2n+1))An(j)− λ2n−1λ2nAn−1

with the λn positive rational numbers given by the continued fraction expansion of

Φ with respect to 1/j. In [11], the authors numerically compute the first five values

for gn = (jn, 1) and λn, which are given below:

g0 = 1, g1 = 720, g2 = 1301011200, g4 = 1958042030400

λ1 = 720, λ2 = 546, λ3 = 374, λ4 = 475, λ5 =
2001

5
.

Proof of Theorem 1.4. Given k ∈ Z, let Vk denote the space of holomorphic func-

tions in H that transform like weight k modular forms and have at most exponential

growth at infinity. Namely, Vk is the degree k part of the graded ring C[E4, E6,∆
−1].

Observe that V = V0 and that V2 coincides with the set of derivatives of the func-

tions in V . Recall the definitions given in (2.27) and (2.28) for the Hecke operator
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and the Hecke operator at infinity. Using these it will then be shown that

(5.11) Res∞((f |kT∞n ) · h) = Res∞(f · (h|2−kT∞n ))

for f, h ∈ C[q−1, q], and that

(5.12) (gE2)|2T∞n = (g|0Tn) · E2 (mod V2)

for g ∈ V0. Note that Res∞(F ) for F a 1-periodic holomorphic function on H

denotes the residue at infinity of 2πiF (τ)dτ . Namely, this is the constant term of F

as a Laurent series in q. Now Theorem 2.27 will follow using iii of the Atkin scalar

product definitions in (1.5) and the fact that V V2 ⊆ V2, since Res∞ vanishes on V2,

thus

(f |0Tn, g) = Res∞((f |0Tn) · g · E2)

= Res∞(f · (gE2)|2T∞n )

= Res∞(f · (g|0Tn) · E2)

= (f, g|0Tn).

(5.13)

To prove (5.11), it is sufficient to check that T∞n acts on Foruier series by

(∑
r

Arq
r
)
|kT∞n = nk/2

∑
ad=n

d1−k
∑
r

Ardq
ar,

since then one gets that

Res∞((f |kT∞n )h) = nk/2
∑
ad=n

∑
r

AdrB−ar

= n1−k/2
∑
ad=n

a−1+k
∑
s

BasA−ds

= Res∞(f(h|2−kT∞n ))
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for f =
∑
Arq

r and h =
∑
Bsq

s. To prove (5.12) use the following transformation

property

E2(τ) = E∗2(τ) +
3

πy
,

which is equivalent to (2.8), where y = =(τ) and the nonholomorphic E∗2 transforms

like a weight 2 modular form. Let the space of functions with this last property be

denoted by V ∗2 . Since V V ∗2 ⊆ V ∗2 and V ∗2 is preserved by |2Tn, one gets

(gE2)|2T∞n − (g|0Tn)E2 ≡
3

π
((gy−1)|2T∞n − (g|0Tn)y−1) (mod V ∗2 ).

The right hand side of this vanishes by the following calculation

((gy−1)|2T∞n )(τ) =
∑
ad=n

b (mod d)

n

d2
g
(aτ + b

d

)
=
(aτ + b

d

)−1

= y−1(g|0Tn)(τ),

therefore the holomorphic left hand side belongs to V2 as desired. To prove unique-

ness, look at the polynomials hn = j|Tn · 1− j · 1|Tn for n ≥ 2 and h∗ = j2|T2 · j −

j2 · j|T2, which are annihilated by any functional φ : V → C as in Theorem (2.27).

On the other hand, these polynomials span a codimension 1 subspace of V . This is

because degHn = n and h∗ is not a linear combination of the hn’s, thus φ must be

unique. �

5.3. Hypergeometric Properties of the Atkin Polynomials. The Atkin poly-

nomials can be defined in terms of a recursion formula, closed formula, or differential

equation as stated in Theorem 1.6. This theorem can be proved by showing the re-

lation between the Atkin polynomials and hypergeometric series. Let 2F1 be the

classical Gauss hypergeometric series

(5.14) 2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn =

∞∑
n=0

(−a
n

)(−b
n

)(−c
n

) (−x)n, |x| ≤ 1.
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Define U εn and V δ
n for n ≥ 0 as the four monic polynomials

jnF
( 1

12
,

5

12
; 1;

1728

j

)
= U0

n(j) +O(1/j)

jn−1(j − 1728)F
( 7

12
,
11

12
; 1;

1728

j

)
= U1

n +O(1/j)

(j − 1728)nF
( 1

12
,

7

12
; 1;

1728

1728− j

)
= V 0

n +O(1/j)

j(j − 1728)n−1F
( 5

12
,
11

12
; 1;

1728

1728− j

)
= V 1

n +O(1/j)

(5.15)

as j → ∞. Using the above notations, the Atkin polynomials can be defined in

terms of hypergeometric series as follows.

Proposition 5.3. The Atkin polynomials An are given by the following

An(j) =
n∑

m=0

(−12)3m

(
n+ 1

12

m

)(
n− 7

12

m

)(
2n− 1

m

)−1

U0
n−m(j),

An(j) =
n∑

m=0

(−12)3m

(
n− 5

12

m

)(
n− 13

12

m

)(
2n− 1

m

)−1

U1
n−m(j)

An(j) =
n∑

m=0

123m

(
n+ 1

12

m

)(
n− 5

12

m

)(
2n− 1

m

)−1

V 0
n−m(j),

An(j) =
n∑

m=0

123m

(
n− 7

12

m

)(
n− 13

12

m

)(
2n− 1

m

)−1

V 1
n−m

(5.16)

Proof. Since the proofs for all four equations are similar, only the first one will be

shown here. Denote the right hand side of the equation by A0
n. For n ≤ 2, by

direct computation, A0
n = An for the An in (1.6). Therefore, it suffices to show the

recursion A0
n+1 = (j − an)A0

n − bnA0
n−1 where an and bn are the rational functions

of n from (1.3). Rewrite A0
n as A0

n = c(n, k)U0
k where

c(n, 0) = (−12)3n

(−5
12

n

)(−13
12

n

)(
2n− 1

n

)−1

,

c(n, k) = c(n, 0)12−3k

(
n

k

)(
−n
k

)(−5
12

k

)−1(−13
12

k

)−1

.

(5.17)
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Since

jU0
k = U0

k+1 − 123k+3

( −1
12

k + 1

)( −5
12

k + 1

)
,

this gives that

A0
n+1(j)− (j − an)A0

n(j) + bnA
0
n−1(j)

=

n∑
k=0

[c(n+ 1, k)− c(n, k − 1) + anc(n, k) + bnc(n− 1, k)]U0
k

+

n∑
k=0

123k+3

( −1
12

k + 1

)( −5
12

k + 1

)
c(n, k)

(5.18)

for n ≥ 2 and with c(n,−1) = 0, c(n, n) = 1, and c(n − 1, n) = 0. On the right

hand side of this equation, the coefficient of U0
k is equal to 0 for k ≥ 1 and is equal

to 84c(n, 0)/(n2− 1) for k = 0. By substituting in the values of U0
0 = 1, an, bn, and

c(n, k) and writing k = n−m one gets that the right hand side of (5.18) equals

(5.19)
12c(n, 0)

n2 − 1

n+1∑
m=0

(
−n+ 1

n+ 1−m

)[
7

(
n+ 1

m

)
− 12(n+ 1)

(
n

m

)]
,

where the m = n+ 1 term comes from the multiple of U0
0 in (5.18). This sum is the

coefficient of xn+1 in

(1 + x)1−n[7(1 + x)n+1 − 12(n+ 1)(1 + x)n],

and thus vanishes for n ≥ 2. �

Proof of Theorem 1.6. i) By (2.12), Φ = −d(log ∆)/dj, but ∆ can be written in

terms of j as

∆ =
1

j
F (

1

12
,

5

12
; 1;

1728

j
)12.

By Gauss’s contiguous relations

Φ =
F (13

12 ,
5
12 ; 1; 1728

j )

jF ( 1
12 ,

5
12 ; 1; 1728

j )
,
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and by Gauss’s formula for the continued fraction expansion of a quotient of con-

tiguous functions one gets that the λn from (5.5) are given by

λn =


720 if n = 1

12(6 + (−1)n

n−1 )(6 + (−1)n

n ) if n > 1,

thus we get (i) of (1.6). For more information on hypergeometric functions and

contiguous relations see [1].

ii) Since the Atkin polynomials are the An of (5.3), the closed formula is obtained

by a rewriting of the first formula of (5.3).

iii) The closed formula of (ii) gives that the An(j) can be obtained from

(5.20) F
( 1

12
,

5

12
; 1;x

)
F
(
− n− 1

12
,−n+

7

12
; 1− 2n;x

)
by truncating at xn then inverting it. Namely by setting x = 1728

j and multiplying

by jn. Since the second factor of (5.20) becomes infinite from degree 2n onward,

some truncation is required.

One can truncate at any m between n and 2n − 1 since the coefficient of xm in

(5.20) vanishes for n < m < 2n. This can be seen by letting γ → 1 in the following

identity

F (α, β; γ;x)F (−n− α,−n+ 1− β;−2n+ 2− γ;x)

+ δnx
2n(1− x)F (1− α, 1− β; 2− γ;x)F (α+ n+ 1, β + n; γ + 2n;x)

= polynomial of degree n,

where n ≥ 1 and

δn =

(−α
n+1

)(−β
n

)(
α−γ
n−1

)(
β−γ
n

)(−γ
2n

)(
1−γ
2n

)(
2n
n

)(
2n
n−1

) .
This identity is a consequence of Gauss’s contiguous relations and two formulas

of Heine [8]. Since the product of two hypergeometric functions satisfies a fourth
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order linear differential equation with explicitly calculated coefficients along with

this truncation argument gives the differential equation for An.

If An(j) is replaced by a polynomial beginning with jd for d ≥ 0 an integer, then

the left hand side of (iii) has the leading term n2(n2 − d2)2, thus d = m is the only

way the differential equation can be satisfied. This in turn gives uniqueness of the

expression. �

We will now relate the Un and Vn from (5.15) to the supersingular polynomial

ssp(j).

Proposition 5.4. Let p ≥ 5 be prime and write p = 12n− 8δ − 6ε+ 1 with n ∈ N,

δ, ε ∈ {0, 1}, then

(5.21) ssp(j) ≡ U εn(j) ≡ V δ
n (j) (mod p).

Proof. Here we will give only the proof for the case U0
n since the other cases are

very similar. Begin by assuming that p ≡ 1 (mod 4). Recall the trinomial theorem,

which gives that

(x+ y + z)n =
∑

r1+r2+r3=n

(
n

r1, r2, r3

)
xr1yr2zr3 .

Using this, expand Hp−1 as follows

Hp−1 = coefficient of xp−1 in (1− 3E4x
4 + 2E6x

6)2`

=
∑
r,s≥0

2r+3s=2`

(2`)!

r!s!(2`− r − s)!
(−3E4)r(2E6)s

= (−3E4)`
b`/3c∑
k=0

(2`)!

(`− 3k)!(2k)!(`+ k)!

(−4

27

j − 1728

j

)k
,

(5.22)

for k = s/2 and where j−1728
j comes from the fact that

E2
6

E3
4

=
j − 1728

j
.
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Note that in the case U1
n one uses p ≡ 3 (mod 4) and s = 2k + 1; for V δ

n set

r = 3k + δ then expand in powers of j
j−1728 .

Now, by induction on k one gets that

(5.23)
(2`)!

(`− 3k)!(2k)!(`+ k)!

(−4

27

)k
≡
(

2`

`

)
( 1

12)k(
5
12)k

k!(1
2)k

(mod p).

Therefore, by (4.4) and b`/3c = m = n − δ and (−1)δ =
(
−3
p

)
≡ 32` (mod p), one

gets, by writing Fm(a, b; c;x) for the hypergeometric series truncated at degree m,

that

(5.24) ssp(j) ≡ (−j)δH̃p−1 ≡ (−3)3`

(
2`

`

)
jnFb`/3c

( 1

12
,

5

12
;
1

2
; 1− 1728

j

)
(mod p).

Since the coefficients of xk and yk in F ( 1
12 ,

5
12 ; 1;x) and F ( 1

12 ,
5
12 ; 1

2 ; y) vanish modulo

p for k ∈ (b`/3c, 2`], and F ( 1
12 ,

5
12 ; 1;x) and F ( 1

12 ,
5
12 ; 1

2 ; 1 − x) satisfy the same

second order linear differential equation with polynomial coefficients of degree no

more than 2, one gets that the polynomial on the right hand side of the last equation

is a multiple of U0
n(j). However, the supersingular polynomial is monic, thus the

multiple must be 1. �

Using Proposition 5.4, a relation between the Atkin polynomials An and the

supersingular polynomial ssp(j) for certain n can be proven. This relation between

An and ssp(j) is given by Thereom 1.7.

Proof of Theorem 1.7. For p = 2 or 3, this is trivial. In the case p 6= 2 or 3, one

gets that np is the same as n from Proposition 5.4. Apply Proposition 5.3 to U εn or

V δ
n with this n. The result then follows since all of the coefficients vanish modulo p

except the one for m = 0. �
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6. Hypergeometric Properties of Fk

Recall that Fk(τ), k 6≡ 2 (mod 3), is a modular form and is the unique normalized

solution of the second order differential equation

(6.1) vk+2vkFk −
k(k + 2)

144
E4Fk = 0.

Define the following notations:

v0 =
1− 2δ

3
, v1 =

1− 2ε

2
, v∞ =

k + 1

6
(v0 + v1 + v∞ = 2m+ 1),

X0 = J =
j

1728
, X1 = 1− J, X∞ = −1, (X0 +X1 +X∞ = 0),

Y0 = E3
4 , Y1 = −E2

6 , Y∞ = −1728∆, (Y0 + Y1 + Y∞ = 0).

Note that m, δ, and ε are defined as in Section 4. Using these notations the following

theorem gives explicit descriptions of the Fk and the associated polynomials F̃k(j).

Theorem 6.1. Suppose k ≥ 0, k 6≡ 2 (mod 3), then i) Differential equation: F̃k(j)

is the unique normalized polynomial solution of

j(j − 1728)F̃
′′
k + {(1− v1)j + (1− v0)(j − 1728)}F̃ ′k +m(m− v∞)F̃k = 0.

ii) Closed formula: Let σ be any permutation of {0, 1,∞}, then

F̃k(j) = (sgn(σ) · 1728)m
(
m− vσ(∞)

m

)
Xm
σ(0)F (−m,−m+ vσ(0); 1− vσ(∞);−

Xσ(∞)

Xσ(∞)
)

and

Fk(τ) = sgn(σ)mEδ4E
ε
6

m∑
l=0

(−1)l
(
m− vσ(0)

l

)(
m− vσ(∞)

m− 1

)
Y l
σ(∞)Y

m−1
σ(0) .
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iii) Recursion relation: The F̃k(j) satisfy

(m+ 1)(m− v∞)(1− v∞)F̃k+12

− v∞[(1 + v∞)(1− v∞)(j − 1728)((1− V0)(V0 + v1) + 2m(m− v∞))]F̃k

+ 17282(m− v0)(m− v1)(1− v∞)F̃k−12 = 0.

iv) Generating Function: For k ∈ Z≥0 and any α denote by Gk,α(τ) the coefficient

of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)α. Then

Fk(τ) = (−1)m+δ2−2m+ε

(
2m+ ε

m

)(1
6(k − 2)

m+ ε

)−1

Gk, k−2
6

(τ).

Proof. i)Begin with the equation given by (6.1), and recall by (4.2) that one can

write F (τ) as ∆(τ)mE4(τ)δE6(τ)εF̃ (j(τ)), and that

ϑk(f) =
df

dτ
− E2k

12
f.

Therefore one gets that

ϑk+2ϑkFk −
k(k + 2)

144
E4Fk =

d

dτ

( d
dτ

∆mEδ4E
ε
6F̃k(j)−

kE2

12
∆mEδ4E

ε
6F̃k(j)

)
− (k + 2)E2

12

( d
dτ

∆mEδ4E
ε
6F̃k(j)−

kE2

12
∆mEδ4E

ε
6F̃k(j)

)
.

(6.2)

We begin computing this by taking the first derivative of ∆mEδ4E
ε
6F̃k(j) as follows

d

dτ
(∆mEδ4E

ε
6F̃k(j)) = m∆m−1Eδ4E

ε
6F̃k(j) + ∆mδEδ−1

4 E′4E
ε
6F̃k(j)

+ ∆mEδ4εE
ε−1
6 F̃k(j) + ∆mEδ4E

ε
6F̃
′
k(j)j

′,

(6.3)

by substituting in the equations from (2.12) and equating terms this becomes

∆mE2E
δ
4E

ε
6F̃k(j)

(
m+

δ

3
+
ε

2

)
− δ

3
∆mEδ−1

4 Eε+1
6 F̃k(j)

− ε

2
∆mEδ+2

4 Eε−1
6 F̃k(j)−∆mEδ−1

4 Eε+1
6 F̃ ′k(j)j.

(6.4)
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This gives

d

dτ

(
∆mEδ4E

ε
6F̃k(j)

)
− kE2

12
(∆mEδ4E

ε
6F̃k(j) = ∆mE2E

δ
4E

ε
6F̃k(j)

(
m+

δ

3
+
ε

2
− k

12

)
− δ

3
∆mEδ−1

4 Eε+1
6 F̃k(j)−

ε

2
∆mEδ+2

4 Eε−1
6 F̃k(j)−∆mEδ−1

4 Eε+1
6 F̃ ′k(j)j,

(6.5)

but (m+ δ/3 + ε/2− k/12) = 0 so the full equation is equal to

−δ
3

∆mEδ−1
4 Eε+1

6 F̃k(j)−
ε

2
∆mEδ+2

4 Eε−1
6 F̃k(j)−∆mEδ−1

4 Eε+1
6 F̃ ′k(j)j.

Now take the derivative of this

(6.6)
d

dτ

(
− δ

3
∆mEδ−1

4 Eε+1
6 F̃k(j)−

ε

2
∆mEδ+2

4 Eε−1
6 F̃k(j)−∆mEδ−1

4 Eε+1
6 F̃ ′k(j)j

)
,

substitute in the equations from (2.12) and equate terms as was done for the first

derivative computes. Subtract

k(k + 2)

144
E4(∆mEδ4E

ε
6F̃k(j),

and simplify the coefficients of F̃k(j), F̃
′
k(j), and F̃ ′′K(j). Using the fact that

1728 =
E3

4 − E2
6

∆

by the equation for ∆ and that

j − 1728 =
E3

4

∆
− E3

4 − E2
6

∆
=
E2

6

∆
,

one gets the desired result.

ii) The equation from part (i) of the theorem is a hypergeometric differential equa-

tion, and thus has a polynomial solution of the form F (−m,−m+v∞; 1−v0; j/1728).

More information on hypergeometric differential equations and their polynomial so-

lutions can be found in [1]. By [1], there are 6 polymomial solutions from Kummer’s

24 solutions to this equation. By making the expressions symmetric the formula i
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obtained, and the formula for Fk follows.

iii) If one replaces k by k+
−12 in the formula for F̃k(j), the first three argument of

the hypergeometric seris of F̃k(j) change by 1. Therefore the recursion comes from

Gauss’s contiguous relations which can be found in [1].

iv) Let Yα = (1− 3E4X
4 + 2E6X

6)α, and observe that

Yα = Yα−1(1− 3E4X
4 + 2E6X

6),

∂

∂X
Yα = αYα(−12E4X

3 + 12E6X
5)

∞∑
k=0

ϑkGk,αX
k =

1

2πi

∂

∂τ
Yα −

E2

12
X

∂

∂X
Yα = αYα−1(E6X

4 − E2
4X

6).

By these three relations one gets

(6.7) Gk,α = Gk,α−1 − 3E4Gk−4,α−1 + 2E6Gk−6,α−1,

(6.8) kGk,α = −12αE4Gk−4,α−1 + 12αE6Gk−6,α−1,

(6.9) ϑkGk,α = αE6Gk−4,α−1 − αE2
4Gk−6,α−1.

Solve (6.7) for E4Gk−4,α−1 to obtain

E4Gk−4,α−1 =
−1

3
Gk,α +

1

3
Gk,α−1 +

2

3
E6Gk−6,α−1,

and solve (6.8) for E6Gk−6,α−1 to obtain

E6Gk−6,α−1 =
k

12α
Gk,α + E4Gk−4,α−1.

Substituting these into (6.9) and simplifying, one gets

ϑkGk,α = − 1

α+ 1

(
α− k

6
+

1

3

)(
α− k

6
+

2

3

)
Gk+2,α+1 +

(
α− k

12
+

1

2

)
Gk+2,α.
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Repeating this process gives

ϑk+2ϑkGk,α −
k(k + 2)

144
E4Gk,α

=
(
α− k

6
+

1

3

)[ 1

(α+ 1)(α+ 2)

(
α− k

6
+

2

3

)(
α− k

6
+ 1
)(
α− k

6
+

4

3

)
Gk+4,α+2

− 1

α+ 1

{(
α− k

6
+

2

3

)(
α− k

12
+

4

3

)
+
(
α− k

6

)(
α− k

12
+

1

2

)
− k(k + 2)

144

}
Gk+4,α+1

+
(
α+

1

2

)
Gk+4,α

]
.

The right hand side of this expression vanishes if α = (k − 2)/6, thus Gk,(k−2)/6(τ)

satisfies the same differential equation as Fk(τ). Along with this, the constant

term of the Fourier expansion of Gk,(k−2)/6 is equal to the coefficient of Xk in the

expression (1−3X4 + 2X6)(k−2)/6 = (1−3X2)(k−2)/3(1 + 2X2)(k−2)/6. This is equal

to

k/2∑
i=0

(−1)i2
k
2
−1

(k−2
3

i

)( k−2
6

k
2 − i

)
= (−1)

k
2

(k−2
3
k
2

) k/2∑
i=0

2i
(k

2

i

)
= (−3)

k
2

(k−2
3
k
2

)
.

This with (4.8) gives Fk(τ) = cGk, k−2
6

(τ) where

(6.10) c = (−1)m
( k−5

6
m

)
(−3)

k
2

( k−2
3
k
2

) = (−1)m+δ2−2m−ε
(

2m+ ε

m

)( k−2
6

m+ ε

)−1

.

�

7. An Asymptotic Formula for p(n)e

Now we turn to the remaining results described in the introduction. Namely, we

now discuss partition congruences and asymptotics in the context of the represen-

tation theory of finitary permutation groups. One of the tools needed to derive the

asymptotic formula for the generalized partition function p(n)e for any vector e is

Ingham’s Tauberian Theorem which is stated in [6, 10] as follows.



62

Theorem 7.1. Let f(q) =
∑∞

n=0 a(n)qn be a power series with weakly increasing

coefficients and radius of convergence equal to 1. If there are constants A > 0,

λ, α ∈ R such that

f(e−ε) ∼ λεαeA/ε

as ε→ 0+, then as n→∞, we have

a(n) ∼ λ

2
√
π

A
α
2

+ 1
4

n
α
2

+ 3
4

e2
√
An.

Now, given e := (e1, e2, . . . , ek), let d = gcd{m : em 6= 0}, and define quantities

β, γ, and δ by

(7.1) β := β(e) =

k
d∑

n=1

nedn,

(7.2) γ := γ(e) =

k
d∑

n=1

edn,

and

(7.3) δ := δ(e) =

k
d∑

n=1

edn
n
.

Also, define e′ := (e′1, e
′
2, . . . , e

′
k) by e′m = edm. Given these notations one gets

Theorem 1.9.

Lemma 7.2. Assume the notation above. Then p(dn)e = p(n)e′ for all n ≥ 0.

Proof. This follows from a simple change of variables q → qd. �

Proof of Theorem 1.9. By Lemma 7.2, since p(dn)e = p(n)e′ for all n ≥ 0, it suffices

to find an asymptotic for p(n)e′ . First note that gcd{m : e′m 6= 0} = 1 by definition

of e′. Now let

f(q) =
∞∑
n=0

p(n)e′q
n = q

β
24

k∏
m=1

1

η(mz)e′m
.
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Then we have

f(e−ε) = e−
βε
24

k∏
m=1

1

η
(−mε

2πi

)e′m .
By (2.25), it follows that

k∏
m=1

η

(
−mε
2πi

)e′m
=

k∏
m=1

(
2π

mε

) e′m
2

η

(
2πi

mε

)e′m

= ε−
γ
2

k∏
m=1

(
2π

m

) e′m
2

η

(
2πi

mε

)e′m
.

Therefore, one gets

f(e−ε) = e−
βε
24 ε

γ
2

k∏
m=1

(m
2π

) e′m
2
η

(
2πi

mε

)−e′m
.

As ε→ 0+, it follows that

k∏
m=1

η

(
2πi

mε

)−e′m
∼

k∏
m=1

e
π2e′m
6mε ∼ e

π2δ
6ε ,

so as ε→ 0+, we obtain

f(e−ε) ∼ ε
γ
2 e

π2δ
6ε

k∏
m=1

(m
2π

) e′m
2 ∼ λε

γ
2 e

A
ε ,

where λ and A are defined in the statement of Theorem 1.9. Note that p(n)e′ is

supported for all n ≥ max{m : e′m 6= 0} since gcd{m : e′m 6= 0} = 1, thus for all

n ≥ lcm{m : e′m 6= 0}, p(n)e′ is weakly increasing. Furthermore, f(q) has radius of

convergence 1. Every modular form maps the upper half plane H to the unit disk

and thus has radius of convergence at least 1. Since f(q) has a pole at q = 1, the

radius of convergence of f(q) must equal 1. By Theorem 7.1, it then follows that

p(n)e′ ∼
λA

1+γ
4

2
√
πn

3+γ
4

e2
√
An.
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By Lemma 7.2, we have that

p(dn)e ∼
λA

1+γ
4

2
√
πn

3+γ
4

e2
√
An.

�

Example 7.3. Let e := (1, 0, 1). Then d = 1, γ = 2, and δ = 4
3 , so A = 2π2

9 and

λ =
√

3
2π . Then by Theorem 1.9, we have that

p(n)e ∼ P (n)e,

where

P (n)e :=
1

6 · 2
1
4n

5
4

e
2π
√
2n

3 .

Below we display the first 10000 values of p(n)e and P (n)e (computed in Mathe-

matica).

Table 1. Ratio of p(n)e and P (n)e

n p(n)e P (n)e p(n)e/P (n)e
1000 1.155 · 1036 1.187 · 1036 0.97266
2000 3.459 · 1052 3.527 · 1052 0.98057
3000 1.775 · 1065 1.804 · 1065 0.98410
4000 9.855 · 1075 9, 993 · 1075 0.98621
5000 2.992 · 1085 3.029 · 1085 0.98765
6000 1.145 · 1094 1.158 · 1094 0.98872
7000 9.106 · 10101 9.198 · 10101 0.98955
8000 2.079 · 10109 2.099 · 10109 0.99022
9000 1.711 · 10116 1.727 · 10116 0.99078
10000 5.990 · 10122 6.042 · 10122 0.99125

As n→∞, we observe that the ratio p(n)e/P (n)e approaches 1.

8. Generalized Ramanujan Congruences

8.1. Sturm’s Theorem. We will now introduce the tools used to determine the

number of coefficients needed to guarantee a generalized Ramanujan congruence.
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Assume that

f =
∑
n≥n0

a(n)qn

is a formal power series with coefficients in OK , the ring of integers of a number

field K. If m ⊂ OK is an ideal, then define ordm(f), the order of f modulo m, by

(8.1) ordm(f) := min{n : a(n) 6∈ m}.

If a(n) ∈ m for all n, then let ordm(f) := +∞.

Using this notation, we recall a theorem of Sturm’s from [13, p. 40]:

Theorem 8.1. Let f(z) =
∑∞

n=0 a(n)qn ∈M k
2
(Γ0(N), χ) be a modular form where

k is a positive integer. Furthermore, suppose that its coefficients are in OK , the ring

of integers of a number field K. If m ⊂ OK is an ideal for which

ordm(f) >
k

24
[Γ0(1) : Γ0(N)],

then ordm(f) = +∞.

If OK = Z and m = 〈`〉, then ord`(f) = min{n : ` - a(n)} and if ` | a(n) for all

n, then ord`(f) := +∞. Therefore Theorem 8.1 can be reformulated as seen in the

next corollary.

Corollary 8.2. Let f(z) =
∑∞

n=0 a(n)qn ∈M k
2
(Γ0(N), χ)∩Z[[q]] be a modular form

where k is a positive integer. If a(n) ≡ 0 (mod `) for all 0 ≤ n ≤ k
24 [Γ0(1) : Γ0(N)],

then a(n) ≡ 0 (mod `) for all n ≥ 0.

8.2. An Algorithm for the Vector ce. Now we give an algorithm used to confirm

or refute alleged generalized Ramanujan congruences. Define α by (1.21). Given a

prime ` ≥ 2 where if ` = 2 or 3, α ≡ 0 (mod `), and a vector e := (e1, e2, . . . , ek) ∈

Zk with 0 ≤ em ≤ `− 1, we must construct a vector ce so that e′ = e− `ce satisfies

the following conditions:
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(i) e′m ≤ 0 for all m,

(ii)
∑k

m=1me
′
m ≡ 0 (mod 24),

(iii) w ∈ Z, and

(iv)
∑k

m=1
N
me
′
m ≡ 0 (mod 24)

where w and N are defined by (1.18) and (1.19).

Proposition 8.3. Assume the notation above. Given a prime ` ≥ 2 where if ` = 2

or 3, α ≡ 0 (mod `), and a vector e := (e1, e2, . . . , ek) ∈ Zk with 0 ≤ em ≤ `− 1, it

is possible to construct a vector ce such that the above conditions are satisfied.

Proof. First define

(8.2) χ(m) :=


1 em 6= 0 or m = 1

0 otherwise

and α by (1.21). Then define

(8.3) βe :=


min{n ∈ N : n ≡ `−1α (mod 24) and n >

k∑
m=1

mχ(m)} ` - 24

min{n ∈ N : n ≡ `−1α (mod 24
` ) and n >

k∑
m=1

mχ(m)} ` | 24

where in the first case, `−1 is taken as the multiplicative inverse of ` (mod 24), and

in the second case, since ` | α, `−1 = 1
` .

Define c′m = 0 if em = 0. We now define the vector c′e recursively beginning with

c′k as follows:

(8.4) c′m =

⌊
1

m

(
βe −

m−1∑
n=1

nχ(n)−
k∑

n=m+1

nc′n

)⌋
.
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Note that c′1 = βe −
∑k

n=2 nc
′
n, so

∑k
m=1mc

′
m = βe and

k∑
m=1

me′m =

k∑
m=1

mem − `
k∑

m=1

mcm

= α− `βe

≡ 0 (mod 24)

so condition (ii) is satisfied. If 1
2

∑k
m=1(em − `c′m) ∈ Z, then define ce = c′e.

Suppose 1
2

∑k
m=1(em − `c′m) 6∈ Z. Then choose the smallest j such that j is even

and c′j > 1. Define cj := c′j − 1 and c1 := c′1 + j. For all other m, let cm := c′m. Let

ce = (c1, c2, . . . , ck) and define e′ = e − `ce. Then
∑k

m=1mcm =
∑k

m=1mc
′
m and

e′m ≤ 0 for all m, so conditions (i)-(ii) hold. Since
∑k

m=1 cm =
∑k

m=1 c
′
m−1 + j and

−1 + j is odd, the parity of the sum
∑k

m=1 e
′
m =

∑k
m=1 em − `

∑k
m=1 cm changes

and w = −1
2

∑k
m=1(em − `c′m) ∈ Z.

Suppose c′j ≤ 1 for all j even. Then choose the smallest j 6= 1 such that j is odd

and cj > 1. Define cj = c′j − 1, cj−1 = c′j−1 + 1, and c1 = c′1 + 1. For all other

m, let cm = c′m. Let ce = (c1, c2, . . . , ck) and define e′ = e − `ce. Then, as before,∑k
m=1mcm =

∑k
m=1mc

′
m and e′m ≤ 0 for all m, so conditions (i)-(ii) hold. Since∑k

m=1 cm =
∑k

m=1 c
′
m + 1, the parity of the sum

∑k
m=1 e

′
m changes and w ∈ Z.

If there exists no j such that c′j > 1, replace βe by

(8.5) β′e =


βe + 24 ` - 24

βe + 24
` ` | 24

and repeat the algorithm. By construction there must exist at least one c′j > 1, so

if w 6∈ Z, it will be possible to run through the replacements described above and

to define a vector ce that satisfies conditions (i)-(iii).

Note that by the definition of N in (1.19),
∑k

m=1
N
me
′
m ≡ 0 (mod 24), so condition

(iv) holds. Thus the vector e′ satisfies conditions (i)-(iv) as desired. �
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We now use the algorithm in Proposition 8.3 to prove Theorems 1.14 and 1.15

and establish a method of confirming or refuting alleged generalized Ramanujan

congruences that fall into two different types. First note the following fact from [3]:

Proposition 8.4. Consider a sequence e := (e1, e2, . . . , ek) ∈ Zk, an arithmetic

progression (An + B)n≥0 with A ≥ 2 and 1 ≤ B ≤ A − 1, a prime `, and another

sequence e′ = (e′1, e
′
2, . . . , e

′
k) ∈ Zk. Assume that e′m ≡ em (mod `) for all m ≥ 0.

Then p(An+B)e ≡ 0 (mod `) for all n ≥ 0 if and only if p(An+B)e′ ≡ 0 (mod `)

for all n ≥ 0.

8.3. Proof of Theorem 1.14. By Proposition 8.4, it suffices to consider vectors

e = (e1, e2, . . . , ek) with 0 ≤ em ≤ ` − 1 for all m. Define e′ = e − `ce by Proposi-

tion 8.3. Then since e′m ≡ em (mod `) for all m ≥ 0, by Proposition 8.4, it is enough

to show that p(`n+ δ`)e′ ≡ 0 (mod `) for all n ≥ 0. Note that

∞∑
n=0

p(n)e′q
n =

k∏
m=1

∞∏
n=1

1

(1− qmn)e′m

= qω
∏
m|N

η(mz)−e
′
m

=: qωg(z)

where ω = 1
24

∑k
m=1me

′
m. Note that ω ≡ δ` (mod `).

Since g(z) is an eta-product, we can write its Fourier expansion

g(z) :=
∞∑
n=0

b(n)qn.

Then p(`n + δ`)e′ ≡ 0 (mod `) for all n ≥ 0 if and only if b(`n + δ` − ω) ≡ 0 (mod

`) for all n ≥ 0. Since δ` − ω ≡ 0 (mod `), p(`n+ δ`)e′ ≡ 0 (mod `) for all n ≥ 0 if

and only if b(`n) ≡ 0 (mod `) for all n ≥ 0.

Now, note that g(z) has weight w = −1
2

∑k
m=1 e

′
m. By condition (iii), w must be

an integer. Furthermore, based on our choices of ce and N , e′ satisfies conditions
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(ii) and (iv), which are the necessary conditions of Theorem 2.9. Since g(z) is

additionally holomorphic at all the cusps of Γ0(N), g(z) ∈ Mw(Γ0(N), χ). We can

therefore act on g(z) with the Hecke operator T`,w,χ and define

f(z) := g(z) | T`,w,χ

=

∞∑
n=0

(b(`n) + χ(`)`w−1b(n/`))qn.

By Proposition 2.27, f(z) ∈ Mw(Γ0(N), χ) and we can write its Fourier series ex-

pansion as

f(z) :=
∞∑
n=0

a(n)qn.

Then a(n) = b(`n) + χ(`)`w−1b(n/`), so a(n) ≡ b(`n) (mod `) for all n. Thus

b(`n) ≡ 0 (mod `) for all n ≥ 0 if and only if a(n) ≡ 0 (mod `) for all n ≥ 0.

Since f(z) has weight w and is a level N modular form, by Theorem 8.1, a(n) ≡ 0

(mod `) for all n ≥ 0 if and only if a(n) ≡ 0 (mod `) for all 0 ≤ n ≤ w
12 [Γ0(1) : Γ0(N)].

By Proposition 2.3,

[Γ0(1) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

so by our definition of Ke in (1.20), a(n) ≡ 0 (mod `) for all n ≥ 0 if and only if

a(n) ≡ 0 (mod `) for all 0 ≤ n ≤ Ke. Since this is true if and only if p(`n+ δ`)e ≡ 0

(mod `) for 0 ≤ n ≤ Ke, we have p(`n + δ`)e ≡ 0 (mod `) for all n if and only if

p(`n+ δ`)e ≡ 0(mod `) for 0 ≤ n ≤ Ke. �

8.4. Proof of Theorem 1.15. As in the proof of Theorem 1.14, by Proposition 8.4,

it suffices to consider vectors e = (e1, e2, . . . , ek) with 0 ≤ em ≤ `−1 for all m. Define

e′ using Proposition 8.3. Again, let g(z) =
∏
m|N η(mz)−e

′
m =

∑∞
n=0 b(n)qn. As in

the previous proof, p(`n+γ`) ≡ 0 (mod `) for all n ≥ 0 if and only if b(`n+γ`−δ`) ≡ 0

(mod `) for all n ≥ 0.
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Define the following Dirichlet characters:

ψ0(n) :=


1 gcd(n, `) = 1

0 otherwise

and

ψ1(n) :=
(n
`

)
.

Note that ψ2
0(n) and ψ2

1(n) both yield the trivial character. Now define

G(z) := gψ0(z) =
∑
`-n

b(n)qn

and

Gψ1(z) =
∑
`-n

(n
`

)
b(n)qn.

By Proposition 2.13, G(z) ∈ Mw(Γ0(N`2), χψ2
0) = Mw(Γ0(N`2), χ) and Gψ1(z) ∈

Mw(Γ0(N`2), χψ2
1) = Mw(Γ0(N`2), χ). Now define

H+(z) :=
G(z) +Gψ1(z)

2
=
∑

(n` )=1

b(n)qn

and

H−(z) :=
G(z)−Gψ1(z)

2
=

∑
(n` )=−1

b(n)qn.

Then H±(z) ∈ Mw(Γ0(N`2), χ). Recalling our definitions of the sets S± in (1.23)

and (1.24), note that

H±(z) =
∑

n≡γ`+δ`
(mod `)
γ`∈S±

b(n)qn.

Now, writeH±(z) :=
∑∞

n=0 a±(n)qn. Since a+(n) is only supported where n ≡ γ`+δ`

(mod `) where γ` ∈ S+, b(`n+ γ`− δ`) ≡ 0 (mod `) for all n ≥ 0 and for all γ` ∈ S+

if and only if a+(n) ≡ 0 (mod `) for all n ≥ 0. By Theorem 8.1, a+(n) ≡ 0 (mod `)

for all n ≥ 0 if and only if a+(n) ≡ 0 (mod `) for all 0 ≤ n ≤ w
12 [Γ0(1) : Γ0(N`2)].
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By our definition of K ′e in (1.25), a+(n) ≡ 0 (mod `) for all n ≥ 0 if and only if

a+(n) ≡ 0 (mod `) for all 0 ≤ n ≤ K ′e. As a+(n) ≡ 0 (mod `) for all 0 ≤ n ≤ K ′e

if and only if p(`n + γ`)e ≡ 0 for all 0 ≤ n ≤ K ′e and for all γ` ∈ S+, the theorem

holds for γ` ∈ S+. Replacing S+ by S−, a+(n) by a−(n), and H+(z) by H−(z), the

same argument works for γ` ∈ S−. �

8.5. Examples of Congruences. Given an alleged congruence of the form p(`n+

B)e ≡ 0 (mod `) that falls into either the Theorem 1.14 or Theorem 1.15 case, we

can use the finite algorithm from Section 3 and Theorems 1.14 and 1.15 to confirm

or refute it. First use the algorithm to determine Ke and K ′e. By Theorems 1.14

and 1.15, it suffices to check numerically that the conjectured congruences hold for

all 0 ≤ n ≤ Ke or K ′e respectively.

Example 8.5. We have that p(5n+ 2)(2,0,0,4) ≡ 0 (mod 5) for all n ≥ 0, as conjec-

tured by [3].

Proof. Note that α = 18, so δ` = 2; this is an example of the Theorem 1.14 case.

Using our algorithm, we have ce = (2, 0, 0, 4), so e′ = (−8, 0, 0,−16). Then w = 12

and N = 4, so Ke = 6. Computing the first 6 values of p(5n + 2)(2,0,0,4), we find

that they are equivalent to 0 (mod 5). Thus the congruence holds. �

Example 8.6. We have that p(5n + 2)(2,0,0,2) ≡ p(5n + 3)(2,0,0,2) ≡ 0 (mod 5) for

all n ≥ 0, as conjectured by [3].

Proof. Note that α = 10, so δ` = 0. In this case S−1 = {2, 3}, so this is an

example of the Theorem 1.15 case. Using our algorithm, we have ce = (2, 0, 0, 6) so

e′ = (−8, 0, 0,−28). Then w = 18 and N = 8, so K ′e = 540. Computing the first

540 values of p(5n+ 2)(2,0,0,2) and p(5n+ 3)(2,0,0,2), we find that they are equivalent

to 0 (mod 5). Thus the congruence holds. �
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9. Proof of Theorem 1.19

Ramanujan conjectured the following congruences for the partition function mod-

ulo powers of the primes 5 and 7, which Watson proved in [18].

Theorem 9.1 (Ramanujan). Let ` = 5, 7, or 11 and let j ≥ 1. Then if 24n ≡ 1

(mod `j), we have that
p(n) ≡ 0 (mod `j) ` = 5, 11

p(n) ≡ 0 (mod `bj/2c+1) ` = 7.

In [2], Atkin generalized the Ramanujan congruences modulo powers of 5, 7, and

11 to the function pk(n), which counts the number of k-colored partitions of n.

Theorem 9.2 (Atkin). Let k > 0, ` = 2, 3, 5, 7 or 13, and j ≥ 1. Then if 24n ≡ k

(mod `j), we have that

pk(n) ≡ 0 (mod `bαj/2+εc),

where ε := ε(k) = O(log k) and α = α(k, `) depending on ` and the residue of k

modulo 24.

Atkin computes the value of α(k, `) in a table in [2]. We note the following values

of α:

α(2, 5) = α(2, 7) = 1.(9.1)

In addition, following Atkin’s method to calculate ε exactly, we observe

(9.2) ε =


1− blog(48)/ log(`)c = −1 ` = 5

−blog(48)/ log(`)c = −1 ` = 7.
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Therefore, for the case where k = 2 and ` = 5 or 7, we have that for all 24n ≡ k

(mod `j),

(9.3) p2(n) ≡ 0 (mod `bj/2−1c).

We make use of the following theorem of Serre’s regarding congruences for certain

types of modular forms, stated in [17]:

Theorem 9.3 (Serre). Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(N), χ) has coef-

ficients in the ring of integers OK of a number field K and M is a positive integer.

Furthermore, suppose that k ≥ 1. Then a positive proportion of the primes p ≡ −1

(mod MN) have the property that

f(z) | Tp,k,χ ≡ 0 (mod M).

Serre’s theorem guarantees the existence of congruences for cusp forms with coef-

ficients in the ring of integers of a number field, which we will use to prove properties

of the coefficients of the conjugacy growth series for (Alt(N), S′) and (Sym(N), S).

Proof of Theorem 1.19. We first prove congruences for arbitrary powers of ` = 5 or

7. Let j ≥ 1 and suppose that 24n ≡ 1 (mod `j). Then by Theorem 9.1, we have

that

(9.4) γSym(N),S(n) = p(n) ≡ 0 (mod `bj/2c+1).

Additionally, we have that 24(2n) ≡ 2 (mod `j). Using the case of Theorem 9.2

where k = 2 and ` = 5 or 7, as in (9.3), we have that

(9.5) p2(2n) ≡ 0 (mod `bj/2−1c).

Therefore, for all 24n ≡ 1 (mod `j), we obtain from (1.17), (9.4), and (9.5) that

(9.6) γAlt(N),S′(2n) ≡ γSym(N),S(n) ≡ 0 (mod `bj/2−1c),
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as desired. �

10. Congruences for p2(n)

Because of the relationship between the conjugacy growth series for (Alt(N), S′)

and the function p2(n), here, we focus on congruences for p2(n). By the definition

of the 2-colored partition function p2(n), we have that

∞∑
n=0

p2(n)qn =
∞∏
n=1

1

(1− qn)2
=

q
1
12

η2(z)
.(10.1)

Throughout, we let

(10.2) f(z) :=
1

η(12z)2
=

∞∑
n=−1

a(n)qn.

Then we have that p2

(
n+1
12

)
= a(n). In order to prove congruences between the

coefficients of the conjugacy growth series for (Alt(N), S′) and (Sym(N), S), we first

prove a theorem concerning the coefficients of f(z). This makes effective the fol-

lowing result of Treneer [17] by determining the exact value of m that is sufficiently

large.

Proposition 10.1 (Treneer). Suppose that ` is an odd prime and that k and m

are integers. Let N be a positive integer with (N, p) = 1, and let χ be a Dirichlet

character modulo N . Let K be an algebraic number field with ring of integers OK ,

and suppose f(z) = a(n)qn ∈M !
k(Γ0(N), χ)∩OK((q)). If m is sufficiently large, then

for each positive integer j, a positive proportion of the primes Q ≡ −1 (mod N`j)

have the property that

a(Q`mn) ≡ 0 (mod `j)

for all n coprime to Q`.

This section closely follows Section 3 in [17]. Throughout this section, let f(z) be

defined by (10.2).
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Theorem 10.2. Let ` ≥ 5 be prime and j ∈ N. Then for a positive proportion of

primes Q ≡ −1 (mod 144`j), we have that

a(Q`m`n) ≡ 0 (mod `j)

for all n coprime to Q`.

The proof of Theorem 10.2 requires the construction of a cusp form that preserves

congruence properties of the function f(z).

Proposition 10.3. For every positive integer j, there exists an integer β ≥ j − 1

and a cusp form

g`,j(z) ∈ Sκ(Γ0(144`2), χ) ∩ Z((q)),

where κ := −1 + `β(`2−1)
2 , with the property that

g`,j(z) ≡
∑
n≥1
`-n

a(`m`n)qn (mod `j).

We first require the following proposition concerning the Fourier expansion of

f(z) at a given cusp after being acted on by the U(`m) operator for m ≥ 1.

Proposition 10.4. Let γ :=

 a b

c`2 d

 ∈ SL2(Z) where c ∈ Z and ac > 0. Then

there exists an integer n0 ≥ −24 and a sequence {a0(n)}n≥n0 such that for each

m ≥ 1, we have that

(f(z) | U`m) |−1 γ =

∞∑
n=n0

n≡0 (mod `m)

a0(n)qn24`m ,

where q24`m := e
2πiz
24`m .

The proof of this proposition makes use of the following lemma, which relies on

the proof of Theorem 1 in [9].
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Lemma 10.5. Given any matrix A ∈ SL2(Z), we have that

f(z) |−1 A =
∞∑

n=n0

a0(n)qn24

where a0(n) ∈ Z and n0 ≥ −24.

Proof. Let A :=

a b

c d

 ∈ SL2(Z). Then, as in the proof of Theorem 1 in [9], we

can write

(10.3)

12 0

0 1

a b

c d

 =

a′ b′

c′ d′

α β

0 δ



where

a′ b′

c′ d′

 ∈ SL2(Z), α, β, δ ∈ Z, and α, δ > 0. Then we have that 12a = a′α

and c = c′α, so α = (a′α, c′α) = (12a, c) = (12, c) ≤ 12. Again, by Theorem 1 in [9],

we obtain

(10.4) f(z) |−1 A =

∞∑
n=n0

a0(n)qn24

where n0 := −2α
δ > −2α ≥ −24. �

Proof of Proposition 10.4. Let N = 144, the level of f . As in [17], for each 0 ≤ v ≤

`m − 1, choose an integer sv such that

(10.5) svN ≡ (a+ vc`2)−1(b+ vd) (mod `m)

and define wv := svN = 144sv. We let

(10.6) α0 :=

 a b−aw0
`m

c`m+2 d− w0c`
2

 .
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By (2.10), we have that

(10.7) (f(z) | U`m) |−1 γ = (`m)−
3
2

`m−1∑
v=0

f(z) |−1 σv,`mγ.

We observe that σv,`mγ = βα0σwv ,`m for some β ∈ Γ0(144`m), so we have that

(10.8) (f(z) | U`m) |−1 γ = (`m)−
3
2

`m−1∑
v=0

f(z) |−1 α0σwv ,`m .

By Lemma 10.5, we have that

f(z) |−1 α0 =
∞∑

n=n0

a0(n)qn24,

so we obtain

`m−1∑
v=0

f(z) |−1 α0σwv ,`m =

`m−1∑
v=0

`
m
2

∞∑
n=n0

a0(n)e
2πin(z+wv)

24`m(10.9)

= `
m
2

∞∑
n=n0

a0(n)qn24`m

`m−1∑
v=0

e
2πinwv
24`m .

By Lemma 3.3 in [17], the numbers wv
24 run through the residue classes modulo `m

as v does. Therefore, we have that

(10.10)
`m−1∑
v=0

e
2πinwv
24`m =

`m−1∑
v=0

e
2πinv
`m =


`m n ≡ 0 (mod `m)

0 else.

Combining (10.9) and (10.10), we have that

(10.11)

`m−1∑
v=0

f(z) |−1 α0σwv ,`m = `
3
2

∞∑
n=n0

n≡0 (mod `m)

a0(n)qn24`m .

Using (10.7) and (10.11), we obtain

(10.12) (f(z) | U`m) |−1 γ =

∞∑
n=n0

n≡0 (mod `m)

a0(n)qn24`m ,
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the Fourier expansion of f(z) | U`m at the cusp a
c`2

. �

We now construct a weakly holomorphic modular form which vanishes at certain

cusps of Γ0(144`2).

Proposition 10.6. For each nonnegative integer m, define

fm(z) := f(z) | U`m − f(z) | U`m+1 | V` ∈M !
−1(Γ0(144`2), χ).

Then, for m` as in 1.26, fm` vanishes at each cusp a
c`2

of Γ0(144`2) with ac > 0.

Proof. By Proposition 10.4, we have that

(10.13) (f(z) | U`m` ) | γ =

∞∑
n=n0

n≡0 (mod `m` )

a0(n)qn24`m`

where n0 ≥ −24. We now consider two cases. If 5 ≤ ` ≤ 23, we have that

−`m` ≤ −25 < −24 ≤ n0,

and if ` ≥ 29, we have that

−`m` ≤ −29 < −24 ≤ n0.

Suppose a0(n) 6= 0. Then n ≥ n0 > −`m` , but n ≡ 0 (mod `m`), so n ≥ 0.

Therefore, we obtain

(10.14) (f(z) | U`m` ) | γ =
∞∑
n=0

n≡0 (mod `m` )

a0(n)qn24`m`

so f(z) | U`m` is holomorphic at the cusp a
c`2

.

Now, by the proof of Proposition 3.5 in [17], we have that

(10.15) fm(z) |−1 γ =
∞∑
n=0

n≡0 (mod `m)

a0(n)qn24`m −
∞∑
n=0

n≡0 (mod `m+1)

a0(n)qn24`m ,
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so the constant term in each expansion is a0(0), and they cancel. Therefore, fm`

vanishes at the cusp a
c`2

. �

We are now ready to prove Proposition 10.3.

Proof of Proposition 10.3. As in [17], we define the eta-quotient

(10.16) F`(z) :=
η`

2
(z)

η(`2z)
∈M `2−1

2

(Γ0(`2)).

By Theorem 1.65 in [13], we see that F` vanishes at every cusp a
c of Γ0(144`2) with

`2 - c. We also have that F`(z)
`s−1 ≡ 1 (mod `s) for any integer s ≥ 1.

Now, define

(10.17) g`,j(z) := fm`(z) · F`(z)
`β

where β ≥ j − 1 is sufficiently large such that g`,j(z) vanishes at all cusps a
c of

Γ0(144`2) where `2 - c. By Theorem 1.65 in [13], it is possible to choose such a β

such that the order of vanishing of g`,j(z) is at least one at all such cusps. Then

g`,j ∈ Z((q)) and

(10.18) g`,j(z) ≡ fm`(z) (mod `j).

Furthermore, by Proposition 10.6, g`,j(z) vanishes at all cusps a
c where `2 | c. Define

κ := −1 + `β(`2−1)
2 . Then we have that

(10.19) g`,j(z) ∈ Sκ(Γ0(144`2), χ).

By definition of fm` , we obtain

(10.20) g`,j(z) ≡
∞∑
n=1

a(`m`n)qn −
∞∑
n=1

a(`m`+1n)q`n ≡
∞∑
n=1
`-n

a(`m`n)qn (mod `j).

Thus g`,j satisfies the conditions of Proposition 10.3. �
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Now that we have constructed the necessary cusp form, we arrive at the proof of

Theorem 10.2.

Proof of Theorem 10.2. By Proposition 10.3, we can construct a cusp form g`,j ∈

Sκ(Γ0(144`2), χ) ∈ Z((q)) such that

(10.21) g`,j(z) ≡
∞∑
n=1
`-n

a(`m`n)qn (mod `j).

By Theorem 9.3, for a positive proportion of the primes Q ≡ −1 (mod 144`j+2), we

have that

(10.22) g`,j(z) | TQ,κ,χ ≡ 0 (mod `j).

We can then write g`,j(z) =
∑∞

n=1 b(n)qn to obtain

(10.23) g`,j(z) | TQ,κ,χ =
∞∑
n=1

(
b(Qn) + χ(Q)Qκ−1b(n/Q)

)
qn ≡ 0 (mod `j).

If (Q,n) = 1, then the coefficient of qn in (10.23) is b(Qn), so

(10.24) a(Q`m`n) ≡ b(Qn) ≡ 0 (mod `j)

for all n coprime to Q`. �

10.1. Proof of Theorem 1.21. We now make use of Theorem 10.2 to prove con-

gruences between the coefficients of the conjugacy growth series for (Alt(N), S′) and

(Sym(N), S).

Proof of Theorem 1.21. By (1.17), it is enough to show that p2(2Q`m`n+ 2δ`) ≡ 0

(mod `j). By (10.1) and (10.2), we observe p2

(
n+1
12

)
= a(n), so it suffices to prove

the existence of congruences for a(n).
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By Theorem 10.2, for a positive proportion of primes Q ≡ −1 (mod 144`j), we

have that

(10.25) p2

(
Q`m`n+ 1

12

)
= a(Q`m`n) ≡ 0 (mod `j)

for all n coprime to Q`. Defining δ` and β` by (1.27) and (1.28), respectively, we

can rewrite the left-hand side of equation (10.25) as

(10.26) p2 (2Q`m`n+ 2δ`)

for all 24n+β` coprime to Q`. Therefore, for a positive proportion of primes Q ≡ −1

(mod 144`j), we have that

(10.27) p2 (2Q`m`n+ 2δ`) ≡ 0 (mod `j),

so we obtain

2γAlt(N),S′(2Q`
m`n+ 2δ`) ≡ γSym(N),S(Q`m`n+ δ`) (mod `j),

as desired. �

11. Appendix

We include here a list of the conjectures from [3]. They are all true.

11.1. Some examples of the form p(3n+B)e ≡ 0 (mod 3).

p(3n+ 2)(1,1),(2,1,0,2),(2,1,0,1,2,110,120),(1,1,0,2,1,110,220).

11.2. Some examples of the form p(5n+B)e ≡ 0 (mod 5).

p(5n+ 1)(0,2,2),(0,4,2),(0,2,3,0,0,1),

p(5n+ 2)(2),(3,1),(1,3),(1,3,2),(2,0,0,2),(3,1,0,2),(3,1,0,3),(2,0,0,4),(4,1,0,4),(1,3,4,0,0,1),

p(5n+ 2)(4,1,1,0,0,3),(4,1,3,0,0,3),(3,1,1,0,0,4),(3,1,3,0,0,4),(2,28),(1,3,28),(3,1,0,3,28),(4,1,0,4,28),

p(5n+ 3)(2),(4),(3,1),(1,2,0,1),(2,0,0,2),(4,0,0,2),(3,1,0,3),(1,2,0,3),(3,1,0,1,18),(2,0,0,3,18),(1,1,1,0,0,1),
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p(5n+ 3)(1,4,3,0,0,1),(1,3,4,0,0,1),(3,3,4,0,0,1),(3,1,0,0,0,2),(2,3,4,0,0,2),(4,2,2,0,0,3),(3,2,2,0,0,4),

p(5n+ 4)(1),(2),(4),(2,2),(1,3),(0,2,2),(0,2,4),(1,2,0,1),(3,2,0,1),(2,1,0,3),(3,1,0,3),(3,3,0,3),

p(5n+ 4)(4,1,0,4),(4,3,0,4),(1,4,3,0,0,1),(3,4,3,0,0,1),(2,4,3,0,0,2),(4,1,1,0,0,3),(4,3,1,0,0,3),(1,4,3,0,0,3),

p(5n+ 4)(3,1,1,0,0,4),(3,3,1,0,0,4),(4,4,38),(1,1,0,1,38),(2,3,0,1,38),(3,4,0,4,38),(2,4,0,1,48),(3,0,0,4,48).

11.3. Some examples of the form p(7n+B)e ≡ 0 (mod 7).

p(7n+ 2)(4),(2,2),(1,5),(3,5),(6,1,0,3),(3,5,0,3),(4,0,0,4),(1,5,0,4),(5,1,0,5),(6,1,0,6),

p(7n+ 3)(6),(5,1),(2,2),(1,4,0,1),(2,2,0,2),(5,1,0,4),(5,1,0,5),(2,2,0,6),

p(7n+ 4)(4),(6),(1,2),(2,2),(4,4),(1,5),(1,4,0,1),(3,6,0,1),(3,2,0,3),(3,5,0,3),

p(7n+ 4)(4,1,0,5),(5,1,0,5),(6,1,0,6),(6,5,0,6),

p(7n+ 5)(1),(4),(5,1),(1,5),(5,5),(2,2,0,2),(2,6,0,2),(4,3,0,3),(3,5,0,3),(3,1,0,6),(6,1,0,6),(6,3,0,6),

p(7n+ 6)(4),(6),(2,1),(5,1),(2,2),(5,3),(1,4,0,1),(4,5,0,1),(2,2,0,2),(6,2,0,2),(2,4,0,2),

p(7n+ 6)(3,5,0,3),(1,6,0,3),(3,3,0,4),(5,0,0,5),(5,1,0,5).

11.4. Some examples of the form p(11n+B)e ≡ 0 (mod 11).

p(11n+2)(8),(9,1),(2,6),(1,9),(3,2,0,2),(2,6,0,2),(6,6,0,2),(3,2,0,3),(5,2,0,7),(9,1,0,9),(8,0,0,10),(10,1,0,10),

p(11n+ 3)(10),(4,1),(6,2),(2,6),(1,8,0,1),(5,9,0,4),(5,9,0,5),(7,2,0,7),(9,1,0,9),(6,2,0,10),

p(11n+ 4)(8),(2,3),(2,6),(8,9,0,1),(3,2,0,3),(3,0,0,4),(9,2,0,7),(9,1,0,9),(2,7,0,9),(9,9,0,9),

p(11n+5)(8),(6,2),(7,7),(1,9),(6,0,0,1),(3,2,0,3),(10,5,0,3),(1,2,0,4),(4,6,0,4),(5,9,0,5),(5,7,0,6),(10,1,0,10),

p(11n+ 6)(1),(10),(9,1),(6,2),(2,5),(2,6),(9,7),(4,2,0,1),(1,8,0,1),(2,1,0,2),(2,6,0,2),(8,7,0,3),

p(11n+ 6)(5,9,0,5),(3,9,0,6),(7,3,0,8),(9,0,0,9),(9,1,0,9),(10,3,0,10),

p(11n+ 7)(3),(8),(9,1),(2,6),(1,9),(7,9),(4,1,0,2),(2,6,0,2),(3,2,0,3),(6,9,0,3),(4,8,0,4),(10,3,0,5),(1,0,0,6),

p(11n+ 7)(8,2,0,6),(5,5,0,8),(8,9,0,8),(9,1,0,9),(7,2,0,9),(3,4,0,9),(10,1,0,10),

p(11n+ 8)(5),(8),(10),(9,1),(6,2),(8,4),(1,9),(9,9),(1,8,0,1),(2,3,0,2),(2,6,0,2),(4,0,0,3),

p(11n+ 8)(3,2,0,3),(3,6,0,3),(9,1,0,4),(8,5,0,5),(5,9,0,5),(10,2,0,6),

p(11n+ 8)(6,4,0,6),(2,6,0,6),(1,10,0,7),(3,7,0,8),(7,1,0,10),(10,1,0,10),

p(11n+ 9)(7),(8),(10),(3,2),(6,2),(2,6),(6,6),(1,9),(1,8,0,1),(9,8,0,1),(2,2,0,3),(3,2,0,3),(9,4,0,3),(4,10,0,4),

p(11n+ 9)(5,2,0,5),(6,7,0,5),(2,9,0,5),(5,9,0,5),(10,1,0,7),(8,0,0,8),(1,9,0,8),(9,1,0,9),(10,1,0,10),(5,3,0,10),

p(11n+ 10)(10),(9,1),(5,2),(6,2),(1,4),(4,8),(1,8,0,1),(7,10,0,1),(2,6,0,2),(9,7,0,2),
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p(11n+ 10)(5,9,0,2),(2,1,0,4),(7,2,0,5),(4,9,0,5),(5,9,0,5),(6,6,0,6),(8,3,0,7)

p(11n+ 10)(7,9,0,7),(10,0,0,8),(6,2,0,8),(4,1,0,9),(1,8,0,9),(3,5,0,10),(10,7,0,10).

11.5. Some examples of the form p(13n+B)e ≡ 0 (mod 13).

p(13n+ 2)(11,1),(2,8),(2,8,0,2),(8,8,0,6),(11,1,0,11),(5,6,0,11),

p(13n+ 3)(12),(8,2),(1,10,0,1),(5,0,0,5),(10,6,0,6),(3,10,0,9),

p(13n+ 4)(10),(12),(8,2),(2,8),(1,11),(2,6,0,1),(1,10,0,1),(3,4,0,3),...,

p(13n+ 5)(10),(11,1),(1,11),(6,1,0,2),(2,8,0,2),(3,4,0,3),...,

p(13n+ 6)(12),(11,1),(8,2),(2,8),(1,10,0,1),(2,8,0,2),(8,12,0,2),...,

p(13n+ 7)(10),(11,1),(8,2),(6,3),(1,11),(2,8,0,2),(10,10,0,2),(3,4,0,3),...,

p(13n+ 8)(10),(12),(8,1),(11,1),(8,2),(1,10,0,1),(2,8,0,2),(12,8,0,2),(8,10,0,2),...,

p(13n+ 9)(10),(2,8),(1,11),(10,12),(12,9,0,1),(1,6,0,2),(10,8,0,2),...,

p(13n+ 10)(12),(8,2),(2,8),(12,10),(8,12),(1,7,0,1),(1,10,0,1),(5,1,0,3),...,

p(13n+ 11)(10),(12),(11,1),(8,2),(1,8),(10,10),(1,11),(3,5,0,1),(2,8,0,2),...,

p(13n+ 12)(10),(3,6),(2,8),(12,8),(1,11),(5,3,0,1),(1,5,0,1),(7,0,0,2),....
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