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Abstract
Applications of Modular Forms to Elliptic Curves and Representation Theory
By Tessa Cotron

The theory of modular forms has many applications throughout number theory. In a
recent paper [3], Bacher and de la Harpe study finitary permutation groups and the
relations between their conjugacy growth series and p(n), the partition function, and
p(n)e, a generalized partition function. The authors in [3] conjecture over 200
congruences for p(n)e which are analogous to the Ramanujan congruences for p(n).
Along with this, the study of asymptotics for these formulas is motivated by the group
theory of [3]. We prove all of the conjectured congruences from [3] and give
asymptotic formulas for all of the p(n)e. Modular form congruences also play a role in
the theory of elliptic curves. In [11], the authors look at modular forms and other
polynomials which reduce modulo p to the supersingular polynomial ssp(j) for a given
elliptic curve E over a field Fq. We look at these results, which give four modular
forms that reduce to the supersingular polynomial ssp(j). We also look at the Atkin
orthogonal polynomials which give another way of finding polynomials that reduce
modulo p to ssp(j), and we examine the hypergeometric properties of these

polynomials and modular forms.
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1. INTRODUCTION

The theory of congruences arise in many different areas of math, and in particular
all throughout number theory. Recall that two integers a and b are congruent modulo
an integer n if n divides a — b. Although this is a rather simple concept, it proves
to be an extremely useful tool with many applications. Two areas of number theory
which rely heavily on the theory of congruences is the study of partition functions
as well as the study of elliptic curves. This paper will focus on specific applications
of the theory of congruences in regards to these two subjects. The first half of the
paper will look at the arithmetic of supersingular elliptic curves, while the second
half of the paper will focus on congruences which arise from finitary permutation

groups.

1.1. Elliptic Curves. An elliptic curve over a field K is given by y? = f(z) where
f(x) is a cubic without repeated roots. Finding the K-rational points on a given
elliptic curve has long been a question of study. If one is given two points on the
curve, there is a nice way of adding them to produce a third point. It turns out that
the K-rational points on an elliptic curve form a group, and this nice way of adding
two given points to produce a third will be defined as the group law in Section 3| For
our purpose the field K will be taken to be a finite field, namely K = F,, for the first
half of this paper. There are two useful numbers attached to a given elliptic curve
E called the j-invariant and the discriminant of E. These will be defined in Section
The j-invariant is important in the study of elliptic curves for many reasons, one
being that the j-invariant identifies an elliptic curve up to isomorphism.

There exists a special class of elliptic curves over a finite field known as supersin-
gular elliptic curves. Given that the finite field has characteristic p prime, an elliptic
curve can be identified as supersingular based on whether or not it has p-torsion over
the algebraic closure of IF,. This will be explained in more detail in Section @ An

elliptic curve over the rationals Q is supersingular modulo infinitely many primes.



However, the probability that an elliptic curve over a finite field F, is supersingular
is O(1/ V/q), making them very rare. Whether or a not a given elliptic curve E is
supersingular depends only on its j-invariant. It is a known fact that only finitely
many supersingular j-invariants exist in the algebraic closure of a finite field of char-
acteristic p. For a supersingular elliptic curve F, the j-invariant of F is contained in

F

2, and there are approximately {5 supersingular j-invariants in 2. Using these
j-invariants one can define the supersingular polynomial ss,, which will be stated
in Section The first half of this paper will focus primarily on polynomials that
reduce modulo p to the supersingular polynomial ss,(j).

The theory of modular forms will play a significant role in this process, and in
the study of elliptic curves in general. Section |2] will give the necessary background
on modular forms. Two very special functions in the theory of modular forms are
the Delta function A and the modular j-invariant j(7). Given a modular form f, it
can be written in terms of the delta function and what will be defined as the divisor
polynomial fof the modular form f with exponents in terms of § and ¢ which will

be determined by f. We will define in section [4] four special modular forms Ej, G,

Fy, and Hy, which will give us the following theorem.

Theorem 1.1. Let k = p — 1 where p > 5 is prime and let f be any of the four
modular forms Ey, Fy, Gy, Hy, then the coefficients of the associated polynomial f

are p-integral and

(1.1) ssp(j) = £5°(j — 1728)°f(j)  (mod p).

In particular, for p > 5 prime, then we have that

(1.2)  Ep1(j) = Fpor(j) = (—1)°7Gpo1(j) = (-=1)°TH,1(j)  (mod p).



Example 1.2. Suppose that p = 13, then & = 12; for this k, we will get that
€ = d = 0. Therefore

ssp(j) = E12(j) = Fia(j) = Gr2(j) = Hia(j)  (mod p).

Along with this, we will give in section [2| a way of showing that

~ E12 ~ G12 ~ H12 ~ F12
12 N G12 N 12 N 12 A

Example 1.3. For p = 23, we have that £k =22, and e = =1, so
ssp(j) = §(j — 1728)Ena(j) = j(j — 1728)Ga(j)
= j(j — 1728) Hao(j) = j(j — 1728)Fp;  (mod p),
and

_ by a _ G i __Hy» jo- Foo
AE,Es’ 27 AEEs 2T AEEs T AELE

E22 =

In Section [2| we will revisit these examples to look at how to calculate the values

of €, 5, and f(j).
The Hecke operator will be defined in Section [2] and will be important for the
next theorem. If one lets V' be the space of polynomials in j where j is the modular

j-invariant, then the following theorem and proposition are both true.

Theorem 1.4. There is a unique function, up to a scalar multiple, ¢ on V for
which all Hecke operators T, : V. — V, n € N, are self-adjoint with respect to the
associated scalar product (f,g) = ¢(fg), and a unique family of monic polynomials

A (j) of degreen = 0,1, 2, ... which are orthogonal with respect to this scalar product.

Proposition 1.5. The following definitions of a scalar product on V coincide:

i) (f,g) = constant term of fg as a Laurent series in V;

ii) (f,g) = constant term of fgEoE,/Es as a Laurent series in j

i11) (f,g) = constant term of fgEs as a Laurent series in q;



iv) (f,9) =& [717 F(e?)g(®)db

The A,, in Theorem will be known as the Atkin polynomials, and will be
discussed in detail in section These polynomials can be described in several

explicit ways given in the next theorem.

Theorem 1.6. The Atkin polynomials A, are defined as follows.

i) Recursion Relation:

, , 144n? — 29 ,

v () = (7= 24 g 1y a0 1)) M0

(12n — 13)(12n — 7)(12n — 5)(12n + 1)
n(n—1)(2n —1)2

(1.3)
— 36

Anfl (J)

forn > 2 with Ag(j) = 1, A1(j) = j — 720, and As(j) = j2 — 1640 + 269280;
ii) Closed Formula:

(1.4)
= £ (Eor () ) IEY b

iii) Differential Equation:

(1.5)
32— )*(n%j — 14 A" + j(j — ¢)[6n%5% — 144(36n° + 7)j + /3] A,

— [(2n* — Tn?)j% — 48(72n* — 254n% — 30)5% — 4¢(240n> + 413)j + 320¢7] A,
—[(2n* — n?)j% — 24(72n* — 13n% — 12)j + 2¢(192n> — 107) A, ]

+ [n55 — 24(18n* — n?)]A,

where ¢=1728 and A,, is the unique polynomial solution of this equation.

The first five Atkin polynomials are listed below, and can be found using either

the explicit formulas just given, or through the Gram-Schmidt orthogonalization



process, as will be shown in Section

Ai(j) =7 — 720

As(j) = j% — 16405 + 269280,

12576
A3(j) = * — =54 + 1526958 — 107765856,

Ay(5) = j* — 338453 + 352855252 — 113263680, + 44184000960.

In general the coefficients of the Atkin polynomials A,, are rational, but for primes
p > 2n they are p-integral. It will be shown that there is a nice relation between
the Atkin polynomials A, and the supersingular polynomial ss,, which is given by

the following theorem.

Theorem 1.7. Let p be prime, then ssy(j) = Ap,(j) (mod p) where ny, ~ & is the

degree of the supersingular polynomial, and Ay, (j) has p-integral coefficients.

This theorem implies that one Atkin polynomial may work for as many as four

supersingular polynomials.

Example 1.8. In the case that 12n—13, 12n—7, 12n—5, and 12n+1 are all prime,
the supersingular polynomial for each of the four primes is the mod p reduction of
the same Atkin polynomial. In particular, this will be the case for the primes

p = 23,29,31,37. For p =29 one gets that A3(j) = j* + 252 + 215 (mod p).

1.2. Partition Functions and Finitary Permutation Groups. Bacher and de
la Harpe, in [3], study infinite permutation groups that are locally finite. They
investigate word length statistics for such groups with respect to various generating
sets of transpositions. Given a nonempty set X and a permutation g of X, the
support of g is sup(g) := {x € X : g(x) # x}. The group of permutations with

finite support is called finitary symmetric group of X, denoted by Sym(X). The



subgroup of Sym(X) with even signature permutations is the finitary alternating
group Alt(X). Given a group G and a generating set S, for ¢ € G, the word
length g s(g) is the smallest non-negative integer n such that g = s1s2- - s, where
51,82,...,5, € S U S~ The smallest integer n such that there exists A in the
conjugacy class of g where £ g(h) = n is called the conjugacy length kg s(g). Denote
the number of conjugacy classes in G made up of elements g where kg s(g) = n for
n € N by vg.s(n) € NU{0}U{oo}. If y5 g(n) is finite for all n € N for a pair (G, S),

then define the conjugacy growth series to be

(1.6) Ca,s(q Z’YGS

By classical facts on symmetric groups, there exists a bijection between between
conjugacy classes of S, (X) with sets of integer partitions. Recall that a partition
of a positive integer n is a non-increasing sequence A := (A1, Ag,...) such that
ijl Aj = n. The partition function p(n) counts the number of partitions of n.
This function has been studied both for its uses in number theory and combinatorics.

The generating function for the partition function is given by

(1.7) > s = I =
n=0 n=1

Bacher and de la Harpe, motivated by their study of subgroups of Sym(X), define
generalized partition functions, which are defined given a vector e := (e, ea,...,ex) €
ZF. Given such a vector, the corresponding generalized partition function p(n)e is
defined as the coefficients of the power series

oo 0o

00 k 1
(18) T;)p(n H 1 — qmn e .. (1 _ qkn)ek

1 —
m=1 n:l 7l=1 q

Observe that p(n) = p(n)). This function p(n)e can be interpreted as multi-

partition numbers with constraints on the parts.



The study of the asymptotics of these power series is motivated by the group
theory in [3], while the classical work of Ramanujan motivates the study of their
congruences.

Bacher and de la Harpe define the exponential rate of conjugacy growth, given a

group G with generating set S, to be

: 1
Eﬁ?g]::hnlsup OgWTES(n).
’ n—00 n

The values of H, g’gj are 0 for the specific cases we study; thus, define the modified

exponential rate of conjugacy growth to be

~ o 1
(1.9) Héogj = lim sup 20876, 16.s(n) .

n—00 V/ﬁ

Let S C Sym(N) be a generating set such that SI\CIOX C S C Ty, where
(1.10) S = {(i,i+1) :i € N}

is such that (Sym(N), S$°%) is a Coxeter system, and

(1.11) Tn = {(z,y) € Sym(N) : z,y € N are distinct}

is the conjugacy class of all transpositions in Sym(N). More information on Cox-
eter systems can be found in [5]. With S a generating set defined in this way, by
Proposition 1 in [3], the generating function for p(n) given by corresponds to
the conjugacy growth series Cgyy(wvy,s(q) namely

o0

(1.12) Csymmy,s(@0) = [ [

n=1

1
1—qn

Given this conjugacy growth series of the finitary symmetric group, one has that
the famous Hardy-Ramanujan asymptotic formula

€ﬂ1/2n/3

(1.13) p(n) ~ V3



as n — oo implies that the coefficients of the conjugacy growth series defined by a
set S, Ysym(n),s(n), approach the right-hand side of (1.13) as n — oo.
Now let S’ C Alt(N) be a generating set of Alt(N) such that S§ C S’ C T4,

where we define

(1.14) S§ :={(i,i+1,i+2) € Alt(N):i € N}
and
(1.15) Ty := Ugeanm) 959"

By Proposition 11 in [3], the conjugacy growth series for the pair (Alt(N),S’) is

given by
1~ /n 1
(1.16) Can.sr(@) = 5 2.p(5) 4"+ 5 D pa(n)g”
n=0 n=0
1o 1 1 1
= 5 U gy
— 2 _ 27
2 n=1 1 " 2 n=1 (1 qn)

where p (%) = 0 for all odd n and pa(n) denotes the number of 2-colored partitions

of n. By combining ([1.12)) and (1.16)), one gets that

(1.17) 27a1(N),57 (2n) = p(n) + p2(2n)

= Ysym®),s (1) + p2(2n).

In Section [7] we will define quantities  and , which will give us the following

theorem.

Theorem 1.9. Given a nonzero vector e := (e1,ea,...,ex) € 7k where e,, > 0 for

all m, as n — oo, we have that

AT
p(dn)e ~ 317 2m7



where
N k —
-11(5)
and
A= ﬂ;é

Example 1.10. Let e = (1). Then d = 1,y = 1, and § = 1, so A = —~ and

5

A= %2. Then as n — 0o, we have that

e7r\/2n/3
p(n)(l) ~ T\/g;

and our asymptotic coincides with (1.13]).

Along with finding generalized asymptotic formulas, we study generalized forms
of Ramanujan’s congruences including those conjectured by Bacher and de la Harpe

in [3]. The Ramanujan congruences are [4]:
p(bn+4) =0 (mod 5)
p(Tn+5) =0 (mod 7)
p(1ln+6) =0 (mod 11).
Definition 1.11. With the definition of generalized partition numbers, Bacher and
de la Harpe define a generalized Ramanujan congruence as:

(i) a nonzero integer vector e := (e, ea,...,ex) € ZF,
(ii) an arithmetic progression (An+ B),>o with A >2and 1 < B < A—1, and

(iii) a prime power ¢ with ¢ prime and f > 1

such that
p(An+ B)e =0 (mod ¢)

for all n > 0.
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Remark. Note that in Theorem the e,,’s must be nonnegative, whereas here

the e,,’s are allowed to take on negative values.

Bacher and de la Harpe conjectured over two hundred generalized Ramanujan
congruences for p(n)e. They observe that the coefficients of conjugacy growth series
satisfy congruence relations similar to the classic Ramanujan congruences for the
partition function, then use these congruences to analyze the finitary alternating
group.

Two types of congruences appear in 3], both of the form p(én+ B)e =0 (mod ¢).
The value of B is uniquely determined by the vector e for the first type of congru-
ences. The second type consists of sets of congruences of the form p(fn + B)e =0

(mod /) with varying values of B using the same values of ¢ and e.

Example 1.12. One example of the first type of congruence is the conjectured

congruence
p(5n +2)(20,04) =0 (mod 5)

for all n > 0.
Example 1.13. A set of the second type of congruence is the pair of conjectured
congruences
p(5n +2)(2,0,0,2) = P(5n + 3)(2,0,02) =0  (mod 5)
for all n > 0.

In Section 8.2 we give an algorithm for determining the number of values of p(n)e

that must be computed in order to guarantee a congruence.
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Given a vector e := (e, eg,...,ex) € ZF and a prime ¢ > 5, we construct a vector
of nonnegative integers ce := (c1, o, ..., ci). Let € := e — fce. We then define
1k
(1.18) wi=—g Z en
m=1

and

PN

0 _

(1.19) N := 24Ny gcd(24,mz_:l Eelm) 1

where Ny :=lem{m : e}, # 0}. The vector €’ satisfies the following conditions:
(i) e}, <0 for all m,

(ii
(iii
(iv) SF _ L el =0 (mod 24).

Now define

(1.20) Ko := 12NH ( )

p|N

Zm L me,, =0 (mod 24),

w € Z, and

)
)
i)
)

where the product runs over all prime divisors of N.
For the first type of congruences conjectured in [3], the vector e determines the

value of B as follows: define

k
(1.21) o= Z mem,
and

122 . 2 (mod¢) (124
. YA =

0 0]24

where 5 is taken as the multiplicative inverse of 24 (mod ¢). Using this notation,

we arrive at the following theorem:
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Theorem 1.14. Assume the notation above. Let ¢ > 5 be prime. Then p(fn+dp)e =
0 (mod ) for all n if and only if p(fn + dp)e =0 (mod £) for all 0 < n < K.

The second type of congruence conjectured in [3| relies on a similar method, but

requires using the Legendre symbol with respect to the prime ¢. Define two sets as

follows:

(1.23) S+::{w€Z:<W>zland0§w§€—l}
and

(1.24) S_::{WGZ:(W):—1andogygge—1}.

We then define

!/ ﬂ 2 1
(1.25) Kgi= | 5N 11 (1+p> :
pINE?

where the product runs over all prime divisors of N¢2.

Theorem 1.15. Assume the notation above. Let £ > 2 be prime where if £ = 2 or
3, a =0 (mod ¢). Then p(fn+y)e =0 (mod £) for all n and all v, € St (resp.
S_) if and only if p(bn+~ys)e =0 (mod £) for all 0 <n < K, and all v, € Sy (resp.
S_).

With Theorems and we obtain the next corollary.
Corollary 1.16. All of the conjectured congruences in 3] are true.

It is natural to ask whether their are congruence relations between the coefficients
of the conjugacy growth series of the finitary symmetric group and the finitary alter-
nating group. By , there exist congruences modulo powers of primes between
2741t(w), 57 (2n) and Ygym(w),s(n) whenever the “discrepancy function,” p2(2n), is con-

gruent to 0. Using the previous theorem we get the following examples.
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Example 1.17. For all n = 2,3,4 (mod 5), we have that

271,57 (21) = Ygym(w),s(n)  (mod 5).

Example 1.18. For all n =17,31,38,45 (mod 49), we have that

29a1(N), 5 (21) = Ygymv,s(n)  (mod 7).

Ramanujan stated congruences for the partition function p(n) modulo powers of
5, 7, and 11, which were proved by Watson in [18]. Atkin also proved the existence
of congruences for the function ps(n) modulo powers of the primes 5, 7, and 13
in [2]. Using these results, we obtain congruences between the coefficients of the
conjugacy growth series for these groups modulo powers of 5 and 7.

We will let S C Sym(N) be a generating set of Sym(N) such that Sgox c S C 1y,

where Sgox and Ty are defined by (Il.lO[) and dl.ll[), respectively. In addition, we
let S C Alt(N) be a generating set for Alt(N) such that S§ C S' C Ty, where S4
and T; I{} are defined by 1’ and 1 , respectively. Using this notation, we arrive

at the following theorem.

Theorem 1.19. Assume the notation above. Let £ =5 or 7 and let j > 1. Then
for all 24n =1 (mod #7), we have that

Yau(), 5 (27) = Ysymw),s(n) =0 (mod ¢U/271).
Example 1.20. For example, modulo 5, 25, and 125, we obtain for all n > 0 that

Yar),s (2 - 5% +1198) =0 (mod 5)
YAl(N),s5 (2 - 550 +29948) = 0 (mod 25)

Yan),s (2 5°n + 748698) =0 (mod 125).
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Likewise, modulo 7, 49, and 343, we obtain for all n > 0 that

YAL(N),s (2 - 7in 4 4602) =0 (mod 7)
YAl (2 700 +225494) =0 (mod 49)

YA, (2 7°n 4 11049202) =0 (mod 343).

We would also like to ask what holds for general primes ¢ ¢ {5, 7}. Following the
work of Treneer [17], we prove congruences between the coefficients of the conjugacy
growth series for (Alt(N),S’) and (Sym(N),S) modulo arbitrary powers of primes
£ > 5. Treneer’s work gives general congruences for coefficients of various types of
modular forms. We follow her method and make it explicit.

Let ¢ > 5 be prime. We then define

2 5<¢<23
(1.26) my =

1 ¢>29,

_QU™MB+1
(1.27) dp 1= 2 ,
and
2

(1.28) By = Q;jw (mod 24).

Using this notation, we arrive at the following theorem.

Theorem 1.21. Assume the above notation. Let £ > 5 be prime and let j > 1.

Then for a positive proportion of primes Q = —1 (mod 144¢7), we have that

2va1(w),57 (2Q€™ 0 + 260) = Ysyma) 5(QC™n + &¢)  (mod )

for all 24n + By coprime to QL.
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In Section [2| we will cover the necessary background on modular forms including
Hecke operators, eta functions, and divisor polynomials. Section [3|covers the general
background on elliptic curves and give a way of determining whether an elliptic
curve is supersingular or not. We prove Theorem in Section [ Section [5] covers
results on orthogonal polynomials, then we prove Theorem Proposition [1.5
Theorem and finally Theorem In Section [6] we look at the hypergeometric
properties of the modular form Fj from Theorem We look at asymptotics
for the generalized partition functions and prove Theorem in Section We
give an algorithm for computing the vector ce in Section [§] and then give proofs of
Theorems and We prove Theorem in Section[9} In Section [I0] we use
our results to look at congruences for pa(n) and give a proof of Theorem The
final section, Section is an appendix with a list of the conjectured congruences

from [3].

2. MobuLAR FORMS

Modular forms play an important role in the theory of elliptic curves. Here we
will discuss the necessary background on modular forms. The information discussed
here along with more on modular forms can be found in [13] and [12].

The group SLy(Z) is the group of 2 x 2 matrices with integer entries and deter-
minant equal to 1. This group is important in the study of modular forms, and is

generated by the matrices

0 -1 11
S = , T =

The standard fundamental domain for the action of SLo(Z) is given by

(21) §=f{r: 5 <RE)<0and [1| > U {r:0<R(r) < 3 and [r| > 1},
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In order to give the definition of a modular form, we must first define the notion

of a congruence subgroup.

Definition 2.1. For N € Z*, the level N congruence subgroups T'o(N), T'1(N), and
I'(N) are defined as

(" Z €SLo(Z) te=0 (mod N)}

[o(N) :

Fl(N)::{ ¢ Z €8Sle(Z)a=d=1 (mod N), and ¢ =0 (modN)}

F(N)::{ o0 €Sle(Z)a=d=1 (mod N),andb=c=0 (modN)}.

Given I' a congruence subgroup of SLg(Z), then a cusp of I' is an equivalence

class in P}(Q) = Q U oco.

Example 2.2. If T" = SLy(Z), then there is only one cusp; it is customary to choose

the point at oo to be its representative.
We will need the following fact about congruence subgroups from [13] p. 2]:

Proposition 2.3. If N is a positive integer, then
1
ro(t): ro(] = N (14 )
pIN

where the products are over the prime divisors of N.

Given f(7) a meromorphic function on H and k € Z, the “slash” operator [ is

defined by
(fle)(r) := (det 1)*/2(er +d)~F f(y7),

for
at +b
cr+d’

T =
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Using these notions we can now give the definition of a modular form, which will

be essential to the rest of the paper.

Definition 2.4. Given a meromorphic function f(7) on the upper half plane H,
k € Z, and T" a congruence subgroup of level N, then f(7) is a modular form if the

following properties hold.

a b
(1) For all 7 € H and all € I one gets
c d

D) = e+ @5,

(2) Given 7g € SLa(Z), then (f|xy0)(z) has a Fourier expansion of the form
(flrr0)(1) = Y ay(n)dy,
N2>Ney
where gy := e2™*/N and a., # 0.
2.1. Eisenstein Series. The weight k Eisenstein series Ei(7) plays an important

role in the theory of modular forms. Before giving the definition of Ej(7), define

By as the kth Bernoulli number, namely the kth coefficient given by the series

S ¢k t 11
2.2 By — = =1——t+—t+ ...
22) 2 B = a s ' Tt T
k=0
Using this definition, we can now define Ej(7) as follows.

Definition 2.5. For even k, the k" Eisenstein series is defined by

2k N\ .
(2.3) Ekm:l—BkZ(Zd’“ 1>q ,

where g = €277,

Proposition 2.6. Ej is a modular form of weight k for k > 4 and k even. In the

case k = 2, E}, is not modular.
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Proof. There is a classical calculation, which can be found in [12, pg. 110], that
implies

(2.4) NME() = Y :

P
(m,n)€Z2—{(0,0)} (mT T n)

where ((s) is the Riemann zeta-function. The double sum given here must be
absolutely convergent since k > 4, and in any compact subset of H is uniformly
convergent. This gives that Ej(7) is a holomorphic function on H.

Along with this, observe that by (2.4)) one gets that

1 1
Bolr+1) = ——

1 1
(2.5) - Z -
2¢ (k) () eRT(0.0)} (mm 4+ (m+71))
= Ex(1)
and
1 1
B-D =g O k
DT By T )
1 Tk
(2.6) - Z _
— ok
28 ez o0y T ™
=7 Ey(7)
This implies, since
0 -1 1 1
S = and T =
1 0 0 1

generate SLo(Z), that E (1) € M. Therefore, for k > 4 and k even, Ej, is a modular
form.

In the case k = 2, observe that

By(r)=1-24> o1(n)q",
n=1
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where
op—1(n) = Z d*L,
1<d|n
For € H,
(2.7) 2By (—1/7) = By(r) + —2
omit’
thus E5 is not modular. O

Even though E5(7) is not a modular form, it does play an important role in the
theory of modular forms, and is considered to be“nearly modular”. More precisely
this means

ar +b
ct+d

) = (et 4+ d)* By (1) + 0

(2.8) EQ( —cler +d),

for (¢8)eT.

Along with this, define the Delta-function as

3 _ 2
(2.9) _ Ei—Eg
1728
and the modular j-invariant as
, By(r)?
2.10 = .
(2.10) i) = A

The next proposition relates Eo, E4, Fg and A by their derivatives, but first recall

that the theta operator is as follows

d 1 d
2.11 O=qg— = — )
( ) qdq 2wt dt

The following theorem and proof are also stated in [4], and more information on the

special equations used in the proof can be found there.
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Proposition 2.7. The derivatives of Es, Ey, Fg, A, and j are given by the following
(2.12)

/ EyEg — E?
E2: 21456 4

2 )

, _E2E,
A = E,A, = 476
2 9 ] A

E2—E, ,  EyEy— Eg

E. =
12 6

Proof. Ramanujan defined the following equation

o0

(I)r,s(Q) — Z k_rnsqkn;

(kn)=1
Eisenstein series are special cases of this function as is discussed in further detail in

[4]. Now define the equation

—Byi1 —Bry1 = k¢*
2.13 S, = ——"t 1§ =y
( ) r 2(7“ T 1) + O,T(Q) 2(7“ + 1) r 1_— qu
then

Eg(q) = *2451, E4(q) = 24053, Eﬁ(q) = *50435

From this one can derive the three following equations

dE>(q)
2.14 — 240
(2.14) dq 12(9),
dE4(q)
2.1 = 2409
(2.15) q g 0D 4,
(2.16) qd%@) = —5040 ¢.
q

Recall the identity cot?(f) = —(1 + d% cot(f)) and observe that

T ¢ (:c) —ix 1T
—cot | =) = — —
2 2 2 |
o0 .
—ix (—ix)™
=5 T2 B
m=0
B i (_1)nanx2n
B (2n)!
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where the last step is possible due to the fact that By = —1/2 and Ba,41 = 0 for
n > 1.

Using these one can derive the following

1 ,/1 1 & )" Bapni2(2n + 1)62"
— cot (fe): — 4= .
) 42 (2n + 2)!

Use the Maclaurin series for sin(z) and cos(z), namely

] o (_1)n1,2n+1 e n 2n
Sln(m) = Z m, COS Z s
n=0 n=0

and let x go to kf to obtain

BZnQQn 1 o oo nk2n+192n+1
(353 e S e s )

n=0

oo

1 11 (=1)"Banss > > %2”02”
462 24+4nzl(2 ).(2n+2 kz (1—q*) 22
1 > qu & (_1)n—1k2n on
+§Zl—qkz (2n)! o
k=1 n=1
Collect common powers of 6, and use (2.13)) and
> ) f > anqk
P12n(q) = Z mk™q"" = Zm,
m,k=1 k=1
to get that
S0+ 20— )
CRASTURE"
1 P20 Piag 53 p2 554 S7 6
4@'*51 AT _“‘*2(m9 et 2l ).

Again equate coefficients, this time of 62" for n > 1, to get

(=)™ Sopqr (1) P
2 (2n)! | (20 M

@n—1) " 3 @2n-3!" " @2n-1)1!

:(_1)n_1<51 Son—1 +§ Son—3 P o Son—1 S1> (zl)n52n+1

2n +1)!

)



which simplifies to

2n + 3 N
(2.17) 2((2714'1))52n+1 — P19, = Z <2k B 1) Son—ok+1-
k=1
Set n =1 in (2.17) to get
(2.18) 288®1 5 = F4(q) — Ea(q)*;
set n =2 in (2.17) to get
(2.19) 720914 = E2(q)E4(q) — E6(q);
set n =3 in (2.17)) to get
(2.20) 1008® ¢ = E4(q)* — E2(q)Es(q)-

Substitute (2.18]) into (2.14)) to get

2@ _ Ea(q)* — Ea(q)

(2.21) i 5

substitute ([2.19) into (2.15)) to get

dEs(q)  Ea(q)Ea(q) — Es(q)
q dq - 3 ’

substitute (2.20]) into (2.16) to get

dEs(q)  E2(q)Es(q) — Ea(g)?
4 2 '
q

(2.22)

(2.23)

Now since A is defined as in ([2.9)), one gets that

,  3E}E, — 2FgEg

A ;
1728

substituting in for E:l and Eé we get

E»(q)(E4(q)® — Es(q)?)

(2.24) 1798

= Es(q)A(g).

22
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Recall j is define by ([2.10)) so

. A3SEIE, - BN
] - A2 )

by substituting in the equations for Ej and A’ this becomes

AE3(EyEy — Eg) — E3(E2A)  —E2?FEg

A? A

0

2.2. Eta Functions. One modular form which will be important for the second
half of this paper is Dedekind’s eta-function, a weight 1/2 modular form defined as

the infinite product

n(z) =¢">* T[(1-q"),
n=1

where ¢ := > and z € H. A useful fact about the eta-function is that it has the

following transformation property as described in 13} p. 17]:

(2.25) 0(-1) = Citac).

Definition 2.8. An eta-quotient is a function f(z) of the form
f(z) = n@2)s,
SIN

where N > 1 and each 75 is an integer. If each r5 > 0, then f(z) is known as an

eta-product.
The following proposition regards properties of eta quotients.

Proposition 2.9. If f(z) = [[ n(02)" has integer weight k = % > rs, with the
S|N S|IN
additional properties that

Z drs =0 (mod 24)
SIN
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and
N
Z 5T = 0 (mod 24),
SIN
then f(z) satisfies

(2.26) F(E50) = e+ )

for every € T'o(N) where the character x is defined by x(d) := (T),
c d

where s := [[556™.

2.3. Operators on Modular Forms. Any modular form that is holomorphic
(resp. vanishes) at all cusps of I'g(N') and satisfies (2.26]) is said to have Nebentypus
character x. The space of these forms is denoted My (T'o(N), x) (resp. Sk(To(N), x))-
If k is a positive integer and f(z) satisfies the conditions of Proposition and is
holomorphic (resp. vanishes) at all of the cusps of Tg(N), then f(z) € Mi(To(N), x)
(resp. Sk(To(IN),x)). If f(z) satisfies the conditions of Proposition[2.9]but has poles
at the cusps of T'g(N), then call f(z) a weakly holomorphic modular form; the space
of such forms is denoted M} (To(N), x).

Definition 2.10. If f(z) = >.°° a(n)q™ is a weight k& modular form, then the

n=ng

action of the U-operator U(d) on f(z) is defined by

QL
—_

oo

FUW@) =d2 Y f(2) kova= Y aldn)g™

n=ng

S
Il
=)

Likewise, the action of the V-operator V(d) is defined by

f(2) | V(d) = d™% f(2) | e 3 a(n)g™.

Let V. denote the space of holomorphic functions in H that transform like modular

forms of weight k£ with at most exponential growth at infinity for f € V. Define
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the Hecke operators on Vj, by

aT—i-b)’

(2.27) (FIRT)(7) = b2 Ly
g ;(CT—i—d)k (CT+d

where A = (24) € T\ M,, for n € N and M,, the set of 2 x 2 matrices with integral
coefficients and determinant equal to n.
More precisely, we can define the Hecke operator in regards to the character x of

a modular form and a prime p as follows in the next definition.

Definition 2.11. If f(z) =Y 77 a(n)q" € Mi(To(N), x) and p is prime, then the
action of the Hecke operator Ty, on f(z) is defined by

o0

FE) | Ton =D (a(pn) + x(p)p* " aln/p))q",

n=0

where a(n/p) =0if p{n.

The Hecke operator only makes sense for f € Vi, but for any 1-periodic function

f, define the Hecke operator at infinty as

(228) UWT) =t 3 3 akp(UTE),

d
ad=n b(mod)d
a,d>0

Since the matrices (&) with 0 < b < d = 2 are set representatives for I'\ M, the
operator at infinity agrees with |;7T), for f € V.

Now recall the following result from [13, p. 21,28]:

Proposition 2.12. Suppose that f(z) € Mi(To(N), x).
(1) If d | N, then
f(2) | U(d) € My(To(N), x)-

(2) If d is a positive integer, then

f(2) [ V(d) € My(To(Nd), x).
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(3) If p is prime, then
f(Z) | T N5% S Mk(FO(N)7X)

Note that when one hits with the U and V operators, or multiplies by another
modular form, that the character y is apt to change. For more information on these
operators see [13, pg. 28|.

We now recall the notion of a “twist” of a modular form. Suppose that f(z) =
Yoo pa(n)g” € Mi(To(N),x). If ¢ is a Dirichlet character (mod m), then the
-twist of f(z) is defined by

Recall that ¢(n) = 0 if ged(n, m) # 1. We will use a property of “twists” from [13] p.
23]:

Proposition 2.13. Suppose that f(z) =Y > ja(n)g” € M(Lo(N),x). If ¢ is a

Dirichlet character with modulus m, then

f(2) € Mi(To(Nm?), xv?).

2.4. Divisor Polynomials. Now the notion of a divisor polynomial of a modular

form will be defined as given in [13, p. 31]. Define Ej, as

1 ifk=0 (mod 12),

Ey(1)?Eg(1) ifk=2 (mod 12),

- E4(7) ifk=4 (mod 12),

(2.29) Ei(1) =
Es(T) ifk=6 (mod 12),
Ey(1)? ifk=8 (mod 12),

Ey(1)Egs(T) ifk=10 (mod 12),
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and m(k) as

| & ] ifk#2 (mod 12),

J—y

(2.30) m(k) :=

|&£] -1 ifk=2 (mod 12).

Now given f(r) € My, with F(f,z) the unique rational function in z such that
f(r) = AW ER(7)F(f, (),
then F' (f,x) is a polynomial. Further, define the divisor polynomial of f by
(231) F(f,) = he(@)F(f,2),
where hy(z) is given by

1 ifk=0 (mod 12),

2?(x —1728) ifk=2 (mod 12),

x ifk=4 (mod 12),
(2.32) hi(x) =

x — 1728 ifk=6 (mod 12),

x? ifk=8 (mod 12),

x(x—1728) if k=10 (mod 12).

\
Now recall that in examples ([1.2]) and (|1.3)) found in section (1.1}, we gave F(f,x)
and f( f,j(7)) for f = Ey, Gy, Hy, Fy, without showing where we had obtained these
values. In the following example we will work through the calculations for the case

p = 23 using the definitions of Ey, m(k), and hy(z).

Example 2.14. In the case p = 23 we have that £ = 22 = 10 (mod 12), so we have

that

Eay(1) = Ey(1)Eg(1), m(22) = ﬁ;J =1, ha(j(r) = §(r)((r) — 1728).
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This gives that

E2y(1) = A(T)E4(7)Es(7)F (Ea2, § (1)),

Gaa(1) = A(T)Ga(7) Ee(T)F (Gag, (7)),

Ha(7) = A(T) Ea(T) Eg(7) F (Ha2, § (7)),

Fop(7) = A(T) Ea(7) E6 () F (Faz, 5 (7)),

where F}. is the Eisenstein series defined in this section, and Gy, Hy., F}. are modular
forms that will be defined in section [4

Using these equations we get that

(B, (7)) = % E4E(Qj)(;)6(7')7
F(Ga,j(r)) = AEiQf)(J;l(T)’
Fttn, (7)) = 57, AR
F(F,j(1)) = AEf;Qj)(BG(T)7

which gives that the divisor polynomials for these modular forms are

F(B. () = §(7) () = 1728) 5 20
PG () =3 (i) = 1728) o2
Pt () = 3(7)(G(7) = 1728) 520
F(Fin, (7)) = (i)~ 1728) 5 20—

The divisor polynomial is important for reducing certain modular forms modulo

p to the supersingular polynomial ssp(j), which will be defined in the next section.
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3. ELLipTic CURVES

In [12], an elliptic curve over a field K is defined by a cubic polynomial y? = f(x)
with coefficients in K with distinct roots. The K’ points of the elliptic curve are
the solutions to the equation 32 = f(x). The fact that the curve has no multiple
roots makes it a smooth curve, i.e. the partial derivatives do not vanish at any point
on the curve. Along with this, an elliptic curve has what will be called the point
at infinity. In order to properly define the point at infinity we will briefly discuss
projective coordinates.

Given a curve y?> = f(x) we can rewrite it as F(x,y) = 0. Given a term z'y/,
the total degree is i 4+ j. If the maximum total degree of F(z,y) is n, define the
homogeneous polynomial F (z,y,2) to be the polynomial obtained by multiplying
each monomial z'y/ in F(x,y) by 2" *J. This brings the total degree in three

variables x, y, z to n. More precisely one gets

F(x,y,z)=2z"F(x,y).
Now, for any A € K one has that
(3.1) F(\z, My, \2) = \"F(x,y, 2),

and for any nonzero A € K we have FV()\ZE, Ay, Az) = 0 if and only if ﬁ(x, y,z) = 0.
More precisely, for z # 0, ﬁ(x, y,z) = 0 if and only if F(x/z,y/z) = 0. This makes
it natural to say that two points (z,y,2) and (2/,y/, 2’) are equivalent if there is a
nonzero A\ € K such that (2/,v/,2') = A(z,y, 2). The projective plane P% is then
the set of equivalence classes of triples (x,y, z) under this relation and omitting the
point (0,0,0). Observe that every equivalence class (x,y, z), with nonzero z, has a
unique point (z,y, 1), thus one can think of such equivalence classes as points in the
xy-plane. The left over points (x,y,0) form the line at infinity. This line at infinity

can be taken as an ordinary line made up of the equivalence classes with nonzero v,
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which must contain a unique point of the form (z,1,0), along with the single point
(1,0,0) which is called the point at infinity. This allows one to think of P2 as the
plane (z,y,1) with a projective line at infinity consisting of the line (z, 1,0) and its
point at infinity (1,0,0).

Therefore given 15(33, y,z) with z,y,z € K one can look at the solutions (z,y, 2)
in P2 to the equation ﬁ(:c, y,z) = 0. The solutions to this equation with z # 0 are
the points (z,y,1) such that F(z,y,1) = F(z,y) = 0. The left over points are on

the line at infinity.

Example 3.1. Let f(z) = 2 —n2x, then the elliptic curve y? = 23—n2x corresponds

to the equation y?z = 23 — n?z22. So using this we have

F(z,y) =y* — 2° + nz and F(z,y,2) = v’z — ° + n®z2>.

The points at infinity for this curve are the equivalence classes (z,y,0) where 0 =

ﬁ(x, y,0) = —23, namley x = 0. This in turn gives the equivalence class (0,1,0).

Note that any elliptic curve y? = f(x) will have exactly one point at infinity and
it will be the same point seen in the example: (0,1,0). For more information on
this see [12].

Every elliptic curve E over K can be written in terms of an affine equation, i.e.

a nonhomogeneous linear equation, of the form
(3.2) y: + a1zy + azy = 2° + aga® + asz + ap,

where each a; is in K. This equation is the generalized Weierstrass equation of E.
The characteristic of K, denoted char(K), is the minimal m € Z such that m
times the identity element of K equals zero. When char(K) # 2 or 3, the curve F

can be written, through a change of variables, in a reduced version of this equation
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known as the Weierstrass equation. The Weierstrass equation of E is of the form
v =23 +ar+b
with a,b € K. For more on the Weierstrass equations of an elliptic curve, see [7].

Example 3.2. The equation 4% = 23+ 1 is an elliptic curve since it has no multiple

roots. The graph of this curve is given in the following figure.

-
~ |

FIGURE 1. y? =23 + 1

Example 3.3. The equation y? = 2% — 3z +2 = (x — 1)?(z + 2) is not an elliptic

curve since 1 is a multiple root of the equation.

There exists a group law under which the points with coordinates in K on an
elliptic curve E over K in union with the point at infinity form an abelian group
which is denoted E(K). Suppose you are given two points already on the curve,
Py = (z1,y1) and P, = (z2,y2), then there exists a group law which will give you a
third point P35 = (z3,y3). Begin by looking at the line which connects P; and P.
This line is as follows

Y2 — Y1
T2 —I1

y = Ar + v, where A = and v = y; — Ax1 = Y2 — ATa.

Now substitute y = Ax + v into the equation for the curve to get

y? = Mz +v)? =23 +ax® + bz + ¢,
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which becomes
0=2%+ (a— ) )z? + (b —2)v)x + (c — v?).

The three roots x1, x2, x3 of this cubic equation give the x-coordinates of the three

intersection points of the line with the curve, therefore
23 4 (a — N2 + (b — 2 )z + (¢ — v?) = (z — x1)(x — 22)(x — z3).
By equating coefficients of 2% on either side, one gets
a—/\2:—x1—x2—x3,

thus

z3 =X\ —a— 11 — 29 and y3 = Az3 + v.

This construction and the following example come from [16, p. 23-27].

Example 3.4. Let our elliptic curve be given by the following equation
y? = a + 17,
and our initial points be
Py =(—1,4) and P» = (2,5).

The line through these points along with A and v are given by

1 1 1 1
yzgw—k;wi‘ch)\:gandv:;.

Therefore using the equations for x3 and y3 we get

8 q 109
T2 = —— aln = —_—
3 9 Y3 27
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Two important quantities related to elliptic curves are the j-invariant and dis-
criminant of E. Given that E is written in the form y? = 23+ ax+b, the j-invariant
and discriminant of E are defined in [14] as

(—48a)3

A A(E) == —16(4a” + 27b).

(3.3) J(EB) =

The j-invariant identifies ¥ up to isomorphism over Fq. More precisely, if F1 and
FE are two elliptic curves over the field K, then there is an isomorphism from F;
to F5 over the algebraic closure K if and only if their j-invariants are the same, i.e.

J(E1) = j(Esg). See |15, p. 45-47] for a proof of this.

3.1. Supersingular Elliptic Curves. From here on out it is assumed that the
field K is of the form F, for ¢ = p” where p is prime, i.e. the field K will be taken

to be a finite field of characteristic p.

Definition 3.5. Given an elliptic curve E over F,, the N-torsion of E is defined in
[14] as
E[N]:={P € E(F,): NP = Og}.

Definition 3.6. An elliptic curve E over a field F,, where ¢ = p” for some prime

p, is supersingular if any of the following equivalent statements are true |14]:

i) #E(F,) =1 (mod p),

ii) E(F,) has no p-torsion,

iii) End(F,) is non-commutative.
If F is not supersingular, then it is called ordinary.
Note that supersingularity depends on the j-invariant of F, and if E is super-

singular then the j-invariant of E is contained in Fj. [15, pg. 148]. There are

approximately {5 supersingular j-invariants in F 2.
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Let Gal(F,/F,) be the set of automorphisms of I, that map every element of F),

to itself, then

N, /r, (7) = H o(z).

oeGal(Fq/Fp)

Using these notations, the following proposition gives a way to determine whether

an elliptic curve E is supersingular or not.

Proposition 3.7. Take E to be an elliptic curve over IF, defined by the equation y? =
f(x) for f(zx) € Fylx] of degree 3. Let a, be the coefficient of xP~" in f(x)P~—1)/2,
then |E(Fg)| =1 — Ng_/r, (ap).

Proof. For x € F,, observe that

—1 if f(z) & (Fy)?
fla)a D2 = (M) =<0 it f(x)=0

1 if f(x) e (F))2.

Therefore the number of solutions to y? = f(x) given such an x € F, equals

0 if f(z) & (Fy)?
1+ f(2) D2 =39 if fa) =0
2 if f(z) € (FY)2.
Counting the point at infinity this gives
|E(F)| =1+ > (1+f(x)V?) inF,.
z€l,

Now define the sum over elements in [, to the 4% power by S := 3 2™ If n =0,
z€lFy

then S" =p™-1=0. If n > 1 with (¢ —1)|n then 0" = 0 and 2™ = 1 for z # 1, thus

S"=(¢—1)-1=—1. If n > 1 but (¢ — 1) { n then there exists some y € [, such
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that y™ # 1, but
z€F, z€Fq z€Fq

Since yx ranges over the field when x does, this gives that the last sum is equal to
S™, thus
yTLSTL — ‘Sf?’L7

which implies that in this case S™ = 0. Therefore, the sum > z™ is equal to —1
z€lFy

when n|(¢ — 1) and n # 0, otherwise the sum is equal to 0.
Since f(x) is a polynomial of degree 3, in the expansion of f(z)(@~Y/2 every term

is of the form z™ for 0 < n < %(q —1). This implies that

where a4 is the coefficient of £ in the sum, thus
|E(Fy)|=1—a, inT,.
On the other hand, for ¢ = p”, the expansion
f@)'F = J(@) 7 T = f(@)" @) L@

where f®") is the polynomial obtained by raising the coefficients of f to the p™th

power, implies that

T
Qg = a713+p+...+p = H o(ap) = Ng,/r,(ap),
ceGal(Fq/Fp)

which completes the proof of the proposition. O

Corollary 3.8. E is supersingular if and only if a, = 0.
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Proof. If a, = 0 then |E(F,)| = 1 (mod p), thus E has no p-torsion over F, and is
supersingular. On the other hand if a; # 0 then |E(Fsn)| = 1 — (Ng,/r,(ap))". If
the order of Ng_/r,(ap) divides n, then 1 — (N, /r,(ap))" is divisible by p. Therefore

1 — (N, /r,(ap))" =0 (mod p), so E does have p-torsion and is ordinary. O

Example 3.9. Take E : y?> = 2% — 2, and assume p = 3 (mod 4) for p prime, then
a, = 0 for a, as in Proposition This gives that |[E(F,-)| = 1 (mod p), which

gives that E is supersingular over F .

Given an elliptic curve E over [, of characteristic p, the supersingular polynomial

is given by

(3.4) sy = [ G-iE) eRl
E/F,
FE supersingular

Majority of the first half of this paper will focus on ways of reducing polynomials

to ss, modulo p prime.

4. POLYNOMIALS THAT REDUCE TO THE SUPERSINGULAR POLYNOMIAL

In [11] the authors are interested in ways of computing the supersingular poly-
nomials for elliptic curves, which was defined in equation . Zagier and Kaneko
describe several ways of constructing canonical polynomials in Q[5] that reduce mod-
ulo p to ss,(j). They begin by showing that there exists a family of polynomials
that come from special modular forms of weight p — 1 that reduce to ss,.

Let M}, be the space of modular forms of weight k on I' = PSL(2,Z). Then k can

be written uniquely as

(4.1) k=12m+40 +6e, m € Z>y, 6€{0,1,2}, eec{0,1}.
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The dimension of M, dim M. is equal to m + 1 and the modular forms in M) can

be uniquely written as

(4.2) f(r) = A" Ea(7)’ Eo() f(§(7))

where f is a polynomial of degree < m in j(7), and the coefficient of j™ in f is
equal to the constant term of the Fourier expansion of f. Note that the values of

m, 0, € and }’Vcan be found using and , , and . For each k,

define the four modular forms Ej, Gy, Hy, F} as follows:

e Fj := the normalized Eisenstein series of weight k;

o G}, := the coefficient of X* in (1 — 3E4(7)X* + 2E4(r)X6)~1/2;

e H, := the coefficient of X* in (1 — 3E4(7)X* 4 2Es(1) X6)*/2,

e Fy, for k # 2 (mod 3), is the unique normalized solution in M} of the
differential equation ¥ 19, F) = %EZle. Let 9% : My — Mj.o given
by f — f — kEyf/12 with f' = (2mi)~'df /dr = qdf /dq. Note, Es is the

nearly modular Eisenstein series of weight 2.

Definition 4.1. Given a prime p, and a nonzero t € Q, then ¢ can be written
uniquely in the form ¢t = §p” for some a,b,r € Z with b > 0, and gcd(p,ab) =

ged(a, b) = 1. The p-adic norm of t is then given by
(4.3) [tlp =

Using the the p-adic norm, one can define the notion of p-integrality as follows.

Definition 4.2. Given t € Q, call ¢ p-integral if |t|, < 1, and call a polynomial

f(z) € Q[z] p-integral if all of the coefficients of f(z) are p-integral.

Following the notations just given we get Theorem [I.1} which we will now prove.
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4.1. Proof of Theorem Recall that (2.12)) gives Ej, E}, E§, and A’, and

note that more generally one gets that Jx(f) = - %ng € Myyo for all f € M,

and where * denotes differentiation with respect to 2mir. With k as in 1D any

f € Mj, has a zero of multiplicity > 6 at 7 = ¢™/3 and a zero of multiplicity > e

at 7 = e™/2. This gives that EgEg divides f, and that there exists a polynomial

fof degree < m as in 1' which represents f. If £ Z 0 (mod 3), then Ej4 divides

every element of My.4. This implies that there exists an endomorphism ¢y of My

defined by ¢r(f) = E; "Or2(9(f)). However, iy, := k(ﬁzz) times the constant
term of f is the constant term of ¢ (f), thus the map preserves the codimension 1
subspace of cusp forms and induces the map multiplication by k; on the quotient
space. Therefore, ki is an eigenvalue of ¢. Let Fj be a corresponding eigenvector;
the other eigenvectors are then the modular forms A*Fy_1o; for i € [1,m] with the
eigenvalues kp_19; # K since ¥y - A® = A’ - 19;_19;. This gives that F, up to a
normalizing factor, is unique.

Now let p > 5 be prime, then for any elliptic curve E over F, of characteristic p,

F can be written in Weirstrass form as
E: y?>=2%—3Qx+2R.

If @ has degree four and R has degree six, define a graded homogeneous polynomial
H, 1(Q, R) of degree p—1 as the coefficient of 2P~ in (2 — 3Qz +2R)®~1/2. Note
that if Q = E4(7) and R = Eg(7), then Hp_1(E4(7), E6(7)) is equal to Hp_1(7)
defined at the beginning of Section

As was noted at the beginning of Section 4, H,_1(Q, R) can be written as

Hy,_1(Q,R) = A™Q°R°H,_4(j)
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for some H, ; € Z[j]. Using equations (2.29) and (2.30) for H, 1(Q, R) one gets

that for k=p—1,

0 ifp=1 (mod 3), 0 ifp=0 (mod 4),

_ |2 — _
m=|g5) o= , ‘., .
1 ifp=2 (mod 3), 1 ifp=1 (mod4).

Along with this, a, from Corollary is given by the divisor polynomial, found
using , thus E is supersingular if and only if j°(j — 1728)¢ Np,l(j) = 0. If this
is the case, then

ssp()|5° (= 1728) Hy1(5).
Since ss, and j°(j — 1728)° ~p_1(j) have the same zeros, it suffices to show that
30 — 1728)6.F~Ip,1( j) has no multiple roots since ss,, is by definition square free.

By the expansion
—1
(2% — 3Qz + 2R) = (3 + 2R)P~V/2 — 3197@@(9;3 +2R) P32 1 0(Q?)
one gets that

(g) +0(Q) ifp=1 (mod 3)

3251 (;1,)2R" Q4+ 0(Q) ifp=2 (mod 3).

This implies that ﬁp_l(()) # 0 (mod p) and by a similar argument ﬁp_1(1728) Z0
(mod p). Along with this, since H,—1(Q, R) satisfies a second order linear differential
equation with polynomial coefficients and leading coefficient j(j — 1728), no = € F,,
is a multiple zero. Namely a common zero in F, \ {0,1728} of prq and its first
derivative would be a zero of every higher derivative, and thus would have infinite
order, but this is not possible.

More precisely, it will now be shown that

(4.4) ssp = (—1)750(j — 1728)°H,_1(j) (mod p).
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To get the constant factor (—1)5+6, since ss, is monic, it suffice to compute the
leading coefficient of ffp_l. For all f € M, the leading the coefficient of f( j) is the
constant term of the Fourier expansion of f, namely the limiting value of f as ¢
goes to 0. Since F4 and Fg both go to 1 as ¢ goes to 0, the required value for ﬁp_l
is just the coefficient of zP~1 in (1 — 3z* 4 226)P—1)/2,

Observe that 1—3x% 4216 factors as (1—2)3(1+2)3(1+22%) = (1—22)%(1+22?).

Recursively it is then shown that
(1 =3z +22%)" = (1 — 2)*"(1 + 2)*(1 + 227)"
= (1—2%)*"(1+22%)",
which gives (1 — 3z* 4 22%)P=1/2 = (1 — 22)(P=1(1 4- 222)P=1)/2_ Along with this,

(1—22)P =1 -2?)P(1—-2%)"1= L2 thus

1—22

(4.5)
) _ _
(1 - 22)P~1(1 4 222) P~ 1D/2 = 11 _Z: [(1 +2g)PD/2 3Pty 3”71}
—x?p
— (1 g P1\(1 — 2-2) — 355 (1 — o2 3y1-=7
=(1-2P)|(1+cP ) (1—-2"%)=-372 1—=x )]—’_(p)lf:ﬁ
1— a2
= (1 — 2%)(poly. of degree 3) + (;) ] _3;2 (mod p),

where, in line 2, ¢ is some coefficient. This gives that the desired coefficient is

congruent to (%) = (—=1)%*¢ modulo p. Therefore, as claimed,
ssp = (—1)750(j — 1728)°H,_1(j) (mod p).
To show that ép_l = pr_l recall that

G}, = the coefficient of z* in (1 — 3B,z + 2E¢2%)~1/2

H,, = the coefficient of z* in (1-— 3Bzt + 2E6x6)k/2.
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By this, Hy, and G}, differ by a facotr of (1 — 3Ez* + 2FE¢x%)P/? since in the case we

are looking at k = p — 1. However
(1 — 3E42" + 2E6a%)P/? = 1 — (3E4)P?2% + (2E4)P/%2°P  (mod p)
=14+ 0(z?) (mod p),

which implies the desired congruence.

Now the congruence between ép — 1 and Ep — 1 will be shown. Take E : y? =
2% — 3E42 + 2E¢ over C. This can be parameterized by the Weierstrass p function
in order to keep the coefficients rational. More details on this function and the
parameterization process can be found in [12, p. 16].

There exists a map ¢ : C — E by ¥(u) = (P(u), —1/2P(u)) where

1 1272, i
n>4
n even

Since G equals the coefficient of z* in (1 — 3E42? + 2E6x6)_1/ 2 this implies Gy,

equals the coefficient of 2! in =%~ 1(1 — 3E4z* + 2F¢2%)~1/2. But this is equal to

Res dx
P01 — 3F4at + 2Ega®

Letting = equal P(u)~'/? this gives

Resy—g

d(P(u)~1/?)
P(u) —(k41) V1= 3E4P(u)2 + 2EsP(u) 3

kE+1

= Resy—o P(u) 2

= coeff. of u¥ in (1 E %E u" N
B ) nn—2)"" ’
n>4
n even
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For n < p — 1, one gets that ", ~ is a polynomials in £, and Eg with p-integral
coefficients. Along with this, ﬁ =1 (mod p), therefore with k =p — 1,

12n/2Bn . p/2 o1 ;)
(1— ; mEnu ) =1+1272 E,_ 1w’ " +OwP) (mod p).

n even
However, 125 = (%) = (—1)°*¢, thus the congruence for G,_; is obtained.
Recall that Fj, was defined up to a constant as the unique modular form anni-
hilated by the operator ¥x1 19, — kpEy. If k = p — 1, the eigenvalues ky_19, for
f € [0,k/12] of the operator E; ;19 are still distinct after reducing modulo
p. Therefore this characterization is still valid in characteristic p. Applying the
definition of 9, and using one gets that

(4.7)

VppoUrf — ki Eaf = gy (fk kE2%> k(ﬁ;—l%
:f”—f’E2k+1 i E4 fk(klzi)EQ _fk(k:ij)ﬂl
Sy JGF LEof k(lirl)EQf,

but if k = p —1 and f is E,_1, this vanishes modulo p since the Fourier expansion
of f reduces to 1 modulo p. This then gives the proportionality of E,_; and Fj,_1
modulo p.

The exact constant of proportionality in is found by normalizing F}j. This
is done by

k—5
(4.8) constant term of the Fourier expansion of Fj(7) = (—1)m< 6 )
m
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for m defined as in (4.I)). The reasoning behind this will be shown in Section[6] The
right hand side of (4.8) is congruent to 1 modulo p if £k = p — 1, thus we get the

desired constant of proportionality.

5. THE ATKIN ORTHOGONAL POLYNOMIALS

Several results of Atkin are discussed by the authors in [11]. Atkin defines a
sequence of orthogonal polynomials A,,(j) € Q[j], one in each degree n, with respect

to a special scalar product.

5.1. Orthogonal Polynomials. Given a vector space V over a field K and ( , )
a scalar product on V such that (f,g9) = ¢(fg) for ¢ : V. — K a linear functional.
Let ¢ have the form ¢(f) = f: f(X)w(X)dX for a, b real numbers such that a < b,
and w a positive function on (a,b). Given a basis {X"},>0 of V, by applying the

Gram-Schmidt process a unique basis of monic orthogonal polynomials P, are found

by
n—1
_ yn (X", Pn)
(5.1) Po(X) =X _mEO(]DWPm)Pm(X>

as long as the scalar product (P, P,) is not zero. Assuming that the non-degeneracy

condition holds, the following proposition is true.

Proposition 5.1. Assuming the notation above, the following are true:

i) The polynomials P, satisfy a three term recursion of the form
(5.2) Poi1(X) = (X —an)Po(X) = bpPro1(X)

for an, by, € K, bn:%#O.

it) Define a second sequence of polynomials {Qn}n>0 in K[X]| by the same recurrence

as in i), but with Qo =0 and Q1 = ¢(1). Then

@n(X)
P (X)

(5.3) =o(X)+0(X "N e K[[X7Y]
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where
o0
(5.4) O(X) =Y g X" e KX, ga= (X" 1) = $(X7).
n=0
This property characterizes Py, and Q) uniquely.
iit) Define A\, € K (n > 1) by the continued fraction expansion

go
Az
1_1_1’\£

(5.5) go + g1z + goa® + ... = e K[[X]].

Then all Ay, are non-zero and a, = Aop + Aont1, by = Aop—1Aop forn > 1.

Proof. i) Since all of the P,(z) are monic, this gives XP, = Pyy1 + apnPn +
ann-1Pn—1 + ... + anoPy where each a;; € K. By the orthogonality of the P, and
the fact that the scalar product of two polynomials only depends on their product,
this gives

0 ifm<n-—2
Anm( Py Pm) = (@nm Py Pm) = (X Py, Py) = (P, XPp,) =

(P, P,) ifm=mn-—1
Taking ann, = an and apn—1 = by, this gives that X P, = P11 + an Py + b Py—1, and
thus that P,y = (X —an) Py — by Po—1.
ii) Since P, is orthogonal to all monomials of degree less than n,

Py(X)®(X) = Po(X) ) (X™) X ™!

m2>0

b
=> X "'p, / X™Mw(X)dX

m>0

b
= ZXml/ P, X"w(X)dx

m>0 a

— ZXfmfl(Pn,Xm)’

m>
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thus the coefficient of X ™! = 0 for m € [0,n — 1]. This gives that
(5.7) Py(X)®(X) = Qu(X) +O(X ") € K[X, X 1]

where Q,(X) is a polynomial of degree n — 1 and K[X, X~!]] is the ring of Lau-
rent series in X !, namely sums of polynomials in X and power series in X 1.
Furthermore, this gives that

Qn(X)

PaX) — (X)) +O(X 2L,

On the other hand, given P,,(X)®(X) = Q,(X)+O(X 1) for Q, a polynomial
of degree n — 1, by the same work done in (5.6), one gets that for m € [0,n — 1] the
coefficient of =™~1 vanishes, namely that (P,, X™) = 0, thus P, is orthogonal to
all monomials of lower degree. Thus characterizes P, completely.

Along with this, using one gets that

Qn+1 + O(x_n_Q) = [(z — an) Py — by P 1] P (X),

which by (5.7) gives

Qu(X) +O(X™)  Qua(X)+O0(X™")
3(X) )

= (2 — an)Qn(X) — bpQn-1(X) + O(z™"),

@Qn1(X) = &(X) | (X —an)

which must vanish for n > 1. Therefore the polynomials @, satisfy the same
recursion as the P, with Qg = 0 and Q1 = go.
iii) Define the vector space V* as K[Y] with a scalar product (f,g) = ¥(fg),

where

0 if n odd
p(Y") =
Gns2 i m even.

By the same construction used for P,,, we get a family of orthogonal polynomials

P¥(Y). Since odd and even polynomials in Y are orthogonal to each other, P+n*(Y")
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has parity n for all n, namely even indexed polynomials are even and odd indexed

polynomials are odd. By part i) if the proposition applied to (V*,Y),

(5.8) iy = YPIY) = \Pi,
for nonzero constant A\, = % € K. Part ii) of the proposition gives that

there are companion polynomials @} to P of degree n — 1, thus opposite parity,

and that the Q7 satisfy the recursion Q% = YQ% — A\, Q% _,. Along with this, 5_2,%
are the best approximations to » g,Y ~2F—1 at infinity.

By induction on n the following equation is derived

59) w1 @\ e O\ (Y 1)y [Yv 1
P, P Y 1/ \=x 0 ~An O

This in turn gives that

—1 k
goY Qi1 9 0 In 1
= =24 Jo 9]
1— /\132/;32 P;—H Y T Y3 - + y2n+1 + (y2n+3>
1——227 —
17,\T;>'f—2

By setting X = Y2 and letting n go to infinity this gives (5.5). Along with this,

the recursion of P implies the recursion
(5.10) 0 = (V2 = A = APl = At P

for P of a given parity. On the other hand V' can be identified with the even part

of V* by setting X = Y? and with compatible scalar products. This implies that
P; (Y) = P,(Y?) = P,(X), which by (5.10) gives that

Prp1(X) = (X = (An + A1) Pu(X) = An A1 Pr1 (X)),

thus a, = A+ Apt1 and b, = ApA,—1, which completes the proof of the proposition.
O
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5.2. The Atkin Polynomials. Let V be the space of polynomials in j where j is
the modular invariant j(7) = ¢~ + 744 + ---, then V can be identified with the
space of holomorphic I'-invariant functions in the upper half plane H that grow at
infinity by at most ¢~V. These functions are meromorphic at infinity, i.e. for all

(2%) el f(g;tg) = f(7) and f has a Laurent series expansion f(7) = >>z cnq™.
n —oQ

More precisely, the set of polynomials in j coincide with V, and either ¢ = 2™,

j=3j(r) =q '+ 744 +19688q + - -, or A = q — 24¢® + 252¢> + - - can be taken
as a local parameter at infinity.

We will now give the proof of Proposition [I.5] before giving the proof of Theorem
T4

Proof of Proposition[1.5. Observe that by (2.12)),

dA
A((TT)) = 2miFy(7)dT,
and since ¢ = e>™'7
da _ 2mie?™dr,
q
one gets
dA(T) . dg
=2miFEs(T)dT = FEo(1)—.
NG wiEo(T)dT 2(7) .

Now recall that the definition of j is given in (2.10)), which gives that

(1)

!

_ 3By(n)Ey(n)A(r) — E}(1)A

dj(7) AZ(r) 2midr.
Using , this becomes
~Ei(7) Eo() 2midT
A(7) ’

which gives that
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Multiplying by —EsEy/FEg gives Eo(7)2midr, thus

ANy dg —B(n)E() ()
A(r) — 2miBe(ndr = Ea(n) = R e

Therefore i-i27 of the proposition are attained by writing the constant terms as %
times the corresponding residues and using the equations derived above.

For part iv of the proposition use the global residue theorem. Let F, be the
standard fundamental domain of I" truncated at some height ¢ > 1. Namely the
domain given by |z| < :l:%, 224+ y%2 > 1, y < a, where 7 = x + iy. Observe that
the integral of f(7)g(7)E2(7) = (f,g) by @ii. Due to the holomorphy of fgEs, (f,9g)
must also be given by the sum of the integrals over the other three edges of the

domain. Since fgF» is periodic of period 1, this gives that the integrals along the

1

5, cancel. Observe that f and g are invariant under

vertical edges, i.e. |z| = £
the transformation obtained by replacing 7 with —1/7. Therefore, replace 7 with
—1/7 along the left half of the bottom edge. This implies that (f, g) is equal to the

integral along the arc from e™/3 to ¢™/2 of
[Ba(7) = 772 B2 (=1/7)] f()g(7)dr.

By 1’ the part of this equation in square brackets is equal to ;—?i, which gives

that (f, g) is equal to the following integral
em™i/2 _6i

/e % f gy

7i/3 T

When 7 = €', this integral becomes
w/2 ) )
2 sl
™ /3

with is ¢v of the proposition thus all four definitions of the scalar product coincide

on V. OJ

Corollary 5.2. The scalar product ( , ) is positive definite on Vg = R[j].
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Proof. The proof of this corollary follows from definition iv of the scalar product

since j(e'?) is real for 6 € [r/3,7/2]. Therefore fﬂ/Z

/3 f(e)2df is greater than 0 as

long as f(7) is a nonzero polynomial in j(7) with real coefficients. O

The results of Proposition [5.1] applied to this scalar product imply that there is a
unique sequence of monic orthogonal polynomials A, (j) of degree n. These are the

Atkin orthogonal polynomials. Along with this the proposition gives that the scalar

product of two monomials 5" and j™ equals g, ., for g, the coefficient of j7"~! in
Ea(7) Ea(7) 2 3 1 720
O(1)= — L = q—24¢*> +196812¢° + ... = — + - + ...,
7) Eg(7)j(7) i) " j(r)?

and that the denominators of the best rational approximations to ¢ are given by
the polynomials A,. Lastly, the results of Proposition (5.1)) give that the Atkin

polynomials satisfy the following recursion

An+1 (.7) = (] - ()‘271 + >\2n+1))An(j) - A271—1)\2n-’4n—1

with the \,, positive rational numbers given by the continued fraction expansion of
® with respect to 1/7. In [11], the authors numerically compute the first five values

for g, = (4™, 1) and A, which are given below:

go=1, g1 =720, g¢o=1301011200, g4 = 1958042030400

2001
M=T20, dg =516, A3 =374, A=475, Ng= .

Proof of Theorem[1.]. Given k € Z, let Vi denote the space of holomorphic func-
tions in H that transform like weight £ modular forms and have at most exponential
growth at infinity. Namely, V} is the degree k part of the graded ring C[Ey4, Eg, A™1].
Observe that V =V} and that V5 coincides with the set of derivatives of the func-
tions in V. Recall the definitions given in and for the Hecke operator
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and the Hecke operator at infinity. Using these it will then be shown that
(5.11) Resoo ((f[6T5°) - h) = Resoo (f - (Al2-1T5°7))

for f,h € Clg™!,q], and that

(5.12) (9E2)|2T7° = (gloTn) - B2 (mod V3)

for g € Vh. Note that Ress(F') for F' a l-periodic holomorphic function on H
denotes the residue at infinity of 27iF'(7)dr. Namely, this is the constant term of F
as a Laurent series in q. Now Theorem [2.27] will follow using i7¢ of the Atkin scalar
product definitions in (1.5) and the fact that V'Va C V3, since Res vanishes on Vo,
thus
(f|0Tnag) = Resoo((f’OTn) g EQ)

= Resoo(f - (9E2)[2T7°)
(5.13)

= Resoo(f - (9/0Th) - E)

= (fa g|0Tn)

To prove (5.11)), it is sufficient to check that 7,°° acts on Foruier series by

(Z Arqr) WT° = nF2 " d Ry Aag™,

ad=n 7“

since then one gets that

Reboo((f|kT'r(z)o)h) = nk/2 Z ZAdrBfar

ad=n T
— nl—k/2 Z a—1+k ZBasA—ds
ad=n s

= Resoo (f(h|2-£T5°))
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for f =5 A.q¢" and h =) Bsq°. To prove ([5.12)) use the following transformation
property

. 3
Eo(1) = E5(T) + p

which is equivalent to ([2.8), where y = ¥(7) and the nonholomorphic E3 transforms
like a weight 2 modular form. Let the space of functions with this last property be

denoted by V5". Since V'V C V5 and V5 is preserved by |2T5,, one gets

((9y™ DT = (gloT)y™")  (mod V5).

3
(9E2)|2T° — (gloTh)E2 = -

The right hand side of this vanishes by the following calculation

0= X (s

b (mod d)

= yil (gloTn)(T)a

therefore the holomorphic left hand side belongs to V5 as desired. To prove unique-
ness, look at the polynomials h,, = j|Ty, - 1 — j - 1|T, for n > 2 and h* = j2|Ty - j —
42 - j|Ty, which are annihilated by any functional ¢ : V' — C as in Theorem .
On the other hand, these polynomials span a codimension 1 subspace of V. This is
because deg H,, = n and h* is not a linear combination of the h,,’s, thus ¢ must be

unique. ]

5.3. Hypergeometric Properties of the Atkin Polynomials. The Atkin poly-
nomials can be defined in terms of a recursion formula, closed formula, or differential
equation as stated in Theorem This theorem can be proved by showing the re-
lation between the Atkin polynomials and hypergeometric series. Let oF} be the
classical Gauss hypergeometric series

00 o (—a)(—b
(5.14) oFi(a,b;c;x) = Z Maz” = Z M(fx)"j lz| < 1.

n=0 (C)n n=0 (;lc)
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Define US and V;? for n > 0 as the four monic polynomials

%F(l 5 . 1728

S5l — ) = URG) +0(1/4)

7 11 . 1728

n—1/;: T _ 1 .

- 7N = 1728)F (5, 15— ) = Up 4+ O(1/,)
‘ 17 1728

j—1728)"F(—=, =1 ) = V) 1/j

(G- 1728)"F (3 13+ b Trgg ) = Vo +00/3)
5 11 1728

i(j—1728)" ' F (=, =1y ) = V! 1/5

j(j —1728) (12,12, 71728_].) Vy +0(1/5)

as j — oo. Using the above notations, the Atkin polynomials can be defined in

terms of hypergeometric series as follows.

Proposition 5.3. The Atkin polynomials A, are given by the following

)= Sz (M) () () U2 0,

m=0

o= S ()

. + 1\ n—2\ 2n—1\""
An AR 123m n 12 12 0 -
(4) nio < m >< m >< . ) Vo (3),
- - — BN\ fop—1\!
Ay =Y 12 (") ("R !

Proof. Since the proofs for all four equations are similar, only the first one will be

(5.16)

shown here. Denote the right hand side of the equation by AY. For n < 2, by
direct computation, AY = A,, for the A,, in (1.6). Therefore, it suffices to show the
recursion A2 = (j — a,) A% — b, AY_| where a,, and b, are the rational functions

of n from (1.3)). Rewrite A% as AY = c(n, k)UY where

- (F) () ()
CULM::dnﬁﬂ2_%<z><;ﬁ><§>_1<3?>_{

(5.17)
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Since

—1 =5
0 _ 770 103k+3[ T2 12
U = U — 12 <k:+ 1) (k:+ 1)’
this gives that
A1 () = (G — an) AR () + bu Ap_1(5)

n

= [e(n+1,k) —c(n, k — 1) + anc(n, k) + bpe(n — 1,k)]UP
0

—1 =5
123k+3 12 12 k
+k:0 E+1/\k+1 c(n, k)

(5.18)

3

for n > 2 and with ¢(n,—1) = 0, ¢(n,n) = 1, and ¢(n — 1,n) = 0. On the right

hand side of this equation, the coefficient of U,g is equal to 0 for £ > 1 and is equal

to 84c(n,0)/(n? — 1) for k = 0. By substituting in the values of U{ = 1, a, b,, and

¢(n, k) and writing k = n — m one gets that the right hand side of equals
12¢(n, 0) <2 —n+1 n+1 n

(5.19) nz(—,l)mz:o(n—i-l—i_— m> [7( ; )—12(n+1)(m>},

where the m = n + 1 term comes from the multiple of U in . This sum is the

coefficient of z"*! in
(14 )70+ 2™ — 12004+ 1)(1+ 27,

and thus vanishes for n > 2. O

Proof of Theorem[1.4. i) By (2.12), ® = —d(log A)/dj, but A can be written in

terms of j as
TR N TR N
j 12712 J

By Gauss’s contiguous relations
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and by Gauss’s formula for the continued fraction expansion of a quotient of con-

tiguous functions one gets that the A, from (5.5) are given by

720 ifn=1
Ap =

n

12(6 + SN 6+ 525 ifn > 1,

thus we get (i) of . For more information on hypergeometric functions and
contiguous relations see [1].

ii) Since the Atkin polynomials are the A, of (5.3)), the closed formula is obtained
by a rewriting of the first formula of .

iii) The closed formula of (ii) gives that the A, (j) can be obtained from

1 5 1 7
5.20 F(—,—;l; )F(— S )
(5:20) 12°12° 77 KT e
by truncating at x” then inverting it. Namely by setting = = 13& and multiplying

by j™. Since the second factor of becomes infinite from degree 2n onward,
some truncation is required.

One can truncate at any m between n and 2n — 1 since the coefficient of ™ in
(5.20) vanishes for n < m < 2n. This can be seen by letting v — 1 in the following

identity
F(a,B;v;x)F(—m —a,—n+1— 3;—2n+2 — v;x)
+ 6,22 (1 —2)F(1 —a,1 = 3;2 —y;2)F(a4+n+ 1,3+ n;y + 2n; z)
= polynomial of degree n,

where n > 1 and
5~ LGIEDCE)
o EDGEDEDE)

This identity is a consequence of Gauss’s contiguous relations and two formulas

of Heine [8]. Since the product of two hypergeometric functions satisfies a fourth
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order linear differential equation with explicitly calculated coefficients along with
this truncation argument gives the differential equation for A,.

If A,(j) is replaced by a polynomial beginning with j? for d > 0 an integer, then
the left hand side of (iii) has the leading term n?(n? — d?)?, thus d = m is the only
way the differential equation can be satisfied. This in turn gives uniqueness of the

expression. ]

We will now relate the U, and V,, from ({5.15) to the supersingular polynomial
s8p(7)-

Proposition 5.4. Let p > 5 be prime and write p = 12n — 8§ — 6¢ + 1 with n € N,
5, e € {0,1}, then

(5.21) ssp(f) = US(7) = V2 (j)  (mod p).

Proof. Here we will give only the proof for the case U? since the other cases are
very similar. Begin by assuming that p =1 (mod 4). Recall the trinomial theorem,
which gives that
n
(@ty+2)"= > ( )"“’”y”zm-
r1,72,73
ri1+re+r3=n

Using this, expand H),_1 as follows

H,_1 = coefficient of 2P~ in (1 — 3Ez* + 2F42%)*

B Z r!s!(QZEQ—E):’—s)l(_gE‘l)r(zEﬁ)s

>22)
1¢/3] .
et (20)! —4j — 1728\ k
= (=3E4) kzo (E—Bk:)!(Qk:)!(ZJrk)!(Z? j ) ’

for k = s/2 and where j_ljﬂ comes from the fact that

gg:j—1m8

Ej J
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Note that in the case U} one uses p = 3 (mod 4) and s = 2k + 1; for V set

r = 3k 4+ J then expand in powers of g 1728

Now, by induction on k one gets that
’ (6 —=3k)2K)(e+Ek)IN27/ — \ /4 k!

Therefore, by 1' and [£/3] =m =n—6 and (—1)? = (_73) = 32’ (mod p), one

gets, by writing F,(a, b; ¢; x) for the hypergeometric series truncated at degree m,

that

~ 20 1 51 1728
— (_:\0 — (_a\3 P T e
(5.24) ssp(j) = (—J)°Hp—1 = (—3) <£) W3J(12’12’2’1 i ) (mod p).

Since the coefficients of z¥ and y* in F(&;, 2;1;2) and F(35, ; 1;y) vanish modulo
p for k € ([£/3],20], and F(&,3;1;2) and F(35, 25 3;1 — @) satisfy the same
second order linear differential equation with polynomial coefficients of degree no
more than 2, one gets that the polynomial on the right hand side of the last equation

is a multiple of U%(j). However, the supersingular polynomial is monic, thus the

multiple must be 1. O

Using Proposition a relation between the Atkin polynomials A, and the
supersingular polynomial ss,(j) for certain n can be proven. This relation between

A, and ss,(j) is given by Thereom

Proof of Theorem[I.7F For p = 2 or 3, this is trivial. In the case p # 2 or 3, one
gets that n, is the same as n from Proposition Apply Proposition to U or
V.9 with this n. The result then follows since all of the coefficients vanish modulo p

except the one for m = 0. g
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6. HYPERGEOMETRIC PROPERTIES OF F},

Recall that Fi(7), k # 2 (mod 3), is a modular form and is the unique normalized

solution of the second order differential equation

k(k +2)
.1 F,— ——F,F. =0.
(6.1) V42U L' Tad 2 I, =0
Define the following notations:
1—-26 1—2¢ k+1
Vo = y U1 = y Voo = —(f— (U0+U1+’Uoo:2m+l),
3 2 6
J
Xo=J=—""— X;=1- Xoo =—1 Xo+ X1+ X =
o=4J 1798 1 J, 00 ;o (Xo+ X1+ X =0),

Yo=FE}, Yi=—E2 Yo=-1728A, (Yp+Yi+Ye =0).

Note that m, d, and € are defined as in Section[d] Using these notations the following

theorem gives explicit descriptions of the Fj and the associated polynomials ﬁk (7).

Theorem 6.1. Suppose k >0, k # 2 (mod 3), then i) Differential equation: ﬁk(])

is the unique normalized polynomial solution of
3G = 1728)Fy, + {(1 —v1)j + (1 — vo)(j — 1728)} F, + m(m — veo) Fi = 0.

ii) Closed formula: Let o be any permutation of {0,1,00}, then

Xo(o0)
Xo(o0)

- m (M — Vs m
Fi(j) = (sgn(o) - 1728) ( (°°)> X0y (=m, —m + v,(0); 1 = Vg (o0); —

m

and

m . " m— v, m — Vy(oo —
Fi(r) = sgn(o) EZSEGZ(—UZ< ! (O)>< m (1 )>Ydl(oo)Yo-(0)1'
l

Il
o
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iii) Recursion relation: The Fy,(j) satisfy

(m 4 1)(m — voe) (1 = Voo) Fos 12
— oo [(1 4+ o) (1 = voo) (j = 1728)((1 = Vo) (Vo + v1) + 2m(m — vec )| Fi
+1728%(m — vo)(m — v1)(1 — Voo ) Fle_12 = 0.

i) Generating Function: For k € Z>y and any o denote by Gy, o(7) the coefficient

of X* in (1 — 3E4(1)X* + 2E¢(1)X®)®. Then

-1

Fir) = (-1 () (50 7D) g ),

m m—+ €

Proof. 1)Begin with the equation given by (6.1)), and recall by (4.2]) that one can
write F(7) as A(T)™E4(7)° E(7)*F(j(7)), and that

Therefore one gets that

(6.2)
k(k+2 d/d = kE =
(k+2)E2 d m d e (s kEs m 6 e (s
- T(%A E4E6Fk(J) - EA E4E6Fk(]))'

We begin computing this by taking the first derivative of AmEngﬁk (j) as follows

d (s m— €T (s m — €T (s
o A& EHER) = AT B + OB B EAG)
+ A" Eelg Fy(i) + AT B EGF(7)F

by substituting in the equations from (2.12)) and equating terms this becomes
A™ By ESESF,( O 4 &) daAmpi-1peifyj
2854 g k(])(m‘f‘g‘f‘i)—g 1 EgT FR(d)

(6.4)
€ 1= N P =
~ SAMEFRECUR()) - AmE ST RG)
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This gives

(6.5)

dm5€~‘ kE2m6e~-_m S e /- 0 € k
dr <A E4E6Fk(])) 19 (A™E EgFL(j) = A E2E4E6Fk(J)<m+ 3 + 5~ 12)

o

— QAT BT RL) - SATEYPEST RG) - AT BT BT RLG)S,

but (m +9/3 +€/2 — k/12) = 0 so the full equation is equal to

6 - ~ ~
AR EUESHR() - SATESREURG) - MBS S LG)S,

Now take the derivative of this

d ) _ ~ € IR~ _ =i
(6.6) —( = SA™E{ B FL) - SATE]PET FLG) - AT B} EGTFLG)I )
substitute in the equations from (2.12]) and equate terms as was done for the first
derivative computes. Subtract

k(k + 2)

m d e [
i E (A" EYEGF(5),

and simplify the coefficients of Fj(j), ﬁé(]), and FI.(j). Using the fact that

E} — E?

1728 =
A

by the equation for A and that

j—1728:lﬂj—‘%—Lj’_Eg:E—62
A A A’

one gets the desired result.

ii) The equation from part (i) of the theorem is a hypergeometric differential equa-
tion, and thus has a polynomial solution of the form F(—m, —m+vso; 1 —vg;j/1728).
More information on hypergeometric differential equations and their polynomial so-
lutions can be found in [1]. By [1], there are 6 polymomial solutions from Kummer’s

24 solutions to this equation. By making the expressions symmetric the formula i
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obtained, and the formula for Fj, follows.

iii) If one replaces k by k*12 in the formula for Fj,(j), the first three argument of
the hypergeometric seris of Fj, (j) change by 1. Therefore the recursion comes from
Gauss’s contiguous relations which can be found in [1].

iv) Let Y, = (1 — 3E4X* + 2E3X°%)%, and observe that

Yo = Yo 1(1 — 3B, X* + 2E6X9),

0
ox Ve = oYy (—12E4X3 + 12E5X5)
> 1 0 Ey 0O
0 Xh= — 2y, - 22X Y, =aY._1(EsX* — E2X9).

kzo £Gla smior e T 12N gx e = Va1 (B iX7)
By these three relations one gets
(6.7) Gra = Gra-1 —3E4Gr_40-1 + 2E6Gl—6,0-1,
(6.8) k‘Gk@ = —120[E4Gk_47a_1 + 120‘E6Gk:—6,a—1,
(6.9) IGra = 0EsGr-s,0-1 — aE;Gr_ga-1.

Solve (6.7)) for E4Gj_4,0—1 to obtain
—1 1 2
EyGr_40-1= -5 Gra+ 5Gra-1+ 5 E6Gr—6,0-1,
3 3 3
and solve for E¢Gr—6,a—1 to obtain

k
EsGr—60-1 = mGk,a + EyGr_s.0-1-

Substituting these into and simplifying, one gets

L 1o [ Oy



61

Repeating this process gives

k(k +2)
Tag AGke

SICR E(ee=vee=i Gt REICEY BDICES S5 AT

L

o D]

D20k Gra —

The right hand side of this expression vanishes if a = (k —2)/6, thus Gy, (1—2)/6(T)
satisfies the same differential equation as Fj(7). Along with this, the constant
term of the Fourier expansion of G}, (1_2)/6 is equal to the coefficient of X kin the

expression (1 —3X*42X6)(+k=2)/6 — (1 —3x2)(k=2)/3(1 4 2X2)*k=2)/6_ This is equal

;(—1)"2’51 <kf2> <§’“ng> = (-1)% (?) Zz(%) = (-3)3 (EQ)

This with 1' gives Fy (1) = ¢G r-2(7) where
76

to

(6.10) c= (1)m(3()§1(,)§§2) = (—1)mHopTImee (2mm+ E> <mkg+2€>

7. AN ASYMPTOTIC FORMULA FOR p(n)e

Now we turn to the remaining results described in the introduction. Namely, we
now discuss partition congruences and asymptotics in the context of the represen-
tation theory of finitary permutation groups. One of the tools needed to derive the
asymptotic formula for the generalized partition function p(n)e for any vector e is

Ingham’s Tauberian Theorem which is stated in [6,/10] as follows.



62

Theorem 7.1. Let f(q) = Y .~ qa(n)q” be a power series with weakly increasing
coefficients and radius of convergence equal to 1. If there are constants A > 0,
A, € R such that

F(e7) ~ Ae¥ee

as € — 07, then as n — oo, we have

A OAStTE L o
a(n) ~ —=—3 §e2 An,
2T 5+

Now, given e := (e1,ea,...,¢ex), let d = ged{m : e,, # 0}, and define quantities

B, v, and § by

ISUE

(7.1) Bi=pB(e) = negm,
n=1

k
d

(7.2) vi="(e) = Z €dn.s
n=1

and
k
d eq
(7.3) §i=d(e) =S Y
n=1 n
Also, define € := (¢},¢€h,...,€}) by €, = eqn. Given these notations one gets
Theorem [1.91

Lemma 7.2. Assume the notation above. Then p(dn)e = p(n)e for all n > 0.

Proof. This follows from a simple change of variables ¢ — ¢. O

Proof of Theorem [1.9 By Lemma[7.2] since p(dn)e = p(n)e for all n > 0, it suffices
to find an asymptotic for p(n)es. First note that ged{m : e}, # 0} = 1 by definition

of €. Now let

00 W s k 1
f(Q)—gp(n)e’q =d HW

m=1



Then we have

k
Be 1
f(e_e) =e H 7
mzln(zr:f)em
By (2.25)), it follows that
k e k m N
—me\ ™ 2\ 2 2w\ ™
() =T ()
m=1 m=1
_a K 2 % 279, €m
= 2 JR— -
S ()

Therefore, one gets

As e — 07, it follows that

/
b 2mi\ ™ UM =28
H’r/i NH@Gme N@Ge’
me

m=1 m=1

so as € — 07, we obtain

’
Em

2 k

) m 2 7 A

6e || (7) N)\EQeE,
2T

m=1

fle™) ~ete
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where A\ and A are defined in the statement of Theorem Note that p(n)e is

supported for all n > max{m : e, # 0} since ged{m : e/, # 0} = 1, thus for all

n > lem{m : e, # 0}, p(n)e is weakly increasing. Furthermore, f(q) has radius of

convergence 1. Every modular form maps the upper half plane H to the unit disk

and thus has radius of convergence at least 1. Since f(q) has a pole at ¢ = 1, the

radius of convergence of f(q) must equal 1. By Theorem it then follows that

14y

AT ovin
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By Lemma we have that

AT
pldn)e ~ eV AN,
2y/mn T

Example 7.3. Let e := (1,0,1). Thend =1,y =2, and § = %, so A % and

A= § Then by Theorem we have that
p(n)e ~ P(n)e,

where
1 2720

= 71 §e 3
6-21n1

Below we display the first 10000 values of p(n)e and P(n)e (computed in Mathe-

P(n)e

matica).

TABLE 1. Ratio of p(n)e and P(n)e

n p(n)e P(n)e p(n)e/P(n)e
1000 | 1.155-10%% | 1.187-10%° 0.97266
2000 | 3.459-10°2 | 3.527-10°2 0.98057
3000 | 1.775-10% | 1.804 -106° 0.98410
4000 | 9.855-107 | 9,993 107 0.98621
5000 | 2.992-10% | 3.029 - 10% 0.98765
6000 | 1.145-10% | 1.158 - 10% 0.98872
7000 | 9.106 - 1001 | 9.198 - 10101 0.98955
8000 | 2.079-10'99 | 2.099 - 10109 0.99022
9000 | 1.711-10'6 | 1.727.10!16 0.99078
10000 | 5.990 - 1022 | 6.042 - 10122 0.99125

As n — oo, we observe that the ratio p(n)e/P(n)e approaches 1.

8. GENERALIZED RAMANUJAN CONGRUENCES

8.1. Sturm’s Theorem. We will now introduce the tools used to determine the

number of coefficients needed to guarantee a generalized Ramanujan congruence.
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Assume that

fF=> amyq"

n>ng

is a formal power series with coefficients in O, the ring of integers of a number

field K. If m C Ok is an ideal, then define ordy(f), the order of f modulo m, by
(8.1) ordy (f) := min{n : a(n) € m}.

If a(n) € m for all n, then let ordy(f) := +o0.

Using this notation, we recall a theorem of Sturm’s from [13, p. 40]:

Theorem 8.1. Let f(z) => o7 ja(n)q" € M (To(N),x) be a modular form where
2
k is a positive integer. Furthermore, suppose that its coefficients are in O, the ring

of integers of a number field K. If m C Ok is an ideal for which
k
ordn(f) > 5= [To(1) : To(N)],
then ordy (f) = +o0.

If Ox = Z and m = (¢), then ord,(f) = min{n : £ { a(n)} and if ¢ | a(n) for all
n, then ordy(f) := +oo. Therefore Theorem can be reformulated as seen in the

next corollary.

Corollary 8.2. Let f(z) = > o2 ya(n)q™ € My (Lo(N), x)NZ[[q]] be a modular form
2

where k is a positive integer. If a(n) =0 (mod €) for all0 < n < £[T(1) : To(N)],

then a(n) =0 (mod £) for alln > 0.

8.2. An Algorithm for the Vector c.. Now we give an algorithm used to confirm
or refute alleged generalized Ramanujan congruences. Define o by . Given a
prime ¢ > 2 where if £ =2 or 3, « =0 (mod ¢), and a vector e := (e1,e3,...,¢ex) €
ZF with 0 < e,, < ¢ — 1, we must construct a vector c. so that € = e — lc, satisfies

the following conditions:
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where w and N are defined by (1.18) and (1.19).

Proposition 8.3. Assume the notation above. Given a prime £ > 2 where if £ = 2
or3, a =0 (mod ¢), and a vector e := (e1,ea,...,ex) € ZF with 0 < e,, <€ —1, it

1s possible to construct a vector c. such that the above conditions are satisfied.

Proof. First define

1 epn#0orm=1
(8.2) x(m) =
0 otherwise

and a by ([1.21]). Then define

k
min{n € N:n=/"'a (mod 24) and n > Z mx(m)} €t24
(8.3)  fe:= mkzl
min{n € N:n=(¢"ta (mod 2}) and n > Z mx(m)} |24

m=1

where in the first case, /=1 is taken as the multiplicative inverse of £ (mod 24), and
in the second case, since ¢ | o, 71 = %.
Define ¢}, = 0 if e;;, = 0. We now define the vector c, recursively beginning with

¢}, as follows:

1 m—1 k
(8.4) . = {m (ﬁe - Z nx(n) — Z nc%)J .
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Note that ¢} = e — Z _y 1€y, SO Z me,, = Pe and
k k k
Zme;n: Zmem—Echm
m=1 m=1 m=1
=a—{fe
=0 (mod 24)

so condition (ii) is satisfied. If %Z’fnzl(em — () € Z, then define c. = cl.
Suppose % Zfﬁz:l(em — e, ) ¢ Z. Then choose the smallest j such that j is even

and ¢ > 1. Define ¢; := ¢ — 1 and ¢; := ¢} + j. For all other m, let ¢, := ¢},. Let

ce = (c1,¢2,...,¢) and define ¢ = e — fc,. Then S-F _ me, = 3% _ mc, and
7 < 0 for all m, so conditions (i)-(ii) hold. Since an:l Cm = Zﬁl 1 ¢ — 147 and
—1 + j is odd, the parity of the sum Zm L€ = 251:1 em — €Zm:1 ¢m changes

and w = —3 LSk (em —Ud),) € Z.

Suppose c’. < 1 for all j even. Then choose the smallest j # 1 such that j is odd
and ¢; > 1. Define ¢; = ¢ — 1, ¢j_1 = ¢}_; + 1, and ¢ = ¢} + 1. For all other
m, let ¢, = ), Let ¢ = (¢1,¢9,...,¢x) and define € = e — fc.. Then, as before,
S mey = S _ mé, and €/, < 0 for all m, so conditions (i)-(ii) hold. Since
251:1 Cm = an | €, + 1, the parity of the sum Zm | €, changes and w € Z.

If there exists no j such that c;- > 1, replace Be by

Bo+24 (124
(8.5) Be =
Be+2 0]24

and repeat the algorithm. By construction there must exist at least one c;- > 1, so
if w & Z, it will be possible to run through the replacements described above and
to define a vector c. that satisfies conditions (i)-(iii).

Note that by the definition of N in Z 7, = 0 (mod 24), so condition

ﬂ
m
(iv) holds. Thus the vector € satisfies conditions (1) (iv) as desired. O
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We now use the algorithm in Proposition [8.3] to prove Theorems [I.14] and [T.15]
and establish a method of confirming or refuting alleged generalized Ramanujan

congruences that fall into two different types. First note the following fact from [3]:

Proposition 8.4. Consider a sequence e := (e, ea,...,e;) € ZF, an arithmetic
progression (An + B)p>o with A > 2 and 1 < B < A —1, a prime ¢, and another
sequence € = (e}, ¢eh,...,¢}) € ZE. Assume that el,, = ey, (mod £) for all m > 0.
Then p(An+ B)e =0 (mod £) for all n > 0 if and only if p(An+ B)e =0 (mod £)

for allmn > 0.

8.3. Proof of Theorem By Proposition [8.4] it suffices to consider vectors

e = (e1,e2,...,¢e,) with 0 < e, < ¢ —1 for all m. Define ¢ = e — fc. by Proposi-
tion Then since €}, = ey, (mod ) for all m > 0, by Proposition [8.4] it is enough

to show that p(fn + d7)er = 0 (mod ¢) for all n > 0. Note that

H e

m|N

=:¢"g(z)

where w = an:l me,,, . Note that w = d§; (mod ¢).

Since g(z) is an eta-product, we can write its Fourier expansion

=Y b(n)g"
n=0

Then p(¢n + 07)er = 0 (mod £) for all n > 0 if and only if b(¢n + dy —w) = 0 (mod
?) for all n > 0. Since ¢y —w =0 (mod £), p(n + dy)er = 0 (mod ¢) for all n > 0 if
and only if b(¢n) = 0 (mod ¢) for all n > 0.

Now, note that g(z) has weight w = —1 Zlfnzl el,. By condition (iii), w must be

an integer. Furthermore, based on our choices of ¢, and N, € satisfies conditions
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(ii) and (iv), which are the necessary conditions of Theorem Since g¢(z) is
additionally holomorphic at all the cusps of I'o(N), g(2) € My (I'o(N),x). We can

therefore act on g(z) with the Hecke operator T} ,, , and define

f(2) = 9(2) | Tow,x
Z (n) 4+ x ()0~ o(n/0))q"

By Proposition f(2) € My(To(N), x) and we can write its Fourier series ex-

pansion as
oo

= a(n)g
n=0
Then a(n) = b(ln) + x()(*~tb(n/l), so a(n) = b(fn) (mod ¢) for all n. Thus
b(fn) =0 (mod /) for all n > 0 if and only if a(n) =0 (mod ¢) for all n > 0.
Since f(z) has weight w and is a level N modular form, by Theorem 8.1} a(n) =0
(mod £) for all n > 0 if and only if a(n) = 0 (mod £) for all 0 < n < 5[[o(1) : To(N)].
By Proposition [2.3]

[Co(1): T NH<1+ )

pIN
so by our definition of K in ([1.20]), a(n) = 0 (mod ¢) for all n > 0 if and only if

a(n) =0 (mod ¢) for all 0 < n < K. Since this is true if and only if p(/n+ dy)e =0
(mod /) for 0 < n < Ke, we have p(¢n + dyp)e = 0 (mod ¢) for all n if and only if
p(fn + dp)e = 0(mod ¢) for 0 < n < K. O

8.4. Proof of Theorem As in the proof of Theorem [I.14] by Proposition
it suffices to consider vectors e = (ej, ea, ..., er) with 0 < e, < {—1 for all m. Define
€’ using Proposition Again, let g(z) = [[,,n n(mz)~¢m = 3% b(n)g". As in
the previous proof, p(fn+~¢) = 0 (mod ¢) for all n > 0 if and only if b(¢n+~,—d7) = 0
(mod ¢) for all n > 0.
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Define the following Dirichlet characters:

1 ged(n, ) =1
boln) i ged(n, €)

0 otherwise

and
= (2)

Note that 13(n) and ¥?(n) both yield the trivial character. Now define

G( —g% Zb

Un

and

Gu(2) =Y () b

Un
By Propositionm G(2) € My(To(N),x13) = My(To(NE?),x) and Gy, (2) €
My, (To(NE2), x1b?) = My, (To(N£2),x). Now define

H+(Z) — G(Z> +2G1/)1(z) _ Z b(n)qn

and
H_(z):= —G( 2) = G, Z b(n
(%)=-1
Then Hi(z) € My(To(N€?),x). Recalling our definitions of the sets Sy in

and ((1.24), note that
> b(n)g

n=",+0,
(mod ¢)
YeES+

Now, write H1(z) := Y _° ja+(n)q". Since a4 (n) is only supported where n = 49,
(mod ¢) where v, € Sy, b(fn+~,— ;) = 0 (mod ¢) for all n > 0 and for all 7, € Sy
if and only if a4 (n) =0 (mod ¢) for all n > 0. By Theorem a+(n) =0 (mod ¢)
for all n > 0 if and only if a4 (n) = 0 (mod ¢) for all 0 < n < Z[To(1) : To(N?)].
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By our definition of K in (1.25)), a;(n) = 0 (mod ¢) for all n > 0 if and only if
a+(n) =0 (mod ¢) for all 0 <n < K. As ay(n) =0 (mod ¢) for all 0 < n < K|
if and only if p(fn + qs)e = 0 for all 0 < n < K[ and for all v, € S, the theorem
holds for 74 € S+. Replacing Sy by S_, ay(n) by a—(n), and H;(z) by H_(2), the

same argument works for v, € S_. g

8.5. Examples of Congruences. Given an alleged congruence of the form p(¢fn+
B)e =0 (mod ¢) that falls into either the Theorem or Theorem case, we
can use the finite algorithm from Section 3 and Theorems and to confirm
or refute it. First use the algorithm to determine K, and K. By Theorems m
and it suffices to check numerically that the conjectured congruences hold for

all 0 < n < K, or K/ respectively.

Example 8.5. We have that p(5n +2)(20,0.4) = 0 (mod 5) for all n > 0, as conjec-
tured by [3].

Proof. Note that o = 18, so §; = 2; this is an example of the Theorem case.
Using our algorithm, we have ¢, = (2,0,0,4), so € = (—8,0,0,—16). Then w = 12
and N = 4, so Ke = 6. Computing the first 6 values of p(5n + 2)(20,0.4), we find

that they are equivalent to 0 (mod 5). Thus the congruence holds. O

Example 8.6. We have that p(5n + 2)20,0,2) = P(57 + 3)(2,0,0,2) = 0 (mod 5) for

all n > 0, as conjectured by [3].

Proof. Note that o = 10, so ; = 0. In this case S_; = {2,3}, so this is an
example of the Theorem case. Using our algorithm, we have ¢, = (2,0,0,6) so
e = (-8,0,0,—28). Then w = 18 and N = 8, so K, = 540. Computing the first
540 values of p(5n +2)(2,0,0,2) and p(5n + 3)(2,0,0,2), We find that they are equivalent
to 0 (mod 5). Thus the congruence holds. O
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9. PROOF OF THEOREM [1.19

Ramanujan conjectured the following congruences for the partition function mod-

ulo powers of the primes 5 and 7, which Watson proved in [18§].

Theorem 9.1 (Ramanujan). Let £ =5, 7, or 11 and let j > 1. Then if 24n = 1

(mod #7), we have that

p(n) =0 (mod #) =511

p(n) =0 (mod (U/2+1) ¢ =1

In 2], Atkin generalized the Ramanujan congruences modulo powers of 5, 7, and

11 to the function pg(n), which counts the number of k-colored partitions of n.

Theorem 9.2 (Atkin). Let k >0, £ =2,3,5,7 or 13, and j > 1. Then if 2dn =k
(mod #7), we have that
pr(n) =0 (mod ¢loi/2+el),

where € := e(k) = O(logk) and o = a(k,?) depending on ¢ and the residue of k
modulo 24.

Atkin computes the value of a(k, ¢) in a table in [2]. We note the following values

of a:
(9.1) a(2,5) =«a(2,7) = 1.
In addition, following Atkin’s method to calculate e exactly, we observe

1— |log(48)/log(¢)| = -1 ¢=5
(9.2) €=

—|log(48)/log(f)] = -1  £=T.
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Therefore, for the case where £k = 2 and ¢ = 5 or 7, we have that for all 24n = k
(mod #7),

(9.3) pa(n) =0 (mod £L3/271)),

We make use of the following theorem of Serre’s regarding congruences for certain

types of modular forms, stated in [17]:

Theorem 9.3 (Serre). Suppose that f(z) = 2 a(n)g™ € Sp(To(N), x) has coef-
ficients in the ring of integers Ok of a number field K and M is a positive integer.
Furthermore, suppose that k > 1. Then a positive proportion of the primes p = —1

(mod M N) have the property that
f(2) | Tpry =0 (mod M).

Serre’s theorem guarantees the existence of congruences for cusp forms with coef-
ficients in the ring of integers of a number field, which we will use to prove properties

of the coefficients of the conjugacy growth series for (Alt(N),S") and (Sym(N), S).

Proof of Theorem [1.19. We first prove congruences for arbitrary powers of £ =5 or
7. Let j > 1 and suppose that 24n = 1 (mod #/). Then by Theorem we have
that

(9-4) ’Ysym(N),s(n) =p(n)=0 (mod g[j/QJH)_

Additionally, we have that 24(2n) = 2 (mod #’). Using the case of Theorem
where k =2 and ¢ =5 or 7, as in (9.3]), we have that

(9.5) p2(2n) =0 (mod ¢U/271]),
Therefore, for all 24n = 1 (mod #7), we obtain from ((1.17)), (9.4), and (9.5)) that

(96) ’YAlt(N)7S’(2n) = ’Ysym(N)7s(n) =0 (mod EU/2_1J)’
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as desired. 0

10. CONGRUENCES FOR p2(n)

Because of the relationship between the conjugacy growth series for (Alt(N), S")
and the function pa(n), here, we focus on congruences for pa(n). By the definition

of the 2-colored partition function pa(n), we have that

00 - 00 1 B q%
Throughout, we let
1 = "
(10.2) f(z) = R ng_:la(n)q .

Then we have that ps (”l—gl) = a(n). In order to prove congruences between the
coefficients of the conjugacy growth series for (Alt(N), S”) and (Sym(N), S), we first
prove a theorem concerning the coefficients of f(z). This makes effective the fol-
lowing result of Treneer [17] by determining the exact value of m that is sufficiently

large.

Proposition 10.1 (Treneer). Suppose that ¢ is an odd prime and that k and m
are integers. Let N be a positive integer with (N,p) = 1, and let x be a Dirichlet
character modulo N. Let K be an algebraic number field with ring of integers O,
and suppose f(z) = a(n)g™ € M (T'o(N), x)NOk((q)). Ifm is sufficiently large, then
for each positive integer j, a positive proportion of the primes Q = —1 (mod N#7)
have the property that

a(@Q0™n) =0 (mod #)

for all n coprime to QX.

This section closely follows Section 3 in [17]. Throughout this section, let f(z) be

defined by (10.2).
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Theorem 10.2. Let £ > 5 be prime and j € N. Then for a positive proportion of
primes Q = —1 (mod 144¢7), we have that

a(@Q™n) =0 (mod )
for all n coprime to QF.

The proof of Theorem [I0.2]requires the construction of a cusp form that preserves

congruence properties of the function f(z).

Proposition 10.3. For every positive integer j, there exists an integer 8 > j — 1

and a cusp form

905(2) € Sx(To(1446%), x) N Z((q)),

8 (02-1)

where K 1= —1 + ———=, with the property that

905(2) = a(t™n)g"  (mod #).
n>1
Un

We first require the following proposition concerning the Fourier expansion of
f(2) at a given cusp after being acted on by the U(¢™) operator for m > 1.
. a b
Proposition 10.4. Let v := € SLo(Z) where ¢ € Z and ac > 0. Then
cl? d
there exists an integer ng > —24 and a sequence {ap(n)}n>n, such that for each
m > 1, we have that

o0

(f) [ Upm) lcov=" > ao(n)dgsm,

n=ng

n=0 (mod £™)

2miz

where gogpm 1= €240

The proof of this proposition makes use of the following lemma, which relies on

the proof of Theorem 1 in [9].
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Lemma 10.5. Given any matriz A € SLa(Z), we have that

f) [ A= ao(n)gb,

n=no

where ag(n) € Z and ng > —24.

a b
Proof. Let A := € SLy(Z). Then, as in the proof of Theorem 1 in [9], we

c d
can write
12 0 a b a v a B
(10.3) =
0 1 c d d d 0 ¢
a v
where € SLy(Z), o, 8,0 € Z, and «,6 > 0. Then we have that 12a = d'«
d d
and ¢ = da, so a = (d'a, da) = (12a,¢) = (12,¢) < 12. Again, by Theorem 1 in [9),
we obtain
(o]
(10.4) f2) -1 A=) ao(n)gy
n=no
where ng := _TQC‘ > —2a > —24. ]

Proof of Proposition[10.4 Let N = 144, the level of f. As in [17], for each 0 < v <

™ — 1, choose an integer s, such that
(10.5) suN = (a +vef?) (b +vd)  (mod £™)

and define w, := s, N = 144s,. We let

b—awg
(10.6) ap ==
M2 d — wocl?
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By (2.10), we have that

(10.7) (f(2) | Upm) |1 v = (£™)~ Z F(2) |=1 0uemy.

We observe that o, gmy = fagoy, e for some B € T'g(1444™), so we have that

(10.8) (f(2) [ Upm) [y = (") Z f(2) |-1 a0, em.

By Lemma [10.5] we have that

[e.o]

F(2) -1 a0 = ao(n)ghy,

n=ng

so we obtain

£m—1
2mwin(z4+wy)
(109) Z f(Z) |,1 QOO fm = Z €2 Z ) 34070
v=0

n=ng
00 £m—1 )
2minwy
Z q24€m e 24¢0m |
n=n v=0
By Lemma 3.3 in [17], the numbers $¥ run through the residue classes modulo £™
as v does. Therefore, we have that
el 2minwy el 2mwinv gm n= O (mOd gm)
(10.10) e zam = e =
v=0 v=0 0 else.

Combining (10.9)) and ((10.10]), we have that

m—1 o0
(10.11) ST FE) |1 00w =02 D ag(n)ghym.
v=0 =

Using ((10.7)) and m, we obtain

o0

(10.12) (F) | Um) [ciy=" > ao(n)giym,

n=ng
n=0 (mod £m)
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the Fourier expansion of f(z) | Uym at the cusp 5. O

We now construct a weakly holomorphic modular form which vanishes at certain

cusps of T'o(144¢?).
Proposition 10.6. For each nonnegative integer m, define
fm(2) = f(2) | Upn = f(2) | Upnsa | Ve € M (To(144¢%), x).
Then, for my as m Jm, vanishes at each cusp _z of [o(14402) with ac > 0.

Proof. By Proposition we have that

o0

(10.13) (f) | Ume) [v=" > ao(n)ghuems

n=ng

n=0 (mod £™¢)

where ng > —24. We now consider two cases. If 5 < £ < 23, we have that
—{m < =25 < —24 < ny,

and if £ > 29, we have that
™ < 29 < —24 < ng.

Suppose ag(n) # 0. Then n > ng > —¢™, but n = 0 (mod ™), so n > 0.
Therefore, we obtain

o0

(10.14) (f(2) [ Ueme) | v = Y. ao(n)dsiem

n=0

n=0 (mod £™¢)

so f(2) | Ugme is holomorphic at the cusp .
Now, by the proof of Proposition 3.5 in [17], we have that

o0 oo

(10.15)  fm(2) |-1v = > ao(n)gBym — > ao(n)qaaem

n=0 n=0
n=0 (mod £™) n=0 (mod £m*1)
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so the constant term in each expansion is ag(0), and they cancel. Therefore, fp,,

vanishes at the cusp . O

We are now ready to prove Proposition [10.3

Proof of Proposition[10.5 As in [17], we define the eta-quotient

(10.16) By = G o)
) ©on(?z) S ’

By Theorem 1.65 in [13], we see that F; vanishes at every cusp ¢ of I'g(144¢?) with
24 ¢. We also have that Fy(z)” ' =1 (mod ¢%) for any integer s > 1.
Now, define

(10.17) 905 (2) = Fony(2) - Fu(2)"

a

where 8 > j — 1 is sufficiently large such that g, j(z) vanishes at all cusps ¢ of
[o(144¢%) where ¢ { c. By Theorem 1.65 in [13], it is possible to choose such a j3

such that the order of vanishing of gy ;(2) is at least one at all such cusps. Then

g5 € Z((q)) and
(10.18) 90j(2) = fim,(2)  (mod ).

Furthermore, by Propositionm gr,j(2) vanishes at all cusps 2 where 7% | c. Define

M Then we have that

—1+
(10.19) 90j(2) € Su(To(1446%), ).

By definition of f,,,, we obtain

(10.20)  gej(2) = > a(t™n)g" =Y a(t™F'n)g™ = " a(l™n)q"  (mod #).
n=1 n=1 n=1
n

Thus gg,; satisfies the conditions of Proposition [10.3] O
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Now that we have constructed the necessary cusp form, we arrive at the proof of

Theorem [10.20

Proof of Theorem[10.3. By Proposition we can construct a cusp form g, ; €
S, (Do(144£2),x) € Z((q)) such that

a(f™n)g" (mod ¢7).

hE

(10.21) gej(2) =

1
n

o3

By Theorem for a positive proportion of the primes Q = —1 (mod 144£7+2), we
have that

(10.22) 90j(2) | Toey =0 (mod #).

We can then write gy ;(z) = Y .-, b(n)g" to obtain

o0

(10.23)  90,i(2) | T = Y (b(@Qn) + X(Q)Q"'b(n/Q)) ¢" =0 (mod #).

n=1

If (Q,n) = 1, then the coefficient of ¢" in (10.23)) is b(Qn), so
(10.24) a(Q0™n) =b(Qn) =0 (mod &)

for all n coprime to Q4. O

10.1. Proof of Theorem We now make use of Theorem to prove con-
gruences between the coefficients of the conjugacy growth series for (Alt(N), S’) and

(Sym(N), 5).

Proof of Theorem [1.21. By (L.17)), it is enough to show that ps(2Q¢™¢n + 2§;) =0

(mod #7). By (10.1) and (10.2), we observe ps (%5!) = a(n), so it suffices to prove

the existence of congruences for a(n).
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By Theorem for a positive proportion of primes Q = —1 (mod 144/7), we

have that

omen 41
(10.25) s (M

B > =a(QI™n)=0 (mod )

for all n coprime to Q¢. Defining d; and 5, by (1.27) and (1.28)), respectively, we
can rewrite the left-hand side of equation (|10.25)) as

(10.26) p2 (2Q0™n + 26,)

for all 24n+ 3y coprime to Q¢. Therefore, for a positive proportion of primes QQ = —1
(mod 14447), we have that

(10.27) P2 (2Q0™n +25,) =0  (mod ),
so we obtain
271,50 (2Q€7™ 1 + 267) = Ygym),s(QC™n + J)  (mod &),
as desired. 0
11. APPENDIX
We include here a list of the conjectures from [3]. They are all true.

11.1. Some examples of the form p(3n + B)e =0 (mod 3).
p(3n + 2)(171),(2,1,0,2),(2,1,0,1,2,110,120),(1,1,0,2,1,110,220)‘

11.2. Some examples of the form p(5n + B)e =0 (mod 5).

p(ON + 1)0,2,2),(0,4,2),(0,2,3,0,0,1)>

p
p(dn +3)

P51+ 2)(2),(3,1),(1,3),(1,3,2),(2,0,0,2),(3,1,0,2),(3,1,0,3),(2,0,0,4),(4,1,0,4),(1,3,4,0,0,1) 5
(5n + 2) 4,1,1,0 0 3 4,1,3,0,0,3),(3,1,1,0,0,4),(3,1,3,0,074),(2,28),(1,3,28),(3,1,0,3,28),(4,1,0,4,28)7

,(1,2,0,1),(2,0,0,2),(4,0,0,2),(3,1,0,3),(1,2,0,3),(3,1,0,1,18),(2,0,0,3,18),(1,1,1,0,0,1) »
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POT +3)(1,43,00,1),(1,3,4,0,0,1),(3,3,4,0,0,1),(3,1,0,0,0,2),(2,3,4,0.0.2),(4,2,2,0,0,3),(3,2,2,0,0,4)

( )(
p(5n+4)a) 2,2),(1,3),(0,2,2),(0,2,4),(1,2,0,1),(3,2,0,1),(2,1,0,3),(3,1,0,3),(3,3,0,3)
P(51 + 4)(4,1,0,4),(4,3,0,4),(1,4,3,0,0,1),(3,4,3,0,0,1),(2,4,3,0,0,2),(4,1,1,0,0,3),(4,3,1,0,0,3),(1,4,3,0,0,3)
( )(

P57 +4)(3,1,1,0,0,4),(3,3,1,0,0,4),(4:4,35),(1,1,0,1,35),(2,3,0,1,35),(3.4,0,4,35),(2,4,0,1,45),(3,0,0,4,45)

11.3. Some examples of the form p(7n + B)e =0 (mod 7).

P77+ 2)(4),(2,2),(1,5),(3,5),(6,1,0,3),(3,5,0,3),(4,0,0,4),(1,5,0,4),(5,1,0,5),(6,1,0,6)
P71+ 3)(6),(5,1),(2.:2),(1,4,0,1),(2,2,0,2),(5,1,0,4),(5,1,0,5),(2,2,0,6)
p(Tn+4 1(2,2),(4,4),(1,5),(1,4,0,1),(3,6,0,1),(3,2,0,3),(3,5,0,3) 5

p(Tn+5 (1,5),(5,5),(2,2,0,2),(2,6,0,2),(4,3,0,3),(3,5,0,3),(3,1,0,6),(6,1,0,6),(6,3,0,6)

p(Tn + 6

( )(4)
( )(6)
( )(4)

(TN 4 4)(4,1,0,5),(5,1,0,5),(6,1,0,6),(6,5,0,6)
( )(1)
( )(4) (5,1),(2,2),(5,3),(1,4,0,1),(4,5,0,1),(2,2,0,2),(6,2,0,2),(2,4,0,2) 1
( )(

p(Tn+6)35,0 ,3),(1,6,0,3),(3,3,0,4),(5,0,0,5),(5,1,0,5) -

11.4. Some examples of the form p(11ln + B)e =0 (mod 11).

11n+5)(8),(6,2),(7,7),(1,9),(6,0,0,1),(3,2,0,3),(10,5,0,3),(1,2,0,4),(4,6,0,4),(5,9,0,5),(5,7,0,6),(10,1,0,10)
L1n + 6)(1),(10),(9,1),(6,2),(2,5),(2,6),(9,7),(4,2,0,1),(1,8,0,1),(2,1,0,2),(2,6,0,2),(8,7,0,3)
p(11n +6)(5.9,0,5),(3,9,0,6),(7,3,0,8),(9,0,0,9),(9,1,0,9),(10,3,0,10) 5

(
)()
)(
111+ 7)(3),(8),(9,1),(2,6),(1,9),(7,9),(4,1,0,2),(2,6,0,2),(3,2,0,3),(6,9,0,3),(4,8,0,4),(10,3,0,5),(1,0,0,6)
PN+ 7)(8.2,0,6),(5,5,0,8),(8,9.0,8),(9,1,0,9),(7,2,0,9),(3,4,0,9),(10,1,0,10)
117+ 8) (5),(8),(10),(9,1),(6,2),(8,4),(1,9),(9,9),(1,8,0,1),(2,3,0,2),(2,6,0,2),(4,0,0,3)
P(11n + 8)(3.2,0,3),(3,6,0,3),(9,1,0,4),(8,5,0,5),(5,9,0,5),(10,2,0,6)
P11+ 8)(6,4,0,6),(2,6,0,6),(1,10,0,7),(3,7,0,8),(7,1,0,10),(10,1,0,10)

)(7)

11n + 9)(7),(8),(10),(3,2),(6,2),(2,6),(6,6),(1,9),(1,8,0,1),(9,8,0,1),(2,2,0,3),(3,2,0,3),(9,4,0,3),(4,10,0,4)
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P(11n +10)(59,0.2),(2,1,0.4),(7,2,0,5),(4,9,0,5),(5.9.0,5),(6.6,0,6),(8,3.0.7)

p(11n + 10)(7’970’7)’(1070,078),(6,270,8),(4,1,0,9),(1,8,0,9),(3,5,0,10),(10,7,0,10).
11.5. Some examples of the form p(13n + B)e =0 (mod 13).

(131 4 2)(11,1),(2,8),(2,8,0,2),(8,8,0,6),(11,1,0,11),(5,6,0,11)
p(13n+3 (12),(8,2),(1,10,0,1),(5,0,0,5),(10,6,0,6),(3,10,0,9) »
p(13n +4 (10),(12),(8,2),(2,8),(1,11),(2,6,0,1),(1,10,0,1),(3,4,0,3),...>
13n 45

D (10),(11,1),(1,11),(6,1,0,2),(2,8,0,2),(3,4,0,3),...5

(10),(11,1),(8,2),(6,3),(1,11),(2,8,0,2),(10,10,0,2),(3,4,0,3),...>

13n + 8

S

)

)(

)

)

P(131 + 6)(12),(11,1),(8,2),(2,8),(1,10,0,1),(2,8,0,2),(8,12,0,2),...

)
)(10),(12),(8,1),(11,1),(8,2),(1,10,0,1),(2,8,0,2),(12,8,0,2),(8,10,0,2),..
)(

(

(

(

(

(
p(13n+7

(

(13n+9

(

(

(

D (10),(2,8),(1,11),(10,12),(12,9,0,1),(1,6,0,2),(10,8,0,2),...>

p(13n 4+ 10)(12),(8,2),(2,8),(12,10),(8,12),(1,7,0,1),(1,10,0,1),(5,1,0,3),...5
P(131 + 11) (10),(12),(11,1),(8,2),(1,8),(10,10),(1,11),(3,5,0,1),(2,8,0,2),...

P(13n 4 12)(10),(3,6),(2,8),(12,8),(1,11),(5,3,0,1),(1,5,0,1),(7,0,0,2),...-
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