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Abstract

Minimax Structured Neural Tangent Kernel in Estimating Average Treatment
Effect Confounded by Image Covariate

By Zijian Wang

Estimating the average treatment effect (ATE) in observational studies is challeng-
ing, particularly when confounding arises from high-dimensional image co-variates.
Traditional inverse probability weighting (IPW) methods could fall under the issue
of the reliance on knowledge of propensity scores and their high variability in estima-
tion caused by extreme propensity values. Thus, a minimax optimization framework
is proposed that minimizes the maximum bias in treatment effect estimation. This
thesis aims to propose a Minimax structured Neural Tangent Kernel to minimize the
maximal of the bias. To simulate real-world conditions where direct patient data
is limited, three semi-synthetic data generation frameworks are introduced—ranging
from simple image brightness measures to more complex labeling and filtering tech-
niques—to mimic treatment assignments and outcomes based on lung X-ray images.
Empirical evaluations using those semi-synthetic data demonstrate that these ad-
vanced techniques yield estimates closely aligned with the true ATE, highlighting
their promise for robust causal inference in complex, image-driven settings.
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Chapter 1

Introduction

In many observation studies, the goal is to estimate Average Treatment Effect

(ATE) τ of a binary treatment assignment W ∈ {0, 1}. However, some confounding

co-variates X, whether observable or unobservable variables that make the treatment

correlate with the potential outcomes, presenting in those studies sometimes make

our estimation biased. And the issue would be extremely challenging to handle once

we encounter image as a high-dimensional confounding.

One standard way of addressing the problem is using Inverse Probability Weight-

ing (IPW) that gives the inverse of propensity score, e(Xi) = P (Wi = 1|Xi), for each

observation as the balancing weights, which would yield unbiased estimation through

such co-variate balancing scheme. As investigated previously by Hirshberg [1], such

IPW estimator could be formalized that under the assumption of Ignorability and

Overlap, and the ATE can be identified as:

τATE = E[Yi(1)− Yi(0)] = E[
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

] (1.1)

with the corresponding Inverse Propensity Weights could be defined as:

γIPW (Xi) =
Wi

e(Xi)
− 1−Wi

1− e(Xi)
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However, this theoretical guarantee relies on the knowledge of the true propensity

score e(X), which is typically unknown in practice and must be estimated from the

data. When the estimated propensity score ê(X) approaches extreme values near 0

or 1, the resulting inverse weights become unstable.

Mathematically, to obtain a better understanding of the estimation error or bias of

the IPW estimator, we consider the conditional mean function noted as f(W,X),

and f(1, X) and f(0, X) correspond to the expected outcomes under treatment and

control, respectively. The true Average Treatment Effect (ATE) is then given by

τ = E[f(1, X)− f(0, X)], where f(W,X) = E[Y |X,W ] (1.2)

The ultimate goal of inverse propensity weighting is to construct a set of weights

γ(X) such that the weighted average of observed outcomes f(W,X) approximates

the true contrast f(1, X)− f(0, X). That is, we ideally would result in:

E [γ(X)f(W,X)] ≈ E[f(1, X)− f(0, X)] (1.3)

However, when the propensity score is estimated and the weights are imperfect,

this equality would not hold and introduce bias in our estimation. To quantify such

an imbalance, we define the worst-case scenario (the maximum of the bias) over a

class of functions F to express conditional means as:

imbalanceF(γ) := max
f∈F

∣∣∣∣∣ 1n
n∑

i=1

γi f(Wi, Xi)−
1

n

n∑
i=1

[f(1, Xi)− f(0, Xi)]

∣∣∣∣∣ (1.4)

This imbalance formulation reflects the discrepancy between the weighted ob-

served outcomes and the underlying treatment effect contrast, and a possible opti-

mization on the balancing weights that could possibly minimize the maximum of such

imbalance would be useful here, which forms the basis of a Minimax approach to
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optimize the balancing weights γ over a function class F that in maths can be ex-

pressed as:

γ⋆ = argmin
γ

{
imbalanceF(γ) +

σ2

n2
∥γ∥2

}
(1.5)

where σ as a finite bound of the conditional variance V ar[Y |X] and sample size n [2].

The key modeling decision lies in the choice of F . In low-dimensional settings,

F may be taken as a set of linear functions or low-order polynomials. But in high-

dimensional confounding, especially with images, such simplistic models are insuffi-

cient to characterize the complex outcome relationships. In this thesis, we propose to

define F as a function in a reproducing kernel Hilbert space (RKHS), and in particular

use the Neural Tangent Kernel (NTK) to represent complex functions over image

co-variates. The proposed approach would possess much more flexibility without rely-

ing on structural information of co-variate from the data generating process. We also

aim to examine and compare different statistical approaches to address confounding

problem appearing in estimating ATE where we have the freedom of manipulating

the function used to estimate the balancing weights γ.

1.1 Empirical Problem

The confounding we would like to address is present in many forms, and we would

specifically zoom in a case confounded by image co-variate that brings about more

complexity in real-life settings. For instance, in the field of real estate, the ”concep-

tual construction” picture (including the landscape, material used, overall structure,

and neighborhood) would inattentively affect the price and selling outcome, same

for hotel online reservation system. In medical research, the image co-variates could

be impactful to the decision making in assigning treatment. In respiratory condi-

tions, people with white or hazy shadows appearing in their lung imaging would be

recognized as certain pneumonia, which impacting both treatment and outcome; sim-
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ilarly, some orthopedic surgeries would potentially depend on what the X-ray or MRI

illustrates and suggests.

Thus, in the empirical stage of examining our approaches, we planned to apply

our ideal methodologies to publicly available lung X-ray images data[3]. The treat-

ment assigned to a patient with respiratory disease, and therefore the outcome, might

depend on lung imaging. However, due to the limitation of disclosure of data, we are

unable to obtain the information from actual patience. So we simulated the treatment

and potential outcome data based on the labeling attached to the original lung imag-

ing data with semi-synthetic data generation, that is to make changes building off of

the original data with some simulations, which we’ll explore further in the following

chapter.

1.2 Overview of Chapters

• In Chapter 2, we will formalize our semi-synthetic data generation frameworks

to provide a scenario of mimicking both our research setting and real world

potential situations.

• In Chapter 3, we will use the standard application of Inverse Probability Weight-

ing (IPW) estimator as baseline estimates and how we can modify the propensity

score estimation to achieve a procedure that aligns with the reality closer.

• In Chapter 4, we will explore the proposedMini-Max Approach and start with a

simple linear model of estimating the inverse propensity weights, which attempts

to achieve a balance of the co-variate for treated and untreated groups through

minimizing the maximum of imbalance in co-variates.

• In Chapter 5, we will replace the linear function to be a kernel function that a

more proper version of high-dimensional estimation in the our image setting, so
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that we are able to reformulate the imbalance problem solved with the ”Mini-

max” Approach above and balance a kernelized representation of co-variates.

• In Chapter 6, we will ultimately reach our proposed estimator, a Mini-Max

structured Neural Tangent Kernel, in replacing the position of estimating func-

tion of balancing weights. Besides applying IPW, we will further estimate with

Augmented Inverse Probability Weighting approach as our final estimators once

those weights are estimated.

• In Chapter 7, we will summarize a categorization of different estimators men-

tioned previously as either Oracle Estimator, that it uses the information of the

co-variates from the data generating process, or Pixel-Based Estimators, that

relies on no the structural knowledge or assumptions of the co-variates, and

make further discussions with respect to our specific setting.

• In Chapter 8, we would utilize the lung imaging data that is publicly available

and the semi-synthetic data we’ve generated. With those data, we are able to

examine and evaluate the approaches we’ve studied in previous chapters and

justify their applicability.

• In Chapter 9, a more comprehensive discussion and conclusion will be driven

to summarize all the discoveries. Critics and potential future working direction

would also be included for continuing refining the study.
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Chapter 2

Semi-Synthetic Data Generation

As previously mentioned, due to the limitation of data disclosure, we are unable to

acquire the treatment and outcome data from the patients, which could be a common

challenge considering the research ethics. Thus, a semi-synthetic data generating

framework would be applicable in our setting to obtain the treatment and outcome

data.

In this generation process, we have considered three different ways of simulations,

from the easiest scenario to the most complex one that will be explained in the

following sections.

2.1 Framework 1: A Simple One

In this simple framework, the only co-variate Xi is the average brightness. We obtain

the image pixel values in gray-scale as a 224 by 224 matrix, denote as Pij. Then the

average brightness, Bi, and itself as our co-variate in this framework, would become:

Bi =
1

224 ∗ 224
∑
i,j

Pij = Xi
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The propensity score, e(Xi) = E[W = 1|X], is obtained using the average brightness,

Xi and a scaling factor α:

e(Xi) =
1

1 + e−α(Xi−c)

With the propensity score defined, the treatment assignment follows:

Wi ∼ Bernoulli(e(Xi))

The potential outcome is defined as:

Yi(1) = 1 + e(Xi), Yi(0) = 0 + e(Xi)

where:

• Yi(1) represents the outcome is the unit would have received given the treatment

Wi = 1

• Yi(0) represents the outcome is the unit would not have received given the

treatment Wi = 0

And our observed outcomes Yi are defined as:

Yi = WiYi(1) + (1−Wi)Yi(0)

We have set Yi(1) to be 1 plus propensity score e(X) and Yi(0) to be 0 plus propensity

score e(X) as our counterfactual outcomes in this case. 0 and 1 here would signify

a level of recovery where 1 is recovered 0 is not. When defining the outcomes, we

bring the confounding co-variate of images, Xi, to the framework by making both

treatment assignment and outcome depend on it. This approach is highlighted with

its simplicity that the counterfactual average treatment effect (ATE) is simply 1

acquired. Therefore, in the idealized case, we could simplify our analysis and justify
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the estimations from the base case:

ATE = E[Yi(1)− Yi(0)] = 1

In this framework’s definition, the confounding structure is characterized by the fol-

lowing Directed Acyclic Graph:

X: BrightnessY: Outcome W: Treatment

This structure ensures that our framework has designated to use the average

brightness as a confounder that impacts both treatment and outcome.

2.2 Framework 2: Labeling

Provided by the source of data, the labels of the lung imaging reveal the type of

pneumonia or normality. With that, we assume that the treatment is Antibacterial,

and the labels, denoted by Li, act as an important co-variate influencing both treat-

ment assignment and potential outcomes. This framework refines the previous one

by introducing both image brightness and labels as confounding variables, aiming to

mimic a more realistic clinical setting.

Let Xi, the co-variate, be defined as Xi = [Li, Bi], where Bi denote the average

brightness of the i-th image and Li ∈ {NORMAL,BACTERIA,VIRUS} represent its

label. The probability of treatment assignment (propensity score) incorporates both

brightness and label:

logit(e(Xi)) = β0 + β1Bi + β2 · I(Li = BACTERIA) + β3 · I(Li = VIRUS)

Then, we are able to obtain the propensity score by taking the inverse logit of the
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right-hand side of the equation above:

e(Xi) =
1

1 + e−(β0+β1Bi+β2·I(Li=BACTERIA)+β3·I(Li=VIRUS))

The actual treatment assignment also follows:

Wi ∼ Bernoulli(e(Xi))

The potential outcomes are designed to reflect the differential impact of antibac-

terial treatment across the three labels. Specifically, the untreated Yi(0) and treated

Yi(1) potential outcomes are:

Yi(0) = θ(Li) + e(Xi)

Yi(1) = Yi(0) + τ(Li) = θ(Li) + e(Xi) + τ(Li)

where θ(Li) encodes the baseline outcome based on label:

θ(Li) =


0, if Li = NORMAL

−1, if Li = BACTERIA or VIRUS

and τ(Li) represents the label-specific treatment effect:

τ(Li) =


0, if Li = NORMAL

1, if Li = BACTERIA

−1, if Li = VIRUS

In the normal case, using antibacterial or not as treatment will not be improving

or decreasing level of recovery, so that we set the effect to be 0 for both treated and
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controlled cases. For the bacteria-infected lungs, if the person is treated with the

anti-bacterial, the treatment will have a positive effect, level of recovery would be

1, for this group, while their baseline status are set to be -1. Lastly for the virus-

infected lungs, if they are being treated with anti-bacterial mistakenly, the virus in

lungs would not be cured by such treatment so that the disease could be worsened

to a imaginary -2 of level of recovery, demonstrating a negative effect on this group,

while the untreated virus-infected people would still stay at their baseline level of -1.

In this framework’s definition, the confounding structure is characterized by the

following Directed Acyclic Graph:

X: Brightness & LabelY: Outcome W: Treatment

This structure with heterogeneous outcomes defined complicates the framework to

use both brightness and label of each individual together as confounder that impacts

both treatment and outcome. We see that this framework is built off of the previous

confounding structure and aims to mimic the more complex real-world scenario of

treatment-outcome relation by introducing the actual characteristics of the units, the

labels, so that treatment would potentially generate various outcome with the extra

complexity.

2.3 Framework 3: Image Filtering

In both of the previous frameworks, we only applied average image brightness, Xi,

as the confounding co-variate. However, average brightness is vague in describing the

whole image if we are using an image resolution of H ×W = 224 × 224. Therefore,

a better representation of the image is to apply the Image Filtering.
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We could first define a filtering matrix as:

F =


−1 −1 −1

−1 8 −1

−1 −1 −1

 (2.1)

This filter matrix would give high weights to the pixel in the center of each se-

lected 3 by 3 region of interest but low weights to surrounding pixels, which makes it

highlight the area of sharp intensity change while suppressing smooth regions. Using

this filter matrix, we would obtain each pixel in the filtered image with:

I ′i,j =
1∑

u=−1

1∑
v=−1

Ii+u,j+v · Fu+2,v+2 (2.2)

where I is the original image, I ′ is the filtered image, and Fu+2,v+2 is the filter matrix

entry (u+2, v+2). After obtaining the pixel values, we could reconstruct the filtered

image and aggregate those new pixel values:

X ′
i =

1

H ′ ·W ′

H′∑
i=1

W ′∑
j=1

(I ′ij)
2 (2.3)

We would then use the filtered brightness to pass into our original framework 1 of

treatment and outcome assignment. With the change of co-variate, we can formulate

this using the following DAG:

X: Filtered BrightnessY: Outcome W: Treatment

It ensures that our new filtered brightness as a confounder that impacts both treat-

ment and outcome. This aggregated version of filtering brightness, differing itself from

the simple average brightness, could extract the information of edges and textures of
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the images, which would add complexities in further statistical applications when we

apply it to semi-synthetic data generating process. The information encoded in the

aggregation would also mimic the emphasize of some particular medical features, like

the clearness of lung’s boundaries, making the filtered brightness a better input in

generating our data given our specific context.
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Chapter 3

Inverse Probability Weighting

3.1 IPW I: Standard IPW with True Propensity

Scores

Inverse Probability Weighting (IPW) has been widely used as a justifiable way to

yield unbiased estimators in the field of causal inference, and its earliest application

could be traced back to 1983 when Paul Rosenbaum and Donald Rubin first studied

and formalized the concept of propensity score, the conditional probability that each

observation assigned to be treated given certain co-variates, in observational studies

[4]. Re-weighting each observation by the inverse of its propensity score, e(Xi) =

P (Wi = 1|Xi), has been justified to yield unbiased estimation through balancing

co-variates, making treated and untreated groups comparable.

Mathematically, our first examined estimator of ATE with the true propensity

score, τ̂IPW1 could be formulated as:

τ̂IPW1 =
1

n

n∑
i=1

(
WiYi
e(Xi)

− (1−Wi)Yi
1− e(Xi)

)
(3.1)

where Wi as treatments, Yi as outcomes, and e(Xi) as the true propensity score of
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co-variate Xi. Following previous discussion, the true inverse propensity weights used

here are defined as:

γIPW1 =
Wi

e(Xi)
− (1−Wi)

1− e(Xi)
(3.2)

However, one challenge of this approach is that we generally have no information

of the propensity weights, e(Xi) = P (Wi = 1|Xi). Therefore, researchers would

choose to estimate e(Xi) through many ways, turning the estimation a two-staged

problem: first, estimating e(Xi) and second, computing the IPW estimator. In the

following sections, we would explore two ways of estimating the propensity score.

One is to use logistic regression to predict the probability of each unit being treated

with certain co-variate depending on situations. This approach is commonly used in

tackling the challenge of unknown propensity score. The other way is to manipulate

the ”brightness” by breaking down each image into pixels and to examine which

pixel value contributes more to the decision of treatment assignment- a pixel-level

weighted brightness. Specifically we fit a Lasso Regression and re-weight each pixel

by its ”contribution”. Using the weighted brightness itself as the co-variate or as a

part of the co-variate, we could then apply the logistic regression from the second

estimator for propensity score estimation.

3.2 IPW II: Logistic Regression Estimation of Propen-

sity Scores

The most direct and commonly used method for estimating propensity scores is logis-

tic regression. In this approach, a logistic model is trained to predict the probability

of treatment assignment using certain co-variates.
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Given the co-variates Xi, the logistic regression model is specified as:

P̂ (Wi = 1|Xi) =
e(β0+β1Xi)

1 + e(β0+β1Xi)
(3.3)

where Xi represents the co-variate, and β0, β1 are coefficients learned from the data.

Using this estimated probability ê(Xi) = P̂ (Wi = 1|Xi), we then apply the IPW

formula to estimate the treatment effect:

τ̂IPW2 =
1

n

n∑
i=1

(
WiYi
ê(Xi)

− (1−Wi)Yi
1− ê(Xi)

)
(3.4)

And the estimated Inverse Propensity Weights are defined by:

γIPW2 =
Wi

ê(Xi)
− (1−Wi)

1− ê(Xi)
(3.5)

The advantage of logistic regression is its simplicity and interpretability. However,

this estimator explicitly assumes a logistic function as the correct function for treat-

ment assignment, making it an Oracle Estimator. And because of such assumption, it

relies completely on an aggregated information of each image, which is unachievable

in reality. This motivates us to explore a more refined estimation strategy to use

pixel-level weighting.

3.3 IPW III: Weighted Pixel by Lasso Regression

Considering the previous oracle estimator, we would investigate on an approach that

does not rely on the co-variate structural information but is completely based on

observed data. Thus, a special detour is to capture the relationship between individ-

ual pixel intensities and treatment assignment. We applied a regularized regression

approach using Lasso (Least Absolute Shrinkage and Selection Operator). Lasso re-
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gression is particularly useful in high-dimensional settings because it performs feature

selection by shrinking some unnecessary parameters to zero, identifying the most rel-

evant pixels for predicting treatment assignment with parameters benefit from such

a behavior.

Formally, we fit a Lasso regression model where the treatment assignment Wi is

predicted using the vector of pixel value Xi,j:

Wi = α +

p∑
j=1

βjPi,j + ϵi, with L1 penalty:

p∑
j=1

|βj| ≤ λ (3.6)

where p is the number of pixels in each image, and λ is a tuning parameter that

controls the degree of regularization.

Once the Lasso model is trained, the learned coefficients β̂j provide a weighting

scheme for pixel importance. We then define a weighted brightness measure:

B∗
i =

p∑
j=1

β̂jPi,j (3.7)

Finally, either B∗
i itself becomes the whole co-variate X∗

i or in combination with

label information Li as an aggregated co-variate, we use logistic regression on X∗
i to

estimate the propensity scores and apply IPW as before:

τ̂IPW3 =
1

n

n∑
i=1

(
WiYi
ê(X∗

i )
− (1−Wi)Yi

1− ê(X∗
i )

)
(3.8)

And the estimated Inverse Propensity Weights using this pixel-reinforced co-

variate is:

γIPW2 =
Wi

ê(X∗
i )

− (1−Wi)

1− ê(X∗
i )

(3.9)
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where

X∗
i =


B∗

i if Xi = Bi

[Li, B
∗
i ] if Xi = [Li, Bi]

The Lasso-based approach offers several advantages over standard logistic regres-

sion. First off, it is not an Oracle Estimator, as it only relies on the observed co-variate

information of the images to work without further assumptions about co-variate struc-

tures, which matches closer to the structure of most practical applications. This

analysis on the pixel value also makes it more flexible for our IPW estimation.
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Chapter 4

A Minimax Approach

As introduced in Chapter 1, the imbalance term arises when the estimated weights γi

fail to perfectly reweight the observed outcomes f(Wi, Xi) to recover the treatment

contrast as a counterfactual term f(1, Xi)−f(0, Xi), particularly in complex or high-

dimensional settings like images. Formally, this imbalance can be defined over a class

of conditional mean functions F as Equation 1.4 specified. It captures the worst-

case discrepancy between the weighted average of observed conditional expectations

and the true treatment contrast. The minimax strategy aims to find weights γ that

minimize this maximal imbalance (as Equation 1.5 showed). Since there is a great

freedom in selecting the function f ∈ F to represent the conditional means, we could

start from the basic linear relationship in the following elaborations in this chapter.

4.1 Linear Conditional Mean Functions

We begin by assuming that the conditional mean function f(W,X) ∈ F is linear in a

feature representation of X with some basis function ψ(X) ∈ Rd that is used to span

the space of the functions f . Specifically, we assume a linearly combined form:

f(Wi, Xi) = (1−Wi)β
⊤
0 ψ(Xi) +Wiβ

⊤
1 ψ(Xi) (4.1)
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where

ψ(Xi) =


1

Xi

X2
i


and β0, β1 ∈ Rd are coefficients corresponding to the control and treatment groups,

respectively. Similarly, we could evaluate the bias induced by weighting the linear

conditional mean function as follows:

bias =
1

n

n∑
i=1

[γif(Wi, Xi)− (f(1, Xi)− f(0, Xi))]

=
1

n

n∑
i=1

[
γi((1−Wi)β

⊤
0 ψ(Xi) +Wiβ

⊤
1 ψ(Xi))− (β1 − β0)

⊤ψ(Xi)
] (4.2)

whose value is upper bounded by the worst-scenario imbalance over the designated

linear function class F :

bias ≤ imbalanceF(γ)

This can be further reorganized as a matrix-multiplication format for convenience

in calculation:

bias =

 1

n

n∑
i=1

γi

ψ(Xi)(1−Wi)

ψ(Xi)Wi

− 1

n

n∑
i=1

−ψ(Xi)

ψ(Xi)




⊤β0
β1

 (4.3)

Applying the Cauchy–Schwarz inequality we could upper bound the bias, which

is also the worst-case imbalance, as:

bias ≤

∥∥∥∥∥∥∥
1

n

n∑
i=1

γi

ψ(Xi)(1−Wi)

ψ(Xi)Wi

− 1

n

n∑
i=1

−ψ(Xi)

ψ(Xi)


∥∥∥∥∥∥∥ ·

∥∥∥∥∥∥∥
β0
β1


∥∥∥∥∥∥∥ (4.4)

With the freedom of choosing conditional mean function f , if we assume the

norm of the parameter vector is bounded by a parameterized bias budget B (e.g.,
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∥β∥2 =

∥∥∥∥∥∥∥
β0
β1


∥∥∥∥∥∥∥
2

≤ B) for B = pk where p is the number of parameters in the model

we used to represent the outcome and k ∈ [−1, 1] as a tuning exponent, then we could

write the bias upper bound as:

bias ≤

∥∥∥∥∥∥∥
1

n

n∑
i=1

γi

ψ(Xi)(1−Wi)

ψ(Xi)Wi

− 1

n

n∑
i=1

−ψ(Xi)

ψ(Xi)


∥∥∥∥∥∥∥ ·B = ∥Aγ − b∥2 ·B (4.5)

where:

A =
1

n

ψ(X1)(1−W1) · · · ψ(Xn)(1−Wn)

ψ(X1)W1 · · · ψ(Xn)Wn

 , b =
1

n

n∑
i=1

−ψ(Xi)

ψ(Xi)


And minimizing the worst-case squared bias would be equivalent to the following

quadratic expression:

min
γ

bias2 ≤ min
γ

∥Aγ − b∥22 ·B
2 = min

γ
B2 · (γ⊤A⊤Aγ − 2γ⊤A⊤b+ b⊤b) (4.6)

Solving the quadratic form above, we would end up with the following optimized

solution:

γ̂ = argmin
γ

∥Aγ − b∥22 ·B
2 = (A⊤A)−1A⊤b (4.7)

Following the formulation by Hirshberg and Wager [2] and by Hirshberg [1], we

can also add the regularization term written as λ = σ2

n2 for σ as a finite bound of the

conditional variance V ar[Y |X] and sample size n. So we can re-write the optimization

problem as:

γ̂λ = argmin
γ

{
∥Aγ − b∥22 ·B

2 +
σ2

n2
∥γ∥2

}
(4.8)

Or if we would want to present the imbalance in a normalized way, we could
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reformulate the expression to be:

γ̂λ = argmin
γ

{
∥Aγ − b∥22 +

σ2

n2B2
∥γ∥2

}
= (A⊤A+

σ2

n2B2
I)−1A⊤b (4.9)

where we incorporate the bias budget B = pk and make our tuning parameter λ as a

parameterized function with respect to the budget:

λ(B) =
σ2

n2B2
for B = pk (4.10)

With those weights calculated, we could then apply it to the observed outcomes

for balancing and ATE estimation. This minimax framework in general offers a more

flexible solution, where we have the freedom to choose different representations of

conditional mean functions f . Also, we could simply tune k to adjust for the penalty

term to better adapt to the complexity of the function class, ensuring that as the

model becomes more flexible (i.e., as p increases), the regularization is appropriately

weakened to achieve a favorable bias-variance tradeoff within the minimax framework

and ultimately our estimation result.
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Chapter 5

RBF Kernelized Minimax

Approach

In the previous chapter, we introduced a minimax approach to inverse probability

weighting (IPW), which minimizes the worst-case imbalance across a function class

F . And we assumed F to consist of linear functions over some feature basis functions

ψ(X). While this linear formulation yields tractable solutions and insights, it may

be hard to capture some complex, nonlinear dependencies.

To address this limitation, we extend the minimax framework to a function in

Reproducing Kernel Hilbert Space (RKHS). Specifically, we consider function classes

F in the RKHS defined by a positive semi-definite kernel function K(x, x′), and

specifically, we focus on the Radial Basis Function (RBF) kernel.

5.1 RBF Kernel and Minimax Approach

Given a kernel function K, the associated RKHS HK is the space of all functions f

that can be expressed as f(x) =
∑

i αiK(x, x′) for some coefficients αj ∈ R. The
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minimax imbalance in this kernelized method becomes:

imbalanceHK
(γ) := max

f∈HK

∣∣∣∣∣ 1n
n∑

i=1

γ(Xi) f(Wi, Xi)−
1

n

n∑
i=1

[f(1, Xi)− f(0, Xi)]

∣∣∣∣∣ (5.1)

We here select to use the Radial Basis Function (RBF) Kernel to defined the

RKHS by:

K(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
(5.2)

where σ > 0 is the bandwidth parameter that controls the smoothness of the function

class. To incorporate treatment assignment Wi into the kernel function, we define an

extended feature vector:

Zi =

αWi

βXi

 (5.3)

with scaling constants α, β to balance the influence of treatment status and co-

variates. We then compute the full kernel matrix K as the replacement of f(Wi, Xi)

with each entry at position i, j defined as

Kij = exp

(
−∥Zi − Zj∥2

2σ2

)
(5.4)

To construct the treatment group difference in replacing in the second counter-

factual term in the minimax framework 5.1, we define Kdiff as:

K0 =
∑

j:Wj=0

K(Zi, Zj), K1 =
∑

j:Wj=1

K(Zi, Zj), Kdiff = K1 −K0 (5.5)

The optimal weights γ minimizes the following regularized problem under similar

derivation we’ve shown in the previous chapter:

γ̂ = (K + λ(B) · I)−1Kdiff (5.6)
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where λ(B) = σ2

n2B2 is a regularization parameter to stabilize the solution as we’ve

discussed in the last chapter.

This kernelized minimax formulation retains the core idea of minimizing worst-case

imbalance, but generalizes the function class F from linear to nonlinear spaces. With

the RBF kernel, we can flexibly capture smooth variations in the outcome model,

making this method robust to complex co-variate structures. This is particularly

important when estimating treatment effects is high-dimensional.
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Chapter 6

Neural Tangent Kernel Mini-Max

While the RBF kernel offers a powerful, nonlinear generalization of the minimax

imbalance framework, it lacks the structural adaptability as an oracle estimator. In

this chapter, we introduce the Neural Tangent Kernel (NTK) as a tool to extend the

minimax weighting approach to deep learning models, which is the ultimate solution

we proposed to be in the place of the function f in the minimax framework.

6.1 Neural Network Structure

The NTK used to replace the function defines the kernel as:

KNTK(x, x
′) = ∇θf(x)

⊤∇θf(x
′), (6.1)

where f(x) is the output of a neural network and ∇θf(x) is the gradient with respect

to its parameters.

So, to implement NTK Kernel matrices, we first need to define a simple CNN

architecture, whose gradients are important for constructing NTK, for outcome pre-
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diction:

f(x) = Conv2D → ReLU → Batch Normalization → Pooling → Dense → Output

(6.2)

We separately train two versions of this model: one on treated samples (W = 1)

and one on control samples (W = 0). For each input image, we compute the gradient

of individual co-variate∇θf(Xi) from the respective model.

6.2 NTK-Based Minimax

Analogous to the RBF case, we define the imbalance as:

imbalanceHNTK
(γ) := max

f∈HNTK

∣∣∣∣∣ 1n
n∑

i=1

γ(Xi) f(Wi, Xi)−
1

n

n∑
i=1

[f(1, Xi)− f(0, Xi)]

∣∣∣∣∣
(6.3)

where HNTK is the RKHS induced by the NTK, containing all the functions f that

could be expressed as linear combinations of the kernel evaluations of the NTK.

Since we would want to measure a treatment-specific counterfactual structure in

replacing the original function, we can define our kernel matrix as follows:

KNTK


W
X

 ,

W ′

X ′


 =


⟨∇θf1(X),∇θf1(X

′)⟩ if W = W ′ = 1

⟨∇θf0(X),∇θf0(X
′)⟩ if W = W ′ = 0

0 otherwise

(6.4)

Similar to the previous structure in RBF Kernel, we define treatment-specific
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NTK-weighted similarities:

Kdiff,0(i, j) =


f0(Xi)

Tf0(Xj), if Wi = 0

0, otherwise

Kdiff,1(i, j) =


f1(Xi)

Tf1(Xj), if Wi = 1

0, otherwise

Kdiff = Kdiff,1 −Kdiff,0

Then the optimal balancing weights γ will become:

γ̂ = (KNTK + λ(B) · I)−1Kdiff (6.5)

where λ(B) = σ2

n2B2 as the regularization parameter.

The NTK provides a powerful and theoretically grounded framework for extending

minimax imbalance to settings where co-variates are image data. It preserves the

interpretability of kernel methods while incorporating the expressive capacity of deep

neural networks, leading to more informed balancing weights γ. These weights can

then be used in IPW or Augmented IPW (AIPW) estimators to reduce bias in the

presence of high-dimensional confounding.

6.3 The AIPW Estimator

Having derived balancing weights γ̂i from the Neural Tangent Kernel (NTK) frame-

work and trained group-specific outcome models f̂0, f̂1, we also invest to test out

the Augmented Inverse Probability Weighting (AIPW) estimator, which blends both

model-based predictions and weight-based corrections into a single coherent estima-

tor. A crucial advantage of the AIPW estimator is its consistency if either the model
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f̂w(X) is correctly specified or the weights γ̂i are valid. This dual pathway to unbiased-

ness allows researchers to hedge against model misspecification, which makes AIPW

particularly useful in high-dimensional or complex settings like image confounding.

The AIPW estimator is defined as:

τ̂AIPW =
1

n

n∑
i=1

{
f̂1(Xi)− f̂0(Xi)

}
+

1

n

n∑
i=1

γ̂i ·
{
Yi − f̂Wi

(Xi)
}
, (6.6)

where:

• f̂w(Xi): outcome prediction from the treatment-specific CNN model,

• γ̂i: NTK-based minimax balancing weights,

• Yi − f̂Wi
(Xi): the residual that quantifies deviation from the model.

The first term is purely model-based. The second term applies bias correction

using the weighted residuals, improving robustness even if the outcome model is

imperfect.

6.4 Non-Parametric Variance Estimation

The τ̂AIPW estimator’s variance could be estimated using the following formulation:

V̂ =
1

n

n∑
i=1

γ̂2i ·
(
Yi − f̂Wi

(Xi)
)2

. (6.7)

where γ̂(Xi) denotes the balancing weight assigned to the i-th observation determined

by the non-parametric estimation frameworks, Yi is the observed outcome for observa-

tion i, f̂(Xi) is a consistent estimator of the conditional mean outcome using Neural

Network model [1].

A critical advantage of this variance estimate accommodates the non-linear and

high-dimensional nature of the data without relying on rigid parametric assumptions.
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Across all datasets, the variance estimator facilitates the construction of meaningful

confidence intervals, especially when traditional bootstrap methods or sampling dis-

tribution may computationally prohibitive. Also, such non-parametric variance would

not rely on any other components besides the balancing weights, the observed out-

comes, and model predicted outcomes with co-variates. Those advantages further

leverage the flexibility of such non-parametric approach in our estimation problems.

6.5 Implementation

In the implementation and empirical testing stage of the estimator, we split the data

by half randomly into training data and evaluating data. The first ”training data” is

used to train the simple neural network defined above in 6.2; the second half ”evalu-

ating data” is to be passed into neural network model for gradient computation and

NTK construction. Using this split during implementation would 1) avoid overfit-

ting to the specific data and improve the generalizability of the NTK, 2) reduce bias

in estimation by avoid using the same dataset for both training and evaluation (also

known as ”Double Dipping”), and we will be empirically see how such implementation

performs in Chapter 8.
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Chapter 7

Oracle and Non-Oracle Estimators

It has been dabbled that some of our estimators mentioned in the previous chapters

are Oracle Estimators, and others are Non-Oracle Estimators. So in this chapter we

would classify all estimators introduced into those two categories. This classification

is based on whether prior knowledge is assumed about the function class representing

the co-variate structure f(X) or the data generating information (e.g. the treatment

assignment).

7.1 Oracle Estimators

Oracle Estimators are idealized approaches that assume specific prior knowledge on

the class of functions f(X) used to model the conditional mean or propensity score

structure from our data generating process. The Oracle Estimators from our study

include:

• IPW I: Inverse Probability Weighting with True propensity score

This estimator assumes exact knowledge of the true propensity score function

e(X). It could be serving as an idealized benchmark
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• IPW II: Inverse Probability Weighting with propensity score esti-

mated by logistic regression

This estimator is explicitly built on a known summary of co-variate, brightness,

with the parametric logistic model as a prior structural information of data.

• Linear Minimax: Inverse Probability Weighting with balancing weights

estimated via Linear functions used in Minimax Structure

The linear minimax estimator presumes that the true underlying structure of

the conditional means lies within a known linear function class spanned by

selected basis functions ψ(X).

• RBF Minimax: Inverse Probability Weighting with balancing weights

estimated via RBF Kernel used in Minimax Structure

The use of the Radial Basis Function kernel assumes a RKHS constructed that

contains the underlying conditional mean function.

7.2 Non-Oracle Estimators

Non-Oracle Estimators, by contrast, do not rely on explicit knowledge of the appro-

priate functional form for modeling co-variates or treatment assignment mechanisms.

Instead, these estimators utilize flexible models trained directly on raw co-variate

inputs. In our study, these include:

• IPW III: Inverse Probability Weighting with Lasso-reweighted pixel

values

This estimator directly models the propensity score using the manipulation of

observed pixel data from the co-variate via Lasso regression, making no explicit

structural assumptions on the functional form of f(X).
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• IPW NTK Minimax: Inverse Probability Weighting with balancing

weights estimated via NTK used in Minimax

This estimator employs the Neural Tangent Kernel, derived from the gradi-

ents of neural networks trained directly on raw pixel data, without explicitly

assuming a specific function class.

• AIPW NTK Minimax: Augmented Inverse Probability Weighting

with NTK used in Minimax

Similar to IPW NTK Minimax, this estimator does not rely on explicit prior

knowledge about the functional form.

We would expect those oracle estimators, as a golden standard, to perform gen-

erally better than non-oracle estimators with the assumption of the co-variate struc-

ture beforehand, and such a distinction between oracle and non-oracle estimators

helps clarify how explicit assumptions about the function class influence estimation

bias, variance, and practical applicability in high-dimensional and complex co-variate

settings.
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Chapter 8

Empirical Performances

In this chapter, we evaluate the empirical performance of different estimation tech-

niques applied to the lung X-ray images. Our assessment focuses on the following

methodologies:

1. IPW I

2. IPW II

3. IPW III

4. Linear Minimax

5. RBF Kernel Minimax

6. IPW NTK Minimax

7. AIPW NTK Minimax

In the evaluation stage, Data 1 represents the first and simplest semi-synthetic

framework of assigning treatments and potential outcomes; Data 2 represents the

second framework where we complicate outcomes by their labels; Data 3 represents

the last framework where we applied image filtering to capture more details in pixels
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instead of directly aggregating mean brightness. Since we applied 3 different data

simulation mechanisms, the results are separately presented in Table 8.1 for frame-

work 1, Table 8.2 for framework 2, and Table 8.3 for framework 3. The visualizations

of balancing weights estimation, sampling distribution, and tuning process could be

found at Appendix A.

8.1 Evaluation Techniques

The entire dataset we obtained consist 5216 images, and we are able to perform

random draws to form sampling distribution by changing seeds and examine the

coverage. Specifically, in each estimation process, we draw 200 samples from the

population image dataset and perform estimation each time to ultimately obtain

a sampling distribution. Then we obtain a normally approximated coverage using

this estimated sampling distribution standard error ŝe around the true parameter for

better quantitative evaluation. For the estimators that involve a tuning parameter k

(refer to the expression 4.9), we primarily evaluate the bias, RMSE, and Coverage by

selecting several specific k ∈ [−1, 1] that controls the regularizing strength and pick

the top 2 well-performed candidates.

The visualizations in the Appendix A includes the following components:

• For IPW I, II, and III, it includes the inverse probability weights and sampling

distribution

• For Minimax based approaches, it includes 6 plots for each data generating

process:

– 2 preferred choices of balancing weights after tuning the regularization

term by k.
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– 2 estimated sampling distributions with τ ± 1.96ŝe interval estimate plot-

ted.

– 1 plot for k selection in the tuning process of bias/rmse and rmse curves

plotted with 1-1 corresponding relationship between bias/rmse and cover-

age.

– a coverage plot for confirmation.

The exact k and λ value selected will be mentioned also in the Appendix B.

8.2 Results

Method τ̂0 Sample σ Coverage En[τ̂i]

Truth 1 NA NA NA
IPW I 0.863 0.197 0.93 1.043
IPW II 0.898 0.283 0.99 1.065
IPW III 0.765 0.072 0.71 0.893
IPW w/ Linear Mini-Max 0.982 0.017 0.94 0.997
IPW w/ RBF Mini-Max 1.001 0.007 0.93 1.001
IPW w/ NTK Mini-Max 1.070 0.022 0.32 1.052
AIPW w/ NTK Mini-Max 1.002 0.021 0.93 0.999

Table 8.1: Semi-Synthetic Framework 1

Method τ̂0 Sample σ Coverage En[τ̂i]

Truth 0.227 NA NA NA
IPW I 0.362 0.137 0.95 0.254
IPW II 0.337 0.116 0.96 0.242
IPW III 0.303 0.057 0.68 0.308
IPW w/ Linear Mini-Max 0.273 0.062 0.96 0.230
IPW w/ RBF Mini-Max 0.292 0.074 0.94 0.237
IPW w/ NTK Mini-Max 0.284 0.078 0.93 0.263
AIPW w/ NTK Mini-Max 0.323 0.061 0.43 0.356

Table 8.2: Semi-Synthetic Framework 2
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Method τ̂0 Sample σ Coverage En[τ̂i]

Truth 1 NA NA NA
IPW I 1.006 0.195 0.94 1.008
IPW II 0.997 0.091 0.95 1.023
IPW III 0.812 0.073 0.44 0.846
IPW w/ Linear Mini-Max 0.951 0.051 0.97 0.959
IPW w/ RBF Mini-Max 0.985 0.022 0.95 0.994
IPW w/ NTK Mini-Max 1.072 0.041 0.05 1.149
AIPW w/ NTK Mini-Max 1.123 0.004 0 1.121

Table 8.3: Semi-Synthetic Framework 3
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Chapter 9

Discussion and Conclusion

Previously we’ve explored methodologies to estimate the Average Treatment Effect

(ATE) in observational studies complicated by high-dimensional image co-variates.

This chapter would summarize key findings and interpret based on the simulation

results in Tables 8.1, 8.2, and 8.3 as well as in Visualizations from Appendix A and

B.

9.1 Interpretation of Findings

9.1.1 Table Results

Our results from Chapter 8 could reveal several critical insights:

• The oracle estimators, including IPW I, II, IPW w/ Linear Minimax, and IPW

w/ RBF Mini-Max, generally perform well in three semi-synthetic data frame-

works due to the prior knowledge and assumptions about co-variate structures.

Among those estimators, IPW w/ Linear Minimax and IPW w/ RBF Minimax

are with impressively small bias and variance but still with a decent coverage.

Those oracle estimators could be serving as a golden standard of estimation,

and their results could also inform us the significance of assumptions about
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co-variate structure in observational studies before estimation.

• From the tables presented in the last chapter, those non-oracle estimators,

including IPW III, IPW w/ NTK Minimax, and AIPW w/ NTK Mini-Max,

compared to those oracle estimators performs slightly worse due to their pure

reliance on the image pixel values during estimation. Generally speaking, IPW

III performs well across the three frameworks with a medium level of achieve-

ments of coverage, variance, and bias. We do observe a huge fluctuation of

performances of our proposed approaches using NTK Minimax framework: the

IPW estimator with NTK-based Minimax, compared to other estimators, per-

forms badly in the first (simple binary outcome) and third (filtered image as

co-variate) empirical data generating framework by resulting a small cover-

age, while it outperforms many estimators in the second data (both label and

brightness as an aggregated co-variate). The AIPW estimator under the NTK

also fluctuates in performance when it obtains the highest coverage score under

testing with the first data but gradually decreases in this measure as the data

generating mechanism becomes more complex. It ultimately obtains 0 coverage

with bias existing but tiny variance.

9.1.2 Visual Results

Plots from appendix could reveal some more inferences:

• IPW I and II Those ”baseline-kind” estimators, being oracle, predicts the in-

verse propensity weights aligning with the true weight curves well under the

testing of all data, which also results a good coverage ultimately.

• IPW III Due to the fact that it is not cheating with assuming co-variate struc-

tural information, it outputs some weights that are not aligning well enough



39

with the true curve. But since it captures the general predicted shape, it is able

to recover a medium coverage at most times.

• Linear Minimax The Linear Minimax generally performs well in rendering

weights to capture the essence of the true curves. But due to the limitation

in of the model’s linear structure, the weights would not describe some of the

variation in the true curve well. Despite the imperfectness, it normally results

decent coverage and balance between bias and variance in all three data. A

special choice for tuning parameter in data 3 ends up with huge variance when

we enlarge the weights magnitude, where we could still obtain a good coverage.

• RBF Minimax The RBF Minimax, by including more functions it is able to

model, adds more variations in predicting balancing weights. With proper reg-

ularizing strength, the RBF Minimax normally ends up with good coverage and

bias-variance balance.

• IPW w/ NTK Minimax : The NTK weights, when used with IPW, could more

or less capture the essence of the true weight curve. However, its coverage

fluctuates for the best tuning parameter choice, and sometimes we are choosing

small weights by regularizing more to obtain a better coverage (in data 2).

• AIPW w/ NTK Minimax : The NTK weights’ issue becomes more obvious

when used in the AIPW estimator. Basically across all three data generating

frameworks, the weights are all generally small. And observing the parameter

tuning curve, we see that the Bias/RMSE curves are mostly flat to be close to

one, indicating that the Bias almost takes up the entire RMSE.
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9.2 Discussion

Our proposed estimator, IPW or AIPW using Neural Tangent Kernel, admittedly

doesn’t perform well as we have expected. One thing to discuss based on the findings is

the zero coverage observed from the AIPW based NTK Minimax estimator. Although

we applied AIPW estimator due to its doubly robustness in practice, we still encounter

an inferior estimation result. This could be indicating that both our balancing weights

and our outcome predictive model are not idealized to work well. Nevertheless, we

do obtain a good coverage when using small weights by regularizing harshly (λ =

3600 and B ≈ 0) in the first data, this is probably because of the well-performed

predictive model from our first AIPW term thankful to the doubly robustness of the

estimator. However, if the first AIPW term is not predicting the outcomes well, the

weights we obtained with different specific tuning parameters would still not make

proper corrections for the bias, demonstrated from the results in data 2 and 3 (as the

visualization of inverse probability weights of this estimator shown).

When discussing about our uncommon tuning parameters, there is a chance that

we missed the actual regularization term that could bring us to an ideal, properly

tuned solution. Since some IPW and most AIPW estimators receive small weights, the

harshly regularized tiny variation would not render a preferable coverage. A small

regularization term might have not been tested in our scenario that could render

a better coverage. And we could look into a wider but also finer range of tuning

parameters, or use a better parameter tuning algorithm than our simple grid search,

to find out that specific sweet spot. But we are still unable to figure out the reason

for such a behavior of those regularization terms specifically for the Neural Network

based minimax frameworks at the current stage of our study.

All the discussion above could be brought back to our Neural Network Modeling

that used for constructing kernel matrices and making predictions. If we could better

tune the model or use some existing models, the output from those Neural Network
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based estimators could be potentially better. Since the schedule of this study is

limited to months, there was little time to be spent on tuning the Neural Network

Model or using pre-trained models as a better framework for outcome prediction,

which could lead to a bad estimate of our final NTK based Mini-Max estimators.

9.3 Future Work

One future direction is to focus on refining the kernel formulations and tuning the

Neural Network used in NTK mechanism. Additionally, integrating regularization

techniques specifically tailored to high-dimensional image data could help stabilize

estimation. Last but not least, we would ultimately extending these methods to real-

world, non-synthetic medical datasets one day, where we know the actual treatment

assigned and outcomes to eventually test out the performance of those approaches in

the real situation.
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Appendix A

Plots of Simulation Results

Figure A.1: Semi-Synthetic Framework 1 - IPW I, II, III
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Figure A.2: Semi-Synthetic Framework 1 - IPW w/ Linear Minimax

Figure A.3: Semi-Synthetic Framework 1 - IPW w/ RBF Minimax
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Figure A.4: Semi-Synthetic Framework 1 - IPW w/ NTK Minimax

Figure A.5: Semi-Synthetic Framework 1 - AIPW w/ NTK Minimax
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Figure A.6: Semi-Synthetic Framework 2 - IPW I, II, III

Figure A.7: Semi-Synthetic Framework 2 - IPW w/ Linear Minimax
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Figure A.8: Semi-Synthetic Framework 2 - IPW w/ RBF Minimax

Figure A.9: Semi-Synthetic Framework 2 - IPW w/ NTK Minimax
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Figure A.10: Semi-Synthetic Framework 2 - AIPW w/ NTK Minimax

Figure A.11: Semi-Synthetic Framework 3 - IPW I, II, III
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Figure A.12: Semi-Synthetic Framework 3 - IPW w/ Linear Minimax

Figure A.13: Semi-Synthetic Framework 3 - IPW w/ RBF Minimax
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Figure A.14: Semi-Synthetic Framework 3 - IPW w/ NTK Minimax

Figure A.15: Semi-Synthetic Framework 3 - AIPW w/ NTK Minimax
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Appendix B

Parameter Tuning Selection

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 0.982 0.017 0.94 0.997 1 0.005
Choice 2 1.012 0.010 0.86 1.010 2.5e-5 1

Table B.1: Parameter Tuning: Data 1, IPW w/ Linear Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 1.001 0.007 0.93 1.001 0.005 0.0707
Choice 2 0.993 0.007 0.93 1.000 2.5e-5 1

Table B.2: Parameter Tuning: Data 1, IPW w/ RBF Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 1.070 0.022 0.32 1.052 2.5e-5 1
Choice 2 1.070 0.022 0.32 1.052 6.9e-13 6000

Table B.3: Parameter Tuning: Data 1, IPW w/ NTK Minimax
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τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 1.002 0.021 0.93 0.999 3600 0.00016
Choice 2 1.034 0.022 0.73 1.030 3000 0.00146

Table B.4: Parameter Tuning: Data 1, AIPW w/ NTK Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 0.227
Choice 1 0.273 0.062 0.96 0.230 1.76e-6 3.76
Choice 2 0.254 0.063 0.95 0.214 1.25e-7 14.14

Table B.5: Parameter Tuning: Data 2, IPW w/ Linear Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 0.227
Choice 1 0.292 0.074 0.94 0.237 0.00035 0.26
Choice 2 0.277 0.062 0.94 0.233 1.76e-6 3.76

Table B.6: Parameter Tuning: Data 2, IPW w/ RBF Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 0.227
Choice 1 0.284 0.078 0.93 0.263 900 0.00016
Choice 2 0.231 0.066 0.85 0.283 2.5e-5 1

Table B.7: Parameter Tuning: Data 2, IPW w/ NTK Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 0.227
Choice 1 0.323 0.061 0.43 0.356 90,000 0.00016
Choice 2 0.323 0.093 0.33 0.461 1161 0.00146

Table B.8: Parameter Tuning: Data 2, AIPW w/ NTK Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 0.951 0.051 0.97 0.959 2.5e-5 1
Choice 2 1.109 1.709 0.94 0.971 7.31e-7 5.84

Table B.9: Parameter Tuning: Data 3, IPW w/ Linear Minimax
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τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 0.985 0.022 0.95 0.994 1 0.005
Choice 2 1.004 0.014 0.82 1.016 0.0707 0.018

Table B.10: Parameter Tuning: Data 3, IPW w/ RBF Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 1.072 0.041 0.05 1.149 3.22e-7 8.80
Choice 2 0.929 0.036 0.07 0.879 900 0.00016

Table B.11: Parameter Tuning: Data 3, IPW w/ NTK Minimax

τ̂0 Sample σ Coverage En[τ̂i] λ(B) B

Truth 1
Choice 1 1.123 0.004 0 1.121 202500 0.00016
Choice 2 1.312 0.012 0 1.322 2614 0.00146

Table B.12: Parameter Tuning: Data 3, AIPW w/ NTK Minimax
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balancing act in causal inference, 2021. URL https://arxiv.org/abs/2110.

14831.

[2] David A. Hirshberg and Stefan Wager. Augmented minimax linear estimation,

2020. URL https://arxiv.org/abs/1712.00038.

[3] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, M Anthony Lewis, Huimin

Xia, and Kang Zhang. Identifying medical diagnoses and treatable diseases by

image-based deep learning. Cell, 172(5):1122–1131.e9, 2018.

[4] PAUL R. ROSENBAUM and DONALD B. RUBIN. The central role of the

propensity score in observational studies for causal effects. Biometrika, 70(1):

41–55, 04 1983. ISSN 0006-3444. doi: 10.1093/biomet/70.1.41. URL https:

//doi.org/10.1093/biomet/70.1.41.

https://arxiv.org/abs/2110.14831
https://arxiv.org/abs/2110.14831
https://arxiv.org/abs/1712.00038
https://doi.org/10.1093/biomet/70.1.41
https://doi.org/10.1093/biomet/70.1.41

	Introduction
	Empirical Problem
	Overview of Chapters

	Semi-Synthetic Data Generation
	Framework 1: A Simple One
	Framework 2: Labeling
	Framework 3: Image Filtering

	Inverse Probability Weighting
	IPW I: Standard IPW with True Propensity Scores
	IPW II: Logistic Regression Estimation of Propensity Scores
	IPW III: Weighted Pixel by Lasso Regression

	A Minimax Approach
	Linear Conditional Mean Functions

	RBF Kernelized Minimax Approach
	RBF Kernel and Minimax Approach

	Neural Tangent Kernel Mini-Max
	Neural Network Structure
	NTK-Based Minimax
	The AIPW Estimator
	Non-Parametric Variance Estimation
	Implementation

	Oracle and Non-Oracle Estimators
	Oracle Estimators
	Non-Oracle Estimators

	Empirical Performances
	Evaluation Techniques
	Results

	Discussion and Conclusion
	Interpretation of Findings
	Table Results
	Visual Results

	Discussion
	Future Work

	Appendix Plots of Simulation Results
	Appendix Parameter Tuning Selection
	Bibliography

