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Abstract

Information Flow in Spatially Structured

Populations

By Tyler B. Smith

Spatial structure has a strong e↵ect on biological systems at many scales, with

information flow being limited by the rate at which individual constituents of the

system move through space.

At the population scale, limited dispersal of individuals and the accumulation of

mutations results in isolation by distance, in which individuals found further apart

tend to be less related, as measured by the proportion of their genomes shared

identical-by-descent. Classic models assume dispersal distances are drawn from a

thin-tailed distribution and predict that relatedness should decrease exponentially as

the separation between pairs becomes large. We study the e↵ect of heavy-tailed dis-

persal on patterns of isolation by distance and find that a power-law dispersal kernel

leads to power-law decay of relatedness at large distances and either power-law or

logarithmic decay at short distances depending on the exact form of the kernel. The

model is then used to solve the inverse problem of inferring dispersal from empirical

isolation by distance curves.

At the cellular level, limited exchange and degradation of messenger molecules

between cells bound the precision of gradient sensing. Precision increases with the

length of a cell collective in the gradient direction up to this bound and then satu-

rates. Intuition from studies of concentration sensing suggests that precision should

also increase with detector length in the direction transverse to the gradient, since

then spatial averaging should reduce the noise. However, here we show that, unlike

for concentration sensing, the precision of gradient sensing decreases with transverse

length for the simplest gradient sensing model, local excitation–global inhibition.

The reason is that gradient sensing ultimately relies on a subtraction of measured

concentration values. While spatial averaging indeed reduces the noise in these mea-

surements, it also reduces the covariance between the measurements, which results



Abstract iii

in the net decrease in precision. We demonstrate how a recently introduced gradient

sensing mechanism, regional excitation–global inhibition, overcomes this e↵ect and

recovers the benefit of transverse averaging.

Work on an unrelated problem in quantum mechanics is also presented, and a

self-contained introduction is given in the relevant chapter.
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2.1 Spatial averaging transverse to a gradient improves concentration sens-
ing, but worsens gradient sensing. (A) A 2-D array of cells is exposed to
a concentration profile C that varies linearly in the horizontal direction
(green wedge). In each cell, Y molecules are produced in proportion to
the local C value. Y molecules are also exchanged between neighboring
cells, providing the spatial averaging. Thus Y is the readout for the
average concentration in the vicinity of a particular cell. Blue indicates
the mean number of Y molecules ȳ in each cell that have originated
from the rightmost, middle cell. (B) The signal-to-noise ratio (SNR)
for y increases with the number M of rows of cells added transverse
to the gradient direction. (C) As in A, but with an additional inter-
nal species X. The molecules are also produced in proportion to the
local C value, but they are not exchanged between cells. Red indicates
the mean number of X molecules x̄ in each cell that have originated
from the rightmost, middle cell. The di↵erence � = x � y provides
the readout for the gradient (LEGI). (D) In contrast to B, the SNR
for � decreases with the number of transverse rows M . In B and D,
the numerical results are compared with the theoretical approxima-
tions (see Eqs. 2.13 and 2.15, respectively) and agree at small M as
expected. Parameters are similar to the experiments in [52]: c̄N = 1.25
nM, g = 0.5 nM/mm, a = 10 µm, ny =

p
�y/µ = 4, N = 50 cells per

row, and G = �/µ = 10. In B and D the numerical value of ȳN is used
in the approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

viii



List of Figures ix

2.2 The regional excitation–global inhibition (REGI) strategy allows cells
to exploit transverse spatial averaging for gradient sensing. (A) As in
Fig. 2.1C, but for REGI. X molecules are exchanged between neighbor-
ing cells, at a lower rate than Y molecules. The di↵erence � = x � y

still provides the readout for the gradient. (B) In contrast to Fig. 2.1D,
for su�ciently large communication length nx the SNR increases with
the number of transverse rows M , before ultimately decreasing, which
leads to an optimum as a function of M . Since nx = 0 (LEGI) and
nx = ny = 4 (no sensing) are suboptimal, a global optimum emerges
over both M and nx. Parameters are as in Fig. 2.1, with nx = 1 in A,
which is near its optimal value as seen in B. In B the numerical value
of ȳN is used in the approximations. . . . . . . . . . . . . . . . . . . . 20

2.3 Optimal gradient sensing by 2-D and 3-D detectors. (A) Optimal ellip-
tical (2-D, top) or ellipsoidal (3-D, bottom) configurations of N = 50
cells for the REGI model The number of cells in the gradient direction
for each shape is Ng = 18 (top) and Ng = 6 (bottom). Cells are de-
picted as spheres, even though in the 3-D configuration (bottom) only
the outermost cells sense the signal; the rest are shielded. Gradient
sensing precision is optimized at the rightmost cell, and the signal pro-
file increases linearly to the right. We see that the optimal shapes are
“globular”, not “hairlike”, especially in 3-D. (B) Precision vs. Ng (the
projected number of cells in the gradient direction) for the LEGI model
in 2-D, for various gains G. Inset: mean readout �̄ normalized by G

(all three curves overlap and are colored black). (C) As in B, but for
REGI. The additional REGI parameter nx is optimized over at each
Ng value, and the optimal precision is shown. At the observed optima
in C, these values are n

⇤
x
/ny = 0.09 (G = 1), 0.30 (G = 10), and 0.53

(G = 100). (D) As in B but for 3-D. Internal cells are shielded and do
not sense, but do communicate. Ellipsoid axes transverse to gradient
are equal. Optimal n⇤

x
= 0 for all Ng. Curve jaggedness arises due to

numerical e↵ects of fitting a cubic lattice of cells in a smooth ellipsoidal
envelope. Black vertical dashed lines correspond to a perfect circle (B,
C) or sphere (D). Parameters are as in Fig. 2.1. . . . . . . . . . . . . 23
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3.1 The tail of the dispersal distribution controls the size and

number of long-range jumps. We demonstrate the e↵ect of vary-
ing the dispersal distribution tail by generating random walks using
both thin-tailed and heavy-tailed (power-law) kernels. Left: Single

generation dispersal distributions used to generate random

walks. The orange curve represents the jump probability for a thin-
tailed dispersal distribution, while the blue and red curves show jump
probabilities for finite-variance and infinite variance power-law disper-
sal kernels. Right: Two-dimensional random walks with jumps

drawn from thin-tailed (orange) and power-law (blue and red)

distributions. When the dispersal distribution is thin-tailed, the mo-
tion reduces to normal di↵usion without any long-range jumps. When
the dispersal distribution has a power-law tail, trajectories can jump
large distances in a single time step, dramatically changing the rate at
which lineages move through space. If the power-law tail is very broad,
trajectories will have divergent mean squared displacement, and large
jumps become noticeably more prevalent than for steep power laws
with finite variance. Circles mark the beginnings of the trajectories,
triangles mark the positions after 10 jumps, and squares mark the
ends. On shorter time scales, the di↵usive trajectory tends to have the
largest displacement, while on longer time scales the infinite variance
trajectory in red tends to have the largest displacement. . . . . . . . 32

3.2 For power-law dispersal, the form of isolation by distance in

two dimensions is universal at long distances. Approximate
form for the probability of identity as a function of distance,  (x),
for di↵erent dispersal kernels ↵. Di↵erent regimes of the parameter
space are separated by solid lines, and labelled by their qualitative
dynamics. Coalescence for distant pairs, x � x, typically occurs via
one long jump, which leads to the power-law scaling at large distances
predicted by (3.4). Nearby pairs, x ⌧ x, typically either coalesce
very quickly or disperse far away from each other, so the probability
of identity is nearly independent of the mutation rate, as shown in
(3.5). This quick coalescence is e↵ectively di↵usive for ↵ > 2, while for
↵ < 2, it is typically driven by a single jump. We use “⇠” to denote
proportionality in the limit of large population density where  (0) ⌧ 1. 62



List of Figures xi

3.3 Long-range jumps a↵ect when and where lineages coalesce.

Qualitative illustrations of lineage dynamics and coalescence time dis-
tributions for each of the three dispersal regimes in two dimensions.
Typical histories are shown for nearby samples (x ⌧ x, blue) and
distant samples (x � x, red). Left: For thin-tailed dispersal distribu-
tions, motion is e↵ectively di↵usive and separation x is a relatively good
predictor of coalescence time. Center: For steep power-law dispersal
distributions with finite variance, large jumps broaden the spatial and
temporal ranges over which lineages coalesce. Lineages at large sepa-
rations x � x are occasionally able to coalesce at times comparable
to 1/µ, while lineage dynamics at short distances are indistinguishable
from thin-tailed dispersal. Right: For broad power-law dispersal dis-
tributions with infinite variance, large jumps are common. This allows
for the rapid coalescence of lineages at both small and large distances
but also lets lineages jump very far away from each other and avoid
coalescing until a much later time set by the range size (not shown). 63

3.4 Isolation by distance in two dimensions follows the same power

law as dispersal. Each panel shows the scaled probability of iden-
tity between a sampled pair of individuals,  ⇢x2

µ, as a function of the
scaled distance x/x between them. Points show discrete-space sim-
ulation results and magenta lines show the power law that emerges
at large distances (3.4) (see (3.60) for prefactors). Red curves show
the asymptotic behavior predicted at short distances by (3.5). For all
plots, ⇢ = 1 and error bars show 68% percentile bootstrap confidence
intervals (see Methods). . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Even for ↵ > 2, relatedness still follows the same power law

as dispersal, rather than the di↵usive prediction. Points show
discrete-space simulation results with ⇢ = 1. Since the dispersal kernel
has finite variance, it approaches a di↵usion, and at short distances x ⌧
x the probability of identity can be approximated by the continuous-
space di↵usive prediction (3.3) (red curve). But at long distances x �
x, relatedness is driven by rare long-range jumps and therefore has the
same power-law tail as dispersal, (3.61). . . . . . . . . . . . . . . . . 65

3.6 For very heavy-tailed dispersal, ↵ < 1, relatedness at short

distances is independent of mutation rate. Nearby lineages at
x ⌧ x either coalesce quickly and are identical, or jump very far away
from each other and never coalesce. Points show continuous-space
simulation results, and red and magenta lines show the asymptotic
predictions of (3.40) and (3.39), respectively. The black curve shows
a numerical solution of  (x) calculated from (3.28) with µ = 10�4.
⇢ = 100 in all plots, and data with ⇢ = 10 and ⇢ = 1 (not shown) yield
indistinguishable plots. . . . . . . . . . . . . . . . . . . . . . . . . . 66
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3.7 For power-law dispersal, the form of isolation by distance in

one dimension is universal at long distances and varies at

short distance. Approximate form for the probability of identity as
a function of distance,  (x), for di↵erent dispersal kernels ↵. Di↵er-
ent regimes of the parameter space are separated by solid lines and
labelled by their qualitative dynamics. Coalescence for distant pairs,
x � x, where x = (D↵/µ)1/↵ is the characteristic length scale of iden-
tity, occurs via one long jump for all ↵, leading to the power-law scaling
at large distances predicted by (3.31). Coalescence for nearby pairs,
x ⌧ x, depends on the value of ↵ considered. For ↵ > 2, the motion of
lineages across short distances is di↵usive and  scales exponentially,
as shown in (3.38). For 1 < ↵ < 2, short distances are covered via
many small jumps, but lineages spread faster than they would under
di↵usion, leading to the broader scaling found in (3.37). For ↵ < 1,
even short distances are covered by one quick jump, leading to the
power law shown in (3.40). Lineages that do not coalesce quickly (at
t ⌧ 1/µ) will likely never coalesce, and probability of identity is lim-
ited by �, rather than µ, as shown in (3.39). We use “⇠” to denote
proportionality in the limit of large population density where  (0) ⌧ 1. 67

3.8 Isolation by distance in one dimension follows the same power

law as dispersal. Each panel shows the scaled probability of iden-
tity between a sampled pair of individuals,  ⇢xµ, as a function of the
scaled distance x/x between them. Points show simulation results,
black curves show numerical solutions of  (x) calculated from (3.28)
with � = 0 and 1� (0) set to 1, and magenta lines show the power law
that emerges at large distances (3.31). Red curves show the asymp-
totic behavior predicted at short distances by (3.40) (↵ < 1), (3.37)
(1 < ↵ < 2), and (3.43) (↵ = 1). For all plots, error bars show 68%
percentile bootstrap confidence intervals (see Methods). ⇢ = 100 in all
plots, and data with ⇢ = 10 and ⇢ = 1 (not shown) yield indistinguish-
able plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
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3.9 The distribution of coalescence times has a power-law tail.

Points show one-dimensional simulation results. Dashed magenta curves
show the asymptotic predictions (in order of increasing ↵) (3.65), (3.66),
(3.68), and (3.70). Time is scaled to dimensionless units. See Simu-
lation Methods section for D↵ values. We show statistics based on
the cumulative distribution P (t) rather than the density p(t) because
simulation estimates for the latter are very noisy. Top left: for

↵ < 1 in one dimension, the distribution of coalescence times

is proportional to the probability of lineages being nearby,

K(0|t) / t
1�1/↵

. Plot shows P (1)�P (t) rather than 1�P (t) because
lineages can disperse infinitely far away from each other and avoid
coalescing entirely, i.e., P (1) < 1. We use the simulated value of
P (t = 106) to approximate P (1). This empirical value deviates from
the continuous-time prediction (3.39) by ⇡ 30% due to di↵erences in
the amount of coalescence in the first few generations (see “Break-
down of models at small scales”). Top right: the distribution of

coalescence times has a logarithmic tail for ↵ = 1 in one di-

mension. In this marginal case, lineages do eventually coalesce even
in infinite ranges, but can take extremely long to do so. Bottom left:

for 1 < ↵ < 2, the distribution of coalescence times in one di-

mension decays more quickly than the probability of lineages

being nearby. The coalescence time distribution has a power-law
tail, p(t|x) / t

1/↵�2. This deviation from the scaling of the dispersal
kernel at long times is due to the high probability of previous coales-
cence events. Bottom right: for ↵ > 2, the coalescence time

distribution may approach the di↵usive limit. The scaling of
1 � P appears to be close to that of the di↵usive prediction, (3.70),
but there is at least a di↵erence in prefactor, perhaps again due to
di↵erent probabilities of coalescence at very recent times. Present-day
separation x was set to zero for all simulation results shown. . . . . . 69
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3.10 For very heavy-tailed dispersal, ↵ < 1, continuous-time and

discrete-time models di↵er at short distances. Scaled proba-
bility of identity  as a function of distance x for ↵ = 0.5, � = 0.5,
and ⇢ = 100. Points show discrete-time simulation results. For the
continuous-time model, the black curve shows the result of numeri-
cally integrating (3.28), while the dashed red and magenta lines show
the asymptotic approximations (3.40) and (3.39), respectively. The
continuous-time model predicts that  should only plateau within the
coalescence distance �, but for distance between � and the typical
single-generation dispersal distance c, the change in  is driven by
the probability of coalescing at 0 < t ⌧ 1. In the discrete-time model,
these lineages have to wait until t = 1 to coalesce, leading to a lower,
broader plateau, given by (3.72) (dashed green line). This discrepancy
only exists for � < x ⌧ c, i.e., if c < � then the discrete-time and
continuous-time models agree (blue points). . . . . . . . . . . . . . . 70

4.1 Top: Florida scrub-jays display genetic signatures of heavy-

tailed dispersal. While we see systematic deviations between the
data and our model at short distances, at larger distances identity
by descent decays slowly and shows good agreement with our power-
law model. Points show empirical measurements from the scrub-jay
dataset. Error bars show the standard error of the mean in each 50 km
distance bin. The red curve shows the maximum likelihood fit of the
asymptotic Lévy flight model with µ = 0. Parameter estimates for the
model are inset in the figure. Bottom: Lévy flight dispersal shows

good agreement with the known scrub-jay dispersal distribu-

tion. Points show the histogram of measured dispersal distances for
jays at Archbold Biological Station. The curves are best-fit stable dis-
tributions using the full dispersal dataset (orange), the long-distance
dispersal data at 500 meters or greater (blue), and the genomic data
(red). We see that the inferred ↵ using the dispersal data is reasonably
close to the ↵ value of 1.69 found via our genetic method. Using the
long-distance dispersal data only, the inferred ↵ using direct and ge-
netic methods are nearly identical. Details of the inference procedures
can be found in the text. . . . . . . . . . . . . . . . . . . . . . . . . 86
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4.2 We find the strongest signatures of long-range dispersal in the

scrub-jay isolation by distance data between 200 meters and

2 kilometers. As explained in the text, truncating the data allows
us to omit the local details of dispersal and coalescence. It also allows
us to exclude long-distance data that is a↵ected by the finite size of the
sampling range. This subset of the data demonstrates power-law like
scaling over distances spanning a full order of magnitude. Our power-
law model thus provides an excellent description of isolation by distance
in this regime. Points show empirical measurements from the scrub-jay
dataset. Error bars show the standard error of the mean in each 50
km distance bin. The red curve shows the maximum likelihood fit of
the asymptotic Lévy flight model with µ = 0. Parameter estimates for
the model are inset in the figure. . . . . . . . . . . . . . . . . . . . . 87

4.3 For all European humans within the POPRES dataset, the

lack of isolation by distance obstructs dispersal inference. We
see that the number of shared sequence blocks plateaus at large dis-
tances. This results in our model of isolation by distance and any
associated inferences being inaccurate. The plot shows blocks between
4 and 7 cM using distance bins of width 180 km. Error bars show the
standard deviation of the mean for the number of blocks per pair in
each bin. Parameter estimates are inset in the figures above, and the
details of the inference procedures are described in the text. . . . . . 98

4.4 For Eastern European humans, we detect genomic signatures

of long-range dispersal within the POPRES dataset. Using
a 4 cM minimum block length, we find that our t-distribution model
provides a better description of Eastern European isolation by distance
than the classic di↵usive model, with AIC scores for the models being
10845 and 10850 respectively. The plot shows blocks between 4 and 7
cM using distance bins of width 180 km. Error bars show the standard
deviation of the mean for the number of blocks per pair in each bin.
Parameter estimates are inset in the figures above, and the details of
the inference procedures are described in the text. . . . . . . . . . . 99

4.5 Long-range dispersal inference via probability of identity per-

forms well for simulated data. Points show discrete-space simu-
lation results. Curves show the best-fit curves of the continuous-space
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Chapter 1

Introduction

1.1 Information flow via stochastic transport

Spatial structure can have strong e↵ects on the behavior of both physical and

biological systems, with distance mitigating the strength of interactions and the rate

at which they can occur. In biology, spatial structure is known to a↵ect processes at

all scales, from ecological and population-scale dynamics to the function of cells and

the spread of pathogens within a single individual [20, 67, 95, 113]. The dynamics of

spatially structured systems can often be described in terms of the transport of indi-

vidual constituents, which can possess both stochastic and deterministic components.

Limitations on the rate of transport can limit the strength and rate of interactions,

as well as the flow of signals and information [23, 80, 112].

Stochastic transport, i.e. random motion with displacements drawn from a prob-

ability distribution, plays a particularly important role across all of these scales [62].

At the molecular level, the dynamics of many systems are dominated by di↵usion

due to thermal fluctuations [21]. Even for systems in which a steady state exists,

important properties are often determined by the rate of di↵usion and the size of

fluctuations about this equilibrium [27, 39].

At the population level, phenomenological models of plant, animal, and micro-

bial movement often make similar assumptions of stochastic transport, with lineages

within the population undergoing random walks through space over many genera-

1
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tions [116]. While steady states for models describing the genetic structure of spatial

populations often exist, deviations from these predictions due to finite population size

and random motion make the inference of a population’s dynamics from its genetic

composition a significant challenge [30].

In this dissertation, we study problems at both scales. At the molecular scale,

we consider models of cell-cell communication that use the di↵usion of messenger

molecules to detect chemical concentration gradients. We discuss the relevance of

these models to chemotaxis below, and we show how both the noise in concentration

and the noise in communication combine to limit the precision with which cells can

sense chemical gradients.

At the population scale, we generalize classic models of equilibrium genetic struc-

ture in spatial populations to include the e↵ects of superdi↵usive, rather than just

di↵usive, movement. We give the necessary background on these models below, and

we will show in a later chapter that this superdi↵usive motion has important e↵ects

on genetic structure. We also develop an inference scheme to estimate the underlying

parameters of the model using genomic data sampled from real populations.

For both systems we investigate, the random movement of individuals through

space is an important means of information transmission. In addition to the rate of

stochastic transport, decay rates due to either particle degradation (for molecules)

or genetic mutations (for lineages) are important as well, as they bound the typical

scale of information flow. We will see that the length scale set by the balance between

stochastic transport and degradation limits both the precision of cellular gradient

sensing and the genetic similarity of individuals sampled throughout space.

1.2 Gradient sensing and chemotaxis

At the molecular level, concentration sensing is one component of chemotaxis,

which is the process of cells following chemical gradients. After detection, cells po-

larize and move up the gradient in an attempt to migrate towards sources of con-

centration [83]. The chemical of interest could be a nutrient, as is often the case for

bacteria, or it could be a morphogen that governs the pattern of tissue development.
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Chemotaxis along morphogen gradients is a critical part of embryonic development in

mammals, and also aids in immune response and tissue regeneration in adults [97]. In

addition to development and regeneration, chemotaxis plays an important role in the

dissemination of cancerous tumors [143]. While prokaryotic organisms like bacteria

use the change of chemical concentration over time to detect gradients while moving,

eukaryotic cells instead use spatial averaging to allow for the detection of gradients

while remaining stationary [125].

The formation of morphogen gradients can be modeled via a di↵erential equa-

tion with terms that describe the di↵usion and degradation of concentration [163].

Assuming the degradation term is linear, we expect the steady-state concentration

profile to decay exponentially with distance, with the length scale of decay set by the

balance between dispersal and degradation. If we allow for nonlinear degradation or

drift due to cell lineage transport, concentration can decay according to a power law,

rather than an exponential. We will see in the next section that analogous e↵ects at

the population level can lead to similar power-law profiles in models of isolation by

distance.

In order to probe the limits of sensing precision, we focus on the case of a weak,

constant gradient such that the concentration profile can be treated as linear. This can

be thought of as the exponential profile described above in the limit of strong dispersal

and weak degradation. Once a linear concentration profile has been established, we

can model strategies of gradient detection that cells and cell collectives may choose

to implement. A lower bound on the error in gradient measurements is set by the

noise in an individual concentration measurement. A measurement of the gradient

is really the di↵erence between two measurements of concentration, and for a linear

detector that measures concentration at its front and back, the expected value of this

di↵erence increases linearly with the size of the detector. The noise in the gradient, on

the other hand, depends only on the average concentration and is independent of the

total length of the detector. The classic theory of Berg and Purcell then predicts that

the signal to noise ratio should increase quadratically with the length of the detector,

and should be inversely proportional to the average (background) concentration [22,

112]. Note that this model assumes that two measurements of concentration can
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be immediately compared, i.e., that information can be communicated between the

front and the back of the detector instantaneously. In reality, information must be

communicated between the two ends in finite time through some process that may

introduce additional error.

To study the e↵ects of communication noise on the sensing of weak chemical

gradients, we consider a generalized model that allows for di↵usive communication

across a cell collective based on the principle of local excitation and global inhibition

(LEGI) [84, 96]. In the LEGI model, there are two species of messenger molecules.

One is confined to a given cell, while the other can be exchanged among cells. Both

messengers are produced in each cell at a rate proportional to the local external con-

centration, but because of the exchange of the “global” species, we expect its count

in a given cell to reflect the average concentration over many cells, rather than just

the local concentration of the current cell. Because messenger molecules also degrade

at a known rate, the distance a global messenger molecule typically travels before

degrading is given by the ratio of its exchange and degradation rates. By subtracting

the “global” count from the “local” count, individual cells within the detector deter-

mine whether their local concentration is above or below the average concentration

found over cells within the length given by the exchange-degradation ratio. Again, the

balance of di↵usion and degradation sets the characteristic length scale, but rather

than representing the gradient of the concentration profile, this length scale can be

seen as a communication length, setting limits to the precision with which chemical

concentration gradients can be measured by cells. The prediction for the signal to

noise ratio of the one-dimensional LEGI model has the same form as the Berg-Purcell

expression, but we replace the actual length of the detector with the communication

length when the detector is su�ciently large. Above the communication length, the

precision of gradient sensing saturates with detector length.

1.3 Isolation by distance

At the population level, stochastic transport is known as dispersal, and we can

model the genetic diversity of spatial populations via rate equations for the allele
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frequencies at all points in space [89]. Just as in the LEGI model at the molecular

scale, we again have both exchange (dispersal) and degradation (mutation), with the

resulting equations being linear if the e↵ects of natural selection are negligible [91].

Spatial correlations in allele frequency can be interpreted as the fraction of genes we

expect to be shared between two individuals sampled at a given separation [91]. It

can in fact be shown that the stepping stone model governing allele frequencies is

equivalent to a model of “coalescence”, in which we consider two individuals sampled

at present day, and trace the trajectories of their ancestors back through time until the

time of their most recent common ancestor (TMRCA) [15]. While counterintuitive

at first, this backwards time formulation is extremely helpful given that it restricts

the analysis to the ancestral lineages of sampled individuals, rather than the entire

population.

Using the backwards time formulation, known as coalescent theory, we can obtain

a probability distribution over possible TMRCA for two individuals in a population

[138]. If a population reproduces sexually, recombination will lead to di↵erent parts of

the genome following distinct trajectories back through time. Thus, in general, pairs

will have many “most recent common ancestors”, and multiple TMRCA that vary

across the genome. From this distribution of TMRCA, or “coalescence times”, we can

make predictions about levels of relatedness in the present-day population. Assuming

mutations occur at a constant rate µ, the probability of identity (fraction of identical

genes) is simply the generating function of the coalescence time distribution [15].

Though we focus on the case of spatially structured populations here, it is instructive

to review the results of coalescent theory for a pair of individuals in a well-mixed

population without spatial structure. We can think of this as the limit of a small

spatial range in which two individuals are always close enough to coalesce in the

previous generation, i.e., to share a parent. In such a population, the probability of

coalescence follows an exponential distribution (backwards) in time, with an average

coalescence time proportional to the total size of the population [122]. The resulting

probability of identity for any pair sampled from the population decreases linearly

with the product of mutation rate and population size (provided that this product

is small). As the population becomes larger, the typical time to coalescence becomes
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longer, and we expect more mutations to accumulate between individuals. Likewise,

if the mutation rate becomes larger, we expect more mutations to accumulate for a

given population size and coalescence time distribution.

For populations in which the range size is large, limited dispersal of individuals

can lead to the distribution of coalescence times, and thus the probability of identity,

depending on the spatial separation between pairs [20]. The tendency of genetic

identity to decrease with spatial separation is known as “isolation by distance”. Just

as for concentration profiles at the molecular level, if dispersal is di↵usive and the

mutation rate is constant, the resulting isolation by distance profile is exponential in

one dimension, with the characteristic length scale of decay set by the ratio of the

dispersal constant and the mutation rate [15].

While we will focus on neutral populations in this work, if selection is present, some

individuals in the population will produce more o↵spring than others. Fitness e↵ects

result in what are known as selective sweeps, in which individuals possessing beneficial

mutations produce many o↵spring that sweep through space as a travelling wave [18].

Looking backwards in time, the e↵ect of these sweeps (assuming recombination is

fast) can be accounted for by adding a drift term that pulls individuals at present

day back towards the locations of fit ancestors. Just as in the case of concentration

with drift due to cellular lineage transport, this drift term will lead to isolation by

distance decaying according to a power law instead of an exponential [4].

Even without selection, power laws can arise in neutral populations if di↵usive

dispersal is replaced with superdi↵usive motion, which is “faster” than di↵usion in

the sense that the typical displacement distance increases superlinearly with time.

At the molecular scale, superdi↵usive motion is typically modeled via Lévy walks,

which assume particles move at a constant velocity, or continuous-time random walks

(CTRW), models that assume trajectories consist of instantaneous jumps and random

waiting times between jumps [107, 172]. CTRW models used to model morphogen

gradient formation at the molecular level predict that the steady-state profile remains

exponential even when motion becomes superdi↵usive [92]. Subdi↵usive CTRW mod-

els make similar predictions: concentration takes the form of an exponential with a

time-dependent characteristic length scale [78].
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Superdi↵usive motion in population genetics tends to be modeled as a Lévy flight

rather than a Lévy walk or CTRW [19, 40, 75, 114]. Lévy flights are simpler mathe-

matically, and equate to replacing the Gaussian dispersal kernel describing Brownian

motion with a heavy-tailed, power-law kernel [86, 108, 119]. This model can also be

seen as a special case of a CTRW in which waiting times between jumps are constant,

rather than being random variables drawn from a power-law distribution. While Lévy

flights can have unbounded velocities and divergent mean squared displacement, we

will show that the resulting population-genetic models can predict patterns of isola-

tion by distance for discrete-time simulations on finite spatial ranges. We can thus

think of Lévy flights as convenient approximations of truncated power-law distri-

butions with more physically reasonable properties. In fact, many real populations

appear to have heavy-tailed dispersal distributions that are better described by a

power law than a thin-tailed distribution [2, 7, 11, 34, 45, 46, 48, 63, 159, 167]. It was

shown by Nagylaki that, for a subset of Lévy flights in one dimension, the resulting

isolation by distance profile has a well defined steady state, and that the steady-state

profile has a power-law, rather than exponential, tail [114].

1.4 The present work

In this work, we extend previous results for models of cell-cell communication and

isolation by distance in order to better understand the e↵ects of dimensionality and

superdi↵usive motion on information flow in spatially structured biological systems.

In both cellular models of gradient sensing and population-level models of isolation

by distance, we find that increasing dimensionality can lead to qualitative changes in

the behavior of the system.

For cellular models of gradient sensing, we show that the e↵ects of spatial aver-

aging can be counterintuitive. In two dimensions, increasing the width of a detector

transverse to a concentration gradient can decrease the precision with which the gra-

dient is measured. While transverse averaging will always improve concentration

sensing, gradient sensing depends on the covariance between two distinct concentra-

tions measurements, and the decrease of this covariance with transverse averaging
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decreases precision. In order to reverse this e↵ect, the local reporter molecule must

also be allowed to disperse. We study this generalization with the recently devel-

oped regional excitation global inhibition (REGI) model and show that, for REGI,

the scaling of precision with transverse detector width is non-monotonic and leads to

optimal detector shapes in two and three dimensions

Most of the work in this dissertation focuses on population-genetic models of

isolation by distance, and for these models, we extend previous results for Lévy flight

dispersal to arbitrary power-law dispersal kernels in both one and two dimensions.

We show that there is an important interplay between dispersal and dimension, with

the underlying dynamics of lineages changing dramatically at a dimension-dependent

value of the power-law dispersal exponent.

The model developed for isolation by distance with power-law dispersal is then

used to solve the inverse problem of inferring dispersal from empirical isolation by

distance curves. We show that our inference scheme performs well with simulated

data and apply the method to natural populations to infer the relevant parameters

and detect signatures of heavy-tailed dispersal. We also extend the model to predict

multilocus summaries of genetic similarity, namely the size and number of long blocks

of shared sequence along the genome [131, 134]. We then develop an inference scheme

for this generalization and test its performance with simulated data before applying

the method to real populations.

In addition to the work described above, Chapter 5 of this dissertation describes

results on an unrelated problem in quantum mechanics. A self-contained introduction

to that work is given in section 5.1.



Chapter 2

Role of Spatial Averaging in

Multicellular Gradient Sensing

Material presented in this chapter was published in Smith et al. [151]

2.1 Introduction

Determining the strength and direction of a chemical concentration gradient is an

essential task for a diverse array of biological processes. Gradient sensing underlies the

polarization of single cells, the orientation and migration of cells and cell collectives,

and the changes in tissue morphology that occur during embryogenesis and the subse-

quent development of an organism [29, 51, 52, 64, 81, 101, 103, 123, 129, 139, 153, 156].

Experiments have shown that cells are remarkably precise gradient sensors [52, 139],

and a large amount of e↵ort has gone into understanding the mechanisms of, and the

limits to, biological gradient sensing [22, 53, 54, 70, 79, 87, 96, 112, 123].

At its core, gradient sensing requires the comparison of concentration measure-

ments between the “front” and the “back” of a detector. Front and back here are

defined with respect to the gradient direction, and the detector here is a single cell

or a group of cells. If the front and back are more separated, then the concentration

measurements are more di↵erent from each other, which improves the determination

of the gradient. This implies that detectors that are longer in the gradient direc-

9
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tion have a higher gradient sensing precision [53, 54, 70, 79]. This argument neglects

the fact that information must be communicated between di↵erent parts of a detec-

tor, especially if the detector is multicellular. Recently we derived the limits to the

precision of gradient sensing including communication, and we found that for a one-

dimensional (1-D) detector, the precision indeed increases with detector length, but

then saturates due to the fact that communication introduces its own noise [52, 112].

Nonetheless, the precision of gradient sensing increases or saturates with the length

of a 1-D detector aligned with the gradient; it does not decrease.

Yet biological detectors are not 1-D in general. Two-dimensional (2-D) detectors

include the quasi-cylindrical arrangement of cell nuclei during the early stages of

Drosophila development [71] and the planar arrangement of epithelial cell layers [103].

Three-dimensional (3-D) detectors include single cells and the multicellular tips of

growing epithelial ducts [56], as well as border cells exhibiting collective guidance in

Drosophila [29]. This raises the question of what e↵ect the dimensions transverse to

the gradient direction have on the precision of gradient sensing.

Intuition about this question can be drawn from the similar task of sensing the

value of a concentration (as opposed to sensing its di↵erence between two points in

space, i. e., the gradient). If the concentration profile is uniform in space, then the

precision of concentration sensing benefits from increasing the detector length in any

direction. The reason is that communication with other parts of the detector, or

spatial averaging, does not change the mean of a particular measurement within the

detector, but it does reduce the noise [22, 53, 54]. Even if the concentration profile is

graded, but the goal is still concentration (rather than gradient) sensing, as in stripe

formation in early Drosophila development, the precision still benefits from spatial

averaging [55].1 The benefit is especially clear in a direction transverse to the gradient

direction: once again, spatial averaging in this direction does not change the mean of

a particular measurement, but it does reduce the noise. These considerations, drawn

from the problem of concentration sensing, suggest that the precision of gradient

1The distinction between gradient sensing, and concentration sensing with a graded profile, is a
subtle but important one, and is further discussed in Results section 1 and the Discussion.
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sensing should also increase with the length of a detector in a direction transverse to

the gradient.

Here we investigate theoretically and computationally the precision of gradient

sensing for 2-D and 3-D detectors. We start with one of the simplest models of gradi-

ent sensing, the local excitation–global inhibition (LEGI) model [87, 96]. This is an

accepted basic model when gradient sensing is adaptive (that is, background concen-

tration largely does not e↵ect the gradient sensing). Surprisingly, in contrast to the

case of concentration sensing, we find that the precision of gradient sensing decreases

with the length of the detector in a direction transverse to the gradient direction. The

reason is that gradient sensing fundamentally relies on a subtraction of concentration

measurements, e.g. between the front and back of the detector. While spatial aver-

aging reduces the intrinsic noise in these measurements, which increases precision, it

also reduces the covariance between the measurements, which decreases precision. We

demonstrate that the latter e↵ect dominates, such that the net result is a decrease in

precision with transverse detector size. Then we show that this decrease can actually

be overcome by a gradient-sensing strategy that we recently introduced, termed re-

gional excitation–global inhibition (REGI) [112]. We demonstrate that REGI retains

a high covariance between measurements and restores the benefit of transverse aver-

aging. Using a REGI-based model, we compute the optimal 2-D and 3-D detector

shapes, which arise from an interplay of the e↵ects of transverse averaging on both the

signal and the noise of gradient detection. We argue that these shapes are consistent

with the shapes of the multicellular tips of epithelial ducts, suggesting that this and

other similarly shaped gradient-sensing systems benefit from spatial averaging in all

dimensions.

2.2 Methods

As in previous work [52, 112], we consider the local excitation–global inhibition

(LEGI) model of multicellular gradient sensing, which is a minimal, adaptive, spa-

tially extended model of gradient sensing. We consider a signal concentration profile c

that varies linearly in a particular direction in 3-D space, with concentration gradient
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g (Fig. 2.1A, C). In the nth cell, both a local molecular species X and a global molec-

ular species Y are produced at a rate � and degraded at a rate µ. The production

rate is also proportional to the number of signal molecules in the cell’s vicinity cna
3,

where a is the cell diameter. Whereas the local species X is confined to each cell, the

global species Y is exchanged between neighboring cells at a rate �y (Fig. 2.1C; note

that although all cells are producing X and Y molecules, we show as examples in Fig.

2.1A and C only those molecules originating from the rightmost, middle cell). Con-

ceptually, X measures the local concentration of signal molecules, while Y represents

their spatially-averaged concentration. As in [52, 112] we consider the linear response

regime, in which the dynamics of the local and global species satisfy the stochastic

equations

dxn

dt
= �(cna

3) � µxn + ⌘n, (2.1)

dyn

dt
= �(cna

3) � µyn + �y

X

n02N (n)

(yn0 � yn) + ⇠n

= �(cna
3) � µ

X

n0

M
y

nn0yn0 + ⇠n. (2.2)

HereMy

nn0 ⌘ (1+|Nn|�y/µ)�nn0�(�y/µ)�n02Nn is the connectivity matrix for the global

species that accounts for degradation and molecule exchange. Nn and |Nn| denote the
indices and the number of nearest neighbors of cell n, respectively. The intrinsic noise

terms ⌘n and ⇠n correspond to the Poissonian production, degradation, and exchange

reactions [52]. The signal cn also fluctuates, which introduces extrinsic noise. As

described below, in this work we assume that these fluctuations are slow compared

to the downstream signal processing, which is equivalent to assuming either slow

di↵usion of signaling molecules or instantaneous downstream processing, and leads to

Poisson-distributed signal molecule counts [52].

In the LEGI paradigm, X excites a downstream species while Y inhibits it. If

the cell is at the higher edge of the gradient, then the local concentration (X) is

higher than the spatial average (Y), and the excitation exceeds the inhibition. While

such comparison of the excitation and the inhibition can be done by many di↵erent

molecular mechanisms [87], we consider here the limit of shallow gradients, where the
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Figure 2.1: Spatial averaging transverse to a gradient improves concentration sensing,
but worsens gradient sensing. (A) A 2-D array of cells is exposed to a concentration
profile C that varies linearly in the horizontal direction (green wedge). In each cell,
Y molecules are produced in proportion to the local C value. Y molecules are also
exchanged between neighboring cells, providing the spatial averaging. Thus Y is
the readout for the average concentration in the vicinity of a particular cell. Blue
indicates the mean number of Y molecules ȳ in each cell that have originated from the
rightmost, middle cell. (B) The signal-to-noise ratio (SNR) for y increases with the
numberM of rows of cells added transverse to the gradient direction. (C) As in A, but
with an additional internal species X. The molecules are also produced in proportion
to the local C value, but they are not exchanged between cells. Red indicates the
mean number of X molecules x̄ in each cell that have originated from the rightmost,
middle cell. The di↵erence � = x � y provides the readout for the gradient (LEGI).
(D) In contrast to B, the SNR for � decreases with the number of transverse rows M .
In B and D, the numerical results are compared with the theoretical approximations
(see Eqs. 2.13 and 2.15, respectively) and agree at small M as expected. Parameters
are similar to the experiments in [52]: c̄N = 1.25 nM, g = 0.5 nM/mm, a = 10 µm,
ny =

p
�y/µ = 4, N = 50 cells per row, and G = �/µ = 10. In B and D the numerical

value of ȳN is used in the approximations.
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comparison is equivalent to subtracting Y from X [52]. This di↵erence, �n = xn �yn,

is the readout of the model. If �n is positive, the nth cell is further up the gradient

than average; if �n is negative, the nth cell is further down the gradient than average.

In this work, we always focus on the readout �N of the cell highest up the gradient,

which we denote as the Nth cell.

We assume that the cells do not average concentrations of the signal C and

the messenger molecules X and Y over time (though generalizations with averag-

ing are certainly possible [112]). Then the precision of gradient sensing is given

by the square root of the instantaneous signal-to-noise ratio (SNR) for the readout,

SNR� = (�̄N/��N)2, where the mean and variance are given by [52]

�̄N = x̄N � ȳN , (2.3)

x̄N = Ga
3
c̄N , (2.4)

ȳN = Ga
3
X

n

K
y

n
c̄N�n, (2.5)

and

(��N)
2 = (�xN)

2 + (�yN)
2 � 2cov(xN , yN), (2.6)

(�xN)
2 = x̄N +G

2
a
3
c̄N , (2.7)

(�yN)
2 = ȳN +G

2
a
3
X

n

(Ky

n
)2c̄N�n, (2.8)

cov(xN , yN) = G
2
a
3
K

y

0 c̄N , (2.9)

respectively. Here K
y

n
⌘ (My)�1

N,N�n
is the communication kernel, and G ⌘ �/µ is

the gain. The first terms in Eqs. 2.7 and 2.8 correspond to intrinsic noise, while the

second terms correspond to extrinsic noise and assume that the di↵usion of the signal

is slow [52]. Computing the precision for a given configuration of cells only requires

inverting the connectivity matrix M
y. That is, because our model is linear, both the

means and (co)variances are obtained directly by matrix inversion, and no stochastic

simulations are performed.

In the recently introduced regional excitation–global inhibition (REGI) model

[112], the local species X is also exchanged among cells, but at a lower rate �x < �y.
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Then Eq. 2.1 becomes analogous to Eq. 2.2, and Eqs. 2.4, 2.7, and 2.9 are replaced

by

x̄N = Ga
3
X

n

K
x

n
c̄N�n, (2.10)

(�xN)
2 = x̄N +G

2
a
3
X

n

(Kx

n
)2c̄N�n, (2.11)

cov(xN , yN) = G
2
a
3
X

n

K
x

n
K

y

n
c̄N�n, (2.12)

respectively, whereKx

n
⌘ (Mx)�1

N,N�n
is the communication kernel for the local species,

and M
x

nn0 ⌘ (1 + |Nn|�x/µ)�nn0 � (�x/µ)�n02Nn . Once more, computing the precision

for a given configuration of cells in the REGI model only requires inverting the con-

nectivity matrices M
x and M

y. While di↵usion of X decreases x̄N at the Nth cell,

and hence decreases the di↵erence �̄N , it also averages X over a larger volume, hence

decreasing its noise. As shown in Ref. [112], under a broad range of conditions, the

decrease in the noise dominates, and the overall precision of the REGI model is higher

than that of LEGI.

2.3 Results

2.3.1 Concentration sensing precision increases with trans-

verse detector size

Before investigating gradient sensing, we focus on the simpler problem of con-

centration sensing. In the local excitation–global inhibition (LEGI) model, both X

and Y provide readouts of the local concentration, while their di↵erence � provides

a readout of the gradient. The concentration readout provided by Y is spatially av-

eraged, whereas the concentration readout provided by X is not. Even if the signal

profile is graded, X and Y are concentration readouts if viewed independently (with

di↵erent spatial averaging), not gradient readouts. For example, during Drosophila

development, the morphogen profiles are graded, but individual nuclei in the embryo

measure (and threshold) the local concentration, possibly with some spatial averaging

[55, 71, 94, 152].
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How does the precision of concentration sensing depend on transverse detector

size? To answer this question, we focus on the spatially averaged concentration read-

out Y. We consider a linear signal profile with gradient g and compute the SNR of Y

in the Nth cell, as we vary the number M of rows of cells in a direction transverse to

the gradient (Fig. 2.1A). We see in Fig. 2.1B (circles) that the precision of concen-

tration sensing increases with M . The reason is that adding rows of cells transverse

to the gradient allows for Y molecules to be exchanged between rows (in addition to

along each row). This does not change the mean ȳN due to the translational symme-

try in the transverse direction. However, it does reduce the variance, since the global

species Y is now averaged over more cells. The net e↵ect is an increase in the SNR

beyond what is allowed by longitudinal averaging.

We can elucidate the e↵ect of spatial averaging more quantitatively by appealing

to the expression for the variance in Y (Eq. 2.8). In a single row of cells, and in

the limit of many cells (N � 1) and fast communication (�y � µ), the kernel

reduces to K
y

n
⇡ e

�n/ny/ny, where ny ⌘
p
�y/µ sets the e↵ective length scale of

communication [52]. Approximating the sum in Eq. 2.8 as an integral that extends

to infinity (since N is large) obtains (�y(1)
N
)2 ⇡ ȳN + G

2
a
3
c̄N�ny/2/(2ny) for a single

row. In the case of M rows, Y is averaged with the communication kernel Ky over

M cells transverse to the gradient. This will not a↵ect the intrinsic component of

the variance (since the mean is unchanged), but the extrinsic component will be

reduced according to (�y(M)
N

)2ext =
P

M/2
m=�M/2(K

y

m
)2(�y(1)

N
)2ext. We again make the

exponential kernel approximation, this time normalizing over the finite domain of

size M , giving K
y

m
⇡ e

�|m|/ny/
P

M/2
m0=�M/2 e

�|m0|/ny . Finally, again approximating the

sums as integrals, we obtain

(�yN)
2 ⇡ ȳN +

G
2
a
3
c̄N�ny/2

2ny

ny(1 � e
�M/ny)

[2ny(1 � e�M/(2ny))]2
. (2.13)

In deriving this approximation, we have neglected e↵ects that the transverse edges

have on the exponential shape of the kernel, as well as correlations between exchange

reactions parallel and perpendicular to the gradient. Nonetheless, the SNR calculated

using this approximation is compared with the numerical result in Fig. 2.1B, and we
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see that the agreement is excellent. In the limit M ⌧ ny, Eq. 2.13 simplifies to

(�yN)
2 ⇡ ȳN +

G
2
a
3
c̄N�ny/2

2nyM
. (2.14)

We see that for a small number of rows, the averaging over rows is nearly uniform,

and the extrinsic component of the variance is reduced by a factor of M , as expected.

2.3.2 Gradient sensing precision decreases with transverse

detector size

We now turn our attention to gradient sensing. How does the precision of gradient

sensing depend on transverse detector size? To answer this question for a linear signal

profile, we compute the SNR of the gradient readout �N as a function of the number

M of rows of cells in a direction transverse to the gradient (Fig. 2.1C). We see in

Fig. 2.1D that the precision of gradient sensing decreases with M (circles). This is

in contrast to the precision of concentration sensing, which increases with M (Fig.

2.1B).

To understand why the precision of gradient sensing decreases with M , we once

again consider the mean and the variance of the readout. The mean �̄N = x̄N � ȳN

does not change with M because neither x̄N nor ȳN changes with M . However, the

variance (��N)2 = (�xN)2+(�yN)2�2cov(xN , yN) changes with M due to two e↵ects.

First, the variance in the global species (�yN)2 decreases withM due to spatial averag-

ing, as discussed in the previous section. Second, the covariance cov(xN , yN) also de-

creases withM because Y is exchanged with a larger number of cells, whereas X is not

exchanged, so the two covary more weakly. The e↵ects have opposite signs. To under-

stand which e↵ect dominates, we again appeal to analytic approximation. For a single

row of cells, under the exponential kernel approximation, the covariance in Eq. 2.9 re-

duces to cov(1)(xN , yN) ⇡ G
2
a
3
c̄N/ny. For M rows of cells, since only Y is exchanged,

the covariance is reduced according to cov(M)(xN , yN) = K
y

m=0cov
(1)(xN , yN). Making

the same approximation as above for K
y

m
of an exponential in a finite domain, we
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obtain

(��N)
2 ⇡ (�xN)

2 + ȳN +
G

2
a
3
c̄N�ny/2

2ny

ny(1 � e
�M/ny)

[2ny(1 � e�M/(2ny))]2

�2G2
a
3 c̄N

ny

1

2ny(1 � e�M/(2ny))
. (2.15)

The SNR calculated using this approximation is compared with the numerical result

in Fig. 2.1D, and we see good agreement. In the limit M ⌧ ny, Eq. 2.15 simplifies to

(��N)
2 ⇡ (�xN)

2 + ȳN +
G

2
a
3
c̄N�ny/2

2nyM
� 2

G
2
a
3
c̄N

nyM
(2.16)

= (�xN)
2 + ȳN �

G
2
a
3[4c̄N � c̄N�ny/2]

2nyM
. (2.17)

Eq. 2.16 shows that in this limit of near-uniform averaging, both (i) the extrinsic

component of the variance in Y and (ii) the covariance are reduced by a factor of M ,

as expected. Furthermore, because the Nth cell is at the highest concentration, we

have c̄N > c̄N�ny/2, and we see that Eq. 2.17 is an increasing function of M . Thus,

this limit elucidates the fact that the decrease of the covariance dominates over the

decrease of the variance in Y, causing the variance of �N to increase with M for all

parameter values. Because the mean �̄N does not change with M , we conclude that

the precision of gradient sensing decreases with transverse detector size.

2.3.3 REGI mechanism recovers the benefit of transverse av-

eraging

In the previous section we saw that the precision of gradient sensing using the

LEGI model (local messenger X is not exchanged among the cells) decreases with

the size of a detector in a direction transverse to the gradient, due to the fact that

the covariance between the subtracted variables decreases with the transverse size.

For the REGI model, exchange of the X molecules has an additional e↵ect beyond

increasing the sensing precision for 1-D line of cells [112]: it increases the covariance

of X and Y, compared to the LEGI mechanism. Indeed, now both X and Y are

downstream signals from some of the same external ligand molecules. Since the
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decrease of gradient sensing precision with transverse detector size is due to the loss

of covariance (Fig. 2.1D), this raises the question of whether the REGI strategy can

overcome this e↵ect and allow gradient sensing precision to benefit from transverse

averaging.

To answer this question, we once again consider a linear signal profile, and we

compute the SNR of the gradient readout �N under the REGI model (see Methods),

as a function of the number M of rows of cells in a direction transverse to the gradient

(Fig. 2.2A). We see in Fig. 2.2B that for a su�ciently large value of nx ⌘
p
�x/µ,

which sets the lengthscale of spatial averaging for the local species, the precision of

gradient sensing increases with M . This is in contrast to the case of LEGI, for which

the precision decreases with M (Fig. 2.1D and black circles in Fig. 2.2B). Therefore,

the recovery of covariance between X and Y in the REGI mechanism avoids the loss

of gradient sensing precision and restores the benefit of transverse averaging.

To understand this e↵ect quantitatively, we turn once more to analytic approx-

imation. The variance in X (Eq. 2.11) and Y (Eq. 2.8) for M rows of cells will be

approximated by expressions of the form of Eq. 2.13. The covariance (Eq. 2.12) for

a single row of cells under the exponential kernel approximation for both X and Y is

cov(1)(xN , yN) ⇡ G
2
a
3
c̄N�n̄/(nx+ny), where n̄ ⌘ nxny/(nx+ny). For M rows of cells

the covariance is therefore cov(M)(xN , yN) =
P

M/2
m=�M/2 K

x

m
K

y

m
cov(1)(xN , yN). Again

approximating K
x

m
and K

y

m
as exponentials in a finite domain, we obtain

(��N)
2 ⇡ x̄N +

G
2
a
3
c̄N�nx/2

2nx

nx(1 � e
�M/nx)

[2nx(1 � e�M/(2nx))]2

+ȳN +
G

2
a
3
c̄N�ny/2

2ny

ny(1 � e
�M/ny)

[2ny(1 � e�M/(2ny))]2

�2
G

2
a
3
c̄N�n̄

nx + ny

n̄(1 � e
�M/(2n̄))

2nx(1 � e�M/(2nx))ny(1 � e�M/(2ny))
. (2.18)

This approximation has assumed {nx, ny} � 1, and we find that for ny = 4 the SNR

calculated using this approximation agrees very well with the numerical result for

nx � 1; see Fig. 2.2B. In the limit M ⌧ nx, Eq. 2.18 simplifies to

(��N)
2 ⇡ x̄N +

G
2
a
3
c̄N�nx/2

2nxM
+ ȳN +

G
2
a
3
c̄N�ny/2

2nyM
� 2

G
2
a
3
c̄N�n̄

(nx + ny)M
, (2.19)
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Figure 2.2: The regional excitation–global inhibition (REGI) strategy allows cells to
exploit transverse spatial averaging for gradient sensing. (A) As in Fig. 2.1C, but
for REGI. X molecules are exchanged between neighboring cells, at a lower rate than
Y molecules. The di↵erence � = x � y still provides the readout for the gradient.
(B) In contrast to Fig. 2.1D, for su�ciently large communication length nx the SNR
increases with the number of transverse rows M , before ultimately decreasing, which
leads to an optimum as a function of M . Since nx = 0 (LEGI) and nx = ny = 4 (no
sensing) are suboptimal, a global optimum emerges over both M and nx. Parameters
are as in Fig. 2.1, with nx = 1 in A, which is near its optimal value as seen in B. In
B the numerical value of ȳN is used in the approximations.

in which the extrinsic components of the variances and the covariance are reduced

by M , as expected. If we further assume that the gradient is shallow compared to

the background concentration (ag ⌧ c̄N), we may approximate c̄N�nx/2 ⇡ c̄N�ny/2 ⇡
c̄N�n̄ ⇡ c̄N , yielding

(��N)
2 ⇡ x̄N + ȳN +

G
2
a
3
c̄N

nyM


1

2⇢
+

1

2
� 2

⇢+ 1

�
, (2.20)

where ⇢ ⌘ nx/ny. The expression in brackets in Eq. 2.20 is positive for all 0 < ⇢ < 1,

which demonstrates analytically that in this limit the variance in the readout de-

creases with M , and therefore that the REGI strategy restores the benefit of trans-

verse averaging.

We also see in Fig. 2.2B that a maximal precision emerges in the REGI model as

a function of M at a particular number of rows M
⇤. This maximum is due to the

fact that the exchange of X, which causes an increase in precision with M , and the
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exchange of Y , which causes a decrease in precision with M , occur on di↵erent length

scales, nx < ny. Indeed, we see that as nx increases, the location of the maximum

M
⇤ increases concomitantly. Additionally, we see that the maximal precision value

first increases with nx, then decreases with nx, leading to an optimal value n
⇤
x
. This

is due to the previously understood tradeo↵ that is introduced when nx increases: on

the one hand the variance of X is reduced, which increases precision; on the other

hand, the means of X and Y are more similar, which decreases the precision [112].

Here this tradeo↵ is modified by the additional benefit of increasing nx, namely that

it increases the covariance of X and Y in the transverse direction, and thus further

reduces the noise in gradient sensing.

2.3.4 Emergence of optimal detector shapes in two and three

dimensions

The emergence of an optimal number of transverse rows of cells, seen in the

previous section, raises the more general question of whether there is an optimal

detector shape for spatially extended gradient sensing. This question has relevance for

both 2-D and 3-D multicellular geometries involved in gradient sensing. Is the optimal

detector shape more “hairlike”, to maximize its extent in the gradient direction,

or more “globular”, to exploit potential benefits of extending along the transverse

direction?

To address this question, we perform a controlled optimization for both 2-D and

3-D multicellular geometries. For a fixed number of cells N = 50, we confine cells to

an elliptical (2-D) or ellipsoidal (3-D) envelope, and compute the precision of gradient

sensing as a function of the ellipse axis parameters (LEGI), as well as the ratio of

averaging length scales nx/ny (REGI), exhaustively exploring substantial ranges of

both. In addition to the extra shape parameter, there is one more important di↵erence

between the 2-D and 3-D cases: in the 2-D case, we assume that every cell detects

signal molecules, since we imagine that these molecules di↵use in the 3-D bulk, while

the cells form a sensory sheet exposed to the bulk. In contrast, in the 3-D case,

we assume that only the surface cells detect signal molecules, whereas cells that are
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blocked on all six sides by neighboring cells are “shielded” and thus do not detect

signal molecules (although all cells still communicate via molecule exchange). The

optimal detector shapes determined by such exhaustive search for the REGI model

are shown in Fig. 2.3A, for 2-D (top) and 3-D (bottom).

To explain why these optimal shapes emerge, we present the precision of gradient

sensing as a function of the control parameters. First we investigate the behavior

of the LEGI model in 2-D (Fig. 2.3B). The control parameter is Ng, the (projected)

number of cells in the gradient direction, which is set uniquely in 2-D by the ratio of

the ellipse axis parameters. Small Ng ! 1 corresponds to a chain of cells transverse

to the gradient, while large Ng ! N corresponds to a chain of cells parallel to the

gradient. The small “stair steps” in the curves are due to the numerical task of fitting

the discrete multicellular square lattice within the continuous elliptical envelope. We

see that the precision vanishes at Ng = 1, as expected, since in our model a single cell

cannot perform gradient detection. The precision is near maximal at Ng = N . This

trend is analogous to that seen for LEGI in Fig. 2.1D, where here N/Ng ⇠ M is the

analog of the number of transverse rows. However, unlike in Fig. 2.1D, we see in Fig.

2.3B that there is a weak optimum at an intermediate value of Ng. This is due to

a di↵erence between the protocols of adding rows of cells (Fig. 2.1D) and reshaping

a fixed number of cells (Fig. 2.3B). Adding rows does not change �̄N . In contrast,

as seen in the inset of Fig. 2.3B, reshaping changes �̄N . The reason is that elliptical

configurations (like Fig. 2.3A, top) are not translationally symmetric in the transverse

direction. In particular, a large density of cells in the middle of the configuration is a

sink for molecules of Y. This decreases the mean number of Y in the rightmost cell,

ȳN , which weakly increases the signal �̄N = x̄N � ȳN at intermediate values of Ng

(Fig. 2.3B inset), and therefore increases the precision (Fig. 2.3B). Finally, we see that

the precision increases with the gain G, as expected, and that the increase saturates

with G, since then the variance of X and Y is dominated entirely by extrinsic, and

not intrinsic, noise (see Methods).

Next we investigate the behavior of REGI in 2-D (Fig. 2.3C). Once again the

control parameter is Ng. Additionally, at every Ng we optimize the local species’

averaging length scale nx (generally we find an optimal value between ⇠0.1ny and
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Ng = 6

Ng = 18

Figure 2.3: Optimal gradient sensing by 2-D and 3-D detectors. (A) Optimal ellip-
tical (2-D, top) or ellipsoidal (3-D, bottom) configurations of N = 50 cells for the
REGI model The number of cells in the gradient direction for each shape is Ng = 18
(top) and Ng = 6 (bottom). Cells are depicted as spheres, even though in the 3-D
configuration (bottom) only the outermost cells sense the signal; the rest are shielded.
Gradient sensing precision is optimized at the rightmost cell, and the signal profile
increases linearly to the right. We see that the optimal shapes are “globular”, not
“hairlike”, especially in 3-D. (B) Precision vs. Ng (the projected number of cells in
the gradient direction) for the LEGI model in 2-D, for various gains G. Inset: mean
readout �̄ normalized by G (all three curves overlap and are colored black). (C) As
in B, but for REGI. The additional REGI parameter nx is optimized over at each Ng

value, and the optimal precision is shown. At the observed optima in C, these values
are n

⇤
x
/ny = 0.09 (G = 1), 0.30 (G = 10), and 0.53 (G = 100). (D) As in B but

for 3-D. Internal cells are shielded and do not sense, but do communicate. Ellipsoid
axes transverse to gradient are equal. Optimal n⇤

x
= 0 for all Ng. Curve jaggedness

arises due to numerical e↵ects of fitting a cubic lattice of cells in a smooth ellipsoidal
envelope. Black vertical dashed lines correspond to a perfect circle (B, C) or sphere
(D). Parameters are as in Fig. 2.1.
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⇠0.5ny, see Fig. 2.3). We see in Fig. 2.3C that the trend of precision versus Ng is

similar to that of the LEGI model (Fig. 2.3C), but with two key di↵erences. First, the

precision is higher for REGI than for LEGI. This is due to regional averaging reducing

the variance of the local species, as was known previously for the 1-D model [112].

Second, the optimum in the precision as a function ofNg is more pronounced for REGI

than for LEGI. This is because the region surrounding the optimum corresponds to

near-circular ellipses, where considerable transverse averaging occurs. As shown in the

previous section, transverse averaging increases precision in the REGI model. Overall,

the optimal structure (Fig. 2.3A, top) is closer to a “globular” circle than to “hairlike”

chain (compare locations of the optima to the dashed vertical line in Fig. 2.3C, which

corresponds to a perfect circle). Therefore, we see that optimal gradient sensing by a

2-D structure benefits from an elliptical shape in which transverse averaging occurs.

Finally, we investigate the behavior of REGI in 3-D (Fig. 2.3D). Here there are

two control parameters: the number of cells in the gradient direction Ng, and the

asymmetry of the ellipsoid in the two directions transverse to the gradient. Generally

we find that the optimal shape at a fixed Ng displays symmetry in the two transverse

directions, and therefore we impose this symmetry explicitly and focus on the control

parameter Ng. As before, at every Ng we optimize the local species’ averaging length

scale nx. Importantly, in the 3-D geometry, we find that the optimal value at every

Ng is n
⇤
x
= 0, corresponding to no averaging of the local species (an e↵ective LEGI

model). This is due to the shielding of internal cells: since internal cells do not detect

signal molecules, averaging of the local species would dramatically reduce the mean

local readout, making it far less than the actual local signal value at the edge cell.

This would severely reduce the mean �̄N , and thus the precision. The dependence

of precision on Ng is shown in Fig. 2.3D. The additional jaggedness is again due

to the incommensurate nature of the cubic cell lattice with the smooth ellipsoidal

envelope, here amplified due to the additional dimension. We see in Fig. 2.3D that

there is again an optimum. In fact, it is much more pronounced than in 2-D: the

overall value of the precision is ten-fold higher than in 2-D. This is again due to the

shielding of internal cells: the global species Y is averaged among internal cells that

do not produce it, which sharply decreases ȳN , and thereby increases �̄N and thus
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the precision.2 Overall, the optimal structure is very “globular” (Fig. 2.3A, bottom).

Indeed, it is almost a sphere (compare the optima to the dashed vertical line in

Fig. 2.3D). We conclude that, due to the combined e↵ects of spatial averaging and

shielding, the optimal 3-D detector of linear gradients extends significantly in all three

spatial dimensions. The e↵ects of shielding are expanded upon in the Discussion.

2.4 Discussion

We have investigated theoretically and computationally the ways in which the

precision of spatially extended, multi-component gradient sensing is a↵ected by de-

tector geometry. Using a minimal model of adaptive gradient sensing (LEGI), we

have found that, unlike for concentration sensing, the precision of gradient sensing

decreases with the size of the detector in a direction transverse to the gradient. This

is due to the competing e↵ects of noise reduction and a reduction of the covariance

between concentrations subtracted to estimate the gradient. We have demonstrated

that a simple modification of LEGI (REGI) restores the covariance and recovers the

benefit of transverse averaging for gradient sensing. The result is that the optimal

detectors in 2-D and 3-D are more globular than hairlike.

Our study elucidates the important roles of spatial averaging in gradient sensing,

which are several-fold. First, there is spatial averaging along the gradient. In both

LEGI and REGI, the global species Y is averaged along the gradient. For a linear sig-

nal profile, this averaging both increases the signal �̄2, and decreases the noise (��)2.

Therefore, it is optimal for Y to be averaged along the gradient to as large an extent

as possible. Second, in the REGI model, the local species X is also averaged along

the gradient. This decreases the signal but also decreases the noise [112]. Therefore,

there is often an optimal ratio nx/ny of the spatial extents of the averaging. Third,

there is spatial averaging transverse to the gradient. In the LEGI model, only Y is

2Note that this particular e↵ect of shielding will result in the value of �̄N being positive in every
edge cell, instead of only the edge cells at the high end of the gradient. The sensory outcomes are
still biased, but are less adaptive, similar to “tug-of-war” chemotaxis mechanisms that have been
proposed [35].
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averaged transverse to the gradient. In a translationally symmetric geometry, this

does not change the signal, but it changes the noise by both decreasing the variance

of Y and decreasing the covariance between X and Y. These have opposite e↵ects

on the precision. For LEGI, the latter dominates, decreasing the precision. There-

fore, transverse averaging is detrimental for gradient sensing. However, in the REGI

model, X is also averaged transverse to the gradient. Once again, in a translationally

symmetric geometry, this does not change the signal with respect to REGI in 1-D, but

it decreases the noise, both by further reducing the variance in X and by restoring

a larger covariance between X and Y. Therefore, transverse averaging is beneficial

for REGI-type gradient sensing. These roles of spatial averaging are modified in ge-

ometries without translational symmetry as we discussed above. However, the net

result remains the same: the optimal 2-D and 3-D REGI-type gradient detectors are

globular, benefitting from extensive spatial averaging in the transverse directions.

Our study also reveals the e↵ects of shielding of signal from the inner cells in a 3-D

geometry. Shielding amplifies the e↵ect of spatial averaging, since the measurements

performed by edge cells, which detect signal, are averaged with those of their interior

neighbors, which do not detect signal. This amplification increases the signal in a

particular edge cell, but makes the system less adaptive, since every edge cell has an

above-average readout. With shielding, a more appropriate measure of the sensory

outcome might therefore be the di↵erence in readouts between cells up and down the

gradient, e. g. �̄N � �̄1. This measure is likely to depend nontrivially on internal and

geometric parameters such as nx and M , and will likely result in a nontrivial optimal

local averaging length scale, n⇤
x

6= 0. Another possibility is that gain G should be

di↵erent in Eqs. 2.4 and 2.5, compensating for the two messenger molecules averaging

over di↵erent numbers of neighbors that do not detect the ligand. We leave both of

these interesting explorations for future investigations.

In this work, we have emphasized the distinction between (i) concentration sensing

within a graded concentration profile and (ii) gradient sensing. For example, in

Drosophila development, individual nuclei in the embryo measure (and are thought

to threshold) the local concentration, even though the morphogen gradient is graded

[55, 71, 94, 152]. This is an example of concentration sensing. In contrast, gradient
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sensing, as explored here, is the task of obtaining an internal readout of the di↵erence

in local signal concentrations at two or more di↵erent points in space. In other words,

unlike concentration sensing, gradient sensing determines the direction in which the

concentration changes, and it allows subsequent directional polarization of the sensor.

This definition of gradient sensing, by construction, is adaptive: the readout does

not depend on the background concentration. Systems that respond adaptively and

directionally to chemical gradients, such as amoeba [158] and epithelial cell groups

[52], are performing gradient sensing. Because concentration sensing and gradient

sensing are distinct, it may not be so surprising that transverse averaging has very

di↵erent e↵ects on them: the precision of concentration sensing increases with the

transverse size, whereas the precision of LEGI gradient sensing decreases with the

transverse size (Fig. 2.1).

How do our results compare to experimental systems? A well-studied example of a

natural gradient-sensing system is the growth factor-directed extension of mammary

epithelial ducts [56, 81]. Gradient sensing in this system has been shown to be

multicellular and adaptive [52]. In vivo, the extension is led by an “end bud” of

cells at the duct tip. These tips can form either long hairlike structures or coalesce

into nearly spherical globules, as was observed in organotypic studies with di↵erent

chemical and genetic perturbations [52]. Long hairs could act as “feelers” for the

duct, sampling a long swath of the environment in the gradient direction. However,

our analysis predicts that such hairlike morphologies are suboptimal, and the globular

bud shape, as in Fig. 2.3A, would produce a better precision. In agreement with the

prediction, the end buds in wildtype mice are nearly spherical, and the globule is

often wider than the duct itself [81]. Similarly, neither chemotaxing amoeba [158]

and neutrophils [123], nor growing neurons [139] form very thin hairlike protrusions

to facilitate sensing. Instead they keep the aspect ratio of the gradient sensing part of

the protrusions closer to one, again supporting our findings. Further, in Drosophila

border cell migration, another example of directional collective cell behavior, groups

of cells travel as a sphere in a confined space, where it would have been easier to

travel as a chain [29]. All of these examples provide indirect evidence that transverse

averaging is used in multiple biological contexts. While direct tests of e↵ects of
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transverse averaging have not been done, they are certainly possible. Indeed, as

mentioned above, di↵erent perturbations to organotypic epithelial cultures result in

them assuming di↵erent geometric shapes [52]. Thus it should be possible to measure

the accuracy of sensing (and the subsequent organoid polarization) as a function of

the shape. Such experiments would allow direct testing of our main prediction that

transverse averaging leads to more accurate directional sensing outcomes, especially

in REGI-type models.



Chapter 3

Isolation by Distance in

Populations with Power-law

Dispersal

The material presented in this chapter can be found in Smith and Weissman [150]

and is under review at Genetics.

3.1 Introduction

Direct measurement of dispersal in natural populations is often di�cult or im-

possible due to practical di�culties in tracking large numbers of individuals over

long periods of time. It is often more feasible to instead infer dispersal from spatial

patterns of genetic diversity [20, 30, 38]. Populations with limited dispersal should

exhibit “isolation by distance”: the more distant individuals are from each other in

space, the less related they tend to be [137, 146, 169]. While in general the spa-

tial pattern of genetic diversity depends on selection [4, 18], for populations evolving

neutrally the strength of isolation by distance is simply determined by the balance

between dispersal and mutation, and thus if the mutation rate is known, the dispersal

rate can be inferred directly [100, 147, 148].

For populations spread over a fairly continuous range, rather than being clumped

29
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into a small number of discrete subpopulations, dispersal is often assumed to be thin-

tailed, with displacement approximately following a normal distribution [15, 134]. If

dispersal is unbiased and homogeneous, it is then characterized by a single parameter,

the dispersal rate D (the di↵usion constant). Pairwise genetic similarity is predicted

to decay exponentially with distance, with a decay rate of
p
µ/D, where µ is the

mutation rate [15, 89, 131, 140, 141, 149].

However, many populations exhibit a heavy-tailed dispersal distribution that de-

cays very slowly with distance [2, 7, 11, 34, 45, 46, 48, 63, 159, 167]. This heavy

tail can allow for dispersal events that are 10 or more times the ”typical” jump size

given by the standard deviation of the distribution, and for extremely heavy tails the

standard deviation itself becomes infinite. The presence of jumps that span a huge

range of sizes leads to a qualitatively di↵erent form of motion than one would expect

from the ”di↵usive” picture that is typical of thin-tailed dispersal distributions [108].

Even for populations where dispersal is primarily thin-tailed, very rare long jumps

that are unlikely to be observed directly [90] can have large e↵ects on the popula-

tion’s evolution [28, 33, 57, 75, 82, 102, 126, 127, 168], so we would also like to be

able to infer their pattern and frequency. For many other populations, particularly

non-animal ones, very little is known about dispersal, and we would like to know how

to use genetic data to determine if it is thin- or heavy-tailed [38, 115].

In this work, we further explore the e↵ects of heavy-tailed (power-law) dispersal

in neutrally evolving, demographically stable populations with constant density. This

problem was previously studied by Nagylaki [114] in one dimension for moderately

heavy-tailed dispersal with finite mean distance and by Chave and Leigh Jr [40] in two

dimensions for Cauchy-distributed dispersal. Recently, Janakiraman [85] studied an

analogous problem in chemical physics in the same regime as Nagylaki [114] and found

complementary results. We unify and extend this work to cover arbitrary power-law

dispersal tails in both one and two spatial dimensions and find expressions for how the

pattern of isolation by distance reflects the underlying dispersal process at both large

and small distances. We also find how the distribution of time to the most recent

common ancestor of a pair of individuals depends on the distance between them.

Barton et al. [19] and more recently Forien [60] have considered a similar model for
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populations evolving according to a spatial ⇤-Fleming-Viot process with power-law

dispersal. This model di↵ers from these previously considered models in that lineages

undergoing power-law dispersal can be treated as independent. Our analysis may

apply to an alternative spatial ⇤-Fleming-Viot model in which reproduction events

encompass the entire range, and the probability of inclusion in an event decays with

the distance from its origin according to a power-law.

3.2 Model

We consider two individuals sampled in the present a distance x apart, and trace

their lineages backward through time until they coalesce. We assume that individuals

disperse through an infinite range according to a distribution that falls o↵ as a power

law at long dispersal distances. While our model assumes infinite range size, we

will show via simulation that all of our predictions hold for finite ranges when the

range size is su�ciently large. For concreteness, we will mostly consider lineages that

follow Lévy flights, a flexible, mathematically tractable way to model dispersal with

power-law tails [86, 107, 108]. Lévy flights can be seen as a generalization of di↵usive

motion. Apart from the special case of classic di↵usion (for which the power-law

tail disappears), these trajectories include rare long-range jumps and are governed by

power-law kernels with infinite variance. We also consider finite variance power-law

dispersal kernels that cannot be described by a Lévy flight.

For a lineage following a Lévy flight in two dimensions, the probability of dispers-

ing to a particular point a distance y away follows an isotropic stable distribution

[174]:

K1(y|t) =
1

2⇡

Z 1

0

dk kJ0(ky) exp (�D↵tk
↵) , (3.1)

where J0 is the zeroth Bessel function and t is the number of generations in the past.

The parameter D↵ is a generalized di↵usion constant. It sets the scale of dispersal: at

time t, a typical lineage will have a displacement proportional to (D↵t)1/↵. As shown

in Fig. 3.1, the “stability parameter” ↵ controls the size and number of long-range

jumps: the maximum of t dispersal events is proportional to t
1/↵, and for ↵ < 2,
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Figure 3.1: The tail of the dispersal distribution controls the size and

number of long-range jumps. We demonstrate the e↵ect of varying the dispersal
distribution tail by generating random walks using both thin-tailed and heavy-tailed
(power-law) kernels. Left: Single generation dispersal distributions used to

generate random walks. The orange curve represents the jump probability for
a thin-tailed dispersal distribution, while the blue and red curves show jump prob-
abilities for finite-variance and infinite variance power-law dispersal kernels. Right:

Two-dimensional random walks with jumps drawn from thin-tailed (or-

ange) and power-law (blue and red) distributions. When the dispersal distri-
bution is thin-tailed, the motion reduces to normal di↵usion without any long-range
jumps. When the dispersal distribution has a power-law tail, trajectories can jump
large distances in a single time step, dramatically changing the rate at which lineages
move through space. If the power-law tail is very broad, trajectories will have diver-
gent mean squared displacement, and large jumps become noticeably more prevalent
than for steep power laws with finite variance. Circles mark the beginnings of the
trajectories, triangles mark the positions after 10 jumps, and squares mark the ends.
On shorter time scales, the di↵usive trajectory tends to have the largest displacement,
while on longer time scales the infinite variance trajectory in red tends to have the
largest displacement.
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Symbol Definition

x Distance between samples

⇢ Population density

↵ Stability parameter of dispersal tail

D↵ Generalized dispersal constant

µ Mutation rate

 Probability of identity

x = (D↵/µ)1/↵ Characteristic length scale of identity

the probability that a lineage has moved to a particular point at an abnormally long

distance y � (D↵t)1/↵ is proportional to y
�2�↵, a power-law tail. In the limiting case

↵ = 2, dispersal reduces to ordinary thin-tailed di↵usion and (3.1) is just a normal

distribution.

When the two lineages encounter each other, they coalesce at rate proportional

to 1/⇢, where ⇢ is the density of the population. In two dimensions, two lineages of

infinitesimal size will never be at exactly the same position [111]. So really there must

be some small distance � within which lineages coalesce at a rate that is approximately

1/(�2⇢). At these small scales, even the model of independent di↵usion of lineages

breaks down [16]. But we will see below that this coalescence length scale does not

a↵ect isolation by distance on larger scales x � �.

We are interested in the probability  of identity by descent of our sample pair

as a function of the distance between them, x, which we will also refer to as the

homozygosity or relatedness. If the time to their most recent common ancestor is T

and the mutation rate is µ, then  is given by:

 (x) = E
⇥
e
�2µT |x

⇤
. (3.2)

Although usually it is  rather than the coalescence time T itself that is directly

observable, T is important for, e.g., determining whether it is reasonable to assume

stable demography, so we will also find expressions for its distribution p(t|x).
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3.3 Results

In this section, we will describe our main results and provide brief sketches of the

logic behind key features. Roughly speaking, the basic intuition is that the sampled

pair will be identical if their lineages coalesce within the approximately the past 1/µ

generations. In this time, they will disperse a typical distance of order x ⌘ (D↵/µ)1/↵,

so this is the key length scale over which identity decays: pairs separated by x ⌧ x

should be relatively closely related, while identity between pairs separated by x � x

should be rare.

For the classic case of di↵usive motion (↵ = 2), this length scale is x =
p
D/µ,

and the probability of identity in two dimensions falls o↵ logarithmically for x ⌧ x

and exponentially for x � x [15]:

 (x) ⇡

8
>>>>>>>>>>><

>>>>>>>>>>>:

ln(x/�)
ln(x/�)+4⇡⇢D2

for x ⌧ � ⌧ x

1� (0)
4⇡⇢D2

ln(x/x) for � ⌧ x ⌧ x

1� (0)
4⇢D2

exp(�x/x)p
2⇡x/x

for x � x � �.

(3.3)

Here we generalize (3.3) to ↵ 6= 2, and find simple approximate expressions for  in

di↵erent parameter regimes, illustrated in Fig. 3.2, including a universal form for all

power-law dispersal kernels at long distances. Intuitively, power-law dispersal broad-

ens the distribution of coalescence times for pairs at a given separation x, creating

more overlap in the distributions for di↵erent x values (Fig. 3.3).

3.3.1 Distant pairs

For distant samples, x � x, we expect substantial isolation by distance. For

the pair to coalesce, their lineages must approach within � of each other. The most

likely way for this to happen before a mutation occurs is for one lineage to cover the

distance in a long jump. Since such jumps occur at a rate of D↵x
�↵�2

�, this occurs

with approximate probability D↵x
�↵�2

�/µ. The lineages must then coalesce within
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their neighborhood of about �2⇢ individuals before they mutate, which occurs with

probability 1/(µ⇢�2). We therefore expect that the probability of identity is  (x) ⇡
D↵x

�↵�2
�
2
/µ/(µ⇢�2) = D↵x

�↵�2
/(µ2

⇢), i.e., that there is a power-law dependence

of identity on distance, with the same exponent as that of dispersal. A more careful

calculation (see Methods) yields the precise result for a two-dimensional Lévy flight

when ↵ < 2:

 (x) / (1 �  (0))D↵

⇢µ2x2+↵
for x � x � �. (3.4)

While the prefactors in (3.4) depend on our exact choice of dispersal distribution,

the form of the expression does not. For any power-law dispersal kernel, we predict

a corresponding power-law tail in  (x) with matching exponent (see Methods). We

confirm (3.4) with simulations and numerical analysis (Fig. 3.4). As shown in Fig. 3.5,

even steep power-law kernels with ↵ > 2 and finite variance lead to a matching power

law in  (x).

3.3.2 Nearby pairs: broad power-law kernels with infinite

variance

For very heavy-tailed dispersal in which the mean squared jump size diverges,

↵ < 2, nearby lineages are likely to either coalesce very quickly or to disperse across

the whole range before coalescing [25, 124]. This “now-or-never” dynamic has the

interesting e↵ect of making the local probability of identity by descent independent

of the mutation rate, since the main competition is between coalescence and heavy-

tailed dispersal rather than between coalescence and mutation. Intuitively, the pair

of lineages take time of order x
↵
/D↵ to disperse across the distance between them.

From that time on, they are roughly evenly spread over a range of size (D↵t)2/↵, and

so coalesce at a rate of about (D↵t)�2/↵
/⇢. Integrating this rate over time starting

from x
↵
/D↵ out to 1/µ, we find that  (x) ⇡ 1/(⇢D↵x

2�↵), with the upper limit

of integration only negligibly decreasing  (x). So  (x) again follows a power law,

although a di↵erent one from the long-distance 1/x2+↵. We calculate  (x) more
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carefully in the Methods to find:

 (x) ⇡ �(1 � ↵/2)

21+↵⇡�(↵/2)

1 �  (0)

⇢D↵x
2�↵ for � ⌧ x ⌧ x. (3.5)

While (3.5) is for Lévy flights, we expect this expression to hold for any broad power-

law dispersal distribution, so long as many dispersal events occur before the mutation

timescale 1/µ. This is because the sum of many draws from an infinite-variance

distribution follows a Lévy stable distribution for small displacements, just as the

sum of many draws from a finite-variance distribution follows a normal distribution

[121]. Note that (3.5) reduces to Eq. (A6) in Chave and Leigh Jr [40] when ↵ = 1.

We confirm (3.5) with simulations (Fig. 3.4).

The power law in (3.5) makes it diverge at very short distances, where it breaks

down. Instead, for individuals within the same deme, x < �,  (x) flattens out.

Roughly speaking, individuals coalesce at rate 1/(⇢�2) and disperse outside of coales-

cence range at rate of aboutD↵�
�↵. When coalescence is faster, probability of identity

is high,  (0) ⇡ 1, while when dispersal is faster it is low,  (0) ⇡ 1/(⇢�2)/(D↵�
�↵) =

1/(⇢D↵�
2�↵). A more careful calculation gives (see Methods):

 (x) ⇡ 1

�
1 +

22+↵/2⇡

�(1 � ↵/2)
⇢D↵�

2�↵
�

for x ⌧ � ⌧ x , (3.6)

although these numerical factors depend on the details of the coalescence kernel.

3.3.3 Nearby pairs: steep power-law kernels with finite vari-

ance

In addition to considering Lévy flight dispersal kernels with 0 < ↵  2, we consider

F-distribution kernels (see Methods) with steeper power-law tails (↵ > 2). These have

finite variance and approach a di↵usion after infinitely many steps, but at any finite

time will be di↵erent, particularly in the tail. As shown in Fig. 3.5, for nearby pairs,

x ⌧ x, relatedness decays logarithmically according to (3.3), as in the case of purely

di↵usive motion.
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3.4 Discussion

Limited dispersal produces a correlation between spatial and genetic distance [100,

146–148, 169]. While most previous models have only considered di↵usive dispersal,

dispersal can be heavy-tailed in many natural populations. Nagylaki [114] was the

first to generalize classic di↵usive models of isolation by distance by allowing dispersal

distance to have a power-law tail (with 1 < ↵ < 2). This groundbreaking work has

largely been neglected; it was last cited by Chave and Leigh Jr [40], who extended

the results to two dimensions for the special case of Cauchy flights (↵ = 1) in a paper

modeling ecological diversity. Recent studies suggest that heavy-tailed dispersal may

in fact be common, and we hope that this paper will reintroduce these classic results

to population genetics now that the field may have su�cient data to apply them

[2, 7, 11, 34, 45, 46, 48, 63, 159, 167]. We also extend this previous work by considering

Lévy flights for all ↵  2 in both one and two dimensions, as well as steeper power-

law kernels (↵ > 2) with finite variance. We find that, for all ↵, power-law dispersal

leads to much more heavy-tailed relatedness than di↵usive dispersal, with relatedness

having the same power-law tail in distance as the dispersal kernel. This is true even for

steep kernels with finite variance. In this case, even though a di↵usive approximation

can fit the pattern of isolation by distance between nearby individuals, it will greatly

underestimate the degree of relatedness between distant individuals.

Standard methods for inferring dispersal from pairwise measures of relatedness

or autocorrelations in allele frequency typically assume either thin-tailed, di↵usive

motion [32, 134, 135, 140, 141] (perhaps with recent long-range admixture [31]) or a

small number of discrete demes [3, 99, 128, 142, 146, 165]. Methods using cline theory

to infer dispersal from the width of hybrid zones make similar assumptions about the

motion of lineages being di↵usive [12, 13, 38, 65, 133, 154], and methods for non-

stable demographies based on historical biogeography or coalescent theory tend to

also assume a small number of discrete demes [77, 132, 144]. Other genetic methods

such as parentage analysis are better equipped to infer heavy-tailed dispersal on

continuous ranges, but these techniques require exhaustive sampling of the population

to ensure that the parents of each individual can be located [1, 9, 88, 162]. More recent
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methods for pollen dispersal have been developed that allow for the inference of heavy-

tailed dispersal without the need for exhaustive sampling, but knowledge of maternal

genotypes for all sampled individuals is still required [8, 136]. For plant species where

this data is available, our results could serve as the basis for complementary inference

methods. While the pollen dispersal methods are focused on inferring the dispersal

kernel over a single generation, isolation by distance reflects the history of dispersal

over many generations, so a comparison of the results could reveal changes in dispersal

over time. For species where no such pedigree data is available, continuous-space

inference methods based on the model developed here could allow for the presence

(or absence) of heavy-tailed dispersal to be inferred for the first time.

One key open question is to what extent it is possible to detect the genetic traces

of rare heavy-tailed dispersal in natural populations, and if so how well the form of

heavy-tailed dispersal (e.g., the tail exponent ↵) can be determined. Austerlitz et al.

[8] were able to detect heavy-tailed pollen dispersal in Sorbus torminalis and Dinizia

excelsa tree populations using parentage analysis and the seed-specific TwoGener

method, with ↵ estimates for both species being extremely close to ↵ = 1. The

success of TwoGener suggests that similar patterns should be detectable from the

genomes of the trees themselves. Aguillon et al. [2] found clear patterns of isolation

by distance across scales between 500 meters and 10 kilometers in Florida Scrub-Jays,

and directly measured heavy-tailed dispersal; a good first test of an inference method

would be to apply it to such a dataset to see if it can recover the known dispersal

pattern.

Along with predicting characteristic scaling of identity by descent with distance,

our results predict characteristic scalings with the mutation rate µ, and also a scaling

of the typical length scale of identity x with µ. While mutation rate cannot be scanned

directly as distance can, µ here should be understood as referring to the mutation

rate in a block of non-recombining genome, and so a wide range of µ values can be

scanned by considering identity by descent in blocks of varying size [164]. This will

be valid as long as recombination is rare relative to mutation.This suggests that it

should be possible to measure identity by descent statistics corresponding to µ values

ranging over five orders of magnitude in a single sample [76].
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Our analysis has focused on pairs of lineages in an infinite habitat, but we have

shown via simulation that these results can hold for habitats of finite length L pro-

vided that this length is su�ciently large. To better understand the e↵ect of finite

range size, we can consider a pair of individuals sampled from random locations within

a habitat of length L; the mean coalescence time between them would then be the

“e↵ective population size”. The pair will typically be sampled a distance of about

L from each other, and so it will typically take a time of order L↵/D↵ for their lin-

eages to overlap in space. At this point the ancestry is e↵ectively well-mixed, and

coalescence takes time proportional to the total population size L
d
⇢, where d = 1

or 2 is the dimension of the habitat. For L
↵
/D↵ ⌧ L

d
⇢, the mixing time has little

e↵ect, while for L↵/D↵ of order Ld
⇢ or greater, the population becomes spatial struc-

tured, i.e., the non-negligible mixing time associated with crossing the range leads to

a higher mean coalescence time than one would expect in the panmictic limit. For

thin-tailed dispersal, ↵ = 2, structure will be strong in a one-dimensional habitat

of length greater than about D⇢ [104], while in two dimensions its strength depends

only on the local neighborhood size D⇢ [105]. The amount of population structure

thus either increases with the spatial extent of the population (at fixed density) or

is insensitive to it. With heavy-tailed dispersal, however, we see a new qualitative

pattern. For ↵ < d, i.e., for broad power laws, the e↵ect of structure on mean time

to coalescence counterintuitively becomes weaker as the range size L grows, because

L
↵
/D↵ grows more slowly than L

d
⇢. We thus expect the panmictic result to be an ac-

curate prediction of the mean coalescence time for populations with very heavy-tailed

dispersal (↵ < d) and large range size.

While the size of the range has a strong e↵ect on the average time to coalescence,

it does not necessarily have a strong e↵ect on  (x) and related measures of genetic

diversity. We can understand this phenomenon by considering the separation of

coalescence timescales: lineages tend to either coalesce quickly or wander away from

each other and avoid coalescing until a time set by the range size [17, 166]. If the

timescale of mutation, 1/µ, is much smaller than the time set by the range size,

 (x) is not a↵ected by coalescence events that occur on these long timescales and

behaves as if the range and e↵ective population size are infinite. For populations
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with low mutation rates such that 1/µ is larger than or comparable to this long

timescale, finite range size may have a significant e↵ect on  (x). Assuming the

mixing time is negligible, L↵/D↵ ⌧ L
d
⇢, the homozygosity of pairs that ”wander o↵”

can be approximated by the panmictic result  panmictic. We can thus estimate the

e↵ect of finite range size by adding a term to  that is proportional to this result:

 finite(x) ⇡  (x)infinite + (1 �  (x)infinite) panmictic, where the infinite-range  (x)infinite

can be interpreted as the probability of “coalescing quickly”.

Our use of stable distributions for the dispersal kernel has been partly motivated

by the fact that any isotropic single-generation dispersal kernel will converge to a

stable one if it is repeated over many independent generations. But as we have noted,

this is only true asymptotically, and in any real population there will be correlations

across generations, spatial inhomogeneities, shifts in dispersal over time, limits due

to finite range size, and many other e↵ects that cannot be captured by a stable

distribution. It is therefore better to see it as a simple reference model, one step

closer to reality than the purely di↵usive one, that can serve as a background against

which to measure all these other e↵ects.

What other processes could produce similar patterns to heavy-tailed dispersal?

One obvious one is if individuals are performing something more like a “Lévy walk”

than a Lèvy flight, in which dispersal in any one generation is thin-tailed but can be

correlated across many generations [172]. Such an e↵ect can be produced at the level

of alleles by hitchhiking on beneficial substitutions [4]. But this should be readily

distinguishable from neutral heavy-tailed dispersal by considering the distribution of

relatedness across multiple individuals and loci – hitchhiking will produce heavy-tailed

relatedness at the same few loci across all individuals, whereas neutral e↵ects will be

more evenly distributed. It is an open question whether other neutral processes, in

particular demographic fluctuations, might produce similar patterns.
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3.5 Methods

3.5.1 Simulation methods in two dimensions

All simulation code and displayed data are available at https://github.com/

weissmanlab/Long_Range_Dispersal. We simulate our model in two stages. First,

for each value of present-day separation x, dispersal constant D↵, and tail parameter

↵, we simulate dispersal of the lineages, ignoring coalescence and mutation. Then, for

each value of ⇢ and µ, we calculate the expected homozygosity and coalescence time

distribution for each simulated trajectory. We then average over many independent

trajectories. A major advantage of this two-part method is that the second part of

the method, in which conditional expectations are calculated for previously generated

paths, is entirely deterministic. This reduces computational costs and noise in the

estimations.

We simulate lineage motion using a discrete time random walk,

Xt+1 = Xt +�Xt, (3.7)

where Xt represents the position of a lineage at a given time (ignoring coalescence.,

i.e., assuming ⇢ ! 1), and the displacement, �Xt, is a vector of integer valued

random variables drawn from the dispersal distribution at each integer time t. We

use the GNU Scientific Library’s e�cient pseudorandom generators for both stable

distributions and the F-distribution [66]; because these are available only for the

one-dimensional distributions, we draw radial distances using the one-dimensional

distributions and then select a random direction in which to move. For dispersal,

we primarily use one-dimensional Lévy alpha-stable distributions to randomly draw

distances.In continuous space, �Xt would have distribution:

K1(y) =
1

2⇡2|y|

Z 1

�1
dk exp (�iky � D↵|k|↵) , (3.8)

where the probability of a displacement depends only on its magnitude, y. To enforce

our condition of discrete dispersal distances, we then round �Xt to the nearest pair

of integers, i.e., the closest point in Z2. To simulate steeper tails with ↵ > 2, we use

an F-distribution for radial distances, defined below in (3.15).

https://github.com/weissmanlab/Long_Range_Dispersal
https://github.com/weissmanlab/Long_Range_Dispersal
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For each pair of simulated trajectories {xt}, we then compute the path-specific

distribution of coalescence times p({xt0t}), i.e., the probability of coalescing at and

not before time t, and the path-specific mean homozygosity  ({xt01}), i.e., the

probability that lineages following these exact trajectories have not mutated before

coalescence:

p({xt0t}) =
⇣
1 � e

� 1
⇢ �x1x2

⌘
exp

"
�1

⇢

t�1X

t0=1

�x1x2

#
for t > 1, (3.9)

 ({xt01}) =
1X

t=1

p({xt0t})e�2µt
. (3.10)

We start (3.9) and (3.10) at t = 1 because we assume that the individuals are sampled

immediately after dispersal, so no coalescence takes place at t = 0. �x1x2 in (3.9) is

the Kronecker delta function:

�x1x2 ⌘

8
<

:
1 if x1 = x2

0 otherwise.

For every time-step the lineages spend in this region, there is a probability of coales-

cence 1 � e
� 1

⇢ .

We then average (3.9) and (3.10) across all simulated trajectories with present-day

separation x to obtain p(t|x) and  (x). All error bars in plots show 68% confidence

intervals, as determined by the percentile bootstrap with 1000 bootstrap samples

[47]. At large distances, the distribution of the probability of identity across sample

trajectories is highly skewed, with most trajectories having very low probabilities of

identity, but a few having the lineages rapidly jump close to each other and having a

high probability of identity. This means that we cannot quantify the uncertainty in

our estimates using, for example, the standard error of the mean, but it also means

that we must simulate many independent trajectories to get good enough coverage

for the bootstrap to be accurate [43].

For the simulations of mean homozygosity  shown in Fig. 3.4 and Fig. 3.5, we

simulate 10,000,000 independent runs of 1000 generations each for each combination

of present-day separation x and tail parameter ↵. We set the dispersal constant D↵
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indirectly by setting the characteristic spread c of each lineage after one generation

(t = 1), c = (D↵)1/↵, to be fixed at c = 10 for ↵  2 and c = 10
p
2 for ↵ > 2 (see below

for the definition of c for ↵ > 2). We also apply periodic boundary conditions, with

the range size extending from �5000 to 5000 along both dimensions of the discrete

lattice. Our choice of range size is significantly larger than the maximum value used

for present-day separation between pairs (x = 237). For the largest mutation rate

considered, µ = 1, coalescence before mutation is extremely rare, and so we increase

the number of independent runs to 100 million (with the number of generations

reduced to ten).

3.5.2 Simulation methods in one dimension

Our one-dimensional simulation methods are identical to those used in two di-

mensions, except that space is now taken to be continuous rather than discrete. We

again simulate lineage motion using a discrete time random walk,

Xt+1 = Xt +�Xt, (3.11)

where Xt now represents the signed distance between two lineages at a given time,

and the step size, �Xt, is a real valued random variable drawn from the dispersal

distribution at each integer time t. For dispersal, we primarily use Lévy alpha-stable

distributions, so �Xt has distribution:

K(y) =
1

2⇡

Z 1

�1
dk exp (�iky � 2D↵|k|↵) . (3.12)

Note that this di↵ers from K1(y) by an extra factor of two because �Xt is the sum

of the two lineages’ independent jumps, i.e., K is the convolution of K1 with itself.

To simulate steeper tails with ↵ > 2, we again use an F-distribution, defined below

in (3.15).

For each simulated trajectory {xt}, we then compute the path-specific distribution
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of coalescence times p({xt0t}) and path-specific mean homozygosity  ({xt01}):

p({xt0t}) =
⇣
1 � e

� 1
⇢R(xt)

⌘
exp

"
�1

⇢

t�1X

t0=1

R(xt0)

#
, for t > 1 (3.13)

 ({xt01}) =
1X

t=1

p({xt0t})e�2µt
. (3.14)

R(x) in (3.13) is a rectangular function representing a uniform rate of coalescence of

all lineages within a distance �:

R(x) ⌘

8
<

:

1
2� if |x| < �

0 otherwise.

For every time-step the lineages spend in this region, there is a probability of coales-

cence 1 � e
� 1

2⇢� . We discuss issues with the microscopic interpretation of this model

after we introduce our analytical model below.

Unconditioned values p(t|x) and  (x) are again obtained by averaging across

all simulated trajectories. Error bars in plots show 68% confidence intervals, as

determined by the percentile bootstrap with 10,000 bootstrap samples.

We set � = 0.5 for all simulations in one dimension. For the simulations of mean

homozygosity  shown in Fig. 3.8 and Fig. 3.5, we simulate 250,000 independent runs

of 1000 generations each for each combination of present-day separation x and tail

parameter ↵. We set the dispersal constant D↵ indirectly by setting the characteristic

spread c of two lineages after one generation (t = 1), c = (2D↵)1/↵, to be fixed at

c = 250 for ↵ < 2, and c = 179.68 for ↵ = 2.05 (see below for the definition of c

for ↵ > 2). For the largest present-day separations, x = e
10 and e

11, coalescence

within 1000 generations is very rare, so we increase the number of runs to 1.25⇥ 106.

For Fig. 3.6 and Fig. 3.10, we choose D↵ such that c = 0.2, and simulate 10,000

independent runs of length 1000 generations each.

For the simulations of the cumulative distribution of coalescence times P (t) shown

in Fig. 3.9, we set present-day separation x = 0 and generate 10,000 independent tra-

jectories of 1.5 million generations each for each combination of c and tail parameter

↵. We set c = 3.59 for ↵ > 2, c = 5 for 1 < ↵ < 2, and c = 1 for ↵  1.
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Dispersal kernel for ↵ > 2

To simulate dispersal kernels with tail exponents ↵ > 2, we draw �Xt from a

two-sided Fisher F-distribution with d1 = 2 and d2 = 2↵:

K(y) = (2!)�1 �1 + ↵
�1 (|y|/!)

��↵�1
. (3.15)

At long times, the displacement distribution approaches that of a di↵usive kernel, with

dispersal constant equal to half the mean squared single-generation displacement of

one lineage:

D =
c
2

2
=

↵
2

2 (↵� 2) (↵� 1)
!
2
.

In two dimensions, we use the one-sided analog of (3.15) to draw radial distances,

and then draw a direction from a uniform distribution. The resulting distribution for

a single lineage is:

K1(y) = (2⇡!|y|)�1 �1 + ↵
�1 (|y|/!)

��↵�1
, (3.16)

with the dispersal constant now defined as:

D = c
2 =

↵
2

2 (↵� 2) (↵� 1)
!
2
.

3.5.3 Analytical model in one dimension

Generic dispersal

We want to find a tractable analytical approximation to the model described

above. For recurrent motion, the lineages will sometimes be in exactly the same

place, and we can model coalescence with a � distribution, i.e., as taking place at

rate 1
⇢
�(Xt). For transient motion, however, they will never coincide [124], and we

must allow coalescence to take place at a finite distance. Let the coalescence kernel

be some probability density N (x) symmetric about x = 0 and with width ⇠ �, with

coalescence taking place at rate 1
⇢
N (Xt). The �-distribution is just the limit of N as �
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goes to 0, so we can treat the two cases together. Forien [60] avoids this issue by using

a spatial ⇤-Fleming-Viot model, in which dispersal and coalescence are produced by

the same heavy-tailed process, but this leads to dispersal distances for an individual’s

o↵spring being strongly correlated rather than independent [19]. We instead choose

to keep power-law dispersal as a distinct process from short-range coalescence. As

mentioned in the Simulation Model section, this creates issues with the microscopic

interpretation of the model, which we discuss below in “Breakdown of models at small

scales”.

The coalescence time distribution, i.e., the probability density of coalescence times

for lineages with initial displacement x, is then:

p(t|x) = E


1

⇢
N (Xt) exp

✓
�1

⇢

Z
t

0

d⌧ N (X⌧ )

◆����X0 = x

�
, (3.17)

and the probability of identity is its Laplace transform:

 (x) =

Z 1

0

dt p(t|x)e�2µt
. (3.18)

There are several di↵erent ways to derive an explicit expression for  from (3.18),

including balancing mutation, coalescence, and dispersal over an infinitesimal time

step [15, 100] or, for Lévy flights, using a fractional di↵usion equation [85] (see Ap-

pendix). Here we start with a generalization of Barton and Wilson [14]’s expression

for p(t|x) that is valid for any two-lineage dispersal kernel K, which is defined as the

convolution of K1 with itself. Assuming that N (x) = �(x):

p(t|x) = 1

⇢
K(x|t) �

Z
t

0

dt
0
p(t � t

0|0)1
⇢
K(x|t0). (3.19)

To interpret (3.19), notice that the first term is the probability of coalescing at time

t neglecting the possibility that the lineages have coalesced more recently. The sec-

ond term corrects for these more recent coalescences: for every trajectory where the

lineages coincide at t
0
< t, we subtract o↵ the probability that the lineages would

coalesce at t0 and then again exactly at t. Notice that we do not need to correct again

for lineages that coincide three times, at t00 < t
0
< t: the factor of p guarantees that

each trajectory is weighted appropriately.
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We can immediately find a simple expression for  for recurrent dispersal by taking

the Laplace transform of (3.19):

 (x) =
1 �  (0)

⇢

eK(x, 2µ), (3.20)

where tilde denotes the Laplace transform. Plugging in x = 0, we can solve (3.20) for

 (0) and express  (x) purely in terms of the dispersal kernel:

 (x) =
eK(x, 2µ)

⇢+ eK(0, 2µ)
. (3.21)

Note that, for di↵usive dispersal, (3.20) reduces to the classical Wright-Malécot for-

mula for isolation by distance [15].

For transient dispersal, we must consider a coalescence kernel of finite width, and

(3.19) generalizes to:

p(t|x) =
Z

dy
1

⇢
N (y)K(x � y|t)

�
Z

t

0

dt
0
Z

dy p(t � t
0|y)1

⇢
N (y)K(x � y|t0).

(3.22)

(3.22) is exactly the same as (3.19) except that now we must integrate over possible

locations y of coalescence at both t and t
0. Taking the Laplace transform of (3.22)

now gives:

 (x) =
1

⇢

Z
dy(1 �  (y))N (y) eK(x � y, 2µ). (3.23)

To simplify (3.23), we can make the approximation that 1� (y) is nearly constant

over all separations |y| . � where N (y) is non-negligible, allowing us to pull it out of

the integral:

 (x) ⇡ 1 �  (0)

⇢

Z
dyN (y) eK(x � y, 2µ). (3.24)

This approximation will necessarily be accurate when identity is low,  (0) ⌧ 1

because 1� will be close to 1 for all y. However, for 1� (0) ⌧ 1, the approximation

can become inaccurate; we discuss this below. At long distances x � �, eK will also

be roughly constant in the integral, and we simply recover (3.20), although now only

as an approximation:

 (x � �) ⇡ 1 �  (0)

⇢

eK(x, 2µ). (3.25)
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We see that the details of the short-range behavior only a↵ect the long-range proba-

bility of identity by descent through the overall factor 1� (0) [15]. Mathematically,

the main challenge is to find simple expressions for  (0) and especially eK.

Because (3.25) is invalid for x = 0, we cannot solve it directly for  (0) as we could

with (3.20), and so we must also work with (3.24). We can simplify the convolution

in (3.24) by taking the spatial Fourier transform F{·}:

b (k) ⇡ 1 �  (0)

⇢

bN (k)
beK(k, 2µ). (3.26)

where b and
beK are the Fourier transforms of  and eK.

Lévy flight dispersal

For Lévy flights, the characteristic function is bK(k|t) = exp(�2D↵t|k|↵) and the

Fourier-Laplace transform is
beK(k, 2µ) = 1/(2µ+2D↵|k|↵). (3.26) for b is correspond-

ingly simple:
b (k)

1 �  (0)
⇡

bN (k)

2⇢(µ+D↵|k|↵) . (3.27)

To get an explicit expression for  , we need to specify a form for the coalescence

kernel N . We will use a normal distribution with standard deviation �, which has

the simple Fourier transform bN (k) = exp(��2k2
/2). Then we can invert the Fourier

transform in (3.27):

 (x)

1 �  (0)
⇡ 1

2⇡⇢

Z 1

0

dk
cos(kx)e��

2
k
2
/2

µ+D↵k
↵

, (3.28)

which can be re-expressed in dimensionless units as

 (x)

1 �  (0)
⇡ 1

2⇡⇢µx

Z 1

0

d
cos(x/x)e�(�/x)22/2

1 + ↵
. (3.29)

Examining (3.28), we see that the power-law tail in the integrand can be cut o↵

either when oscillations in the cosine factor become rapid at k ⇠ 1/x or by the normal

factor at k ⇠ 1/�. As long as we are sampling pairs that are outside the immediate

range of coalescence, x � �, the former cuto↵ will happen at lower k, and therefore
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the normal factor can be neglected (by setting � = 0), leaving (in dimensionless form):

 (x � �)

1 �  (0)
⇡ 1

2⇡⇢µx

Z 1

0

d
cos(x/x)

1 + ↵
. (3.30)

(3.30) can equivalently be derived directly from (3.25) by substituting in the Lévy

flight dispersal kernel and writing eK as the inverse Fourier transform of
beK.

We can solve (3.29) for  (x) by first evaluating it at x = 0 to find  (0); we do this

below. But it is interesting that the ratio  (x) ⌘  (x)/(1 �  (0)) has the simplest

relationship to the underlying parameters, as shown by Rousset [140] for short-range

dispersal.  is closely related to Rousset [141]’s statistic ar: ar =  (0) �  (r). It is
also related to the expected pairwise FST between demes separated by x:

E [FST(x)] =
 (0) � (x)

2 + (0) � (x) .

Probability of identity for distant pairs x � x, ↵ < 2

For large x � (D↵t)1/↵, the dispersal kernel has a simple asymptotic form for

↵ < 2 (Nolan [121], Theorem 1.12):

K(x � (D↵t)
1/↵|t) ⇡ 2�(↵ + 1)

⇡
sin
⇣
⇡↵

2

⌘
D↵t

x↵+1
.

Plugging this into (3.25) and evaluating the Laplace transform gives the probability

of identity for distant pairs, which was originally found by Nagylaki [114]:

 (x � x)

1 �  (0)
⇡ �(↵ + 1)

2⇡
sin
⇣
⇡↵

2

⌘
D↵

⇢µ2x↵+1
. (3.31)

Probability of identity for distant pairs x � x, ↵ > 2

There is no stable distribution with ↵ > 2, but in discrete-time models such as the

one we use in our simulations, we can consider single-generation jump kernels K(y|1)
with power-law tails with ↵ > 2. These will approach a di↵usion with di↵usion

constant D = Var(K)/4. At long distances y �
p
Dt, however, the tail will still be

dominated by the probability of taking a single large jump [161], so for x � x, we will
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have K(x|t . 1/µ) ⇡ K(x|1)t. Plugging this into (3.25) and evaluating the Laplace

transform gives:
 (x � x)

1 �  (0)
⇡ K(x|1)

4⇢µ2
. (3.32)

For the F-distribution kernel (3.15) used in the simulations, this is

 (x � x)

1 �  (0)
⇡ D↵

8⇢µ2(x/↵)↵+1
, (3.33)

where we have defined D↵ ⌘ !
↵
/generation, i.e., D↵ has the same value as !↵, but

its dimensions are now length↵/time. (3.33) is confirmed by simulations (Fig. 3.5).

We can then use the classic di↵usive expression for  (0) to get an explicit expression

for probability of identity at large distances:

 (x � x) ⇡
✓
1 +

1

8⇢xµ

◆�1
D↵

4⇢µ2(x/↵)↵+1
. (3.34)

Moderately heavy-tailed dispersal, 1 < ↵ < 2

For ↵ > 1, (3.20) and (3.30) are exact for all x (when � = 0). Evaluating (3.30)

for x = 0 gives  (0):

 (0) =
1

2↵ sin(⇡/↵)⇢xµ+ 1
. (3.35)

Plugging (3.35) into (3.31) lets us solve for  (x) at large distances x � x:

 (x � x) ⇡ sin(⇡↵/2)�(↵ + 1)/(2⇡)

1 + 1/(2↵ sin(⇡/↵)⇢xµ)

D↵

⇢µ2x↵+1
. (3.36)

For 0 < x ⌧ x, Janakiraman [85] (Eq. (C1)) found that to leading order  falls

o↵ as:

 (x ⌧ x) ⇡  (0)


1 � ↵ sin(⇡/↵)

�(↵) cos(⇡(1 � ↵/2))

⇣
x

x

⌘↵�1
�
. (3.37)

When ↵ = 2, the above expression is equivalent to the classic di↵usive result for

x ⌧ x, which can be found by integrating (3.23) with � = 0:

 (x) =
e
�x/x

4⇢xµ+ 1
. (3.38)
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Very heavy-tailed dispersal, ↵ < 1

For ↵ < 1, the finite width � of the coalescence kernel is important for determining

 (0). Setting x = 0 in (3.29) gives:

 (0)

1 �  (0)
⇡ 1

2⇡⇢µx

Z 1

0

d
e
�(�/x)22/2

1 + ↵

⇡ �(1/2 � ↵/2)

2(↵+3)/2⇡⇢D↵�
1�↵ ,

where in evaluating the integral we have assumed that � ⌧ x, i.e., that the mutation

rate is not extremely large. We see that on small scales, the probability of identity by

descent is independent of the mutation rate (Fig. 3.6), i.e., there is a large probability

that individuals from the same deme are di↵erentiated even for infinitesimal mutation

rates:

 (0) ⇡ 1

�
1 +

2(↵+3)/2
⇡

�(1/2 � ↵/2)
⇢D↵�

1�↵
�

(3.39)

Very heavy-tailed dispersal of nearby lineages causes them to quickly wander away

from each other, and for infinite range size many pairs will never coalesce. While

(3.39) is only accurate for  (0) ⌧ 1, the independence from mutation rate should

persist even for large  (0).

Plugging (3.39) for  (0) into (3.31) gives an explicit expression for the probability

of identity of distant pairs with x � x:

 (x � x) ⇡ �(↵ + 1) sin(⇡↵/2)/(2⇡)

1 + �(1/2 � ↵/2)/(2(↵+3)/2⇡⇢D↵�
1�↵)

D↵

⇢µ2x↵+1
.

For pairs that are nearby but still well outside of coalescence range, � ⌧ x ⌧ x,

the integral in (3.30) is dominated by  � 1 and is approximately:

 (� ⌧ x ⌧ x)

1 �  (0)
⇡ �(1 � ↵) sin(⇡↵/2)

2⇡

x
↵�1

⇢D↵

.

Again, the probability of identity is independent of the mutation rate to lowest order.

Substituting in (3.39) gives an explicit expression for  :

 (� ⌧ x ⌧ x) ⇡ �(1 � ↵) sin(⇡↵/2)/(2⇡)

1 + �(1/2 � ↵/2)/(2(↵+3)/2⇡⇢D↵�
1�↵)

x
↵�1

⇢D↵

. (3.40)

While  (x) is independent of µ only for ↵ < 1, note that the rate at which  (x)

changes, @x (x), is independent of µ for all ↵  2 when ⇢ is large (in one dimension).



Chapter 3: Isolation by Distance in Populations with Power-law Dispersal 52

Marginal case ↵ = 1

The analysis of the marginal case ↵ = 1 is essentially the same as for ↵ < 1

above, but we have separated it out because the form of the final expressions is very

di↵erent. As with ↵ < 1, the finite coalescence width � is important for x = 0:

 (0)

1 �  (0)
⇡ 1

2⇡⇢D1

Z 1

0

d
e
�(�/x)22/2

1 + 

=
2 ln(x/�) + ln 2 � �

4⇡⇢D1
,

where � ⇡ 0.58 is Euler’s constant. Again assuming � ⌧ x = D1/µ, the constant

terms in the numerator can be neglected and  is approximately:

 (0) ⇡
✓
1 +

2⇡⇢D1

ln(x/�)

◆�1

. (3.41)

Recall that the approximation we used to derive (3.41) ((3.24)) is only justified when

 (0) ⌧ 1.

For pairs that are nearby but still well outside of coalescence range, � ⌧ x ⌧ x,

(3.30) gives:

 (� ⌧ x ⌧ x)

1 �  (0)
⇡ ln(x/x) � �

2⇡⇢D1
. (3.42)

Plugging the expression (3.41) for  (0) into (3.42) and (3.31) gives explicit expressions

for  (x) at both short and long distances:

 (� ⌧ x ⌧ x) ⇡ ln(x/x)

2⇡⇢D1 + ln(x/�)
(3.43)

 (x � x) ⇡ 1

2⇡⇢D1 + ln(x/�)

✓
x

x

◆2

. (3.44)

3.5.4 Analytical model in two dimensions

Generic dispersal

For generic dispersal, the solution for  in two dimensions can again be found from

(3.23), now with the integral over two spatial dimensions. The Fourier transform b 
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has the same form as the one-dimensional equation (3.26):

b (k) ⇡ 1 �  (0)

⇢

bN (k)
beK(k, 2µ), (3.45)

where again we make the approximation that 1 �  (x) is approximately constant

over the x values where N (x) is non-negligible. This is again accurate for  (0) ⌧ 1,

but may need to be adjusted for 1 �  (0) ⌧ 1. While (3.45) looks exactly like

the one-dimensional expression (3.26), its interpretation is di↵erent: k is now the

radial coordinate in two-dimensional k-space, and if we want to transform back to

real space, we must use the two-dimensional inverse Fourier transform. For pairs that

are far outside coalescence range, x � �, the simple relation (3.25) between  (x) and

eK(x, 2µ) still holds.

Lévy flight dispersal

For a two-dimensional Lévy flight, the dispersal kernel takes the form of an

isotropic stable distribution [174]:

K(y|t) = 1

2⇡

Z 1

0

dk kJ0(ky) exp (�2D↵tk
↵) , (3.46)

whereK(y|t) is the probability density of being at a particular point a distance y away

from the position at time 0, and J0 is the zeroth Bessel function of the first kind. (3.46)

is the two-dimensional inverse Fourier transform (equivalently, the inverse zeroth-

order Hankel transform) of the characteristic function bK(k|t) = exp (�2D↵tk
↵). The

Fourier-Laplace transform is again
beK(k, 2µ) = 1/(2µ+ 2D↵|k|↵). At large distances,

y � (D↵t)1/↵, K has a power-law tail [120]:

K(y � (D↵t)
1/↵|t) ⇡ ↵

2�(↵/2)2

21�↵⇡2
sin
⇣
⇡↵

2

⌘
D↵t

y↵+2
. (3.47)

In two dimensions, we must allow coalescence to take place at a finite distance

for all ↵ [111]. For the coalescence kernel, we use an isotropic normal distribution

N (x) with mean zero and standard deviation �, with coalescence taking place at rate
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1
⇢
N (Xt). Inverting the Fourier transform in (3.45) then gives:

 (x)

1 �  (0)
⇡ 1

4⇡⇢

Z 1

0

dk
kJ0(kx)e��

2
k
2
/2

µ+D↵k
↵

(3.48)

=
1

4⇡⇢µx2

Z 1

0

d
J0(x/x)e�(�/x)22/2

1 + ↵
, (3.49)

The analysis of (3.49) parallels that of the one-dimensional case, but all ↵ < 2 can

be treated together for all distances x, not just x � x, and so we can conduct one

unified analysis moving from short distances to long ones.

Probability of identity for co-located pairs, x = 0

For pairs sampled from the same location, x = 0, the Bessel function in (3.49) is

simply equal to one and can be dropped:

 (0)

1 �  (0)
⇡ 1

4⇡⇢µx2

Z 1

0

d
e

�(�/x)22/2

1 + ↵

⇡ �(1 � ↵/2)

22+↵/2⇡⇢D↵�
2�↵ , (3.50)

where in the last line we have assumed that � ⌧ x. Intuitively, (3.50) can be under-

stood as roughly the ratio between the time to coalesce, i.e., the neighborhood size

⇠ ⇢�
2 and the time ⇠ �

↵
/D↵ that the lineages will spend in the same neighborhood

before jumping apart. Note that mutation does not enter: in two dimensions, all

↵ < 2 act like ↵ < 1 does in one dimension, where locally mutation is irrelevant.

Again, (3.50) is only accurate for  (0) ⌧ 1.

Solving (3.50) for  gives:

 (0) ⇡
✓
1 +

22+↵/2⇡

�(1 � ↵/2)
⇢D↵�

2�↵
◆�1

. (3.51)

For ↵ = 2, integrating (3.49) with x = 0 recovers the classic di↵usive result in two

dimensions, which we expect to hold for pairs in contact when ↵ � 2 [15]:

 (0) ⇡ ln(x/�)

ln(x/�) + 4⇡⇢D2
. (3.52)
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Probability of identity for separated but nearby pairs, � ⌧ x ⌧ x

For pairs that are outside coalescence range, x � �, we can find  from (3.25):

 (� ⌧ x ⌧ x)

1 �  (0)
⇡ 1

4⇡⇢µx2

Z 1

0

d
J0(x/x)

1 + ↵
. (3.53)

This looks di↵erent from the one-dimensional equation (3.28) because now we had to

apply the two-dimensional inverse Fourier transform to
beK to obtain eK. For nearby

pairs x ⌧ x, the integral in (3.53) is dominated by  � 1 and for ↵ < 2 we can

approximate the denominator in the integrand as 1 + 
↵ ⇡ 

↵, giving:

 (� ⌧ x ⌧ x)

1 �  (0)
⇡ �(1 � ↵/2)

�(↵/2)21+↵⇡⇢D↵

x
↵�2

. (3.54)

The convergence of (3.53) to (3.54) is however quite slow in x/x when ↵ is close to

0 or 2. For example, for x/x = 0.01, the two expressions di↵er by ⇡ 30 � 40% for

↵ = 0.25 and ↵ = 1.75, and only approach to within 10% of each other at extreme

values of x/x (⇡ 10�5 and ⇡ 10�4 for ↵ = 0.25 and ↵ = 1.75, respectively).

Plugging (3.51) for  (0) into (3.54) lets us solve for  :

 (� ⌧ x ⌧ x) ⇡
✓
1 +

�(1 � ↵/2)

22+↵/2⇡⇢D↵�
2�↵

◆�1 �(1 � ↵/2)

�(↵/2)21+↵⇡

x
↵�2

⇢D↵

. (3.55)

We see that in two dimensions, relatedness at short distances is independent of µ to

leading order for all ↵ < 2. However, the slow convergence mentioned above means

that for most biologically reasonable parameter values, this should be interpreted as

meaning that the dependence on mutation rate is weak rather than negligible.

For ↵ = 1 and � ⌧ x ⌧ x we recover Eq. (A6) of Chave and Leigh Jr [40] for

Cauchy dispersal. Note that they consider distances large compared to the typical

single-generation dispersal distance, c ⌘ (2D↵)1/↵, but small compared to x, and thus

our result for � ⌧ x ⌧ x is consistent with their findings.

For ↵ = 2 and � ⌧ x ⌧ x we can recover the known result for di↵usive motion

by approximating (3.49) as

 (� ⌧ x ⌧ x)

1 �  (0)
⇡ 1

4⇡⇢µx2

Z 1

0

d
J0(x/x)

1 + 2
. (3.56)
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Integrating (3.56) confirms that we find logarithmic scaling of  (x) at short distances

[15]:
 (x)

1 �  (0)
⇡ 1

4⇡⇢D2
ln(x/x), (3.57)

which we expect to hold at � ⌧ x ⌧ x for all ↵ � 2.

Probability of identity by descent for distant pairs, x � x

The probability of identity by descent for distant pairs x � x � � can be im-

mediately be read o↵ from (3.25) by substituting in the tail of the two-dimensional

dispersal kernel (3.47) for ↵ < 2:

 (x � x)

1 �  (0)
⇡ ↵

2�(↵/2)2

23�↵⇡2
sin
⇣
⇡↵

2

⌘
D↵

⇢µ2
x
�↵�2

. (3.58)

Plugging in (3.51) for  (0) lets us solve for  :

 (x � x) ⇡ ↵
2�(↵/2)/[23�↵⇡�(1 � ↵/2)]

1 + �(1 � ↵/2)/[22+↵/2⇡⇢D↵�
2�↵]

D↵x
�↵�2

⇢µ2
.

When ↵ = 2, we instead recover classic expression for two-dimensional di↵usive

motion at large distances [15]:

 (x � x)

1 �  (0)
⇡ 1

4⇢D2

exp(�x/x)p
2⇡x/x

. (3.59)

For our simulations, rather than using a true two-dimensional stable distribution,

we use radial draws from a one-dimensional stable distribution and then pick a direc-

tion at random. The resulting dispersal kernel is shown in (3.8). At large distances,

x � x, we can apply (3.32) to find that the tail expression for IBD (when ↵ ¡ 2) is

simply (⇡x)�1 times (3.31):

 (x � x)

1 �  (0)
⇡ �(↵ + 1)

2⇡2
sin
⇣
⇡↵

2

⌘
D↵

⇢µ2x↵+2
. (3.60)

For the finite variance 2D kernel (3.16) used when ↵ ¿ 2, we can again apply (3.32)

to find the tail expression for IBD:

 (x � x)

1 �  (0)
⇡ D↵

4⇡↵⇢µ2(x/↵)↵+2
, (3.61)
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where D↵ is defined as !↵ for the single lineage kernel (3.16).

While the above expressions are accurate in continuous time, we add an extra

factor to adjust for discrete time in the tail expressions of Fig. 3.4 where µ = 1. This

factor f is the ratio between the discrete time sum of te�2t from t = 1 to t = 1 and

the continuous time integral of te�2t from t = 0 to t = 1: f ⇠ 0.724 .

3.5.5 Coalescence time distribution

In this section we will find asymptotic expressions for the coalescence time distri-

bution. As stated in the Results, intuitively we can think of the probability of identity

 as measuring the probability of the pair of lineages coalescing . 1/(2µ) genera-

tions ago. We can make this statement more rigorous using the Hardy-Littlewood

Tauberian theorem connecting the long (short) time probability of coalescence to the

small (large) mutation rate limit of  . It states that a function f(t) has the limiting

behavior f(t) ! 1
�(�)t

��1
L(t) as t ! 1 (t ! 0), where L is a slowly varying func-

tion and � > 0, if and only if its Laplace transform ef(2µ) has the limiting behavior

ef(2µ) ! (2µ)��L(1/(2µ)) as µ ! 0 (µ ! 1) (Feller [58], XIII.5, Theorem 4).

Recent times

First we will consider the limit of recent times, t ! 0 / µ ! 1. For pairs sampled

within coalescence range, x . �, by definition the (density of the) coalescence time

distribution approaches p(t|x) ⇠ 1/(⇢�d), up to numerical factors that depend on the

details of the coalescence kernel. Here d is the dimensionality of the range, d = 1 or 2.

For pairs sampled well outside coalescence range, x � �, we can assume that x � x

as well, since x = (D↵/µ)1/↵ ! 0 as µ ! 1. We can also assume that 1 �  (0) ! 1

is independent of µ to leading order. (For ↵ < d our expressions for  (0) (3.41) and

(3.51) are also independent of µ and non-zero, but these are only valid when x � �,

i.e., when µ is not arbitrarily large.) We can therefore apply the Tauberian theorem
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to (3.31) and (3.58) to obtain:

p(t ⌧ x
↵
/D↵|x) ⇡ 2d↵

✓
�(1 + ↵/d)

⇡

◆d

sin
⇣
⇡↵

2

⌘
D↵t

⇢x↵+d

⇡ 1

⇢
K(x|t).

(3.62)

Our heuristic derivation in the Results section essentially proceeded in the opposite

direction, starting from p(t ⌧ x
↵
/D↵|x) ⇡ 1

⇢
K(x|t) and then deriving  (x) from

that. (3.62) is thus essentially just a restatement of our expressions for the tail of  ,

and its accuracy can be seen from the same simulation results shown in Fig. 3.8 and

Fig. 3.5.

Long times

While there is a single unified expression for p in the t ! 0 limit, corresponding

to the single expression for  in the x ! 1 limit, for the opposite limit, t ! 1 /

µ ! 0, we must treat di↵erent values of ↵ separately, just as we did for  at small x.

We verify our results with simulations, shown in Fig. 3.9. Note that these expressions

will only hold at long times on an infinite range. For any range of finite size, the right

tail of the coalescence time distribution will decay exponentially, as in the case of a

panmictic population [166].

For ↵ < d, we can simply take the inverse Laplace and Fourier transforms of

(3.26) to find p, because 1 �  (0) is independent of µ to leading order. Since we

are concerned with times long compared to the time for the lineages to traverse the

coalescence zone, t � �
↵
/D↵, the normal factor in (3.26) can be neglected and p(t|x)

is simply given by the inverse Laplace transform of (3.25):

p(t � �
↵
/D↵|x) ⇡ 1 �  (0)

⇢
K(x|t) (3.63)

⇡ 1 �  (0)

↵2d�1⇡⇢

�(d/↵)

(2D↵t)d/↵
for t � x

↵

D↵

. (3.64)

Integrating (3.64) yields the cumulative distribution for t � x
↵
/D↵:

P

✓
t � x

↵

D↵

����x
◆

⇡ P (1|x) � �(d/↵)(1 �  (0))(2D↵)�d/↵

(d � ↵)2d�1⇡⇢td/↵�1
, (3.65)
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where P (1|x) = limµ!0  (x) is given by (3.39), (3.40), (3.51), or (3.55), depending

on x and d.

For the marginal case ↵ = d, we can use a slightly di↵erent statement of the

Tauberian theorem that applies for � = 0 (Feller [58], XIII.5, Theorem 2) to convert

(3.41), (3.43), (3.52), and (3.57) to expressions for the cumulative distribution P :

P (t � x/Dd|x) ⇡

8
><

>:

h
1 + 2d⇡⇢Dd

ln(2Ddt/�)

i�1

for x ⌧ �

ln(2Ddt/x)
2d⇡⇢Dd+ln(2Ddt/�)

for x � �.

(3.66)

We can then di↵erentiate to find the density p:

p

✓
t � x

Dd

����x
◆

⇡ 2d⇡⇢Dd

t [2d⇡⇢Dd + ln(2Ddt/�)]
2

⇥

8
<

:
1 for x ⌧ �

1 + ln(x/�)
2d⇡⇢Dd

for x � �.

(3.67)

Note that in two dimensions, ↵ = d represents the di↵usive limit, and we expect these

expressions for the marginal case to hold for all ↵ � 2.

For d = 1 and 1 < ↵  2, since the cumulative distribution approaches one at

large times, limµ!0  (x) = limt!1 P (t|x) = 1, we must instead consider the comple-

mentary cumulative distribution, P (t|x) ⌘ 1 � P (t|x). Its Laplace transform is:

e
P (2µ) =

1

2µ
� eP (2µ|x)

=
1

2µ
[1 �  (x)] .

We can now apply the Tauberian theorem to P and eP . Since we are taking the µ ! 0

limit, we have x ! 1, and we need only consider  (x ⌧ x). Inspecting (3.35) and

(3.37), we see that they have the limit:

1

2µ
[P (1|x) �  (x)] ! ↵ sin(⇡/↵)⇢x as µ ! 0.

Since x = (D↵/µ)1/↵, P has the limit:

P (t � x
↵
/D↵|x) ⇡ ↵ sin

⇣
⇡

↵

⌘
⇢(2D↵)1/↵

t1�1/↵
. (3.68)
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Di↵erentiating (3.68) yields the density p(t|x):

p(t � x
↵
/D↵|x) ⇡ (↵� 1) sin

⇣
⇡

↵

⌘
⇢(2D↵)1/↵

t2�1/↵
, (3.69)

in agreement with Janakiraman [85]’s Eq. 19.

For ↵ = 2, (3.68) and (3.69) simplify to the classic di↵usive results:

P (t � x
2
/D|x) ⇡ 2⇢

p
2D/t, (3.70)

p(t � x
2
/D|x) ⇡ ⇢

p
2D/t3. (3.71)

For ↵ > 2, we expect the coalescence rate p(t|x)/P (t|x) to behave similarly at long

times, since the dispersal approaches a di↵usion. But the distribution P may be

di↵erent, due to di↵erences in the probability of early coalescence (Fig. 3.9, bottom

right).

3.5.6 Breakdown of models at small scales

Great care must be taken in defining coalescent models in continuous space in order

to guarantee that they have a consistent forward-time biological interpretation [16,

59]. We have not done this, and therefore the microscopic behavior of our models does

not correspond to any biological population. However, the behavior at large scales

(time long compared to one generation, distance long compared to the coalescence

scale � and the typical single-generation dispersal distance c ⌘ (2D↵)1/↵) should

still be realistic [15]. We have also shown via simulation that our results describe a

stepping-stone model of discrete demes of size ⇠ ⇢�
d separated by distance ⇠ �.

The key place in which the microscopic details matter even for large distances

and long times is the factor 1 �  (0) which appears in many of our expressions.

As discussed above, for ↵ < d even here the microscopic details are not necessarily

important, but for ↵ � d they are. Practically speaking, this quantity would typically

have to simply be measured in a population or else treated as a fitting parameter when

matching the large-scale predictions to data.
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At a microscopic level, we expect that our continuous-time analytic model should

deviate from discrete-time models such as the one we use in our simulations. As shown

in Fig. 3.10, this becomes apparent for ↵ < 1 in one dimension (or more generally,

↵ < d). The two di↵er at scales smaller than the typical single-generation dispersal

distance, x < c = (2D↵)1/↵, when this scale is large compared to the coalescence

scale, c � �. In continuous time, nearby pairs with x ⌧ c would be able to coalesce

at times smaller than a single generation, t ⌧ 1. But in discrete time no pairs can

coalesce until t = 1, by which time the dispersal kernel K(x|1) is roughly flat out to

x . c, and probability of identity thus becomes approximately constant for x . c.

(For ↵ � d, the continuous-time model already predicts that  should be changing

slowly at x ⌧ x, and therefore we do not expect a disagreement with the discrete-

time model.) Recall that our discrete-time model assumes no coalescence at t = 0

even for lineages starting at x < �; if we were to change this,  would discontinuously

jump up to a second, higher plateau for x < �.

We can estimate the discrete-time value of  (x ⌧ c) from a heuristic argu-

ment, at least when  ⌧ 1. In the absence of coalescence, the probability of

the lineages being within coalescence range of each other in generation t � 1 is

⇡ (2�)K(x|t) ⇡ (2�)K(0|t). For  ⌧ 1, including the possibility of coalescence will

only slightly decrease this probability. Given that the lineages are in coalescence

range, they coalesce with probability 1/(2�⇢). So in any one generation the probabil-

ity of coalescence is ⇡ K(0|t)/⇢ and we can find  by summing over all generations:

 (x ⌧ c) ⇡
1X

t=1

K(0|t)
⇢

=
�(1/↵)⇣(1/↵)

↵

1

⇢c
, (3.72)

where ⇣ is the Riemann zeta function. Fig. 3.10 shows that (3.72) accurately describes

the simulations.
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2

2 Dimensional Probability of Identity, ψ(x)

Figure 3.2: For power-law dispersal, the form of isolation by distance in two

dimensions is universal at long distances. Approximate form for the probability
of identity as a function of distance,  (x), for di↵erent dispersal kernels ↵. Di↵erent
regimes of the parameter space are separated by solid lines, and labelled by their
qualitative dynamics. Coalescence for distant pairs, x � x, typically occurs via one
long jump, which leads to the power-law scaling at large distances predicted by (3.4).
Nearby pairs, x ⌧ x, typically either coalesce very quickly or disperse far away from
each other, so the probability of identity is nearly independent of the mutation rate,
as shown in (3.5). This quick coalescence is e↵ectively di↵usive for ↵ > 2, while for
↵ < 2, it is typically driven by a single jump. We use “⇠” to denote proportionality
in the limit of large population density where  (0) ⌧ 1.
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Figure 3.3: Long-range jumps a↵ect when and where lineages coalesce. Qual-
itative illustrations of lineage dynamics and coalescence time distributions for each of
the three dispersal regimes in two dimensions. Typical histories are shown for nearby
samples (x ⌧ x, blue) and distant samples (x � x, red). Left: For thin-tailed
dispersal distributions, motion is e↵ectively di↵usive and separation x is a relatively
good predictor of coalescence time. Center: For steep power-law dispersal distribu-
tions with finite variance, large jumps broaden the spatial and temporal ranges over
which lineages coalesce. Lineages at large separations x � x are occasionally able to
coalesce at times comparable to 1/µ, while lineage dynamics at short distances are
indistinguishable from thin-tailed dispersal. Right: For broad power-law dispersal
distributions with infinite variance, large jumps are common. This allows for the
rapid coalescence of lineages at both small and large distances but also lets lineages
jump very far away from each other and avoid coalescing until a much later time set
by the range size (not shown).
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Figure 3.4: Isolation by distance in two dimensions follows the same power

law as dispersal. Each panel shows the scaled probability of identity between a
sampled pair of individuals,  ⇢x2

µ, as a function of the scaled distance x/x between
them. Points show discrete-space simulation results and magenta lines show the power
law that emerges at large distances (3.4) (see (3.60) for prefactors). Red curves show
the asymptotic behavior predicted at short distances by (3.5). For all plots, ⇢ = 1
and error bars show 68% percentile bootstrap confidence intervals (see Methods).
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Figure 3.5: Even for ↵ > 2, relatedness still follows the same power law

as dispersal, rather than the di↵usive prediction. Points show discrete-space
simulation results with ⇢ = 1. Since the dispersal kernel has finite variance, it ap-
proaches a di↵usion, and at short distances x ⌧ x the probability of identity can be
approximated by the continuous-space di↵usive prediction (3.3) (red curve). But at
long distances x � x, relatedness is driven by rare long-range jumps and therefore
has the same power-law tail as dispersal, (3.61).
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Figure 3.6: For very heavy-tailed dispersal, ↵ < 1, relatedness at short

distances is independent of mutation rate. Nearby lineages at x ⌧ x either
coalesce quickly and are identical, or jump very far away from each other and never
coalesce. Points show continuous-space simulation results, and red and magenta lines
show the asymptotic predictions of (3.40) and (3.39), respectively. The black curve
shows a numerical solution of  (x) calculated from (3.28) with µ = 10�4. ⇢ = 100 in
all plots, and data with ⇢ = 10 and ⇢ = 1 (not shown) yield indistinguishable plots.
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Figure 3.7: For power-law dispersal, the form of isolation by distance in

one dimension is universal at long distances and varies at short distance.

Approximate form for the probability of identity as a function of distance,  (x), for
di↵erent dispersal kernels ↵. Di↵erent regimes of the parameter space are separated
by solid lines and labelled by their qualitative dynamics. Coalescence for distant
pairs, x � x, where x = (D↵/µ)1/↵ is the characteristic length scale of identity,
occurs via one long jump for all ↵, leading to the power-law scaling at large distances
predicted by (3.31). Coalescence for nearby pairs, x ⌧ x, depends on the value of ↵
considered. For ↵ > 2, the motion of lineages across short distances is di↵usive and
 scales exponentially, as shown in (3.38). For 1 < ↵ < 2, short distances are covered
via many small jumps, but lineages spread faster than they would under di↵usion,
leading to the broader scaling found in (3.37). For ↵ < 1, even short distances are
covered by one quick jump, leading to the power law shown in (3.40). Lineages that
do not coalesce quickly (at t ⌧ 1/µ) will likely never coalesce, and probability of
identity is limited by �, rather than µ, as shown in (3.39). We use “⇠” to denote
proportionality in the limit of large population density where  (0) ⌧ 1.
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Figure 3.8: Isolation by distance in one dimension follows the same power

law as dispersal. Each panel shows the scaled probability of identity between a
sampled pair of individuals,  ⇢xµ, as a function of the scaled distance x/x between
them. Points show simulation results, black curves show numerical solutions of  (x)
calculated from (3.28) with � = 0 and 1 �  (0) set to 1, and magenta lines show the
power law that emerges at large distances (3.31). Red curves show the asymptotic
behavior predicted at short distances by (3.40) (↵ < 1), (3.37) (1 < ↵ < 2), and
(3.43) (↵ = 1). For all plots, error bars show 68% percentile bootstrap confidence
intervals (see Methods). ⇢ = 100 in all plots, and data with ⇢ = 10 and ⇢ = 1 (not
shown) yield indistinguishable plots.
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Figure 3.9: The distribution of coalescence times has a power-law tail. Points
show one-dimensional simulation results. Dashed magenta curves show the asymp-
totic predictions (in order of increasing ↵) (3.65), (3.66), (3.68), and (3.70). Time
is scaled to dimensionless units. See Simulation Methods section for D↵ values. We
show statistics based on the cumulative distribution P (t) rather than the density p(t)
because simulation estimates for the latter are very noisy. Top left: for ↵ < 1 in

one dimension, the distribution of coalescence times is proportional to the

probability of lineages being nearby, K(0|t) / t
1�1/↵

. Plot shows P (1) � P (t)
rather than 1 � P (t) because lineages can disperse infinitely far away from each
other and avoid coalescing entirely, i.e., P (1) < 1. We use the simulated value of
P (t = 106) to approximate P (1). This empirical value deviates from the continuous-
time prediction (3.39) by ⇡ 30% due to di↵erences in the amount of coalescence in
the first few generations (see “Breakdown of models at small scales”). Top right:

the distribution of coalescence times has a logarithmic tail for ↵ = 1 in one

dimension. In this marginal case, lineages do eventually coalesce even in infinite
ranges, but can take extremely long to do so. Bottom left: for 1 < ↵ < 2, the dis-

tribution of coalescence times in one dimension decays more quickly than

the probability of lineages being nearby. The coalescence time distribution has
a power-law tail, p(t|x) / t

1/↵�2. This deviation from the scaling of the dispersal
kernel at long times is due to the high probability of previous coalescence events.
Bottom right: for ↵ > 2, the coalescence time distribution may approach

the di↵usive limit. The scaling of 1�P appears to be close to that of the di↵usive
prediction, (3.70), but there is at least a di↵erence in prefactor, perhaps again due to
di↵erent probabilities of coalescence at very recent times. Present-day separation x

was set to zero for all simulation results shown.
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Figure 3.10: For very heavy-tailed dispersal, ↵ < 1, continuous-time and

discrete-time models di↵er at short distances. Scaled probability of identity  
as a function of distance x for ↵ = 0.5, � = 0.5, and ⇢ = 100. Points show discrete-
time simulation results. For the continuous-time model, the black curve shows the
result of numerically integrating (3.28), while the dashed red and magenta lines show
the asymptotic approximations (3.40) and (3.39), respectively. The continuous-time
model predicts that  should only plateau within the coalescence distance �, but for
distance between � and the typical single-generation dispersal distance c, the change in
 is driven by the probability of coalescing at 0 < t ⌧ 1. In the discrete-time model,
these lineages have to wait until t = 1 to coalesce, leading to a lower, broader plateau,
given by (3.72) (dashed green line). This discrepancy only exists for � < x ⌧ c, i.e.,
if c < � then the discrete-time and continuous-time models agree (blue points).



Chapter 4

Inferring Power-law Dispersal from

Patterns of Isolation by Distance

4.1 Introduction

Direct measurement of dispersal in spatially structured populations is often a

prohibitively di�cult task, with tagging and tracking typically only being feasible for

select populations under extended observation. As a result of these challenges, indi-

rect inferences of dispersal from readily available genomic data have become popular,

with a large class of methods being developed for populations of varying demographic

and spatial structure [20, 38, 140, 141, 165]. For demographically stable populations

in continuous space, dispersal and neighborhood size are often inferred from the rate

at which genetic identity decreases with the spatial separation between sampled pairs.

The fact that limited dispersal leads to the decay of genetic correlations with increas-

ing separation is known as isolation by distance [30, 91, 137, 146, 169].

If we compare su�ciently long blocks of sequence, the rates of mutation and

recombination will capture short timescales over which the demography and dispersal

are likely constant, and the e↵ects of selection can be ignored [17, 76, 131]. As long

as the blocks are not too large, the timescales involved will not reflect the recent

pedigree or reproduction process either, and thus the local details of coalescence can

be ignored as well [134]. For these moderately large blocks, the resulting patterns of

71
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isolation by distance can be described by classic di↵usive models that are governed

by just three parameters: the population density, dispersal constant and mutation

rate [15, 89, 131, 149]. Recently developed continuous-space models derived using

more rigorous assumptions make similar predictions and are again described by only

a few parameters [19]. Using these models, both the fraction of identical sequence

blocks of a fixed size and the distribution of blocks of varying size can be used to

infer dispersal. Dispersal is assumed to be thin-tailed, and the dynamics over many

generations can be characterized by a single parameter, the dispersal constant D

[15, 134]. Pairwise genetic similarity is predicted to decay logarithmically at short

distances and exponentially at large distances, with a decay rate of
p

µ/D, where µ

is the mutation rate.

While the assumption of di↵usive dispersal is often reasonable, many populations

appear to instead display signatures of a heavy-tailed dispersal distribution that de-

cays very slowly with distance [2, 7, 11, 34, 45, 46, 48, 63, 159, 167]. There are

many other populations for which little about dispersal is known, and we would like

to be able infer dispersal from genetic data in a way that can distinguish thin- and

heavy-tailed kernels [150]. A heavy-tailed kernel allows for dispersal events that are

orders of magnitude larger than the “typical” jump size given by the standard devi-

ation of the distribution, and for extremely heavy tails the standard deviation itself

becomes infinite. The presence of jumps that span a huge range of sizes leads to a

qualitatively di↵erent form of motion than the di↵usion that is typical of thin-tailed

dispersal distributions [108].

In this work, we use our recently developed model of isolation by distance in pop-

ulations with a heavy-tailed (power-law) dispersal kernel [150] to generalize existing

methods of dispersal inference. We also use our previous results on the probability of

identity and the distribution of coalescence times for pairs undergoing heavy-tailed

dispersal to predict the size and number of long shared sequence blocks between pairs.

We develop inference schemes based on both the probability of identity and the num-

ber of long shared sequence blocks between pairs and apply these methods to both

real and simulated sequence data. We test our methods on simulated data and data

from Florida scrub-jays at Archbold Biological Station, and apply them to data from
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European humans in the POPRES dataset [2, 117, 131].

4.2 Model

We consider two individuals sampled in the present a distance x apart, and trace

their lineages back in time. We assume individuals disperse a random distance every

generation according to an isotropic dispersal kernel, and that the range is infinite in

size. We consider dispersal kernels that are normal, as well as kernels with a power-

law tail [150]. Our primary inference scheme will assume that lineages follow Lévy

flights, a model of dispersal in which trajectories can include rare long-range jumps

[86, 107, 108]. The dispersal kernel of a Lévy flight follows a stable distribution [174]:

K1(y|t) =
1

2⇡

Z 1

0

dk kJ0(ky) exp (�D↵tk
↵) , (4.1)

where J0 is the zeroth Bessel function and t is the number of generations in the past.

The generalized di↵usion constant D↵ determines the rate at which lineages spread:

just as the mean squared displacement is set by the di↵usion constant for Brownian

motion, Lévy flights generalize this relation, with hx↵i = D↵t for ↵  2. For ↵ = 2,

Lévy flights reduce to ordinary di↵usion with a normal dispersal distribution. For

↵ < 2 however, lineages can take long jumps due to the tail of the kernel following

a power law proportional to y
�2�↵, and the characteristic rate of spread, (D↵t)1/↵,

is faster than that found for di↵usion. We also consider finite variance t-distribution

dispersal kernels with ↵ > 2 (see Methods). Even for these steep power laws, the tail

of the kernel is proportional to y
�2�↵ [150].

When the two lineages meet in space, they coalesce at a rate proportional to

1/⇢, where ⇢ is the population density. We assume that ⇢ is a constant, which is

equivalent to assuming local density-dependent regulation of reproduction [59]. In

two dimensions, two lineages of infinitesimal size will never be at exactly the same

position [111], and we assume there is a local scale � below which nearby lineages

are able to coalesce. Our continuous-space model can be interpreted as the limit of

stepping-stone model in which individuals occupy discrete demes [15]: every small
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patch of space has approximately ⇢�
2 individuals, and the rate of coalescence for

nearby pairs is roughly 1/(�2⇢). For x � �, the value of � will not a↵ect patterns

of genetic diversity, and we assume all sampled pairs used for inference meet this

criteria.

The lineages each acquire neutral mutations at rate µ. The probability of identity

in state for a pair sampled at separation x is therefore [15]:

 (x) = E
⇥
e
�2µT |x

⇤
, (4.2)

where the expectation is over the time T to their most recent common ancestor.

Roughly speaking, the basic intuition is that the sampled pair will be identical if

their lineages coalesce within approximately the past 1/µ generations. In this time,

they will disperse a typical distance of order x ⌘ (D↵/µ)1/↵, so this is the key length

scale over which identity decays: pairs separated by x ⌧ x should be relatively closely

related, while identity between pairs separated by x � x should be rare [150]. For

Lévy flights with ↵  2, there is no closed-form expression for  (x). Identity in state

for x � � is instead given by the following integral (see Methods):

 (x) =
1 �  (0)

4⇡⇢µx2

Z 1

0

d
J0(x/x)

1 + ↵
. (4.3)

In sexual populations, the e↵ective mutation rate is often quite small compared to

the rate of recombination, and even distantly related individuals are identical by state

at most sites along their genomes. While identity in state hardly varies at all within

these populations, identity by descent, defined as the proportion of the genome inher-

ited from the same ancestors, can still vary considerably with the distance between

sampled pairs [2]. While our model was originally developed to predict identity in

state, in the µ = 0 limit  (x) reduces to the probability of coalescence for sampled

pairs. For ↵ � 2,  (x) = 1 when µ = 0, and the model is trivial. For ↵ < 2 however,

our infinite-range model shows a drastic separation of coalescence timescales [150]:

pairs either coalesce quickly, and are e↵ectively identical by descent everywhere along

the genome, or wander away from each other and never coalesce. In real populations

on finite ranges, “never coalescing” corresponds to coalescing after the mean coales-

cence time for a random pair. In this case,  (x) predicts the probability of very recent
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shared ancestry, and thus identity by descent, for sampled pairs [150]:

 IBD(x) / 1 �  IBD(0)

⇢D↵x
2�↵ for ↵ < 2, µ = 0. (4.4)

In addition to the probability of identity, we can consider the number of long

shared sequence blocks between pairs [17]. Assuming that long blocks are broken up

due to recombination and that the mutation rate is negligibly small in comparison,

the block density for Nc chromosomes of total map length G is given by the following

expectation [134]:

E[NL(x)] = E


Nc

✓
4

✓
G

Nc

� L

◆
T

2 + 4T

◆
e
�2LT |x

�
, (4.5)

where L is the length of the block in Morgans and we assume all Nc chromosomes

are the same length. The intuition here is that the size of a block determines the

rate at which we expect recombination to break it up. Pairs that coalesce within

approximately the past 1/L generations should possess many blocks of length L, while

pairs that coalesce after 1/L should have very few blocks of this size. Since lineages

disperse a typical distance of (D↵/L)1/↵ in 1/L generations, this is the length scale

over we which we expect the number of long shared sequence blocks to decay. For

Lévy flights with ↵  2, there is again no closed form expression for the block density.

For x � �, the following integral expression is valid for large blocks and very long

chromosomes (see Methods):

E[NL(x)] ⇡ G

2⇡⇢c2

Z 1

0

d
J0(x/c)

(L+ ↵)3
, (4.6)

where c ⌘ (D↵)1/↵ is the typical distance an individual disperses in a single generation.

4.3 Inference scheme

We use both the pairwise probability of identity,  (x), and the number of long

shared sequence blocks, E[NL(x)], to infer dispersal from spatially labelled genomic

data. For both quantities, we use maximum likelihood estimation to find the dispersal

distribution of best fit from a parameterized family of distributions, namely Lévy

alpha-stable distributions with ↵  2, or t-distributions with ↵ > 2.
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We use (4.3) for  (x) to infer dispersal from identity in state, treating ↵, x and the

prefactor ⇢µ/(1 �  (0)) as independent parameters. We assume no linkage between

sites and treat the number of independent sites per pair, Nsites, as a fixed parameter

that must be specified before estimating dispersal. All sites are modelled as tracts

of sequence with the same base-pair length, and the e↵ects of recombination within

a site are assumed to be negligible. Identity for each independent site is assumed to

be binary (1 or 0), and is treated as a Bernoulli process with mean  (x). The mean

probability of identity across all sites along the genome is also assumed to be  (x),

with homozygosity for pairs following a binomial distribution with Nsites trials. The

mean probability of identity for all pairs at a given separation distance also follows

a binomial distribution with mean  (x), and we denote the total number of sites

in a given distance bin (Nsites times the number of pairs) as N(xi). The resulting

likelihood function for  (x) is then:

L (↵, x,
⇢µ

1 �  (0)
) =

Y

xi

N(xi)!
 (xi)N(xi) ̂(xi)(1 �  (xi))

N(xi)(1� ̂(xi))
⇣
N(xi) ̂(xi)

⌘
!
⇣
N(xi)

⇣
1 �  ̂(xi)

⌘⌘
!
, (4.7)

where  ̂(xi) is the average identity in state for pairs in a given distance bin, and the

product is over all bins. The likelihood function in (4.7) has three free parameters:

↵, x, and ⇢µ/ (1 �  (0)).

To reduce the number of free parameters in the inference problem (see Methods),

we assume that N(xi) in each bin is large and approximate the binomial distribution

for  (x) as a normal distribution. Our model for  (x) also assumes that  (x) ⌧ 1

[150], and we can thus approximate the variance in identity as  (x)/N(xi). The

resulting log-likelihood function is:

LL (↵, x) = �1

2

X

xi


N(xi)

 (xi)

⇣
 (xi) �  ̂(xi)

⌘2
+ log

✓
2⇡ (xi)

N(xi)

◆�
. (4.8)

While (4.8) technically has three free parameters, we can reduce this to two: the

optimal value of ⇢µ/ (1 �  (0)) can be determined analytically for fixed ↵ and x (see

Methods). We use the procedures described in Optimization methods to find the

maximum likelihood estimates of the parameters and their confidence intervals.
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For our model of identity by descent, µ = 0 and x ⌧ x for all sampled pairs, and

 IBD(x) takes the simple asymptotic form given in (4.4). In this limit, the three pa-

rameters ↵, ⇢µ/ (1 �  IBD(0)) and x reduce to just two: ↵ and ⇢µx↵/ (1 �  IBD(0)) ⌘
⇢D↵/ (1 �  IBD(0)). Varying x in this regime changes the corresponding optimal

value of ⇢µ/ (1 �  IBD(0)) in a way that keeps  IBD(x) and the log-likelihood con-

stant, leading to ridges and degenerate optima in (4.8). We thus develop a separate

dispersal inference scheme for  IBD(x), which we apply to data from the Florida

scrub-jay population at Archbold Biological Station [2].

While the inference method based on identity in state assumed a fixed number of

independent sites along the genome, this is likely not accurate for the available scrub-

jay data. The large number of sampled SNPs should lead to significant correlations

in SNP trajectories over the relatively short timescales of interest. Even if the alleles

demonstrate linkage equilibrium, the number of meioses over 5 to 10 generations will

not generate enough distinct spatial trajectories for each SNP to disperse indepen-

dently. Rather than try to model the noise in identity by descent from first principles,

we bin the scrub-jay pairs into 10 meter distance bins and use the empirical variation

within each bin to estimate the noise in mean identity. Concretely, we use a weighted

least squares expression based on binned mean identity as our log-likelihood function:

LL IBD(↵) = �1

2

X

xi

⇣
 IBD(xi) �  ̂IBD(xi)

⌘2
/�

2
SEOM

(xi), (4.9)

where �SEOM(xi) is the standard error of the mean in a given distance bin. While

 IBD(x) has two independent parameters, ↵ and ⇢D↵/ (1 �  IBD(0)), we can use the

simple form of the likelihood function to find the optimal value of ⇢D↵/(1� IBD(0))

analytically for any fixed ↵ (see Methods). We again use the procedures discussed in

Optimization methods to find the maximum likelihood estimates for ↵ and ⇢D↵/(1�
 IBD(0)) and the associated confidence intervals.

When inferring dispersal from long shared sequence blocks, we use the expressions

in Methods that have the same basic form as (4.6), treating ↵, c ⌘ (D↵)1/↵ and

⇢ as independent parameters. We assume that all detected blocks are completely

independent segments of the genome with their own trajectories and coalescence
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times. We thus model the number of blocks for pairs at a given separation as a

Poisson process with mean E[NL(x)]�L, where �L is the “bin width” that denotes

the range of block sizes aggregated into a single block count. For parameter estimates,

we again fit data using a composite likelihood approach, binning both distance and

map length. The resulting log-likelihood function again has three parameters, ↵, c

and ⇢:

LLNL(↵, c) =
X

xi

Npairs(xi)
X

Li

h
log(E[NL(xi)]�L)N̂L(xi)�L � E[NL(xi)]�L

i
,

(4.10)

where Npairs(xi) is the total number of pairs at distance xi, and N̂L(xi)�L is the

average number of blocks per pair in a given bin. Note that we have omitted the

constant factorial term in the log-likelihood for simplicity. We can again reduce the

three free parameters in (4.10) to two by finding the optimal ⇢ value analytically

for fixed ↵ and c (see Methods). Just as for inference using identity, we rely on the

procedures discussed in Optimization methods to find maximum likelihood estimates

and confidence intervals for ↵, c, and ⇢.

4.4 Application to simulated data

We used the backwards-time simulations described in Methods to calculate iso-

lation by distance patterns for a two-dimensional stepping-stone model on a finite

range. For both  (x) and E[NL(x)], we varied ↵ in our simulations between 0.5 and

2 and fit the resulting data to the Lévy flight model described above. For E[NL(x)],

we also simulate steep, finite-variance power laws with ↵ > 2, which we fit to a

distinct t-distribution model (see Methods).

For both  (x) and E[NL(x)], we find good agreement between the “true” input

parameters of the discrete-space simulations and the estimated parameters found via

our continuous-space inference methods when ↵  2. For all simulated data fit with

the site-based Lévy flight model, we set the number of total independent sites at each

separation, N(xi), to 106. For the block-based Lévy flight model, 105 independent

pairs were simulated for each separation distance and block length. While these sam-
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ple sizes are large, they are not unreasonable. In the data from natural populations

analyzed in the following sections, we find a large number of total pairs and thus ex-

pect an even larger number of total sites: more than 105 pairs were sampled from the

scrub-jay population and over 106 pairs are present in the POPRES dataset [2, 131].

While we see a slight bias in estimates of ⇢ for E[NL(x)], we believe this is an

artifact of our discrete-space simulation method (see Methods). True values of ↵ are

contained within the 95 percent confidence intervals for all simulations with ↵  2,

and estimates of the length scale (x or c) show a similar degree of accuracy (Fig. 4.5

and Fig. 4.7). Likelihood heatmaps for  (x) show a slow variation of log-likelihood

with both parameters, while the variation in log-likelihood is much more drastic for

E[NL(x)] (Fig. 4.6 and Fig. 4.8 ). We attribute this di↵erence to the fact that there

are far more shared blocks per distance bin than identical sites with our choice of

simulation parameters. Focusing on a single block size, we see that the number of

blocks per pair and cM is of order 10�2 at the shortest distances, and thus the total

number of blocks within a single bin is of order 103. For  (x), the total number of

identical sites is Nsites (x), which is of order 102 in a single bin. Given that the signal

to noise ratio is proportional to the number of identical sites or blocks per bin, it is

not surprising that this di↵erence a↵ects the precision of inference. If we had instead

considered a smaller range of blocks on shorter genomes, this e↵ect may well have

been reversed.

For  (x), we see that the best fit curves for ↵ = 0.5 and ↵ = 1.0 are pure power

laws and that the corresponding likelihood heatmaps have long, horizontal ridges that

extend to large values of x. As explained in the previous section, this is due to the

asymptotic form of  (x) for x ⌧ x [150]. We see another pure power law in the

plot of E[NL(x)] for ↵ = 0.5, but no corresponding horizontal ridge in the likelihood

heatmap. This is because the block density still depends on c ⌘ (D↵)1/a at short

distances x ⌧ c.
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4.5 Application to Florida scrub-jay data

We used our predictions for  IBD(x) to infer dispersal for the population of Florida

scrub-jays at Archbold Biological Station. This dataset, provided by Aguillon et al.

[2], contains 130,618 spatially labelled pairs and measurements of pairwise identity by

descent based on 7,483 autosomal SNPs at which the jays were genotyped. Identity

by descent for a pair is defined as the proportion of the genome inherited from the

same ancestors. This quantity is estimated by comparing identity in state for a given

pair to the average level of identity in state for all pairs in the population. Pairs with

above-average levels of identity in state likely share common ancestry in the more

recent past than pairs with average or below average relatedness, thus allowing the

inference of kinship from genomic data. This raw measure of above-average identity

is further transformed by PLINK to obtain an estimate of identity by descent that is

always between 0 and 1 [130].

Maximum likelihood parameter estimates were found for both the full dataset

and a truncated dataset representing pairs with separations between 200 meters and

2 km. Truncating the data allows us to exclude short distances at which the local

details of coalescence and dispersal may deviate from the assumptions made by our

simple model. It also allows us to exclude large distances near the edge of the range

in which jays were sampled. While the sampling bounds set by Archbold Biological

Station do not represent true bounds on the population range for the jays, they do

determine the baseline level of identity in state used to determine identity by descent

for all pairs. If this baseline is above the true average identity of the population,

identity by descent at these large distances will go undetected due to the inherent

sampling limitations. For the full dataset, we found an ↵ value of 1.69 and a value of

10.01 for ⇢D↵/ (1 �  (0)). For the truncated dataset, we find an ↵ value of 1.46 and

a ⇢D↵/ (1 �  (0)) value of 5.35. Plots of the data and fits are displayed in Fig. 4.1

and Fig. 4.2.

In addition to indirect inference of dispersal via isolation by distance, we can lever-

age the direct measurements of dispersal available for Florida scrub-jays to estimate

the dispersal kernel. We use the data provided by Aguillon et al. [2] for the radial
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distribution of dispersal distances (2⇡y times our definition of the dispersal kernel

in (4.1) ) and fit this one-dimensional (radial) histogram to a one-dimensional stable

distribution (Fig. 4.1). For the full and truncated datasets we find best-fit ↵ values

of 1.29 and 1.60 using this more direct method.

4.6 Application to European POPRES data

We applied our E[NL(x)] based inference method to data provided by Ralph and

Coop [131] on the number of long shared sequence blocks between pairs of humans

within the Population Reference Sample (POPRES) dataset [117]. We analyzed this

data with both our Lévy flight and t-distribution dispersal inference codes and consid-

ered both the full dataset and the subset of pairs within Eastern Europe. Our criteria

for selecting pairs within Eastern Europe is identical to that used by Ringbauer et al.

[134]. For both the full and Eastern European datasets, we inferred dispersal from

long blocks above a certain cuto↵ size. We set the maximum block size to 20 cM,

varied the minimum block length between 4, 6, and 8 cM and found that the choice

of minimum block length can have a significant e↵ect on the estimated parameters.

We binned both separation distance and block size during inference, with distances

being binned in 10 km increments and blocks being binned every 0.25 cM for the

Lévy flight code (1 cM for the t-distribution code). We also enforce a minimum ⇢

value of 10�3 km�2 during inference.

While we have analyzed the number of shared blocks for all European pairs, we

note that our model fails to explain the lack of isolation by distance for small blocks

in the full dataset (Fig. 4.3). We should thus be cautious about drawing biological

conclusions from this analysis. Indeed, our assumption of a continuous spatial range

with no boundaries or fragmentation is clearly violated when considering all of Europe.

As noted by Ringbauer et al. [134], the assumption of a continuous range without

fragments or boundaries is better suited to Eastern Europe, and we believe that our

model and analysis should be most relevant for this subset of the POPRES data.

In our analysis of both the full POPRES dataset and the Eastern European sub-

set, we find that dispersal is best described by a t-distribution when a 4 cM block
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length cuto↵ is used. Model selection (AIC) favors the t-distribution model over

both the Lévy-stable and di↵usive models of isolation by distance. While a direct

comparison of the t-distribution and stable distribution models is not feasible (due

to the di↵erence in bin sizes used during inference), the di↵usive model was fit to

data using both choices of bin size. The di↵erence in AIC scores is significantly

larger when comparing the t-distribution model to the di↵usive model for both the

full and Eastern European datasets. While the steep power-law model that assumes

t-distribution dispersal outperforms the broad power-law model with Lévy-stable dis-

persal, the best-fit ↵ value for Eastern Europe is pinned to the model’s lower bound

of ↵ = 2.01, which suggests that a broader t-distribution may outperform both steep

t-distributions and Lévy-stable kernels. Our spline-based numerical methods fail for

these broad t-distributions, and fitting these kernels is thus beyond the scope of the

present work.

When a larger minimum cuto↵ of 6 cM or 8 cM is used, we find that models

including long-range (power-law) dispersal again provide a better description of the

data than the classic di↵usive model. A 6 cM cuto↵ produces best-fit ↵ values of

0.93 and 1.05 for the full and Eastern European datasets, whereas an 8 cM cuto↵

yields ↵ values of 0.69 and 1.09. While our long-range model outperforms the classic

short-range model, the fit for larger block cuto↵s is less accurate than that found for

the 4 cM cuto↵, and the amount of noise present in the count data for large blocks

makes the exact form of the isolation by distance pattern di�cult to discern. Much

of the noise in count data for larger blocks can be attributed to the small number

of blocks detected at these sizes. More data would be necessary to draw definitive

conclusions about the form of isolation by distance and the presence (or absence) of

long-range dispersal on the timescales associated with these larger blocks.

Surprisingly, the estimated value of ⇢ for the Eastern European subset di↵ers

by an order of magnitude from the estimate found by Ringbauer et al. [134] for

the same (di↵usive) model. We attribute this discrepancy to a di↵erence in opti-

mization procedures. A non-negligible number of false positives in the block data

may also contribute to the di↵erence in inferred parameters [131]. Maximum likeli-

hood estimates for all Eastern European data between 4 and 20 cM can be found in



Chapter 4: Inferring Power-law Dispersal from Patterns of Isolation by Distance 83

Fig. 4.4. All other maximum likelihood estimates, as well as heatmaps and AIC val-

ues, can be viewed at https://github.com/weissmanlab/Dispersal_Inference/

blob/master/IBD_block_data/aggregated_popres_plots.pdf.

4.7 Discussion

Here we have extended the model developed in Smith and Weissman [150] of iso-

lation by distance in populations with long-range (power-law) dispersal to predict

the number of long shared sequence blocks between pairs. We also used these ex-

pressions for the number of shared blocks, as well as previously derived expressions

for the probability of identity, to develop methods for inferring long-range dispersal

from genomic data. We showed that these inference methods perform well for data

generated from coalescent simulations of neutral populations, and then applied the

methods to a population of Florida scrub-jays at Archbold Biological Station and to

human samples found within the European POPRES dataset [2, 131].

For the Florida scrub-jay data, we detect strong genetic signatures of long-range

dispersal and find that the observed pattern of isolation by distance is better described

by a model with a power-law kernel than the classic di↵usive model. Direct fits of

empirical dispersal data similarly show that the dynamics of the scrub-jay population

are better described by a model that includes long-range dispersal. Detecting long-

range dispersal in a population where it is known to be present is a good first test for

this new inference method, and passing this test provides evidence for the method’s

e�cacy.

It is also interesting to note that long-range dispersal provides a mechanism for

significant levels of genetic diversity even when the e↵ective mutation rate is very

small [150]. Lineages undergoing long-range migration can demonstrate an extreme

separation of timescales in which pairs either coalesce very quickly or wander away

from each other and avoid coalescing for many generations. In our infinite-range

Lévy flight model, these wandering lineages literally never coalesce, and  (x) is non-

constant even for µ = 0, as the number of pairs that coalesce before “wandering o↵”

https://github.com/weissmanlab/Dispersal_Inference/blob/master/IBD_block_data/aggregated_popres_plots.pdf
https://github.com/weissmanlab/Dispersal_Inference/blob/master/IBD_block_data/aggregated_popres_plots.pdf
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decreases with separation. In real populations on finite-ranges, lineages that wander

o↵ do eventually coalesce, with the typical coalescence time set by the density of the

population and the size of the entire range. While the e↵ects of a finite range size

make our infinite-range prediction for  (x) an inaccurate model of identity in state, it

still captures the probability of very recent shared ancestry, and can thus be used to

model identity by descent. Aguillon et al. [2] showed that the pattern of isolation by

distance found in Florida scrub-jays can be described by a modified Malécot model

that assigns pairs a binary level of identity based on whether a long-range migration

event occurs before coalescence. Our Lévy flight model is conceptually similar: when

the mutation rate is very small, pairs that coalesce quickly are assigned a value of 1

and pairs that wander o↵ are assigned a value of 0. While the model developed by

Aguillon et al. [2] uses the known dispersal distribution up to 5 km to model short-

range movements and treats long-range jumps out of Archbold Biological Station as

an entirely separate process, here we model both short-range and long-range dispersal

events with a single power-law kernel.

While long-range dispersal helps to explain the slow decay in identity with dis-

tance, the fact that the fits found by Aguillon et al. [2] are far better than those found

here make it clear that incorporating the small-scale and sex-specific details of disper-

sal is necessary to explain scrub-jay isolation by distance patterns, and that classic

models and the extensions developed here are too simple to provide a full descrip-

tion of real populations. While simplistic, these models can be fit to data without

knowledge of the true dispersal distribution or pedigree, and can thus be used to infer

dispersal in populations where it hasn’t been measured directly. Even if the exact

form of the dispersal distribution can’t be inferred with such simple models, it may

be possible to determine whether dispersal is long- or short-range.

Genomic signatures of long-range dispersal have also been detected for European

humans in the POPRES dataset, but our findings should be seen as suggestive rather

than definitive. Models of isolation by distance that include long-range dispersal may

in fact provide a better description of the patterns of human ancestry within Europe,

but further analysis (ideally with a larger number of sampled pairs) is needed before

any conclusions can be drawn. Given the drastic changes in human travel over the
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past 10 generations, it seems plausible that long-range movement of individuals may

have left visible signatures in the genomes of present-day humans. Indeed, previous

studies of current human dispersal suggest that a power-law kernel may be much

more realistic than a di↵usive or thin-tailed model [34]. It is also likely that the

simple models discussed here fail to capture key aspects of human populations over

recent timescales. Rapid population growth certainly invalidates the assumption of

demographic equilibrium, and models that allow for a time-dependent population

density may be more appropriate for this dataset [134].

One significant limitation of our inference method is that we must assume  (x) ⌧
1. This is only a mild constraint when fitting to relative measures of relatedness like

identity by descent, but it does rule out fitting absolute measures of relatedness like

identity in state for a large number of populations. While the e↵ective mutation rate

can in principle be increased by comparing larger tracts of the genome [76], there are

still many existing datasets that do not contain the data needed to perform such a

rescaling. Given that the assumptions of continuous space and constant population

density are also tenuous [59], generalizing the current scheme to one that is mathe-

matically consistent and rigorous may also be worthwhile. A clear candidate for a

more rigorous replacement is the spatial ⇤-Fleming-Viot (SLFV) model, which is flex-

ible enough to include both long-range dispersal and long-range reproduction events

[19]. The SLFV model has proven e↵ective for inference when dispersal is di↵usive,

and variants of the model that include power-law dispersal and reproduction have

recently been developed [60, 73]. How well the SLFV model might perform relative

to the dispersal inference method presented here is an open question.

4.8 Methods

4.8.1 Lévy flight model

The expected homozygosity is the Laplace transform of the distribution of coales-

cence times [15]:

 (x) =

Z 1

0

dt p(t|x)e�2µt
. (4.11)
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Figure 4.1: Top: Florida scrub-jays display genetic signatures of heavy-

tailed dispersal. While we see systematic deviations between the data and our
model at short distances, at larger distances identity by descent decays slowly and
shows good agreement with our power-law model. Points show empirical measure-
ments from the scrub-jay dataset. Error bars show the standard error of the mean
in each 50 km distance bin. The red curve shows the maximum likelihood fit of the
asymptotic Lévy flight model with µ = 0. Parameter estimates for the model are inset
in the figure. Bottom: Lévy flight dispersal shows good agreement with the

known scrub-jay dispersal distribution. Points show the histogram of measured
dispersal distances for jays at Archbold Biological Station. The curves are best-fit
stable distributions using the full dispersal dataset (orange), the long-distance disper-
sal data at 500 meters or greater (blue), and the genomic data (red). We see that the
inferred ↵ using the dispersal data is reasonably close to the ↵ value of 1.69 found via
our genetic method. Using the long-distance dispersal data only, the inferred ↵ using
direct and genetic methods are nearly identical. Details of the inference procedures
can be found in the text.
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Figure 4.2: We find the strongest signatures of long-range dispersal in the

scrub-jay isolation by distance data between 200 meters and 2 kilometers.

As explained in the text, truncating the data allows us to omit the local details
of dispersal and coalescence. It also allows us to exclude long-distance data that is
a↵ected by the finite size of the sampling range. This subset of the data demonstrates
power-law like scaling over distances spanning a full order of magnitude. Our power-
law model thus provides an excellent description of isolation by distance in this regime.
Points show empirical measurements from the scrub-jay dataset. Error bars show the
standard error of the mean in each 50 km distance bin. The red curve shows the
maximum likelihood fit of the asymptotic Lévy flight model with µ = 0. Parameter
estimates for the model are inset in the figure.
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As shown in Smith and Weissman [150], the following expression for  holds in two

dimensions when  ⌧ 1:

 (x) ⇡ 1 �  (0)

4⇡⇢

Z 1

0

dk
kJ0(kx)

µ+D↵k
↵

(4.12)

=
1 �  (0)

4⇡⇢µx2

Z 1

0

d
J0(x/x)

1 + ↵
. (4.13)

Note that we are assuming � ⌧ x for all data such that the local details of coalescence

can be ignored and that  (0) is an unknown constant.

The block density can be defined for a single chromosome by the following expec-

tation [134]:

E[NL(x)] =

Z 1

0

dt
�
4Gt

2 + 4t
�
p(t|x)e�2Lt

, (4.14)

where G is the map length of the genome. The block density for Nc chromosomes of

total map length G is then given by:

E[NL(x)] =

Z 1

0

dtNc

✓
4

✓
G

Nc

� L

◆
t
2 + 4t

◆
p(t|x)e�2Lt

, (4.15)

where we assume all Nc chromosomes are the same length. Following the di↵usive

model developed by Ringbauer et al. [134], we assume we’re working with long blocks

(and thus short timescales) so that we can approximate the coalescence time distri-

bution as the dispersal kernel divided by ⇢:

E[NL(x)] ⇡
Z 1

0

dtNc

✓
4

✓
G

Nc

� L

◆
t
2 + 4t

◆
K(x|t)
⇢

e
�2Lt

. (4.16)

We can then get approximate expressions for E
⇥
Te

�2LT
⇤
and E

⇥
T

2
e
�2LT

⇤
, and

thus the block density, by di↵erentiating (4.12) in the large block (short time) limit

where p(t|x) ⇡ K(x|t)/⇢ and 1 �  (0) ⇡ 1:

E
⇥
Te

�2LT
⇤

⇡ 1

8⇡⇢

Z 1

0

dk
kJ0(kx)

(L+D↵k
↵)2

(4.17)

=
1

8⇡⇢L2x
2

Z 1

0

d
J0(x/x)

(1 + ↵)2
, (4.18)
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E
⇥
T

2
e
�2LT

⇤
⇡ 1

8⇡⇢

Z 1

0

dk
kJ0(kx)

(L+D↵k
↵)3

(4.19)

=
1

8⇡⇢L3x
2

Z 1

0

d
J0(x/x)

(1 + ↵)3
. (4.20)

Note that we have replaced the mutation rate µ in (4.12) with the map length of a

shared block in Morgans, L. x is now defined as (D↵/L)
1/↵.

We can leverage the simple form of the integral expressions (4.13), (4.18), and

(4.20) by evaluating the dimensionless integrals (without their dimensionful prefac-

tors) over a 2D grid of ↵ and x/x values and fitting splines to these grids. We can

then add the dimensionful prefactors of the integrals to the spline predictions to get

the final numeric evaluations of  or E[NL(x)]. This approach of using precomputed

splines in place of direct numerical integration greatly improves the speed at which

these expressions can be evaluated. Three splines are used at di↵erent distance scales

for each quantity: one between 10�5
x and 10�3

x, another between 10�3
x and 10�1

x,

and a third spline from 10�1
x to 100 x. The integral evaluations used to fit the two

splines at short distances were computed with Mathematica, and the evaluations

for the large distance spline were computed using the oscillatory quadrature method

within Python’s mpmath package. As explained below, asymptotic expressions are

used at distances below 10�5
x and above 100 x.

4.8.2 T-distribution model

For the t-distribution inference code, we assume ↵ > 2 and define the single-

generation dispersal distribution for a lineage as:

K1(y) =
↵

2⇡c2
�
1 + y

2
/c

2
��(↵+2)/2

for ↵ > 2. (4.21)

Note that we have rescaled the distribution from its typical definition, which can be

recovered by changing variables to Y =
p
↵y. The two-dimensional Fourier transform

is:

K̂1(k) =
↵⇡(ck)↵/2

�
I�↵/2(ck) � I↵/2(ck)

�

21+↵/2�(1 + ↵/2) sin(⇡↵/2)
, (4.22)
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where k represents the radial coordinate (magnitude of the frequency vector) in

Fourier space and I is a modified Bessel function of the first kind.

For non-stable distributions, we must use a discrete-time model of coalescence, as

all Markovian dispersal distributions become stable in the limit of continuous time

[119]. Using the expressions derived for a generic dispersal distribution in Smith

and Weissman [150], we find that  for our t-distribution dispersal kernel takes the

following form:

 (x) ⇡ 1 �  (0)

2⇡⇢

Z 1

0

kJ0(kx)

0

@1 � e
�2L

 
↵⇡(ck)↵/2

�
I�↵/2(ck) � I↵/2(ck)

�
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!2
1

A
�1

dk.

(4.23)

We can also rewrite (4.23) in terms of the dimensionless distance x/c:

 (x) ⇡ 1 �  (0)

2⇡⇢c2

Z 1

0

J0(x/c)

0

@1 � e
�2L

 
↵⇡()↵/2

�
I�↵/2() � I↵/2()

�

21+↵/2�(1 + ↵/2) sin(⇡↵/2)

!2
1

A
�1

d,

(4.24)

which is the expression we use to create the spline grid for this model.

As explained in the previous section, the derivatives of  with respect to L can be

used to approximate the block density. For the t-distribution block density model, we

use the first and second derivatives of (4.24) to fit splines for inference. We evaluate

these block density expressions on a three-dimensional grid of parameter values, with

x/c between 0 and 100, ↵ between 2.01 and 7, and L between .04 and .2. For all

↵ < 4, an additional set of splines were fit with the same L values and x/c between

100 and 250. Using the spline numerics for E[NL(x)], we apply the likelihood function

described in (4.10) when fitting to data. The fact that map length is constrained

between 4 and 20 cM makes the three-dimensional grid evaluations feasible for block

density. Since the mutation rate µ has no such bounds, the t-distribution model is

used only for block inference.

Fits to simulated data with ↵ > 2 were performed using the t-distribution model

described above (see Simulation Methods subsection of Methods). The performance

of this inference method for large ↵ was found to be poorer than that of the Lévy

flight methods for ↵  2. One key di↵erence between the two regimes is that all
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power-law dispersal distributions with ↵ > 2 begin to resemble a normal distribution

at short distances after multiple generations, and thus reliable information about the

tail parameter ↵ can only be obtained from the tail of an isolation by distance curve.

For Lévy flight dispersal, however, we see signatures of ↵ at all distances, not just

the (often noisy) tail of the isolation by distance curve. It is thus not surprising that

inference for ↵ > 2 is significantly more di�cult than the case of ↵  2. While

↵ cannot be reliably inferred with our t-distribution model, we find that di↵usive

simulations results in an optimal ↵ value of 7, which is the maximum allowed value

in our method. This is expected: t-distributions approach a normal distribution

as the tail parameter ↵ becomes large. Simulations with steep power-law dispersal

(2 < ↵ < 6) instead prefer lower ↵ values below 3. We can thus use our t-distribution

to detect the presence of long-range dispersal: an estimated ↵ less than 7 suggests

that heavy-tailed dispersal may in fact be present. We can also compare estimates

made for natural populations to the estimates made using di↵usive and Lévy flight

models. If the t-distribution model provides a better fit (AIC value) than the other

two models, we claim that dispersal is heavy-tailed with ↵ > 2, but do attempt to

estimate ↵ with any further precision.

4.8.3 Asymptotic expansions at long and short distances

For ↵ < 2, 1� (0) is independent of µ to leading order, and we can obtain p(t|x)
for x � � by taking the inverse Laplace transform of (4.13) [150]:

p(t|x) ⇡ 1 �  (0)

⇢
K(x|t), (4.25)

where the two-lineage dispersal kernel K has the same definition as K1 given in

(4.1), but with D↵ replaced with 2D↵. The distance coordinate x now represents the

present-day separation, rather than locations, of two lineages.

We can approximate  (x) for both x ⌧ x and x � x by expanding the char-

acteristic function for K given in (4.1) and Laplace transforming each term in the

expansion. At large distances, x � (D↵t)1/↵, expanding the kernel yields:

p(t|x) ⇡ 1 �  (0)

⇢

n=1X

1

(�1)n+12n↵�(1 + n↵

2 )2 sin(n⇡↵2 )

n!⇡2(2D↵t)2/↵

✓
x

(2D↵t)1/↵

◆�2�n↵

. (4.26)
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By Laplace transforming each term in the series, we find an expression for  when

x � x:

 (x � x) ⇡ 1 �  (0)

⇢µx
2

n=1X

1

(�1)n+12n↵�1�(1 + n↵

2 )2 sin(n⇡↵2 )
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x

x

⌘�2�n↵

. (4.27)

At short distances x ⌧ x, we can split (4.13) into two integrals, one from 0 to 1

and the other from 1 to 1. As we are interested in very small distances, we keep only

the terms that are constant or divergent as x approaches zero. For the first integral

from 0 to 1, to leading order we find:

1 �  (0)

4⇡⇢µx2

Z 1

0

d
J0(x/x)

1 + ↵
⇡ 1 �  (0)

4⇡⇢µx2

✓
F (1/2 + 1/↵) � F (1/↵)

2↵

◆
, (4.28)

where F is the digamma function. For the integral from 1 to 1, we expand the de-

nominator (1+↵)�1 in powers of �↵, which is equivalent to expanding the integrand

of the dimensionful expression (4.12) about µ = 0. The resulting expression is:

1 �  (0)

4⇡⇢µx2
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. (4.29)

Using Mathematica’s AsymptoticIntegrate function to solve for the leading-order be-

havior of each term in the series, we find:
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(4.30)

where the second series contains singular terms that occur only for n < (2/↵� 1).

Summing the first series and adding (4.30) to (4.28), we find that the expression for

the full integral is:

 (x ⌧ x) ⇡
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4⇡⇢µx2

0

@⇡ csc(2⇡/↵)
↵

+
b2/↵�1cX

n=0

(�1)n �
⇣
1 � (n+1)↵

2

⌘

2�1+(n+1)↵�
⇣

(n+1)↵
2

⌘
⇣
x

x

⌘(n+1)↵�2

1

A .

(4.31)
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Note that the expression for  has poles at integer values of 2/↵. In practice, we

round alpha to 4 decimal places and shift by a factor of 10�4
⇡ to avoid the poles of

the series, and we find that the resulting asymptotics agree with our spline numerics

and are e↵ective for inference. Continuous optimization methods in Python perform

well despite this regulation of alpha.

We use similar series expressions for the block density when ↵ < 2, which can be

obtained by di↵erentiating (4.31) above. We also assume that the true population

has discrete generations, and thus modify our continuous-time block density model by

assuming a constant value below x = c/100. Assuming the smallest blocks used for

inference have map length L = .04, we find that the asymptotic expressions become

unnecessary for ↵ � 1/2, where splines down to 10�5
x cover all distance above the

c/100 threshold. For smaller values of ↵, the asymptotic expressions are used to

ensure accuracy down to the c/100 threshold.

For ↵ > 2, the t-distribution model naturally has discrete generations, and we set

the block density to a constant value for x < c/10. Asymptotic power-law expressions

derived from (4.21) are used for all x > 100x and all x that exceed the maximum

value of x/c on the spline grid [150].

For ↵ = 2, we use the known logarithmic expression for  (x) at short distances

[15, 150]. At large distances,  and its derivatives decay exponentially, and thus all

quantities of interest are e↵ectively zero for x/x > 100.

4.8.4 Simulation methods

All simulation code and displayed data are available at https://github.com/

weissmanlab/Dispersal_Inference. We simulate our model in two stages. First,

for each value of present-day separation x, dispersal constant D↵, and tail parameter

↵, we simulate dispersal of the lineages, ignoring coalescence and mutation. Then, for

each value of ⇢ and µ, we calculate the expected homozygosity and coalescence time

distribution for each simulated trajectory. We then average over many independent

trajectories. A major advantage of this two-part method is that the second part of

the method, in which conditional expectations are calculated for previously generated

https://github.com/weissmanlab/Dispersal_Inference
https://github.com/weissmanlab/Dispersal_Inference
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paths, is entirely deterministic. This reduces computational costs and noise in the

estimations.

We simulate lineage motion using a discrete time random walk,

Xt+1 = Xt +�Xt, (4.32)

where Xt represents the position of a lineage at a given time (ignoring coalescence.,

i.e., assuming ⇢ ! 1), and the displacement, �Xt, is a vector of integer valued

random variables drawn from the dispersal distribution at each integer time t. We

use the GNU Scientific Library’s e�cient pseudorandom generators for both stable

distributions and the F-distribution [66]; because these are available only for the

one-dimensional distributions, we draw radial distances using the one-dimensional

distributions and then select a random direction in which to move. For dispersal,

we primarily use one-dimensional Lévy alpha-stable distributions to randomly draw

distances. To simulate steeper tails with ↵ > 2, we use an F-distribution for radial

distances. In continuous space, �Xt would have distribution:

K1(y) =
1

2⇡2|y|

Z 1

�1
dk exp (�iky � D↵|k|↵) for ↵  2, (4.33)

K1(y) =
�(2↵)

2⇡!�(↵)2
|y/!|↵�2 (1 + |y/!|)�2↵ for ↵ > 2, (4.34)

where the probability of a displacement depends only on its magnitude, y. As ex-

plained below, ! for ↵ > 2 is chosen such that the scaled F-distribution has the

desired mean squared displacement. To enforce our condition of discrete dispersal

distances, we then round �Xt to the nearest pair of integers, i.e., the closest point in

Z2. Note that this discretization procedure will a↵ect the resulting coalescence and

dispersal process. Estimates for ⇢ using our inference method will be slightly higher

than the ⇢ parameter used in simulations due to this e↵ect. Preliminary simulations

on continuous space showed no such bias.

For each pair of simulated trajectories {xt}, we then compute the path-specific

distribution of coalescence times p({xt0t}), i.e., the probability of coalescing at and

not before time t. We also compute the path-specific mean homozygosity  ({xt01}),
i.e., the probability that lineages following these exact trajectories have not mutated
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before coalescence, or the path-specific number of long shared sequence blocks per

pair and cM E[NL]({xt01})/100:

p({xt0t}) =
⇣
1 � e

� 1
⇢ �x1x2

⌘
exp

"
�1

⇢

t�1X

t0=1

�x1x2

#
for t > 1,

(4.35)

 ({xt01}) =
1X

t=1

p({xt0t})e�2µt
, (4.36)

E[NL]({xt01})/100 =
1X

t=1

Nc

✓
4

✓
G

Nc

� L

◆
t
2 + 4t

◆
p({xt0t})e�2µt

/100. (4.37)

We start (4.35) and (4.36) at t = 1 because we assume that the individuals are

sampled immediately after dispersal, so no coalescence takes place at t = 0. �x1x2 in

(4.35) is the Kronecker delta function:

�x1x2 ⌘

8
<

:
1 if x1 = x2

0 otherwise.

For every time-step the lineages spend in this region, there is a probability of coales-

cence 1 � e
� 1

⇢ .

We then draw binomial and Poisson-distributed random variables for each tra-

jectory using (4.36) and (4.37) as means. Draws are averaged across all simulated

trajectories with present-day separation x to obtain  (x) and E[NL(x)]/100.

We simulate 1,000,000 independent runs of 100 generations each for  (x) for each

present-day separation x and tail parameter ↵. All  (x) simulations shown use a

mutation rate µ of 0.1. For E[NL(x)], we generated separate trajectories for every

1 cM bin of block density, and used 100,000 trajectories per bin for the data fit

using the Lévy flight inference code (↵  2). For the t-distribution block inference

code, we performed simulations with ↵ � 2 and generated 25000 trajectories per bin.

All trajectories used for E[NL(x)] were also 100 generations in length. We set the

dispersal constant D↵ indirectly by setting the characteristic spread c of each lineage

after one generation (t = 1), c ⌘ (D↵)1/↵, to be fixed at c = 5. For ↵ > 2, c is the

root mean squared displacement of the dispersal distribution. We also apply periodic
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boundary conditions, with the range size extending from �5000 to 5000 along both

dimensions of the discrete lattice. Our choice of range size is significantly larger

than the maximum values used for present-day separation between pairs, which are

x = 591 for all t-distribution simulations and x = 237 for all Lévy flight simulations.

4.8.5 Optimization methods

The simple forms of the likelihood functions (4.8) and (4.10) allow us to reduce

these three-dimensional parameter estimation problems to two: for every pair (↵, x)

or (↵, c), the optimal value of the additional parameter ⇢µ/ (1 �  (0)) (or ⇢) can be

found analytically. Setting the derivative of the log-likelihood with respect to ⇢µ

1� (0)

(or ⇢) to zero results in a quadratic equation, and the single positive root is the

unique solution for the optimal value of the parameter (holding the other parameters

constant). This dimensional reduction, along with the use of splines to approximate

numerical integration, greatly reduces the computational cost of parameter inference

and makes fitting large datasets with high spatial resolution feasible on a single CPU

core (see Lévy flight model and T-distribution model sections of Methods).

Initial estimates of x (or c) are first found via exponential or logistic fits to data.

Using these initial estimates, we evaluate the likelihood for a given dataset over a two-

dimensional grid of ↵ and x (or c) values. ↵ is varied from .25 to 2.0 in increments of

.05, and x (or c) is varied from one-tenth to ten times the initial estimate in increments

of one-tenth of the initial estimate. We take the 5 points of best fit on the parameter-

space grid as starting points for further optimization using SciPy’s implementation

of the BFGS algorithm in Python. The best parameter values found over the course

of these 5 optimization runs are used to set a new initial estimate for x (or c), and

this process is reiterated a fixed number of times, after which the best parameter

values found are used as the final parameter estimates. Five iterations are used for

the identity inference code based on  (x), and two iterations are used for the block

density inference code involving E[NL(x)] (though this number is increased to four in

our analysis of the POPRES data). Confidence intervals for ↵ and x (or c) are then

computed using the likelihood ratio test on the two-dimensional grid of log-likelihood
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evaluations. Confidence intervals for ⇢µ

1� (0) (or ⇢) are set by either the range of values

found on the grid or the range given by the Fisher information matrix (whichever

is larger). For the block density model that assumes t-distribution dispersal with

↵ > 2, we use the procedure described above, but with ↵ varied between 2.1 and 7.0

in increments of 0.1.

For the asymptotic model of identity by descent used to analyze the Florida scrub-

jay population, we used the same basic scheme described above, but with a reduced

number of dimensions. The optimal value of ⇢D↵/ (1 �  (0)) for (4.9) can be de-

termined analytically for fixed ↵, and we vary ↵ from .25 to 1.99 in increments of

.01 to get an initial grid of likelihood values. We again take the 5 points of best

fit on the grid as starting points for further optimization using SciPy’s BFGS algo-

rithm, and confidence intervals for ↵ are once again found using the likelihood ratio

test or the Fisher information matrix (whichever is larger). Confidence intervals for

⇢D↵/ (1 �  (0)) are similarly set by either the range of values found on the grid or

the range given by the Fisher information matrix (whichever is larger).
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Figure 4.3: For all European humans within the POPRES dataset, the

lack of isolation by distance obstructs dispersal inference. We see that the
number of shared sequence blocks plateaus at large distances. This results in our
model of isolation by distance and any associated inferences being inaccurate. The
plot shows blocks between 4 and 7 cM using distance bins of width 180 km. Error
bars show the standard deviation of the mean for the number of blocks per pair in
each bin. Parameter estimates are inset in the figures above, and the details of the
inference procedures are described in the text.
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Figure 4.4: For Eastern European humans, we detect genomic signatures

of long-range dispersal within the POPRES dataset. Using a 4 cM minimum
block length, we find that our t-distribution model provides a better description of
Eastern European isolation by distance than the classic di↵usive model, with AIC
scores for the models being 10845 and 10850 respectively. The plot shows blocks
between 4 and 7 cM using distance bins of width 180 km. Error bars show the standard
deviation of the mean for the number of blocks per pair in each bin. Parameter
estimates are inset in the figures above, and the details of the inference procedures
are described in the text.
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Figure 4.5: Long-range dispersal inference via probability of identity per-

forms well for simulated data. Points show discrete-space simulation results.
Curves show the best-fit curves of the continuous-space Lévy flight model. We see
that our inference method based on the probability of identity  (x) performs well
for power-law dispersal (↵ < 2) and di↵usive dispersal (↵ = 2). ⇢ = 1, c = 5, and
µ = 0.1 for all simulated data shown, and 95 percent confidence intervals for all
estimated parameters are displayed in each panel. Actual parameter values used in
simulations are shown in the panel titles.
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Figure 4.6: Parameter-space likelihood heatmaps for  fit to simulated

data. Heatmaps show log-likelihood evaluated over a discrete grid of ↵ and x values.
Brighter colors indicate a higher value of log-likelihood. Actual parameter values used
in simulations are shown in the panel titles.



Chapter 4: Inferring Power-law Dispersal from Patterns of Isolation by Distance 102

Figure 4.7: Long-range dispersal inference via long shared sequence blocks

performs well for simulated data. Points show simulation results. Curves show
Lévy flight model predictions using the estimated parameters. Colors of points and
curves indicated the size of the blocks in centimorgans. We see that our inference
method based on the block density E[NL(x)] performs well for power-law dispersal
(↵ < 2) and di↵usive dispersal (↵ = 2). ⇢ = 1 and c = 5 for all simulated data
shown. 95 percent confidence intervals for all estimated parameters are displayed in
each panel. Actual parameter values used in simulations are shown in the panel titles.
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Figure 4.8: Likelihood heatmaps of the Lévy flight block density model fit

to simulated data. Heatmaps show log-likelihood evaluated over a discrete grid
of ↵ and c values. Brighter colors indicate a higher value of log-likelihood. Actual
parameter values used in simulations are shown in the panel titles.
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Figure 4.9: Plots of the t-distribution block density model fit to simulated

data. Points show simulation results. Curves show block density model predictions
using the estimated parameters. Colors of points and curves indicated the size of the
blocks in centimorgans. We see that our inference method based on the t-distribution
model of block density E[NL(x)] performs poorly for ↵ > 2, but does assign di↵usive
motion the largest possible ↵ value, ↵ = 7. This is expected, as a t-distribution
approaches a normal distribution as the power-law exponent ↵ becomes large. We
us the t-distribution model to detect the presence or absence of long-range dispersal
with ↵ > 2, but do not attempt to infer an exact value of ↵. ⇢ = 1 and c = 5 for all
simulated data shown. 95 percent confidence intervals for all estimated parameters
are displayed in each panel. Actual parameter values used in simulations are shown
in the panel titles.
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Figure 4.10: Likelihood heatmaps of the t-distribution block density model

fit to simulated data. Heatmaps show log-likelihood evaluated over a discrete grid
of ↵ and c values. Brighter colors indicate a higher value of log-likelihood. Actual
parameter values used in simulations are shown in the panel titles.



Chapter 5

Quantum Geometry and

Semiclassical Electron Dynamics

The work presented in this chapter was performed under the supervision of Pro-

fessor Ajit Srivastava

5.1 Introduction

Berry curvature serves as a unifying concept in solid-state physics, helping to

explain orbital magnetization, the quantum Hall e↵ect, and many other seemingly

disparate phenomena [171]. For crystalline systems, Berry curvature exists for the

Bloch waves that describe the eigenstates of a single electron [6]:

| nk(r)i = e
ik·r|unk(r)i, (5.1)

where r represents position and k represents crystal momentum, which is a conserved

quantity in periodic systems. Crystal momentum parameterizes the Bloch waves, and

the variation of these wave functions endows the momentum space with a particular

geometric structure. The hallmark of this geometric structure is a momentum space

Aharanov Bohm e↵ect known as the Berry phase, with the Berry curvature playing

the role of a momentum space magnetic field [171].

106
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A natural approach to understanding the role Berry curvature plays in the elec-

tronic properties of solids is the semiclassical formulation of electron dynamics, which

considers the motion of a wave packet that is localized in both position and momen-

tum space [157]. The wave function describing the packet can be expressed as a

superposition of Bloch waves [6]:

|W i =
Z

d3
k w(k � kc)e

ik·r|u0(k)i, (5.2)

where w(k � kc) is a rapidly decaying function centered around its peak at kc. The

dynamics of this packet can then be derived from an e↵ective Lagrangian [171]:

L = hW |i@t � H|W i, (5.3)

where H is the Hamiltonian for a single electron within the crystal. The resulting

equations of motion for the packet are:

k̇ =
@V (r)

@r
� ṙ ⇥ B, (5.4)

ṙ =
@E(k)
@k

� k̇ ⇥ ⌦, (5.5)

where E is the energy of a Bloch wave in the lowest band and⌦ is the Berry curvature,

which is defined as the curl of the Berry connection [24]:

A(k) = hu0(k)|irk|u0(k)i. (5.6)

We see that nonzero Berry curvature leads to a linear response that is orthogonal to

the applied electric field. This anomalous velocity can be viewed as the momentum

space “dual” of the Lorentz force [44]. In addition to the Berry curvature, there exists

a natural metric in momentum space known as the quantum geometric tensor:

gijdk
i
dk

j = 1 � |hu0(k)|u0(k+ dk)i|2. (5.7)

This metric measures the distance in Hilbert space between Bloch waves in the same

band with di↵erent values of crystal momentum [5]. The quantum geometric tensor

(QGT) has been shown to play a significant role in the presence of current noise,
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orbital magnetization, the shifting of exciton energy levels, the fractional quantum

hall e↵ect, and quantum phase transitions [69, 74, 118, 155, 173]. Though appar-

ently quite significant, the QGT and its role in solid-state physics are still not well

understood.

Normally the semiclassical equations of motion are expressed to first-order in the

electric field, and any higher-order corrections to the Berry curvature and dispersion

are ignored. Recently though, second-order extensions of the semiclassical theory were

studied for a static electric field and were found to result in a nonlinear hall response

[68, 69]. In this letter, motivated by the fact that the quantum metric is a vacuum

solution of the Einstein field equations in Hilbert space, we show that the second-order

semiclassical equations of motion extend the first-order position-momentum duality

by accounting for the curvature of momentum space:

k̇l =
@V (r)

@rl
� (ṙ ⇥ B)l, (5.8)

ṙl ⇡ @E(k)
@kl

� (k̇ ⇥ ⌦)l �
1

E �jilk̇
i
k̇
j
, (5.9)

where �jil is the Christo↵el symbol representing the Levi-Civita connection of the

metric [145]. While (5.5) is dual to the Lorentz force in flat spacetime, (5.9) is the

momentum space dual of the Lorentz force in curved spacetime [109]. As shown in

Fig. 5.1, this Christo↵el term is what generalizes motion along straight lines in flat

space to motion along geodesics in curved space.

We will also show that the stress-energy tensor for mixed states can be nonzero

and that its trace can be expressed in terms of the entropy of the quantum state:

T ⇡ � R

2kB
S(k) � 1

kB
�kS(k). (5.10)

(5.10) can be seen as the momentum space analog of Poisson’s equation, which

emerges from the Newtonian limit of general relativity [109].
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5.2 Corrections to the band structure

To determine the response of the band structure to a constant electric field, we

consider the Hamiltonian for a single electron in the dipole gauge:

H(k) = H0(k) + E · r,

where H0(k) represents the electron Hamiltonian in the absence of an electric field.

The perturbative correction to a two band Hamiltonian due to E·r can be represented

as:

H
0 ⇡
 
E · hu0(k)|r|u0(k)i E · A01(k)

E · A10(k) E · hu1(k)|r|u1(k)i

!
, (5.11)

where A10 and A01 are the interband Berry connections [61]. Note that the diago-

nal elements of H 0 are ambiguous in this gauge due to the periodicity of the Bloch

waves, but that this ambiguity will not a↵ect the resulting second-order wave packet

corrections.

We can now use time independent perturbation theory in tandem with (5.11)

to compute the first-order correction to the Berry connection and the second-order

correction to the energy [68]:

a
0
i
=

�2gijEj

E1 � E0
,

E 00 =
�gijE

i
E

j

E1 � E0
.

Using these corrections, we can determine the second-order semiclassical Lagrangian

and equations of motion of a Bloch electron.

5.3 Second-order semiclassical equations of motion

5.3.1 E↵ective Lagrangian

The wave function describing the packet can be expressed as a superposition

of Bloch states: |W i =
R
d3
k w(k � kc)eik·r|u0(k)i. Writing out the full e↵ective



Chapter 5: Quantum Geometry and Semiclassical Electron Dynamics 110

Lagrangian for a semiclassical wave packet, L = hW |i@t � H|W i, we find [68, 171]:

L = (Ai(k) + a
0
i
(k)) k̇i + ṙik

i � E(k) � ṙiA
i(r, t) +

gij k̇
i
k̇
j

2E . (5.12)

We see that the momentum-space component of the Lagrangian is the dual of the

Lagrangian for a charged particle in an electromagnetic field in curved space. To

second-order, the resulting equations of motion are [68]:

ṙ = �k̇ ⇥ ⌦̃(k) + rkẼ(k), (5.13)

where ⌦̃ is the Berry curvature corrected to first-order, and Ẽ is the energy corrected

to second-order. Given that the first-order response due to Berry curvature dominates

any second-order anomalous velocity orthogonal to the applied field, the correction

due to a
0 can be neglected. The resulting equation of motion can then be written as

ṙ ⇡ �k̇ ⇥ ⌦(k) + rkẼ(k). Noting that (rkE 00)
l
= � 2

E1�E0�jilE
i
E

j, where �jil is the

Christo↵el symbol associated with the Levi-Civita connection of the quantum metric,

we can write E1 � E0 as 2E and recover (5.9).

5.3.2 Toy model for geodesic equation

We consider a two-band model of gapped graphene with the following Hamiltonian

[155]:

H(k) =

 
� ab(kx � iky)

ab(kx + iky) ��

!
. (5.14)

The energy in each band is:

E(k) = ±(a2b2k2
x
+ a

2
b
2
k
2
y
+�2)1/2. (5.15)

The Berry curvature in each band has only a Z component (pointing out of the

plane) [170] :

⌦(k) = ⌥ a
2
b
2�

2(a2b2k2
x
+ a2b2k2

y
+�2)3/2

, (5.16)
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and the components of the metric are found to be [118]:

gij(k) =

�
(a2b2k2

x
+ a

2
b
2
k
2
y
+�2)�ij � a

2
b
2
kikj

�

4(a2b2k2
x
+ a2b2k2

y
+�2)2

. (5.17)

We can use the metric to directly compute the Christo↵el symbols of the first

kind. Assuming the applied field is in the x direction, the response to the field is

determined by �kxkxkx = 1
2@kxgxx and �kxkxky = 1

2@kygxx, which can be expressed as:

�kxkxkx =
�a

2
b
2
kx(a2b2k2

y
+�2)

2(a2b2k2
x
+ a2b2k2

y
+�2)3

,

�kxkxky =
�a

2
b
2
ky(a2b2k2

y
� a

2
b
2
k
2
x
+�2)

4(a2b2k2
x
+ a2b2k2

y
+�2)3

.

(5.18)

�kxkxkx determines the parallel component of the second-order geodesic response,

while �kxkxky controls the geodesic response orthogonal to the applied field.

For k
2 ⌧ �2, the strength of the geodesic response increases linearly with the

magnitude of the momentum vector k. This can be contrasted with the response due

to Berry curvature, which is e↵ectively constant in this regime. The response due to

the dispersion will also depend linearly on k in this limit, but will be independent of

the field strength. The change in the anomalous velocity with k and E should thus

reveal the role of the QGT connection in the second-order response of electrons.

5.4 Momentum-space Einstein Field Equations

5.4.1 Pure states and vacuum EFE

When quantum states are parameterized by crystal momentum, the momentum

space inherits the metric of the underlying Hilbert space. The space of all pure

states in Hilbert space can be seen as a high dimensional sphere, while the space

of physically distinguishable states is the quotient space obtained by identifying all

states on the sphere that di↵er by a phase factor [5, 42]. This space of physically

distinct quantum states is known as the projective Hilbert space of states, and has the
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geometry of a complex projective space. All such complex projective spaces possess a

canonical Riemannian metric, known as the Fubini-Study metric [110]. This Fubini-

Study metric is Einstein, meaning it has a Ricci tensor proportional to itself. As a

result, the quantum metric is a vacuum solution of the Einstein field equations in the

projective Hilbert space [26]:

Rµ⌫ � 1
2Rgµ⌫ + ⇤gµ⌫ = 0, (5.19)

where Rµ⌫ is the Ricci tensor, R is the scalar curvature, and ⇤ is the cosmological

constant.

The momentum space can be thought of as being embedded in the Hilbert space: it

parameterizes a submanifold of all possible quantum states |u0(k)i. It also inherits the
metric of the Hilbert space, defined via the overlaps of k-dependent Bloch functions:

gijdk
i
dk

j = 1 � |hu0(k)|u0(k+ dk)i|2.
While the momentum space inherits the Hilbert-space metric, the curvature of

this subspace may be di↵erent due to the reduction in dimension. A similar situation

arises in general relativity: the intrinsic curvature on a hypersurface may be di↵erent

than the curvature of the full spacetime [10]. The momentum-space stress-energy

can thus be nonzero due to the extrinsic curvature associated with the embedding of

momentum space in Hilbert space. We will see below that this is not the only source

of stress-energy in momentum space.

5.4.2 Mixed states, Bures metric and the source of EFE

Here we show that the Bures metric for mixed states can have a nonzero stress-

energy tensor even when the pure state metric is a vacuum solution of the EFE.

Since all two-dimensional metrics have vanishing stress-energy by construction, we

show this for an N > 2 band quantum system in which the Bloch waves have three

dimensions of crystal momentum (see Supplement).

First we consider the density matrix of a mixed quantum state:

⇢ =
NX

n=0

pn(k)|un(k)ihun(k)|, (5.20)
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where pn = e
��En(k)

Z(k) are the Boltzmann weights for a system at finite temperature.

Assuming the probabilities pn(k) change slowly in k-space and that all the probabil-

ities above the ground state are small, we find that the Bures metric ḡij takes the

following form (see Supplement) [50]:

ḡijdk
i
dk

j = e
�S(k)

kB gijdk
i
dk

j
. (5.21)

We see that the Bures metric di↵ers from the Fubini-Study metric by a conformal

scale factor due to entropy. The above equation (5.21) is completely general: it holds

for any number of parameters and any number of bands.

If the pure state momentum-space metric is a solution of the vacuum EFE, the

trace of the stress-energy tensor for the Bures metric is found to be (see Appendix):

T = � R

2kB
S(k) � 1

kB
�kS(k). (5.22)

More generally, the stress energy will contain additional terms that describe the

embedding of momentum-space within the full Hilbert space, but we see that, for

mixed states, the stress-energy tensor depends on the entropy and its momentum-

space Laplacian.

The stress-energy in (5.22) is analogous to the weak field limit of general relativity

in which Newtonian gravity and Poisson’s equation are recovered [109]. The Bures

metric responds to changes in entropy, just as the spacetime metric responds to

changes in the distribution of matter.

5.4.3 Entropy maximization

We can understand the conformal scaling in (5.21) by viewing the resulting change

in the Christo↵el connection and geodesics [37]:

�̄k
ij = �

k

ij
� 1

2
�
k

i
@jS/kB � 1

2
�
k

j
@iS/kB +

1

2
gijrk

S/kB. (5.23)

The mixed state connection includes additional terms driving geodesics along the

gradient of entopy. We can thus understand the paths of least distance for mixed

states as having two components: one attempting to minimize the distance associated

with the underlying pure states, and another trying to maximize the entropy of the

mixed state.
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5.4.4 Illustrative example: momentum-space EFE for 3D

Dirac fermion

Assuming the charge carrier behaves as a three-dimensional Dirac fermion, we can

use the momentum-space Dirac equation as its e↵ective Hamiltonian [49]:

H =

"
�I ~� · k
~� · k ��I

#
. (5.24)

The resulting Bloch function is then described by a four-spinor:

|u0(k)i = |E(k)|+�p
k2+(|E(k)|+�)2

"
~�·k

|E(k)|+��s

�s

#
, (5.25)

where the state has been normalized to one and |E(k)| is the absolute value of the

energy of the band, E(k) = �
p
�2 + k2. While we deal with the negative energy

solution here, it is straightforward to show that our expression for the metric also

applies to the positive energy band. Note that �s is an arbitrary two spinor, and the

ground state of the Dirac Hamiltonian is thus degenerate. As shown by Matsuura and

Ryu [106], we find the following expression for the quantum metric when k
2 ⌧ �2:

gijdk
i
dk

j ⇡ �ijdk
i
dk

j

4�2
for k2 ⌧ �2

. (5.26)

In this limit, the pure state metric becomes completely flat and is thus a vacuum

solution of the EFE. For a mixed state with finite entropy, the stress-energy is then

described by (5.22) with R = 0:

T ⇡ � 1

kB
�kS(k). (5.27)

We see that the analogy between the weak field limit of GR and our momentum-space

expressions for small entropy becomes even more striking in this regime, with the

entropy and gravitational potential acting as a source of stress-energy in momentum

space and spacetime respectively.
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5.5 Discussion

In this work, we have highlighted the duality between the momentum-space equa-

tion for the velocity of a Bloch electron and the position-space equation for the Lorentz

force in curved spacetime. While the role of the metric in the second-order dynamics

of a Bloch electron has been shown previously, the geodesic nature of these expres-

sions has not previously been explored [68]. The fact that the momentum space Berry

connection a↵ects the dynamics of charge carriers is already well accepted, but from

the expressions derived here, it is clear that the Levi-Civita connection of the met-

ric plays an important role as well. Deviations from flat momentum space via the

Christo↵el term in (5.9) can be thought of as arising from the general covariance of

the equations of motion under transformations: just as the Berry connection is nec-

essary to account for gauge transformations, the Levi-Civita connection is necessary

to account for coordinate transformations [145].

In addition to extending the duality present in the semiclassical formulation of

electron dynamics, we have shown that the presence of nonzero entropy for mixed

states can lead to the emergence of a stress-energy tensor in momentum space. We

have quantified the role of entropy in the creation of momentum space stress-energy,

and have shown that the stress-energy is in part due to the k-space Laplacian of the

entropy, just as the real space stress-energy is due to the Laplacian of the gravita-

tional potential in the Newtonian limit of general relativity [109]. We can thus view

our expression (5.10) for stress-energy in the limit of low entropy as the momen-

tum space analog of the Newtonian limit of general relativity. The momentum space

analog of the gravitational potential is the von Neumann entropy of a mixed quan-

tum state, which supports previous speculations on a potentially deep relationship

between entropy and gravity [160].

While the analytic expressions developed here further our understanding of Bloch

band geometry and its e↵ect on wave packet dynamics, more work needs to be done

to verify their validity via simulation and experiments. Another natural question,

not studied here, is how finite temperature fluctuations a↵ect the dynamics of a wave

packet. As entropy deforms the metric and further curves the momentum space, it
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may be possible to detect these finite temperature e↵ects in the trajectories of Bloch

electrons.
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k̇

�(k)

�
⇣
k̇ ⇥ �(k)

⌘�µ�jilk̇
ik̇j

Figure 5.1: Velocity in momentum space is analogous to force in real space.

The coupling between the electric field and Berry curvature creates a Lorentz force-
like term driving the electron in a direction orthogonal to the applied field, while
the curvature of the momentum space drives the electron in the direction of k-space
geodesics.



Chapter 6

Summary

At both the molecular and population level, stochastic transport and degradation

combine to limit the scale of information flow in spatially structured biological sys-

tems. At the population level, we extended classic models of isolation by distance

to include the e↵ects of heavy-tailed dispersal by replacing the typical thin-tailed

dispersal kernel with a power-law dispersal distribution. We found that power-law

dispersal leads to power-law decay of relatedness at large distances, and can produce

either power-law or logarithmic decay at short distances depending on the exponent

of the power law in the dispersal kernel and the dimensionality of space.

The power-law isolation by distance model was then used to solve the inverse

problem of inferring dispersal from empirical isolation by distance curves. Our Python

dispersal inference code was shown to perform well for simulated data and was then

applied to data from a natural population of Florida Scrub-jays, in which we found

signatures of heavy-tailed dispersal. We also extended the model to predict the size

and number of long shared sequence blocks and developed an inference scheme for

this generalization. This second code was used to analyze sequence block data from

European humans, and additional signatures of heavy-tailed dispersal were detected

for this population.

We also investigated models of cellular gradient sensing in two and three spatial

dimensions and found that the e↵ects of spatial averaging can be counterintuitive.

We showed that, unlike for concentration sensing, the precision of gradient sens-
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ing decreases with transverse length for the simplest gradient sensing model, local

excitation–global inhibition. In two dimensions, increasing the width of a detector

transverse to a concentration gradient can decrease the precision with which the gra-

dient is measured. While transverse averaging will always improve concentration

sensing, gradient sensing depends on the covariance between two distinct concentra-

tions measurements, and the decrease of this covariance with transverse averaging

decreases precision. In order to reverse this e↵ect, the local reporter molecule must

also be allowed to disperse. We studied this generalization with the recently devel-

oped regional excitation-global inhibition (REGI) model and show that, for REGI,

the scaling of precision with transverse detector width is non-monotonic and leads to

optimal detector shapes in two and three dimensions.



Appendix A

Alternative Derivations of the

Probability of Identity by Descent

A.1 Starting from a recursion equation

(3.26) can also be derived starting from a recursion equation for  requiring that

it remain constant over an infinitesimal timestep dt [15, 100]:

 (x) =
dt

⇢
(1 �  (x))N (x) + e

�2µdt

Z
dy  (x � y)K(y|dt). (A.1)

(A.1) is saying that at equilibrium the local increase in identity due to coalescence

(first term) must be balanced by the loss of identity due to mutation and the spreading

of identity due to dispersal (both included in the second term).

Taking the spatial Fourier transform F{·} of (A.1) simplifies the second term at

the expense of complicating the first:

b (k) = dt

⇢
F{(1 �  (x))N (x)}(k) + e

�2µdt b (k) bK(k|dt).

Solving for b gives:

b (k) = F{(1 �  (x))N (x)}(k)
⇢

dt

1 � e�2µdt bK(k|dt)

=
F{(1 �  (x))N (x)}(k)

⇢

1X

j=0

dt e
�2µjdt bK(k|dt)j, (A.2)
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where in the second line we can take the Taylor series expansion because e
�2µdt

< 1

and bK(k|dt)  1 since it is a characteristic function. Assuming dispersal is Markovian,

we can simplify (A.2) by noting that bK(k|dt)j = bK(k|jdt), i.e., the distribution after

time jdt is just the convolution of j dispersal steps of time dt each. Using this, we

can convert the sum into an integral to find (3.26):

b (k) = F{(1 �  (x))N (x)}(k)
⇢

beK(k, 2µ)

⇡ 1 �  (0)

⇢

bN (k)
beK(k, 2µ),

where in the second line we have used the same approximation that 1� (x) ⇡ 1� (0)
for |x| . � that we used in the main text.

A.2 Fractional di↵usion equation

For Lévy flight dispersal, (3.27) can also be derived using a fractional di↵usion

equation. When Xt follows a di↵usion, (3.18) can be written as a Feynman-Kac

(di↵usion) equation for  [4, 15]. For ↵ < 2, this generalizes to a fractional di↵erential

equation:

0 = 2D↵

✓
@
2

@x2

◆↵/2
 (x) � 2µ (x) +

1

⇢
N (x) (1 �  (x)) , (A.3)

where
⇣
@
2

@x2

⌘↵/2
is a Riesz fractional derivative, defined by its Fourier transform

F
⇢⇣

@
2

@x2

⌘↵/2
f

�
(k) = � |k|↵ F{f}(k) [36, 85, 108]. It is therefore simpler to consider

the Fourier transform of (A.3), which is equivalent to (3.27):

0 = �(2D↵|k|↵ + 2µ) b (k) + 1

⇢
F {N (x)(1 �  (x))} (k)

⇡ �(2D↵|k|↵ + 2µ) b (k) + 1 �  (0)

⇢

bN (k).
(A.4)

For all ↵ < 2, the solution for  in two dimensions can be also written as a

fractional di↵erential equation [41]:

0 = 2D↵

✓
@
2

@x2
+

1

x

@

@x

◆↵
2

 (x) � 2µ (x) +
1

⇢
N (x) (1 �  (x)) , (A.5)
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where
⇣
@
2

@x2 +
1
x

@

@x

⌘↵
2
is a fractional Laplacian, defined by its Fourier transform F

⇢⇣
@
2

@x2 +
1
x

@

@x

⌘↵/2�
(k) =

� |k|↵ F{f}(k) [93, 98]. Note that the rotational symmetry of the problem allows us

to write the Laplacian in terms of just the radial coordinate x, and ignore the an-

gular coordinate. The two-dimensional Fourier transform of (A.5) has exactly the

same form as (A.4), although again the interpretation is di↵erent. k is now the radial

coordinate in two-dimensional k-space, i.e., the magnitude of the two-dimensional

frequency vector.



Appendix B

Perturbative Corrections and

Geometric Calculations

B.1 Perturbative corrections to energy and Berry

connection

We begin with a Hamiltonian parameterized by crystal momentum and perturb

it with a potential term due to a constant electric field:

H(k) = H0(k) + E · r. (B.1)

Note that we have set the magnitude of the electron charge e to one for simplicity.

The perturbative correction to our 2 band Hamiltonian due to a constant electric field

can be represented as:

H
0 ⇡
 
E · hu0(k)|r|u0(k)i E · A01(k)

E · A10(k) E · hu1(k)|r|u1(k)i

!
. (B.2)

In this gauge we can use time independent perturbation theory to compute the quan-

tites that produce second-order e↵ects in the semiclassical theory: the first-order

correction to the Berry connection and the second-order correction to the energy [68].

We first find the first-order correction to the wave function, which is required to
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find the correction to the Berry connection [72]:

|u0
0(k)i =

�E · hu1(k)|r|u0(k)i
E1 � E0

|u1(k)i. (B.3)

Noting that the quantity hu1|r|u0i can be rewritten as the interband Berry connection,

A10 = hu1|irk|u0i, we can re-express the above correction to the ground-state wave

function as [69]:

|u0
0(k)i =

�E · A10(k)

E1 � E0
|u1(k)i. (B.4)

.

We can then find the first-order correction to the Berry connection, which is

defined as [68]:

a
0(k) = hu0(k)|irk|u0

0(k)i + c.c. (B.5)

Using (B.4) for |u0(k)0i, (B.5) becomes:

a
0(k) =

�A01(k)A10(k) · E
E1 � E0

+ c.c. (B.6)

Noting that the outer product A01A10 is equivalent to the quantum metric tensor, we

can re-expresss the above equation in terms of the metric [68]:

a
0
i
=

�2gijEj

E1 � E0
. (B.7)

We can again apply the relations between the interband elements of r, the inter-

band Berry connection, and the quantum metric to the standard perturbation theory

formulas to get a geometric expression for the second-order energy correction [68]:

E 00 =
�gijE

i
E

j

E1 � E0
. (B.8)

B.2 Calculating the metric and stress-energy for

mixed states

The quantum metric for pure states is an Einstein metric in any dimension, and

is thus a vacuum solution of the Einstein field equations [26]. Here we show the that
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the Bures metric for mixed states need not be a vacuum solution, and can instead

satisfy the Einstein field equations with a nonzero stress-energy tensor. Given that

the two-dimensional case is trivial, with all metrics satisfying the vacuum equations

with zero cosmological constant, we show this for a three dimensional momentum

space. First we consider the density matrix of a mixed state:

⇢ =
NX

n=0

pn(k)|un(k)ihun(k)|, (B.9)

where we define the Boltzmann weights as pn = e
��En(k)

Z(k) . The di↵erence between

mixed state density matrices at nearby points in momentum space, d⇢, is found to

be:

hui(k)|d⇢|uj(k)i = (dk · rkpi) �ij + i(pi � pj)Aij · dk, (B.10)

where Aij is the interband Berry connection.

Using (B.10) we can calculate the distance between mixed states as defined by

the Bures metric [50]:

ḡijdk
i
dk

j =
1

2

NX

j,k=0

|hj|d⇢|ki|2

pj + pk
, (B.11)

which can be re-expressed as:

ḡijdk
i
dk

j =
1

2

NX

j,k=0

|dk · rkpj|2

2pj
�jk +

(pj � pk)2

pj + pk
|Ajk · dk|2. (B.12)

Assuming the probabilities pn(k) change slowly in k-space, the above expression re-

duces to:

ḡijdk
i
dk

j ⇡ 1

2

NX

j,k=0

(pj � pk)2

pj + pk
|Ajk · dk|2. (B.13)

Further assuming that all bands above the lowest band have degenerate energies

reduces (B.13) to:

ḡijdk
i
dk

j ⇡ p0

✓
(1 � p1/p0)2

1 + p1/p0

◆
gijdk

i
dk

j
, (B.14)

where we have once again re-expressed the outer product of the interband Berry con-

nections as the pure state quantum metric [69]. When p1/p0 ⌧ 1, we can approximate
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the prefactor p0
⇣

(1�p1/p0)2

1+p1/p0

⌘
in (B.14) as p0 = e

�S/kB :

ḡijdk
i
dk

j ⇡ e
�S/kBgijdk

i
dk

j
. (B.15)

We see that the mixed state metric di↵ers from the pure state metric by a confor-

mal scale factor due to entropy. Because of this simple conformal relation, the scalar

curvature of the Bures metric can be expressed in terms of the scalar curvature of the

pure state metric as [26]:

R̄ = e
S/kB

 
R + 2�kS/kB �

X

i

|@kiS/kB|2
!
, (B.16)

where �k is the Laplace-Beltrami operator associated with the curved momentum

space. Note that we are using the physics convention in which � has a positive sign

rather than the math convention that includes an extra factor of �1.

Using the trace of the Einstein field equations, we can find the trace of the stress

tensor:

�1

2
R � 1

2
R

0 + 3⇤ = T, (B.17)

where we have set the typical prefactor of the stress-energy Tensor, 8⇡G
c4

, to one. The

trace of the stress-energy tensor for the Bures metric is thus:

T = �1

2
e
S/kB

 
R + 2�kS/kB �

X

i

|@kiS/kB|2
!

+
1

2
R. (B.18)

Assuming S and its first derivatives are small, (B.18) reduces to:

T ⇡ � R

2kB
S(k) ��kS(k)/kB. (B.19)

B.3 Calculating the Metric and Curvature for a

Dirac Fermion

Assuming the charge carrier behaves as a three-dimensional Dirac fermion, we can

use the momentum-space Dirac equation as its e↵ective Hamiltonian. The resulting
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Bloch function is then described by a four-spinor:

|u0(k)i = |E(k)|+�p
k2+(|E(k)|+�)2

"
~�·k

|E(k)|+��s

�s

#
, (B.20)

where the state has been normalized to one and |E(k)| is the absolute value of the

energy of the band, E(k) = �
p
�2 + k2. Note that �s is an arbitrary two spinor, and

the ground state of the Dirac Hamiltonian is thus degenerate. While the non-abelian

quantum geometric tensor is needed to describe the complete case of degenerate

bands, here we focus on the momentum space distance between electron states with

the same spin polarization, �s. In this case, the distance in momentum space can be

determined from the standard abelian quantum geometric tensor, which itself can be

determined from the overlap of the Bloch states via gijdk
i
dk

j = 1 � |hu0(k)|u0(k +

dk)i|2.
Noting the Pauli matrix identity (~a · ~�)

⇣
~b · ~�

⌘
=
⇣
~a ·~b

⌘
I + i

⇣
~a ⇥~b

⌘
· ~� and

defining ŝ as the unit vector in the direction of spin polarization, the overlap integral

hu0(k)|u0(k0)i is found to be:

hu0(k)|u0(k
0)i = (|E(k)|+�)(|E 0(k0)|+�)q

(k2+(|E(k)|+�)2)(k02+(|E 0(k0)|+�)2)

⇣
1 + k·k0+i(k⇥k0)·̂s

(E 0(k0)+�)(E(k)+�)

⌘
. (B.21)

For the squared magnitude of the overlap we find:

|hu0(k)|u0(k
0)i|2 = (|E(k)|+�)2(|E 0(k0)|+�)2+2(|E(k)|+�)(|E 0(k0)|+�)+(k·k0)2+((k⇥k0)·̂s)2

(k2+(|E(k)|+�)2)(k02+(|E 0(k0)|+�)2)
, (B.22)

which leads to:

1 � |hu0(k)|u0(k
0)i|2 = |k⇥k0|2�((k⇥k0)·̂s)2+|(|E 0(k0)|+�)k�(|E(k)|+�)k0|2

(k2+(|E(k)|+�)2)(k02+(|E 0(k0)|+�)2)
. (B.23)

The quantity above can then be re-expressed as:

1 � |hu0(k)|u0(k
0)i|2 =

| k
|E(k)|+�⇥ k0

|E0(k0)|+�
|2�

⇣
( k
|E(k)|+�⇥ k0
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+
��� k
|E(k)|+�� k0

|E0(k0)|+�

���
2

⇣
1+ k2

(|E(k)|+�)2

⌘✓
1+ k02

(|E0(k0)|+�)2

◆ .

(B.24)
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We assume k
2 ⌧ �2 and expand 1 � |hu0(k)|u0(k0)i|2 in powers of k

� and k0

� .

Keeping only terms of lowest order, we find:

1 � |hu0(k)|u0(k
0)i|2 ⇡

����
k

2�
� k

0

2�

����
2

for k2 ⌧ �2
. (B.25)

To obtain the metric, we can assume that the separation vector k
0 � k = dk, i.e.,

that the separation of states in momentum space is infinitesimal. We then find an

expression for the quantum geometric tensor when k
2 ⌧ �:

gijdk
i
dk

j ⇡ �ijdk
i
dk

j

4�2
for k2 ⌧ �2

. (B.26)

We see that the metric is independent of the spin polarization of the fermion states.

(B.26) agrees with the expression found previously by Matsuura and Ryu [106] for

the quantum metric of the Dirac fermion.
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[51] E. Donà, J. D. Barry, G. Valentin, C. Quirin, A. Khmelinskii, A. Kunze,

S. Durdu, L. R. Newton, A. Fernandez-Minan, W. Huber, et al. Directional tis-

sue migration through a self-generated chemokine gradient. Nature, 503(7475):

285–289, 2013.

[52] D. Ellison, A. Mugler, M. D. Brennan, S. H. Lee, R. J. Huebner, E. R. Shamir,

L. A. Woo, J. Kim, P. Amar, I. Nemenman, et al. Cell–cell communication en-

hances the capacity of cell ensembles to sense shallow gradients during morpho-

genesis. Proceedings of the National Academy of Sciences, 113(6):E679–E688,

2016.

[53] R. G. Endres and N. S. Wingreen. Accuracy of direct gradient sensing by single

cells. Proceedings of the National Academy of Sciences, 105(41):15749–15754,

2008.

[54] R. G. Endres and N. S. Wingreen. Maximum likelihood and the single receptor.

Physical review letters, 103(15):158101, 2009.

[55] T. Erdmann, M. Howard, and P. R. Ten Wolde. Role of spatial averaging in the

precision of gene expression patterns. Physical review letters, 103(25):258101,

2009.

[56] A. J. Ewald, A. Brenot, M. Duong, B. S. Chan, and Z. Werb. Collective

epithelial migration and cell rearrangements drive mammary branching mor-

phogenesis. Developmental cell, 14(4):570–581, 2008.

[57] J. Fayard, E. K. Klein, and F. Lefèvre. Long distance dispersal and the fate

of a gene from the colonization front. Journal of evolutionary biology, 22(11):

2171–2182, 2009.

[58] W. Feller. An introduction to probability theory and its applications, volume 2.

Wiley, 2nd edition, 1971.

[59] J. Felsenstein. A pain in the torus: some di�culties with models of isolation

by distance. The American Naturalist, 109(967):359–368, 1975.



Bibliography 135

[60] R. Forien. Isolation by distance patterns arising from short range and long

range dispersal–a forwards in time approach. arXiv preprint arXiv:1907.07930,

2019.
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Data. Birkhäuser, Boston, 2018. In progress, Chapter 1 online at

http://fs2.american.edu/jpnolan/www/stable/stable.html.

[122] M. Nordborg. Coalescent theory. Handbook of statistical genetics, 2004.



Bibliography 141

[123] M. D. Onsum, K. Wong, P. Herzmark, H. R. Bourne, and A. P. Arkin. Mor-

phology matters in immune cell chemotaxis: membrane asymmetry a↵ects am-

plification. Physical biology, 3(3):190, 2006.

[124] V. V. Palyulin, A. V. Chechkin, and R. Metzler. Lévy flights do not always
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