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Abstract

Some Novel Statistical Methods for Neuroimaging Data Analysis
by Ran Shi

In this dissertation, we propose three novel statistical methods for ana-
lyzing neuroimaging data.

In the �rst topic, we propose a hierarchical covariate-adjusted ICA (hc-
ICA) model that provides a formal statistical framework for estimating
covariate e�ects and testing di�erences between brain functional net-
works. Ourmethod provides a more reliable and powerful statistical tool
for evaluating group di�erences in brain functional networks while ap-
propriately controlling for potential confounding e�ects. We present two
EM algorithms to obtain maximum likelihood estimates of our model.
We introduce a voxel-wise approximate inference procedurewhich elim-
inates the need of computationally expensive covariance matrix estima-
tion and inversion. We demonstrate the advantages of our methods over
the existing method via simulation studies. We apply our method to an
fMRI study to investigate di�erences in brain functional networks asso-
ciated with post-traumatic stress disorder (PTSD).

In the second topic, we propose a spatially varying coe�cient model
(SVCM)with structured sparsity and region-wise smoothness. A new class
of nonparametric Bayesian priors is developednamed thresholdedGaus-
sian processes (TGP).We show that TGP has a large prior coverage on the
space of region-wise smooth functions with restricted supports, leading
to posterior consistency in both estimation and feature selection. Ef-
�cient posterior computation algorithms are developed by adopting a
kernel convolution approach. Based on simulation studies, we demon-
strate that our methods can achieve better performance in estimating
functional coe�cients and selecting imaging features. The application
of our proposedmethod to a resting state functional magnetic resonance
imaging (rs-fMRI) data provides biologically meaningful �ndings.

In the third topic, we present a new independent component anal-
ysis (ICA) model with spatially dependent source signals. We model the
conditional expectation of IC source signals using Bayesian nonparamet-
ric kernel models, which can generate �exible prior spatial dependence
structures. We adopt a fully Bayesian approach to make posterior infer-
ence about ourmodel through an e�cient Markov chainMonte Carlo al-
gorithm. Simulation studies show that, compared with existing ICA algo-
rithms, our method estimates the mixing matrices more accurately and
identi�es the spatial activation patterns more precisely. When applied to
a real fMRI dataset, our method elicits meaningful scienti�c �ndings.
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Chapter 1

Introduction

1.1 Overview

Recent advancements in biomedical imaging technologies have provided

abundant information and extensive resources for researchers to study

the human brain and neurological diseases. A variety of imagingmodali-

ties, such asmagnetic resonance imaging (MRI), di�usion tensor imaging

(DTI), functionalmagnetic resonance imaging (fMRI) and positron emis-

sion tomography (PET) have been developed to measure brain struc-

tures and functions fromdi�erent perspectives, generating various large-

scale spatially distributed measurements over a three dimensional (3D)

space of the human brain. The data acquired from these measurements,

namely neuroimaging data, shares come common characteristics: high

dimensionality, complex patio-temporal dependence, delicate edge ef-

fects, local discontinuity and low signal-to-noise ratio (SNR). These prop-

erties can make traditional statistical analysis inappropriate to handle

the neuroimaging data. Therefore, this dissertation is dedicated to de-

velop novel statistical methods that can reasonably resolve these di�cul-

ties from certain aspects.
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1.2 Some current research topics

1.2.1 Functional brain connectivity

In the past decade, the �eld of neuroimaging has been moving towards

a network-oriented view of brain functions. Functional magnetic reso-

nance imaging (fMRI) is one of the most commonly used technologies

to investigate brain functional networks (BFNs). In fMRI studies of func-

tional connectivity, observed data are viewed as mixtures of signals gen-

erated from various BFNs. Each of these networks consists of a set of spa-

tially distributed but functionally linked brain regions that present sim-

ilar blood oxygenation level dependent (BOLD) signals during the scan-

ning sessions. One of the major goals in fMRI data analysis is to decom-

pose the observed fMRI data to identify the underlying functional net-

works and characterize their spatial distributions and temporal dynam-

ics. Independent component analysis (ICA) has become the most widely

used tool in the neuroscience community to investigate these functional

networks. As a special case of blind source separation, ICA can separate

observed fMRI signals into linear combinations of latent spatial source

signals that are statistically as independent as possible. Each of these la-

tent components correspond to a BFN.

Compared with alternative network methods, ICA has several major

advantages. As a multivariate approach, ICA can jointly model the re-

lationships among multiple voxels and hence provide a tool for investi-

gating whole brain connectivity. Unlike second-order statistical methods

such as PCA, ICA takes into account higher-order statistics and the spa-

tial statistical independence assumption of ICA is well-supported by the

sparse nature in typical fMRI activation patterns (Calhoun et al., 2001;

Beckmann and Smith, 2004). Furthermore, ICA is a fully data-driven ap-

proach that doesn’t need a priori temporal or spatial models. This makes

ICA an important tool for analyzing resting-state fMRI where there is

no experimental paradigm (Beckmann et al., 2005). Finally, compared
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with other whole brain connectivity methods such as graphical models,a

distinctive feature of ICA is that it can partition thewhole brain into func-

tionally coherent networks.

In recent years, neuroscience literature has provided evidence that

BFNs can vary considerably due to subjects’ clinical, biological and de-

mographic characteristics. For example, neuroimaging studies have shown

that neural activity and connectivity in speci�c functional networks are

signi�cantly associatedwithmental disorders and their responses to treat-

ment regimes (Anand et al., 2005; Greicius et al., 2007; Chen et al., 2007;

Sheline et al., 2009). Other studies have found activity patterns in ma-

jor functional networks vary with demographic factors including age and

gender (Quiton and Greenspan, 2007; Cole et al., 2010). These �ndings

call for statistical methods that can quantify the e�ects of subjects’ char-

acteristics on the BFNs and can evaluate the di�erences in BFNs between

subject groups (e.g., diseased v.s. normal).

The data example inmy �rst chapter demonstrates the need for incor-

porating covariate e�ects when investigating di�erences in BFNs using

group ICA. The data come from a post-traumatic stress disorder (PTSD)

study conducted by the GradyMemorial Hospital and Emory University

in Atlanta. This PTSD study is one of the largest NIH sponsored ongo-

ing research projects on PTSD in urban population. In our data example,

a subgroup of African-American female subjects from the Grady PTSD

study were recruited for fMRI acquisitions. One of the main goals of the

fMRI study is to investigate PTSD-related di�erences in BFNs. A major

challenge in achieving this goal is that the Grady PTSD study is an ob-

servational study in which the PTSD positive and PTSD negative groups

were not matched on their demographic or clinical variables. Therefore,

between-group comparisons are prone to be biased due to potential con-

founding factors. For example, it is well-known that PTSD is often co-

morbid with other mental problems such as major depression disorders

(MDD) (Kessler et al., 1995; Campbell et al., 2007). Another example is
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that the heterogeneity of age distribution between the two PTSD groups

can a�ect the BFNs, according to �ndings in Bullmore and Sporns (2009).

Thus, to assess PTSD-related brain network alterations, it is necessary to

adjust for these potential confounding factors.

Existing group ICA methods, which often assumes the same spatial

patterns of BFNs across subjects, do not directly incorporate covariate

information in the ICA decomposition. Currently, di�erences in brain

functional networks and their associations with subjects’ covariates are

assessed through two kinds of heuristic approaches. The �rst approach

is through conducting single-subject ICA separately on each subject’s, se-

lecting matched ICs and then performing group analysis on the selected

subject-level IC maps (Greicius et al., 2007). A major problem with this

approach is that it is often challenging to match ICs across subjects since

ICA results are only identi�able up to a permutation of the ICs. Further-

more, sincemost ICA algorithms are stochastic (Himberg et al., 2004), the

levels of ICs extracted from separate ICA runs for di�erent subjects are

oftennot comparable to each other. The second approach is via two-stage

analysis based on TC-GICA. Two representative methods in this cate-

gory are the back-construction (Calhoun et al., 2001) and dual-regression

(Beckmann et al., 2009; Filippini et al., 2009). These methods �rst per-

form TC-GICA to extract common IC maps at the group level and then

reconstruct subject-speci�c ICmaps by post-ICA steps. The covariate ef-

fects are evaluated via secondary hypothesis testing or regression anal-

ysis on the reconstructed subject-speci�c maps. These methods do not

take into account the random variabilities introduced in reconstructing

subject-speci�c IC maps, which could lead to loss of accuracy and e�-

ciency in estimating and testing covariate e�ects on functional networks.

In the �rst topic, we propose a hierarchical covariate-adjusted ICA

(hc-ICA) model that directly incorporates covariate e�ects in group ICA

decomposition to investigate di�erences in BFNs. The hc-ICA model

decomposes each subject’s fMRI data into linear mixtures of subject-
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speci�c spatial source signals (ICs). These distinct subject-speci�c ICs are

then modeled in terms of population-level baseline source signals, co-

variate e�ects and between-subject random variabilities. To the best of

our knowledge, hc-ICA is the �rst model-based group ICA method that

captures variabilities in BFNs due to covariates e�ects. Compared with

existing group ICA methods, hc-ICA has several advantages. hc-ICA is

more accurate and powerful in terms of detecting brain network di�er-

ences due to the primary e�ects of interest, such as disease status, while

controlling for other confounding factors. For example, application of

hc-ICA to the Grady PTSD study reveals important di�erences in the

brain networks of the two PTSD groups, while the existing group ICA

method cannot detect these di�erences e�ectively. Results fromour sim-

ulation studies also corroborate that hc-ICA has better performance than

the existing method in terms of both estimation accuracy and statisti-

cal power. In addition, hc-ICA can provide model-based estimation or

prediction of brain functional networks for subpopulations de�ned by

speci�c clinical or demographic characteristics. This will promote un-

derstandings of both commonalities and distinctions in brain networks

across various subgroups within a study cohort.

Our hc-ICA model is developed under the hierarchical probabilistic

ICA modeling framework �rst introduced in Guo and Tang (2013) which

proposed a hierarchal random e�ects ICA model for relaxing the spa-

tial homogeneity assumption in TC-GICA. The hc-ICA model, as well as

its estimation and inference procedures, provides several important con-

tributions to hierarchical ICA modeling. First, hc-ICA provides the �rst

statistical framework to evaluate how subjects’ demographic and clini-

cal characteristics can a�ect their brain functional networks. This is not

available in any existing group ICAmethods including the random e�ect

model in Guo and Tang (2013). Second, we propose a novel subspace-

based approximate expectation-maximization (EM) algorithm for obtain-

ingmaximum likelihood estimates. The approximate EMalgorithm scales
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linearly with the number of ICs, which is signi�cantly faster than the ex-

ponential growth of the exact EM algorithms used byGuo (2011) and Guo

and Tang (2013). Third, our work provides an e�cient voxel-wise ap-

proximate inference procedure for testing covariate e�ects on ICs. Such

statistical inference procedures are not available in existing group ICA

methods including Guo and Tang (2013).

1.2.2 Activation study and feature selection

Recent advancements in biomedical imaging technologies have provided

abundant information and extensive resources for researchers to learn

the human brain and neurological diseases. A variety of imaging modal-

ities, such as magnetic resonance imaging (MRI), di�usion tensor imag-

ing (DTI) and functional magnetic resonance imaging (fMRI) have been

developed to measure brain structures and functions from di�erent per-

spectives, generating various large-scale spatially distributed measure-

ments over a three dimensional (3D) space of the human brain. We re-

fer to those massive spatial measurements of the brain as neuroimages.

This type of data poses both opportunities and challenges for statisti-

cians to develop e�cient analytical methods that extract useful features

from neuroimages to characterize the association between the brain ac-

tivities and neurological diseases. To this end, regression analysis, a �ex-

ible modeling framework for studying the association among variables,

has been investigated and considered as a powerful tool in the analysis of

massive neuroimaging data, where neuroimages can be modeled as out-

come variables; and the disease status along with the clinical, biological

and demographical information can all potentially be predictors.

In the second chapter, we aim to develop a Bayesian feature selection

method that can directly select imaging features associated with covari-

ates while integrating the region-wise smoothness features.

For capturing spatial dependence structures in fMRI data analysis,

many Bayesian methods have been proposed by using di�erent spatial
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priors. For example, Friston and Penny (2003) used a zero-mean multi-

variate Gaussian distribution as the prior for the GLM regression coe�-

cients across voxels and estimated the its covariance with restricted max-

imum likelihood. Woolrich et al. (2004) proposed to assign the Markov

random �eld prior for the autocorrelation parameters of fMRI time se-

ries. Penny et al. (2005) considered �rst-order correlations betweenneigh-

boring voxels with a covariancematrix known up to amultiplicative con-

stant. Bowmanet al. (2008) proposed a spatial Bayesianhierarchicalmodel

to include regional e�ects into the spatial dependence structure of the

regression coe�cients fromMUA. Flandin and Penny (2007) �nessed the

Bayesian framework by allowing for variations in spatial smoothness us-

ing sparse spatial basis functions, which is similar to thewell knownwavelet

shrinkage method in spirit. All these methods, however, mainly focus on

modeling the spatial-temporal structure of fMRI data and do not con-

sider the problem of feature selection. Thus, these methods are not suit-

able for achieving our goal of �nding neuroimaging features that are

strongly associated with covariates.

To select important features in the analysis of neuroimaging datawhile

incorporating spatial smoothness and jumps, we develop a new family

of Bayesian nonparametric priors based on the Gaussian processes (GPs)

under the SVCM framework. Some recent works on Bayesian nonpara-

metric priors constructed from GPs include Kim et al. (2005); Gramacy

and Lee (2008); Fox and Dunson (2012) and their major goals are model-

ing non-stationarity, abrupt spatial changes or long-range dependence.

Our proposed prior is constructed by combining and thresholding two

Gaussian processes: a global GP that accounts for the entire domain spa-

tial dependence and a local GP which accommodates the regional �uc-

tuations. We refer to it as the thresholded Gaussian process (TGP) prior.

This construction of TGP can characterize important common features

of the neuroimaging data, including sparsity, global spatial dependence,

region-wise smoothness and jump discontinuities. The proposed TGP
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prior enjoys the large support property within the functional space of

SVCF, leading to the posterior consistency in SVCF estimation. More in-

terestingly, we can prove the posterior consistency in feature selection

of SVCF. We also develop e�cient MCMC posterior computation algo-

rithms based on a kernel convolution approach. A special choice of the

kernel function enables the computation scalable to an ultra-high dimen-

sional case.

1.2.3 Spatial dependence when performing ICA dempoition

Independent component analysis (ICA) refers to a family of algorithms

for blind source separation. ICA has been applied to many �elds in-

cluding biomedical imaging, telecommunication and signal processing

for exploratory data analysis, feature extraction and compression. For a

comprehensive exposition of ICA, see Hyvärinen et al. (2001) as a good

reference. In general, ICA algorithms aim to recover statistically inde-

pendent source signals, or independent components (ICs), from their lin-

ear mixtures without resorting to a priori knowledges. Under the canoni-

cal ICA setting, one observes q(> 2) synchronouslymeasured records at n

distinct points, v1, . . . , vn, in a compact set V ⊂ Rd. When d = 1, for exam-

ple, the outcomes are considered as recordings at di�erent time points.

Otherwise, if d = 2 or 3, the records are collected at di�erent pixels or

voxels on 2D or 3D images. Denote by yj(vi) the jth (j = 1, . . . , q) record at

point vi, ICA model assumes that

y(vi) = As(vi), vi ∈ V, i = 1, . . . , n, (1.1)

in which y(vi) = [y1(vi), . . . , yq(vi)]
> is a vector containing all the observed

data recorded at the point indexed by coordinate vi; the so-called mix-

ing matrix, A, is a q × q matrix that mixes the q mutually independent

channels, s(vi) = [s1(vi), . . . , sq(vi)]
>, to generate the observed data vector.

Given the ICA model (1.1), ICA algorithms aim to recover the mutually
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independent latent sources s1(·), . . . , sq(·) by estimating the mixing ma-

trix A, or equivalently, the unmixing matrixW such thatWA = I, from

the observed multivariate outcomes y(·).

In recent years, ICA has become a popular tool for analyzing func-

tional magnetic resonance imaging (fMRI) data (Mckeown et al., 1998;

Biswal andUlmer, 1999; Calhoun et al., 2001; Beckmann andSmith, 2005).

When applied to fMRI studies, one major disadvantage of most existing

ICA methods is that their iid source signal assumption does not re�ect

the complex spatio-temporal dependence structure in fMRI data. To ad-

dress this issue, Lee et al. (2011) drop the iid assumption in model (1.2)

and propose an ICA model with autoregressive IC sources for v ∈ Z1.

Their model can extract mutually independent time courses (temporal

ICA) from fMRI data featuring temporal autocorrelations. However, in

many fMRI studies, people are interested in �nding mutually indepen-

dent source signals in the spatial domain (spatial ICA), which represent

functionally connected networks in human brains (Mckeown et al., 1998).

However, Lee et al. (2011)’s method does not apply to this setting directly.

At the same time, how to characterize the spatial dependence structures

of fMRI data when performing ICA decomposition remains an unre-

solved issue.

In the third project, we propose a new spatial ICAmodel for fMRI data

analysis, which features spatial dependence within each IC source chan-

nel. Spatial dependence is an important feature of fMRI data. Statistical

correlations across voxels can be interpreted as functional connectivities.

The most common dependence structure in fMRI data is the neighbor-

ing e�ect: When a voxel is functionally activated, voxels that are closer

to it are more likely to be activated due to functional homogeneities of

nearby brain regions (Katanoda et al., 2002; Woolrich et al., 2004). In

addition, spatial smoothing, as a routinely used pre-processing step of

fMRI data in order to �lter low pass signals and reduce between-subject

functional variations, strengthens the spatial correlations between adja-
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Figure 1.1: The empirical (stationary) spatial correlation functions, κ(·), of
four esitmated brain functional networks based onour resting-state fMRI
data example: Each sub�gure contains 100 curves; each curve is plotted
based on 2, 500 randomly sampled voxels (without replacement) since the
total number of voxels is too large to compute the empirical correlation
function.

cent voxels. Kernel methods are ideal tools to capture this type of depen-

dence structure. Speci�cally, we model the spatial dependence in fMRI

data using the Bayesian kernel models (Pillai et al., 2007; Wolpert et al.,

2011), enabling �exible prior dependence structure speci�cation. At the

same time, some brain regions that are far away from each other can

form brain functional networks and exhibit similar activation patterns

(Mckeown et al., 1998; Biswal and Ulmer, 1999). This type of dependence

structure is di�cult to model appropriately ex-ante. However, spatial ICA

for fMRI data has been proved to be a very useful tool to recover the brain

functional networks by “clustering" co-activated brain regions within the

same ICs (Mckeown et al., 1998; Calhoun et al., 2001). Thus, in our spa-

tially dependent ICA model, we only include prior knowledge about the

neighborhood functional similarities and let the ICA model itself to ex-
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tract information about the correlations induced by brain functional net-

works.

Our work contributes to existing literature from the following four

aspects. First, to the best of our knowledge, our model is the �rst one

that can perform spatial ICA decomposition of fMRI data while incorpo-

rating spatial dependence structures in the brain. Second, we demon-

strate through simulation studies that by incorporating spatial depen-

dence structures, our model can provide more accurate mixing/unmix-

ing matrix estimation than existing ICA algorithms which rely on the

iid assumption about the ICs. Third, we can easily make model-based

posterior inference about the spatial source signals in order to identify

functionally activated brain regions. This is because that we take a fully

Bayesian approach for model inference and approximate the joint pos-

terior using samples from Markov chain Monte Carlo (MCMC). Work-

ing with the posterior MCMC samples, we can compute credible inter-

vals for the mean processes of the ICs and select functionally activated

brain regions whose credible intervals exclude zero. Forth, we establish a

newparadigm for ICAmodeling beyond the traditional framework based

on density estimations. Our treatment of IC source signals can be re-

garded as nonparametric regressions with location coordinates being the

independent variable. Compared with those density-based approaches,

the new paradigm can easily incorporate additional dependence struc-

tures or association patterns by adding covariates into the kernel func-

tion. Compared with the autoregressive model by Lee et al. (2011), our

nonparametric model is not restricted to the integer grid support and is

potentially more �exible, especially for modeling non-stationary source

signals. By separating conditionalmean responses from regression resid-

ual terms, our method has improved power of detecting activation areas

in the brain functional networks.
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1.3 Literature Review

ICA and Group ICA

ICA was initially used for analyzing single-subject fMRI data to either

characterize spatially independent brain networks, i.e., spatial ICA (Mck-

eown et al., 1998; Biswal andUlmer, 1999; Calhoun et al., 2001; Beckmann

and Smith, 2005) or separate independent time courses, i.e., temporal

ICA (Lee et al., 2011). In this chapter, we consider spatial ICA which is

more suitable for our fMRI data example. Denote by Y the T × V fMRI

data matrix for one subject, where T is the number of fMRI scans and

V is the number of voxels in the 3D brain image acquired during each

scan. Each row of Y represents a vectorized 3D image. Classical noise-

free spatial ICA decomposes the observed fMRI data for one subject as

YT×V = AT×qSq×V , where q is the total number of source signals. Each

row of S represents a vectorized 3D image of a spatial source signal. The

q spatial source signals are assumed to be statistically independent and

hence are called independent components (ICs). A is the mixing matrix,

the columns of which determine the temporal dynamics of the ICs.

To decompose multi-subject fMRI data, ICA has been extended for

group analysis, which is referred to as group ICA (Calhoun et al., 2001).

One commonly used group ICA framework in fMRI analysis is the tem-

poral concatenation group ICA (TC-GICA). In TC-GICA, the T × V fMRI

datamatrices fromN subjects are stacked in the temporal domain to form

a tall TN × V group data matrix. The concatenated group data are then

decomposed into the product of a TN × q group mixing matrix and a

q× V spatial source matrix with independent rows. Many existing group

ICAmethods (Calhoun et al., 2001; Beckmann and Smith, 2005; Guo and

Pagnoni, 2008; Guo, 2011) were developed under the TC-GICA frame-

work. A notable restriction of the TC-GICA models is that they assume

the same spatial distribution of BFNs across subjects.
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Spatial RegressionModels for Neuroimaging Data

A pioneer work using the regression model for the neuroimaging data

is the mass univariate analysis (MUA). This approach �ts a general linear

model (GLM) at each spatial location in the brain (to which is referred as

a voxel) and obtains massive test statistics over space to identify voxel-

s/regions that are signi�cantly associated with a speci�c covariate, which

requires multiple comparisons correction. One standard procedure is to

calculate the family-wise error rate (FWER) based on the random �eld

theory for statistical parametric maps (Friston et al., 1995; Nichols and

Hayasaka, 2003). Another approach is to control the false discovery rate

(FDR) using the observed p-values (Benjamini and Yekutieli, 2001; Gen-

ovese et al., 2002). A major drawback of MUA is that the models do not

borrow information from the spatial dependence across brain locations.

In practice, the neuroimaging data are usually pre-processed by a spatial

smoothing procedure using a kernel convolution approach. Performing

MUA on these pre-smoothed data may lead to inaccuracy and low e�-

ciency in terms of estimating and testing the covariate e�ects (Chumbley

et al., 2009; Li et al., 2011). Recent development in adaptive smoothing

methods for preprocessing (Yue et al., 2010) and estimation (Polzehl and

Spokoiny, 2000; Qiu, 2007; Tabelow et al., 2008; Li et al., 2011; Wang

et al., 2013) may improve the performance in terms of reducing noise

and preserving features. It is especially powerful to detect delicate fea-

tures such as jump discontinuities, which is one of the universal charac-

teristics for neuroimaging data.

To achieve a goal similar to MUA when analyzing neuroimaging data,

Zhu et al. (2014) recently developed a systematic modeling approach us-

ing a novel spatially varying coe�cient model (SVCM) which incorpo-

rates both spatial smoothness and jump discontinuity in covariate e�ects.

General SVCMs have been extensively investigated for di�erent appli-

cations in environmental heath, epidemiology and ecology as demon-
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strated by Cressie and Cassie (1993); Diggle et al. (1998); Gelfand et al.

(2003). The SVCM encompasses a wide range of regression models with

the outcome variable observed over space and the regression coe�cients

modeled as functions varying spatially. We refer to this type regression

coe�cients as spatially varying coe�cient functions (SVCFs). SVCFs are

commonly assumed to be smooth functions or ρ times continuously dif-

ferentiable functionswith ρ > 1 (wewill notmake this distinction through-

out the rest of this chapter unless noted). Zhu et al. (2014) extended the

general SVCMsby introducing jumpdiscontinuities into the SVCFs,mak-

ing the model especially useful for neuroimaging data analysis. Based

on stepwise estimating procedures and asymptotic Wald tests, Zhu et al.

(2014)’s SVCM also can identify brain regions that are signi�cantly asso-

ciated with the given covariates, although it is not developed particularly

for feature selection.

Bayesian Variable/Feature/Model SelectionMethods

For variable selection in regressionmodels, regularizationmethods have

been studied extensively (Tibshirani, 1996; Fan and Li, 2001; Zou and

Hastie, 2005; Yuan and Lin, 2006). Bayesian methods have also been de-

veloped based on various prior speci�cations. Mitchell and Beauchamp

(1988) developed a prior model for linear model coe�cients using the

mixture of a uniform distribution (slab) and a point mass at zero (spike),

which is broadly referred to as the spike-and-slab type of priors. George

and McCulloch (1993) proposed to use the scale mixture of two zero-

mean Gaussian distributions and developed posterior computation algo-

rithm based on Gibbs sampling. Relative works also include Liang et al.

(2008); Park and Casella (2008); Bondell and Reich (2012); Johnson and

Rossell (2012); Narisetty et al. (2014); Bhattacharya et al. (2014). For the

analysis of physical activity and environmental health data, Reich et al.

(2010) developed an multivariate SVCM along with a Bayesian variable

selection procedure to identify important SVCFs, using the spike-and-
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slab prior. Their focus, however, was on distinguishing covariate e�ects

that were zero constant, nonzero constant and spatially varying instead

of selecting features within the varying coe�cient functions. In light of

the needs for integrating complex data structure in many applications,

recent development of Bayesian variable selection incorporates depen-

dence structures into the prior model. Li and Zhang (2010) assumed that

covariates lay on an undirected graph and used the Ising prior to incorpo-

rate this information to themodel space and applied this method to ana-

lyze the genomics data. For themodeling of spatial data, Markov random

�eld (MRF) is one of the commonly used priors for tomodel dependence

structure of the regression coe�cients. For instance, Smith and Fahrmeir

(2007) applied this type of priors to fMRI data analyses.

ICA Algorithms

Most existing ICA methods rely on the assumption that the ICs are iid

draws from probabilistic distributions at recording points v1, . . . , vn, i.e.,

s(v1), ..., s(vn)
iid
∼

q∏
`=1

g`(·), (1.2)

where g`(·) is the probability density of s`(·), the `th IC channel. By adopt-

ing restricted parametric assumptions about the source signal distribu-

tions, g`, ` = 1, . . . , q, Bell and Sejnowski (1995); Cardoso (1999); Hyväri-

nen (1999) estimate the unmixing matrix through maximizing mutual

information, diagonalizing higher order cumulants or maximizing non-

Gaussianity of the ICs. In addition, �exible semiparametric or nonpara-

metric approaches are also developed for ICA estimation and inference

(Tibshirani and Hastie, 2002; Bach and Jordan, 2003; Samarov and Tsy-

bakov, 2004; Chen and Bickel, 2005, 2006). While thesemethods require

the existence of IC density functions with certain degrees of continuity,

Samworth and Yuan (2012); Ilmonen et al. (2011); Hallin andMehta (2015)

relax this limitation using log-concave density estimation or rank based
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methods.

1.4 Outlines

We introduce in Section 2.1 the hc-ICA framework including data pre-

processing, model speci�cation, estimation and inference. Section 2.2

presents an analysis of the PTSD dataset using our method. Section 2.3

reports simulation results for comparing hc-ICA to the existing TC-GICA

two-stage method, comparing the subspace-based EM to the exact EM

algorithms and comparing the proposed inference method to the exist-

ing TC-GICA two-stagemethod for testing covariate e�ects. Conclusions

and discussions are presented in Section 2.4. Derivations, proofs, addi-

tional simulation studies and details for the analysis of the PTSD data are

provided in the web supplementary materials.

The remaining parts of the second chapter is organized as follows:

Section 3.1 introduces the SVCMs for neuroimaging data analysis and

particularly discuss conditions on SVCFs in the proposed model. This

section also presents the construction of TGP which serves as a prior

model for SVCFs. We study the theoretical properties of TGP and the

proposed SVCMs in 3.2. We develop an e�cient and scalable posterior

computation algorithm based on a kernel convolution approach in Sec-

tion 3.3. We evaluate the performance of proposed method via simula-

tion studies and and analyze the ABIDE data in Section 3.4. We conclude

our work with a brief discussion on future work in Section 3.5.

We provide more details about the Bayesian spatially dependent ICA

model and its posterior inference procedures in Section ??. Simulation

studies are included in Section ?? to make comparison of our method

against some existing ICA algorithms. Analysis of a real resting-state

fMRI dataset is also reported in Section ??. Section ??.

In the �nal chapter, we present concluding remarks and discussions

about future research.
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Chapter 2

Investigating di�erences in

brain functional networks

using hierarchical

covariate-adjusted

independent component

analysis

This chapter is joint work with Dr. Ying Guo.

2.1 Methods

This section introduces the hc-ICA framework, which includes the pre-

processing step, the hc-ICA model, estimation algorithms and the infer-

ence procedure.

2.1.1 Preprocessing prior to ICA

Prior to an ICA algorithm, some preprocessing steps such as centering,

dimension reduction and whitening of the observed data are usually per-
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formed to facilitate the subsequent ICA decomposition (Hyvärinen et al.,

2001). Suppose that the fMRI study consists of N subjects. For each sub-

ject, the fMRI signal is acquired at T time points across V voxels. Let

ỹi(v) ∈ RT be the centered time series recorded for subject i at voxel v;

Ỹi = [ỹi(1), ..., ỹi(V)] is the T × V fMRI data matrix for subject i.

Under the paradigm of group ICA, we perform the following dimen-

sion reduction and whitening procedure on the original fMRI data: for

i = 1, ..., N,

Yi = (Λi,q − σ̃2
i,qIq)−

1
2U ′i,qỸi, (2.1)

whereUi,q and Λi,q contain the �rst q eigenvectors and eigenvalues based

on the singular value decomposition of Ỹi. The residual variance, σ̃2
i,q,

is the average of the smallest T − q eigenvalues that are not included in

Λi,q representing the variability in Ỹi that is not accounted by the �rst q

components. The parameter q, which is the number of ICs, can be deter-

minedusing theLaplace approximationmethod (Minka, 2000). Through-

out the rest of our chapter, we will present the model andmethodologies

based on the preprocessed data Yi = [yi(1), ...,yi(V)] (i = 1, ..., N), which are

q× V matrices.

2.1.2 A hierarchical covariate-adjusted ICAmodel (hc-ICA)

In this section, we present a hierarchical covariate-adjusted ICA (hc-ICA)

model for evaluating covariate e�ects on brain functional networks using

multi-subject fMRI data. The �rst-level model of hc-ICA decomposes a

subject’s observed fMRI signals into a product of subject-speci�c spatial

source signals and a temporal mixing matrix to capture between-subject

variabilities in the spatio-temporal processes in the functional networks.

We include a noise term in this ICA model to account for residual vari-

abilities in the fMRI data that are not explained by the extracted ICs,

which is known as probabilistic ICA (Beckmann and Smith, 2004). To
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be speci�c, the �rst-level of hc-ICA is de�ned as,

yi(v) = Aisi(v) + ei(v), (2.2)

where si(v) = [si1(v), ..., siq(v)] ′ is a q× 1 vector with si`(v) representing the

spatial source signal of the `th IC (i.e., brain functional network) at voxel v

for subject i. The q elements of si(v) are assumed to be independent and

non-Gaussian. Ai is the q×qmixingmatrix for subject iwhichmixes si(v)

to generate the observed (preprocessed) fMRI data. Since Yi is whitened,

the mixing matrix, Ai, should be orthogonal (Hyvärinen and Oja, 2000).

ei(v) is a q × 1 vector that represents the noise in the subject’s data and

ei(v) ∼ N(0,Ev) for v = 1, ..., V . The noise term is assumed to be indepen-

dent across voxels because the spatial correlation across voxels is mod-

elled by the spatial source signals (Hyvärinen et al., 2001; Beckmann and

Smith, 2004; Guo, 2011). Prior to ICA, preliminary analysis such as pre-

whitening (Bullmore et al., 1996) can be performed to remove temporal

correlations in the noise term and to standardize the variability across

voxels. Therefore, following previous work (Beckmann and Smith, 2004,

2005; Guo and Pagnoni, 2008; Guo, 2011), we assume that the covariance

for the noise term is the same across voxels and isotropic, i.e. Ev = ν2
0Iq.

The ICA decomposition in the �rst-level model is a spatial ICA model

since statistical independence is assumed for the spatial maps of brain

functional networks. For fMRI data, spatial ICA has become dominant

because the spatial independence assumption is well suited to the spatial

patterns of most cognitive activation paradigms (Mckeown et al., 1998).

At the second-level of hc-ICA, we further model subject-speci�c spa-

tial source signals si(v) as a combination of the population-level source

signals, the covariate e�ects and additional between-subject randomvari-

abilities:

si(v) = s0(v) + β(v)′xi + γi(v), (2.3)
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where s0(v) = [s01(v), ..., s0q(v)] ′ is the population-level spatial source sig-

nals of the q statistically independent andnon-Gaussian ICs; xi = [xi1, ..., xip] ′

is the p×1 covariate vector containing subject-speci�c characteristics such

as the treatment or disease group, demographic variables and biological

traits; β(v) is a p×qmatrixwhere the elementβk`(v) (k = 1, ...p, ` = 1, ..., q) in

β(v) captures the e�ect of the kth covariate on the `th functional network

at voxel v; γi(v) is a q× 1 vector re�ecting the random variabilities among

subjects after adjusting for covariate e�ects. We assume γi(v)
iid
∼ N(0,D)

where D = diag(ν2
1, ..., ν

2
q). IC-speci�c variances speci�ed in D allow us to

accommodate di�erent levels of between-subject random variability.

2.1.3 Source signal distribution assumptions

Following Guo (2011); Guo and Tang (2013), we choose mixtures of Gaus-

sians (MoG) as our source distribution model for the population-level

spatial source signals, s0(v), in (2.3). MoG hae several desirable properties

for modeling fMRI signals. Within each BFN, only a small percentage

of locations in the brain are activated or deactivated whereas most brain

areas exhibit background �uctuations (Biswal and Ulmer, 1999). MoG are

well suited to model such mixed patterns. Furthermore, MoG can cap-

ture various types of non-Gaussian signals (Xu et al., 1997; Kostantinos,

2000) and also o�er tractable likelihood-based estimation (McLachlan

and Peel, 2004).

Speci�cally, for ` = 1, . . . , q we assume that

s0`(v) ∼MoG(π`,µ`,σ
2
`), v = 1, ..., V, (2.4)

where π` = [π`,1, ..., π`,m] ′ with
∑m
j=1 π`,j = 1, µ` = [µ`,1, ..., µ`,m] ′ and σ2

` =

[σ2
`,1, ..., σ

2
`,m] ′; m is the number of Gaussian components in MoG. The

probability density of MoG(π`,µ`,σ
2
`) is

∑m
j=1 π`,jg(s0`(v);µ`,j, σ

2
`,j) where

g(·) is the pdf of the (multivariate) Gaussian distribution. In fMRI appli-

cations, mixtures of two to three Gaussian components are su�cient to
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capture the distribution of fMRI spatial signals, with the di�erent Gaus-

sian components representing the background �uctuation and the neg-

ative or positive fMRI BOLD e�ects respectively (Beckmann and Smith,

2004; Guo and Pagnoni, 2008). Without loss of generality, we denote by

j = 1 the background �uctuation state throughout the rest of the chapter.

To facilitate derivations in models involving MoG, latent state vari-

ables are often used (McLachlan and Peel, 2004). Here we de�ne latent

states z(v) = [z1(v), ..., zq(v)] ′ at voxel v as follows. For ` = 1, ..., q, z`(v) takes

a value in {1, . . . ,m} with probability p[z`(v) = j] = π`,j for j = 1, ..,m. Con-

ditional on z(v), we can rewrite our source distribution model as,

s0(v) = µz(v) +ψz(v), (2.5)

whereµz(v) = [µ1,z1(v), ..., µq,zq(v)]
′,ψz(v) = [ψ1,z1(v), ..., ψq,zq(v)]

′,ψz(v) ∼ N(0,Σz(v))

with Σz(v) = diag(σ2
1,z1(v), ..., σ

2
q,zq(v)).

2.1.4 Maximum likelihood estimation

We develop a uni�ed maximum likelihood estimation method via the

EM algorithm that simultaneously estimates all parameters in the hc-ICA

model. Based on (2.2), (2.3) and (2.5), the complete data log-likelihood for

hc-ICA model is

l(Θ;Y,X, S,Z) =

V∑
v=1

lv(Θ;Y,X, S,Z), (2.6)

where Y = {yi(v) : i = 1, ..., N; v = 1, . . . , V}, X = {xi : i = 1, ..., N}, S =

{si(v) : i = 0, ..., N, v = 1, ..., V} and Z = {z(v) : v = 1, ..., V}; the parameters

are Θ = {{β(v)}, {Ai},E,D, {π`}, {µ`}, {σ
2
`} : i = 1, ..., N, v = 1, ..., V, ` = 1, ...,m}.

The detailed expression for the complete data log-likelihood function at
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each voxel v is:

lv(Θ;Y,X, S,Z) =

N∑
i=1

[
log g (yi(v);Aisi(v),E) + log g

(
si(v); s0(v) + β(v) ′xi,D

) ]

+ log g
(
s0(v);µz(v),Σz(v)

)
+

q∑
`=1

logπl,zl(v). (2.7)

The exact EM algorithm

We �rst present an exact EM which has an explicit E-step and M-step to

obtain ML estimates for the parameters in hc-ICA.

E-step: In the E-step, given the parameter estimates Θ̂(k) from the

last step, we derive the conditional expectation of the complete data log-

likelihood given the observed data as follows:

Q(Θ|Θ̂(k)) =

V∑
v=1

Es(v),z(v)|y(v) [lv(Θ;Y,X, S,Z)] , (2.8)

where y(v) = [y1(v) ′, ...,yN(v) ′] ′ represents the group data vector from the

N subjects at voxel v, s(v) = [s1(v) ′, ..., sN(v) ′, s0(v) ′] ′ is the vector contain-

ing latent source signals on both the population and individual level. The

detailed de�nition ofQ(Θ|Θ̂(k)) is available in section 1 of web supplemen-

tarymaterials. The evaluation ofQ(Θ|Θ̂(k)) relies on p
[
s(v), z(v) | y(v); Θ̂(k)

]
as well as its marginal distributions, which consists of the following three

steps. First, we determine p
[
s(v) | z(v), y(v); Θ̂(k)

]
, which is a multivariate

Gaussian distribution. Second, we evaluate the probability mass func-

tions, p
[
z(v) | y(v); Θ̂(k)

]
through an application of Bayes’ Theorem. We

�nally obtain p
[
s(v) | y(v); Θ̂(k)

]
by convolving the distributions derived in

the previous two steps. More details can be found in section 2 of the sup-

plementary material.

Given these probability distributions, we canderive the analytical forms

for the conditional expectation in (2.8). For illustration purposes, two
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main quantities of interest in (2.8) are given as follows:

E[s(v) | y(v); Θ] =
∑
z(v)∈R

p[z(v) | y(v); Θ]E[s(v) | y(v), z(v); Θ],

E[s(v)⊗2 | y(v); Θ] =
∑
z(v)∈R

p[z(v) | y(v); Θ]E[s(v) | y(v), z(v); Θ]⊗2

+
∑
z(v)∈R

p[z(v) | y(v); Θ]Var[s(v) | y(v), z(v); Θ],

where R represents the set of all possible values of z(v), i.e., R = {zr}m
q

r=1

where zr = [zr1, ..., z
r
q] ′ and zr` ∈ {1, ...,m} for ` = 1, ...q; the notation a⊗2 for a

vector a stands for aa ′.

Based on the results presented above, our E-step is fully tractablewith-

out the need for iterative numerical integrations.

M-step: In the M-step, we update the current parameters estimates

Θ̂(k) to

Θ̂(k+1) = argmax
Θ

Q(Θ|Θ̂(k)). (2.9)

We have derived explicit formulas for all parameter updates. The updat-

ing rules are provided in section 3 of our supplementary material.

The estimation procedure for the exact EM algorithm is summarized

in Algorithm 1. See section 1-3 of the supplementary material for more

details. After obtaining Θ̂, we can estimate the population- and individual-

level source signals as well as their variability based on the mean and

variance of their conditional distributions, i.e., [s0(v) | y(v); Θ̂] and [si(v) |

y(v); Θ̂]. These conditional moments are directly obtainable from the E-

step of our algorithm upon convergence and no separate post-ICA steps

are required. As a referee pointed out, one could also estimate the source

signals using the MAP estimator. As a major di�erence from TC-GICA,

our subject-speci�c ICs {si} are estimated simultaneouslywith population-

level IC s0 instead of being reconstructed via post-ICA ad-hoc approaches.

Therefore, all the subject ICs are aligned to the population ICs in our

model speci�cation and estimation, which eliminates the need to match
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ICs across di�erence subjects. This is an advantage of our approach over

single-subject ICA based analysis.

In fMRI analysis, researchers are often interested in thresholded IC

maps to identify “signi�cantly activated" voxels in each BFN. Following

previous work (Guo, 2011), we propose a thresholding method based on

the mixture distributions for this purpose (section 6 of the supplemen-

tary material).

Algorithm 1 The Exact EM Algorithm

Initial values: Start with initial values Θ̂(0) which can be obtained based
on estimates from existing group ICA software.
repeat
E-step:
1. Determine p[s(v), z(v) | y(v); Θ̂(k)] and its marginals using the pro-
posed three-step approach:
1.a Evaluate the multivariate Gaussian p[s(v) | y(v), z(v); Θ̂(k)];
1.b Evaluate p[z(v) | y(v); Θ̂(k)];
1.c p[s(v), z(v) | y(v), Θ̂(k)] = p[s(v) | y(v), z(v); Θ̂(k)]× p[z(v) | y(v); Θ̂(k)];

p[s(v) | y(v), Θ̂(k)] =
∑
z(v)∈R p[s(v), z(v) | y(v), Θ̂(k)];

2. Evaluate conditional expectations in Q(Θ|Θ̂(k)).
M-step:
Update β(v), Ai, π`,j, µ`,j, σ2

`,j;
Update the variance parameters D,E.

until ‖Θ̂
(k+1)−Θ̂(k)‖
‖Θ̂(k)‖ < ε

The subspace-based approximate EM algorithm

One major limitation of the exact EM algorithm is that its complexity

increases exponentially with regard to the number of ICs. Speci�cally,

O(mq) operations are required for the exact EM algorithm to complete.

The main reason is that, at each voxel, the exact EM evaluates and sums

the conditional distributions across the whole sample space R of the la-

tent state variables z(v), which has a cardinality of mq. A standard way to

alleviate this issue is through mean �eld variational approximation. This

method has been used by Attias (1999, 2000) for single subject ICA and

by Guo (2011) for TC-GICA. However, the variational method cannot be

easily generalized to other models such as hierarchical ICA because the
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derivation of the variational approximate distributions depends heavily

on the model speci�cations. In most cases, the estimates for the varia-

tional parameters do not have analytically tractable expressions and re-

quire extra numerical iterations, which sometimes causes convergence

problems.

In this section, we propose a new approximate EM algorithm for solv-

ing MoG-based ICA models in fMRI studies. Compared with the exact

EM that needs O(mq) operations, this new EM algorithm only requires

O(mq) operations. The key idea behind the approximate algorithm is that

instead of considering the whole sample space R of the latent state vector

z(v), we only focus on a small subspace of R in the algorithm. Theorem

1 provides the de�nition for the subspace and shows that under certain

conditions, the distribution of the latent state vectors is concentrated to

the proposed subspace.

Theorem 1. De�ne R = {zr = [zr1, ..., z
r
q] ′ : zr` = j with j ∈ {1, ...,m}, ` = 1, ..., q}

for r = 1, ...,mq, which is the domain of z(v). For all z(v) ∈ R, suppose that

p[z`(v) = j] = π`,j and that p[z(v) = zr] =
∏q
`=1 π`,zr` (i.e., z(v) has independent

elements). De�ne R̃ as R̃ = R0 ∪ R1 where R0 = {zr ∈ R : zr` = 1, ` = 1, ..., q}

and R1 = {zr ∈ R : ∃ one and only one `, s.t., zr` 6= 1}. Then, for any 0 < ε < 1, if

π`,1 >
q

q+
√
ε
for all ` = 1, ..., q, we have p[z(v) ∈ R̃] > 1 − ε.

The proof of the Theorem is relegated to section 4 of the supplemen-

tarymaterial. Based on the above theorem, when ε ≈ 0, i.e. p[z`(v) = 1] ≈ 1,

we have p[z(v) ∈ R̃] ≈ 1. For fMRI data, the latent state j = 1 in MOG

model (2.4) corresponds to background �uctuation. Therefore, Theorem

1 implies that for each IC, if latent states at most voxels are background

�uctuation, the probability distribution of the latent state vector z(v) in

our hc-ICA will be mostly restricted to the subspace R̃. The condition in

Theorem 1, i.e. p[z`(v) = 1] ≈ 1, is supported by fMRI data because pre-

vious literature maintains that the fMRI spatial source signals are sparse

across the brain (Mckeown et al., 1998; Daubechies et al., 2009). That is,
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within a speci�c BFN, i.e. IC, most of the voxels exhibit background �uc-

tuations with only a very small proportion of voxels being activated (or

deactivated). The restriction of the latent states vector to the subspace

R̃ implies that there is little chance for the same voxel to be activated in

more than one ICs. Biologically, thismeans that there is little overlapping

in the activated regions across di�erent BFNs, which has been supported

by �ndings in the existing neuroimaging literature.

Based on this result, we propose a subspace-based approximate EM

for our ICAmodel. The approximate EM follows similar steps as the exact

EM. The main di�erence is that we restrict the conditional distribution

of the latent state vector z(v) to the subspace R̃ in the E-step and M-step.

That is, the conditional expectations in the E-step are evaluated with a

subspace-based approximate distribution p̃[z(v) = zr|y(v); Θ̂(k)] = p[z(v) =

zr|y(v); Θ̂(k)]/
∑
r∈R̃ p[z(v) = zr|y(v); Θ̂(k)] where zr ∈ R̃ (see section 5 of the

supplementary material for a detailed treatment). Since the subspace R̃

has a cardinality of (m− 1)q+ 1, the approximate EM only requires O(mq)

operations to complete. The concentration of measures to the subspace

leads to the simpli�cation in evaluating the conditional expectations in

the E-step. For example,

Ẽ[s(v) | y(v); Θ] =
∑
z(v)∈R̃

p̃[z(v) | y(v); Θ]E[s(v) | y(v), z(v); Θ], (2.10)

which implies that, instead of summing over mq latent states in R , we

only need to perform (m − 1)q + 1 summations across the subspace of R̃.

The subspace-based EM also reduces computation time in the M-step.

Speci�cally, when updating the parameters for the MoG source distri-

bution model, we now use approximate conditional marginal moments.

For example, as compared with the exact results, we use the following

approximate moment when updating parameters for the Gaussian mix-
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tures,

Ẽ[s0`(v) | z`(v) = j, y(v); Θ] =

∑
z(v)∈R̃(`,j) p̃[z(v) | y(v); Θ]E[s0`(v) | y(v), z(v); Θ]∑

z(v)∈R̃(`,j) p̃[z(v) | y(v); Θ]
,

(2.11)

where R̃(`,j) = {zr ∈ R̃ : zr` = j}, whose cardinality equals (m − 1)(q − 1) + 1

if j = 1 and 1 if j 6= 1. Comparing to its exact counterpart, R(`,j) = {zr ∈

R : zr` = j}, which has a cardinality of mq−1, this can dramatically sim-

plify the updating of π`,j, µ`,j and σ2
`,j in the M-step. We summarize the

approximate EM algorithm as Algorithm 2.

Algorithm 2 The Subspace-based Approximate EM Algorithm

Initial values: Start with initial values Θ̂(0).
repeat
E-step:
1. Determine p̃[s(v) | y(v); Θ̂(k)] and its marginals as follows:
1.a Evaluate the multivariate Gaussian p[s(v) | y(v), z(v); Θ̂(k)];
1.b Evaluate p̃[z(v) | y(v); Θ̂(k)] on the subset R̃;
1.c p̃[s(v), z(v) | y(v), Θ̂(k)] = p[s(v) | y(v), z(v); Θ̂(k)]× p̃[z(v) | y(v); Θ̂(k)];

p[s(v) | y(v), Θ̂(k)] =
∑
z(v)∈R̃ p̃[s(v), z(v) | y(v), Θ̂(k)];

2. Evaluate conditional expectations in Q(Θ|Θ̂(k)) with regard to
p̃[s(v), z(v)|y(v); Θ̂(k)].

M-step:
Update β(v), Ai, π`,j, µ`,j; σ2

`,j with the modi�cation of replacing the
exact conditional moments with their counterparts based on p̃[s(v) |

y(v); Θ̂(k)].
Update D,E with similar modi�cations of replacing the exact condi-
tional moments with those based on p̃[s(v) | y(v); Θ̂(k)].

until ‖Θ̂
(k+1)−Θ̂(k)‖
‖Θ̂(k)‖ < ε

2.1.5 Inference for covariate e�ects in hc-ICAmodel

Typically, statistical inference inmaximum likelihood estimation is based

on the inverse of the information matrix which is used to estimate the

asymptotic variance-covariance matrix of the MLEs. Since Standard EM

algorithms only provide parameter estimates, extensions to the EM al-

gorithm have been developed to estimate the informationmatrix (Louis,

1982; Meilijson, 1989; Meng and Rubin, 1991). However, these methods

are computationally expensive for the proposed hc-ICA model due to
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the following reasons. First, the dimension of the information matrix

for our model is huge due to the large number of parameters. Secondly,

the ML estimates, β̂(v), v = 1, ..., V , are not independent across voxels be-

cause they rely on the estimates of the same set of parameters such as

the mixing matrices. Consequently, the information matrix of the hc-

ICA model is ultra-high dimensional and is not sparse, which makes it

extremely challenging to invert.

In this section, we present a statistical inference procedure for covari-

ate e�ects in hc-ICA model. The proposed method is developed based

on the connection between the hc-ICA and standard linear models. Our

method aims to provide an e�cient approach to estimate the asymptotic

standard errors of the covariate e�ects at each voxel, i.e., β̂(v)(v = 1, . . . , V),

by directly using the output fromour EMalgorithms. Speci�cally, we �rst

rewrite the hc-ICA model in a non-hierarchical form by collapsing the

two-level models in (2.2) and (2.3) and then multiplying the orthogonal

mixing matrix Ai on both sides:

A ′iyi(v) = s0(v) + Xivec
[
β(v) ′

]
+ γi(v) +A ′iei(v), (2.12)

where Xi = x ′i ⊗ Iq. (2.12) can be re-expressed as follows:

y∗i (v) = Xivec
[
β(v) ′

]
+ ζi(v), (2.13)

where y∗i (v) = A ′iyi(v) − s0(v), and ζi(v) = γi(v) + A ′iei(v) is a multivariate

zero-mean Gaussian noise term. The model in (2.13) can be viewed as a

general multivariate linear model at each voxel. Themajor distinction of

(2.13) from the standard linear model is that the dependent variable y∗(v)

not only depends on the observed data y(v) but also involves unknown

parameters Ai and latent variables s0(v). Given the similarity between

hc-ICA and the standard linear model, we propose a variance estimator

for vec
[
β̂(v) ′

]
following the linear model theory.
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Note that, for a standard linear model, the asymptotic variance for

vec
[
β̂(v) ′

]
can be obtained by:

Var
{
vec

[
β̂(v) ′

]}
=

1

N

(
N∑
i=1

X ′iW(v)−1Xi

)−1

, (2.14)

where W(v) is the variance of the Gaussian noise in the linear model.

Then, the variance of vec
[
β̂(v) ′

]
can be estimated by plugging in an es-

timator for W(v) in (2.14). Following this result, we consider a variance

estimator for vec
[
β̂(v) ′

]
based on (2.14) by plugging in the empirical vari-

ance estimator Ŵ(v) = 1
N

∑N
i=1

(
y∗i (v) − Xivec

[
β̂(v) ′

])⊗2
(Seber and Lee,

2012). Because the dependent variable y∗(v) in (2.13) is not directly ob-

servable, we estimate y∗i (v) using the ML estimates from our EM algo-

rithm as ŷ∗i (v) = Â ′iyi(v) − ŝ0(v), where ŝ0(v) = E[s0(v)|y(v), Θ̂]. That is, we

modify the empirical variance estimator Ŵ(v) as follows:

W̃(v) =
1

N

N∑
i=1

(
Â ′iyi(v) − E[s0(v)|y(v), Θ̂] − Xivec

[
β̂(v) ′

])⊗2
. (2.15)

Thus, our �nal variance estimator is

V̂ar
{
vec

[
β̂(v) ′

]}
=

1

N

(
N∑
i=1

X ′iW̃(v)−1Xi

)−1

.

Hypothesis testing on the covariate e�ects at each voxel can be per-

formed by calculating the Z-statistics based on the proposed variance es-

timator and determine the corresponding p-values. Our method can test

whether a certain covariate has signi�cant e�ects on each of the BFNs at

the voxel level. Based on the parametric Z-statistic maps, one can also

apply standard multiple testing methods to control the family wise error

rate (FWER) or the false discovery rate (FDR) when testing the covariate

e�ects within a BFN.

We note that our variance estimator may underestimate the variabil-

ities in β̂(v), because it does not account for variabilities in estimating
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Ai and s0(v). As a result, when performing hypothesis testing, the actual

type-I errors of the proposed test statistic can be relatively higher than

the nominal level. We evaluate via simulation studies the performance

of this proposed inference procedure in Section 4.

2.2 Application to fMRIdata fromGradyPTSDstudy

We applied the proposed method to the fMRI data collected from the

Grady PTSD study. In this study, 92 African American women were re-

cruited as part of a larger study conducted by the GradyHealth System in

Atlanta, GA. The Structured Clinical Interview for DSM-IV (SCID) (First,

1995) was administered to all subjects andwas used for diagnosis of PTSD.

In addition, participants completed the Beck Depression Inventory (BDI)

(Beck et al., 1996, 1988) for depression assessment. Out of the 92 subjects,

39 met a diagnosis of PTSD (PTSD+) and 53 did not meet the criteria for

PTSD (PTSD−). The ages of these women at the time of study ranged

from 20 to 62 (Mean ± SD: 35 ± 12 for PTSD+ group; 39 ± 12 for PTSD−

group; between-group test p = 0.1096). The BDI depression scores were

signi�cantly higher in subjects with PTSD diagnosis (Mean± SD: 16.6±9.0

for PTSD+, 8.3± 7.8 for PTSD−, p < 10−5).

2.2.1 Experimental design, image acquisitionandpre-processing

MRI scans were obtained in a 3.0TSiemens scanner. Participants received

task stimuli through an �exible mirror attached to the radiofrequency

coil of the scanner. The mirror re�ected a computer screen placed at the

end of the MRI aperture. During all experiments, a white cross appeared

on a black background for 500msec; it was replaced by an X or an O “Go"

signal for 1000msec and followed by 750msec of blank screen. On a re-

sponse pad, the subjects pressed 1 for X and 2 for O. The subjects were

instructed to respond to each trial as fast as they could unless the “NoGo"

signal appeared (i.e., the background changed to red), in which case they

should not press either button. The task comprised four runs separated
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by three 20s rest periods. Each run contained 26 “Go", 13 “NoGo", and 14

blank trials distributed randomly.

A T1-weighted high-resolution anatomical image was �rst acquired

(176 sagittal slices, voxel size: 1 × 1 × 1 mm). During task administration,

a series of T2-weighted functional images (echo-planar, 26 axial slices,

voxel size: 3.75×3.75×4mm, TR=2.53s, TE=30ms) were acquired. The fMRI

data were converted and preprocessed using Statistical Parametric Map-

ping, version 5 (SPM5, Wellcome Trust Centre for Neuroimaging, Lon-

don, UK: http://www.fil.ion.ucl.ac.uk/spm/). Functional volumes were

corrected for slice acquisition timing di�erences and subject movement.

The anatomical image was registered to the mean of the corrected func-

tional images and subsequently spatially normalized to theMNI standard

brain space. These normalization parameters fromMNI space were used

for the functional images, which were smoothed with an 8mm FWHM

Gaussian kernel. Prior to ICA analysis, we performed additional prepro-

cessing steps, including centering, dimension reduction and whitening

as described in section 2.1.1, on the fMRI data.

2.2.2 Analysis and �ndings

The preprocessed data from the 92 subjects were decomposed using the

proposed hc-ICAmodel into 16 ICs (the number is chosen from the GIFT

package: http://mialab.mrn.org/software/gift/index.html). To compare the

networks between the two PTSD groups, we included PTSD diagnosis as

the primary covariate of interest in the hc-ICA (PTSD−=0, PTSD+=1). We

also included subject’s age and BDI score as covariates to control for po-

tential confounding e�ects. We estimated the parameters in the hc-ICA

model using the subspace-based EM algorithm implemented in MAT-

LAB, which is available at the authors’ website. To ensure the validity

of the results, we initialized the EM algorithm with 50 di�erent starting

values. The resulting estimates of the parameters were mostly close to

each other. In this analysis, we reported the estimates corresponding to

http:// www.fil.ion.ucl.ac.uk/spm/
http://mialab.mrn.org/software/gift/index.html
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the highest observed data likelihood. More details about this robustness

check are included in the supplementary materials.

(A): the task network featuring the visual cortex
PTSD− PTSD+

(B): the defaul mode network
PTSD− PTSD+

Figure 2.1: The estimated subpopulational maps for the PTSD− and
PTSD+ women at the median age (36 year old) and the median depres-
sion score (BDI=10): Panel (A) shows the estimates for the network fea-
turing the visual cortex, which has the highest positive correlation with
the task time series. Panel (B) shows the estimates for the default mode
network, which has the largest negative correlation with the task time se-
ries. All ICmaps are thresholded at the posterior probability of activation
above 0.9. PTSD+ women show stronger IC signals in both networks.

Among the extracted ICs, we identi�ed two components of particular

interest. The �rst network had the highest positive temporal correlation

with the task time series, which were the task series convolved with the

hemodynamic response function (HRF). The spatial pattern of this net-

work features the visual cortex, which responded to the visual stimuli

presented in the Go/NoGo task. In Figure 2.1(A), we present the hc-ICA
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model-based estimates of the visual network for both the PTSD− and

PTSD+ groups. The two subpopulation maps were estimated at the me-

dian age (36 year old) and the median BDI scores (BDI=10) to control for

confounding e�ects. They were all thresholded based on the conditional

probability of activation (section 6 of the supplementary material). Ac-

cording to Figure 2.1(A), the PTSD+ group demonstrated stronger spatial

source signals in the visual network as compared to the PTSD− group

with the same ages and BDI scores. It is worth noting that the existing

group ICA methods cannot provide such model-based estimates of the

brain networks for subpopulations de�ned by speci�c covariate patterns.

The second network of interest mainly includes the posterior cin-

gulate cortex (PCC), the medial prefrontal cortex (mPFC) and the lat-

eral parietal cortex (LPC). This network is known as the “default mode

network", which shows increased activities during resting states and de-

creased activities during cognitive tasks (Raichle et al., 2001). Its temporal

responses have the largest negative correlation with the task time series.

Figure 2.1(B) presents the hc-ICA model-based estimates of this network

for the two PTSD subpopulations (also adjusted at themedian age and the

median BDI score). Based on Figure 2.1(B), the default mode network of

the PTSD+ women demonstrated stronger functional connectivity dur-

ing the Go/NoGo tasks.

We then applied the proposed inference procedure to formally test

the PTSD group di�erences in these two networks while controlling for

the potential confounding e�ects from age and depression status. We

also applied the method in Genovese et al. (2002) to calculate the FDR

corrected p-values for the between-group tests. For comparison, we also

used a TC-GICA based method, dual-regression ICA (Beckmann et al.,

2009; Filippini et al., 2009), to examine the group di�erences. Dual-

regression ICA is one of the most commonly used methods in the neu-

roimaging community for estimating subject-speci�c IC maps and per-

forming between-group comparisons, see Smith et al. (2014); Reineberg
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et al. (2015) for some examples of its application. It is also adopted as a

standard analytical tool by the well-known Human Connectome Project

(http://www.humanconnectomeproject.org/). The dual-regression procedure

typically tests group di�erences via permutation tests which cannot ad-

just for any confounding factors. To provide a fair comparison between

hc-ICA and dual-regression, we performed an additional regression anal-

ysis on the reconstructed subject IC maps from dual regression using the

same set of covariates as in hc-ICA and then tested PTSD group di�er-

ences with adjustment for age and BDI.

hc-ICA hc-ICA (FDR)

dual-regression dual-regression (FDR)

Figure 2.2: p-values, thresholded below 0.01, for comparing the adjusted
PTSD group di�erences (PTSD− < PTSD+) in the task-related network:
hc-ICA found increased spatial source signals at the central part of the
visual cortex among PTSD+ women, which remained signi�cant after
FDR control; dual-regression found much less group di�erences in the
network, all of which became insigni�cant with the FDR control.

The p-values for testing group di�erences in the task network, which

features the visual cortex, are presented in Figure 2.2. Based on Figure

2.2, hc-ICA detected that PTSD+ women showed signi�cantly stronger

http://www.humanconnectomeproject.org/
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spatial signals than PTSD− women in major parts of the visual network.

This �nding still held after FDR correction. This enhanced activities in

visual cortex among PTSD subjects were previously reported in other

fMRI studies involving visual stimuli (Hendler et al., 2003). The dual-

regression analysis, however, found only a few di�erences in this network

between the two groups and all of them became insigni�cant after FDR

control.

hc-ICA hc-ICA (FDR)

dual-regression dual-regression(FDR)

Figure 2.3: p-values, thresholded below 0.01, for comparing the adjusted
PTSD group di�erences (PTSD− < PTSD+) in the default mode network:
hc-ICA �nds stronger network activities across all the major regions of
this network for PTSD+ women. Many of these identi�ed voxels still ap-
pear after FDR control; dual-regression �ndings only dicover a few dif-
ferences in the PCC and mPFC regions.

Figure 2.3 shows the p-values regarding the group di�erences on the

defaultmodenetwork. Comparedwith PTSD−women, ourmethod showed

that the defaultmodenetwork of PTSD+womenhad signi�cantly stronger

source signals in all regions of the network as compared to the PTSD−

women. This implies that functional connectivities among the brain re-
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gions within this network were stronger for the PTSD+ women, after

controlling for subjects’ age and depression status. Our results are con-

sistent with recent �ndings in neuroscience literature that report abnor-

mally high functional connectivity within the defaultmode network dur-

ing both resting states and tasks for patients with mental disorders such

as schizophrenia, depression and PTSD (Greicius et al., 2007; Whit�eld-

Gabrieli et al., 2009; Daniels et al., 2011). In comparison, dual-regression

only identi�ed a few distinctions between the two groups in the PCC and

mPFC regions but didn’t detect any di�erences in the LPC part of the de-

fault mode network. After FDR correction, none of the �ndings based on

dual-regression remained signi�cant.

2.3 Simulation Study

We conducted three sets of simulation studies to 1) evaluate the perfor-

mance of the proposed hc-ICAmodel as compared with the existing TC-

GICAmodel, 2) to compare the accuracy of the subspace-based approxi-

mate EM algorithm vs. the exact EM, 3) and to evaluate the performance

of the proposed inference method for testing covariate e�ects based on

hc-ICA.

2.3.1 Simulation study I: performance of the hc-ICA v.s. TC-

GICA

In the �rst simulation study, we evaluate the performance of the pro-

posed hc-ICA model compared with dual-regression ICA. We simulated

fMRI data from three underlying source signals, i.e., q = 3, and consid-

ered three sample sizes with the number of subjects of N = 10, 20, 40. For

each source, we generated a 3D spatialmapwith the dimension of 25×25×

4 and the activated signals in each source is displayed in Figure 2.4(A). For

spatial source signals, we �rst generated population-level spatial maps,

i.e., {s0(v)}, as the activated signals plus Gaussian random variability of a

variance of 0.5. We then generated two covariates for each subject with
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one being categorical (x1
iid
∼ Bernoulli(0.5)) and the other being contin-

uous (x2
iid
∼ Uniform(−1, 1)). The covariate e�ects maps, i.e., {β(v)}, are

presented in Figure 2.4(B1)-(B2) where the covariate e�ect parameters at

each voxel took values from {0, 1.5, 1.8, 2.5, 3.0}. Additionally, we generated

Gaussian subject-speci�c random e�ects, i.e., γi(v), and considered three

levels of between-subject variability: low (D = diag(0.1, 0.3, 0.5)), medium

(D = diag(1.0, 1.2, 1.4)) and high (D = diag(1.8, 2.0, 2.5)). The subject-speci�c

spatial source signals were then simulated as the linear combination of

the population-level signals, covariate e�ects and subject-speci�c ran-

dom e�ects. For temporal responses, each source signal had a time series

of length of T = 200 that was generated based on time courses from real

fMRI data and hence represented realistic fMRI temporal dynamics. We

generated subject-speci�c time sources that had similar frequency fea-

tures but di�erent phase patterns (Guo, 2011), which represented tem-

poral dynamics in resting-state fMRI signals. After simulating the spatial

maps and time courses for the source signals, Gaussian background noise

with a standard deviation of 1 (E = Iq) were added to generate observed

fMRI data.

We applied both hc-ICA and dual-regression ICA to the simulated

data. The computational time was about 10min (N=10), 16min (N = 20)

and 25min (N = 40) for hc-ICA using the exact EM and around 45sec (ap-

proximately the same among all Ns) for dual-regression for each simu-

lated dataset, using a desktop PC with an Intel i7 3.6GHz quad core CPU.

Following previous work (Beckmann and Smith, 2005; Guo, 2011), we

evaluate the performance of each method based on the correlations be-

tween the activation signals and estimated signals in both temporal and

spatial domains. To compare the performance in estimating the covari-

ate e�ects, we report the mean square errors (MSEs) of β̂(v) de�ned by

1
V

∑V
v=1

∥∥∥β̂(v) − β(v)
∥∥∥2

F
averaged across simulation runs. Here ‖·‖F is the

Frobenius norm for a matrix. Since ICA recovery is permutation invari-
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ant, each estimated IC was matched with the original source with which

it had the highest spatial correlation. We present the simulation results in

Table 2.4. The results show that hc-ICA providesmore accurate estimates

for the source signals on both the population- and subject-level. It leads

to smaller mean square errors in estimating the covariate e�ects. We also

display the estimated population-level IC maps and the covariate e�ects

maps from both methods in Figure 2.4. The hc-ICA shows, in Figure

2.4, much better performance in correctly detecting the true activation

patterns and covariate e�ects for each IC. In comparison, the estimates

of the population-level IC maps from dual-regression show clear “cross-

talk" between the ICs. Furthermore, the estimated covariate e�ects maps

based on dual-regression are noisier plus some mismatches across the

ICs.

2.3.2 Simulation study II: performance of the approximate EM

In the second simulation study, we compare the performance of the ex-

act EM algorithm with the approximate EM for the hc-ICA model. We

simulated fMRI data for ten subjects and considered three model sizes

with the number of source signals of q = 3, 6, 10. The fMRI data were

generated using methods similar to that in Simulation Study I with 10

subjects and low between-subject variabilities. We then �tted the pro-

posed hc-ICA model using both the exact EM and the approximate EM.

Results from Table 2.2 show that the accuracy of the subspace-based EM

is comparable with regard to that of the exact EM in both the spatial and

temporal domains and on both population- and subject-level. Themajor

advantage of the subspace-based EM is that it was much faster than the

exact EM. This advantage becomes more clear with the increase of the

number of ICs. For q = 10, the subspace-based EM only uses about 2%

computation time of the exact EM.

The convergence rates are the same between the two EM algorithms.

We note that as q increased to 10, the convergence rates slightly decrease
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(A) Population-level IC maps

Truth hc-ICA Dual.Reg.

(B1) Covariate e�ects of the binary covariate, x1

Truth hc-ICA Dual.Reg.

(B2) Covariate e�ects of the continuous covariate, x2

Truth hc-ICA Dual.Reg.

Figure 2.4: Comparison between our method and dual-regression ICA: truth,
estimates from our model and estimates from dual-regression (N=10, between-
subject variabilities are medium) are displayed based on 100 runs. All the im-
ages displayed are averaged across the 100 Monte Carlo datasets. Population-
level spatial maps are shown in Figure 2.4(A). The results of dual-regression ICA
are contaminated by the covariate e�ects. The results from our method are
more accurate. Covariate e�ect estimates are shown in Figure 2.4(B1) and Fig-
ure 2.4(B2) respectively. The results of dual-regression show clear mismatching
while our method provide accurate estimates.
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Table 2.1: Simulation results for comparing our hc-ICA method against
dual-regression ICA based on 100 runs. Values presented are mean
and standard deviation of correlations between the true and estimated:
subject-speci�c spatial maps, population-level spatial maps and subject-
speci�c time courses. The mean and standard deviation of the MSE of
the covariate estimates are also provided.

Btw-subj Population-level spatial maps Subject-speci�c spatial maps
Var Corr.(SD) Corr.(SD)

hc-ICA Dual.Reg. hc-ICA Dual.Reg.
Low
N=10 0.982 (0.003) 0.956 (0.018) 0.984 (0.004) 0.945 (0.023)
N=20 0.990 (0.002) 0.968 (0.014) 0.996 (0.002) 0.949 (0.008)
N=40 0.992 (0.002) 0.976 (0.005) 0.996 (0.001) 0.956 (0.002)

Medium
N=10 0.942 (0.017) 0.914 (0.048) 0.943 (0.011) 0.882 (0.030)
N=20 0.954 (0.002) 0.938 (0.034) 0.959 (0.004) 0.890 (0.016)
N=40 0.961 (0.002) 0.949 (0.020) 0.968 (0.003) 0.893 (0.009)

High
N=10 0.833 (0.146) 0.740 (0.164) 0.894 (0.108) 0.689 (0.303)
N=20 0.850 (0.129) 0.795 (0.143) 0.909 (0.084) 0.695 (0.281)
N=40 0.871 (0.055) 0.809 (0.102) 0.928 (0.035) 0.705 (0.259)

Btw-subj Subject-speci�c time courses Covariate E�ects
Var. Corr.(SD) MSE(SD)

hc-ICA Dual.Reg. hc-ICA Dual.Reg.
Low
N=10 0.998 (0.001) 0.987 (0.010) 0.048 (0.019) 0.154 (0.055)
N=20 0.998 (0.001) 0.995 (0.004) 0.021 (0.003) 0.127 (0.044)
N=40 0.998 (0.001) 0.994 (0.004) 0.012 (0.001) 0.111 (0.030)

Medium
N=10 0.993 (0.010) 0.970 (0.028) 0.273 (0.088) 0.485 (0.151)
N=20 0.998 (0.003) 0.976 (0.016) 0.117 (0.015) 0.285 (0.076)
N=40 0.998 (0.002) 0.991 (0.008) 0.064 (0.005) 0.187 (0.041)

High
N=10 0.948 (0.021) 0.903 (0.045) 0.387 (0.157) 0.783 (0.325)
N=20 0.978 (0.018) 0.925 (0.029) 0.224 (0.075) 0.532 (0.271)
N=40 0.990 (0.015) 0.934 (0.022) 0.131 (0.056) 0.389 (0.198)

to 96%, which are lower than the EM algorithm for the TC-GICAmodel in

(Guo, 2011). The main reason is that compared with the model in (Guo,

2011), which assumes common spatial maps across subjects, hc-ICA in-
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volves a signi�cantly larger number of parameters and latent variables

by incorporating subject-speci�c ICmaps and spatially varying covariate

e�ects on each IC. The dramatic increase in the number of parameters

for hc-ICA with larger q leads to the slightly decreased convergence rate.

In practice, if the EM algorithm experiences convergence issues due to a

large number of ICs, one can consider using existing group ICA software

to �rst identify the uninteresting ICs, linearly remove them from the ob-

served data and then perform hc-ICA on the new data with a smaller

number of ICs. This technique has been commonly used in ICA applica-

tions to remove artifact-related components (Tohka et al., 2008; Gri�anti

et al., 2014).

Table 2.2: Simulation results for comparing the subspace-based approx-
imate EM and the exact EM based on 50 runs. Mean and standard devia-
tion of correlations between the true and estimated spatialmaps and time
courses are presented. The mean and standard deviation of the MSE of
the covariate estimates are also provided.

Population-level spatial maps Subject-speci�c spatial maps
Corr(SD) Corr(SD)

# of IC Exact EM Approx. EM Exact EM Approx. EM
q=3 0.981(0.003) 0.981(0.001) 0.986(0.004) 0.981(0.002)
q=6 0.980(0.006) 0.980(0.006) 0.985(0.012) 0.981(0.011)
q=10 0.969(0.022) 0.963(0.020) 0.972(0.027) 0.970(0.022)

Subject-speci�c time courses Covariate E�ects
Corr(SD) MSE(SD)

# of IC Exact EM Approx. EM Exact EM Approx. EM
q=3 0.998(0.001) 0.998(0.000) 0.048(0.020) 0.048(0.019)
q=6 0.997(0.003) 0.995(0.002) 0.069(0.024) 0.070(0.022)
q=10 0.992(0.016) 0.992(0.009) 0.105(0.033) 0.112(0.028)

Time in miniute Proportions of Convergence
# of IC Exact EM Approx. EM Exact EM Approx. EM
q=3 9.91 5.22 100% 100%
q=6 71.05 9.09 100% 100%
q=10 860.10 19.02 96% 96%
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2.3.3 Simulation study III: performance of the proposed infer-

ence procedures for covariate e�ects

We examine the performance of our inference procedures for β̂(v) in

the third simulation study. We simulated fMRI datasets with two source

signals and considered sample sizes of N = 20, 40, 80. We generated two

covariates in the same manner as in Simulation Study I. To facilitate

computation, we generated images with the dimension of 20 × 20. The

variance of between-subject random variabilities was 0.25 for both spatial

source signals, and the within-subject variance was 0.4. We applied our

hc-ICA method and dual-regression ICA for the simulated datasets and

tested for the covariate e�ects using bothmethods. The hypotheses were

H0 : βk`(v) = 0 versus H1 : βk`(v) 6= 0 at each voxel. Speci�cally, for hc-ICA,

hypothesis tests were conducted for β(v) using the test proposed in sec-

tion 2.5. In comparison, dual-regression method tested covariate e�ects

by performing post-ICA regressions of the estimated subject-speci�c IC

maps. We estimated the Type-I error rate with the empirical probabili-

ties of not rejectingH0 at voxels such that βk`(v) = 0. We also estimated the

power of the tests with the empirical probabilities of rejectingH0 at voxels

with non-zero values for the covariate e�ects, i.e., βk`(v) ∈ {1.5, 1.8, 2.5, 3.0}.

We report the average of theType-I error rates at various signi�cance lev-

els, as well as and the powers with regard to di�erent alternative hypoth-

esis, in Table 2.3. According to Table 2.3, the type-I error rates from our

inference method are always lower than those from dual-regression ICA.

We do note that our Type-I error rates are slightly higher than the nom-

inal level mainly due to the approximation in the inference procedure.

From Table 2.3, we can also see that our method consistently demon-

strate higher statistical power than dual-regression ICA. The results indi-

cate that the proposed inferencemethod based on hc-ICA providesmore

reliable and powerful inference about the covariate e�ects on the func-

tional networks than the TC-GICA based dual-regression method.
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Table 2.3: Simulation results for the inference of β(v) based on 1000 runs.
Type-I errors are averaged across all voxels with βk`(v) = 0; powers are
averaged across voxels having the same values of βk`(v) 6= 0.

N=20 N=40 N=80
Type-I error analysis:
size hc-ICA Dual.Reg. hc-ICA Dual.Reg hc-ICA Dual.Reg
0.01 0.014 0.029 0.012 0.025 0.012 0.018
0.05 0.062 0.084 0.056 0.076 0.055 0.062
0.10 0.129 0.205 0.118 0.190 0.112 0.149
0.50 0.522 0.580 0.516 0.565 0.514 0.557
0.80 0.835 0.872 0.820 0.856 0.810 0.840

Power analysis (test size: 0.05):
β(v) hc-ICA Dual.Reg. hc-ICA Dual.Reg hc-ICA Dual.Reg
1.5 0.144 0.130 0.256 0.203 0.404 0.284
1.8 0.268 0.224 0.474 0.390 0.812 0.548
2.5 0.589 0.475 0.862 0.705 0.963 0.839
3.0 0.907 0.845 1.000 0.922 1.000 1.000

2.4 Discussion

We propose a hierarchical covariate-adjusted ICA (hc-ICA) model to for-

mally quantify and test di�erences in brain functional networks related

to subjects’ demographic, clinical and biological characteristics. Our hc-

ICA approach can be applied to study brain networks in both task-related

and resting state fMRI studies. We develop a maximum likelihood esti-

mation method based on EM algorithms for hc-ICA. We use an e�cient

approximate procedure tomake inferences about covariate e�ects in our

model. Simulation studies show that ourmethods providemore accurate

estimation and inference for covariate e�ects on brain networks than the

widely used dual-regressionmethod. Application of hc-ICA to the Grady

PTSD Study reveals important di�erences in brain functional networks

between PTSD+ and PTSD− African American women, after adjusting

for their ages and depression scores.

One of the main challenges in statistical modeling of brain imaging

is the heavy computation load. In this chapter, we develop computa-
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tionally e�cient estimation and inference procedures for the proposed

hc-ICA model. In particular, by exploiting sparsity in fMRI source sig-

nals, the subspace-based EM algorithm signi�cantly reduces the compu-

tational time via concentration of probabilitymasses on a subspace of the

latent multinomial variables. We show theoretically that the subspace-

based approximate method is supported by the characteristics of fMRI

signals. We demonstrate empirically that the approximate EM provides

highly accurate results. The de�nition of the subspace implies that there

is little overlap in the spatial distributions of fMRI source signals. This

is supported by �ndings in neuroscience literature which showed that

brain functional networks are mostly separate (Beckmann et al., 2005;

Smith et al., 2009). However, there are a few network hubs in the brain,

consisted of a very small proportion of voxels, that may be involved in

multiple networks. To investigate the performance of the subspace-based

EM in this case, we have conducted additional simulation studies which

generated data from overlapping source signals. Results show that the

subspace EM still maintains good performance in recovering overlap-

ping spatial signals.

Our hc-ICA model estimation is performed via a formal and uni�ed

maximum likelihood estimation which simultaneously estimates all pa-

rameters and latent variables in the model. By doing so, we improve

the accuracy in estimating the brain networks on both population- and

individual-level signi�cantly; we also achieve higher statistical power in

detecting di�erences in the networks. This holistic estimation approach

does lead to heavier computation load compared with TC-GICA two-

stage methods. The computation can be accelerated using several strate-

gies. First, based on preliminary analysis of the data, we can identify

ICs that are not of strong interest in a study, apply the standard proce-

dure mentioned at the end of section 4.2 to remove them from the data,

and then apply hc-ICA model to investigate group di�erences in the re-

maining ICs. Second, we can also apply standard multi-process/multi-
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thread computing techniques to reduce computational time at a large

scale, since most parts of our EM algorithm can be parallelized for each

voxel (see supplementary material section 2-3 for details).

One potential extension to hc-ICA is to incorporate spatial depen-

dence on modeling the spatially varying covariate e�ects β(v). This can

help increase the accuracy in detecting covariate-related network di�er-

ences when they are spatially-correlated. Furthermore, we can accom-

modate spatial dependence in the residual terms in both the �rst and the

second level of the hc-ICAmodel, whichmay help improve the accuracy

and e�ciency of the propose hc-ICA framework for investigating di�er-

ences between functional networks.

2.5 Appendices

2.5.1 The Conditional Expectation Function in the E-step

The E-step of our EM algorithm evaluates the conditional expectation of

the complete data log-likelihood which be expressed as

Q(Θ|Θ̂(k)) = Q1(Θ | Θ̂(k)) +Q2(Θ | Θ̂(k)) +Q3(Θ | Θ̂(k)) +Q4(Θ | Θ̂(k)),

where

Q1(Θ | Θ̂(k)) = −
NV

2
log|E|−

1

2

V∑
v=1

N∑
i=1

tr
{
E−1

[
yi(v)yi(v)

′ − 2AiE[si(v)|y(v); Θ̂(k)]yi(v)
′

+AiE[si(v)si(v)
′|y(v); Θ̂(k)]A ′i

]}
,

Q2(Θ | Θ̂(k)) = −
NV

2
log|D|−

1

2

V∑
v=1

N∑
i=1

tr
{
D−1

[
E[si(v)si(v)

′|y(v); Θ̂(k)]

+ E[s0(v)s0(v) ′|y(v); Θ̂(k)] + β(v) ′xix
′
iβ(v) − 2E[si(v)s0(v) ′|y(v); Θ̂(k)]

+ 2E[s0(v)|y(v); Θ̂(k)]x ′iβ(v) − 2E[si(v)|y(v); Θ̂(k)]x ′iβ(v)
]}
,
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Q3(Θ | Θ̂(k)) = −
1

2

V∑
v=1

q∑
`=1

m∑
j=1

p[z`(v) = j|y(v); Θ̂(k)]

{
logσ2

`,j +
1

σ2
`,j

[
µ2
`,j

+ E[s0`(v)
2|z`(v) = j; y(v), Θ̂(k)] − 2µ`,jE[s0`(v)|z`(v) = j, y(v); Θ̂(k)]

]}
,

Q4(Θ | Θ̂(k)) =

V∑
v=1

q∑
`=1

m∑
j=1

p[z`(v) = j|y(v); Θ̂(k)] logπ`,j,

and y(v) = [y1(v) ′, ...,yN(v) ′] ′ contains all the observed data at voxel v (for

all the N subjects). To evaluate the Q-functions, we need the joint condi-

tional distribution, p[s(v), z(v) | y(v); Θ]where s(v) = [s1(v) ′, ..., sN(v) ′, s0(v) ′] ′.

2.5.2 The derivation of conditional probabilities in the E-step

In this section, we provide details of the E-step in our exact EM. We

mainly focus on deriving p[s(v), z(v) | y(v); Θ] as well as its marginals. By

collapsing our model across the N subjects as, for v = 1, ..., V ,

A ′y(v) = Bx +Uµz(v) + Rrz(v) + e(v), (2.16)

where rz(v) = [γ1(v) ′, ...,γN(v) ′,ψ ′z(v)]
′ concatenates error terms in the sec-

ond and third level models, e(v) = [e1(v) ′, ...,eN(v) ′] ′ contains random er-

rors for the �rst level model across all subjects, x = [x ′1, ..., x
′
N] ′ represents

all the covariatemeasurements,B = IN⊗β(v) ′,U = 1N⊗Iq,R = [INq, 1N⊗Iq]

and A = blockdiag(A1, ...,AN) is a combined mixing matrix with Ais as

its block diagonal elements (A is also orthogonal). It is trivial to have

that in (2.16), e(v) ∼ N(0,Υ) and rz(v) ∼ N(0,Γz(v)) where Υ = IN ⊗ E and

Γz(v) = blockdiag(IN ⊗D,Σz(v)). Thus (2.16) can be represent as

y0(v) ∼ N(Rrz(v),Υ), rz(v) ∼ N(0,Γz(v))

where y0(v) = A ′y(v) − Bx − Uµz(v). This representation is a canonical

Bayesian general linearmodel given z(v). Then given z(v) and conditional
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on y(v), p[rz(v) | y(v), z(v); Θ] = g(µr(v)|y(v),Σr(v)|y(v)) where

µr(v)|y(v) = Σr(v)|y(v)R ′Υ−1[A ′y(v) − Bx −Uµz(v)],

Σr(v)|y(v) =
(
R ′Υ−1R + Γ−1

z(v)

)−1
.

It is trivial to show that s(v) = Prz(v) +Qz(v), where

P =

INq, U

0, Iq

 , Qz(v) =

Bx +Uµz(v)

µz(v)

 ,
we can easily have that:

p[s(v) | y(v), z(v); Θ] = g(Pµr(v)|y(v) +Qz(v),PΣr(v)|y(v)P
′). (2.17)

Next we need to �nd p[z(v) | y(v); Θ]. From (2.16), we have that p[A ′y(v) |

z(v)] = g(Bx +Uµz(v),RΓz(v)R ′ + Υ). Notice that p[z(v)] =
∏q
`=1 π`,z`(v) for all

v, by simply applying the Bayes’ theorem,

p[z(v) | y(v); Θ] =

[∏q
`=1 π`,z`(v)

]
g(A ′y(v);Bx +Uµz(v),RΓz(v)R ′ + Υ)∑

z(v)∈R
[∏q

`=1 π`,z`(v)

]
g(A ′y(v);Bx +Uµz(v),RΓz(v)R ′ + Υ)

,

(2.18)

where R is the range of z(v) = [z1(v), ..., zq(v)] ′, z`(v) = 1, ...,m, which con-

tains mq distinct vectors in Rq.

Given this probability distributions, the moments in the Q-functions

can be easily derived and they all have analytical forms.

2.5.3 Details of the M-step in the exact EM

In the M-step, we update the parameters within our model as follows:

• Update β(v): for v = 1, ..., V ,

β̂(v)(k+1) =

(
N∑
i=1

xix
′
i

)−1 N∑
i=1

{
xi

(
E[si(v)

′|y(v); Θ̂(k)] − E[s0(v) ′|y(v); Θ̂(k)]
)}

.

(2.19)
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• Update Ai: for i = 1, ..., N, we let

Ă
(k+1)
i =

{
V∑
v=1

yi(v)E[si(v)|y(v); Θ̂(k)]

}{
V∑
v=1

E[si(v)si(v)
′|y(v); Θ̂(k)]

}−1

,

(2.20)

and then update Â(k+1)
i = H(Ă

(k+1)
i ) where H(·) is the orthogonaliza-

tion transformation.

• Update E = Iqν
2
0 with:

ν̂
2(k+1)
0 =

1

TNV

V∑
v=1

N∑
i=1

{
yi(v)

′yi(v) − 2yi(v)
′Â

(k+1)
i E[si(v)|y(v); Θ̂(k)]

(2.21)

+ tr
[
Â

(k+1)′
i Â

(k+1)
i E[si(v)si(v)

′|y(v); Θ̂(k)]
]}
.

• Update D = diag(ν2
1, ..., ν

2
q): for ` = 1, ..., q,

ν̂
2(k+1)
` =

1

NV

V∑
v

N∑
i=1

{
E[si`(v)

2|y(v); Θ̂(k)] + E[s0`(v)
2|y(v); Θ̂(k)] (2.22)

− 2E[si`(v)s`(v)|y(v); Θ̂(k)] + β̂`(v)
(k+1)′xix

′
iβ̂`(v)

(k+1)

+ 2
(
E[s0`(v)|y(v); Θ̂(k)] − E[si`(v)|y(v); Θ̂(k)]

)
x ′iβ̂`(v)

(k+1)

}
,

where β̂`(v)(k+1) is the `th column of β̂(v)(k+1).

• Update π`,j:

π̂
(k+1)
`,j =

1

V

V∑
v=1

p[z`(v) = j|y(v); Θ̂(k)]. (2.23)

• Update µ`,j:

µ̂
(k+1)
`,j =

∑V
v=1 p[z`(v) = j|y(v); Θ̂(k)]E[s0`(v)|z`(v) = j, y(v); Θ̂(k)]

Vπ̂
(k+1)
`,j

. (2.24)
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• Update σ2
`,j :

σ̂
2(k+1)
`,j =

∑V
v=1 p[z`(v) = j|y(v); Θ̂(k)]E[s0`(v)

2|z`(v) = j, y(v); Θ̂(k)]

Vπ̂
(k+1)
`,j

−[µ̂
(k+1)
`,j ]2.

(2.25)

Here, E[s0`(v) | z`(v) = j, y(v); Θ], E[s0`(v)
2 | z`(v) = j, y(v); Θ] and p[z`(v) = j |

y(v); Θ] are the marginal conditional moments and probability related to

the `th IC. They are derived by summing across all the possible states of

the other q− 1 ICs as follows,

E[s0`(v) | z`(v) = j, y(v); Θ] =

∑
z(v)∈R(`,j) p[z(v) | y(v); Θ]E[s0`(v) | y(v), z(v); Θ]

p[z`(v) = j | y(v); Θ]
,

(2.26)

p[z`(v) = j | y(v); Θ] =
∑

z(v)∈R(`,j)

p[z(v) | y(v); Θ]. (2.27)

where R(`,j) is de�ned as {zr ∈ R : zr` = j} for all ` = 1, .., q, j = 1, ...,m.

2.5.4 Proof of Theorem 1

We prove Theorem 1 by introducing a lemma.

Lemma1. If the elements of z(v) = [z1(v), ..., zq(v)] ′ are independentwith p[z`(v) =

j] = π`,j for j = 1, ...,m, ` = 1, ..., q, then p[z(v) ∈ R0 ∪ R1] = F(κ) where

F(κ) =
1 +
∑q
`=1 κ`∏q

`=1(1 + κ`)
, (2.28)

with κ = [κ1, ..., κq] ′ and κ` = p[z`(v) 6= 1]/p[z`(v) = 1] for all ` = 1, ..., q.

The parameters κ = [κ1, ..., κq] ′ can be interpreted as the odds for a ran-

dom voxel of being activated/deactivated versus exhibiting background

�uctuation in IC `. Lemma 1 indicates that the probability of interest,

p[z(v) ∈ R0 ∪ R1], depends on {π`,j} only through the odds. The proof of

Lemma 1 is provided as follows.

Proof. Let τ`,j = π`,j/π`,1, j = 2, ...,m, then κ` = p[z`(v)6=1]
p[z`(v)=1] =

∑m
j=2 τ`,j. By

de�nition R0 ∪ R1 = ∅ and p[z(v) ∈ R0] =
∏q
`=1 p[z`(v) = 1] =

∏q
`=1 π`,1. For a



50

given z(v) ∈ R1, suppose zt(v) = j > 1 for some t ∈ {1, ..., q} and z` 6=t(v) = 1,

then p[z(v)] = τt,j
∏q
`=1 π`,1. This implies that

p[z(v) ∈ R1] =

 q∑
t=1

m∑
j=2

τt,j

 q∏
`=1

π`,1 =

(
q∑
`=1

κ`

)
q∏
`=1

π`,1.

Also we have that
∑m
j=1 π`,j = 1 for all ` = 1, ..., q, then π`,1 + π`,1

∑m
j=2 τ`,j =

(1 + κ`)π`,1 = 1, which gives π`,1 = 1/(1 + κ`). Thus

p[z(v) ∈ R0 ∪ R1] = p[z(v) ∈ R0] + p[z(v) ∈ R1]

=

(
1 +

q∑
`=1

κ`

)
q∏
`=1

π`,1

=
1 +
∑q
`=1 κ`∏q

`=1(1 + κ`)
(2.29)

Based on Lemma 1, we prove Theorem 1 in the following.

Proof. We notice that

κ` =
p[z`(v) 6= 1]

p[z`(v) = 1]
=

1 − π`,1
π`,1

. (2.30)

For all 0 < ε < 1, let δ =
√
ε√
ε+q

∈ (0, 1). Then if π`,1 > 1 − δ, i.e., π`,1 >
q√
ε+q

,

we have that 0 < κ` <
δ

1−δ for all ` = 1, ..., q. Based on the Taylor expansion

for p[z(v) ∈ R0 ∪ R1] = F(κ) at κ = 0, ∃0 < κ0
` < κ` for all ` = 1, ..., q, such that

p[z(v) ∈ R0 ∪ R1] = F(0) +

q∑
`=1

∂F

∂κ`

∣∣∣∣
κ`=κ

0
`

κ`

= 1 −

q∑
`=1

∑
j6=` κ

0
j∏

j6=`(1 + κ0
j)

1

(1 + κ0
`)

2
κ`

> 1 −

q∑
`=1

∑
j6=`

κjκ`

> 1 −

(
qδ

1 − δ

)2

= 1 − ε (2.31)
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2.5.5 Remarks on the subspace-based approximate EM

In the approximate EM, the conditional distribution z(v) | y(v) is deter-

mined by the probability masses

p̃[z(v) | y(v),Θ] =


[
∏q
`=1 π`,z`(v)]g(A ′y(v);Bx+Uµz(v),Γz(v)R ′+Υ)∑

z(v)∈R̃[
∏q
`=1 π`,z`(v)]g(A ′y(v);Bx+Uµz(v),Γz(v)R ′+Υ)

, z(v) ∈ R̃

0, z(v) ∈ R\R̃

(2.32)

where R̃ = R0 ∪ R1. Thus we use a sparse vector of probability masses,

with concentration of measures on the subset R̃ = R0∪R1, to approximate

the exact conditional distribution of z(v) given y(v). The follow-up eval-

uations of the conditional moments in the E-step only involves z(v) ∈ R̃.

And the corresponding de�nition of R(`,j) is adapted to R̃(`,j) = {zr ∈ R̃ :

zr` = j}.

2.5.6 Thresholding the spatial maps based on theML estimates

for functional brain networks

We threshold the estimated spatial maps to identify the activated/deac-

tivated regions of the brain in each functional network. This goal can be

achieved naturally through our model estimation based on conditional

probabilities. To be speci�c, if we assume that z`(v) = j indicates that the

`th component is activated at voxel v, then we can calculate p[z`(v) = j |

y(v); Θ̂] =
∑
z(v)∈R(`,j) p[z(v) | y(v); Θ̂], where R(`,j) is de�ned as {zr ∈ R : zr` = j}

for all ` = 1, .., q, j = 1, ...,m. This probability characterizes the state of

voxel v within network `. We can then obtain the spatial map for a func-

tional network by thresholding p[z`(v) = j | y(v); Θ̂] with a pre-speci�ed

probability.

2.5.7 Specifying the initial values for hc-ICA

The initialization of hc-ICA is speci�ed as follows throughout this chap-

ter:
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• Concatenate fMRI data from each subject under the typical TC-

GICA setting; perform group ICA based on FastICA with g(u) = u3

non-linearity;

• Each subject’s pre-processed fMRI data were regressed against the

group spatialmaps obtained via TC-GICA to obtain the initial values

for Â(0)
i , i = 1, ..., n, the subject-speci�c mixing matrices.

• Each subject’s pre-processed fMRI data were then regressed against

Â
(0)
i to obtain initial estimates ŝi

(0)(v) ;

• ŝi
(0)(v) was then regressed against xi(v) to obtain the initial estimates

β̂(v)(0).

• Speci�c m = 2 for the MoG source distribution model. Specify-

ing the following initial values for parameters in the MoG: π̂(0) =

[0.9, 0.1] ′, µ̂(0) = [0, 1] ′ and σ̂2(0) = [1, 1] ′;

• set initial values for error variances: D̂(0) = Ê(0) = Iq.

An alternative way to specifying initial values in the MoG and error vari-

ances is to �t MoG distributions on the estimated source signals ŝi
(0)(v)

and use the estimated π̂, µ̂ and σ̂2 as initial guesses. However, we found

that our EM algorithms were rather robust against the speci�cations for

these parameters throughout empirical analysis, thus we choose to �xed

these initial values as ones given above.

2.5.8 Additional Simulation Studies

Comparison between hc-ICA and dual-regression with larger number

of ICs

In this section, we conducted simulation studies under the same setting of

Simulation I in the chapter but increased the number of ICs to q = 10. The

goal is to evaluate the performance of hc-ICA as compared to a TC-GICA

two-stage analysis, i.e. dual-regression method, when the number of ICs
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is larger. We estimated parameters in hc-ICA using the approximate EM

to speed up computation in the simulation.

Two levels of between-subject variabilities were considered: low (D =

0.5I10) and high (D = 2I10). Simulation results are summarized inTable 2.4.

Based on Table 2.4, we con�rmed that the advantage of hc-ICA over the

dual-regression in terms of estimating the spatialmaps (both population-

level and subject-speci�c), time courses and covariate e�ects still holds

when the number of ICs becomes larger.

Performance of the approximate EM for data that deviate from condi-

tions in Theorem 1

We conducted simulations to evaluate the validity of the approximate

EM algorithm when there are overlapping regions between the ICs. The

simulation setting was similar to the one described in Simulation I except

that we considered 40×40×1 2Dplaneswith q = 2 ICs for simplicity. In this

simulation, the 2 group ICs shared overlapping activated regions, repre-

senting two brain networks involving overlapping regions in the brain.

We considered three sizes of overlapping regions: small (5.3% of the ac-

tivated regions overlapped), medium (9.5% of the activated regions over-

lapped) and large (14.8% of the activated regions overlapped).

We applied hc-ICA to 50 replicates of the simulation data. Figure 3.3

presents the true group ICmaps and the average estimates from both the

exact EM algorithm and the approximate EM. The overlapping regions

are marked by the red squares in the true signal maps (the top row). The

activated regions are marked by the yellow color. For each panel, the two

columns correspond to the two di�erent ICs.

From Figure 3.3, we can see that even with moderate to high levels of

overlapping (9.5%−14.8%), the approximate EM algorithm can still gener-

ate highly comparable IC maps compared with the exact EM and cor-

rectly identi�ed the activation of the overlapping regions in both ICs.

However, we do observe attenuated signals from the approximate EM
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small overlapping region medium overlapping region

large overlapping region

Figure 2.5: Evaluating the validity of subspace-based approximation EM for
data generated from overlapping ICs: three panels show results from di�erent
level of overlapping; the two columns in each panel correspond to di�erent ICs;
the three rows in each panel represent true source signals, estimates based on
the exact EM and estimates from the approximate EM
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at pixels in the overlapping region due to the restriction to the subspace.

In the following, we present a toy example to provide theoretical ex-

planation for why the subspace EM can capture overlapping source sig-

nals. We consider the case of two ICs, i.e. q = 2. For the latent state

variable z`(v), ` = 1, 2, z`(v) = 1 representing voxel v demonstrates back-

ground �uctuation in IC ` and z`(v) = 2 representing voxel v is activated

in IC `. Let s(v) = [s1(v), s2(v)] ′ represent the source signal at IC 1 and 2.

The IC estimates ŝ, which is based on the exact conditional expectation

of s(v), is given as follows ((v) is dropped for the ease of exposition):

ŝ = E[s | y,Θ] =
∑
z∈R

E[s | y, z,Θ]× p[z | y,Θ]

=E[s | y, z = [1, 1] ′,Θ]× p[z = [1, 1] ′ | y,Θ]

+ E[s | y, z = [1, 2] ′,Θ]× p[z = [1, 2] ′ | y,Θ]

+ E[s | y, z = [2, 1] ′,Θ]× p[z = [2, 1] ′ | y,Θ]

+ E[s | y, z = [2, 2] ′,Θ]× p[z = [2, 2] ′ | y,Θ].

With the approximate EM, by restricting z within R̃, we set p[z = [2, 2] ′ |

y,Θ] to be zero and the approximate estimates ˆ̃s is then

ˆ̃s = Ẽ[s | y,Θ] =E[s | y, z = [1, 1] ′,Θ]× p[z = [1, 1] ′ | y,Θ]

1 − p[z = [2, 2] ′ | y(v),Θ]

+ E[s | y, z = [1, 2] ′,Θ]× p[z = [1, 2] ′ | y,Θ]

1 − p[z = [2, 2] ′ | y(v),Θ]

+ E[s | y, z = [2, 1] ′,Θ]× p[z = [2, 1] ′ | y,Θ]

1 − p[z = [2, 2] ′ | y(v),Θ]

For voxels that are activated in both IC 1 and IC2, although we do not

have the state [2, 2] in the restricted R̃, there will still be signi�cant amount

of probability masses assigned to both z = [2, 1] ′ and z = [1, 2] ′. Conse-

quently, in ˆ̃s = [ˆ̃s1, ˆ̃s2] ′, both ˆ̃s1 and ˆ̃s2 will still have values that are signif-

icantly di�erent from zero indicating that the voxel is activated in both

IC1 and IC2. The consequence of the restricting z to R̃ will be mainly

re�ected in the loss of some accuracy in the estimates ˆ̃s1 and ˆ̃s2. These
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illustrative derivations are validated by the results from the above simu-

lation studies (Figure 3.3).

2.5.9 Checking the stability of our EM algorithm for the PTSD

data analysis

We repeated our real data analysis with 50 di�erent initial values. For each

of the 50 initializations, we simulated subject-speci�c noisematrices with

random Gaussian elements. Then we added these noises to the initial

guesses Â(0)
i , computed from TC-GICA according to section 7. The noise

contaminated mixing matrices were then orthogonalized and treated as

our new initial guesses, Â(0)
i . All other initial parameters were then de-

rived based on this new Â(0)
i following the direction in section 7. The pro-

cedure above raises two sources of randomness: one from the TC-GICA

estimates of Ai which mainly introduces sign changes and permutations

to their columns; another one from the Gaussian noise matrices that we

added to the TC-GICA estimates.

We ran our approximate EM algorithm on the PTSD data using the 50

di�erent sets of initializations and reported the results from the one that

corresponded to the highest observed data log-likelihood.

To check for robustness, we computed the correlations between all

pairs of initializations for their resultingmixingmatrices, group ICmaps

and covariate e�ects. We report in Table 2.5 the medians of these corre-

lations, the inter-quantile ranges (IQR) as well as the 25th percentile (Q1)

and 75th percentile (Q3). The high correlations between replicates from

Table 2.5 indicates that our algorithm can generate stable estimates in

general.
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Table 2.5: Checking the stability of EM algorithm in real data using the
resulting correlations between pairs form 50 di�erent initialization (IQR:
interquantile range; Q1: the 25th percentile; Q3: the 75th percentile)

Mixing matrices Group IC maps Covariate e�ects
Median 0.997 0.993 0.987
IQR 0.003 0.005 0.010

(Q1, Q3) (0.996, 0.999) (0.991, 0.996) (0.982, 0.992)
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Chapter 3

Bayesian Spatial Feature

Selection for Massive

Neuroimaging Data via

Thresholded Gaussian

Processes

This chapter is joint work with Dr. Jian Kang.

3.1 Feature selection within the spatially varying co-

e�cient functions

Westartwith general notations andde�nitions. Denote byRp a p-dimensional

real Euclidean space for any p > 1. For anyβ ∈ Rp, writeβ = (β1, β2, . . . , βp)T,

de�ne ‖β‖∞= max16k6p|βk|, ‖β‖1=
∑p
k=1|βk| and ‖β‖2=

√∑p
k=1 β

2
k. De-

note by R ⊂ Rd a compact subset of the standard brain space (d = 2

or 3). Let s1, . . . , sn ∈ R be a set of spatial locations where brain signals

are measured. An empirical measure on R induced by {s1, . . . , sn} is de-

�ned as Pn(ds) = 1
n

∑n
i=1 I[si ∈ ds], where the indicator function I[A] = 1

if event A occurs, I[A] = 0, otherwise. For a scalar-valued function β(·) :
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R 7→ R, de�ne ‖β(·)‖∞= sups∈R|β(s)| and ‖β(·)‖1=
∫
s∈R|β(s)|Pn(ds). For a

p-dimensional vector-valued function β(s) = [β1(s), . . . , βp(s)]T : R 7→ Rp,

de�ne ‖β(·)‖1,∞= max16k6p‖βk(s)‖1. Denote by C(R) a collection of all the

continuous functions de�ned on R. Let Dαβ be a partial derivative oper-

ator on function β(·) (given its existence) which is given by ∂‖α‖1β

∂s
α1
1 ···∂s

αd
d

for

α ∈ Rp. Denote by Cρ(R) a set of functions β de�ned on Rwith continuous

partial derivatives Dαβ for all α such that ‖α‖16 ρ.

3.1.1 The spatially varying coe�cient model for neuroimaging

data

Suppose the data set consists of m subjects. For each subject j, let yj(s) be

the brain signalmeasured from a certain imagingmodality at location s ∈

R; and there are also p covariates are collected, denoted xj = [xj1, . . . , xjp]T,

for j = 1, . . . ,m. The spatially varying coe�cient model (SVCM) for neu-

roimaging data is given by

yj(s) = xT
j β

0(s) + ej(s), (3.1)

in which elements ofβ0(s) = [β0
1(s), . . . , β0

p(s)]T are the spatially varying co-

e�cient functions (SVCFs) de�ned on the brain space R. It characterizes

associations between covariates and imaging outcomes: β0
k(s) (k = 1, . . . , p)

quanti�es the e�ects of the kth covariate at brain location s. The zero-

mean error process ej(s) is assumed to be spatially independent across

the whole brain domain for each subject, conditional on a variance pro-

cess σ2(s). Speci�cally in our model, we assume that ej(s)
iid
∼ N(0, σ2(s)).

For neuroimaging data fromcommonly used imagingmodalities, only

outcomes at a number of locations, s1, . . ., sn, are observed. At these lo-

cations, the SVCM proposed in (3.1) for the recorded neuroimaging data

can be expressed as

[y(si) | β
0(si), σ

2(si)] ∼ N(Xβ(si), σ
2(si)Im) (3.2)
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independently for all i = 1, . . . , n, in which y(si) = [y1(si), . . . , ym(si)]
T, X =

[x1, . . . , xm]T and e(si) = [e1(si), . . . , em(si)]
T. For simplicity, we denote by

Y = {y(si)}
n
i=1 an m × n matrix recoding all the neuroimaging outcomes

involved in the study.

In neuroimaging studies, there exists a natural region partition of the

whole brain domain R into bounded connected sets R1, ...,RG with non-

empty interiors, such that R = ∪Gg=1Rg, Rg∩Rg′ = ∅, ∀g 6= g′. Inmany cases,

one can treat Rg as neuroanatomical regions from commonly used label-

ing systems such as the Automated Anatomical Labeling (AAL) (Tzourio-

Mazoyer et al., 2002). For region of interest (ROI) based analysis, each

ROI is one parcellated region. For seed-based region-level analysis, Rg

can be regarded as the clusters showing strong functional connectivities

based on preliminary results. In some voxelwise analysis with no regional

information to be incorporated, we can simply consider each voxel (a 3D

cubic) as a region and the centers of voxels as observed brain locations

s1, . . . , sn.

To utilize the proposed SVCM for analyzing neuroimaging data and

selecting features, we state our assumptions for the SVCF in model (3.1).

Speci�cally, we work with region-wise smooth (ρ-times continuously dif-

ferentiable to be accurate) functions with structured sparsity, which can

be mathematically expressed as follows: a varying coe�cient function in

model (3.1), say β0(s) (omitting subscripts k = 1, ..., p here for the ease of

exposition), must satisfy that:

(C1) there exists an index set I1 ⊂ {1, ..., G}, such that β0(s) × I[s ∈ Rg] ∈

Cρ(Rg) where Rg is the closure of Rg for all g ∈ I1 with ρ =
[
d
2

]
+ 1;

(C2) β0(s) is bounded away from zero on any Rg for all g ∈ I1, that is,

λ0 = inf
s∈∪g∈I1Rg

|β0(s)|> 0;

(C3) let I0 = {1, ..., G}\I1, then β0(s) = 0 for all s ∈ ∪g∈I0
Rg.
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Based on the de�nitions above, we introduce, for each brain region, an

binary feature selection indicator function r0g(s) = I[s ∈ Rg] × I[g ∈ I1]

which re�ects the existence of features within Rg. We call the vector-

valued function r0(s) = [r01(s), ..., r0G(s)]T, the range of which is {0, 1}G, the

selection indicator function of β(s).

The conditions on the SVCFs can be interpreted as follows: (C1) re-

quires that the functionsmust be smooth within the closure of each brain

region, which impliesmore homogeneous covariate e�ects at the regional

level; (C2) indicates that jump discontinuities and sharp edge e�ects ex-

ist at the boundaries of brain regions demonstrating features of interest;

(C3) introduces sparsity into each SVCF in model (3.1) and restricts the

sparsity structure by a prespeci�ed region partition.

Throughout the rest of this chapter, the notation P(R1, ...,RG) (P in

short) stands for a set of functions de�ned on R with a known partition

satisfying (C1)–(C3); in the same vein, P(R1, ...,RG) (P in short) represents a

set of p-dimensional vector-valued functions, i.e.,P = {β0(s) = [β0
1(s), . . . , β0

p(s)]T :

β0
k(s) ∈ P, k = 1, . . . , p}.

3.1.2 The thresholded Gaussian process priors

Construction of the prior

A Gaussian process (GP) can be regarded as a probabilistic measure on

certain functional spaces, making it as popular prior models in Bayesian

nonparametric data analysis. In general, theGPprior, denoted by GP[µ(·), C(·, ·)],

is determined by its mean function µ : R 7→ R and the covariance kernel

function C : R × R 7→ R. A draw β(·) ∼ GP[µ(·), C(·, ·)] is a function de-

�ned on R such that any �nite collection of its function values are jointly

multivariate Gaussian. To be speci�c, for any choices of s1, . . . , sn ∈ R,

[β(s1), . . . , β(sn)]T ∼ N(µ,C)withµ = [µ(s1), . . . , µ(sn)]T andC = {C(si, sj)}16i6n,16j6n.

The boundedness and smoothness of random functions generated from

GPare determined through the covariance kernel function. Typical choices

for the covariance kernel functions include but not limited to the rational
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quadratic kernel, Matérn class of kernels, the square exponential kernel

(Rasmussen and Williams, 2006a).

To enable detailed feature selections within the SVCFs β0
k(s) ∈ P (k =

1, . . . , p) inmodel (3.1), we develop the thresholdedGaussian process (TGP)

prior, which can be represented as follows: β(s) ∼ TGP[τ2, θ2, λ, κ(·, ·)] im-

plies that

β(s) = β̃(s)Iλ[β̃(s)], (3.3)

β̃(s) = γ(s) + ε(s), (3.4)

γ(s) ∼ GP[0, τ2κ(s, s ′)], (3.5)

ε(s) ∼ GP[0, θ2χ(s, s ′)] (3.6)

for all s ∈ R, where

Iλ[β̃(s)] =

G∑
g=1

I

[
s ∈ Rg : inf

s∈Rg
|β̃(s)|> λ

]
(3.7)

is the thresholding function that generate region-wise sparse features;

λ > 0 is the thresholding parameter; τ2 > 0 and θ2 > 0 are variance pa-

rameters in the GPs; κ(·, ·) : R×R 7→ R is a kernel correlation function and

χ(s, s ′) is constructed from κ as χ(s, s ′) =
∑G
g=1 κ(s, s ′) × I[s, s ′ ∈ Rg]. The

thresholding construction in (3.7) is motivated by condition (C2) de�ning

the SVCF. It naturally leads to the de�nition of selection indicator pro-

cesses: rg(s) = [r1(s), ..., rG(s)]T in which rg(s) = I
[
s ∈ Rg : infs∈Rg |β̃(s)|> λ

]
.

As a result, (3.3) is equivalent to β(s) = β̃(s)
∑G
g=1 rg(s).

For voxel-wise analysis without regional information, the threshold-

ing function in (3.7) can be simpli�ed as Iλ[β̃(s)] = I[|β̃(s)|> λ], where s

denotes the center of a voxel. The GP β̃(s) in our prior is a combination

of one “global" GP, γ(s), which captures the general dependence struc-

tures across the whole brain domain and one “local" GP, ε(s), re�ecting

the dependence and variabilities within each parcellated brain region.

This construction can also naturally generate jumping discontinuities on
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Figure 3.1: Sampling SVCFs from the TGP prior

the boundaries of the brain regions.

We illustrate the procedure to sample the SVCF from our TGP priors

on a two-dimensional square region in Figure 3.1, where the dashed lines

parcellate the whole region into four equally spaced sub-regions. γ(s)

is smooth over the whole region; ε(s) is smooth within each sub-region

but has distinct jumps on the boundaries. The summation of these two

GPs is thresholded by λ to generate SVCFs. We also summarize some

key information regarding the SVCFs and our TGP prior in Table 3.1 for

comparison.

3.2 Theoretical Results

We �rst introduce two sets of extra conditions in addition to the con-

ditions (C1)-(C3) for the SVCFs. The design matrix X as de�ned in (3.2)

satis�es:

(X1) Let dmin and dmax be the smallest and largest eigenvalues of 1
mX

TX,

then 0 < dmin < dmax <∞.

For the kernel correlation functions κ(·, ·) in our proposed TGP priors,

we introduce the following condition:

(K1) κ(s, s ′) =
∏d
j=1 Kj(‖sj − s ′j‖) for some nowhere zero, continuous, sym-

metric density function (up to a normalization constant) Kj de�ned

on R.

(K2) κ(s, ·) has continuous partial derivates up to order 2ρ + 2 where ρ =[
d
2

]
+ 1.
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Theorem2. Let β0(s) ∈ P be an arbitrary SVCF satisfying conditions (C1)-(C3)

and suppose the partition number G < ∞. If 0 < λ < λ0, 0 < τ2, θ2 < ∞ and the

kernel function κ satis�es (K1), then the proposed prior

β(s) ∼ TGP[τ2, θ2, λ, κ(·, ·)],

given in (3.3)-(3.6) satis�es that

Π
(
‖β(s) − β0(s)‖∞< ε

)
> 0, for all ε > 0.

Theorem 2 demonstrates that the proposed TGP prior assign posi-

tivemeasures to arbitrarily small neighborhoods of all elements within P,

the family of spatially varying coe�cient functions de�ned in our model

(3.1). This property is essential, especially for Bayesian nonparametric

priors, since it is necessary for appropriate posterior behaviors and can

not be guaranteed in many cases.

Theorem 3. Let ε > 0 be an arbitrary positive number. Suppose that our ob-

served data y(s1), ...,y(sn) are independently generated from model (3.2) satis-

fying the following conditions

(a) p < m and G <∞;

(b) all the SVCFs in model (3.2) satis�es (C1)-(C3), i.e., β0(s) ∈ P ;

(c) the design matrix X satis�es condition (X1);

(d) the variance function σ2(s) satis�es infs∈R σ
2(s) > 0 and 1

m sups∈R σ
2(s) <

ε2dmin
8 log 2 .

If we assign a distinct TGP prior independently for each SVCF in model (3.2)

with kernel functions satisfying both (K1), (K2) and other conditions in Theorem

2, then the posterior distribution of β(s) satis�es that

Π [ Uε | y(s1), . . . ,y(sn) ]→ 1
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as n→∞ in Pn
β0 probability, where Uε =

{
β(s) ∈ P : ‖β(s) − β0(s)‖1,∞< ε

}
.

Theorem 3 justi�es the posterior consistency of the proposed TGP

prior given model (3.1) under the in�ll asymptotic framework. It implies

that, if a ground truth of the SVCFs exists and the data is generated ac-

cordingly, then the posterior distribution of β(s) can be concentrated to

an arbitrarily small ‖·‖1,∞ neighborhood around the truth as the number

of spatial locations goes to in�nity. The conditions of this theory also im-

ply that a small ratio between the number of subjects and the variance of

pure noise, i.e., sups∈R σ
2(s)

m , is also important to guarantee a good perfor-

mance of our method. One limitation of Theorem 3 is that it does not

apply to the voxel level analysis where G = n→∞. However, this type of

analysis generally works well empirically.

Although the ‖·‖1,∞ norm is not common in Bayesian asymptotic liter-

atures, a direct result based on Theorem 3 is the element-wise posterior

consistency for β(s) under the commonly used empirical ‖·‖1 norm, e.g.,

Ghosal et al. (2006), for a �xed design of spatial locations si. This results

from the independent TGPprior assignment for each functional element

of β(s).

Corollary 1. Let ε > 0 be an arbitrary positive number. Under the same assump-

tions and conditions in Theorem 3, the posterior distributions satis�es that, for

all k = 1, . . . , p,

Π [ Uε,k | y(s1), . . . ,y(sn) ]→ 1

as n→∞ in Pn
β0 probability, where Uε,k =

{
β(s) ∈ P : ‖β(s) − β0

k(s)‖1< ε
}
.

Of note, in neuroimaging studies, si are usually �xed 3D grid points,

thus we do not consider the ‖·‖1 norms with regard to randommeasures

for s when proving posterior consistency. For a �xed design within a �-

nite domain R (the volume of brain is limited), another useful direction

is to show posterior consistency under the ‖·‖1 norm with regard to the

Lebesgue measure. We see this as a potential extension to the theory de-
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velopment in the future work.

Theorem4. Weassume the conditions in Theorem 3 hold. For any speci�c SVCF

β0(s) ∈ P (dropping the subscript k) in model (3.2), let r0(s) be its selection indi-

cator function; for the prior β(s) ∼ TGP[τ2, θ2, λ, κ(·, ·)], let r(s) be the resulting

selection indicator processes, then

Π
[
r(s) = r0(s) | y(s1), . . . ,y(sn)

]
→ 1

as n → ∞ in Pn
β0 probability, where r(s) = r0(s) means r0g(s) = rg(s) for all

g = 1, ..., G.

Theorem 4 establishes the posterior feature selection consistency, at

the regional level, for assigning TGP priors on the SVCFs de�ned by (C1)-

(C3) in our working model. This provides theoretical justi�cations for

selecting important brain regions of interest (ROIs) using our method.

3.3 Posterior Inferences

3.3.1 Model Representation

Now consider the SVCM de�ned in (3.1). For the p-dimensional multi-

variate spatially varying coe�cient function, β(s) = [β1(s), ..., βk(s)]T, we

assume that

βk(s) ∼ TGP[τ2
k, θ

2, λk, κ(·, ·)],

with κ(·, ·) being a smooth kernel function. This speci�cation implies that

the global processes (3.5) have distinct �exible variance parameters τ2
k,

while the local �uctuation processes (3.6) have a small �xedmarginal vari-

ance θ2.

Based on the prior speci�cation forβ(s), we have thatβk(s) = β̃k(s)Iλk [β̃k(s)]

for k = 1, . . . , p, where

β̃k(s) = γk(s) + εk(s), (3.8)

where γk(s) ∼ GP[0, τ2
kκ(s, s ′)] and εk(s) ∼ GP

(
0,
∑G
g=1 θ

2κ(s, s ′)× I[s, s ′ ∈ Rg]
)
.
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For global GPs: γk(s) in (3.8), its Karhunen-Loève (KL) expansion can be

expressed as

γk(s) =

∞∑
l=1

ϕl(s)ukl, (3.9)

whereukl ∼ N(0, τ2
kζl) independentlywith ζl > 0 such that

∑∞
l=1 ζlϕl(s)ϕl(s

′) =

κ(s, s ′) and that
∫
ϕl(s)ϕl′(s)ds = 0, ∀l 6= l′ based on the Mercer’s Theorem

(Rasmussen and Williams, 2006a). In practice, we truncate the in�nite

sum in (3.9) into L terms such that
∑L
l=1 ζl/

∑∞
l=1 ζl is close to 1.

The decomposition of global GP in (3.9) implies a model represen-

tation of the proposed SVCM along with the TGP prior speci�cations.

To be more speci�c, the neuroimaging signal yj(s) on locations s1, . . . , sn

can be modeled through latent mGPs: β̃(s) = [β̃1(s), . . . , β̃p(s)]T and the

truncated KL expansion coe�cients {uk}
p
k=1 with uk = [uk1, ..., ukL]T by in-

tegrating out the local GPs εk(s) in (3.8), which is given by

[yj(si) | β̃(si), σ
2(si)] ∼ N

(
xT
j gλ[β̃(si)], σ

2(si)
)
, (3.10)

[{β̃k(si)}si∈Rg | uk] ∼ N
(
ϕguk, θ

2Kg
)
, (3.11)

ukl ∼ N(0, ζlτ
2
k), (3.12)

for j = 1, . . . ,m, i = 1, . . . , n, k = 1, . . . , p, g = 1, . . . , G and l = 1, . . . , L, where

N(µ, σ2) represents a normal distribution with mean µ and variance σ2,

ϕg = {ϕ(si)
T}si∈Rg with ϕ(si) representing [ϕ1(si), . . . , ϕL(si)]

T and Kg =

{κ(si, si ′)}si,si ′∈Rg being a correlation matrix. The p-dimensional vector

value functional operator gλ(·) is de�ned on the domain of all functions

in P, which is given by

gλ[β̃(s)] =
[
β̃1(s)Iλ1 [β̃1(s)], . . . , β̃p(s)Iλp [β̃p(s)]

]T
,

with λ = [λ1, . . . , λp]T.
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3.3.2 Hyper Prior Speci�cations

Weassign conjugate priors to variance parameters τ2
k, i.e., τ

2
k

iid
∼ Inv-Ga(v,w),

inwhich Inv-Ga(v,w) represents an inverse gammadistributionwith shape

v and rate w. We �x θ2 = 1 to restrict local deviations to a relatively

small scale, especially for the case that a small number of observations

are recorded in each region. For the variance process σ2(s), we assign a

log-Gaussian process prior to capture the its stochastic volatility and spa-

tial correlations by assuming: log
[
σ2(s)

]
∼ GP(0, ξ2κσ(·, ·)).

We develop a data-driven method to specify the prior of threshold-

ing parameters λk, k = 1, . . . , p. We consider the log full conditional of λk

which is given by

logπ[λk | Y, β̃k,β−k, σ
2] = `[λk;Y, β̃k,β−k, σ

2] + C,

where C is a constant, β̃k = [β̃k(s1), . . . , β̃k(sn)]T, βk = [βk(s1), . . . , βk(sn)]T,

β−k = [β1, . . . ,βk−1, βk+1, . . . ,βp]T, and

`(λk) := `[λk;Y, β̃k,β−k, σ
2] =

n∑
i=1

ωk(si)Iλk [β̃k(si)]/σ
2(si), (3.13)

withωk(s) =
∑m
j=1 β̃k(s)xjk

[
2yj,−k(s) − β̃k(s)xjk

]
and yj,−k(s) = yj(s)−

∑
j ′ 6=k xjj ′βj ′(s).

The function `(λk) is �at when λk is around zero and dramatically de-

creases when λk is greater a certain value, to which we refer as a “turning

point". It should be close to the true threshold. Figure 3.2 shows the pro-

�les of `(λk) for amodel with three SVCFs on a space of 900 locations from

50 simulated datasets. The true thresholds λk = k + 1 for k = 1, 2, 3. The

turning points in the pro�les of `(λk) are all around the true thresholds.

Based on the pro�le of `(λk), we can specify the priors of λk accord-

ing to `(λk). In practice, we need to provide rough estimates of β̃k and

β−k in order to evaluate `(λk) before posterior inferences. We consider

an SVCM with smoothed SVCFs approximated by the truncated K-L ex-

pansion, where we compute the ordinary least squares (OLS) of the coef-
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Figure 3.2: Simulated ̂̀(λk) from 50 synthetic datasets: ground truth (λ1 =
2, λ2 = 3, λ3 = 4) are marked in the �gures.

�cients, i.e.

{ŵlk}
L
l=1

p

k=1 = arg min
{wlk}

m∑
j=1

n∑
i=1

(
yj(si) −

p∑
k=1

L∑
l=1

xjkϕl(si)wlk

)2

.

Then both β̃k(s) and βk(s) can be approximated by β̂k(s) =
∑L
l=1ϕl(s)ŵlk;

the variances σ2(si) can be approximated by

σ̂2(si) =
1

n

n∑
i=1

(
yj(si) −

p∑
k=1

L∑
l=1

xjkβ̂k(si)

)2

.

Thus, we replace βk and β̃−k by β̂k and β̂−k, respectively, in (3.13). Writề(λk) = `(λk;Y, β̂k, β̂−k, σ̂
2).

We propose to assign uniform priors to λk, i.e. λk ∼ Unif(ck − hk, ck +

hk), where the half range hk and center ck can be determined based on

the pro�le of ̂̀(λk). More speci�cally, we evaluate ̂̀(λk) on a set of grid

points {λ(1)
k , . . . , λ

(G)
k }, denoted {`

(1)
k , . . . , `

(G)
k }. Given an interval (a, b), de�ne

the sample correlation between λk and ̂̀(λk) within (a, b) as

ρ̂(a, b) =

∑
λ

(g)
k ∈(a,b)

(λ
(g)
k − λk)(`

(g)
k − `k)√∑

λ
(g)
k ∈(a,b)

(λ
(g)
k − λk)2

√∑
λ

(g)
k ∈(a,b)

(`
(g)
k − `k)2

with λk =
∑
λ

(g)
k ∈(a,b)

λ
(g)
k /M(a, b), `k =

∑
λ

(g)
k ∈(a,b)

`
(g)
k /M(a, b) andM(a, b) =
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∑G
g=1 I[λ

(g)
k ∈ (a, b)]. And de�ne

c̃k(h) = min{λ
(g)
k : |ρ̂(λ

(g)
k − h, λ

(g)
k + h)|> ζk},

where ζk is determined by the rejection region of Pearson correlation

test. Given h > 0, c̃k(h) represents the location that ̂̀(λk) and λk have no

signi�cant correlation. Then we specify

hk = min{h : |ρ̂(c̃k(h) − h, c̃k(h) + h)|> ζk}, and ck = c̃k(hk).

This leads to an informative prior range [hk−ck, hk+ck] for λk with a high

probability to cover the turning point of `(λk).

3.3.3 Kernel Expansion for Massive Data Analysis

Theoretically, the KL expansion for the GP with kernel function κ(·, ·)

relies on solving the integral equation
∫
κ(s, s ′)ϕ(s)ds = ζlϕ(s

′), which

might not admit analytical solutions. Empirically, the expansion is often

achieved by calculating the eigenvalues and eigenvectors of the n×n cor-

relation matrix Kn = {κ(si, si ′)}16i,i ′6n on a set of pre-speci�ed locations.

However, in the analysis of massive neuroimaging data that can involve

a very large number (n can be hundreds of thousands) of brain locations,

it is computationally infeasible to perform eigen decompositions on Kn.

To solve this issue, we introduce the modi�ed square exponential kernel

κ(s, s ′) = exp{−a‖s‖22−a‖s ′‖22−b‖s− s ′‖22}, a, b > 0 (3.14)

with a relatively small value for a as a numerical approximation to the

square exponential kernel whendealingwithmassive neuroimaging data.

Themajor bene�t of this kernel function is that it has analytically tractable

expansion. Thedetailed properties of this kernel is summarized in Propo-

sition 2, which is a direct extension from the one-dimensional case de-

rived in Zhu et al. (1998).
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Proposition 1. For a speci�c l ∈ {1, ...,∞}, de�ne series {ki}di=0, {li}
d
i=0 and {mi}

d
i=1

as follows

ki =

{
ki ∈ N0 :

(
ki + d− i− 1

d− i

)
6 li 6

(
ki + d− i

d− i

)
− 1

}
, 0 6 i 6 d−1, kd = 0,

l0 = l− 1, li = li−1 −

(
ki−1 + d− i

d− i+ 1

)
, i > 1,

mi = ki−1 − ki, i > 1,

where N0 is the set of nonnegative integers;
(
n
k

)
= 0 if k > n. De�ne L =

(
m+d
d

)
=∑m

k=0

(
k+d−1
d−1

)
. For s = [s1, ..., sd]T ∈ Rd, let ϕl(s) and ζl be the ltn (ranking

from large ζl to smale) eigenfunctions and eigenvalues for the modi�ed square

exponential kernel κ(s, s ′) as de�ned in (4.15), then

ζl =
( π
A

)d
Bk0 ,

∑L
l=1 ζl∑∞
l=1 ζl

= (1 − B)d
m∑
k=0

(
k+ d− 1

d− 1

)
Bk,

ϕl(s) = (2c)
d
4 exp

(
−c‖s‖22

) d∏
i=1

Hmi
(
√

2csi),

where c =
√
a2 + 2ab, A = a+ b+ c and B = b/A; Hk(·) is the kth (k ∈ N0) order

normalized hermit polynomial.

3.3.4 AMarkov chain Monte Carlo Algorithm

We developed a e�cient MCMC sampling algorithm for posterior infer-

ence about [{β̃(si)}
n
i=1, {uk}

p
k=1, {σ

2(si)}
n
i=1, {τ

2
k}
p
k=1, λ | Y] based on the repre-

sentation and approximation for our model with the TGP priors (3.10)-

(3.12).

Updating β̃(si), i = 1, . . . , n, is an essential step in theMCMCalgorithm.

The Metropolis-Hasting (M-H) algorithm is employed with a block up-

dating scheme separately for {β̃k(si)}si∈Rg , g = 1, . . . , G to facilitate e�-

cient chain mixing. Under the scenario where region partition structure

R1, . . . ,RG is available and reliable, we can directly use this partition in-

formation. For voxel level analysis or analysis where no prior knowledge
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about the regional information are adopted, we �rst �t voxel-wise GLMs

and then use certain clustering algorithms to cluster the resulting spa-

tially varying coe�cient values. This initial clustering results for the brain

locations (usually centers of voxels) are used for block updating. More

details about the MCMC algorithm are available in the supplementary

material.

3.3.5 Posterior Inference on SVCFs

With the recordedMCMC samples β̃(t)
k (si), uk and λ

(t)
k , t = 1, . . . , T , we can

achieve twomajor goals: 1) selecting neuroimaging features; 2) estimating

covariate e�ects at the selected brain regions.

To select the important imaging features at the regional level, we es-

timate the selection probability of every region, g = 1, . . . , G, according to

the de�nition (C1)-(C3), using the MCMC samples as

P̂(g ∈ I1) = P̂
(

inf
16i6n,si∈Rg

|β̃k(si)|> λk | Y

)
≈ 1

T

T∑
t=1

I

[
inf

16i6n,si∈Rg
|β̃

(t)
k (si)|> λ

(t)
k

]
,

then we estimate β(si) as follows, if si ∈ Rg,

β̂k(si) =

 Ê[β̃k(si) | inf16j6n,sj∈Rg |β̃k(sj)|> λk,Y], P̂(g ∈ I1) > q

0, P̂(g ∈ I1) 6 q
, (3.15)

for all k = 1, ..., p, where 0.5 < q < 1 is a threshold for the posterior prob-

abilities of being nonzero at certain brain locations. We use q = 0.90

throughout the rest of our analysis. Estimates for the posterior condi-

tional expectations in (3.15) can be easily calculated based on the posterior

samples.

As a special case, to conduct voxel level selection (i.e., each voxel is a
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region with voxel centers being s1, . . . , sn), we can simply adapt (3.15) to

β̂k(si) =

 Ê[β̃k(si) | |β̃k(si)|> λk,Y], P̂(|β̃k(si)|> λk | Y) > q

0, P̂(|β̃k(si)|> λk | Y) 6 q
, (3.16)

where P̂(|β̃k(si)|> λk | Y) ≈ 1
T

∑T
t=1 I

[
|β̃

(t)
k (si)|> λ

(t)
k

]
can be regarded as the

posterior probability of activation for each voxel.

3.4 Numerical Examples

3.4.1 Simulation Study: Synthetic Imaging Data

In this simulation, three covariate functions, β1(s), β2(s) and β3(s), were

created on R as shown in Figure 3.3 (the “true signal" column); a 2D vari-

ance process, σ2(s), which we assigned the log-Gaussian process prior to,

is generated by exponentiating Gaussian processes. We considered n =

30× 30 and 50× 50 spatial locations. The data was simulated from

yj(si) = β1(si)xj1 + β2(si)xj2 + β3(si)xj3 + ej(si)
√
σ2(s), (3.17)

in which xj1
iid
∼ N(0, 4), xj2

iid
∼ Unif(−1, 1), xj3

iid
∼ Bernoulli(0.5) and ej(si)

iid
∼

N(0, 1).

We considered scenarios with sample size m = 100 and 200 and the

variance process σ2(s) ranging from 8 to 10 or from 16 to 20. Given one

combination of {n, m, σ2(s)}, a total of 50 datasets were independently

generated and separately analyzed by the proposedmethod. Modi�ed SE

kernel was chosen used for the TGP priors with a = 0.25 and b chosen as

themarginal posteriormode. The priors for the thresholding parameters

were �xed as Unif(0.3, 1.25). All pixels are divided into four groups for

block updating. TheMCMCalgorithmwas run 10, 000 iterationswith 5, 000

burn-in.

We compared ourmethodwith the standard voxelwiseGLMmethods.

The features estimated from the GLMmethod are thresholded based on
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0 0.5 10 1 2 3

GLM-ttrue signal GLM-FDR GLM-RFT

β1(s)

β2(s)

β3(s)

SVCM-TGP

Figure 3.3: Column 1-5: true and estimated spatial covariate e�ects from
GLM-t, GLM-FDR, GLM-RFT and SVCM-TGP; Column 6: the selection
probability estimated fromSVCM-TGP. The result is generated fromone
simulated dataset with m = 200 subjects, n = 2500 pixels and noise level
σ2(s) ∈ [16, 20].

the p-values for testing null hypothesis βk(si) = 0. In particular, we con-

sidered three thresholding approaches: the direct thresholding through

naïve t-test (GLM-t) at a signi�cant level of 0.05, thresholding using the

FDR adjusted p-values (GLM-FDR) (Benjamini and Yekutieli, 2001) and

thresholding by controlling FWER based on standard random �eld the-

ory (GLM-RFT) (Nichols and Hayasaka, 2003). Figure 3.3 presents the

estimated covariate e�ect functions from GLM-t, GLM-FDR, GLM-RFT

and our method (SVCM-TGP) based on one simulated dataset from our

experiments. According to Figure 3.3, our method provides more accu-

rate feature selection results by eliminating false positive signals as well

as maintaining high sensitivity. SVCM-TGP also provides a more accu-

rate estimate on the SVCFs taking advantages of incorporating spatial

smoothness in the model. In addition, the Bayesian SVCM-TGP can as-

sess the uncertainty of feature selection by using the posterior probability

of SVCF not being zero at each location, as shown in the last column in

Figure 3.3.
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For all the scenarios, Table 3.2 summerizes the relative mean square

errors (ReMSE) with regard to the GLM estimates, de�ned as

ReMSE =

∑n
i=1

∑p
k=1

[
β̂k(si) − βk(si)

]2

∑n
i=1

∑p
k=1

[
β̂∗k(si) − βk(si)

]2 ,

where β̂k(si) are the estimates froma certainmethod, β̂∗k(si) are the voxel-

wise GLM estimates without any thresholding and βk(si) represent the

true values. The false discovery rates (FDRs) and the false negative rates

(FNRs) are also reported in Table 3.2, speci�ed as:

FDR =

∑n
i=1

∑p
k=1 I[β̂k(si) 6= 0]× I[βk(si) = 0]∑n
i=1

∑p
k=1 I[β̂k(si) 6= 0]

FNR =

∑n
i=1

∑p
k=1 I[β̂k(si) = 0]× I[βk(si) 6= 0]∑n
i=1

∑p
k=1 I[βk(si) 6= 0]

.

From Table 3.2, our method performs well in terms of both feature se-

lection (small FDRs and FNRs) as well as estimation (small ReMSE), es-

pecially when the noise level is high or the number of subjects is small.

GLM-RFT performs well at low noise level but deteriorates notably as

noise level increases due to low sensitivity. GLM-FDR is also relatively

robust but consistently generates false positive signals. The performance

of the proposed SVCM-TGP method also becomes better as the number

of spatial locations increases within a �xed domain, which agrees with

our posterior consistency theory based on in�ll asymptotics.

To evaluate the robustness of our method when the error distribution

is misspeci�ed, we also generated data from (3.17) with errors from three

types of distributions other than N(0, 1): a skewed distribution, ej(s)
iid
∼

{χ2(3) − 3}/
√

6; a heavy-tail distribution, ej(s)
iid
∼ DE(1)/

√
2 in which DE(λ)

stands for the double exponential distribution with scale parameter λ;

and a dual-mode distribution, ej(s)
iid
∼ 1

2N(−1
2 ,
√

3
2 ) + 1

2N(1
2 ,
√

3
2 ). All of them

have zeromean and unit variance. Table 3.3 summarizes the results when

n = 2500 for these three error distributions in a similar setup as Table 3.2.
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Figure 3.4: The ROC curves for our method (red curves) compared with
GLM �ttings using the FDR control (blue curves) or the FWER correc-
tion based on the random �eld theory (cyan curves) under four di�erent
distribution assumptions (n = 2500, m = 200, σ2(s) ∈ [16, 20]).

It shows the superiority of the proposed method in terms of estimation

and feature selection for SVCFs even the error distribution is misspeci-

�ed.

To comprehensively compare the performance of TGP priors in fea-

ture selection with other commonmethods, we also conduct the receiver

operating characteristic (ROC) analysis. Since our original method will

automatically generate the optimal thresholding values, in this ROCanal-

ysis, we �x λ at di�erent values and rerun the MCMC simulation to alter-

nate the speci�cities. Figure 3.4 shows the ROC curves of our method,

GLM-FDR and GLM-RFT with σ2(s) ∈ [16, 20] and m = 200, n = 2500 for

the three alternative error speci�cations along with Gaussian errors. Un-

der all four settings, SVCM-TGP achieves the best performance with the

largest area under the curve.
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3.4.2 Real Data Application: The Autism Brain Imaging Data

Exchange (ABIDE)

We apply our method to the data from ABIDE, which is a consortium

collecting and sharing resting-state fMRI data from 1,112 subjects. Co-

variate information such as age at scan, sex, IQ, handedness and diag-

nostic information are also available from ABIDE studies. Among the

subjects, 539 individuals have Autism spectrum disorders (ASD), which

are characterized by symptoms such as social di�culties, communica-

tion de�cits, stereotyped behaviors and cognitive delays. The remaining

subjects are the age-matched normal controls (NC). All the fMRI images

are preprocessed through slice-timing, motion correction, nuisance sig-

nal regression and temporal �ltering. The resulting fMRI data, which

are 91 × 109 × 91 3D matrices, are normalized and registered to Montreal

Neurological Institute (MNI) 152 stereotactic space. We aim to investigate

the voxel-wise measures of latent functional architecture of the brains

through fractional amplitude of low-frequency �uctuations (fALFF)(Zou

et al., 2008). fALFF is a metric re�ecting the percentage of power spec-

trum within low-frequency domain (0.01−0.1Hz) which characterizes the

intensity of spontaneous brain activities. We calculate the fALFF for each

subject at every voxel. Since the fALFF is restricted to (0, 1), we perform

the following monotone transformation

yj(s) = log

(
fj(s)

1 − fj(s)

)
, (3.18)

where fj(s) represents the fALFF for subject j = 1, . . . , 1112 at brain location

s and treat the transformed data as our outcomes.

The covariates we choose for �ttingmodel (3.1) are [1, group, age, gen-

der, group× age, group× gender]. We use all the voxels at the graymatter

as the observed spatial locations s1, . . . , sn and all the anatomical parcella-

tion based on MNI templates as our brain regions R1, . . . ,RG (n = 177, 743
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Figure 3.5: `(λk) for specifying λ priors in the analysis of ABIDE data. The
colored shades mark the intervals we choose as the range of the uniform
priors for λ.

and G = 116). The imaging outcomes are centered across all subjects at

each voxel. The group variable equals to 1 for the ASD subjects; the ages

are all centered and scaled with zero mean and unit variance; the gender

variable equals to 1 for female subjects. The priors for the thresholding

parameters are determined through the method described in subsection

3.3.2. The pro�les of ̂̀(λk) are shown in Figure 3.5. The priors for the six

thresholding parameters are Unif(0, 0.03), Unif(0.05, 0.15), Unif(0.03, 0.13),

Unif(0.1, 0.25), Unif(0.02, 0.06) andUnif(0.05, 0.2) according to the plots. The

Gaussian kernel we use is the modi�ed square exponential kernel with

a �xed as 0.25. b equals to 95, which is determined by maximizing the

marginal posterior. To achieve 90% recovery rate of the KL expansion,

we set L = 1, 140 eigenfunctions. The MCMC algorithm runs 60, 000 itera-

tions with 25, 000 burn-in.

Based on our results, the ASD subjects tend to show lower fALFF out-

comes at themedian and superior part of the right occipital lobe, which is

the visual processing centers of human brains (the visual cortex). We ob-
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(A) Covariate e�ects for the ASD group versus the control

(B) Covariate e�ects for the age

(C) Covariate e�ects for group and gender interaction

Figure 3.6: Estimated SVCFs (top row in each subplot) and regional selec-
tion probabilities (bottom row in each subplot) based on posterior sam-
ples from ourMCMC algorithm for “ASD group", “age" and “ASD group×
gender"

serve signi�cantly higher activities at the right fusiform gyrus, which has

been reported to be related to Autism in (Hadjikhani et al., 2004). Sim-



84

ilar �ndings are observed at the right median orbitofrontal cortex, the

region involved in most human cognition processes, especially decision-

making, indicating more spontaneous brain cognition activities among

the ASD subjects. From the axial view, Figure 3.6(A) shows the informa-

tion discussed above. Some other regions that are selected includes the

right thalamus and the right anterior cingulum, which we do not discuss

here in detail.

Another major �ndings are the age e�ect on the fALFFs. We iden-

ti�ed three brain regions that show higher fALFF outcomes as the age

increases: the median occipital lobe, the median temporal lobe and the

angular gyrus. These regions are generally involved in brain functions

such as spatial temporal cognition, language, memory, attention and vi-

sual processing. Figure 3.6(B) shows the �ndings above in brain slices

from the axial view.

Although no speci�c regions of interest are observed for the “gender"

variable, certain brain regions demonstrate di�erent activation patterns

its interaction with the disease group. Speci�cally, female ASD subjects

have higher fALFFs as comparedwithmale ASD e�ects at the leftmedian

and superior part of the orbital gyrus but lower fALFFs at the left frontal

lobe gyrus and the left rectus. Figure 3.6(C) shows these �ndings in three

views for the ease of demonstration. Beyond these �ndings, we also note

that the right inferior temporal gyrus displays smaller e�ects among the

female ASD subjects as compared with the male autistics.

3.5 Discussion

In this chapter, we introduced a new family of prior, the TGP prior, for

feature selectionswithin spatially varying coe�cient functions and its ap-

plications to massive neuroimaging data analysis. We demonstrate the

prior large support properties of the TGP prior and its posterior con-

sistency under the spatially varying coe�cient models under the spatial

in�ll asymptotics. Simulation studies show that the TGP prior is espe-
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cially useful for imaging feature selections with relatively large noise or

small sample sizes.

Inmost spatial statistics literatures such as Diggle et al. (1998); Gelfand

et al. (2003), a spatial process are decomposed into three parts: a deter-

ministic trend process or, in other words, mean process; a zero-mean

variance process with continuous sample path and a zero-mean white

noise process, i.e., the nugget e�ect. Under this general framework, Zhu

et al. (2014) considered a more complex model as compared with our

model (3.1), which could be expressed using our notations as

yj(s) = xT
j β(s) + ηj(s) + ej(s), (3.19)

for all subjects j = 1, ...,m. They estimated the additional term ηj(s) for

every subject through standard local linear regression techniques, which

do not require a pre-speci�ed spatial covariance structure Ση, or equiva-

lently, its Karhunen-Loève basis. Since in this chapter, our primary focus

is on the GLM framework for imaging data, we did not apply our TGP

prior under the setting of model (3.19). To enable a similar analysis using

the TGP prior for β(s) in (3.19) under the Bayesian framework, there are

four major tasks. First, a proper prior speci�cation for ηj(s) needs to be

introduced which should be �exible enough to capture various spatially

smooth dynamics. Second, a computationally e�cient algorithm for es-

timating the additional parameters brought by ηj(s) is required since this

set of parameters scale with the number of subjects. Third, since for each

subject, we will have a subject speci�c random e�ect term, we need to

carefully monitor the model �tting procedures to avoid potential over-

�tting issues. Fourth, the theoretical analysis for posterior consistency in

Theorem 3 needs to be adapted to themore challengingmodel structure.

In addition to applying the TGP prior to model (3.19), our study can

be extended to some other directions. With a focus on neuroimaging

studies usingmodel (3.1), we can extend the prior constructions to enable
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self-guided parcellation while conducting feature selection tasks. This

can help relax the region based sparsity assumptions for the SVCFs. We

can also explore the Bayesian asymptotic theories when the number of

brain region partitions diverges. With a focus on general Bayesian anal-

ysis, we can extend TGP for modeling high-dimensional multivariate bi-

nary processes or selecting features for scalar-on-image models such as

neuropsychiatric disease predictions.

Appendices

3.5.1 Proof of Theorem 1

Based on the conditions (C1)–(C3) for β0(s), let I1 be the index set of brain

regions with features and I0 = {1, ..., G}\I1 which implies β0(s) = 0 for all

s ∈ ∪g∈I0
Rg. Then

Π(‖β(s) − β0(s)‖∞ < ε) >

Π

(
sup

s∈∪g∈I1Rg
|β̃(s) − β0(s)|< ε, inf

s∈∪g∈I1Rg
|β̃(s)|> λ, sup

s∈∪g∈I0Rg
|β̃(s)|6 λ

)
.

(3.20)

Without loss of generality, we only consider 0 < ε < λ0−λ. Note that for

all s ∈ ∪g∈I1
Rg, |β̃(s)−β0(s)|< ε and |β0(s)|> λ0 implies that |β̃(s)|> λ0 − ε > λ,

then (3.20) leads to

Π
(
‖β(s) − β0(s)‖∞< ε

)
> Π

(
sup

s∈∪g∈I1Rg
|β̃(s) − β0(s)|< ε, sup

s∈∪g∈I0Rg
|β̃(s)|6 λ

)
.

Let φl(s) and ζl, l = 1, ...,∞, be the normalized eigenfunctions and

eigenvalues of the kernel function κ(·, ·), then the Karhunen-Loève ex-

pansions of γ(s) and ε(s) can be expressed as γ(s) =
∑∞
l=1 ulφl(s), ∀s ∈ R,

and ε(s) =
∑∞
l=1 vlgφl(s), s ∈ Rg, g = 1, ..., G, such that ul

iid
∼ N(0, ζlτ

2),

vlg
iid
∼ N(0, ζlθ

2) and {ul, vlg, l = 1, ..., L, g = 1, ..., G} are mutually indepen-

dent. Since the RKHS of κ(·, ·) satisfying (K1) is C(R) (Tokdar and Ghosh,

2007), for all s ∈ R, β0(s) can be represented by
∑∞
l=1wlgφl(s), where
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∑∞
l=1w

2
lg/ζl <∞.

For s ∈ Rg with g ∈ I1

sup
s∈Rg

|β̃(s) −β0(s)|6 sup
s∈Rg

|β̃L,g(s) −β0
L,g(s)|+ sup

s∈Rg
|β̃∗L,g(s)|+ sup

s∈Rg
|β0∗
L,g(s)|, (3.21)

where β̃L,g(s) =
∑L
l=1(ul+vlg)φl(s), β

0
L,g(s) =

∑L
l=1wlgφl(s), β̃

∗
L,g(s) = β̃(s)−

β̃L,g(s) and β0∗
L,g(s) = β0(s)−β0

L,g(s). Since the RKHS of κ(·, ·) is C(R), β̃(s) is

uniformly continuous on Rg with probability 1. Based on this property,

Theorem 3.1.2 of Adler and Taylor (2009) guarantees that

lim
L→∞

sup
s∈Rg

|β̃∗L,g(s)|= 0

with probability 1. By the uniform convergence of
∑L
l=1wlgφl(s) to β

0(s)

as L→∞ on Rg,

lim
L→∞

sup
s∈Rg

|β0∗
L,g(s)|= 0.

Then we can �nd a �nite integer Lg such that for all L > Lg,

sup
s∈Rg

|β̃∗L,g(s)|<
ε

3
with probability 1, sup

s∈Rg
|β0∗
L,g(s)|<

ε

3
.

Sinceφl(s), l = 1, ..., Lg are all continuous onR, we have thatmax16l6Lg‖φl(s)‖∞<

Mφ,Lg whereMφ,Lg is a certain constant. Let |ul + vlg −wlg|<
ε

3LgMφ,Lg
for

all l = 1, ..., Lg and consider L = Lg in (3.21), we have that

sup
s∈Rg

|β̃L,g(s) − β0
L,g(s)|<

ε

3
.

Thus, the condition |ul+vlg−wlg|<
ε

3LgMφ,Lg
, l = 1, ..., Lg can guarantee that

sups∈Rg |β̃(s) − β0(s)|< ε with probability 1 when g ∈ I1.

For s ∈ Rg with g ∈ I0, similar to (3.21) and the de�nitions above, we

have

sup
s∈Rg

|β̃(s)|6 sup
s∈Rg

|β̃L,g(s)|+ sup
s∈Rg

|β̃∗L,g(s)|. (3.22)

Then, in a similar fashion, we can �nd Lg andMφ,Lg such that |ul + vlg|6
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λ
2LgMφ,Lg

, l = 1, ..., Lg guarantees that sups∈Rg |β̃(s)|6 λ with probability 1 if

g ∈ I0.

Based on the discussion above,

Π
(
‖β(s) − β0(s)‖∞< ε

)
> Π

({
|ul + vlg −wlg|<

ε
3LgMφ,Lg

: l = 1, ..., Lg, g ∈ I1

}
∪{

|ul + vlg|6
λ

2LgMφ,Lg
: l = 1, ..., Lg, g ∈ I0

})
> 0,

due to the positive measures assigned on arbitrary nonempty sets by the(∑G
g=1 Lg + Lmax

)
-dimensional multivariate Gaussian distribution:

(u1, ..., uLmax , v11, ..., vL11, ..., v1G, ..., vLGG) ,

where Lmax = maxg=1,...,G Lg.

3.5.2 Proof of Theorem 2

For the ease of exposition, let σ2
i = σ2(si), σ2

min = infs∈R σ
2(s) and σ2

max =

sups∈R σ
2(s) from here on.

KL neighborhood conditions for noniid outcomes

Lemma 2. Consider for our observed data y(si) ∈ Rm, y(si) ∼ fi,β0(y) where

fi,β0(y) =
{

2πσ2
i

}−m/2
exp

{
−

1

2σ2
i

‖y− Xβ0(si)‖22
}
.

De�ne

Di(β0,β) = log
fi,β0

fi,β
, Ki(β0,β) = Efi,β0

[Di(β0,β)], Vi(β0,β) = Varfi,β0
[Di(β0,β)].

If we a assign an independent TGP prior for each dimension of β in fi,β(y) , i.e.,

βk(s) ∼ TGP(τ2
k, θ

2
k, λk, κ(·, ·)),
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and β0 ∈ P then we have that ∃B,Π(B) > 0 such that

lim inf
n→∞

Π

({
β ∈ B :

1

n

n∑
i=1

Ki(β
0,β) < ε

})
> 0,

lim
n→∞

1

n2

n∑
i=1

Vi(β
0,β)→ 0, ∀β ∈ B.

Proof. The Gaussian residuals implies that

Di(β0,β) =
1

σ2
i

(β0(si) − β(si))
T

[
XTy−

1

2
XXT(β0(si) + β(si))

]
.

Then the we can evaluate the quantities de�ned above as,

Ki(β0,β) =
1

2σ2
i

(β0(si) − β(si))
TXTX(β0(si) − β(si)) 6

mdmax

2σ2
i

‖β0(si) − β(si)‖22,

Vi(β0,β) =
1

σ2
i

(β0(si) − β(si))
TXTX(β0(si) − β(si)) 6

mdmax

σ2
i

‖β0(si) − β(si)‖22.

because Efi,β0
[y] = Xβ0(si), Varfi,β0

[y] = σ2
iIm.

Now consider

Bk =

βk(s) : ‖βk(s) − β0(s)‖∞<

√
2σ2

minε

mpdmax


for k = 1, ..., p and let B = B1 × · · · × Bp. Since the priors for βk(s), k = 1, ..., p

are independent and Π(Bk) > 0 due to Theorem 1, Π(B) =
∏p
k=1 Π(Bk) > 0.

For all β ∈ B, Ki(β0,β) 6 mdmax

2σ2
i

∑p
k=1‖β

0
k(s) − βk(s)‖2∞< ε and similarly

Vi(β0,β) < 2ε. Then lim infn→∞Π
({
β ∈ B : 1

n

∑n
i=1 Ki(β

0,β) < ε
})

> Π(B) > 0

and 1
n2

∑n
i=1 Vi(β

0,β) < 2ε
n → 0 for all β ∈ B as n→∞.

Sieve constructions

De�ne the set of functions

Pn =

{
β(s) ∈ P : ‖β(s)‖∞<

√
n, sup
s∈Rg

|Dαβ(s)| <
√
n, g ∈ I1, 1 6 ‖α‖16 ρ

}
,

as our sieve.
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Lemma 3. If G <∞, the ε-covering number under the sup-norm for Pn satis�es

logN(ε,Pn, ‖·‖∞) < Cn
d
2ρ ε−d,

for some �nite constant C.

Proof. De�ne

Pn,g =

{
β(s) ∈ Cρ(Rg) : sup

s∈Rg
|Dαβ(s)|<

√
n, 0 6 ‖α‖16 ρ

}
,

for all g = 1, ..., G. Theorem 2.7.1 of Van Der Vaart and Wellner (1996)

implies that

logN(ε,Pn,g, ‖·‖∞) 6 Cgn
d
2ρ ε−d,

for some constants Cg <∞. Then by the de�nition of Pn, we have that

N(ε,Pn, ‖·‖∞) 6
G∏
g=1

N(ε,Pn,g, ‖·‖∞) 6 exp
{
Cn

d
2ρ ε−d

}
,

where C =
∑G
g=1Cg <∞.

Lemma 4. Consider the TGP prior for β(s)with kernel function satisfying con-

dition (K1)(K2), then Π(P ∩ Pcn) 6 De−bn for some constant D,b > 0.

Proof. The construction of the TGP prior implies that

Π(Pn) >
G∏
g=1

Π

(
sup
s∈Rg

|Dαβ̃g(s)|>
√
n, 0 6 ‖α‖16 ρ

)
,

where β̃g(s)
iid
∼ GP(0, (θ2+τ2)κ(s, s ′)) for all g = 1, ..., G. By applyingTheorem

5ofGhosal et al. (2006), wehave thatΠ
(

sups∈Rg |D
αβ̃g(s)|>

√
n, 0 6 ‖α‖16 ρ

)
>

1−Ae−bn for someA, b > 0, given that κ(s, ·) has continuous partial deriva-

tives of order 2ρ+ 2 on the compact set R. Then we have that Π(P ∩ Pcn) 6

1−(1−Ae−bn)G 6 De−dn whereD = AG due to the fact that (1−x)G > 1−Gx

for all 0 < x < 1 and G = 1, 2, ....
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Now we de�ne Pn = {β(s) = [β1(s), ..., βp(s)]T : βk(s) ∈ Pn, k = 1, ..., p}

here and below. Then we can easily get that

N(ε,Pn, ‖·‖∞) < exp{Cpn
d
2ρ ε−d}, (3.23)

and if assign TGP priors independently for all elements in β(s) then

Π
(
P ∩ Pcn

)
6 Dp exp{−bn}. (3.24)

Test Constructions

Lemma 5. Consider y ∼ N(Xβ, σ2Im), a standard linear model with sample

size m where y = [y1, ..., ym]; X is an m× p design matrix satisfying assumption

(X1). Consider the test function Φ = I
(
‖β̂− β0‖2>

ε
√
p

2

)
for testing H0 : β =

β0 versus H1 : β = β1, where β0 ∈ Rp and β1 ∈ {β ∈ Rp : ‖β − β0‖∞> ε};

β̂ = (XTX)−1Xy is the ordinary least square estimator. Then for m >
8(log 2)σ2

ε2dmin
,

we have that

EP0 [Φ] 6 exp{−Ωmmp}, EP1 [1 − Φ] 6 exp{−Ωmmp},

for some Ωm > 0 depending on m, where P0 and P1 represents the probability

distributions under H0 and H1.

Proof. Note that for t = 0, 1, underHt, ‖β̂−βt‖22dminm/σ
2 6 (β̂−βt)TXTX(β̂−

βt)/σ2 ∼ χ2
p, then we have that

EP0 [Φ] = P0

(
‖β̂− β0‖22>

ε2p

4

)
6 P0

(
χ2
p >

ε2pdminm

4σ2

)
6 exp

{
−

(
ε2dmin

16σ2
−

log 2

2m

)
mp

}
,

(3.25)

where the last inequality is simply due to the f act that P(χ2
p > x) 6 (1 −
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2t)−p/2 exp{−tx}, ∀0 < t < 1/2 by letting t = 1/4. Similarly,

EP1 [1 − Φ] = P1

(
‖β̂− β0‖26

ε
√
p

2

)
6 P1

(∣∣∣‖β̂− β1‖2−‖β0 − β1‖2
∣∣∣ 6 ε

√
p

2

)
6 P1

(
‖β̂− β1‖2> −

ε
√
p

2
+ ‖β0 − β1‖2

)
6 P1

(
‖β̂− β1‖2>

ε
√
p

2

)
6 exp

{
−

(
ε2dmin

16σ2
−

log 2

2m

)
mp

}
. (3.26)

De�ne Ωm = ε2dmin
16σ2 − log 2

2m here and below. Notice thatm >
8(log 2)σ2

ε2dmin
is equiv-

alent to Ωm > 0, we complete the proof.

Lemma6. We considern0 locations s1, ..., sn0 and de�neβi = [β1(si), ..., βp(si)]
T

(β0
i and β

1
i can be de�ned accordingly). Suppose that we have observed the data

yi = [y1(si), ..., ym(si)]
T generated from yi ∼ N(Xβi, σ

2
iIm) independently. Con-

sider testing H0 : βi = β0
i , i = 1, ..., n0 versus H1 : βi = β1

i , i = 1, ..., n0 where

‖β1
i − β

0
i‖∞> ε for all i = 1, ..., n0. De�ne Φi = I

(
‖β̂i − β0

i‖2>
ε
√
p

2

)
with

β̂i = (XTX)−1Xyi. Then for the test function Φ̃ = I
(∑n0

i=1 Φi >
n0
2

)
, we have

that

EP0 [Φ̃] 6 exp{−Cn0}, EP1 [1 − Φ̃] 6 exp{−Cn0}

Proof. By the results from Lemma 5, EP0 [Φi] 6 e−Ωimmp and EP1 [1 − Φi] 6

e−Ωimmp for all i = 1, ..., n0 where Ωim = ε2dmin

16σ2
i

− log 2
2m > ε2dmin

16σ2
max

− log 2
2m = Ω0

m > 0.

Then

EP0 [Φ̃] 6 P0

(
n0∑
i=1

Φi −

n0∑
i=1

EP0 [Φi] >
n0

2
− n0e

−Ω0
mmp

)
, (3.27)

EP1 [1 − Φ̃] 6 P1

(
n0∑
i=1

(1 − Φi) −

n0∑
i=1

E[1 − Φi] >
n0

2
− n0e

−Ω0
mmp

)
. (3.28)

By theHoe�ding inequality (Hoe�ding, 1963), the right hand side of both

(3.27) and (3.28) are boundedby exp

{
− 2
n0

n2
0(1−2e−Ω0

mmp)2

4

}
when 1−2e−Ω0

mmp >
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0, which always holds true as long asΩ0
m > 0. That is, EP0 [Φ̃] 6 exp{−Cn0}, EP1 [1−

Φ̃] 6 exp{−Cn0} where C = (1−2e−Ω0
mmp)2

2 .

Lemma 7. Let Pn(ds) = 1
n

∑n
i=1 I[si ∈ ds] be the empirical measure on R. For

two functions β0(s), β1(s) ∈ P, if ‖β0(s)−β1(s)‖1=
∫
s∈R|β

0(s)−β1(s)|Pn(ds) > ε,

we have that Pn(|β0(s) − β1(s)|> ε
2 ) > c ′ where 0 < c ′ 6 1 is a constant. That is,

the set {s ∈ {s1, ..., sn} : |β0(s) − β1(s)|> ε
2 } has n0 > c ′n− 1 elements.

Proof. Let S = {s ∈ R : |β0(s) − β1(s)|> ε
2 }, then

ε 6
∫
s∈R

|β0(s) − β1(s)|Pn(ds)

=

∫
s∈S

|β0(s) − β1(s)|Pn(ds) +

∫
s∈R\S

|β0(s) − β1(s)|Pn(ds)

6 (M0 +M1)Pn

(
|β0(s) − β1(s)|>

ε

2

)
+
ε

2
Pn(R),

where Pn(R) = 1; M0 = ‖β0(s)‖∞ and M1 = ‖β1(s)‖∞ are �nite constants

due to absolute continuity. Thus Pn
(
|β0(s) − β1(s)|> ε

2

)
> c ′ by letting c ′ =

ε
2(M0+M1) .

Lemma 8. There exists a test Φβ1,β0 for testing H0 : β(s) = β0(s) against H1 :

β(s) = β1(s) where ‖β1(s) − β0(s)‖1,∞> ε in our proposed SVCM, such that

EP0 [Φβ1,β0 ] 6 exp{−Cn}, EP1 [1 − Φβ1,β0 ] 6 exp{−Cn},

for some constant Cwith P0 and P1 corresponding to the probability distributions

under H0 and H1.

Proof. For two vector-valued functions βt(s) = [βt1(s), ..., βtp(s)]T, t = 0, 1,

if ‖β1(s) − β0(s)‖1,∞> ε, we must have at least one k ∈ {1, ..., p}, such that

‖β1
k(s)−β0

k(s)‖1> ε, then due to Lemma 7, we can �nd n0 > c ′n−1 elements

in {s1, ..., sn} such that |β1
k(s) − β0

k(s)|> ε
2 . Without loss of generality, we

denote these points as s1, ..., sn0 . Then for all si, i = 1, ..., n0, we have that

‖β1(si) − β
0(si)‖∞> ε

2 .

Now de�ne the set Sβ1,β0 = {s ∈ {s1, ..., sn} : ‖β1(si) −β
0(si)‖∞> ε

2 }. Then
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n0 = |Sβ1,β0 |> c ′n− 1. De�ne the test function

Φβ1,β0 = I

 ∑
s∈Sβ1,β0

Φ(s) >
n0

2

 ,
where Φ(s) = I

(
‖(XTX)−1Xy(s) − β0(s)‖2>

ε
√
p

2

)
. Then by Lemma 6 (re-

placing ε by ε/2) we have

EP0 [Φβ1,β0 ] 6 exp{−C0n0}, EP1 [Φβ1,β0 ] 6 exp{−C0n0},

where C0 > 0 is a constant. Since n0 > c′n− 1 for a positive constant c′, we

have that EP0 [Φβ1,β0 ] 6 exp{−Cn} and EP1 [Φβ1,β0 ] 6 exp{−Cn}.

Lemma 9. There exists a test Ψ for testing H0 : β(s) = β0(s) against H1 : β(s) ∈

Ucε,n = Ucε ∩ P = {β(s) ∈ Pn : ‖β(s) − β0(s)‖> ε} in our proposed SVCM, such

that

EP0 [Ψ] 6 exp{−d0n}, EP1 [1 − Ψ] 6 exp{−d1n},

for some constant d0, d1 with P0 and P1 corresponding to the probability distribu-

tions under H0 and H1.

Proof. Let N = N(ε2 ,Pn, ‖·‖∞) be the covering number of Pn by ε/2-balls

under the supreme norm. Then for all β(s) ∈ Ucε,n, we can �nd βj(s), j ∈

{1, ...,N} such that ‖βj(s) −β(s)‖∞6 ε
2 , which implies that ‖β

j(s) −β0(s)‖∞>

‖β0(s) − β(s)‖∞−‖βj(s) − β(s)‖∞> ε
2 for all j = 1, ...,N. Following the no-

tations and results in Lemma 8 with regard to ε/2, we have that the tests

Φβj,β0 all satisfy that Eβ0 [Φβj,β0 ] 6 exp{−d1n} and Eβj [Φβj,β0 ] 6 exp{−d1n} for

some constant d1. Now for the test function

Ψ = max
j=1,...,N

Φβj,β0 ,

which only depend on the set Pn instead of a speci�c β(s) in the alterna-
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tive hypothesis,

EP0 [Ψ] 6
∑
j=1

Eβj [Φβj,β0 ] 6 N exp{−d1n} < exp{Cpn
d
2ρ ε−d − d1n} 6 exp{−d0n},

due to the fact that n
d
2ρ = o(n) for some constant d0 based on (3.23). At the

same time

EP1 [1 − Ψ] 6 Eβ1 [1 − Φβ1,β0 ] 6 exp{−d1n},

which complete our proof.

Now based on Lemma 2, equation (3.24) and Lemma 9, Theorem 2

follows from a direct application of Theorem A.1. of Choudhuri et al.

(2004).

3.5.3 Proof of Theorem 3

Without loss of generality, we consider 0 < ε < min{λ, λ0} where λ0 =

infs∈R{β
0(s)I

[
|β0(s)|> 0

]
} (same to the de�nition in condition (C2)) is a pos-

itive number. Then we have

Π
[
‖β(s) − β0

k(s)‖1> ε | y(s1), . . . ,y(sn)
]

>Π

min{λ, λ0}×
G∑
g=1

I[rg(s) 6= r0g(s)] > ε
∣∣∣ y(s1), . . . ,y(sn)


=Π

 G∑
g=1

I[rg(s) 6= r0g(s)] > ε ′
∣∣∣ y(s1), . . . ,y(sn)

 ,
where ε ′ = ε

min{λ,λ0}
∈ (0, 1). Due to Corollary 1,

Π
[
‖β(s) − β0

k(s)‖1> ε | y(s1), . . . ,y(sn)
]
→ 0

as n→∞ in Pn
β0 probability, then

Π

 G∑
g=1

I[rg(s) 6= r0g(s)] > ε ′ | y(s1), . . . ,y(sn)

→ 0
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as n → ∞ in Pn
β0 probability. Considering the fact that if r(s) 6= r0(s),∑G

g=1 I[rg(s) 6= r0g(s)] > 1 > ε′, we have

Π

 G∑
g=1

I[rg(s) 6= r0g(s)] > ε ′ | y(s1), . . . ,y(sn)

 > Π
[
r(s) 6= r0(s) | y(s1), . . . ,y(sn)

]
,

which implies that

Π
[
r(s) = r0(s) | y(s1), . . . ,y(sn)

]
→ 1,

as n→∞ in Pn
β0 probability.

3.5.4 Details about the MCMC algorithm

We list the details about our MCMC algorithm here. Denote by φ(·;µ,Σ)

the density function of N(µ,Σ). We normally �x v = w = 0.001 in the

inverse-gamma priors, �x θ2 = 1 within the local GPs and �x ξ2 = 1 for

the log-Gaussian variance process.

• Updating β̃(si), i = 1, ..., n: given the block structures of β̃(si), we

update β̃gk = {β̃k(si)}si∈Rg , k = 1, ..., p, g = 1, ..., G separately with p ×

G M-H steps. Speci�cally, the full conditional [β̃gk | β̃,u, σ2, λ, Y] is

proportional to

h(β̃gk) =

 ∏
i: si∈Rg

m∏
j=1

φ
(
yj,−k(si); xjkβ̃k(si)Iλk [β̃k(si)], σ

2(si)
)φ(β̃gk;ϕguk, θ

2Kg

)
,

where yj,−k(si) = yj(si)−
∑
t 6=k xjtβ̃t(si)Iλk [β̃k(si)]. We adopt aMetropolis-

Hasting (M-H) algorithm to update β̃gk by �rst generating a proposal,

β̃gk + ∆β̃gk with a zero mean Gaussian �uctuation ∆β̃gk. Then we set

β̃gk ← β̃gk + ∆β̃gk with probability: min

{
1,
h(β̃gk+∆β̃gk)

h(β̃gk)

}
.

• Updating σ2(si), i = 1, ..., n: assume that the eigen-decomposition

pairs for κσ(s, s ′) are {ψw(s), ηw}
∞
w=1, the approximate KL expansion

σ2(s) ≈ exp
(∑W

w=1ψw(s)vw

)
, vw ∼ N(0, ηwξ

2) implies that we can up-

date σ2(si) by updating v = [v1, ..., vW ]T. The posterior of v given all
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other parameters is

π[v | β̃,Y] =

n∏
i=1

m∏
j=1

φ

(
yj(si); x

T
j gλ[β̃(s)], exp

(
W∑
w=1

ψw(si)vw

))

×
W∏
w=1

φ(vw; 0, ηwξ
2).

We use the M-H algorithm with a Langevin-type proposal (Roberts

and Tweedie, 1996) to update v by generating a proposal v∗ from

N(v + 2∇ logπ[v | β̃,Y], 22IW) in which 2 is a small positive constant

determining the di�usion step length. Then we accept v∗ with prob-

ability min
{

1, π[v∗|β̃,Y]q(v,v∗)

π[v|β̃,Y]q(v∗,v)

}
in which the transition kernel function

q(·, ·) is de�ned as q(v1, v2) = φ(v1; v2 + 2∇ logπ[v | β̃,Y], 22IW). A detail

look at ∇ logπ[v | β̃,Y] gives us that its wth element is

∂ logπ[v | β̃,Y]

∂vw
=

n∑
i=1

m∑
j=1

[
yj(si) − x

T
j gλ[β̃(s)]

]2
ψw(si)

2 exp (ψ(si)Tv)
−
ψw(si)

2
−

vw

2ηwξ2

• Updating λ: we sequentially update λ1, ..., λp with M-H algorithms.

Speci�cally, for λk, the full conditional [λk | λ−k, β̃, σ
2,Y] is

 h(λk) =

 n∏
i=1

m∏
j=1

φ
(
yj,−k(s), xjkβ̃k(si)Iλk [β̃k(si)], σ

2(si)
)Π(λk),

where Π(λk) is the uniform empirical Bayes prior for λk de�ned in

the previous section. The proposal for λk is generate from zero

mean Gaussian �uctuations as λk+ ∆λk, which will be accepted with

probability: min
{

1,
 h(λk+∆λk)

 h(λk)

}
.

• Updating {uk}
p
k=1: we sequentially update u1, ...,up by drawing from

their full conditionals [uk | β̃, τ2
k]. Speci�cally, we update uk by draw-

ing fromN (µuk ,Σuk)where µuk = Σuk

(
θ−2
∑G
g=1ϕ

T
gK

−1
g β̃

g
k

)
andΣuk =(∑G

g=1 θ
−2ϕT

gK
−1
g ϕg + τ−2

k Z
−1
)−1

, with Z = diag(ζ1, ..., ζL).

• Updating {τ2
k}
p
k=1: we sequentially update τ

2
1, ..., τ

2
p by drawing from
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their full conditionals [τ2
k | uk]. Speci�cally, we update τ2

k by draw-

ing from Inv-Ga(aτ2
k
, bτ2

k
) where aτ2

k
= 0.001 + L

2 and bτ2
k

= 0.001 +

1
2u

T
kZ

−1uk.



Chapter 4

Bayesian Independent

Component Analysis

Involving Spatially Dependent

Sources With Application to

fMRI Data

This chapter is joint work with Dr. Ying Guo and Dr. Jian Kang.

4.1 Method

We discuss our Bayesian spatially dependent ICA model and its prior

speci�cations in this section. To begin with, we brie�y review the pre-

processing steps prior to ICA analysis of fMRI data.

4.1.1 Preprocessing of fMRI data

We denote by V, a compact subset of Rd (d = 2 or 3), the brain space in

the fMRI study of interest. In a certain study, time series of the BOLD

signals at a limited number of brain locations, v1, . . . , vn ∈ V, are recorded

and observed. Denoted by Y = [y(v1), . . . ,y(vn)] the t×n fMRI datamatrix,

99
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in which y(vi) = [y1(vi), . . . , yt(vi)]
> represents the time series recorded at

t di�erent time points for brain location vi, i = 1, . . . , n.

Before applying an ICA algorithm to the fMRI data, some prepro-

cessing steps such as centering, dimension reduction and whitening are

needed (Hyvärinen et al., 2001). In our analysis, we apply the following

linear transformation to the original data:

Y ← Y

(
In −

1

n
1n1>n

)
,

Y ←
[(

Λq,Y − λ̃q,YIq

)
U>q,Y

]
Y .

(4.1)

In the �rst transformation, we center the fMRI data matrix by column

(1n is a vector that has n repeated ones). In the second transformation,

Λq,Y is a diagonal matrix that contains the q largest singular values of Y

(the centered data matrix); the columns of Uq,Y are the corresponding

singular vectors; λ̃q,Y is the average of the t − q eigenvalues that are not

included in Λq,Y . We select the number of component, q, using the MDL

criteria (Li et al., 2006). Transformations in (4.1) reduce the temporal

domain dimension of the original data from t to q, i.e, we nowhavey(vi) ∈

Rq for all i = 1, . . . , n. It also centers and whitens the data such that the

sample mean and covariance for columns of Y are 0 and Iq. Throughout

the rest part of this section, we consider Y being the preprocessed fMRI

data.

4.1.2 The spatially dependent ICAmodel for fMRI data

Let y(v) = [y1(v), . . . , yq(v)]> ∈ Rq be the preprocessed data at an arbitrary

brain location v ∈ V. Our spatial ICA model assumes that

y(v) = As(v), ∀v ∈ V, (4.2)

in which s(v) = [s1(v), . . . , sq(v)]> represents the q latent spatial source sig-

nals (ICs); A is the q × q mixing matrix. The q elements in s(v) are mu-

tually independent, i.e., s`(v) ⊥ s` ′(v
′) for all 1 6 ` < ` ′ 6 q and v, v ′ ∈
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V. Unlike traditional ICA model that assumes y(v) to be i.i.d. across all

spatial locations, our spatial source signals are spatially dependent, i.e.,

Cov[s`(v), s`(v
′)] is not constantly zero for all v, v ′ ∈ V, v 6= v ′. This assump-

tion is speci�cally useful for fMRI data because, within each IC, di�erent

brain locations can be functionally connected and they can generate sim-

ilar fMRI BOLD signals instead of being totally independent. At the same

time, brain locations close to each other are more likely to demonstrate

similar temporal activation patterns. In addition, when analyzing fMRI

data, people commonly pre-smooth the raw data using Gaussian kernels,

which also introduce arti�cial spatial dependence structures into the data.

By incorporating spatial dependence within each IC, our model is more

�exible and can capture these important aspects of fMRI data.

We restrict A to be an orthogonal matrix. This assumption is com-

monly adopted for pre-whitened fMRI data (Hyvärinen and Oja, 2000).

To make Bayesian inference about the model, we assign priors to A and

s(·). We begin with the prior of A, the orthogonal mixing matrix.

Prior of the mixing matrix: uniform distribution on the orthogonal

group

The set of all orthogonal matrices de�ned on Rq×q, denoted by O(q), is a

algebraic group. With no prior knowledge available about A, we assign a

uniform prior density for A on O(q) following Gupta and Nagar (2000)

as follows

A ∼ πa(A), πa(A) =
1

vol [O(q)]
I [A ∈ O(q)] . (4.3)

This prior is proper because the orthogonal group is a Stiefel manifold

(Gupta and Nagar, 2000) with a �nite volume, vol [O(q)]. To be speci�c,

the volume of O(q) with regard to the Haar measure is

vol [O(q)] = π
q+q2

4
2q∏q

`=1 Γ
(
q+1−`

2

) ,
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according to Corollary 2.1.16 in Muirhead (2005), where Γ(·) is the stan-

dard Gamma function.

Prior of the ICs: nonparametric Bayesian kernel models

For the latent spatial source signals s(v) = [s1(v), . . . , sq(v)]>, instead of as-

suming that each element is drawn identically and independently from

a probability distribution regardless of the spatial locations, we model

them using nonparametric regressions as follows: for a given `, 1 6 ` 6 q,

and for all v ∈ V,

s`(v) = µ`(v) + e`(v), e`(v)
iid
∼ Π`. (4.4)

In (4.4), the mean functions, µ`(v), ` = 1, . . . , q, capture the spatially vary-

ing trend of the ICs. We model them using the Bayesian kernel models

introduced by Pillai et al. (2007); Wolpert et al. (2011) as follows:

µ`(v) =

∫
w∈V

κ(v,w)u`(dw), ∀v ∈ V (4.5)

in which κ(·, ·) : V×V 7→ R is a kernel function and u`(·) is a random signed

Borel measure de�ned on V. To be speci�c, we choose the square expo-

nential (SE) kernel κ(v,w) = exp
{
−‖v−w‖2/ρ

}
in our model. The main

result in Pillai et al. (2007) states that the image of this Bayesian kernel

model transformation for all u`(·) ∈ B(V), where B(V) is the collection of

all signed Borel measures on V, equals exactly to the reproducing ker-

nel Hilbert space (RKHS) induced by κ(·, ·). To construct such a random

signed Borel measure, we consider the decomposition of u`(·) as:

u`(dw) = z`(w) dF`(w), ∀w ∈ V, (4.6)

and assume that

z`(w) ∼ GP(0, c`(w,w
′)), F`(w) ∼ DP(α, F0), (4.7)
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which states that z`(·), ` = 1, . . . , q, are independently generated fromGaus-

sian process priorswith zeromeans and covariance kernel functions c`(·, ·);

F`(·), ` = 1, . . . , q, are independently drawn from a Dirichlet process prior

with a concentration parameter α and a base measure F0. Independent

z`(·) and F`(·) lead to independent signed Borel measures, u`(·), in (4.5).

As suggested by Pillai et al. (2007), this generating procedure can cover

all the elements in B(V). As a result, µ`(v) in (4.4) belongs to the RKHS

induced by κ(·, ·). In fact, for a large family of kernel functions such as

the square exponential kernels we use, their RKHS equals to the set of all

continuous functions on V (Tokdar and Ghosh, 2007).

The independence between these randomsignedBorelmeasures guar-

antees the independence between ICs. On the other hand, this construc-

tion leads to spatial dependencewithin each speci�c IC. This dependence

structure is given in Theorem 5, the proof of which is relegated to the Ap-

pendix.

Theorem 5. For the `th IC, i.e., s`(v), in our spatial ICA model (4.2), (4.5)–(4.7)

implies that

Cov[s`(v), s`(v
′)] =

1

|V|2

∫∫
(w,w ′)∈V×V

κ(v,w)c`(w,w
′)κ(w ′, v ′) dw dw ′,

where |V| is the volume of V with regard to the Lebesgue measure.

Theorem 5 implies that, within each of the ICs, even the kernel func-

tions inmodel (4.5) and in theGaussian processes for generating the signed

Borel measures in (4.7) are stationary, the resulting spatial dependence

structure for the ICs is still non-stationary, which admit extra �exibility

from the modeling perspective.

The noise terms in (4.4) ismodeled by the scale transformed Student-t

distribution as proposed inmany Bayesian literature for robust inference

(West, 1984; Lange et al., 1989; Fonseca et al., 2008). Speci�cally, e`(v) ∼ Π`,
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in which

Π` =
Γ
(
ν`+1

2

)
Γ
(
ν`
2

)√
ν`πσ

2
`

(
1 +

x2

σ2
`ν`

)−
ν`+1

2

. (4.8)

This speci�cation implies that e`(v)√
σ2
`

∼ t(ν`), a t distribution with ν` degree

of freedom. A canonical heteroscedastic error term augmentation for

this distribution is:

e`(v) | φ`(v) ∼ N
(

0,
σ2
`

φ`(v)

)
, φ`(v) ∼ Gamma

(
ν`
2
,

2

ν`

)
. (4.9)

Wewill adopt this generating process for e`(v) in our expositions through-

out the rest of this paper.

4.1.3 Model representation, hyperprior speci�cation and poste-

rior inference

Model representation for �nite number of observations

When analyzing real fMRI data, we only have a �nite number of pre-

processed observations, as described in section 4.1.1, at the n spatial loca-

tions: y(v1), . . . ,y(vn), which all satisfy that y(vi) = As(vi). Let A` be the

`th column of the orthogonal mixing matrix A, then

s`(vi) = A>` y(vi). (4.10)

The results from Liang et al. (2006); Pillai et al. (2007) imply that the

DP prior speci�cation in the kernel model (4.5) and (4.6) leads to an ap-

proximation at the �nite number of brain locations, v1, . . . , vn as

s`(vi) ≈
n∑
j=1

z`,jKj(vi) + e`(vi), (4.11)

if the fraction, α/n, is small, which holds true for most imaging appli-

cations since n, the number of brain locations (or voxels), are very large

while α is relatively small. In (4.11), Kj(vi) = κ(vi, vj) represents the value

of kernel function κ(·, ·) evaluated at vi and vj; z`,j = z`(vj) is the value of
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the Gaussian process z`(·) de�ned in (4.7) at brain location vj.

Since in model (4.11), we still have a total number of n variables, z`,j, to

be estimated from n spatial observations, we assign the generalized Zell-

ner’s g-prior (Zellner, 1986; West, 2003; Maruyama and George, 2011)

to the vector z` = [z`,1, . . . , z`,n]> to facilitate fully Bayesian inference and

shrink small elements in z` towards zeros. Speci�cally, we adopt the strat-

egy ofWest (2003), which aims to achieve shrinkage estimation of z`,1, . . . , z`,n

in di�erent principal component directions on the design space induced

by κ(· , ·). The prior on z` is the given as follows

z` ∼ Nn(0, Ψ̃Λ̃−1G`Λ̃
−1Ψ̃>), (4.12)

where K = ΨΛΨ> is the eigen-decomposition of the n × n empirical ker-

nel matrix K = {κ(vi, vj)}16i,j6n; Λ̃ = diag(λ1, . . . , λK), λk > 0 represents

the diagonal matrix containing the K largest eigenvalues in Λ, while Ψ̃ =

[ψ1, . . . ,ψK] is an n× Kmatrix containing the corresponding eigenvectors

in Ψ as its columns; G` = g`IK where g` > 0 is g-parameter for the `th

IC. Suppose that the Karhunen-Loève (KL) expansion (Rasmussen and

Williams, 2006b) of κ(v, v ′) is κ(v, v ′) =
∑∞
k=1 λkψk(v)ψk(v ′), then the prior

speci�cation for z` in (4.12) implies that c`(v, v ′) =
∑K
k=1

g`
λ2
k
ψk(v)ψk(v ′) in

(4.7).

Based on thenotations above, if wede�ne vectorsβ` = [β`,1, . . . , β`,K]>, ` =

1, . . . , q, such that Kz` = Ψ̃β`, then β` ∼ NK(0,G`) approximately since

K ≈ Ψ̃Λ̃Ψ̃>. Based on the re-parameterization above, we approximate

(4.11) by

s`(vi) =

K∑
k=1

β`,kψk,i + e`(vi), β`,k ∼ N(0, g`,k) (4.13)

in which ψk,i are elements in ψk = [ψk,1, . . . , ψk,n]>, the columns of Ψ̃.

The noise term e`(vi)
iid
∼ Π`, follows the scale transformed t-distribution

as given in (4.8), for all i. According to (4.9), we have the following het-
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eroscedastic representation of e`(vi) as follows

e`(vi) | φ`,i ∼ N
(

0,
σ2
`

φ`,i

)
, φ`,i ∼ Gamma

(
ν`
2
,

2

ν`

)
. (4.14)

Approximate computation using a modi�ed square exponential expo-

nential kernel

Functional eigen-decomposition of the kernel function κ(v,w) = exp{−‖v−

w‖2/ρ} does not have an analytical solution, whichmakes it computation-

ally infeasible to �t our model to large imaging datasets where n might

be greater than 105. To solve this issue, we introduce the modi�ed square

exponential kernel

κmod(v,w) = exp

{
−a‖v‖22−a‖w‖22−

‖v−w‖22
ρ

}
, a, ρ > 0 (4.15)

with a relatively small value for a as a numerical approximation to the

square exponential kernel whendealingwithmassive neuroimaging data.

Themajor bene�t of this kernel function is that it has analytically tractable

functional eigen-decomposition fomula. The detailed properties of this

kernel is summarized in the Appendix. In this paper, we use this kernel

function for approximate computation by �xing a = 0.25, which gives us

competitive empirical performance. The choice of the scale parameter ρ

in this kernel function is discussed below.

Choosing the scale parameter in the kernel function

Typically, this parameter can be chosen using a fully Bayesian approach

by updating it with full conditional draws while sampling from the poste-

rior. This fully Bayesian updating scheme will lead to changes of the di-

mensionality of our parameter space when working with representation

(4.13), which required special treatment such as using the reversible jump

MCMC (Green, 1995). Another way is to estimate ρ under the empirical

Bayes paradigm, which requires repetitive posterior inferences about the
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other parameters given di�erent choices of ρ.

Since both approaches are know to be complex and ine�cient, we

propose an ad-hoc procedure to choose the scale parameter in the kernel

function, which works well in practice. Speci�cally, for a chosen value of

ρ and the resulting decomposition of K, we use an existing ICA method

to decompose Yq×n = [y(v1), . . . ,y(vn)], with the resulting unmixing ma-

trix W̃. O� note, we use the Infomax ICA (Bell and Sejnowski, 1995) to

estimate W̃ in our empirical study. We then calculate the generalized

cross-validation (GCV) loss function de�ned as follows

L(ρ) =

1

n

∥∥∥∥[In − Ψ̃
(

Ψ̃>Ψ̃
)−1

Ψ̃>
]
Y>W̃>

∥∥∥∥
F{

1

n
Tr
[
In − Ψ̃

(
Ψ̃>Ψ̃

)−1
Ψ̃>
]}2 , (4.16)

and choose ρ as the minimizer of L(ρ).

Choice of hyperpriors and posterior inference

We choose conjugate priors for σ2
` by assuming σ

2
`

iid
∼ Inv-Ga(aσ, bσ) for all

` = 1, . . . , q in (4.14), where Inv-Ga(·, ·) is the inverse Gamma distribution.

In (4.14), the priors on ν` are given as Inv-Ga(aν, bν). We let aσ, bσ, aν, bν

be small numbers, say 0.001 (the values we use throughout this paper),

to generate relatively uninformative priors on σ2
` and ν`. The priors on

g` is g`
iid
∼ Inv-Ga(η`, ξ`) for all 1 6 ` 6 q. We specify inverse Gamma

priors on η` and ξ` as η`
iid
∼ Inv-Ga(aη, bη), ξ`

iid
∼ Inv-Ga(aξ, bξ) and also let

aη = bη = aξ = bξ = 0.001 to reduce prior information.

Combining (4.3), (4.10), (4.13), (4.14) and the hyperprior speci�cations
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above, we have:

A>` y(vi) | β,φ, σ
2
` ∼ N

(
K∑
k=1

β`,kψk,i
σ2
`

φ`,i

)
,

A ∼ πa(A), σ2
` ∼ Inv-Ga(aσ, bσ),

φ`,i ∼ Gamma
(
ν`
2
,

2

ν`

)
, ν` ∼ Inv-Ga(aν, bν),

β`,k ∼ N(0, g`), g` ∼ Inv-Ga (η`, ξ`) ,

η`
iid
∼ Inv-Ga(aη, bη), ξ` ∼ Inv-Ga(aξ, bξ).

(4.17)

Our goal then is to examine the joint posterior distribution given the

data matrix Y , which contains all the preprocessed fMRI data. We ap-

proximate the posterior by drawing samples from

[
A, β, φ, {σ2

`, g`, ν`, η`, ξ`}
q
`=1 | Y

]
using a Markov chain Monte Carlo (MCMC) algorithm to achieve this

goal. More details about this algorithm is given in the Appendix.

Given the MCMC samples, we aim to achieve two major goals. The

�rst is to estimate the orthogonalmixingmatrixA. Denote byA(1), . . . ,A(T )

the valid the posterior samples for [A | Y ], we estimate this matrix as fol-

lows:

Â = orth(A∗), A∗i,j = median{A(1)
i,j , . . . ,A

(T )
i,j },

where orth(·) is the orthogonalization operator. The use of posteriorme-

dian is due to the heavy tails of [Ai,j | Y ], i.e., themarginal posterior of each

element of A, which we frequently observe in practice. The second goal

is to make inference about the spatial source signals. Consider for the `th

channel at brain location vi, posterior samples, β
(1)
` , . . . ,β

(T )
` enable us to

estimate the spatial source signals using the posterior of mean process

µ`(vi) as

Ê[µ`(vi) | Y ] ≈ 1

T

T∑
t=1

K∑
k=1

β
(t)
`,kψk,i
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µ2(v) µ3(v) µ4(v) µ5(v) µ6(v)

Figure 4.1: The true mean functions of the spatial sources signals used in
our simulation studies. The mean function µ1(s) is constantly zero.

Table 4.1: Summary of the data generating processes for s(v) in the simu-
lation study: The ean functions referred to here are all displayed in Figure
4.1; the nontaion DE(λ) stands for a double exponential distribution with
rate parameter λ; the notationGamma(k, θ) represents a gamma distribu-
tion with k being the shape parameter and θ being the scale parameter. σ
parameter here is used to control the noise levels.

IC channel mean function error distribution: ε(s)/σ
iid
∼

q =
2

1 0 N(0, 1)

2 µ2(s) {χ2(3) − 3}/
√

6

q =
4

1 0 N(0, 1)

2 µ2(s) {χ2(3) − 3}/
√

6

3 µ3(s) DE(1)/
√

2

4 µ4(s) 1
2N
(
− 1

2 ,
√
3
2

)
+ 1

2N
(

1
2 ,
√
3
2

)

q =
6

1 0 N(0, 1)

2 µ2(s) {χ2(3) − 3}/
√

6

3 µ3(s) DE(1)/
√

2

4 µ4(s) 1
2N
(
− 1

2 ,
√
3
2

)
+ 1

2N
(

1
2 ,
√
3
2

)
5 µ5(s) {Gamma(4, 2) − 8}/4
6 µ6(s) {χ2(2) − 2}/2

A speci�c 95% credible interval for the spatial source signals can be con-

structed from the 2.5%th and 97.5%th percentiles of

{
K∑
k=1

β
(1)
`,kψk,i, . . . ,

K∑
k=1

β
(T )
`,kψk,i

}

at brain location vi. Voxels that have credible intervals excluding zero will

be selected as activated areas.
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4.2 Data Examples

4.2.1 Simulated data

In this section, wedemonstrate the performance of our proposedmethod

through simulation studies. We consider the number of ICs, q, to be 2, 4

and 6. For each speci�cation of q, the �rst IC channel is a Gaussian white

noise channel, i.e., µ1(s) ≡ 0, e1(s)/σ
iid
∼ N(0, 1). For the rest of the channels,

the mean functions, i.e., µ`(v), ` = 2, . . . , q, in model (4.4), is chosen from

the �ve images shown in Figure 4.1, which are all 50×50 images. Di�erent

types of white noises are added to these mean functions to generate the

ICs. Table 4.1 provides a detailed summary about the ICs in the data gen-

erating processes of our simulation studies. As we can see from Table 4.1,

parameter σ governs the noise level of simulated datasets. By varying σ,

we consider three di�erent noise levels: low (σ = 0.5), medium (σ = 1) and

high (σ = 1.5). Combining di�erent values of q and σ, we have nine di�er-

ent scenarios. Under each scenario, a q×qmixingmatrix, A, is randomly

generated via the orthogonalization of a square matrix with elements in-

dependently sampled from N(0, 1). For each pair of (q, σ) combinations,

50 datasets are simulated.

We specify themodi�ed SE kernel for ourmodel and choose the scale

parameter using the GCV loss criteria. We �t our model to the simulated

datasets usingMCMC. In practice, the chainmixes fast and we draw 2, 000

MCMC samples and discard the �rst 500 samples as burn-in observations.

We also implement six other ICA algorithms including “FastICA" (Hyväri-

nen, 1999), “Infomax" ICA (Bell and Sejnowski, 1995), “JADE" ICA (Hyväri-

nen, 1999), kernel ICA (Bach and Jordan, 2003), consistent ICA based on

empirical characteristic function (Chen and Bickel, 2005) and fast kernel

density ICA (Chen, 2006).

To evaluate the accuracies of the mixing matrix estimates, we use the

AMARI distance criteria (Amari et al., 1996), which has also been used in

Bach and Jordan (2003); Chen and Bickel (2005). Speci�cally, let A0 be
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the q × q true orthogonal mixing matrix and let Â be an estimate, then

the Amari error of this estimated mixing matrix is

dAmari(A0, Â) =
1

2q

q∑
i=1

(∑q
j=1|ri,j|

maxj|ri,j|
− 1

)
+

1

2q

q∑
j=1

(∑q
i=1|ri,j|

maxi|ri,j|
− 1

)
, (4.18)

where ri,j = (A>0 Â)i,j. Figure 4.3 shows the boxplots of Amari errors across

the 50 replications from ourmethod as well as from the other competing

methods. O� note, when an algorithm fails to converge, which happens

frequently for the fastICA algorithm under our simulation settings, we

will just treat the resulting Amari error as a missing value. We can see

from Figure 4.3 that our method consistently generates more accurate

mixing matrix estimates. The advantage of our model in terms of esti-

mation accuracy is more pronounced under the high noise level settings

(σ = 1.5).

In addition, an important goal when applying ICA tomany fMRI stud-

ies is to identify the activation area within each IC. To evaluate the per-

formance of di�erent methods in terms of recovering the spatial activa-

tion patterns, we draw receiver operating characteristic (ROC) curves in

Figure 4.4 for determining activated pixels for di�erent ICA methods.

O� note, fastICA is excluded here because it can fail to converge fre-

quently under many scenarios. The large area under the curve (AUC) of

our method in Figure 4.4 across all simulation settings implies that our

method can separate spatial source signals fromnoise or background bet-

ter very well.

Average computational time in second is reported in Figure 4.5. We

can see that our method, given its larger number of iterations required,

can completemodel estimation and inferencewithin a reasonable amount

of time.
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Simulated data: robustness checks

In addition to the simulation results reported above, we conduct fur-

ther robustness check to evaluate the performance of ourmethod against

the competing ones under three additional settings: residuals estimated

from real data; mean functions with sharper edges; mean functions with

smaller areas of activation. We consider q = 4 for under these three set-

tings.

Under the �rst setting, we begin by using the Infomax ICA to analyze

real fMRI data in our study and extracting residuals for four ICs of in-

terest. Then we generate error terms e`(v) by randomly choosing 2, 500

voxels. This simulation re�ects the true noise level and spatial dynam-

ics of the error terms indicated by the real data. In order to cover more

voxels, we replicate the simulation for 100 times.

The �rst panel in Figure 4.6 demonstrates the results under this set-

ting, which con�rms that our method still dominates the others in terms

of both estimating mixing matrix and identifying spatially activated re-

gions.

Under the second setting, instead of imposing gradually varying struc-

tures to the mean functions as shown in Figure 4.1, we force the signals

within activated areas to be 2, in order to discourage spatial dependence,

especially on the boundaries. Under the third setting, we reduce the

area of activation across source signals (three quarters of activated pixels

shown in Figure 4.1 are forced to be zero, the resulting ratio of activa-

tion is 1.24% and the original one is 5.00%). The spatial pattern of these

new sources are presented in Figure 4.2. This speci�cation aims to de-

crease the amount of information that helps our method to borrow due

to neighborhood dependence. For both of these two settings, we let the

noise parameter σ be 0.5, corresponding to the lowest noise level in our

previous simulation studies, which favors competing methods.

The second panel in Figure 4.6 shows the results under the sharp edge
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Figure 4.2: The new true mean functions of the spatial sources signals
used in additional simulation studies (setting three: smaller area of acti-
vation). The mean function µ1(s) is constantly zero.

setting. Under this setting, our method still performs very well in terms

of both estimating A and identifying activations within s(·). At the same

time, with constant strength of activation featuring larger values around

the boundary, traditional ICAmethods tend to have a better performance

in terms of �nding the activated pixels. This is because the ampli�ed

signals around the boundary are more distinguishable from zero. The

third panel in Figure 4.6 shows the results when the activation area be-

comes smaller. Under this setting, our method is still competitive while

the kernel ICA and fast kernel density ICA now give us the best mix-

ing matrix estimates. Kernel ICA also gives us the best ROC curve and

our method is comparable to the fast kernel density ICA in terms of

ROC analysis. This phenomenon is intuitive by thinking about the lim-

iting scenario: When the true activation area keeps becoming smaller

(supv∈V|µ`(v)|→ 0, ` = 1, . . . , q), the source signals will be closer to iid white

noises, which agrees better with the assumption of existing ICAmethods.

4.2.2 Real resting-state fMRI data

We demonstrate our method using a resting-state fMRI (rs-fMRI) data

example from thePhiladelphiaNeuro-developmental Cohort (PNC) study.

This study spans over 9, 500 young individuals aged between eight and

twenty-one. Among all the participants, 1, 445 individuals received neu-

roimaging scans including resting-state fMRI. One appealing feature of

the PNC study is that all their imaging data were acquired on the same

scanner (Siemens TimTrio 3 Tesla, Erlangen, Germany; 32 channel head
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Figure 4.3: The Amari errors from di�erent ICA methods. SDP: our ICA
method with spatially dependent sources; Fast: FastICA; IM: Informax
ICA; JADE: JADE ICA; Ker: kernel ICA; KD: fast kernel density ICA; PCF:
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Figure 4.4: The ROC curves for di�erent ICA methods. SDP: our ICA
method with spatially dependent sources; Fast: FastICA; IM: Informax
ICA; JADE: JADE ICA; Ker: kernel ICA; KD: fast kernel density ICA; PCF:
ICA based on empirical characterist function
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Figure 4.5: The average running time for di�erent ICAmethods (FastICA
is excluded for its convergence issues). SDP: our ICA method with spa-
tially dependent sources; IM: Informax ICA; JADE: JADE ICA; Ker: kernel
ICA; KD: fast kernel density ICA; PCF: ICA based on empirical character-
ist function.

coil) using the same imaging sequences. More detailed description about

this dataset is available in (Satterthwaite et al., 2014).

Prior to the analysis, we removed subjects who had more than 20 vol-

umes with relative displacement larger than 0.25mm to avoid subject-

speci�c excessive motion (Satterthwaite et al., 2015). Out of all the sub-

jects who received brain scans, 515 participants met this inclusion crite-

rion and their rs-fMRI data were used in our analysis.

Our research question is to identify fundamental patterns of func-

tional connectivities or brain functional networks in the resting states

among the PNC subjects. To achieve our goal, we adopt a group ICA

procedure which starts with a two-stage dimension reduction step (Beck-

mann and Smith, 2005; Calhoun et al., 2001; Guo and Pagnoni, 2008).

Speci�cally, we denote by Ỹj the original t×n fMRI datamatrices for sub-

ject j, j = 1, . . . , 515, in the study, where t = 120 is the number of scans over

time and n = 18, 5405 is the number of voxels recorded in the gray matter.

The in the �rst stage dimension reduction, we transform the original data

as follows

Y∗j = U>R Ỹj, j = 1, . . . , 515

in which columns of UR (R = 20) are eigen-vectors corresponding to the

top twenty dominating eigen-values of
∑515
j=1 YjY

>
j . We the concatenate
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Figure 4.6: Additioanl simulation studies for robustness checking. SDP:
our ICA method with spatially dependent sources; Fast: FastICA; IM: In-
formax ICA; JADE: JADE ICA; Ker: kernel ICA; KD: fast kernel density
ICA; PCF: ICA based on empirical characterist function
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data from the previous step as Y∗ = [Y>1 , . . . ,Y
>
515]> and apply the joint

centering, dimension reduction as well as whitening pre-process rou-

tines described in Section 4.1.1 to Y∗. The number of ICs in the second

stage processing is chosen as q = 8 using the GIFT Matlab toolbox (http:

//mialab.mrn.org/software/gift/index.html) after artifact removal. The re-

sulting data matrix is the feed into our proposed ICA method as well as

other competing methods.

We use the modi�ed square exponential kernel in our model. We �t

ourmodel to the fMRI data usingMCMCwith 12, 000 iterations (�rst 4, 000

samples discarded; samples recorded every 10 steps). We choose the scale

parameter by plotting the logarithms GCV loss against di�erent (loga-

rithm) values of the parameter. Figure 4.7 shows this plot, which implies

an optimal choice of ρ as e−4.4 = 0.0123. Our method can successfully re-

cover four biologically meaningful brain functional networks including

the right parietal frontal network, the defaultmode network, the primary

visual cortex and the auditory network. All these networks are prominent

�ndings among various rs-fMRI studies (Smith et al., 2009). We show in

Panel (A) of Figure 4.8 brain slices featuring the structures of these net-

works. In Figure 4.8, All the spatial source signals quantifying these net-

works are thresholded by excluding voxels that have Bayesian credible

intervals containing zero. For comparison, we also report results from

two competing ICA algorithms: the Infomax ICA (Bell and Sejnowski,

1995), as a representative of the parametric approaches, and the empirical

characteristic function based consistent ICA (Chen and Bickel, 2005), as

a representative of the semi-parametric/nonparametric methods. Since

these alternativemethods do not allow statistically valid inference for the

ICs, we threshold the resulting spatial source signals based on the heuris-

tic z-scores de�ned in (Mckeown et al., 1998), which has no valid statis-

tical interpretations, to determine activation patterns of the functional

networks. Panel (B) and Panel (C) of Figure 4.8 shows the network struc-

tures for these two competing methods. By comparing three panels in

http://mialab.mrn.org/software/gift/index.html
http://mialab.mrn.org/software/gift/index.html
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Figure 4.8, we can see that our method produce more pronounced esti-

mates of brain activities at those characteristic regions. At the same time,

ourmethod can recover the activation regionswithin the brain functional

networks with high completeness.

4.3 Discussion

In this paper, we propose a new ICAmodel featuring spatially dependent

source signals for fMRI data analysis. Wemodel the ICs by nonparamet-

ric regression using Bayesian kernel models. We adopt a fully Bayesian

inference procedures using MCMC to estimate the mixing matrix and

make inference about the spatial source signals using posterior credible

intervals. When the noise level is high and the data have distinct spatial

dependence structures, our method can estimate the mixing matrix and

identify activated regions within IC sources more accurately compared

with existing methods.

This study can be improved in two aspects. First, we can evaluate the

theoretical properties of our posterior inference from a frequentist per-

spective by studying its posterior consistency and rate of contraction.

A major di�culty to overcome along this direction is to come up with

good testing functions with exponentially decaying tails with regard to

the number of spatial observations. Second, we can develop computa-

tionallymore e�cient algorithms, using variational approximation to the

true posterior, to make inference about our model. This direction is ex-

tremely useful for handling big neuroimaging data. To achieve this goal,

onemajor problem is how to propose a good speci�cation to the approx-

imate marginal posterior of the mixing matrix A. In practice, a good

speci�cation needs to mimic the true posterior while facilitates tractable

integration with regard to the mixing matrix.
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Figure 4.7: Plot the log GCV losses against di�erent values of ρ, the scale
parameter in the kernel function, for the PNC dataset.

4.4 Appendices

4.4.1 Proof of Theorem 5

For the ease of exposition, we drop the subscript ` here. Since s(v) =∫
w∈V κ(v,w)u( dw) + e(v) with E[e(v)] = 0, then

E[s(v)] = E
[∫
w∈V

κ(v,w)u( dw) + e(v)

]
= EF

[∫
w∈V

Ez [κ(v,w)z(w)] dF(w)

]
= 0 (4.19)

Now consider ∀s ∈ V and an arbitrary s ′ ∈ V, such that s 6= s ′,

Cov[s(v), s(v ′)] (4.20)

= E
[
s(v)s(v ′)

]
= E

[∫
w∈V

κ(v,w)u( dw)

∫
w∈V

κ(v ′,w)u( dw)

]
= EF

[∫∫
(w,w ′)∈V×V

Ez
[
κ(v,w)z(w)κ(v ′,w ′)z(w ′)

]
dF(w) dF(w ′)

]
= EF

[∫∫
(w,w ′)∈V×V

κ(v,w)κ(v ′,w ′)c(w,w ′) dF(w) dF(w ′)

]
. (4.21)
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(A) Results from our proposed method

RPF DMN PVC AUD

(B) Results from the Infomax ICA

RPF DMN PVC AUD

(C) Results from the empirical characteristic function based ICA

Figure 4.8: ICA results for the PNC data example from three represen-
tative ICA methods (RPF: right parietal frontal network; DMN: default
mode network; PVC: primary visual cortex; AUD; auditory netork)
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The stick-breaking construction of theDPgives F =
∑∞
h=1 [Vh

∏
l<h(1 − Vl)] δwh

with w1, . . . ,wh, . . .
iid
∼ F0 and V1, . . . , Vh, . . .

iid
∼ Beta(1, α), which implies that:

R.H.S. of (4.20) (4.22)

= E(V,w)

 ∞∑
i=1

∞∑
j=1

(
κ(v,wi)Vi

∏
l<i

(1 − Vl)

)κ(v ′,wj)Vj
∏
l<j

(1 − Vl)

 c(wi,wj)


=

∞∑
i=1

∞∑
j=1

αi−1

(1 + α)i
αj−1

(1 + α)j

∫∫
(w,w ′)∈V×V

1

|V|2
κ(v,w)κ(v ′,w ′)c(w,w ′) dwdw ′

=
1

|V|2

∫∫
(w,w ′)∈V×V

κ(v,w)c(w,w ′)κ(w ′, v ′) dwdw ′. (4.23)

4.4.2 Details about the algorithm to draw from the posterior

We use a Markov chain Monte Carlo (MCMC) algorithm to approximate

the posterior distribution drawing samples from the posterior distribu-

tions of the parameters in the ICA model.

Let Σ = diag(σ2
1, . . . , σ

2
q), Φi = diag(φ1,i, . . . , φq,i), B = [β1, . . . ,βq]> (a q×K

matrix) and ψ(i) = [ψ1,i, . . . , ψK,i]
> (the ith row of Ψ̃). The joint posterior is

proportional to

exp

{
−

1

2

n∑
i=1

(
A>y(vi) − Bψ

(i)
)>

Σ−1Φi

(
A>y(vi) − Bψ

(i)
)}

exp

{
−

1

2

q∑
`=1

g−1
` β

>
` β`

}

×
n∏
i=1

{
q∏
`=1

φ
1
2
`,i

(
σ2
`

)− 1
2

}[
q∏
`=1

g
−K

2
`

][
q∏
`=1

(
σ2
`

)−aσ−1
exp

(
−
bσ

σ2
`

)]

×

 n∏
i=1

q∏
`=1

φ
ν`/2−1
`,i exp(−φi,`ν`/2)

Γ(ν`2 )
(

2
ν`

)ν`/2

[ q∏
`=1

ξ
η`
`

Γ(η`)
g
−η`−1
` exp

(
−
ξ`
g`

)]

×πa(A)

[
q∏
`=1

π(ν`)π(η`)π(ξ`)

]

• UpdateA: the full conditional ofA given all other parameters in this

model is proportional to

exp

{
tr

[(
n∑
i=1

Σ−1ΦiBψ
(i)y(vi)

>

)
A

]}
, A ∈ O(q)
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This is a matrix von-Mises Fisher distribution. We sample from

this distribution following the rejection sampling algorithm by Ho�

(2009):

1. Obtain the singular value decomposition UDV> of

n∑
i=1

y(vi)ψ
(i)>B>ΦiΣ

−1

and let H = UD with columns [h1, . . . ,hq].

2. Sample pairs {u, Ã} until

u <

q−1∏
`=2

I(q−`−1)/2(‖N >
` h`‖)

I(q−`−1)/2(‖h`‖)

(
‖h`‖
‖N >

` h`‖

)(q−`−1)/2

,

whereN` ∈ Rq×(q−`+1) contains a complete set of orthogonal ba-

sis for the null space of [Ã1, . . . , Ã`−1]; Iα(·) is the modi�ed Bessel

function of the �rst kind. We complete this step by:

i. Sample u ∼ Unif(0, 1).

ii. a. Sample Ã1 ∼ vMF(h1), the vector von-Mises Fisher dis-

tribution.

b. For ` = 2, . . . , (q− 1), sample b ∼ vMF(N >
` h`) and set Ã` =

N`b.

c. Set Ãq = Nq−1.

3. Set A = ÃV>.

• Update {β`}
q
`=1: we draw β` from N(µβ` , Σβ`) where

µβ` = Σβ`

[
σ−2
`

n∑
i=1

φ`,iA
>
` y(vi)ψ

(i)

]

and

Σβ` =

(
n∑
i=1

σ−2
` φ`,iψ

(i)ψ(i)> + g−1
` IK

)−1

.
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• Update {σ2
`}
q
`=1 by drawing from

Inv-Ga

(
aσ +

n

2
, bσ +

1

2

n∑
i=1

φ`,i

(
A>` y(vi) − β

>
` ψ

(i)
)2
)
.

• Update {φ`,i}16`6q,16i6n by drawing from

Gamma

(
1 + ν`

2
,

2

σ−2
`

(
A>` y(vi) − β

>
` ψ

(i)
)2

+ ν`

)
.

• Update {g`}
q
`=1 by drawing g` from

Inv-Ga
(

2η` + K

2
,

2ξ` + β>` β`
2

)

for all ` = 1, . . . , q.

• Update {η`, ξ`}
q
`=1: we update η` and ξ` together via a Metropolis up-

dating scheme embedded in the Gibbs sampler. We �rst generate a

symmetric proposal [η∗` , ξ
∗
` ]
> ∼ N([η`, ξ`]

>, 2I2) and then accept it with

probability

min

{
1,

iγ(g`;η
∗
` , ξ
∗
`)

iγ(g`;η`, ξ`)
exp

(
bη

η`
−
bη

η∗`
+
bξ
ξ`

−
bξ
ξ∗`

)(
η`
η∗`

)aη+1(
ξ`
ξ∗`

)aξ+1
}
,

where iγ(·;α,β) is the density function of an inverse Gamma distri-

bution with shape parameter α and scale parameter β.

• Update {ν`}
q
`=1: this updating step is also achieved with Metropolis

algorithms. We �rst sample a proposal ν∗` ∼ N(ν`,
2
ν) and then accept

it with probability

min

{
1,

[
n∏
i=1

γ(φ`,i;ν
∗
`/2, 2/ν

∗
`)

γ(φ`,i;ν`/2, 2/ν`)

]
exp

(
bν

ν`
−
bν

ν∗`

)(
ν`
ν∗`

)aν+1
}
,

where γ(·;a, b) is the density function of a Gamma distribution with

shape parameter a and scale parameter b.
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4.4.3 Functional eigen-decomposition for thegeneralizedSEker-

nel

For amodi�ed SEkernel function: κmod(v,w) = exp
{
−a‖v‖22−a‖w‖22−

‖v−w‖22
ρ

}
,

a, ρ > 0, let b = ρ−1. Then if v,w ∈ Rd, its functional eigen-decomposition

has an analytical form given in the following proposition:

Proposition 2. For a speci�c k ∈ {1, ...,∞}, de�ne series {ki}
d
i=0, {li}

d
i=0 and

{mi}
d
i=1 as follows

ki =

{
ki ∈ N0 :

(
ki + d− i− 1

d− i

)
6 li 6

(
ki + d− i

d− i

)
− 1

}
, 0 6 i 6 d−1, kd = 0,

l0 = l− 1, li = li−1 −

(
ki−1 + d− i

d− i+ 1

)
, i > 1,

mi = ki−1 − ki, i > 1,

where N0 is the set of nonnegative integers;
(
n
k

)
= 0 if k > n. De�ne K =

(
m+d
d

)
=∑m

k=0

(
k+d−1
d−1

)
. For v = [v1, ..., vd]> ∈ Rd, letψk(v) and λk be the kth (sort λks from

large to small) combination of eigenfunctions and eigenvalues for the modi�ed

square exponential kernel κ(v,w), then

λk =
( π
A

)d
Bk0 ,

∑K
k=1 λk∑∞
k=1 λl

= (1 − B)d
m∑
k=0

(
k+ d− 1

d− 1

)
Bk,

ψk(v) = (2c)
d
4 exp

(
−c‖v‖22

) d∏
i=1

Hmi
(
√

2cvi),

where c =
√
a2 + 2ab, A = a + b + c and B = b/A; Hj(·) is the jth (j ∈ N0) order

normalized Hermite polynomial.

This result is a direct extension from the one-dimensional case (d = 1)

derived in Zhu et al. (1998).
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Chapter 5

Summary and FutureWork

We provide concluding remarks on our contributions to the existing lit-

erature and brie�y discuss some future directions in this chapter.

The �rst topic of this dissertation contributes to the existing literature

mainly in four aspects. First, our proposed model is the �rst hierarchi-

cal ICAmodel for fMRI data analysis which incorporates covariate e�ects

into the source signals. Ourmodel provides the �rst statistical framework

to estimate and test the di�erences between brain functional networks us-

ing fMRI data. Second, we propose a fast approximate EM algorithm for

model estimation, which scales linearly to the number of source signals.

This fast computation algorithm is extremely suitable for analyzing big

imaging data. Third, our model can naturally control for potential con-

founding factors to the primary covariate e�ects of interest, which is suit-

able for the PTSD dataset given its observational nature. Fourth, empir-

ical simulation studies con�rm that our method can address the “cross-

talk" issues in the existing method and provide high statistical power in

terms of testing di�erences between brain functional networks. A future

direction along this line is to conduct shinkage estimation of covarate ef-

fects on brain functional networks.

The contribution of the second topic can be summarized as three

main points. First, we propose a new functional class with rigorousmath-
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ematical de�nitions for the covariate functions in spatially varying coe�-

cientmodels, which can capture common features in neuroimaging data:

region-wise spatial smoothness, jump discontinuity and sparsity. Sec-

ond, we propose a new family of priors, namely the thresholded Gaus-

sian process priors, for the covariate functions to facilitate nonparamet-

ric Bayesian inference. The proposed priors have large support property

and induce posterior consistency, as well as posterior regional selection

consistency, under the SVCM framework. Third, empirical performance

of our method is superior to existing GLM based methods: It has lower

Type I error rates compared with the false discovery rate control pro-

cedure; it is statistically more powerful compared with the family-wise

error rate control method based on random �eld theory. One potential

improvement to this topic is to drop the constant thresholding paradigm

and conduct adaptive SVCF support estimation using dynmanic thresh-

olding processes (from λ to λ(s)).

The third topic presented in this dissertation lead to three major con-

tributions. First, it is the �rst ICA model that can account for spatial de-

pendencewithin the spatial source signals, or the ICs. Thenonparametric

regression modeling paradigm to the ICs extends the existing literature

which mainly focuses on using density estimation to handle the ICs by

treating them as white noises. It separates the informative spatial mean

dynamics from residual noises. The adoption of Bayesian kernel models

enable us to capture various sophisticated spatial dependence structure

�exibly. Second, we show through extensive simulation studies that our

method can estimate the mixing matrix and identify spatial activation

patterns more accurately, especially when the signal-to-noise ratio is low

in the data. The advantages over existing ICA methods are mainly due

to the incorporation of spatial dependence as well as the separation of

spatial mean trends from residual noises. Third, our method is the �rst

one that canmake formalmodel-based inference about the spatial source

signals when performing ICA decompositions of fMRI data. Our fully
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Bayesian inference algorithm based on MCMC gives us a natural way of

constructing posterior credible sets for the spatial source signals at each

brain voxel. Testing the signi�cance of activation is straightforward as

we only need to determine whether the credible intervals include zeros.

Since the Bayesian kernel models can be de�ned on general Euclidean

spaces, one direct, yet useful, extension to this topic is to bring in covari-

ate e�ects into the kernel function and use anisotropic scale parameters

to select and quantify these e�ects.
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