
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all
forms of media, now or hereafter known, including display on the world wide web. I understand that
I may select some access restrictions as part of the online submission of this thesis or dissertation.
I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to
use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Andrew McLeod Date

Automatic Transcription of Polyphonic Musical Signals with Linear Matching Pursuit

By

Andrew McLeod
Master of Science

Mathematics/Computer Science

Li Xiong
Advisor

Shun Yan Cheung
Committee Member

Ken Mandelberg
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Automatic Transcription of Polyphonic Musical Signals with Linear Matching Pursuit

By

Andrew McLeod

Advisor: Li Xiong, Ph.D.

An abstract of
A thesis submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Master of Science
in Mathematics/Computer Science

2013

Abstract

Automatic Transcription of Polyphonic Musical Signals with Linear Matching Pursuit
By Andrew McLeod

The Harmonic Matching Pursuit (HMP) algorithm has offered promising results in the automatic

transcription of audio signals. It works by decomposing the given signal into a set of harmonic atoms,

and then grouping those atoms into individual notes. HMP has shown very promising results, but

more research has been needed for one case: when multiple notes with rational frequency relation

are played simultaneously. This situation is called the overlapping partial problem, and it is very

common in music, occurring in intervals such as major thirds, perfect fourths, and perfect fifths. A

few solutions have been proposed to handle this overlapping partial problem by performing post-

processing on the output of HMP (notably HMP with Spectral Smoothness (HMP SS) [3]). In

this paper, I propose an algorithm called Linear Matching Pursuit (LMP) to solve the overlapping

partial problem of automatic note detection, which uses new heuristics to solve the problem with

no post-processing required. LMP’s runtime is independent of the number of notes present in a

given audio signal, unlike HMP. My experiments show that LMP offers an improvement upon the

accuracy of the HMP algorithm, though not to the extent of HMP SS, and is very robust in runtime

with respect to polyphony.

Automatic Transcription of Polyphonic Musical Signals with Linear Matching Pursuit

By

Andrew McLeod

Advisor: Li Xiong, Ph.D.

A thesis submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Master of Science

in Mathematics/Computer Science
2013

Acknowledgments

Firstly, I would like to thank my thesis advisor, Li Xiong, for her support and direction through-

out the process of completing this thesis project. She was the first professor who challenged and

inspired me to conduct research in the field of computer science. She allowed me the freedom to

explore the vast field on my own, but still provided me with just the right amount of structure so

that I would not get lost along the way.

I would also like to Ken Mandelberg, my undergraduate advisor, for his guidance throughout my

years here at Emory. He has made it easy for me to find my way through college to graduation. His

guidance and advice has allowed me to concentrate fully on my research during my time here.

I would like to thank my committee members, Shun Yan Cheung, along with Li Xiong and Ken

Mandelberg, for the time they have taken to evaluate me and my thesis.

Thanks to Steve Nowicki, who inspired me to travel down this road to academia.

Thanks also to David Goodwin, who allowed my love of music to grow and eventually inspire

this thesis.

Finally, I would like to thank my family for their never ending love and support in my pursuit

of this complete thesis project.

Contents

1 Introduction 1

2 Background and Related Works 2

2.1 Terms . 2

2.2 Related Works . 4

2.2.1 Matching Pursuit . 4

2.2.2 Harmonic Matching Pursuit . 5

2.2.3 HMP with Spectral Smoothness . 7

2.3 Problem . 9

3 Proposed Solution 9

3.1 Linear Matching Pursuit . 9

4 Experiments 13

4.1 Metrics . 13

4.2 Dataset . 15

4.3 Parameters . 15

4.4 Results . 16

5 Conclusion 19

6 Appendix 20

List of Figures

1 Harmonics Vibrating on a String . 5

2 Note-set Search Tree . 10

3 Accuracy Values . 18

4 Error Values . 18

5 Speed Values . 19

List of Tables

1 Symbol Table . 20

2 Interval Ratios . 21

3 Parameter Settings . 21

4 Piano Notes . 22

1

1 Introduction

The automatic transcription of musical signals is a widely researched topic in the field of acoustics

and signal processing. The human ear has a remarkably good ability to pick out a tune from an audio

signal, but computers have a much more difficult time with this task. The most common method

used to perform automatic music transcription is to decompose a given signal into the elementary

waveforms of which it is made. This signal decomposition has implications in many fields of study

outside of music, notably speech recognition, as used by Lilly and Paliwal [10] as well as Wang and

Young [13].

The most commonly used algorithm for performing music transcription is the Matching Pursuit

(MP) algorithm, proposed by Mallot and Zhang [11]. MP is a greedy, dictionary-based signal

decomposition algorithm which works by picking the waveform from the given dictionary at each

step with the highest correlation to the given signal until that signal’s energy drops below a certain

stopping threshold. It has two main drawbacks, as noted by Carabias-Orti et al. [4]: 1) When the

signal contains certain correlated waveforms, MP tends to have a low accuracy; and 2) It is very

sensitive to its stopping threshold.

In regards to MP’s first drawback, most musical instruments produce sound in a harmonic

nature that produces many of these correlated waveforms. The Harmonic Matching Pursuit (HMP)

algorithm, proposed by Gribonval and Bacry [6] attempts to account for this property of instruments

by altering MP slightly to work with a dictionary of harmonic atoms. HMP has been shown to

works much better than MP for the decomposition of music containing strong harmonic content,

but still performs poorly for the decomposition of music signals where multiple related notes are

played simultaneously (the overlapping partial problem). HMP with Spectral Smoothness (HMP

SS) was proposed by Canadas-Quesada et al. [3] to deal with this problem by performing some

post-processing on the outputs from the standard HMP algorithm.

The method proposed in this paper, called Linear Matching Pursuit (LMP), offers two main

advantages over the existing methods: 1) Its runtime is bounded only by the length of the input

signal and the size of the dictionary, rather than the number of notes present in that signal, as in

the existing approaches; and 2) It no longer relies on a global stopping threshold to decompose a

signal. Instead, LMP tests each note in the dictionary once, making a decision on whether that note

is present based on other heuristics. Some of these heuristics are still based on the energies of each

individual note, but the fact that there is no global stopping threshold should, make it more robust

when dealing with sound signals containing non-periodic sounds (such as drums). Since LMP checks

2

each note in the dictionary at each timeslice, its runtime is very consistent and scales well when

decomposing musical signals with many notes present simultaneously.

This paper is laid out as follows: Section 2 contains useful definitions and a table of symbols used

along with an in depth look at related work and a formal problem statement. The proposed LMP

algorithm is presented in Section 3. Section 4 contains experimental settings and results. Conclusion

and ideas for future work can be found in Section 5. Section 6 contains relevant reference tables.

2 Background and Related Works

2.1 Terms

Musical signals are essentially functions of time and can be divided into two categories based on

their polyphony level (the number of notes which occur concurrently in a given signal). Mono-

phonic Signals are those which consist of only one note being played at a time. These signals do

not contain overlapping partials, and as such, are not relevant to this paper. A Polyphonic Signal,

on the other hand, is one which contains two or more notes being played simultaneously. This could

be either multiple instruments playing any number of notes each, or a single instrument playing

more than one note. This paper will deal with polyphonic signals consisting of a single instrument,

specifically a piano, playing multiple notes at once.

A Note-event is an event in a musical signal corresponding to a played note in that signal. Each

note-event can be described by many parameters, but for music transcription, three in particular

are critical as noted by Bello et al. [1]: pitch, onset time, and duration. Pitch is an attribute of

sound which corresponds to its frequency (measured in Hz). This assumes that the given sound is

nearly periodic, as are most sounds produced by a musical instrument. A note-event’s onset time

is the time which can describe its starting point in a musical signal [7]. This is essentially the time

at which a given note is played on an instrument. The duration of a note-event is the length of

time for which it is present in a musical signal.

In most music transcription algorithms based on MP, the given signal is decomposed into atoms.

An atom is an elementary waveform [11] and atoms are essentially the building blocks of musical

signals. A redundant set of atoms which spans the entire time-frequency plane is called a dictio-

nary [11]. There are many different types of atoms, but the two relevant to this paper are Gabor

atoms and harmonic atoms.

A Gabor atom is a specific type of atom which is obtained by scaling (s), translating (u), and

3

modulating (ξ) a mother window (w(t)) as follows:

gs,u,ξ(t) := 1√
s
w(t−us)ei2πξ(t−u)

Each Gabor atom is located around time u with duration on the order of s. Its Fourier Transform

ĝs,u,ξ(w) is centered at frequency ξ with a dispersion on the order of 1/s. In this function, the

mother window w(t) represents the general shape of the atom and is real-valued, positive, and of

unit norm (i.e. its energy is 1). In general, the energy of a function is denoted |f(t)| and defined

as follows:

|f(t)| =
∫∞
−∞ f(t)2dt.

A harmonic atom is an atom obtained by summing an ordered set of K Gabor atoms together

as follows:

h(t) :=
∑K
k=1 αkgs,u,ξk(t)

Each αkgs,u,ξk(t) is referred to as a partial and, in general, a partial is referred to ordinally as

the ith partial for k = i. The signal generated by the first partial of an atom is called the tone

of that atom, while the signals of the remaining K − 1 partials are all called overtones. These

atoms get their name from the harmonicity of the frequency modulation factor ξk of each partial.

In general, ξk = kξ0, where ξ0 is referred to as a given atom’s fundamental frequency, and is

the one frequency which most accurately represents a given note [8]. (See Table 4 for a list of the

fundamental frequencies of each note on a piano). Each of the K partials of a harmonic atom have

the same s and u. The Fourier Transform of a harmonic atom has K peaks, each centered around

a different ξk with dispersion on the order of 1/s.

An overlapping partial occurs when two harmonic atoms have a rationally related fundamental

frequency. For example, if the ratio of note n’s fundamental frequency ξ0n to note m’s fundamental

frequency ξ0m is 3:2, every third partial of note m has essentially the same frequency as—and there-

fore overlaps with—every second partial of note n. This situation actually occurs very frequently in

music (see Table 2). For example, consider the notes A4 and E5, which are a perfect fifth apart, and

have fundamental frequencies of 440 Hz and 659.255 Hz respectively. Note that for small enough

k, the frequency of the 3kth partial of the note A4 is essentially equal to the frequency of the 2kth

partial of the note E5.

4

2.2 Related Works

2.2.1 Matching Pursuit

The Matching Pursuit (MP) algorithm was first introduced by Mallot and Zhang in 1993 [11].

MP is a greedy, iterative algorithm that decomposes a signal f(t) into a set of atoms chosen from a

redundant dictionary D, with each decomposed atom corresponding to a different note-event in the

signal. Mallot and Zhang used a dictionary of Gabor atoms gs,u,ξ(t), each of which are normalized

so that their energy is 1. The general MP algorithm has been reproduced here for completeness:

Input: Signal f(t), Dictionary D, Stopping Threshold Tstop

Output: List of coefficients and atoms (an, gsn,un,ξn(t))

R1(t)← f(t)

n← 1

5: while |Rn(t)| > Tstop do

gsn,un,ξn(t)← gs,u,ξ(t) ∈ D s.t. the inner product 〈gs,u,ξ(t), Rn〉 is maximized

an ← 〈gsn,un,ξn(t), Rn〉

Rn+1(t)← Rn(t)− angsn,un,ξn(t)

n← n+ 1

10: end while

In general, MP decomposes a signal in discrete timesteps. That is, it only looks at a very small

portion of the given signal at a time, the length of which can be set by a parameter. The algorithm

as shown only decomposes a single timestep of the signal, but can be called iteratively to decompose

any longer signal. MP decomposes its input signal f(t) into atoms from the dictionary until the

energy of the residual signal (Rn for the residual signal after removing n − 1 atoms) falls below a

given threshold (Tstop).

To choose which atom gs,u,ξ(t) to remove from the signal next, the inner product between the

signal and every atom in the dictionary is computed and the atom with the maximum inner product

is chosen. In general, the inner product of two functions f(t) and g(t) is denoted as 〈f(t), g(t)〉 and

is defined as
∫∞
−∞ f(t)g(t)dt. In general, the greater the value of the inner product of two functions

is, the more similar they are. Its coefficient an is set to that inner product, and then the product

angs,u,ξ(t) is subtracted from the current residual. There are two important things to note here:

1. Since the Gabor atoms are all normalized such that their energies are all 1, the inner product

5

between an atom gs,u,ξ(t) and a signal f(t) is exactly the coefficient an that will maximize the

inner product between that signal f(t) and the product angs,u,ξ(t).

2. Maximizing the inner product between f(t) and angs,u,ξ(t) is equivalent to minimizing the

energy of the residual R = f(t)− angs,u,ξ(t), which is exactly what this algorithm attempts to

accomplish.

MP has been proven to be a convergent algorithm, and while it is not guaranteed to find the

optimal solution, its greedy approach to decomposing a musical signal performs well when decom-

posing signals without correlated waveforms. As noted above, however, most musical instruments

produce sounds which are harmonic in nature. Since MP uses a non-harmonic dictionary, it tends

to decompose every partial of a note as a different atom.

2.2.2 Harmonic Matching Pursuit

In 2004, Gribonval and Bacry [6] proposed a modification to the original Matching Pursuit

algorithm called Harmonic Matching Pursuit (HMP). HMP extends MP to use a dictionary of

harmonic atoms h(t), where each of the K (set by a parameter) partials of every atom has been

normalized so that its energy is 1. This harmonic dictionary tends to work better when decomposing

the signals of most real-world instruments because of the harmonic nature of the sound they produce.

Figure 1: The first 7 harmonics vibrating on a string

When a string or an air-column vibrates, it vibrates at many different frequencies at once, not

just at its fundamental frequency. Since a string of length L is fixed at both ends, it can only vibrate

with a wavelength λ such that the length of the string is a multiple of half of the wavelength. That is,

6

L = n
2λ for any natural number n (the partial number). Since the frequency ξ of a wave is O(1/λ),

the frequency of the nth partial of a harmonic atom can be derived with the following formula:

ξn = nξ0 for n ≥ 1

In general, each successive partial vibrates at a slightly lower amplitude than the previous partial.

See Figure 1 for an illustration of the first seven harmonic partials vibrating on a string. In wind and

brass instruments, a similar harmonic series of partials is produced, with the fundamental frequency

depending instead on the length of the pipe [2].

The HMP algorithm is reproduced here for completeness:

Input: Signal f(t), Dictionary D, Stopping threshold Tstop

Output: List of n coefficients and atoms (αn,1, αn,2, ..., αn,K , hn(t))

R1(t)← f(t)

n← 1

5: while |Rn(t)| > Tstop do

for each hm(t) ∈ D do

tempm(t)← Rn(t)

for i = 1→ K do

α′m,i ← 〈gsm,um,ξmi
(t), temp(t)〉

10: tempm(t)← tempm(t)− α′m,igsm,um,ξmi
(t)

end for

end for

Each αn,i ← αm,i s.t.
∑K
i=1 αm,i is maximized

hn(t)← corresponding hm(t)

15: Rn+1(t)← corresponding tempm(t)

n← n+ 1

end while

The HMP algorithm itself is very similar to the original MP algorithm. The only differences are

due to the dictionary used. At each iteration of the algorithm, an inner product must be calculated

between the current residual signal and each partial of each atom in the dictionary, rather than

just the inner product between the current residual and each atom in the dictionary, as in MP.

Similarly, each individual partial is assigned its own coefficient rather than an atom as a whole

7

getting a coefficient, as in MP. The atom selected is the atom which maximizes the sum of its

partial’s coefficients. Note that this algorithm is equivalent to MP if K is set to 1.

HMP offers a good improvement over MP when decomposing music created by real-world in-

struments. However, it still struggles when attempting to decompose signals containing overlapping

partials. In general, HMP will tend to decompose a musical signal containing two notes with over-

lapping partials into an atom whose fundamental frequency is the greatest common factor of the

fundamental frequencies of the notes which are actually present. For example, HMP will most likely

decompose a musical signal containing the notes A4 (ξ0 = 440 Hz) and E5 (ξ0=659.225 Hz) into the

atom corresponding to the note A3 (ξ0=220 Hz). While the sum of the coefficients of the first K par-

tials of the atoms corresponding to A4 and E5 would be
∑K
k=1 bA4,k and

∑K
k=1 bE5,k respectively, the

sum of the first K partials of the atom corresponding to A3 would be
∑bK/2c
k=1 bA4,k +

∑bK/3c
k=1 bE5,k.

Since, in general, each subsequent partial has a lower amplitude than the previous partial, this third

sum would likely be greater than both the second sum and the first sum, and the atom corresponding

to A3 would incorrectly be selected as the one with the maximal sum in line 15 above.

2.2.3 HMP with Spectral Smoothness

In 2008, Canadas-Quesada et al. [3] proposed an algorithm to solve the overlapping partial

problem using spectral smoothing techniques. This algorithm is run as post-processing on the

coefficients (referred to here as αn,k, where n is the note number and k is the partial number)

from the standard HMP algorithm. The SS post-processing steps have been reproduced below for

completeness. First, the coefficients are constrained to be strictly decreasing from their max:

b̃n,k =



αn,knmax
: k = knmax

min(b̃n,(k−1), αn,k) : k > knmax

min(b̃n,(k+1), αn,k) : k < knmax

Consider again a musical signal containing the notes A4 and E5 as decomposed by HMP. The fifth

partial of the decomposed atom corresponding to A3 would have a coefficient of 0, since neither

A4 nor E5 contain the corresponding partial. After this first step of the SS post-processing, all

subsequent coefficients would be set to 0 as well.

In the next step, those coefficients are smoothed by averaging each b̃n,k with the coefficients of

the partials of note n whose frequency is within an octave of that kth partial as follows:

8

bn,k =


b̃n,knmax

: k = knmax

min(b̃n,k,
∑2k−1

j=dk/2e b̃n,j

(2k−1)−dk/2e+1) : k 6= knmax

These new coefficients are then run through another algorithm, which has been reproduced below

for completeness:

Inputs: Coefficients αn,k from HMP, Stopping thresholds Dth1 and Dth2

Outputs: Set of present notes Fundamentals

Compute bnc,k and Dnc for 1 ≤ nc ≤ K

for each candidate nc with Dnc
> Dth1 do

5: Begin a way w from the current nc

Dw ← 0

rw,nc,k ← αn,nck for 1 ≤ k ≤ bKnc
c

Fundamentalsw ← {}

while Dnc > Dth2 do

10: Fundamentalsw ← Fundamentalsw ∪ {nc}

Dw ← Dw +Dnc

rw,nc,k ← rw,nc,k − bnc,k for 1 ≤ k ≤ bKnc
c

Compute bnc,k and Dnc
from rw,nc,k for 1 ≤ n ≤ K

Dnc
← max(Dnc

)

15: end while

end for

return Fundamentalsw with max(Dw)

This algorithm is run once for each note detected by HMP. It begins by calculating a smoothed

distance metric Dnc for each candidate note 1 ≤ nc ≤ K as follows:

Dnc =
∑b K

nc
c

k=1 |bn,nck|

This smoothed distance is essentially the sum of the coefficients corresponding to each potential

fundamental frequency of an atom. These potential fundamental frequencies are the frequencies

corresponding to each individual partial of the original atom. Dth1 is used here only to speed up

the computation time of the algorithm; it is not necessary for its functionality. Each nc where

Dnc
> Dth1 is initialized as a new way. A way refers to a set of harmonic atoms. The goal is

9

for the way chosen to consist of the actual notes present in the original audio signal. For each of

these smoothed distances Dnc
, residual coefficients rw,nc,k are computed based on the differences

between the original coefficients and the new coefficients, computed as shown above. New distances

are then computed based on these residual coefficients. This process is repeated based on the new

distances, adding the corresponding note to the current way, until the maximum Dnc
is less than a

second threshold Dth2. After all possible ways are computed, the way with the maximal sum of the

distances of its corresponding notes is chosen to be correct.

2.3 Problem

The music transcription problem as is solved by the proposed LMP algorithm is essentially a

supervised classification problem. The goal of LMP is to correctly identify all of the musical notes

that are present in each timeslice fi(t) of a given audio signal f(t). Specifically, for each timeslice

fi(t) of the input signal, LMP classifies each note n corresponding to an atom in the dictionary D

as either present or not present.

3 Proposed Solution

I have found it useful to think of the set of possible classifications of a musical signal as a tree

structure as in Figure 2. This tree contains every possible subset of n notes. The root of the tree

represents an audio signal with no notes present, and in general, all of the nodes at level n of the

tree represent a solution that is a combination of n notes. This tree is highly left skewed, so as to

remove duplicates. A node representing a set of notes S with maximum note m will have n − m

children: one for the union of S with each note in the range m+1 to n, inclusive. Once this tree has

been formed, the music transcription problem as proposed can be thought of as a search problem

through this tree.

3.1 Linear Matching Pursuit

The LMP algorithm traverses the proposed search tree in the following manner, beginning with

the head node (which is considered a candidate solution):

• If the current node is a candidate solution, continue searching with its first child. If the current

node has no children, it is chosen as the solution.

10

Figure 2: The proposed search tree containing every possible solution to the music transcription
problem with an upper bound of n possible notes

• If the current node is not a candidate solution, continue searching with its next sibling. If the

current node has no subsequent siblings, its parent is chosen as the solution.

In general, a node is considered a candidate solution if all of the notes present in its note-set are

classified as present in the musical signal. A note is classified as present if the coefficients of the

corresponding atom from its dictionary meet certain requirements. This behaves like a linear search

through the dictionary, with each atom classified in a binary manner as either present or not present.

LMP is able to make a decision on each note in such linear fashion by ordering the atoms in the

dictionary by their fundamental frequencies, from low to high. This intelligent dictionary ordering

ensures that the first partial of each atom tested cannot possibly overlap with any partial of any

subsequent atom, and can therefore be assigned entirely to the atom being tested, assuming that

all previous classifications were performed correctly. It is this linear search that accounts for the

main contribution of LMP: it reduces the computation time from O(tnm) to O(tm), where t is the

length of the input signal, m is the number of atoms in the dictionary, and n is the number of notes

present in the input signal. The general LMP algorithm used to identify the notes present in a single

11

timeslice of a musical signal is shown here:

Inputs: Signal f(t), Dictionary D

Outputs: An array of length m, present, referring to whether a given note m is present in

f(t)

R(t)← f(t)

for m ≤ the number of atoms ∈ D do

5: presentm ← true

max← 0

Rtmp(t)← R(t)

αm,1 ← 〈Rtmp(t)|gs,u,ξ1(t)〉

if αm,1 < Tp1 then . New Heuristic 1

10: presentm ← false

continue

end if

Rtmp(t)← Rtmp(t)− αm,1 ∗ gs,u,ξ1(t)

for 2 ≤ k ≤ K do

15: αm,k ← 〈Rtmp(t), gs,u,ξk(t)〉

if max = 0 and αm,k < αm,k−1 then . New Heuristic 2

max← k − 1

if αm,k−1 < minMax then . New Heuristic 3

presentm ← false

20: end if

else

if max 6= 0 then

αm,k ← min(αm,k, αm,k−1)

end if

25: end if

if αm,k = 0 then

if k < firstZero then . New Heuristic 4

presentm ← false

end if

12

30: break

end if

Rtmp(t)← Rtmp(t)− αm,k ∗ gs,u,ξk(t)

end for

if
∑K
i=1 αm,i < minTotal then . New Heuristic 5

35: presentm ← false

end if

if presentm then

R(t)← Rtmp(t)

end if

40: end for

The new heuristics are as follows:

1. Heuristic 1 is a minimum requirement for the coefficient of the first partial of an atom. When

a note with fundamental frequency ξ0 is present in a musical signal, it can contribute only

frequencies which are whole multiples of ξ0; that is, frequencies ≥ ξ0. Therefore, if we go

through the atoms in order of their fundamental frequencies and find an atom with a loud first

partial, we can assume that the corresponding note is present in the signal, as no subsequent

atoms will be able to account for that particular frequency. To account for background noise

in the signal or imperfectly classified previous atoms, Tp1 is used. If the coefficients of the first

partial of an atom is ≤ Tp1, then it is assumed that the given atom is not present in the signal,

and we can safely stop computation on the current atom.

2. Heuristic 2 is the requirement that the coefficients of the partials of a given atom be strictly

decreasing away from the max, as in HMP SS. However, some slight tweaking has been done

to allow this step to be computed during the decomposition process as opposed to as a post-

processing step. The maximum value is picked greedily. That is, the first local maximum found

is assumed to be the global maximum. This should not be a problem, since the energy of the

partials in a given note normally decrease down from the first partial [2]. No smoothing is

performed on the coefficients since that would require some knowledge of the future coefficients

to compute.

3. Heuristic 3 is a minimum coefficient requirement for the loudest partial of an atom. That is,

13

the coefficient of the partial with the greatest corresponding coefficient in a given atom must

be ≥ minMax for the atom to be classified as present. Since the maximum partial is chosen

greedily, if a max does not reach this requirement, it is assumed that the given atom is not

present in the signal, and we can safely stop computation on the current atom.

4. Heuristic 4 is the requirement that, for an atom to be present, it must have at least firstZero

non-zero-coefficient partials. That is, at least firstZero partials of an atom must be present

in a given signal for that atom to be classified as present. Note that due to heuristic 2, all

partials following the first zero-coefficient partial will also have a coefficient of 0.

5. Heuristic 5 is the requirement that for an atom to be present, the sum of its partials’ coefficients

(
∑K
i=1 αn,i for note n) must be ≥ minTotal. This is essentially a loudness threshold for an

individual atom.

If an atom satisfies all five of these heuristics, it is assumed to be present in the given signal.

That atom’s signal is then subtracted from the current residual signal, and decomposition continues

with the next atom in the dictionary.

4 Experiments

4.1 Metrics

There are a few things to note when considering what metrics to use to evaluate the performance

of a music transcription algorithm. First, let us consider the confusion matrix. A true positive (TP)

is a note classified correctly as present in a given timestep. A false positive (FP) is a note incorrectly

classified as present in a given timestep. A true negative (TN) is a note correctly classified as not

present in a given timestep. A false negative (FN) is a note incorrectly classified as not present in a

given timestep. Given the nature of music transcription, and the fact that many more notes are not

present in a given timestep than are present, it follows that there will be a disproportionately large

number of true negatives during classification. Given this, it is likely that any metric involving true

negatives will be skewed. To solve this, Dixon [5] proposed a new accuracy metric Acc, defined as

follows:

Acc = TP
FP+FN+TP

This accuracy metric has been used to evaluate many of the previously existing solutions to the

automatic music transcription problem. It is bounded by 0 and 1, with a perfect transcription

14

having an accuracy value of 1.

In 2004, the National Institute of Standards and Technology (NIST) [15] proposed another metric

for the evaluation of music transcription algorithms. It consists of a single error score Etot, which

can be broken down into three parts: substitution error Esub, which refers to the case in which there

is both a false positive and a false negative in a timestep; miss error Emiss, which refers to the case

in which there is only a false negative in a timestep; and false alarm error Efa, which refers to the

case in which there is only a false positive in a timestep. To formally define each of these values as

functions, it is useful to define three other values: Nref (t), the number of notes present at timestep t;

Nsys(t), the number of notes detected at timestep t; and Ncorr(t), the number of correctly classified

notes at timestep t. Thus, the error values can be defined as follows, where T is the total number

of timesteps in the input signal:

Esub =
∑T

t=1[min(Nref (t),Nsys(t))−Ncorr(t)]∑T
t=1Nref (t)

Emiss =
∑T

t=1max(0,Nref (t)−Nsys(t))∑T
t=1Nref (t)

Efa =
∑T

t=1max(0,Nsys(t)−Nref (t))∑T
t=1Nref (t)

Note that these error values have no probabilistic implications in that they are not bounded by 1.

Rather, they are percent error values. Specifically, Esub is the number of substitution errors made

reported as a percentage of the total number of notes present in a signal, Emiss is the number miss

errors made reported as a percentage of the total number of notes present, and Efa is the number

of false alarm errors made reported as a percentage of the total number of notes present. Note that

in the formulas, care is taken to ensure that no errors are counted twice (i.e. if an error is counted

as a substitution, it will not be counted again as a miss or a false alarm). Since each of these error

values are percent errors, Etot can be computed as a simple sum:

Etot = Esub + Emiss + Efa

This sum will still have a meaningful value. Specifically, Etot refers to the total number of errors

found as a percent of the total number of notes present in a given audio signal.

Since one of the main contributions of the LMP algorithm is its low time complexity, its speed

will also be measured with respect to a change in polyphony. In theory, this speed should be stay

relatively steady. The measured time will be the number of seconds that it takes to decompose one

second of an audio signal. The algorithm has been coded in MATLAB R2012b and was run on an

Intel Core 2 Duo CPU at 2.40 GHz with 6.0 GB of RAM and Windows Vista.

15

4.2 Dataset

LMP was tested using piano samples from the university of Iowa database [14]. Test cases were

created with polyphony levels ranging from two to six (1000 test cases for each polyphony level).

Each note was cut to 100 ms in length and normalized such that its energy was one before the

creation of the test cases. The notes used were sampled as in [3]: uniformly at random from between

C3 and B6 inclusive (see Section 6) for a total sample space of four octaves’ worth of notes. Care

was taken to ensure that a single note can occur only once in each test case. That is, within a single

test case, the notes were sampled without replacement, but they were replaced between different

test cases. To combine multiple notes, the sum of each individual note’s signal is used.

4.3 Parameters

The LMP algorithm has many parameters to set. Through testing, the following parameters

were found to be optimal (these values are reproduced in the Appendix in Table 3):

• windowTime—25 ms—The length of the timesteps used in decomposition. The longer this

window, the more likely there will be a note that either starts or ends in the middle of our

window. On the other hand, the shorter this window, the longer the computation time of the

algorithm. Thus, this value has been set to the greatest value at which there is no dropoff in

accuracy.

• w(t)—1—The mother window used for the Gabor atoms in the dictionary. As noted previously,

this dictates the general shape of the atom. In general, the longer the windowTime, the more

this function affects the resulting decomposition. Musical signals have properties called attack

and sustain, which refer to how quickly the note becomes audible and how quickly the dies

off, respectively. With a very short windowTime, however, there is no need to worry about

any change in amplitude of a partial signal within that window. Setting this value to 1 also

improves the computation time of the algorithm.

• numPartials—8—The number of partials to test for each atom. The lower this value, the

faster the computation of the algorithm. However, the larger this value, the more accurate it

is. If this value is set too low, there may be audible partials whose signals are not removed

from the input signal. That may cause interference with other notes in the same timestep.

Thus, this value has been set to the smallest value at which there is no dropoff in accuracy.

16

• Tp1—.002—The coefficient of the first partial of an atom must be greater than this value

in order for that atom to be classified as present. The greater this value, the faster the

computation of the algorithm, since computation may be stopped on any atom whose first

partial does not reach this threshold. However, if it is set too high, there may be atoms

present in a given timestep that are not identified (false negatives). Therefore, Tp1 has been

set to the greatest value at which there is no dropoff in accuracy.

• firstZero—2—The first partial in an atom that may have a zero coefficient for that atom to

be classified as present. firstZero is a whole number in the interval [2, numPartials + 1].

A setting of 2 results in this parameter having no effect, while a setting of numPartials + 1

makes it necessary for all of an atom’s partials to be present in a timestep for that atom to be

classified as present. If this value is too high, there will be a large number of false negatives.

On the other hand, if it is too low, there will be a great number of false positives. This value

was left at two instead of the heuristic simply being removed because it may have implications

in future work when using a different set of heuristics.

• minMax—.0082—The maximum coefficient of an atom must be greater than this value for

that atom to be classified as present. Setting minMax too high will result in a large number

of false negatives, while setting it too low will result in a large number of false positives.

• minTotal—0—The sum of the coefficients of an atom must be greater than this value for that

atom to be classified as present. Setting minTotal too high will result in a large number of

false negatives, while setting it too low will result in a large number of false positives. This

value has been left at zero instead of the heuristic simply being removed because it may have

implications in future work when using a different set of heuristics.

4.4 Results

In testing, LMP’s total error value was lower than that of HMP, but not quite as low as that of

HMP SS for every polyphony level. In general, LMP’s total error increases slightly for every increase

in polyphony, whereas HMP’s total error decreases and HMP SS’s total error remains fairly steady.

These results suggest that more heuristics might by useful to make LMP more robust in regards to

polyphony. Taking a closer look at the three components of this error value will help to discover

exactly where such improvements might be made. (See Figure 4).

LMP’s substitution error level lies between that of HMP and HMP SS for all polyphony levels.

17

In general, this value increases across polyphony levels in a manner that is similar to the increase of

Esub in both HMP and HMP SS, though slightly slower than the substitution error increase of HMP.

This suggests that LMP’s new heuristics have improved upon the HMP algorithm, though not to

the level of improvement that HMP SS accomplishes. This is expected, since LMP applies heuristics

during runtime instead of in post-processing. However, the improvements suggest that perhaps more

heuristics could be found which can also be applied during runtime that might improve upon this

result even further.

LMP’s miss error level is greater than that of both HMP and HMP SS for all polyphony levels;

however, its false alarm error level is less than that of both HMP and HMP SS for all polyphony

levels. The combination of these two differences suggest that LMP excludes more notes than either

HMP or HMP SS due to its heuristics. All of the heuristics used in LMP are exclusive. That is,

each one decides whether a given atom is not present in a given signal. Perhaps this miss error level

could be improved if some heuristics can be found which are able to make the opposite decision:

that an atom is definitely present in a given signal.

The Acc value of LMP lies between that of HMP and HMP SS (see Figure 3) for all polyphony

levels. In general, LMP’s accuracy decreases slightly with each increase in polyphony, as does HMP’s

accuracy. HMP SS’s, on the other hand, remains relatively steady with each polyphony increase.

The speed of LMP scales very well with an increase of polyphony. Its speed in computation

time per signal time varies between 1 and 2 seconds for polyphony levels of one through six. In

general, a slight slowdown is seen with every increase in polyphony, with a linear increase on the

order of polyphony/10. This most likely occurs because, even though the time complexity does not

depend on the polyphony level of a musical signal, more computation must still be done during the

decomposition. Since more notes are present, there are less opportunities to use the heuristics of

LMP to make a quick decision on each atom, and the computation time increases.

18

Figure 3: Accuracy values of LMP, compared with those reported in [3] for HMP and HMP SS. The
accuracy value varies by polyphony level, from two to six.

Figure 4: Error values for LMP, compared with those reported in [3] for HMP and HMP SS. The
top-left chart compares Esub values; the top-right chart compares Emiss errors; the bottom-left chart
compares Efa values; the bottom-right chart compares Etot values. Each chart shows those values
varied by polyphony level, from two to six.

19

Figure 5: Speed values of LMP, reported by polyphony level, from one to six. The vertical axis gives
the length of time in seconds it takes the algorithm to decompose one second of a signal at each
level of polyphony.

5 Conclusion

While LMP shows promising results, there is still room for improvement. The algorithm does

improve upon HMP’s error and accuracy rates, but not to the level that HMP SS does. If LMP’s error

and accuracy rates can be improved upon further (i.e. with additional or more precise heuristics)

there would be considerable real-world applications for the algorithm due to its low time complexity.

Additionally, developing functions to tune some of its parameters dynamically would make the

algorithm much more robust in many different environments. It is also possible that the additional

use of probabilities to predict the note sequence of a musical signal or the use of data mining

techniques on either the coefficients found through LMP or the original signal itself could offer a

significant improvement over LMP’s current accuracy and error rates. It may also be useful to

look into solving the music transcription algorithm using a non Matching Pursuit based algorithm.

Possibilities include he use of Fourier or Laplace transforms to decompose a signal. Future work

should also be done to expand LMP’s functionality. Some possibilities include the development of

algorithms that are able to detect the tempo of a given musical signal or the style in which that

music is played. With the addition of such algorithms, the creation of a successful music transcription

program with real-world applications may not be too far off.

20

6 Appendix

Table 1: Common symbols used in this paper

gs,u,ξ(t) The Gabor atom classified by s, u, and ξ as a function of time

w(t) The mother window of a Gabor atom

s The scale of a Gabor atom

u The time around which a Gabor atom is centered

ξ The modulating frequency of a Gabor atom

h(t) A harmonic atom, as a function of time

ξ0 The fundamental frequency of a harmonic atom. That is, the ξ of
its first partial

αk The coefficient of the kth partial of a harmonic atom

K The number of partials of a harmonic atom

f(t) An audio signal as a function of time

Ri(t) The residual signal in the ith loop of the Matching Pursuit algo-
rithm, as a function of time

D A dictionary of atoms

Dnc
The smoothed distance of a way in HMP SS

Acc The accuracy metric used in this paper

Esub A metric corresponding to the number of substitution errors made

Emiss A metric corresponding to the number of miss errors made

Efa A metric corresponding to the number of false alarm errors made

Etot A metric corresponding to the number of total errors made

21

Table 2: Ratios of the fundamental frequencies for musical note intervals within an octave

Note Difference ξ0 Ratio Interval Name

1 16:15 Minor second

2 9:8 Major second

3 6:5 Minor third

4 5:4 Major third

5 4:3 Perfect fourth

6 45:32 Augmented fourth

7 3:2 Perfect fifth

8 8:5 Minor sixth

9 5:3 Major sixth

10 16:9 Minor seventh

11 15:8 Major seventh

12 2:1 Perfect octave

Table 3: LMP parameter settings

windowTime 25

w(t) 1

numPartials 8

Tp1 .002

firstZero 2

minMax .0082

minTotal 0

22

Table 4: The notes of a standard 88 key piano

Key Name ξ0(Hz)

88 C8 4186.01

87 B7 3951.07

86 A]7/B[7 3729.31

85 A7 3520.00

84 G]7/A[7 3322.44

83 G7 3135.96

82 F]7/G[7 2959.96

81 F7 2793.83

80 E7 2637.02

79 D]7/E[7 2489.02

78 D7 2349.32

77 C]7/D[7 2217.46

76 C7 2093.00

75 B6 1975.53

74 A]6/B[6 1864.66

73 A6 1760.00

72 G]6/A[6 1661.22

71 G6 1567.98

70 F]6/G[6 1479.98

69 F6 1396.91

68 E6 1318.51

67 D]6/E[6 1244.51

66 D6 1174.66

65 C]6/D[6 1108.73

64 C6 1046.50

63 B5 987.767

62 A]5/B[5 932.328

61 A5 880.000

60 G]5/A[5 830.609

59 G5 783.991

Key Name ξ0(Hz)

58 F]5/G[5 739.989

57 F5 698.456

56 E5 659.255

55 D]5/E[5 622.254

54 D5 587.330

53 C]5/D[5 554.365

52 C5 523.251

51 B4 493.883

50 A]4/B[4 466.164

49 A4 440.000

48 G]4/A[4 415.305

47 G4 391.995

46 F]4/G[4 369.994

45 F4 349.228

44 E4 329.628

43 D]4/E[4 311.127

42 D4 293.665

41 C]4/D[4 277.183

40 C4 261.626

39 B3 246.942

38 A]3/B[3 233.082

37 A3 220.000

36 G]3/A[3 207.652

35 G3 195.998

34 F]3/G[3 184.997

33 F3 174.614

32 E3 164.814

31 D]3/E[3 155.563

Key Name ξ0(Hz)

30 D3 146.832

29 C]3/D[3 138.591

28 C3 130.813

27 B2 123.471

26 A]2/B[2 116.541

25 A2 110.000

24 G]2/A[2 103.826

23 G2 97.9989

22 F]2/G[2 92.4986

21 F2 87.3071

20 E2 82.4069

19 D]2/E[2 77.7817

18 D2 73.4162

17 C]2/D[2 69.2957

16 C2 65.4064

15 B1 61.7354

14 A]1/B[1 58.2705

13 A1 55.0000

12 G]1/A[1 51.9131

11 G1 48.9994

10 F]1/G[1 46.2493

9 F1 43.6535

8 E1 41.2034

7 D]1/E[1 38.8909

6 D1 36.7081

5 C]1/D[1 34.6478

4 C1 32.7032

3 B0 30.8677

2 A]0/B[0 29.1352

1 A0 27.5000

23

Print References

[1] J. Bello, G. Monti, and B David. Techniques for automatic music transcription. International

Symposium on Music Information Retrieval (ISMIR), 2000.

[2] A.H. Benade. Fundamentals of Musical Acoustics. Oxford University Press, 1976.

[3] F.J. Canadas-Quesada, P. Vera-Candeas, N. Ruiz-Reyes, R. Mata-Campos, and J.J. Carabias-

Orti. Note-event detection in polyphonic musical signals based on harmonic matching pursuit

and spectral smoothness. Journal of New Music Research, 37(3):167–183, 2008.

[4] J.J. Carabias-Orti, P. Vera-Candeas, F.J. Canadas-Quesada, and N. Ruiz-Reyes. Music scene-

adaptive harmonic dictionary for unsupervised note-event detection. IEEE Transactions on

Audio, Speech, and Language Processing, 18(3), March 2010.

[5] Simon Dixon. On the computer recognition of solo piano music. Proceedings of Australasian

Computer Music Conference, 2000.

[6] R. Gribonval and E. Bacry. Harmonic decomposition of audio signals with matching pursuit.

IEEE Trans. Signal Processing, 51(1):349–352, Mar 2004.

[7] A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 6:3089–

3092, 1999.

[8] A. Klapuri and M. Davy. Signal Processing Methods for Music Transcription. New York:

Springer Science + Business Media LLC, 2004.

[9] Daniel Levitin. This is Your Brain on Music. Dutton Books, 2006.

[10] B.T. Lilly and Kuldip K. Paliwal. Robust speech recognition using singular value decomposition

based speech enhancement. TENCON ’97. IEEE Region 10 Annual Conference. Speech and

Image Technologies for Computing and Telecommunications., Proceedings of IEEE, 1:257–260,

1997.

[11] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal

Processing, 41:3397–3415, Dec 1993.

[12] M. Plumbley, S. Abdallah, J. Bello, M. Davies, G. Monti, and M. Sandler. Automatic music

transcription and audio source separation. Cybernetics and Systems, 33(6):603–627, 2002.

24

[13] M.Q. Wang and Stephen J. Young. Speech recognition using hidden markov model decomposi-

tion and a general background speech model. Acoustics, Speech, and Signal Processing, 1992.

ICASSP-92., 1992 IEEE International Conference on, 1:253–256, 1992.

25

Other References

[14] Lawrence Fritts. Music instrument samples, 2011. Available online at: http://theremin.

music.uiowa.edu/MIS.html.

[15] National Institute of Standards and Technology. Rich transcription meeting recognition eval-

uation plan, 2004. Available online at: http://www.itl.nist.gov/iad/mig//tests/rt/

2004-spring/index.html.

http://theremin.music.uiowa.edu/MIS.html
http://theremin.music.uiowa.edu/MIS.html
http://www.itl.nist.gov/iad/mig//tests/rt/2004-spring/index.html
http://www.itl.nist.gov/iad/mig//tests/rt/2004-spring/index.html

	Introduction
	Background and Related Works
	Terms
	Related Works
	Matching Pursuit
	Harmonic Matching Pursuit
	HMP with Spectral Smoothness

	Problem

	Proposed Solution
	Linear Matching Pursuit

	Experiments
	Metrics
	Dataset
	Parameters
	Results

	Conclusion
	Appendix

