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Abstract 

Quantum Energy Diffusion in Polaritonic Wires 

By Kyle Kairys  

 The worsening climate crisis has placed increased emphasis on the development of novel 
modes of sustainable energy generation and transport. A major inhibition to this process is the 
fast and efficient transport of energy. Quantum energetic phenomena of organic polaritons in 
optical microcavities have demonstrated significant potential to revolutionize modes of energy 
transfer. In this work, the definition of short-time, spatial diffusion was investigated for these 
systems and their coherent energy transfer dynamics. This investigation implemented a 
microscopically detailed computational photonic wire model that evaluates spacetime resolved 
energy diffusion. All simulations conducted employed the use of an initial state described by a 
molecular excited-state Gaussian wavepacket. This study modulated alterations to the internal 
system parameters of light-matter coupling strength, total system size, and variance of molecular 
excited-state energy fluctuations. This was done to effectively elucidate their impact on the 
intermolecular energy transport of the polaritonic system. In the absence of fluctuations in the 
molecular excited-state energies, ballistic intermolecular energy transport dynamics were 
observed within the femtosecond timescale; this observation however was not upheld for systems 
with energetic disorder. Diffusion constants were simulated for systems experiencing strong and 
weak energetic disorder. Within the strong disorder case, the introduction of disorder above a 
specific critical value of the light-matter interaction, resulted in the excited states of the system to 
become highly localized and trap the energy. This observation was upheld for a 20-picosecond 
time scale. In the case of weak disorder, relative to the light-matter interaction strength, diffusion 
constants increase as the disorder of the system is decreased. Through evaluation of molecular 
density, it was determined that a smaller system density results in increased transport properties 
because the single molecular dipole moments scale with intermolecular distances. It was also 
determined that for sufficiently small intermolecular distances, simulated diffusion constants 
were seemingly independent of system size, however with larger intermolecular distances there 
appeared to be a significant transport dependence on system size. This investigation has 
evaluated novel properties of quantum intermolecular energy transport in photonic wires, and it 
has determined that such behavior is relatively controllable through the characteristics of 
polaritonic devices. This demonstrates significant potential for the control of molecular material 
dynamics in optical cavities.   
 

 

 

 

 

 



 5 

Quantum Energy Diffusion in Polaritonic Wires 

 

 

By  

 

Kyle Kairys 

 

Dr. Raphael Ribeiro 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the Faculty of Emory College of Arts and Sciences 
of Emory University in partial fulfillment 

of the requirements of the degree of 
Bachelor of Science with Honors 

 
Chemistry 

 
2022 



 6 

 
Acknowledgement 

 

I would like to thank Dr. Ribeiro for all of his hard work and guidance in facilitating my work 

and introduction into the field of computational quantum optics. Additionally, I would like to 

thank both committee members, Professor Brenda Harmon and Dr. Francesco Evangelista, for 

their support and mentoring throughout my undergraduate career. Finally, I would like to 

acknowledge the support and feedback provided by the Ribeiro lab and all of its members.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

Table of Contents 

1. General Background  

1.1. Energy Transport………………………………………………….……………………10 

1.2. Polaritonic Systems………………………..……………………………………………11 

1.2.1. Optical Microcavities……………………………………………………………12 

1.2.2. Light-Matter Coupling Strength…………………………………………………14 

1.3. Energetic Diffusion…………………………………..…………………………………15 

2. Computational Methods 

2.1. Physical Model……………………………………………….…………………………16 

2.1.1. Photonic Wire Model……………………………………………………………16 

2.1.2. Molecular System…………………………………………….…………………18 

2.2. Hamiltonian Definition…………………………………………………………………20 

2.3. Time Evolution…………………………………………………………………………22 

2.4. Initial State…………………………………………………………………...…………24 

2.5. Energy Transport Observables…………………………………………………………25 

2.5.1. Short Time Propagation ……………………………………………………...…26 

2.5.2. Diffusion Constant………………………………………………………………27 

3. Ideal Model 

3.1. Introduction…………………………………………………………………………..…30 

3.2. Ballistic Motion…………………………………………………………………………31 

3.3. Subsystem Energy Localization………………………………………………...………33 

4. Microscopic Models with Disorder 

4.1. Introduction…………………………………………………………………………...…35 



 8 

4.2. Energy Transport Dependence on Light-Matter Coupling Strength……………………37 

4.3. Energy Transport Dependence on Number of Molecules………………………………39 

4.4. Diffusion Constants under Strong Disorder………………………………….…………40 

4.5. Diffusion Constants under Weak Disorder………...……………………………………42 

5. Density Dependence…………………………………………………………………………44 

6. Summary and Conclusions………………………………………………..…………………46 

7. References……………………………………………………………………………………51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. General Background 



 9 

1.1 Energy Transport 

 As technologies advance and climate conditions worsen, novel innovations seek to propel 

the fields of energy generation and efficient transport forward. [1,2] Although seemingly 

innumerable, applications of enhanced energy transport stand to revolutionize not only 

environmental innovations, but also various other spectroscopic devices such as spectrometers 

and satellites. [3,4] This incredible dependence of technological innovation on fairly 

fundamental principles regarding energy transfer has fostered resolve to advance this field. A 

major challenge lies for example in limitations to solar energy conversion into electricity with 

organic materials. Low efficiency excited-state energy transport into charge-transfer regions of a 

device precludes efficient conversion of sunlight into usable electric currents. [5-7] This, among 

many other fields of interest, has driven vast explorations into the dynamics and underlying 

processes that describe transport phenomena. [8,9] 

 

Figure 1. General schematic for organic, TiO2, solar cell. [10] 

Through fundamental understandings of energy transfer, it is evident that the 

advancement of these dynamics lies in the interactions between light and matter. Both these 

photonic and molecular regimes have varying degrees of energy transfer capacity and therefore 

differ in terms of their relative utilities. Despite their differing dynamics, there remain significant 
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points of intersection, between the energy transfer of light and matter, that pose large potential to 

advance understanding of their individual and novel properties. [11,12] 

 

1.2 Polaritons 

 Polaritons are hybrid light-matter particles that are formed from the strong interaction of 

photons and the dipole-active transitions of molecule or other materials. [13] These 

quasiparticles are defined by their hybrid composition allowing them to experience both 

molecular and photonic characteristics. Polaritons have been observed to exist within a range of 

different materials, but their formation is limited to specific materials that can effectively allow 

energy exchange between molecules and electromagnetic fields before decay. [14] Polaritons are 

most widely known to be found within both highly ordered solid state materials like crystals, and 

within the surfaces of metal-nanomaterials. [15] Despite their apparent limitations to a solid 

phase, polaritons are also largely observed to be delocalized over molecular systems in the liquid 

and gas phases within unique devices known as optical microcavities. [16-18] 

 

 
 

Figure 2. Gold on silica waveguide for the creation of a surface plasmon polariton, that is 
imaged using field mapping to show the z-component of the magnetic field. [19] 

 

 

1.2.1 Optical Microcavities 
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 Optical microcavities are devices that support polaritons under a wider range of 

conditions. These cavities are composed of high reflectivity mirrors, that are normally made 

from either highly ordered nanostructures or layered semiconductor materials, that surround a 

gap that is filled with target molecules and a disordered phase. These optical cavities have 

confined resonant photonic modes. The cavities can be designed so one more of their modes are 

specifically selected to be resonant with various excitations of molecular ensembles. These 

resonances allow for the effective formation of the cavity polariton modes. Light confinement by 

the mirrors makes microcavities much more efficient in the production of polaritons and allow 

for significant tuning of their properties.  

 
 

Figure 3. General optical microcavity schematic. [20] 

 The tuning of the properties within an optical microcavity is associated to varying factors 

of the cavity itself as well as the incidence of the light input into the system which can modulate 

the energies of the excited photonic (cavity) modes. The internal energy dynamics of an optical 

microcavity are dominated by three major processes: (1) the rate of energy exchange between 

light and matter, (2) the rate that light escapes the cavity, and (3) the rate at which the matter 

loses its coherent polarization (dephasing rate). [21] The system is considered to be within the 
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strong coupling regime when the rate of energy exchange greatly exceeds that of the rates of 

processes (2) and (3). [21] This results in the periodic exchange between light and matter.  

 Optical microcavities can differ significantly based on the type of target molecule that is 

used within the cavity. Various studies have investigated the utility of both inorganic and organic 

target molecules. [22,23] Given the interest in organic materials for new optoelectronic 

technologies and solar energy conversion devices, this project seeks to evaluate the impacts of 

utilizing organic molecules within polaritonic microcavities. Organic aggregates often have 

electronic transitions with intense absorption spectrum allowing them to experience strong light-

matter interactions with the photons of optical microcavities, but also a much stronger interaction 

with phonons and a much greater heterogeneity in their transition energies. [24] Additionally, 

organic molecules exhibit significant dynamical changes through interaction with the polaritonic 

modes of an optical microcavity. They have been demonstrated to facilitate charge transport 

phenomena [25], as well as exhibit alterations to their Photochemistry and Photophysics, 

associated to spin interconversions. [21, 26]  

 Optical microcavities, or optical resonators as they are sometimes noted, have 

demonstrated significant and novel potential for chemical advancement. The unique combination 

of polaritonic modes within a disordered phase demonstrates compelling utility to explore many 

new phenomena. As Thomas et al. indicates in their work, there may be potential employing 

these quantum optical phenomena to control reaction dynamics. [27] Similarly, Krainova et al. 

explores its utility in advancing photoconductivity. [12] Finally, Coles et al. describes the 

immense capacity that polaritonic microcavities have for advancements in energy transfer. [28] 
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1.2.2 Light-Matter Coupling Strength 

Within optical microcavities, the light-matter exchange rate is defined by the probability 

of the molecules to be excited by the cavity mode, in other words, by the light-matter coupling 

strength. Cavity modes with varying incidence angles have different energies which are more or 

less resonant with the molecular excitation of choice.   

 The pure molecular excitation and the pure cavity modes are coupled to form two unique 

bands that are denoted upper and lower Polariton or UP and LP respectively. The formation of 

these polaritons dominates the phenomena that occur within the coupled system. [29] 

 

Figure 4. General polariton dispersion diagram. Demonstrates the splitting of the bare 
photonic and molecular systems into both UP and LP bands. Detuning for this system is -0.1eV. 

[17] 
  

The energy of separation between the polariton bands as indicated in the dispersion 

diagram in Fig 4, is denoted Rabi Splitting or ΩR. This number qualifies the strength of the light 

matter coupling within a given system. A different yet similarly important value is known as the 

detuning of the system. This value describes the difference between the bare molecular excitation 

energy of the system and the energy of the lowest energy cavity mode. The detuning is an 

important quantity as by changing the molecular excitation energy while maintaining the fixed 
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cavity (or vice versa), you can effectively increase the energetic overlap of the molecular and 

photonic bands.  

 

1.3 Energetic Diffusion 

 The quantum delocalized nature of polaritons inherently alters many of the separate 

aspects of both light and matter. Individually, light and matter possess very different diffusive 

properties. Light typically propagates extremely fast and exhibits what is known as ballistic 

transport. This type of transport is generally associated with a linear dependence on time. 

Contrarily, energy in most molecular materials tends to propagate much slower and in a 

generally much less efficient manner. This type of diffusion is noted simply as diffusive 

behavior. The following Equations 1 and 2, respectively demonstrate the mathematical 

expressions for these two processes of ballistic and diffusive behavior.  

 

                                 (1) 

                                                           (2) 

 

 Within the above Equations, 1 and 2, the delta x squared values indicate the displacement 

squared, the uppercase D is the diffusion constant for the specific system, and t indicates time. 

These expressions are used in order to characterize the energy flow in a system. The D terms 

from these equations are generally identified as diffusion constants. The generation of these 

terms is generally used to identify and qualify the energy transport exhibited by a given system. 

 Since microcavity polaritons are most explicitly identified by their delocalized light-

matter dual nature, the diffusivity of energy in these systems can vary significantly depending on 
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the internal system parameters like initial-state, cavity matter interaction strength, etc. Although 

there have been various experiments which have intended to investigate this phenomenon, 

significant gaps in understanding energy transport remain. There is significant evidence that 

energetic disorder is largely impactful on these polariton modes, especially in organic cavities 

due to the contribution of Frenkel excitations. [36] Additionally many older computational 

models have sought to utilize a single cavity mode as the only contributing mode to the 

formation of cavity polaritons, which largely fails to represent the entire multimode system, 

especially when there are considerations of significant system detuning. [17,18] [31] These 

limited views of a still largely misunderstood phenomena established the basis for further 

investigation into the nature of energy diffusion in organic microcavity polaritons.  

As is explained by Raj et. al. there are no accounts of spatial-temporal energy evolution 

throughout a cavity, in extremely small-time scales such as the sub picosecond regime. [21] 

Although Raj et al. has begun to evaluate some small-time scale polariton propagation dynamics 

there remains substantial lack of understanding of the characteristics of space-time resolved 

energy diffusion in polaritonic materials. This project employs computational methods to analyze 

spacetime-resolved energy diffusion in disordered multimode organic microcavity polaritons.  

 

2. Computational Methods 

2.1 Physical Model 

2.1.2 Photonic Wire Model 

The structure used to facilitate the study of these optical microcavity polaritons, was a 

one-dimensional photonic wire. The geometry of this theoretical system is defined by the input 

number of molecules, nmol, and a uniform intermolecular distance, a. These terms are used to 
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define the length of the long axis of the cavity as well as the linear molecular density. The 

molecules were assumed to be arranged in an ordered fashion with a single intermolecular 

distance as the effect of translational disorder is minimal in comparison to energetic disorder. 

[30] 

 

Figure 5. General schematic for molecular placement within the photonic wire. [30] 

 

 This geometry is supplemented by a wavevector space, the cavity photon modes are 

characterized by their wavevector or momentum along the long axis. These exists an equal 

number of positive and negative wave-vectors corresponding to positive and negative momenta. 

Throughout all of the calculations performed, the number of molecules was always set equal to 

the number of wavevectors within the system. This balancing of states increased computational 

costs but also assured that a sufficient number of cavity modes was always present regardless of 

the size of the system, even if the dominant resonant couplings only occurred with the lower 

energy wavevectors, fostering a truly multimode system.  

The use of a single dimension within this photonic wire model effectively allows for a 

computationally, inexpensive system that can accurately represent the complexity of realistic 

polaritonic systems. [30] This will dramatically aid in the refinement of computational modeling 

of these quantum optical systems. The photonic wire model provides specific insight into 

confined cavity modes which can increase the understanding of the role and associated dynamics 

of cavity electromagnetic field distributions, to better understand how they facilitate polariton 

formation. [36] 
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2.1.2 Molecular System 

This single dimension photonic wire model is filled with an ordered molecular ensemble 

that exhibits various properties and phenomena. As was discussed in Chapter 1, there are many 

competing processes which dictate the internal dynamics of energy exchange within optical 

microcavities. Most notably, these are the processes of energy exchange between light and 

matter, the loss of energy through a molecular loss of coherence, and the loss of energy through 

photonic escape or leakage from the cavity itself. The first of these three is the light-matter 

coupling, and the latter two give rise to damping. These are two competing processes within 

optical microcavities that determine the regime of the interactions between the molecular 

material and its host cavity.  

Most theoretical and computational investigations into the intricacies of not only energy 

transfer dynamics but also that of other cavity phenomena include mathematical additions to the 

system that modulate the damping processes. Despite the relevance of these terms in properly 

expressing the system, they are generally considered to be of minimal importance when the 

system is under the strong coupling regime. [21] This regime is identified by the coupling 

process being much greater in magnitude than that of damping. All calculations were conducted 

under the strong coupling regime and consequently these terms were not included as to simplify 

the computational model. In addition to the added simplicity of the system, the exclusion of 

energy dissipation allows for a more thorough analysis of quantum intermolecular energy 

transfer dynamics in the best-case scenario where the system shows no energy, nor coherence 

losses. 
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Figure 6. (a) Schematic for energy transfer in an optical microcavity. (b) Excited state 
energy transfer between two molecules of the same chemical composition. 

Various types of disorder can exist within the study of polaritonic systems, for example: 

energetic disorder and translational disorder. Typically, energetic disorder dominates unless it is 

very small [Ribeiro], therefore we ignore translational disorder. This resulted in the uniform 

placement of the molecules with fixed intermolecular distances, and the simplification of the 

calculation of the energy diffusion in the molecular subsystem. The presence of energetic 

disorder among the molecular ensemble is one of the major novelties of this work. This disorder 

arises from the fact that molecules generally lie in a disordered phase in an optical cavity and the 

local environment of each molecule can vary substantially. 

The molecular ensemble disorder originates from a specific input term, σ. This term is 

associated with the variance in a Gaussian distribution. This distribution is sampled to assign the 

values of the molecular excitation energies to each of the molecules within the system. The 

Gaussian is centered at the input mean molecular excitation energy, and the inclusion of a non-

zero variance for this function allows for a certain spread of molecular excitation energies. This 

spread is intended to mimic the alterations in the local surroundings of each molecule and is 
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reflected in the resulting fluctuation of a molecular excitation energy relative to the average. The 

probability distribution for which the model samples energies from is given by the expression in 

Equation 3. 

                    (3) 

When a given calculation exhibits the effects of energetic disorder, the system, as 

generated by the Hamiltonian, undergoes molecular ensemble averaging. This is a necessary 

function as the generated disorder is sampled from a distribution function and consequently has 

many random internal processes. As a result, the model uses a singular disordered Hamiltonian, 

but realizes this system through time-evolution various times. This process uses different initial 

states located across the cavity that are similarly sampled. These realizations allow for the 

transport phenomena across the system to be evaluated. This avoids the skew that can be yielded 

from a small number of samples with localized initial states. These multiple realizations are then 

averaged with standard deviations to present a holistic view of energy transport dynamics within 

the cavity. 

 

2.2 Hamiltonian Definition 

 All calculations performed in this project were conducted using Python 3 and Jupyter 

notebooks. [32,33] These computations and resulting figures also employed the Python 3 

computational packages NumPy and Matplotlib. [34,35] These computational tools were used to 

generate all relevant code and theoretical models. The cavity Hamiltonian employed in this 

project consists of a one-dimensional photonic wire that i describes the standing waves of the 

cavity. This photonic wire, shown in Figure 5, has uniformly distributed target molecules 
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throughout its single long axis. Each molecule interacts with the cavity through their dipole 

which is assumed to be equal for simplicity. The formulas for the bare molecular and photonic 

subsystems of the cavity are expressed in Equations 4, 5 and 6 below, where q is defined as a 

photonic wavevector (momentum) along the long-axis, i is defined as a molecule, Eo is the mean 

molecular excitation energy, and σi the random Gaussian fluctuation in the excited-state energy 

for a molecule in the ensemble. Additionally, the bounds of nphot and nmol employed in Equations 

4, 5, 6, and 7 are indicative of the maximum number of wavevectors and molecules respectively, 

within the system. The values of aq and a† q denote the photon annihilation operator and the 

photon creation operator respectively, for wavevector q. These terms are similarly reflected by 

the molecular subsystem in Equation 6, where bi and b†i indicate the excited state annihilation 

operator and the excited state creation operator respectively, for molecule i.  

                 (4) 

                             (5) 

         (6) 

                            (7) 

                         (8) 

 Equation 8, above, indicates how the bare subsystems are combined with a light matter 

coupling term, shown above in Equation 7. Within the coupling term, Equation 7, the ΩR is the 
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light-matter coupling strength of the system, and the terms that use the aforementioned operators 

facilitate the interactions between the light and matter of the system. This Hamiltonian matrix is 

then diagonalized using NumPy linear algebra functions to yield both an eigenstate column 

vector that contains the energies of all eigenstates of the system, as well as an eigenvalue matrix 

that contains all molecular and photonic coefficients of the system at every eigenstate. This 

output column vector and coefficient matrix are represented below in Equations 9 and 10. 

            (9) 

          (10) 

  

2.3 Time Evolution 

Another novel aspect of these calculations is found within the time dependent evolution. 

This functionality allows for the visualization of the dynamics of the system, sampled from 

various time scales, using different resolutions. A function was constructed to perform the time-

evolution which requires as input the total evolution time and the number of time steps where a 

snapshot of the state of the system is recorded. The system is generally evolved by the 
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mathematical expression shown in Equation 11. This equation demonstrates that the Hamiltonian 

operator can work on a given time evolving wavefunction to produce its associated eigenstate 

value. 

 

                               (11) 

 

This portion of the code uses the computed eigenvalues of the system, as well as the 

molecular and photonic coefficients corresponding to each eigenstate of the Hamiltonian to give 

time evolved coefficients that can be used to determine the probability of finding energy stored 

in a given molecule or cavity mode at a given point in time. This process was separated into two 

parts that track the molecular and cavity subsystems. The time-dependent coefficients are 

respectively given by Equations 12 and 13, below.   

                      (12) 

               (13) 

 

In Equation 12, the Ns term indicates the total number of states within the system, m is 

the index of a specific molecule, Nm is the total number of molecules in the system, α indicates 

the index of an eigenvalue, Eα is used to indicate a specific eigenvalue, and cαφ denotes 

coefficient of the overlap a given eigenstate with the initial state that of the evolution. This 

overlap is generated by taking the dot product of the summation of all molecular and cavity 
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states for an eigenstate with the normalized column vector that represents the initial state. These 

values are also represented in Equation 13 for the cavity subsystem, with the addition of n 

indicating the index of a specific cavity mode and Nc being the total number of cavity modes 

present within the system. The implementation of these two equations allows for the generation 

of time evolved coefficients for each molecule and cavity mode. These coefficients are then used 

with Equation 14 and 15, below, to generate the time evolved probabilities for every molecule 

and cavity mode within both subsystems.  

                (14) 

               (15) 

 

2.4 Initial State 

The initial state is an incredibly important aspect of the computational model as it 

indicates the distribution and partition of the energy between the cavity and the molecules at time 

zero. There are many possibilities for initial energy locations or initial states that can be used 

with polaritonic cavity systems. This specific model employs the use of a Gaussian Molecular 

Excited State. 

The use of a Gaussian Molecular Excited State indicates that the energy at time zero, is 

initially located within a Gaussian distribution of neighboring molecular excited states. This 

excited state is defined by a normalized column vector. This distribution is defined by the 

expression shown in Equation 16 below.  

      (16) 
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The center of this distribution is described by the value μ, the variance of the function is 

defined by σ. The μ value of the system changes in a process known as statistical ensemble 

averaging, which will be discussed in further detail in later chapters. Across all simulations the σ 

value is universally set to two. This value causes the initial excited-state to be delocalized across 

nine molecules. We choose a weakly delocalized initial-state as it has smoother evolution 

relative to a single-molecule; furthermore, laser pulses are generally Gaussian shaped, and the 

excited-states generated by such are Gaussian wave packets. All of the excited-state coefficients 

are positive and normalized indicating that they are all in phase with one another. 

 

2.5 Energy Transport Observables 

Throughout this investigation, there were many different parameters of this computational model 

which were evaluated in determination of their impact on energy transport. This section details 

the various processes and their associated computations that were employed to study this model.  

The tracking of the energy diffusion within the optical microcavity is a core feature of the 

mathematical model and serves to effectively measure the rate of energy diffusion of the 

polaritonic system under a variety of conditions. This facilitates the novel study of cavity effects 

on intermolecular energy diffusion. The functionality of our code tracks the energy flow in 

molecules within the cavity, as facilitated by the quantum light matter coupling phenomena. The 

created function assigns positions to all of the molecules within the system using their molecular 

index within this subsystem as well as the intermolecular distance to establish the cavity 

geometry. This expression is demonstrated in Equation 17. 

               (17) 
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 The energy transport across the molecular system is tracked by the mean squared 

displacement from the average position of the initial state as described in Equation 18 below. 

Delta x is the displacement, x0 indicates the average position of the initial state of the wave 

packet, and Pm(t) is the time evolved probability for molecule m.  

                 (18) 

 

2.5.1 Short-time Propagation  

Based on the existing lack of understanding in the short time dynamics of energy transfer and 

the role played by dark states in this process, these first simulations sought to determine the 

characteristics of the energy flow in the molecular subsystem at early times. This computation 

uses varying values of light-matter coupling, ΩR, and determines their impact on the spatially-

resolved transport of energy within the system. This procedure evaluates the increased light-

matter coupling by the proportional relationship of displacement to time and quantifies this 

through the calculation of the slope. The impact of increasing ΩR is evaluated using the values 

0.1 eV, 0.3 eV, and 0.5 eV. No energetic disorder was included in these computations as we 

examine its effect later. These calculations were performed for intermolecular distances of 10, 

20, and 30 nm. T Energy transport was tracked in the molecular subsystem for the first 500 

femtoseconds of its evolution. Additionally, the early time scale of these calculations was 

evaluated to determine its diffusivity. This was accomplished through the calculation of the slope 

of the points of the early times, using linear fitting; these values are indicated within the caption 

of Figure 9. These calculations were also supplemented by functions that mapped the molecular 

and cavity photon probabilities of finding the energetic excitations within the molecular or cavity 
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subsystem. These supplemental calculations provide insight on the nature of the diffusivity and 

comment on the role played by the molecules and dark states within this system. 

 

2.5.2 Diffusion Constant  

The main observable evaluated within this investigation is the energy diffusion constants. 

This process was facilitated by the utilization of the formulas indicated in Equations 1 and 2, 

within Chapter 1. In order to calculate the diffusion constant D and the effective velocity v, the 

squared displacement discussed in 2.5 was divided by double the values of the time. This process 

yielded the diffusion constants as the slope of the resultant functions. 

         (19) 

 Despite this linear fitting of the produced data, shown in Equation 19, there appeared to 

be diffusive dynamics within the early time evolutions of the system which did not match that of 

the later times of the system. This phenomenon was exacerbated by systems with no energetic 

disorder; this is demonstrated by the differing diffusive regimes shown in Figure 7. In order to 

properly accommodate for these differences, the diffusion constants for the system were 

calculated within the later time diffusive regimes which demonstrated linear increases. This was 

by applying a percentage-based threshold, which only used the final 10% of values to calculate 

the diffusion constant. The final 10% of values were calculated on a total time scale of 20ps, and 

as evidenced by the location of the transport regimes in Figure 7, this was always located in the 

diffusive regime. This procedure assured that the calculation of the diffusion constants only used 

the later-time regime, diffusive regime.  
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Figure 7. Indication of two general diffusive regimes. This is a calculation of the time-evolved 

displacement squared divided by two times time versus time. This calculation has no energetic 

disorder, no system detuning, uses an ΩR values of 0.3eV, and an intermolecular distance of 

100nm.  

 

In this Section, the intermolecular energy transport dynamics at timescales where the motion 

follows the diffusion law shown in Equation 2. Diffusion constants are reported as a function of 

the light-matter interaction strength. Imperfections of real systems are incorporated in 

simulations by making the energetic disorder different from zero. In particular, diffusion 

constants are computed for several values of the light-matter coupling strength but the ratio of 

energy fluctuation variance to Rabi splitting (σ/ΩR) was maintained. For this calculation, as well 

as all others with introduced energetic disorder, statistical ensemble averaging was performed. In 

these simulations, the eigenstates of a single Hamiltonian with energetic disorder is first 

obtained, time-evolution of twenty-five initial molecular wave packets of the Hamiltonian 

realization are propagated, and the average diffusion constant obtained for each initial-state is 

computed.  This process is employed in order to return a general understanding of the diffusive 

dynamics of the system. This limits the localization effects by energetic wells within the system 
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that can misrepresent diffusive dynamics. In order to demonstrate this averaging process, 

standard deviations have been included within this calculation on all of the plotted points. 

In previous experiments of similar design, fairly misunderstood observables were measured in 

correlation to system size, to determine their internal system dynamics and begin to understand 

their internal functionalities. [17] As a result, there exists significant interest in the definition of 

the impact of system size on the novel observable of this investigation, real space energetic 

diffusion. In order to determine this, calculations comparing the impact of diffusion constants as 

a function of increasing the total number of states, collective number of molecules and photonic 

modes, of the system was used as a model. This process employs systems which have an equal 

number of both cavity modes and molecules, to preserve a symmetric multimode model. These 

calculations employed the process of statistical ensemble averaging. In order to define the 

impact that the energetic system disorder has on this calculation, the system disorder was run 

over two separate proportions. 

Demonstrated by the previous experiments, energetic disorder among the molecular 

ensemble plays a driving role in the determination of the diffusivity of energy within an organic, 

polaritonic, optical microcavity system. In order to further describe these phenomena, increasing 

the proportion of disorder to light-matter coupling strength, ΩR/σ, was plotted against its 

associated diffusion constants. This process employed statistical ensemble averaging, and was 

used for two separate functions that describe values of σ/ΩR that are greater than 1, and values of 

ΩR/σ that are less than 1. The evaluations of these two regimes effectively indicates both the 

threshold disorder values where the light-matter coupling becomes overcome by the strength of 

the energetic disorder, and the regime where the disorder strength is less than that of the light-

matter coupling. 
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3. Ideal System 

3.1 Introduction 

Within any computational system there is large dependence on the theoretical and 

mathematical design of the system. Through various investigations into the processes of organic 

microcavity polaritonic systems there have been different evaluations of energetic movement and 

transfer. As a result of largely varying methodologies there have been some conflicting 

understandings in the function of various parameters of these polaritonic cavities. To standardize 

these internal parameters, this original system model evaluates energy transport within a set of 

idealized parameters, that are defined by the absence of energetic disorder among the molecular 

ensembles.  

While the formation of light-matter hybrid states, polaritons, is an essential aspect of 

chemistry in optical microcavities, there exists also a large number of molecular states, known as 

dark states, which are only weakly coupled to the confined cavity field. There is a growing 

consensus in the large diffusive dependence on the dynamics of the molecular dark states, or 

excitons. [21,17] These states are extremely difficult to study experimentally because, as their 

name implies, they are dark and cannot be easily detected with optical spectroscopy techniques. 

There has been evidence of energetic localization within these dark states. [21] The coherent 

energy transport within the molecular dark states remains a gap in the understanding of these 

complex systems. At very short time scales, there is increased desire to study dark states within 

the picosecond and sub-picosecond regimes. [21]  

There remains a general lack in agreement and understanding of diffusive dynamics of 

energy within microcavity polaritonic systems. Consequently, there is very little information 
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regarding the intricacies of short time dynamics. Due to the incredible difficulty of extremely 

small, time resolution required for experimental work at short times, theoretical models must aid 

in the guidance and detailing of these systems. Through the proper modeling of an idealized 

system with sufficiently complex properties these phenomena can effectively be investigated. 

Short time scales, however, require that the model in use realizes through many iterations; this 

greatly increases the computational costs, but it also facilitates the understanding of dark state 

dynamics.  

In order to determine the impact of varying system parameters on the energy diffusion at 

ultrafast (femtosecond) time scales, the light-matter coupling strength of the systems were 

varied. The variance of these light-matter coupling strength, or Rabi Splitting (ΩR) values, was 

employed to understand not only ballistic transport but also the impact of coupling strength on 

energy transport at longer times (picoseconds).  

 

3.2 Ballistic Motion 

In the evaluation of early-time dynamics, the methods outlined within 2.5.1 were employed 

to generate and define short-time ballistic trajectories. These trajectories can effectively be 

compared by the values of their slopes described within the caption of Figure 8.  
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Figure 8. Ballistic energy transport for varying values of ΩR within the short-time scale 
calculations. (a) Mean eave-packet displacement trajectories for a system with 10nm 

intermolecular distance. The short-time slopes for 0.1, 0.3, and 0.5 eV values of ΩR, are 
0.6534, 0.9752, 1.459 respectively, in units of molecules per femtosecond (10nm/fs). The 

slopes were calculated using the first 100fs in a linear fit. (b) Trajectories for a system with 
20nm intermolecular distance. The short-time slopes for 0.1, 0.3, and 0.5 eV values of ΩR, 

are 0.6410, 1.564, and 2.100 respectively, in units of molecules per femtosecond (20nm/fs). 
The slopes were calculated using the first 200fs in a linear fit. (c) Trajectories for a system 
with 30nm intermolecular distance. The short-time slopes for 0.1, 0.3, and 0.5 eV values of 
ΩR, are 0.9983, 2.298, 4.120 respectively, in units of molecules per femtosecond (30nm/fs). 
The slopes were calculated using the first 300fs in a linear fit. All of these calculations were 

carried out with 501 molecules and zero detuning. 
  

 Demonstrated by the data presented within Figure 8, increasing both the value of the light 

matter coupling, as well as the intermolecular distance seems to have a significant impact on 

the diffusivity of the energy within the molecular subsystem of the cavity. Based on the 

increasing values of the slope for the different values of ΩR within each of the three plots, 

there does appear to be a proportional correlation to increasing the strength of the light-
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matter coupling, observed by increasing the rabi splitting value, and its impact on the 

diffusivity of the energy. Despite this proportional relationship, it does not appear to be a 

linearly correlated system. This is likely a result of the complexity of the system and the 

interdependence of diffusivity on many varying aspects of the cavity dynamics. This result 

develops from the inherent increase of light-matter coupling within the system. The strength 

of the light-matter interaction within this system is indicative of the amount of delocalization 

between molecular and photonic characteristics. These enhanced phenomena aid in the 

transfer dynamics of the energy within the cavity, as photonic components have a higher 

capacity for energetic transfer than that of molecules. These simulations serve to demonstrate 

the important role played by the light-matter coupling strength of a polaritonic optical 

microcavity system in augmenting its energy transport speed. 

 

3.3 Subsystem Energy Localization 

 The investigation of idealized ballistic energy transport was supplemented by the 

information provided in Figure 9. These calculations sought to demonstrate the probability of 

finding the energy within the molecular and cavity subsystems as a function of time. This 

calculation indicates 1) in which subsystem the energies are mainly situated within the cavity 

at the given time steps, as well as 2) the relative importance of the molecules and cavity 

modes in the energy transfer dynamics of the system.  
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Figure 9. Time evolved subsystem probabilities for short-time ballistic energy transport. 

Demonstrates the probability of finding the energetic excitations within (a) the molecular 

subsystem and (b) the cavity subsystem. These calculations have ΩR = 0.1,0.3,0.5 eV, no 

energetic disorder, 501 molecules, bare molecular excitation energy of 2.0eV, and an 

intermolecular distance of 20nm.  

 
 As evidenced by the data provided in Figure 9, there is significant energetic localization 

within the cavity during these early times. This trend is observed, most notably, by the large 

molecular subsystem probabilities and the small values for that of the cavity. This indicates 

that short-time observations emphasize a very strong molecular contribution to cavity 

dynamics. Additionally, these calculations were performed within a system that is 

experiencing no energetic disorder. Since energetic disorder is largely associated with 

energetic localization effects, through the molecular subsystem, this result may demonstrate 

an increased importance for the understanding of molecular contributions to all cavity 

phenomena. [17] This molecular localization within dark states further solidifies the integral 
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elucidation of their energy transport properties. This reinforces the underlying dependence of 

dark states in the internal function of microcavity systems and their associated energy 

transport and chemistry as explained by Raj et al. [21] 

Despite the extreme energetic localization within the molecular subsystem, as indicated 

within Figure 9, there are still significant oscillations within both the molecular and cavity 

time-evolved probabilities. These fast oscillations are indicative of the interplay between the 

subsystems, showing that energy transport is modulated by photonic contributions known as 

virtual excitations. This reinforces the light-matter coupled nature of the system and its 

facilitation of energy exchange.  

 

4. Microscopic Models with Disorder 

4.1 Introduction 

 As evaluated in Chapter 3, there is significant dependence of a given computational 

model on the mathematical and theoretical framework that is used to structure its calculations. In 

addition to computational dependence, there is also significant reliance on the parameters of the 

polaritonic system itself. Within organic optical microcavities, the presence of energetic disorder 

is one of the major parameters that will aid in the enhancement of computational models and 

their resultant predictions. The existence of the polaritons within a disordered phase, inherently 

leads to the experimental exhibition of energetic disorder within the target molecules of the 

system. These energetic alterations are generally generated from the collisions and 

intermolecular interactions between the target molecules and both the solvent molecules and the 

structural molecules that make up the walls of the cavity. These alterations shift the mean 

molecular excitation energies away from that of their bare values. These shifts have been 
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associated with the production of weak photonic intensity and minor shifts from the Tavis-

Cumming (TC) model system. [37] These shifts can result in the trapping of energy which will 

largely limit its diffusive capacity. This type of energetic disorder among the molecular ensemble 

has yet to be fully evaluated and included into many previous computational investigations. [17] 

An important input that dictates a lot of the internal dynamics of the system is the number 

of states. These states are defined by the collective number of both molecules and cavity photon 

modes. The number of states is a largely important value as it largely impacts the interactions 

within a cavity. There is an internal uncertainty principle that correlates the number states to the 

dipole moment of each molecule. Therefore, as the number of states increases, each individual 

molecule contributes progressively less to the general dynamics of the system. As a result of this, 

the diffusive properties of the energy within systems of increasing size must be evaluated.  

 In similar experiments that measured different observables, the presence of molecular 

energetic disorder within calculations resulted in energetic localization. This was explained to be 

a result of Anderson localization, that the presence of any disorder in a one-dimensional system 

can result in energetic localization. [17] As a result of this, there is significant interest in 

exploring how the introduction of disorder to a system of increasing size impacts the diffusive 

capabilities of the system. Additionally, these previous experiments were conducted on an 

infinite time scale. [17] As a result of this computational difference, the variation in time scales 

between these calculations may aid in the elucidation of how shorter time regimes can differ in 

their impact on energetic localization, and dark state dynamics. These calculations seek to 

increase the number of states within the system and determine the impact on the energetic 

diffusivity.   
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As a result of the incredible importance of energetic disorder in yielding more 

representative theory and computations, this parameter was evaluated in reference to its impact 

on the energy diffusion of the system. Through the introduction of energetic disorder, the 

ballistic energy transport observed within the idealized model was no longer observed and the 

general system appeared to remain in the diffusive transport regime. As a result of this, only the 

diffusive behavior of disordered systems was evaluated. An additional important question 

regarding the presence of energetic disorder, is does increasing the amount of disorder, 

dramatically increase the energetic localization of the system or is a small amount of disorder 

sufficient to cause an effect. 

 

4.2 Energy Transport Dependence on Light-Matter Coupling Strength  

Following these fundamental observations, this computation sought to determine the role of 

increasing the light-matter coupling strength of the system with the introduction of constant 

disorder. This experiment mapped the diffusion constants of the system as a function of 

increasing rabi splitting, ΩR, in order to effectively determine how the diffusivity of the system is 

altered through the presence of energetic disorder.  
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Figure 10. Diffusion constant as a function of light-matter coupling strength. Both ΩR and 

the intermolecular systems were varied, while the number of molecules was kept fixed at 

501, the bare molecule excitation energy at 2.0 eV, and σ/ΩR = 0.01. Each of the presented 

results correspond to averages over 25 molecular excited-state Gaussian wavepackets 

centered at a random molecule (standard deviations are represented by the bars at each 

point).   

 

As demonstrated by the data presented in Figure 10, the introduction of disorder does 

alter some of the system dynamics. The trend returned by Figure 10, may initially appear to 

conflict with the trend demonstrated by the early time slopes derived within Figure 8. This 

conclusion could be drawn from the lack of increasing diffusion constants as the light-matter 

coupling strength of the system increases. Although these seemingly conflicting results 

appear to indicate a lack of phenomenological consistency, in fact, the trend demonstrated by 

Figure 10, seeks to show an entirely separate dependence. Although the value of ΩR is 

becoming larger, the maintenance of the diffusion constants within this calculation indicates 

that instead of the dependence being limited to the value of ΩR, it is now strictly dependent 
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on the proportion of σ/ΩR, in systems with energetic disorder (where σ refers to the amount 

of energetic disorder of the system in units of eV). This demonstrates that the presence of 

energetic disorder within the investigation of system dynamics is an essential consideration.   

 

4.3 Energy Transport Dependence on Number of Molecules 

In order to determine the impact of the number of states on the energetic diffusion of the 

system, the system size was varied; these results are demonstrated in the plots shown in Figure 

11. 

 

Figure 11. Diffusion constants as a function of the total number of states for intermolecular 

distances of a=30nm, a=20nm, and a=10nm. The total light-matter interaction was fixed at ΩR = 
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0.3eV. (a) Simulation results obtained with σ/ΩR =  0.01. (b) Simulation results obtained with 

σ/ΩR =  0.2. 

 

Demonstrated by the data in Figure 11, there appears to be a correlation between 

energetic diffusion and the size of the system. As the system size increases, the ability for the 

energy to move also appears to increase. This is an interesting finding, as previous experiments 

have evaluated some observables to reach a thermodynamic limit in which their observables 

converge to a stationary value. These previous findings have determined that phenomena, such 

as escape probabilities, have minimum system size requirements and after this threshold, 

converge. [17] Unlike these observables, real space energetic diffusion appears to have a 

significant dependence on the size of the system.  

Despite this increased energy transport with increasing system size, there remains a 

specific balance in the weight of the system’s parameters. As demonstrated by plot b in Figure 

11, the increase in the proportion of σ/ΩR from 0.01 to 0.2, still has a dramatic impact on the 

energy transfer dynamics of the system. This decrease in the values of the diffusion constants can 

be directly associated with the energetic localization, indicating that a higher magnitude of 

energetic fluctuations still prevails over the increased delocalization of larger system sizes. This 

indicates that although system size has proven to be an impactful parameter for energy transfer, 

the system is still dominated by the presence of energetic molecular ensemble disorder. 

 

4.4 Diffusion Constants under Strong Disorder 

Based on this damping of energy transport resultant from the investigation of system size, 

there is significant interest in determining the dynamics of increasing the presence of energetic 
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disorder. In order to evaluate the impact of large values of energetic disorder the diffusion 

constants were plotted against values of ΩR/σ that are less than one. This was employed to 

determine different regimes of disorder, in which either the light-matter coupling, or the 

energetic disorder dominate the system. This threshold is facilitated by either energetic diffusion 

or energetic localization.  

 

Figure 12. Diffusion constant under strong disorder where the light-matter interactions are 

weaker than the magnitude of molecular excited-state energy fluctuations, i.e., ΩR/σ < 1. The red 

vertical line indicates a rough threshold for the transition between the regimes of strong energy 

localization (where the diffusion constant is approximately zero) and a diffusive regime where 

the diffusion constant starts to become appreciably different from zero. 

 

Demonstrated by the trends indicated in Figure 12, there are two distinct regimes of 

disordered calculations. There is a regime entirely controlled by the energetic localization 

resultant from values of energetic disorder that are significantly larger than that of the rabi 

splitting (ΩR) of the system. This demonstrates in what proportion that this shift occurs. As 
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graphically demonstrated by the red line in Figure 12, this regime switch occurs at the value of 

ΩR/σ = 0.1. This threshold calculation also indicates that the energetic localization can entirely 

inhibit the energetic diffusive properties of the system, if of sufficient magnitude. 

 

4.5 Diffusion Constants under Weak Disorder 

A similar calculation was performed for the opposing regime. In this case the model 

employed values of ΩR/σ that were greater than one. This process sought to determine how 

impactful the values of energetic disorder are on localizing the energy within the molecules of 

the system, while not entirely inhibiting energy transport.  

 

 

Figure 13. Diffusion constant under weak disorder where the light-matter interactions are 

stronger than the magnitude of molecular excited-state energy fluctuations, i.e., ΩR/σ > 1. These 

results show the generic trend that intermolecular energy diffusion becomes faster with 

weakening disorder. 
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Demonstrated by this secondary diffusive regime, shown in Figure 13, there is a gradual 

impact of increasing the energetic disorder on the diffusion within the system. For the system 

within smaller intermolecular distance, 10nm, this localization appears to resemble a linear trend. 

Despite this, moving to less densely packed systems, 20nm and 30nm, this localization is far 

more gradual. This difference is likely a result of the system densities and the density of states 

inequality, that is further detailed in 5. In addition to these levels of difference, all systems in 

Figure 13, demonstrate the general impact of introducing energetic disorder gradually and how it 

causes a proportional energetic localization within the molecular system, therefore inhibiting 

energetic diffusion. 

The introduction of energetic disorder and the evaluation of system parameters generates 

many values for the diffusion constants, but these values largely lacked qualification. The 

investigation premise assumes that molecules outside of an optical microcavity generally exhibit 

no energetic diffusive properties and thus such diffusive phenomena are novel, and consequently 

greater than that of their classical counterparts. Despite this, some further classification of these 

results would aid in the understanding of the energy transfer speed of cavity systems and 

comment on their potential utility for applications. As a result of this, general cavity parameters 

were selected, and diffusion constants were calculated from this system. These calculated 

diffusion constants were compared to slightly different values from literature. It should be noted 

that these are novel diffusion constants, and that this comparison is between entirely different 

systems. The compared values are indicative of noncoherent energy transport, whereas this 

system evaluates the quantum or coherent diffusive case. [38] The values of the theoretical 

diffusion constants range approximately from 10-2 – 10-3 cm2/s. These values coincide with 

literature values were diffusion constants evaluating noncoherent energy transport in perovskites. 
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[38,39] Based on this rough data classification in comparison to that of solid-state energy 

transfer, it is evident that the energy transport phenomena within the polaritonic optical 

microcavity is indicative of a very similar system. There are some minor differences within the 

values observed from the computational model. These differences may have arisen from the 

alterations in the intermolecular distances used. 

 

5. Density Dependence 

There is a strong uncertainty inequality connected to the density of states within the 

system that dominates the molecular contributions. By altering intermolecular distance, this 

changes the proximity of the molecules to one another and therefore skews the system’s density. 

These density alterations have multiple potential impacts. Based on the uncertainty principle, 

shown in Equation 19, as the density of the system increases each individual molecule 

contributes significantly less to the light-matter coupling of the system; this is modulated through 

the change in magnitude of an individual molecules transition dipole moment. The following 

equation demonstrates the proportional uncertainty between the Rabi Splitting, ΩR, and the 

single molecular dipole moment divided by the intermolecular distance.   

            (20) 

This effect is easily seen through the inclusion of altering intermolecular distances in 

Figures 8, 10, 11, 12 and 13; as intermolecular distance increases, the diffusivity increases as 

well because each individual molecule is less impacted by the energetic disorder introduced. This 

reduction in impact is resultant from the increased dipole magnitude of the individual molecules 

in the molecular subsystem. A secondary understanding of the impact of state density is provided 
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through the functionality of the Hamiltonian. The interactions of the Hamiltonian are facilitated 

through the presence of an electric field. Since this field is spatially distributed, if there are many 

molecules in close proximity, they may begin to experience the same electric field and exhibit 

less difference. This can exacerbate localization with the addition of energetic disorder. Although 

this system operates under strong light-matter coupling, the use of a molecular excited initial 

state likely is the driving source of the similarity of these diffusion constants to that of 

noncoherent systems. Additionally, there has been some prospect that the presence of energetic 

disorder within these quantum systems can alter the forms of energy transport and result in 

seemingly noncoherent diffusion. Similar observations have also been made in highly ordered 

solid-state perovskite analysis and exciton movement. [39,40] Based on these results there is a 

significant basis to augment the understanding of the molecular subsystem within polaritonic 

optical microcavities. 

Based on this rough data classification in comparison to that of solid-state energetic transfer, it is 

evident that the energetic transport phenomena within the polaritonic optical microcavity is 

indicative of a very similar system. There are some minor differences within the values observed 

from the computational model. These differences may have arisen from the alterations in the 

intermolecular distances used. As explained in 4.1 there is a strong uncertainty inequality 

connected to the density of states within the system that dominates the molecular contributions. 

By altering intermolecular distance, this changes the proximity of the molecules to one another 

and therefore skews the system’s density. These density alterations have multiple potential 

impacts. Based on the aforementioned uncertainty principle, as the density of the system 

increases each individual molecule contributes significantly less to the light-matter coupling of 

the system; this is modulated through the change in magnitude of an individual molecules 
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transition dipole moment. This effect is easily seen through the inclusion of altering 

intermolecular distances in Figures 9, 11, 12, 13 and 14; as intermolecular distance increases, the 

diffusivity increases as well because each individual molecule is less impacted by the energetic 

disorder introduced. This reduction in impact is resultant from the increased dipole magnitude of 

the individual molecules in the molecular subsystem. A secondary understanding of the impact 

of state density, is provided through the functionality of the Hamiltonian. The interactions of the 

Hamiltonian are facilitated through the presence of an electric field. Since this field is spatially 

distributed, if there are many molecules in close proximity, they may begin to experience the 

same electric field and exhibit less difference. This can exacerbate localization with the addition 

of energetic disorder. Although this system operates under strong light-matter coupling, the use 

of a molecular excited initial state likely is the driving source of the similarity of these diffusion 

constants to that of noncoherent systems. Additionally, there has been some prospect that the 

presence of energetic disorder within these quantum systems can alter the forms of energetic 

transport and result in seemingly noncoherent diffusion. Similar observations have also been 

made in highly ordered solid-state perovskite analysis and exciton movement. [26,27] Based on 

these results there is significant basis to augment the understanding of the molecular subsystem 

within polaritonic optical microcavities.  

6. Summary and Conclusions 

 This investigation sought to define many of the novel dynamics of real space energy 

diffusion within short time scales of polaritonic optical microcavities in photonic wires. The 

various system parameters investigated sought to determine the roles played by the strength of 

light-matter coupling in both the ballistic and diffusive transport regimes, the total number of 

states in a given system, and the varying of energetic disorder strength.  



 46 

The investigation into the idealized ballistic energy transport dynamics determined that there is 

extremely fast ballistic transport that occurs within short time scales. It is assumed that this initial 

transport regime is indicative of the high coupling of the molecular system to the cavity before it 

has had sufficient time to dephase. In addition to fast diffusion, the energy of the system is 

strongly localized within the molecular subsystem. This localization, however, is still 

accompanied by an energy transfer through the virtual excitations shown in Figure 9.  

 Through experimentation and computation, the strength of light matter coupling was 

altered in order to discern its impact on the energy transport capabilities of an organic, 

polaritonic, optical microcavity system. This procedure determined that there is significant 

dependence of diffusive dynamics on the strength of the light-matter coupling (ΩR). Despite this 

conclusion, through the introduction of energetic disorder among the molecular ensemble 

demonstrated that this dependence on the light-matter coupling strength is also directly 

correlated to the amount of energetic disorder introduced to the system. This indicated that a 

pertinent system parameter is more accurately described by the proportion of energetic disorder 

to the strength of the light- matter coupling, σ/ΩR.  

 Next this investigation intended to define the dependence of energetic diffusion on the 

size of the system as modulated by the number of total states. This experiment varied the number 

of total states of given systems and determined that increasing the size of the system has a direct 

correlation to increasing the energetic diffusion. This determined that energetic diffusion is 

consequently tied to system size. As the size of the system increased, the diffusion constants also 

grew in size. This result however was also compared to the same system with a significantly 

larger proportion of disorder introduced. This secondary qualification indicated that although 

these molecules are less impacted by the introduction of energetic disorder, there still remains a 
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strong localizing effect with high values of σ. This was shown by the dramatic increase in energy 

localization through the smaller diffusion constant values .  

 In response to the increasing impact of energetic disorder, the final direction of this 

investigation was to further qualify its role in energy localization. This final set of experiments 

employed varying proportions of ΩR/σ and their associated diffusion constants to effectively 

determine energetically disordered regimes. This process saw that the threshold value of 

ΩR/σ=0.01, creates two separate energetic regimes, one dominated by energetic localization of 

the second that allows diffusive behavior. This threshold indicates that increasing values of 

energetic disorder can entirely alter the diffusive dynamics of the system and result in completely 

different diffusivity. This result was further evaluated with values of ΩR/σ that are greater than 1. 

This calculation demonstrated varying proportional effects of decreasing disorder on the 

diffusivity of the system as correlated to the intermolecular distance of the system.  

 After these experiments, the results were taken and further qualified. The interest in 

understanding different diffusive regimes as a result of changing intermolecular distances was 

evaluated using the internal density of states uncertainty principle. The distance between 

molecules within the system contributes to their relative density within the cavity and therefore 

sees similar conclusions to those of the number of total states calculations. Consequently, as the 

intermolecular distance increases, each molecule is again not as impacted by the introduction of 

energetic disorder and exhibits higher diffusivity.  

 A qualification was performed on the diffusion constants produced from a general 

system. These were converted and compared to literature values of diffusion constants calculated 

within noncoherent energetic diffusion. Although this is not an exact comparison it began to 

provide some intuition to general diffusivity of the real space diffusion of these microcavity 
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systems. This comparison determined that the quantum phenomena observed in this photonic 

wire system experience relatively the same energetic diffusive properties as that of the classical 

system described in the literature. This conclusion indicates that the use of a molecular excited 

initial state has relatively similar properties to noncoherent systems. This result requires further 

investigation to identify exactly how this process is facilitated. Additionally, this conclusion 

places further interest on defining the case of a Lower Polariton initial wavepacket, and the 

energetic diffusivity of that system.  

Although this project has begun to elucidate many previously unknown molecular and 

energetic phenomena within organic polaritonic, optical microcavities, there still remains many 

unexplored aspects of real space energetic diffusion at short-time scales. Additionally, there is 

significant interest in determining group velocities for systems in order to further understand 

their diffusive regimes. [21] The evaluation of various other initial states may aid in 

understanding other aspects of these systems whilst also providing opportunities for 

experimental comparisons. This will aid in the qualification of this computational model and 

seek to promote the understanding of these systems and their incredible potential for 

revolutionizing energy transfer. Finally, the addition of energetic disorder has seen the 

augmentation of this computational model, but there still must be further investigation on tuning 

other physically observed phenomena. The introduction of thermodynamic interactions with a 

heat reservoir to further elucidate the impacts of intermolecular interactions on the cavity-

mediated energy transfer dynamics. 
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