Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

[^0]
EXPLORATION OF HIGH SYMMETRY DIRHODIUM CATALYSTS

 AND THE REACTION OF DONOR/ACCEPTOR CARBENOIDS WITH
ALCOHOLS

By
Zhanjie Li
Doctor of Philosophy

Chemistry

Dr. Huw M. L. Davies Advisor
Dr. Albert Padwa
Committee Member
Dr. Frank E. McDonald
Committee Member
Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

EXPLORATION OF HIGH SYMMETRY DIRHODIUM CATALYSTS AND THE REACTION OF DONOR/ACCEPTOR CARBENOIDS WITH ALCOHOLS

By
Zhanjie Li
M. Sc., Lanzhou University, 1999
Advisor: Huw. M. L. Davies, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry

Abstract
 EXPLORATION OF HIGH SYMMETRY DIRHODIUM CATALYSTS

AND THE REACTION OF DONOR/ACCEPTOR CARBENOIDS WITH

ALCOHOLS

By Zhanjie Li
Chiral dirhodium complex catalyzed decomposition of diazo compounds results in a wide range of useful and highly stereoselective transformations. The symmetry of the catalyst has been considered as an important factor in its ability to induce stereoselectivity. In the first chapter of this dissertation, a series of highly symmetric dirhodium complexes containing mono, di, and tetra-binaphthylphosphate ligands were synthesized. The influences of substituents at the $3.3^{\prime}-$ and $4,4^{\prime}, 6,6^{\prime}-$ positions of the binaphthyl scaffold on the complex's catalytic reactivity were systematically studied. The synthesis of chiral dirhodium carboxylate complexes containing admantyl groups was also briefly explored. Two of this type of complexes were effectivly synthesized in very short sequence from aryldiazoacetates and admantane.

The second chapter of this dissertation focused on the reaction of donor/acceptor carbenoids with alcohols. A novel tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols or propargylic alcohols was discovered and systematically studied. α-Hydroxycarboxylate derivatives containing one tertiary alcohol stereocenter were synthesized with excellent stereoselectivity (up to $>97: 3 \mathrm{dr}$ and $>99 \%$ ee), when dirhodium tetraprolinate, $\mathrm{Rh}_{2}(S$ DOSP_{4}, was used as catalyst. It was found that chirality of the catalyst had dominant effect on the configuration of the tertiary alcohol stereocenter in the product, and the chirality of the alcohols had domnant effect on the second stereocenter generated in the rearrangement. Donor/acceptor carbenoids had distinct advantage than the conventional acceptor and acceptor/acceptor carbenoid in favor of the [2,3]-sigmatropic rearrangement. A highly enantioselective [1,2]-Stevens rearrangement between donor/acceptor carbenoids and tertiary benzyl alcohol was also briefly studied. α Hydroxycarboxylates containing two adjacent quaternary centers were formed in 78-94\% ee.

EXPLORATION OF HIGH SYMMETRY DIRHODIUM CATALYSTS AND THE REACTION OF DONOR/ACCEPTOR CARBENOIDS WITH ALCOHOLS

By

Zhanjie Li
M. Sc., Lanzhou University, 1999

Advisor: Huw. M. L. Davies, Ph.D.

> A dissertation submitted to the Faculty of the
> James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry

To my wife, Yuxia and my daughters, Tia and Sarah

Table of Contents

Chapter 1 Design and Synthesis of Highly Symmetric Chiral Dirhodium(II) Complexes for Carbenoid Chemistry 1
1.1 Introduction 1
1.1.1 Dirhodium carboxylates 4
1.1.1.1 Proline derived dirhodium complexes 4
1.1.1.2 Phthalimide derived dirhodium complexes 8
1.1.2 Dirhodium carboxamidates. 12
1.1.3 Dirhodium binaphthylphosphate complexes 16
1.2 Results and discussion 18
1.2.1 Synthesis of dirhodium binaphthylphosphate complexes 18
1.2.1.1 Dirhodium tetrabinaphthylphosphate complexes $\left(\mathrm{Rh}_{2} \mathrm{~L}_{4}\right)$ 20
1.2.1.2 Dirhodium complexes containing mixed ligands $\left(\mathrm{Rh}_{2} \mathrm{~L}_{\mathrm{n}}(\mathrm{OAc})_{(4-\mathrm{n}}\right)$ 25
1.2.2 Synthesis of dirhodium phosphinate complex 36
1.2.3 Synthesis of chiral dirhodium carboxylate complexes 40
1.3 Conclusion 45
1.4 Experimental 46
1.4.1 General information 46
1.4.2 Synthetic procedures and characterization 47
References 103
Chapter 2 Highly Enantioselective C-C Bond Formation by Rhodium-CatalyzedTandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/AcceptorCarbenoids and Allylic Alcohols/Propargylic Alcohols.. 110
2.1 Introduction 110
2.1.1 Intermolecular cyclopropanation 111
2.1.2 Intermolecular $\mathrm{C}-\mathrm{H}$ insertion 117
2.1.3 Ylide formation 122
2.2 Results and discussion. 128
2.2.1 New discovery 128
2.2.2 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols - generation of one stereogenic center 131
2.2.2.1 Optimal reaction conditions. 133
2.2.2.2 Effect of allylic alcohols 136
2.2.2.3 Effect of carbenoid structure 138
2.2.2.4 Effect of chiral alcohol 140
2.2.2.5 Reactions of styryldiazoacetate 7 with racemic allylic alcohols 141
2.2.2.6 Other features 147
2.2.3 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement betweendonor/acceptor carbenoids and allylic alcohols - generation of two stereogeniccenters.151
2.2.3.1 Reactions with enantiomerically pure allylic alcohols 151
2.2.3.2 Rationale of the stereoselectivity 163
2.2.3.3 Further transformation 167
2.2.4 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols containing silyl group 171
2.2.5 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and propargylic alcohols 174
2.2.5.1 Reactions with achiral propargylic alcohols 175
2.2.5.2 Reactions with chiral tertiary propargylic alcohols 182
2.2.5.3 Reactions with chiral secondary propargylic alcohols 186
2.2.5.4 Stereoselective cyclization of α-allenic alcohols. 188
2.2.5.5 Rationale of the stereoselectivity 189
2.2.6 Highly enantioselective intermolecular [1,2]-Stevens rearrangement between donor/acceptor carbenoids and tertiary alcohols 192
2.3 Conclusion 197
2.4 Experimental. 199
2.4.1 General information 199
2.4.2 Synthetic procedures and characterization for chapter 2.2.1
and 2.2.2 200
2.4.3 Synthetic procedures and characterization for chapter 2.2.3 246
2.4.4 Synthetic procedures and characterization for chapter 2.2.4 282
2.4.5 Synthetic procedures and characterization for chapter 2.2.5 289
2.4.6 Synthetic procedures and characterization for chapter 2.2.6 343
References 350
Appendix Crystal Structure Determination 361
List of Schemes
Scheme 1.1: $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ catalyzed $\mathrm{O}-\mathrm{H}$ insertion reaction. 2
Scheme 1.2: $\mathrm{Rh}_{2}(S \text {-BNP })_{4}$ catalyzed intramolecular C-H insertion reaction 4
Scheme 1.3: Synthesis of (+)-erogorgiaene via an enantiodivergent process 7
Scheme 1.4: Synthesis of (-)-colombiasin A (17) and (-)-elisapterosin B (18) 7
Scheme 1.5: Cyclopropanation catalyzed by $\mathrm{Rh}_{2}(S \text {-biTISP })_{2}$ 8
Scheme 1.6: Enantioselective intermolecular 1,3-dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(S \text {-BPTV })_{4}$ 10
Scheme 1.7: $\mathrm{Rh}_{2}(R-\mathrm{PTAD})_{4}$-catalyzed $[4+3]$ cycloaddition reaction. 10
Scheme 1.8: Dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(S \text {-BNP })_{4}$ 16
Scheme 1.9: [1, 3]-dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(R-\mathrm{DDBNP})_{4}$ 17
Scheme 1.10: Sulfur ylide/[2,3]-sigmatropic rearrangement catalyzed by $\mathrm{Rh}_{2}(S$ -
BNP) ${ }_{4}$ 17
Scheme 1.11: Intramolecular aziridination catalyzed by $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$ 17
Scheme 1.12: Intramolecular C-H insertion catalyzed by $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BNP})_{2}\left(\mathrm{HCO}_{3}\right)_{2}$ 18
Scheme 1.13: Synthesis of complexes 91 and 115. 21
Scheme 1.14: Cyclopropanation catalyzed by complex 91 and 115 21
Scheme 1.15: Synthesis of complexes $\mathbf{9 2}$ and 123 24
Scheme 1.16: Cyclopropanation catalyzed by complex $\mathbf{9 2}$ and $\mathbf{1 2 3}$ 24
Scheme 1.17: Synthesis of cis-Rh ${ }_{2}((R, R) \text {-DTPI })_{2}(\mathrm{OAc})_{2}$ 25
Scheme 1.18: Synthesis of trans-syn- $\mathrm{Rh}_{2}((R, R) \text {-DTPI })_{2}(\mathrm{OAc})_{2}$ 26
Scheme 1.19: Synthesis of trans- $\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}(\mathbf{1 2 9})$ 27
Scheme 1.20: Synthesis of trans- $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 1})$ 27
Scheme 1.21: Synthesis of cis- $\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$ complexe $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ 27
Scheme 1.22: Synthesis of trans $-\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$ 30
Scheme 1.23: Cyclopropanation catalyzed by complexes cis- and trans-
$\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$ 32
Scheme 1.24: Synthesis of ligand 148 34
Scheme 1.25: Synthesis of complex 150-151 34
Scheme 1.26: Cyclopropanation catalyzed by complexes $\mathrm{Rh}_{2} \mathrm{~L}(\mathrm{OAc})_{3}$ 35
Scheme 1.27: Proposed chiral dirhodium phosphinate 160 37
Scheme 1.28: Proposed synthesis of chiral dirhodium phosphinate 162 38
Scheme 1.29: Synthesis of racemic-161 39
Scheme 1.30: Resolution of racemic-161 40
Scheme 1.31: Synthesis of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ 42
Scheme 1.32: Proposed synthesis of the variants of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ 42
Scheme 1.33: Synthesis of Dirhodium complex 182 and 183 43
Scheme 1.34: $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ catalyzed $\mathrm{C}-\mathrm{H}$ insertion of aryldiazoacetate 189 and
\qquadadamantane44
Scheme 2.1: Cyclopropanation of phenyldiazoacetate 6 with 1,1-disubstituted
\qquad
Scheme 2.2: Cyclopropanation of styryldiazoacetate 7 with trans-alkene 114
Scheme 2.3: Cyclopropanation of p-bromophenyldiazoacetate $\mathbf{3 0}$ with trisubstitutedalkene114
Scheme 2.4: Cyclopropanation of other donor/acceptor carbenoid precursors with styrene. 115
Scheme 2.5: Tandem cyclopropanation/Cope rearrangement between vinyldiazoacetate
and diene 116
Scheme 2.6: $[4+3]$ cycloaddition between siloxyvinyldiazoacetate 41 and
pyrroles 116
Scheme 2.7: $[4+3]$ cycloaddition in the synthesis of (-)-5-epi-vibsanin 116
Scheme 2.8: $\mathrm{C}-\mathrm{H}$ insertion of phenyldiazoacetate with 2-
methylbutane 119
Scheme 2.9: C-H insertion of aryldiazoacetates adjacent to oxygen 120
Scheme 2.10: Asymmetric synthesis of Venlafaxine 120
Scheme 2.11: Asymmetric synthsis of Ritalin 121
Scheme 2.12: Synthesis of (+)-sertraline. 121
Scheme 2.13: Enantiodivergent reaction between vinyldiazoacetate 64 with racemic dihydronaphthalene 65 122
Scheme 2.14: Asymmetric O-H insertion of phenyldiazoacetate $\mathbf{6}$ with water 124
Scheme 2.15: Intramolecular N-H insertion of diazoketoester 91 125
Scheme 2.16: $\mathrm{Rh}(\mathrm{II})$ and Cu catalyzed $\mathrm{O}-\mathrm{H}$ insertion. 125
Scheme 2.17: Three component reactions of aryldiazoacetates 126
Scheme 2.18: The epoxide formation with phenyldiazoacetate 6. 127
Scheme 2.19: Sulfur ylide formation/[2,3]-sigmatropic rearrangement witharyldiazoacetate $\mathbf{1 2}$127
Scheme 2.20: Reaction of phenyldiazoacetate $\mathbf{6}$ with (E)-4-methylpent-2-ene 97 129
Scheme 2.21: Reaction of phenyldiazoacetate $\mathbf{6}$ with allylic alcohols 129
Scheme 2.22: Tandem ylide formation/[2,3]-sigmatropic rearrangement between allylic
alcohol and phenyldiazoacetate. 130
Scheme 2.23: Rationale of the reaction of allylic alcohol with donor/acceptor
carbenoids 132
Scheme 2.24: Reaction of allyl methyl ether $\mathbf{1 0 5}$ with phenyldiazoacetate $\mathbf{6}$ 133
Scheme 2.25: Reactions of alcohol 101 with conventional carbenoids. 139
Scheme 2.26: Reaction of styryldiazoacetate 7 with primary allylic alcohol 109 145
Scheme 2.27: Reactions of styryldiazoacetate 7 with cis-($1 R, 5 R$)-(-)-pulegol 152 146
Scheme 2.28: Reactions of styryldiazoacetate $\mathbf{7}$ with thiol 159 150
Scheme 2.29: Reaction of alcohol $\mathbf{1 8 5}$ with styryldiazoacetate 7. 166
Scheme 2.30: Reaction of alcohol $\mathbf{1 0 0}$ with aryldiazoacetate $\mathbf{1 2 1}$ 166
Scheme 2.31: Synthesis of compound 189 168
Scheme 2.32: Oxy-Cope rearrangement of (2S, 3S)-177 169
Scheme 2.33: Oxy-Cope rearrangement of $(2 R, 3 S)-\mathbf{1 7 7}$ 169
Scheme 2.34: Oxy-Cope rearrangement of $(R) \mathbf{- 1 2 5}$ 170
Scheme 2.35: Synthesis of α-hydroxycarboxylates through halodesilylation-couplingstrategy171
Scheme 2.36: Synthesis of α-allenic alcohols with donor/acceptor carbenoids and
propargylic alcohols 175
Scheme 2.37: Reactions of propargyl alcohol 199 176
Scheme 2.38: Reactions of tertiary propargyl alcohols 177
Scheme 2.39: Effect of carbenoid structure on the reaction selectivity 178
Scheme 2.40: Reaction of racemic alcohol 259 with styryldiazoacetate 7 183
Scheme 2.41: Reaction of racemic alcohol 261 with p-bromophenylvinyldiazoacetate
218. 184
Scheme 2.42: Reactions of chiral secondary alcohol $\mathbf{2 6 9}$ with styryldiazoacetate 7. 188
Scheme 2.43: Formation of 2,5-dihydrofurans. 189
Scheme 2.44: Asymmetric [1,2]-Stevens rearrangement catalyzed by $\mathrm{Rh}_{2}(S \text {-PTTL })_{4}$ 192
Scheme 2.45: Formation of compound 273 193
Scheme 2.46: Formation of compound 277 and 278 193
Scheme 2.47: Reaction of alcohol $\mathbf{2 8 0}$ with phenyldiazoacetate $\mathbf{6}$ 196
Scheme 2.48: Possible mechanism of the [1,2]-Stevens rearrangement 196

List of Tables

Table 1.1: Intramolecular $\mathrm{C}-\mathrm{H}$ insertion of diazoacetate $\mathbf{8 4}$ 15
Table 1.2: Cyclopropanation of phenyldiazoacetate with styrene. 19
Table 1.3: $\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{4}$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ mediated cyclopropanations 36
Table 1.4: cyclopropanation catalyzed by complex $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$ 44
Table 2.1: Effect of rhodium carbenoid structure on the cyclopropanationdiastereoselectivity.112
Table 2.2: Cyclopropanation of styryldiazoacetate 7 with alkenes. 113
Table 2.3: Intermolecular $\mathrm{C}-\mathrm{H}$ insertion of ethyl diazoacetate with
2-methylbutane. 119
Table 2.4: $\mathrm{C}-\mathrm{H}$ insertion of aryldiazoacetates with cycloalkanes. 120
Table 2.5: Asymmetric $\mathrm{N}-\mathrm{H}$ insertion of aryldiazoacetates with carbomate. 123
Table 2.6: Asymmetric O-H insertion of phenyldiazoacetate $\mathbf{6}$ with alcohols. 124
Table 2.7: Effects of dirhodium catalyst and solvent on the ratio of $\mathbf{9 9} / \mathbf{1 0 3}$ 135
Table 2.8: Effect of temperature and the amount of allylic alcohol on the ratio of
99/103. 135
Table 2.9: Effect of allyl alcohols on the formation of [2,3]-sigmatropic rearrangement
products 137
Table 2.10: Reactions of alcohol 101 with different donor/acceptor carbenoids 138
Table 2.11: Effect of the alcohol chirality on the product formation 140
Table 2.12: Reactions of styryldiazoacetate 7 with secondary allylic alcohols. 143
Table 2.13: Reactions of styryldiazoacetate 7 with tertiary allylic alcohols. 144
Table 2.14: Effect of catalyst loading. 148
Table 2.15: Reaction of styryldiazoacetate with alcohol mixture 149
Table 2.16: Reaction of phenyldiazoacetate with allylic amines. 150
Table 2.17: Reaction of (S, E) - $\mathbf{1 0 8}$ with different diazoacetates. 152
Table 2.18: Reaction of pent-3-en-2-ol (108) with styryldiazoacetate 7. 155
Table 2.19: Reaction of (S)-allylic alcohol with styryldiazoacetate 7. 157
Table 2.20: Reaction of (R) and (S) - $\mathbf{1 8 3}$ with styryldiazoacetate 7. 160
Table 2.21: Reaction of $(R, E) \mathbf{- 1 7 0}$ with styryldiazoacetate 7. 162
Table 2.22: Reaction of racemic alcohol $\mathbf{1 9 3}$ with donor/acceptor carbenoids 172
Table 2.23: Reaction of alcohol 196 with styryldiazoacetate 7. 173
Table 2.24: Reaction of arylvinyldiazoacetates with alcohol 205 179
Table 2.25: Reaction of alcohol 223-237 with styryldiazoacetate 7. 181
Table 2.26: Reaction of alcohol 253-255 with styryldiazoacetate 7. 182
Table 2.27: Reaction of enantiomerically pure alcohol $\mathbf{2 5 9}$ with
styryldiazoacetate. 185
Table 2.28: Reactions of racemic alcohol $\mathbf{2 6 3}$ and $\mathbf{2 6 4}$ with styryldiazoacetate 7 186
Table 2.29: Reactions of chiral secondary alcohol $\mathbf{2 6 7}$ with styryldiazoacetate 7. 187
Table 2.30: Reaction of alcohol $\mathbf{2 7 9}$ and $\mathbf{2 8 0}$ with arylvinyldiazoacetates 195
List of Figures
Figure 1.1: The structure of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$

\qquadFigure 1.2: Dirhodium prolinates complexes2
Figure 1.3: Schematic representation of the D_{2}-symmetric ligand arrangement of
$\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ 5
Figure 1.4: Model of the enantioselective cyclopropanation catalyzed by
$\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ 6
Figure 1.5: Second-generation dirhodium prolinates complexes. 8
Figure 1.6: Phthalimide derived dirhodium complexes 9
Figure 1.7: The model for the enantiodivergent reaction between racemic 39 and 40
with $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ as catalyst. 12
Figure 1.8: Chiral dirhodium carboxamidates 14
Figure 1.9: Possible isomers of the chiral dirhodium carboxamidates 14
Figure 1.10: Matched and mismatched catalyst design 15
Figure 1.11: Dirhodium binaphthylphosphonate complexes 17
Figure 1.12: Molecular model of $\mathrm{Rh}_{2}(S-B N P)_{4}$, and the substituent influence at 3,3 '-position of the BNP.. 20Figure 1.13: The aromatic region of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of complex 131 and132... 29Figure 1.14: Molecular models of trans $-\mathrm{Rh}_{2}(S-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$ and $\operatorname{cis}^{-}-\mathrm{Rh}_{2}(S$ -
Figure 1.15: Structure of complex 143 and 144 32
Figure 1.16: Molecular model of the (S)-enantiomer of complex 141 (top view) 33
Figure 1.17: Structure of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}(\mathbf{3 0})$ and $\mathrm{Rh}_{2}(S \text {-TCPTAD })_{4}(37)$ 41
Figure 2.1: Classification of carbenoid intermediates 110
Figure 2.2: Chiral dirhodium carboxylate catalysts developed by the Davies group. 111
Figure 2.3: Carbenoid induced $\mathrm{C}-\mathrm{H}$ insertion 118
Figure 2.4: Natural products synthesized by the combined $\mathrm{C}-\mathrm{H}$ activation/Cope
rearrangement strategy 122
Figure 2.5: X-ray structure of compound 142 144
Figure 2.6: X-ray structure of compound 153 146
Figure 2.7: X-ray structure of compound $\mathbf{1 6 6}$ 153
Figure 2.8: X-ray structure of compound 177 158
Figure 2.9: X-ray structure of compound 181 158
Figure 2.10: X-ray structure of compound (2R, $\mathbf{3 R}$)-184 160

Figure 2.12: Transition state analysis of (R) and (S) allylic alcohol with donor/acceptor
\qquad
Figure 2.13: X-ray structure of compound (2R, $\mathbf{3 R}$)-187166

Figure 2.14: X-ray structure of compound (2R, 3S)-187...................................... 167
Figure 2.15: X-ray structure of compound 243... 180
Figure 2.16: X-ray structure of compound (2R,4S)-260...................................... 185
Figure 2.17: X-ray structure of compound (2S, 4R)-268...................................... 188
Figure 2.18: Transition state analysis for the formation of α-allenic alcohol............. 190
Figure 2.19: X-ray structure of compound 283.. 195

List of Abbreviations

Ac
p-ABSA
Ar

BNP

BINOL
Boc
Br
t-Bu
DBU
$\mathrm{DCM}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
2,2-DMB
DMAD
DOSP
dr
ee

EDG

ESI
Et

EWG
Equiv.
FAB-MS

Acetyl
4-Acetamidobenzenesulfonyl azide
Aryl
Binaphthylphosphate
1,1'-bi-2-naphthol
tert-Butyloxycarbonyl
Bromine
tert-Butyl
1,8-Diazabicyclo[5,4,0]undec-7-ene
Dichloromethane
2,2-Dimethylbutane
Dimethyl acetylenedicarboxylate
N-(4-dodecylbenzenesulfonyl)prolinate
Diastereomeric ratio
Enantiomeric excess
Electron-donating group
Electrospray ionization
Ethyl
Electron-withdrawing group
Equivalent
Fast atom bombardment mass spectroscopy

HCl	Hydrochloric acid
c-Hex	Cyclohexyl
Hz	Hertz
HPLC	High-performance liquid chromatography
IR	Infrared spectroscopy
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	Potassium dichromate
L	Ligand
M	Metal
Me	Methyl
MeO	Methoxy
MEPY	Methyl 2-oxopyrrolidine-5-carboxylate
MOM	Methoxymethyl
Mes	Mesityl
NaHMDS	Sodium bis(trimethylsilyl)amide
nOe	Nuclear Overhauser effect
NOESY	Nuclear Overhauser effect spectroscopy
OAc	Acetate
OEt	Ethoxy
OOct	Octanoate
Ph	Phenyl
Piv	Pivalate
POCl_{3}	Phosphorous oxychloride
$i^{\text {Pr }}$	Isopropyl

Rh	Rhodium
rt	Room temperature
TBS	tert-Butyldimethylsilyl
TBSP	(4-tert-butylphenyl)sulfonyl-prolinate
TFA	Trifluoroacetic acid (trifluoroacetyl)
THF	Tetrahydrofuran
TISP	$2,4,6$-tri-iso-propyl-benzenesulfonyl
TMEDA	$N, N, N^{\prime}, N^{\prime},-$ Tetramethylethylenediamine
TMS	Trimethylsilyl
TPA	Triphenylacetate

CHAPTER ONE

Design and Synthesis of High Symmetry Chiral Dirhodium(II)

Complexes

1.1 Introduction

Dirhodium(II) complexes are well known as effective catalysts for the decomposition of diazocarbonyl compounds. The generated metal carbenoid intermediates can participate in a wide variety of synthetically useful transformations such as cyclopropanation, $\mathrm{C}-\mathrm{H}$ insertion, and ylide formation with excellent efficiency and chemoselectivity. ${ }^{1}$

Figure 1.1 The structure of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$

The first dirhodium(II) complex used as catalyst for the decomposition of diazocarbonyl compounds was dirhodium tetraacetate $\left(\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathbf{1}\right)$. In 1973, Teyssie and co-workers found that dirhodium tetraacetate had much superior catalytic activity over copper catalysts to decompose ethyl diazoacetate (2) in the presence of alcohols, producing the $\mathrm{O}-\mathrm{H}$ insertion products in nearly quantitative yield (Scheme 1.1). ${ }^{2}$ Since then, it has become one of the most widely used catalysts for metal carbene
transformations. Dirhodium tetraacetate contains four bridging acetate ligands symmetrically positioned around the dirhodium core, which provides the whole molecule a dimeric "paddlewheel" complex with $D_{4 \mathrm{~h}}$ symmetry (Figure 1.1). ${ }^{3}$ The dirhodium core consists of a strong $\mathrm{Rh}-\mathrm{Rh}$ single bond (originally considered as a triple bond because of the short bond distance $2.386 \AA$, compared with the expected $\mathrm{Rh}-\mathrm{Rh}$ single bond 2.7-2.8 \AA), and it provides the complex excellent ability to form adducts at its two axial coordination sites. These are considered to be the site of its catalytic activity during the carbenoid transformations. Dirhodium tetraacetate also serves as a parent compound to synthesize other dirhodium(II) complexes. Ligand exchange procedures, mainly done by refluxing dirhodium tetraacetate with excess of the incoming ligands (carboxylate, carboxamidate, phosphate, among others), give access to a wide variety of other dirhodium complexes containing similar paddlewheel dirhodium framework. In the 1990s, the introduction of chiral ligands opened enormous opportunities for the design and synthesis of chiral dirhodium complexes, and the study of their catalytic activity promoted the metal carbenoid chemistry to unprecedented levels of stereocontrol. There are three general classes of chiral dirhodium complexes widely used as catalysts in the asymmetric carbenoid transformations with high stereoselectivity: dirhodium carboxylates derived from N-sulfonyl proline or N-phthalimido amino acids, dirhodium carboxamidates, and dirhodium binaphylphosphates. ${ }^{1}$

Scheme 1.1 $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ catalyzed $\mathrm{O}-\mathrm{H}$ insertion reaction

To rationalize the high asymmetric induction obtained in the carbenoid transfomations, different models have been developed and successfully applied to predict the stereochemistry of the reaction. Symmetry of these dirhodium complexes has been considered as a critical factor. ${ }^{4}$ Traditionally, symmetry has been an important structural feature in the development of efficient chiral ligands, such as the C_{2}-symmetric chiral biphosphines, ${ }^{5}$ bis(oxazolines) (Box's), ${ }^{6}$ and N, N-bis(salicylidine)ethylenediamines (Salen), ${ }^{7} C_{3}$-symmetric chiral tris(pyrazolyl)borates, ${ }^{8}$ and D_{2} or D_{4}-symmetric chiral porphyrins. ${ }^{9}$ Because of the ligand's symmetry property, their metal complexes are able to selectively activate the reagent and favor the attack on one specific face, and subsequently form the product with good stereoselectivity. The paddlewheel framework of the dirhodium complexes, however, provides an unusual ability to arrange identical chiral ligands of low symmetry around the dirhodium core and form a complex with higher symmetry. This high symmetric property allows these complexes to form the carbenoid intermediate in a highly selective manner, but also effectively define the approach of the substrate to the carbenoid intermediate and subsequently form product with high stereoselectivity.

Figure 1.2 Dirhodium prolinates complexes

Scheme 1.2 $\mathrm{Rh}_{2}(S-\mathrm{BSP})_{4}$ catalyzed intramolecular C-H insertion reaction

1.1.1 Dirhodium carboxylates

1.1.1.1 Proline derived dirhodium complexes

Dirhodium complexes containing chiral carboxylate ligands were first synthesized by Brunner. Their initial evaluation in the cyclopropanation of ethyl diazoacetate with styrene gave very low enantioselectivity ($<12 \%$ ee). ${ }^{10}$ Considering that the carboxylate ligand's chiral center is placed far away from the axial coordination sites of rhodium led to the preliminary conclusion that dirhodium carboxylate complexes would not be effective as chiral catalysts. ${ }^{11}$ However, soon after Brunner, McKervey and co-workers discovered that dirhodium prolinate, $\mathrm{Rh}_{2}(S \text {-BSP })_{4}$ (4) (Figure 1.2) can selectively catalyze the intramolecular $\mathrm{C}-\mathrm{H}$ insertion reaction of 7 with good enantioselectivity (82% ee) (Scheme 1.2). ${ }^{12}$ This discovery quickly led to Davies' synthesis of $\mathrm{Rh}_{2}(S \text {-TBSP })_{4}(\mathbf{5})$ and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ (6). These catalysts have good solubility in hydrocarbon solvents and have been broadly used for asymmetric transformations of donor/acceptor substituted carbenoids.

Since their initial application as catalysts in the asymmetric cyclopropanation of styryldiazoacetate with alkenes in $1993,{ }^{13}$ dirhodium prolinates, particularly $\mathrm{Rh}_{2}(S$ DOSP) $)_{4}$ (6) have been widely used as excellent catalysts in a vast array of asymmetric
transformations of donor/acceptor carbenoids, such as intermolecular cyclopropanation, ${ }^{14}[4+3]$ cycloaddition, ${ }^{15}$ cyclopropenation, ${ }^{16}$ C-H activation, ${ }^{1 b}, 17$ tandem C-H activation/Cope Rearrangement, ${ }^{18}$ and tandem ylide formation/[2,3]sigmatropic rearrangement reaction. ${ }^{19} \mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ (6) was considered to adopt a $D_{2^{-}}$ symmetric conformation with the four N-arylsulfonyl groups having an up-down-updown arrangement around the dirhodium core in solution (Figure 1.3). ${ }^{4,14 \mathrm{a}, 20}$ Although the prolinate groups in the complex have considerable conformational mobility, the four N arylsulfonyl groups must adopt either an "up" or "down" orientation in order to avoid getting into the periphery of the dirhodium carboxylate core and causing steric conflicts with the adjacent ligand. In spite of other possible arrangements, the overall up-down-updown arrangement is the most reasonable to explain the high asymmetric induction of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ in the carbenoid transformations. A model based on the combination of ${ }^{13} \mathrm{C}$ kinetic isotope study and density functional theory calculation of the cyclopropanation of phenyldiazoacetate and alkene is shown in Figure 1.4. ${ }^{21}$ On each face of the complex (only top face is shown), the two arylsulfonyl groups adopt a propeller-like arrangement and this tends to sterically block adjacent quadrants. As shown in Figure 1.4, quadrant I and III are blocked and the alkene approachs the carbenoid through the less hindered quadrant IV.

Figure 1.3 Schematic representation of the D_{2}-symmetric ligand arrangement of $\mathrm{Rh}_{2}(S$ DOSP) ${ }_{4}$

\square and $\square=\mathrm{ArSO}_{2}$

Figure 1.4 Model of the enantioselective cyclopropanation catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$

This model has been successfully applied to explain not only the highly diastereoselective and enantioselective cyclopropanation between aryldiazoacetate and alkenes catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, but also the $\mathrm{Rh}_{2}(\text { DOSP })_{4}$ catalyzed C-H activation and C-H activation/Cope rearrangement. ${ }^{15 b, 18,22}$ One of the most impressive examples is the successful prediction of the stereochemical outcome between the reaction of racemic dihydronaphthalene $\mathbf{9}$ and carbenoid derived from diazo $\mathbf{1 0}$ during the total synthesis of $(+)$-erogorgiaene (Scheme 1.3). ${ }^{18 \mathrm{~b}, \mathrm{~d}}$ With the catalyst's D_{2}-symmetric conformation $\left(\mathrm{Rh}_{2}(R \text {-DOSP })_{4}\right.$ as catalyst), in order to avoid the steric conflict between methyl and the arylsulfonyl blocking group, only (S) $\mathbf{- 9}$ can react with the carbenoid through the $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement to give 11, on the other hand, $(R) \mathbf{- 9}$ will react with the carbenoid to give cyclopropanation product 12. This strategy has also been applied to the synthesis of (-)-colombiasin A (17) and (-)-elisapterosin B (18) (Scheme 1.4). ${ }^{18 \mathrm{~d}}$

Scheme 1.3 Synthesis of $(+)$-erogorgiaene via an enantiodivergent process

Scheme 1.4 Synthesis of (-)-colombiasin A (17) and (-)-elisapterosin B (18)

Figure 1.5 Second-generation dirhodium prolinate complexes

Scheme 1.5 Cyclopropanation catalyzed by $\mathrm{Rh}_{2}(S \text {-biTISP })_{2}$

The second generation D_{2}-symmetric dirhodium prolinate complexes 19-21 were synthesized with the design strategy of locking the four N-arylsulfonyl groups into the up-down-up-down arrangement with a meta-substituted benzene tether (Figure 1.5). ${ }^{23}$ These catalysts offer a distinct advantage over $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as high asymmetric induction can be achieved even when dichloromethane used as solvent (Scheme 1.5). In the cyclopropanation of styrene with methyl styryldiazoacetate (22) catalyzed by $\mathrm{Rh}_{2}(S$ biTISP) $)_{2}$, cyclopropane 24 was formed with 98% ee.

1.1.1.2 Phthalimide derived dirhodium complexes

Ikegami, Hashimoto and co-workers synthesized a series of dirhodium carboxylate complexes with N-phthalimide protected amino acid as ligands (Figure 1.6). ${ }^{\text {1a,1b }}$ The R groups may vary, but in most cases the catalyst with R as t-butyl gave superior enantioselectivity over others. Replacing the hydrogen atoms on the phenyl with halogen atoms produced more active complexes 31-37. ${ }^{24}$ Complexes $\mathbf{3 8 - 4 2}$ were also synthesized
by extending the length of the phthalimide moiety. ${ }^{25}$ As an application of the highly enantioselective C-H insertion into adamantane methodology, Davies synthesized $\mathrm{Rh}_{2}(S$ PTAD $)_{4}$ (30) and $\mathrm{Rh}_{2}(S \text {-TCPTAD })_{4}$ (37) containing bulky adamantyl groups. ${ }^{26}$ Müller also synthesized complexes $\mathbf{4 3}-\mathbf{4 5}$ with a similar scaffold using 1,8-naphthoyl as the protecting group. ${ }^{27}$

Figure 1.6 Phthalimide derived dirhodium complexes

$25 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTA})_{4}, \mathrm{R}=\mathrm{Me}$
$26 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTPA})_{4}, \mathrm{R}=\mathrm{Bn}$
$27 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTV})_{4}, \mathrm{R}=i-\mathrm{Pr}$
$28 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTPG})_{4}, \mathrm{R}=\mathrm{Ph}$
$29 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTTL})_{4}, \mathrm{R}=t-\mathrm{Bu}$
$30 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{PTAD})_{4}, \mathrm{R}=\mathrm{Ad}$

$38 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTA})_{4}, \mathrm{R}=\mathrm{Me}:$
$39 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTPA})_{4}, \mathrm{R}=\mathrm{Bn}$
$40 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTV})_{4}, \mathrm{R}=i-\mathrm{Pr}$
$41 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTPG})_{4}, \mathrm{R}=\mathrm{Ph}$
$42 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BPTTL})_{4}, \mathrm{R}=t-\mathrm{Bu}$

$31 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TCPTTL})_{4}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Me}$
$32 \mathrm{Rh}_{2}(\mathrm{~S} \text {-TCPTPA })_{4}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Bn}$
$33 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TCPTV})_{4}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}=i-\mathrm{Pr}$
$34 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TCPTTL})_{4}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}=t$-Bu
$35 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TFPTTL})_{4}, \mathrm{X}=\mathrm{F}, \mathrm{R}=t-\mathrm{Bu}$
$36 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TFPTV})_{4}, \mathrm{X}=\mathrm{Br}, \mathrm{R}=i-\mathrm{Pr}$
$37 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{TCPTAD})_{4}, \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Ad}$

$43 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{NTPA})_{4}, \mathrm{R}=\mathrm{Bn}$
$44 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{NTV})_{4}, \mathrm{R}=i-\mathrm{Pr}$
$45 \mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{NTTL})_{4}, \mathrm{R}=t-\mathrm{Bu}$

Phthalimide derived dirhodium complexes have been widely used in cyclopropanation, ${ }^{27 \mathrm{~b}, 28} \mathrm{C}-\mathrm{H}$ activation, ${ }^{\text {a a }, 1 \mathrm{~b}} \quad \mathrm{C}-\mathrm{H}$ amination, ${ }^{24,26 \mathrm{~b}, 27 \mathrm{a}, \mathrm{c}}$ and ylide formation/cycloaddition reactions with very high enantioselectivity. ${ }^{25}$ Scheme 1.6 shows
the $\mathrm{Rh}_{2}(S \text {-BPTV })_{4}$ catalyzed tandem intermolecular 1,3-dipolar cycloaddition of diazoketone 45 and dimethyl acetylenedicarboxylate (DMAD) 46. The reaction involves a chiral rhodium(II)-associated carbonyl ylide intermediate and produced 48 in 77% yield and 90% ee. ${ }^{25}$

Scheme 1.6 Enantioselective intermolecular 1,3-dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(S \text {-BPTV })_{4}$

Davies and co-workers also used the $\mathrm{Rh}_{2}(R \text {-PTAD })_{4}$-catalyzed [4 + 3] cycloaddition between vinylsiloxydiazoacetate $\mathbf{4 9}$ and diene $\mathbf{5 0}$ to rapidly generate the cycloheptane core (51) of (-)-epi-vibsanin E in 65% yield and 90% ee (Scheme 1.7). Conversion of 51 to (-)-epi-vibsanin E was achieved in a very efficient manner. ${ }^{29}$

Scheme 1.7 $\mathrm{Rh}_{2}(R \text {-PTAD })_{4}$-catalyzed $[4+3]$ cycloaddition reaction

Hashimoto proposed that phthalimide derived dirhodium complexes had $C_{2^{-}}$ symmetric conformation based on the X-ray crystal structure of $\mathrm{Rh}_{2}(S$-PTPA $) 4 .{ }^{30}$ The two adjacent phthalimido groups are positioned on the top face of the complex and the other two are positioned on the bottom face. Davies adopted this C_{2}-symmetric model to $\mathrm{Rh}_{2}(S$ PTAD) 4_{4} and successfully predicted the stereochemical outcome of the reaction between racemic dihydronaphthalene 53 and siloxyvinyldiazoacetate 54 catalyzed by $\mathrm{Rh}_{2}(S$ PTAD) $4 .{ }^{18 \mathrm{c}}$ As shown in Figure 1.7, the carbenoid has the favorable conformation with the bulky siloxyvinyl group away from the phthalimide plate. Meanwhile, the two phthalimide plates on the top face block the back face of the carbenoid, only $(R)-53$ with the methyl group pointing out could attack the carbenoid from the front open side and go through the $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement to form product 55 containing three stereogenic centers in 88% ee.

Recently, Fox and Charette independently reported that the $\mathrm{Rh}_{2}(S \text {-PTTL })_{4}$ had C_{4} symmetry by its X-ray crystal structure, with the four phthalimido groups on one face of the complex and the four t-butyl groups on the other face. ${ }^{28 b, c}$ The X-ray crystal structure of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ also had similar symmetric character. ${ }^{31}$ However, the $700 \mathrm{MHz}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ heteronuclear NOESY experiments by Charette suggests that $\mathrm{Rh}_{2}(S \text {-PTTL })_{4}$ has mobile conformation in the solution. Thus there remains some uncertainties about the arrangement of the ligands in this class of catalysts.

Figure 1.7 The model for the enantiodivergent reaction between racemic 53 and 54 with $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ as catalyst

1.1.2 Dirhodium carboxamidates

The chiral dirhodium carboxamidates with ligands based on enantiomerically pure 2oxopyrrolidine, 2-oxazolidinone, N-acylimidazolidin-2-one and 2-azetidinone derivatives were developed by Doyle and co-workers (Figure 1.8). ${ }^{1}$ Because of the electron-rich character, they are catalytically less active than dirhodium carboxylates. However they are very effective catalysts in the decomposition of diazoacetates and diazoacetamide derivatives and widely used for intramolecular cyclopropanation, ${ }^{32}$ intermolecular cyclopropenation, ${ }^{33}$ and intramolecular $\mathrm{C}-\mathrm{H}$ insertion reactions, ${ }^{1 \mathrm{i}}$ often resulting in reactions proceeding in $>90 \%$ ee. Because of the unsymmetrical bridging ligands, there are four different geometries (based on the positions of nitrogens and oxygens on each rhodium): (2,2)-cis, (2,2)-trans, (3,1), and (4,0) (Figure 1.9). However, monitoring the ligand exchange process with LC-MS, they found that the complex with (2,2)-cis geometry was the dominant isomer, and all of the other isomers also isomerized into this major isomer upon heating. ${ }^{34}$ This (2,2)-cis geometry was also consistently found in the X-ray structures of different dirhodium carboxamidate complexes, such as $\mathrm{Rh}_{2}(5 R$ -

MEPY $)_{4}$ and $\mathrm{Rh}_{2}(4 S \text {-MEOX })_{4} .{ }^{35}$ In these two complexes, the two ester groups in the ligands oriented in counterclockwise fashion and effectively block one side of the carbenoid intermediate. The intramolecular approach of the substrate can only take place from the open side, producing the product with high stereoselectivity.

The further development of this $(2,2)$-cis geometry strategy is the synthesis of imidazolidinone carboxylate catalysts with chiral N -acyl attachments (Figure 1.10). ${ }^{36}$ In the matched catalyst $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} S, 3^{\prime} S \text {-MCPIM }\right)_{4}(\mathbf{8 0})$ and $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} S \text {-BSPIM }\right)_{4}$ (82), the orientation of the ester and N-acyl side chains are in the same direction, forming a counterclockwise spiral (determined by their X-ray structures). This orientation is particularly well suited to intramolecular reactions in which the active site for reaction is tethered to the dirhodium(II) axial coordination site. On the other hand, in the mismatched catalyst $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} R, 3^{\prime} R \text {-MCPIM }\right)_{4}(\mathbf{8 1})$ and $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} R \text {-BSPIM }\right)_{4}(\mathbf{8 3})$, the orientation of the ester and and N-acyl side chains are in the opposite direction (also determined by their X-ray structures). This orientation provides a barrier to stereoselectivity enhancement in intramolecular transformations.

Figure 1.8 Chiral dirhodium carboxamidates

$56 \mathrm{Rh}_{2}(5 S-M E P Y)_{4}, \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{H}$
$57 \mathrm{Rh}_{2}(5 S-\mathrm{NEPY})_{4}, \mathrm{R}=\mathrm{OCH}$
2
$\mathrm{CMe}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$
$58 \mathrm{Rh}_{2}(5 S-\mathrm{ODPY})_{4}, \mathrm{R}=\mathrm{O}\left(\mathrm{CH}_{2}\right)_{17} \mathrm{CH}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$
$59 \mathrm{Rh}_{2}(5 S-\mathrm{DMAP})_{4}, \mathrm{R}=\mathrm{NMe}_{2}, \mathrm{R}^{\prime}=\mathrm{H}$
$60 \mathrm{Rh}_{2}(5 S-\text { dFMEPY })_{4}, \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{\prime}=\mathrm{F}$

$67 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MACIM})_{4}, \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$
$68 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MBOIM})_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}$
69Rh ${ }_{2}(4 S-M C H I M)_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}={ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2}$
$70 \mathrm{Rh}_{2}(4 \mathrm{~S} \text {-EPPIM) })_{4}, \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$
$71 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MPPIM})_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$
$72 \mathrm{Rh}_{2}(4 \mathrm{~S} \text {-BPPIM })_{4}, \mathrm{R}=\mathrm{i}-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$

$61 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MEOX})_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$
$62 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{THREOX})_{4}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Me}$
$63 \mathrm{Rh}_{2}(4 \mathrm{R}-\mathrm{BNOX})_{4}, \mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}^{\prime}=\mathrm{H}$
$64 \mathrm{Rh}_{2}(4 R \text {-IPOX) })_{4}, \mathrm{R}=i-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{H}$
$65 \mathrm{Rh}_{2}(4 \mathrm{R}-\mathrm{PHOX})_{4}, \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}$
$66 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MPOX})_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Ph}$

$$
\begin{aligned}
& 73 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{BNAZ})_{4}, \mathrm{R}=\mathrm{PhCH}_{2}, \mathrm{R}^{\prime}=\mathrm{H} \\
& 74 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{IBAZ})_{4}, \mathrm{R}=t_{-\mathrm{Bu}, \mathrm{R}^{\prime}=\mathrm{H}}^{75 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{MEAZ})_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}} \\
& 76 \mathrm{Rh}_{2}(4 \mathrm{~S}-\mathrm{CHAZ})_{4}, \mathrm{R}={ }^{c} \mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{R}^{\prime}=\mathrm{H} \\
& 77 \mathrm{Rh}_{2}(4 R-\mathrm{dFIBAZ})_{4}, \mathrm{R}=i-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{F} \\
& 78 \mathrm{Rh}_{2}(4 R-\mathrm{dFCHAZ})_{4}, \mathrm{R}={ }^{c} \mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{R}^{\prime}=\mathrm{F} \\
& 79 \mathrm{Rh}_{2}(\mathrm{~S}, \mathrm{~S} / \mathrm{R}-\mathrm{MENTHAZ})_{4}, \mathrm{R}=\mathrm{S} / \mathrm{R} \text {-menthyl, } \mathrm{R}^{\prime}=\mathrm{H}
\end{aligned}
$$

Figure 1.9 Possible isomers of the chiral dirhodium carboxamidates

(2,2)-cis

(2,2)-trans

$(3,1)$

$(4,0)$

Figure 1.10 Matched and mismatched catalyst design

(a) Matched catalystdesign

(b) Mismatched catalyst design

80, $\mathrm{Rh}_{2}(4 S, 2$ 'S, 3 'S-MCPIM) 4

81, $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} R, 3^{\prime} R-\mathrm{MCPIM}\right)_{4}$

82, $\mathrm{Rh}_{2}\left(4 \mathrm{~S}, 2 \mathrm{Z}^{\prime} \mathrm{S} \text {-BSPIM }\right)_{4}$

83, $\mathrm{Rh}_{2}\left(4 S, 2^{\prime} R \text {-BSPIM }\right)_{4}$

Table 1.1 Intramolecular C-H insertion of diazoacetate 84

	CHN_{2}	$\frac{\mathrm{Rh}(\mathrm{I}}{\mathrm{CH}_{2} \mathrm{C}}$			
entry	Rh (II)	yield, \%	85:86	ee of $\mathbf{8 5}$ \%	ee of 86, \%
1	80	78	99:1	97	nd
2	81	63	80:20	72	13
3	82	88	97:3	99	>99
4	83	89	98:2	74	33

The data for the intramolecular $\mathrm{C}-\mathrm{H}$ insertion of diazoacetate $\mathbf{8 4}$ catalyzed by complexes $\mathbf{8 0 - 8 3}$ are summarized in Table 1.1. With catalyst $\mathbf{8 0}$ and 82, extremely high diastereoselectivity (up to $99: 1$) and enantioselectivity (up to 99% ee) were obtained (Table 1.1, entries 1, 3). However, much lower selectivity in terms of the enantioselectivity was observed with $\mathbf{8 1}$ and $\mathbf{8 3}$ as catalyst (Table 1.1, entries 2, 4). ${ }^{36}$

1.1.3 Dirhodium binaphthylphosphate complexes

$\mathrm{Rh}_{2}(S \text {-BNP })_{4}$ (87) with the C_{2}-symmetric binaphthylphosphate as ligands has D_{4} symmetry. It was first synthesized by Pirrung in 1992 and used for the asymmetric dipolar cycloaddition reaction with moderate enantioselectivity (Scheme 1.8). ${ }^{37}$

Scheme 1.8 Dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(S-\mathrm{BNP})_{4}$

88

89
$87 \mathrm{Rh}_{2}(S-B N P)_{4}$

A variety of binaphthylphosphate catalysts have been explored by Hodgson and coworkers. ${ }^{38}$ The general strategy was to add substituents at the different positions of the binaphthyl scaffold (Figure 1.11). Among those, $\mathrm{Rh}_{2}(R \text {-DDBNP) })_{4}$ with n-dodecyl chain at $6,6^{\prime}$ - positions gave the best result. The tricyclic product 97 derived from the [1,3]dipolar cycloaddition of the diazoacetoacetate 96 was isolated in 66% yield and 90% ee (Scheme 1.9). ${ }^{38 \mathrm{c}}$

However, in many other reactions, these complexes had very limited success. $\mathrm{Rh}_{2}(S$ -$\mathrm{BNP})_{4}$-catalyzed reaction of p-methoxyphenyldiazoacetate $\mathbf{9 8}$ and sulfide $\mathbf{9 9}$ gave the sulfur ylide/[2,3]-sigmatropic rearrangement product 100 in 94% yield, but only 27% ee (Scheme 1.10). ${ }^{39 \mathrm{a}}$ The intramolecular aziridination of sulfonamide 101 with $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$ as catalyst produced 102 in 64% yield and 4% ee (Scheme 1.11). ${ }^{39 b}$

Figure 1.11 Dirhodium binaphthylphosphate complexes

$90 \mathrm{Rh}_{2}(R \text {-DDBNP })_{4}, \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{C}_{12} \mathrm{H}_{25}$
$92 \mathrm{R}=\mathrm{Ph}$
$94 \mathrm{R}=4-n-\mathrm{BuC}_{6} \mathrm{H}_{4}$
$91 \mathrm{Rh}_{2}(R \text {-DMBNP })_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$
$93 \mathrm{R}=\mathrm{C}_{8} \mathrm{H}_{17}$
$95 \mathrm{R}=\mathrm{PhCH}_{2} \mathrm{CH}_{2}$

Scheme 1.9 [1, 3]-dipolar cycloaddition catalyzed by $\mathrm{Rh}_{2}(R \text {-DDBNP })_{4}$

Scheme 1.10 Sulfur ylide/[2,3]-sigmatropic rearrangement catalyzed by $\mathrm{Rh}_{2}(S \text {-BNP })_{4}$

Scheme 1.11 Intramolecular aziridination catalyzed by $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$

The only dirhodium complex with mixed binaphthylphosphate ligands is $\mathrm{Rh}_{2}(S$ $\mathrm{BNP})_{2}\left(\mathrm{HCO}_{3}\right)_{2} \mathbf{1 0 3} .{ }^{40}$ The intramolecular C-H insertion of diazo $\mathbf{1 0 4}$ with complex $\mathbf{1 0 3}$ as catalyst produced compound 105 in 93% yield and 26% ee (Scheme 1.12).

Scheme 1.12 Intramolecular C-H insertion catalyzed by $\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{BNP})_{2}\left(\mathrm{O}_{3} \mathrm{CH}\right)_{2}$

1.2 Results and discussion

1.2.1 Synthesis of dirhodium(II) binaphthylphosphate complexes

Compared with the dirhodium carboxylate and carboxamidate complexes, dirhodium binaphthylphosphates have limited success as catalysts in asymmetric carbenoid transformations. However, from the symmetry point of view, they have the possibility of functioning as very effective catalysts. There are two further advantages: 1 . The synthesis of a wide range of binaphthylphosphoric acids is established, since they have been widely used as chiral Brønsted acid catalysts in various enantioselective reactions such as transfer hydrogenation, Friedel-Crafts reaction, Mannich reaction, Aza Diels-Alder reaction, Aza-ene-type reaction, and Pictet-Spengler reaction; ${ }^{41}$ 2. Dirhodium binaphthylphosphate complexes have comparatively rigid structures, and therefore, ligand modification may have great influence on their catalytic activity. For many years, the Davies group has been interested in the synthesis and application of this type of
complexes in the rhodium-catalyzed donor/acceptor carbenoid transformations. ${ }^{42} \mathrm{Dr}$ Monica Grazini-Rocha and Dr Janelle L. Thompson synthesized complex 92 with 4, ${ }^{\prime}, 6,6$ '-tetraphenylbinaphthylphosphate as ligand, and complex 106 with partially hydrogenated binaphthylphosphate as ligand. Their initial evaluation in the cyclopropanation of phenyldiazoacetate $\mathbf{1 0 7}$ and styrene $\mathbf{2 3}$ is summarized in Table $1.2{ }^{42 \mathrm{c}}$ Complex 87, 92, and $\mathbf{1 0 6}$ had much lower enantioselectivity than $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, and cyclopropane 108 was formed in 51-85\% yield with $<50 \%$ ee. Meanwhile, compared with $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4} 87$, ligand modification in complex 92 and 106 did not substantially improve their asymmetric induction in the reaction.

Table 1.2 Cyclopropanation of phenyldiazoacetate with styrene

$\left.\mathrm{Rh}^{(I I}\right)$	yield, \%	ee, \%
$\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4} \mathbf{6}$	94	87
$\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4} \mathbf{8 7}$	85	42
$\mathrm{Rh}_{2}\left(\mathrm{~S}-\mathrm{Ph}_{4}-\mathrm{BNP}\right)_{4} \mathbf{9 2}$	85	48
$\mathrm{Rh}_{2}\left(R-\mathrm{H}_{8}-\mathrm{BNP}\right)_{4} \mathbf{1 0 6}$	51	36

In order to further explore this chemistry, dirhodium tetrabinaphthylphosphate complexes $\left(\mathrm{Rh}_{2} \mathrm{~L}_{4}\right)$ containing different substituents at the $\left(3,3^{\prime}\right)$ - or $\left(4,4^{\prime}, 6,6^{\prime}\right)$ - positions of the binaphthyl scaffold and other complexes $\left(\mathrm{Rh}_{2} \mathrm{~L}_{\mathrm{n}}(\mathrm{OAc})_{(4-\mathrm{n})}\right)$ containing mixed binaphthylphosphate and acetate ligands were synthesized and evaluated in various carbenoid transformations.

1.2.1.1 Dirhodium tetrakis-binaphthylphosphate complexes $\left(\mathbf{R h}_{2} \mathbf{L}_{4}\right)$

Figure 1.12 (a) Molecular model of $\mathrm{Rh}_{2}(S \text {-BNP) })_{4}$ (top view),
(b)The substituent influence at 3,3'-position of the BNP

The molecular model of $\mathrm{Rh}_{2}(S-\mathrm{BNP})_{4}$ is shown in Figure 1.12(a). Besides its high symmetric character, the model also highlights the short distance between the $\left(3,3^{\prime}\right)$ positions of the binaphthyl scaffold and the axial site of the dirhodium core (Figure 1.12(b)). With the vision that substituents at these two positions might effectively influence its catalytic activity and asymmetric induction during the reaction, complex 91 $(\mathrm{R}=\mathrm{Me})$ and $\mathbf{1 1 5}(\mathrm{R}=\mathrm{Br})$ were synthesized (Scheme 1.13). Deprotection of the MOM protected BINOL derivative $\mathbf{1 0 9}$ and $\mathbf{1 1 0}$ with Amberlyst 15 resin produced diols $\mathbf{1 1 1}$ and 112 in 97% and 99% yield. The diols were then treated with POCl_{3} in pyridine, followed by hydrolysis with HCl to give the binaphthyl phosphoric acid $\mathbf{1 1 3}$ in 68% yield and $\mathbf{1 1 4}$ in 95% yield. The ligand exchange of $\mathbf{1 1 3}$ and $\mathbf{1 1 4}$ with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in refluxing chlorobenzene produced complexes 91 in 54% yield and 115 in 15% yield. Both complexes were characterized by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}-\mathrm{NMR}$, and MS analysis.

Scheme 1.13 Synthesis of complexes 91 and 115

Scheme 1.14 Cyclopropanation catalyzed by complex 91 and 115

	$+\mathrm{Ph}^{-}$	\mathbb{N}	Rh(II) (1 m toluene, r.	$\xrightarrow{\mathrm{O} \mid \%)}$	
107		D equiv.)			$(1 R, 2 S)-108$
	Rh (II)	$\mathrm{dr}^{\text {a }}$	yield, $\%^{b}$	ee, \% ${ }^{\text {c }}$	
	91	>97:3	50	26	
	115	94:6	58	55	

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.
${ }^{b}$ Isolated yield of the major diastereomer.
${ }^{c}$ Determined by chiral HPLC.

Donor/acceptor carbenoids derived from rhodium catalyzed decomposition of aryldiazoacetates and vinyldiazoacetates have shown superior selectivity compared to the traditional acceptor carbenoids and acceptor/acceptor carbenoids. ${ }^{1 b, 1 c}$ In particular, the rhodium catalyzed cyclopropanation between phenyldiazoacetate $\mathbf{1 0 7}$ and styrene $\mathbf{2 3}$ has been well studied through both experimental and theoretical study. ${ }^{14 a, 21,22}$ This reaction
was chosen as a standard reaction to test the catalytic activity of complex $\mathbf{9 1}$ and $\mathbf{1 1 5}$ (Scheme 1.14). With complex 91 as catalyst, cyclopropane 108 was formed in 50% yield with $>97: 3$ diastereomeric ratio favoring the E-diastereomer. The high diastereoselectivity was similar to that observed with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$. The enantioselectivity, however, was very poor (26% ee). The absolute configuration of the major enantiomer, $(\mathbf{1 R}, \mathbf{2 S}) \mathbf{- 1 0 8}$, was assigned by comparing its HPLC trace with the known (1S, 2R)-108. ${ }^{14 \mathrm{~d}}$ Hodgson has reported that even sterically small substituents at the 3,3 '-positions of the binaphthyl scaffold would result in a considerable loss of enantiocontrol due to the possible steric congestion at the axial binding sites on the dirhodium core. ${ }^{38 a}$ For example, the enantioselectivity of [1,3]-dipolar cycloaddition product 97 dropped dramatically from 64% ee to 7% ee by switching the catalyst from $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}(87)$ to complex 91 (Scheme 1.9). This steric congestion can also be used to explain the low enantioselectivity of cyclopropane 108 catalyzed by complex 91. Although the bromide groups in complex $\mathbf{1 1 5}$ had a similar steric effect as the methyl groups in complex 91, the higher enantioselectivity of cyclopropane $\mathbf{1 0 8}$ obtained with complex $115(55 \%$ ee) indicated that the electronic withdrawing effect of the bromide groups might have profound effect on its catalytic reactivity. Overall, compared with $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$, complex 115 did not demonstrate significant improvement (42% ee versus 55% ee).

The influence of bulky substituents at the ($4,4^{\prime}, 6,6^{\prime}$)- positions of the binaphtyl scaffold was also studied. Since the previous studies showed that a phenyl group at these positions did not improve the catalyst's asymmetric induction in the cyclopropanation of donor/acceptor carbenoid with styrene, ${ }^{42 b}$ the bulkier mesityl group was chosen. The
synthesis of binaphthyl phosphoric acid $\mathbf{1 2 2}$ and its rhodium complex $\mathbf{1 2 3}$ is outlined in Scheme 1.15. First, (R)-BINOL (116) was quantitatively converted into its hexyl ether (117), which was then treated with bromine in acetic acid to give the $\left(4,4^{\prime}, 6,6^{\prime}\right)$ tetrabromo derivative 118 in 80% yield. ${ }^{38 \mathrm{c}}$ Suzuki coupling between mesitylboronic acid and 118 with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ as catalyst, followed by deprotection of the hexyl group with BBr_{3} and the standard phosphonation with $\mathrm{POCl}_{3} / \mathrm{HCl}$ gave 121 in good yield $(\sim 81 \%$ yield over 2 steps). Ligand exchange of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ with 121 was done in refluxing chlorobenzene to produce complex $\mathbf{1 2 3}$ in 33% yield. To compare the catalyst activities, complex 92 was also synthesized by following the same sequence.

High diastereoselectivity favoring the E-diastereomer was also observed in the cyclopropanation reaction of phenyldiazoacetate 107 and styrene with complexes $\mathbf{9 2}$ and 123 as catalyst (Scheme 1.16). The enantioselectivities, however, were still much lower than that of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ (43% ee with $\mathbf{9 2}, 33 \%$ ee with $\mathbf{1 2 3}$). Surprisingly, ($\mathbf{(1 S , 2 R) -}$ 108 was obtained as the major enantiomer in both reactions. The opposite asymmetric induction of complex $\mathbf{9 2}$ and $\mathbf{1 2 3}$ to that of $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$ indicated that the substituents at the $\left(4,4^{\prime}, 6,6^{\prime}\right)$-position of the binaphthyl scaffold had considerable influence on the carbenoid conformation. Further studies are needed in order to achieve a better understanding of this switch in stereoselectivity.

Scheme 1.15 Synthesis of complexes $\mathbf{9 2}$ and 123

$119 R=P h, 90 \%$
$120 R=M e s, 85 \%$
$120 R=$ Mes, 85%
$\xrightarrow{\text { 1. } \mathrm{POCl}_{3}, 80^{\circ} \mathrm{C}}$

$121 \mathrm{R}=\mathrm{Ph}, 92 \%$
122 R = Mes, 96%

Scheme 1.16 Cyclopropanation catalyzed by complex 92 and 123

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.
${ }^{b}$ Isolated yield of the major diastereomer.
${ }^{c}$ Determined by chiral HPLC.

1.2.1.2 Dirhodium complexes containing mixed ligands $\left(\mathrm{Rh}_{2} \mathbf{L}_{\mathbf{n}}(\mathbf{O A c})_{(4-n)}\right)$

The selective synthesis of dirhodium complexes containing mixed ligands was achieved by Corey and co-workers in $2005 .{ }^{43}$ Chiral carboxamidate (R, R)-DTPI (124) was treated with NaHMDS at $-78^{\circ} \mathrm{C}$, followed by the addition of cis- $\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}$ (125), producing a mixture of $c i s-\mathrm{Rh}_{2}((R, R)-\mathrm{DTPI})_{2}(\mathrm{OAc})_{2}(\mathbf{1 2 6}-\mathbf{1 2 8})$ in 77% combined yield (Scheme 1.17). Similarly, trans-syn- $\mathrm{Rh}_{2}((R, R) \text {-DTPI })_{2}(\mathrm{OAc})_{2}$ (130) was selectively formed in 78\% yield by treating (R, R)-DTPI (124) with NaHMDS followed by the addition of trans $-\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}(\mathbf{1 2 9})$ (Scheme 1.18).

Scheme 1.17 Synthesis of $\operatorname{cis}-\mathrm{Rh}_{2}((R, R)-\mathrm{DTPI})_{2}(\mathrm{OAc})_{2}$

Scheme 1.18 Synthesis of trans-syn-Rh $2_{2}((R, R)-D T P I)_{2}(\mathrm{OAc})_{2}$

1.2.1.2.1 Dirhodium bis-binaphthylphosphate complexes $\left(\mathbf{R h}_{2} \mathbf{L}_{2}(\mathbf{O A c})_{2}\right)$

With the vision that dirhodium complexes containing both binaphthylphosphate and acetate ligands could also be synthesized by following Corey's procedure, this catalyst design project shifted to a new direction. First, the complexes containing two unsubstituted binaphthylphosphates and two acetates were chosen as targets. Following Corey's procedure, trans $-\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}(\mathbf{1 2 9})$ was prepared from the reaction of Rh_{2} (TFA) 4 with 2 equivalent tetra-butylammonium acetate in 75% yield (Scheme 1.19). Sodium binaphthylphosphate $\left((R)-\mathrm{BNP}^{-} \mathrm{Na}^{+}\right)$was then mixed with trans$\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}(\mathbf{1 2 9})$ under various conditions including different temperatures (rt or reflux) and solvents (acetonitrile, methanol, methanol/water, chloroform, and chloroform/water), but formation of the desired complex $\operatorname{trans}-\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 1})$ was not observed. The low basicity of the phosphate could be the reason for its poor reactivity towards the ligand exchange with trans $-\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}$. Ligand exchange of (R)-BNP-H and trans- $\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}$ at different temperatures also produced a complex mixture. Eventually, trans $-\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$ (131) was produced in 14%
yield by treating $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$ (87) with 2 equivalent tetra-butylammonium acetate (Scheme 1.20).

Scheme 1.19 Synthesis of trans $-\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{TFA})_{2}(129)$

Scheme 1.20 Synthesis of trans- $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 1})$

Scheme 1.21 Synthesis of cis- $\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$ complexe $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$

The ligand exchange of (R)-BNP-H and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (ratio: 2:1) in refluxing chlorobenzene smoothly gave cis $^{-R_{2}}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 2})$ in 49% yield (Scheme 1.21$)$.

Complex 133 with methyl at the (3,3')-position of the binaphthyl scaffold was also synthesized in the similar way in 45% yield.

The structure determination of complexes 131-133 was based on their NMR spectra (Figure 1.13). Although complexes $\mathbf{1 3 1}$ and $\mathbf{1 3 2}$ have similar FAB-MS spectrum, their NMR spectra (solvent: $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) are quite different. For trans- $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 1})$, the aromatic region of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ shows the signals of only one binaphthylphosphate ligand (Figure 1.13 , a and c). While for cis- $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$ (132), the aromatic region of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ shows the signals of two binaphthylphosphate ligands (Figure 1.13, b and d). This difference between $\mathbf{1 3 1}$ and $\mathbf{1 3 2}$ can be explained from a consideration of their conformation (Figure 1.14). trans $^{2} \mathrm{Rh}_{2}(R-$ $\mathrm{BNP})_{2}(\mathrm{OAc})_{2}(\mathbf{1 3 1})$ is highly symmetric $\left(D_{2}\right)$ and the two chiral ligands are magnetically equivalent. But $c i s-\mathrm{Rh}_{2}(R-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$ (132) is only C_{2}-symmetric, the different chemical environment between two chiral ligands results in the difference in the NMR spectra. Complex 133 also has similar character to complex 132 with the signals from two magnetically unequivalent chiral ligands in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra. The preference of the two binaphthylphosphate ligands to adopt cis- arrangement in $\mathbf{1 3 2}$ and 133 is also consistent with the ligand arrangement during the synthesis of cis$\mathrm{Rh}_{2}(\mathrm{TFA})_{2}(\mathrm{OAc})_{2}$, in which the more electron-withdrawing trifluoroacetate (TFA) disfavors the displacement of acetate at the trans position. ${ }^{43}$

Figure 1.13 The aromatic region of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra of complex 131 and 132

Figure 1.14 Molecular models of trans- $\mathrm{Rh}_{2}(S-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$ and cis- $\mathrm{Rh}_{2}(S-\mathrm{BNP})_{2}(\mathrm{OAc})_{2}$

Scheme 1.22 Synthesis of trans $-\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$

With the perspective that a complex with higher symmetry could have better asymmetric induction, and the fact that the binaphthylphosphate ligand such as $\mathbf{1 1 3}$ prefers the cis- arrangement around the dirhodium core during the standard ligand exchange with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, ligands with bulky substituents at the (3,3')-positions of the binaphthyl scaffold were chosen as targets. The hypothesis is that these bulky substituents such as mesityl and 2,4,6-triisopropylphenyl will prevent the second chiral ligand from getting onto the cis position of the first chiral ligand during the ligand exchange. Instead, the second chiral ligand will prefer to exchange with the acetate at the
trans position of the first chiral ligand and form highly symmetric complex trans$\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}$.

To test this hypothesis, ligands $\mathbf{1 3 7} \mathbf{- 1 3 9}$ were successfully synthesized (Scheme 1.22). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyzed Suzuki coupling of phenylboronic acid and BINOL derivative $\mathbf{1 1 0}$ gave compound 134 in 93% yield. For the synthesis of compound $\mathbf{1 3 5}$ and $\mathbf{1 3 6}$ containing bulky substituents, Ni-catalyzed crossing couple of Grinard reagent and BINOL derivative 110 was used, and the reaction gave 135 and 136 in 40% and 90% yield, respectively. After hydrolysis with HCl and phosphonation with $\mathrm{POCl}_{3} / \mathrm{HCl}$, binaphthylphosphoric acids $\mathbf{1 3 7} \mathbf{- 1 3 9}$ were obtained in very high yield (89-99\%). Ligand exchange of $\mathbf{1 3 8}(\mathrm{R}=\mathrm{Me})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(\right.$ ratio of $\left.\mathbf{1 3 8}: \mathrm{Rh}_{2}(\mathrm{OAc})_{4}: 2: 1\right)$ in refluxing chlorobenzene for 2 days produced complex 141 containing two chiral ligands at trans position in 20% yield, the major byproduct was complex 143 containing only one chiral ligand (40\% yield). Ligand exchange of $139(\mathrm{R}=i-\mathrm{Pr})$ with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (ratio of $\mathbf{1 3 9}$: $\left.\mathrm{Rh}_{2}(\mathrm{OAc})_{4}: 2.5: 1\right)$ under similar condition produced complex 142 in 38% yield. The structure of complex $\mathbf{1 4 1}$ and $\mathbf{1 4 2}$ were assigned based on their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, which demonstrated their symmetric character with two magnetically equivalent chiral ligands. The ligand exchange of $137(\mathrm{R}=\mathrm{H})$ with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\left(\right.$ ratio of $137: \mathrm{Rh}_{2}(\mathrm{OAc})_{4}$: 1:1 to $2.5: 1$), however, produced a complex mixture with complex 144 containing three chiral ligands in 12% isolated yield.

Figure 1.15 Structure of complex 143 and 144

143

144

Scheme 1.23 Cyclopropanation catalyzed by complexes cis- and trans-

$$
\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mathrm{OAc})_{2}
$$

		$\mathrm{Ph} \frac{\mathrm{Rh}(\mathrm{II})}{\text { toluer }}$	$\xrightarrow[\text { e, r.t. }]{(1 \mathrm{~mol} \%)}$		$\begin{aligned} & \mathrm{CO}_{2} \mathrm{Me} \\ & \mathrm{Ph} \end{aligned}$
107		3 (10 equiv.)		108	
entry	Rh (II)	major enantiomer	$d r^{\text {a }}$	yield, $\%^{\text {b }}$	ee, \% ${ }^{\text {c }}$
1	131	$(1 R, 2 S)$	>97:3	16	24
2	132	$(1 S, 2 R)$	>97:3	53	24
3	133	$(1 S, 2 R)$	>97:3	57	34
4	141		>97:3	54	2
5	142	$(1 S, 2 R)$	96:4	85	29

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.
${ }^{b}$ Isolated yield of the major diastereomer.
${ }^{c}$ Determined by chiral HPLC.

Unfortunately, the standard cyclopropanation reaction with complexes 131-133, 141, and $\mathbf{1 4 2}$ as catalyst produced cyclopropane $\mathbf{1 0 8}$ with very low enantiomeric excess (24$30 \%$ ee) (Scheme 1.23). Opposite asymmetric induction was also observed with these complexes. Complex $\mathbf{1 3 1}$ catalyzed reaction produced $(\mathbf{1 R}, \mathbf{2 S}) \mathbf{- 1 0 8}$ as the major enantiomer, while complex $\mathbf{1 3 2}, \mathbf{1 3 3}$, and $\mathbf{1 4 2}$ catalyzed reactions produced ($\mathbf{1 S}, \mathbf{2 R}$)-108 as the major enantiomer. Catalyst decomposition was observed with complex 141, and cyclopropane 108 was isolated in 54% yield in racemic form. Comparing the molecular
models of complexes 131-132 (Figure 1.14) and that of complex $\mathbf{1 4 1}$ (Figure 1.16), two reasonable possibilities could be drawn to explain the low asymmetric induction of these complexes. First, with unsubstituted binaphthylphosphate ligand, complexes 131, $\mathbf{1 3 2}$ and $\mathbf{1 3 3}$ might be sterically too open to achieve good asymmetric induction. Second, the highly substituted aryl groups at the ($3,3^{\prime}$)- positions of the binaphthyl scaffold in the complex 142 might sterically cover the axial site of the dirhodium core and hence decrease the enantioselectivity of the reaction.

Figure 1.16 Molecular model of the (S)-enantiomer of complex 141 (top view)

1.2.1.2.2 Dirhodium mono-binaphthylphosphate complexes $\left(\mathbf{R h}_{2} \mathbf{L}(\mathbf{O A c})_{3}\right)$

As a further extension of this project, the synthesis of dirhodium complexes containing only one binaphthylphosphate and three acetates was also explored. Apparently, very bulky substituents at the ($3,3^{\prime}$)- position of the binaphthyl scaffold are needed in order to achieve good enantioselectivity.
$(R)-3,3$ '-bis(4-(2-naphthyl)-phenyl)binaphthylphosphoric acid 148 was synthesized following a similar procedure to the other ligands, starting with the Suzuki coupling of BINOL boronic acid $\mathbf{1 4 5}$ and aryl bromide 146, as outlined in Scheme 1.24. Bear and
co-workers reported that the rate constants for the successive formation of mono, di, tri, and tetra-trifluoroactate dirhodium complex during the ligand exchange of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ with trifluoroacetic acid had the ratio of 1:2:0.1:0.025. ${ }^{44,45}$ To synthesize the dirhodium complex containing only one binaphthylphosphate, $\mathrm{Rh}_{2}(\mathrm{OAc})_{3}(\mathrm{TFA})$ (149) was used instead of $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in order to selectively exchange the more labile trifluoroacetate (TFA) with the chiral ligand. However, both ligand exchange reactions of 139 and 148 with $\mathrm{Rh}_{2}(\mathrm{OAc})_{3}(\mathrm{TFA})$ gave the desired complexes 150 and 151 in very low yield (1316\%) (Scheme 1.25).

Scheme 1.24 Synthesis of ligand 148

Scheme 1.25 Synthesis of complex 150-151

A distinct difference among complexes 143, 150 and 151 was observed from their evaluation with the standard cyclopropanation reaction (Scheme 1.26). Although all of these three complexes produced cyclopropane 108 in similar low yield (50-65\%), the enantioselectivites were quite different. Complex 143 containing mesityl gave cyclopropane 108 with only 11% ee, while complexes 150 and 151 containing 2,4,6triisopropylphenyl and 4-(2-naphthyl)-phenyl produced 108 with much higher eanantioselectivity (48% ee and 54% ee, respectively). Considering that these two complexes only contain one chiral ligand, the results are very surprising. Further optimization of these catalysts might eventually lead to the discovery of new and efficient catalysts.

Scheme 1.26 Cyclopropanation catalyzed by complexes $\mathrm{Rh}_{2} \mathrm{~L}(\mathrm{OAc})_{3}$

		$\approx \frac{\mathrm{Rh}(I I)}{\text { tolue }}$	$\frac{1 \mathrm{~mol} \%)}{\text { e, r.t. }}$		
107		3 (10 equiv.)		108	
entry	Rh (II)	major enantiomer	$\mathrm{dr}^{\text {a }}$	yield, $\%^{\text {b }}$	ee, \% ${ }^{\text {c }}$
1	143	(1R, 2S)	>97:3	52	11
2	150	(1S, 2R)	>97:3	65	54
3	151	(1S, 2R)	>97:3	50	48

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.
${ }^{b}$ Isolated yield of the major diastereomer.
${ }^{c}$ Determined by chiral HPLC.

In summary, chiral dirhodium complexes containing mono, di, and tetra binaphthylphosphate ligands were synthesized and fully characterized. Although the initial evaluation with the cyclopropanation of phenyldiazoacetate and styrene did not show improved asymmetric induction when compared with $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$, the novel and versatile method to synthesize these complexes could provide valuable information for
the further development of this project. This study also showed that dirhodium complexes containing only one binaphthylphosphate ligand with bulky substituents at the ($3,3^{\prime}$ ')-position of the binaphthyl scaffold gave similar asymmetric induction as dirhodium tetrabinaphthylphosphate $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$.

1.2.2 Synthesis of dirhodium phosphinate complex

Table 1.3 $\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{4}$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ mediated cyclopropanations

The synthesis of the dirhodium phosphinate complex is not well documented. To date, there is only one report from Capretta and co-workers in 2006. ${ }^{46}$ Dirhodium dimethylphosphinate $\left(\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{4}\right)$ (152) was prepared in 62% yield from the ligand exchange of dimethylphosphinic acid and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in refluxing chlorobenzene. Its Xray structure showed that this complex possessed a unique propeller structure with a long $\mathrm{Rh}-\mathrm{Rh}$ single bond (2.4379 $\AA)$. Initial evaluation of $\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{4}$ in the cyclopropanation of ethyl diazoacetate with various alkenes produced cyclopropanes with selectivity comparable to $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (Table 1.3, entries $1-3$). When electron-rich alkene 2-methoxyprop-1-ene (155) was used as substrate, the reaction gave even better
diastereoselectivity than $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (entry 4, trans/cis ratio: 4.0 with $\mathrm{Rh}_{2}\left(\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{4}$, 1.0 with $\left.\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right)$.

Scheme 1.27 Proposed chiral dirhodium phosphinate 160

Inspired by Capretta's work, a project aiming to synthesize chiral dirhodium phosphinate complexes was undertaken in the Davies group. It was envisioned that the C_{2}-symmetric cyclic phosphinic acid 159 would be able to afford the D_{4}-symmetric dirhodium complex 160 (Scheme 1.27). Meanwhile, the phenyl groups at the (2, 5)positions of the phosphinate would be close to the axial site of the complex and have proper influence on the complex's asymmetric induction during the carbenoid reaction. The five member ring moiety of the phosphinate would also define the orientation of the phenyl groups and the symmetry of the complex. The following molecular modeling study showed that this complex was highly symmetric with four phenyl groups oriented around each axial site of the complex. However, it also showed that both axial sites were completely blocked by the four phenyl groups. To avoid this problem, attention turned to its analogue 162 containing only one phenyl group in the ligand, with the hope that its four ligands could have proper arrangement around the dirhodium core and generate $\mathbf{1 6 2}$ as a highly symmetric complex. Ideally, there will be only two phenyl groups around each axial site of $\mathbf{1 6 2}$ with either cis or trans arrangement.

Scheme 1.28 Proposed synthesis of chiral dirhodium phosphinate 162

Logically, complex 162 could be synthesized from the ligand exchange of cyclic phosphinic acid 161 with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ by following a procedure similar to the synthesis of dirhodium binaphthylphosphate complexes (Scheme 1.28). The synthesis of racemic-161 followed the procedure reported by Fiaud. ${ }^{47}$ First, Diisopropylphosphoramidous dichloride (163) underwent chloride ion abstraction by aluminum trichloride to form phosphenium ion (164), which then underwent a cycloaddition reaction with (E)-1-phenyl-1,3-butadiene (165) at $0{ }^{\circ} \mathrm{C},{ }^{48}$ followed by aqueous hydrolysis with NaHCO_{3} to afford a 2:1 diastereomeric mixture of cis- and trans-166 in 78\% combined yield (Scheme 1.29). These two diastereomers were easily separated by flash chromatography. The relative configurations of cis- and trans- $\mathbf{1 6 6}$ were assigned by their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. For cis-166, the CH in the isopropyl group was shielded by the phenyl group and had chemical shift at 2.9 ppm . While for trans-166, the CH in the isopropyl group had chemical shift at 3.3 ppm . Both diastereomers of $\mathbf{1 6 6}$ were smoothly transformed into racemic-161 through hydrogenation/hydrolysis sequence in good yields (Scheme 1.29).

Scheme 1.30 shows the resolution of racemic-161. Racemic-161 was first converted into the acid chloride with oxalyl chloride, which was then reacted with (R) methylbenzylamine (168) to produce a mixture containing two trans isomers 169 and dia-169 as the major components (67% combined yield, separated by flash
chromatography). The relative stereochemistries of these two trans isomers were tentatively assigned by comparison with the corresponding cis isomers which were also isolated in 4.4% combined yield. For trans isomers 169 and dia-169, the chemical shifts of $\mathrm{CH}(\sim 4.4 \mathrm{ppm})$ and $\mathrm{CH}_{3}(\sim 1.5 \mathrm{ppm})$ in the amine moiety are much higher than the chemical shift of similar $\mathrm{CH}(\sim 4.1 \mathrm{ppm})$ and $\mathrm{CH}_{3}(\sim 1.1 \mathrm{ppm})$ in the cis isomers. Presumably, the shielding effect of phenyl group on the phospholane ring results in the lower chemical shift of CH and CH_{3} in the cis isomers. Both 169 and dia-169 were hydrolyzed in concentrated HCl to produce $\mathbf{1 6 1}$ and its enantiomer in almost quantitative yield with $>99 \%$ ee. The enantiomeric purity was determined by chiral HPLC after converting the acid into the methyl ester with diazomethane.

Scheme 1.29 Synthesis of racemic-161

Scheme 1.30 Resolution of racemic-161

Unfortunately, the ligand exchange of enantiomerically pure phosphinic acid 161 with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ in chlorobenzene at $150-160{ }^{\circ} \mathrm{C}$ failed to generate the desired dirhodium complex. Formation of precipitates always occurred during heating and the color of the solution changed from green to brown in one hour. It is possible that the phosphinic acid decomposed upon heating at high temperature, and this led to the closure of this project.

1.2.3 Synthesis of chiral dirhodium carboxylate complexes

Dirhodium tetracarboxylates derived from adamantylglycine, such as $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (30) and $\mathrm{Rh}_{2}(S$-TCPTAD) 4 (37) developed by Davies and co-workers (Figure 1.17), have received increasing attention as excellent catalysts in a range of asymmetric transformations of donor/acceptor carbenoids, such as cyclopropanation, ${ }^{26 a, 49} \mathrm{C}-\mathrm{H}$ activation, ${ }^{14 \mathrm{~g}}$ combined $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement, ${ }^{18 \mathrm{e}}$ amination, ${ }^{26 \mathrm{~b}}$ and [4+3]cycloaddition. ${ }^{29,50}$ High diastereoselectivity and enantioselectivity were routinely obtained in these transformations. The bulky adamantyl group in these catalysts is considered to be an important contributor to their good performance.

Figure 1.17 Structure of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}(\mathbf{3 0})$ and $\mathrm{Rh}_{2}(S \text {-TCPTAD })_{4}(\mathbf{3 7})$

The key step in the Davies' synthesis of $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$ and $\mathrm{Rh}_{2}(S-T C P T A D)_{4}$ is $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed highly enantioselective $\mathrm{C}-\mathrm{H}$ insertion into adamantane (170) with methyl styryldiazoacetate (22) (91\% ee for compound 171) (Scheme 1.31). After recrystallization, adamantyl derivative $\mathbf{1 7 1}$ could be enriched to $>99 \%$ ee. Although this $\mathrm{C}-\mathrm{H}$ insertion strategy allowed the quick establishment of the necessary stereocenter in the ligand, the other transformations were very lengthy, including a three-step sequence to convert 171 to $172: \mathrm{LiAlH}_{4}$-mediated reduction, protection of the alcohol, and oxidative cleavage of the alkene; another three-step sequence: Curtius rearrangement, hydrolysis, and protection of the amine to convert $\mathbf{1 7 2}$ to the protected amino alcohol 173; then the oxidation of $\mathbf{1 7 3}$ to the carboxylic acid and ligand exchange with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ to generate $\mathrm{Rh}_{2}(S \text {-PTAD })_{4} .{ }^{26 \mathrm{a}}$

It was envisioned that the variants of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ containing aryl instead of phthalimido group could be synthesized in a very concise sequence: $\mathrm{C}-\mathrm{H}$ insertion, hydrolysis of the ester and ligand exchange with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (Scheme 1.32). Besides the demonstration of Davies' highly enantioselective C-H insertion methodology and the possible benefits derived from the bulky adamantyl groups in the final dirhodium complex, the high efficiency of this sequence was very attractive.

Scheme 1.31 Synthesis of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$

Scheme 1.32 Proposed synthesis of the variants of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$

Dirhodium carboxylate complexes $\mathbf{1 8 2}$ and 183 containing p-bromophenyl and p trifluoromethylphenyl as the aryl groups were chosen as the targets, and their syntheses are outlined in Scheme 1.33. $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed $\mathrm{C}-\mathrm{H}$ insertion of p bromophenyldiazoacetate $\mathbf{1 7 4}$ into adamantane produced $\mathbf{1 7 6}$ in 63% yield and 95% ee, its enantiomeric purity was further enriched to $>99 \%$ ee by recrystallization from methanol. The (R) configuration of $\mathbf{1 7 4}$ was tentatively assigned according to $\mathbf{1 7 1}$, assuming that a similar asymmetric induction occured in the reaction. The hydrolysis of 176 with LiOH did not work well, so a two-step sequence including a LiAlH_{4}-mediated reduction to convert $\mathbf{1 7 6}$ to alcohol $\mathbf{1 7 8}$ and the oxidation of alcohol $\mathbf{1 7 8}$ to carboxylic acid $\mathbf{1 8 0}$ with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was taken. Carboxylic acid $\mathbf{1 8 0}$ was synthesized in $>90 \%$ yield and $>99 \%$ ee. Ligand exchange of $\mathbf{1 8 0}$ with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ produced complex $\mathbf{1 8 2}$ in 79%
yield. Complex 183 containing $\mathrm{CF}_{3}-$ on the phenyl group was also synthesized following a similar sequence.

Scheme 1.33 Synthesis of Dirhodium complex 182 and 183

The standard cyclopropanation of phenyldiazoacetate 107 and styrene with complex 182 as catalyst produced cyclopropane 108 in 69% yield with $>97: 3$ d.r., but only 16% ee (Table 1.4, entry 1). Increasing the ester size of the phenyldiazoacetate from methyl to isopropyl and diisopropylmethyl resulted in better enantioselectivities (entry 2, 3). Further increasing the ester size to t-butyl caused a drastic loss of enantioselectivity, and cyclopropane 189 was formed in only 4% ee (entry 4). Complex 183 had better
asymmetric induction than complex 182, and cyclopropane 187 could be formed in 67% ee when the reaction was conducted at $-78^{\circ} \mathrm{C}$ (entry 7).

Table 1.4 Cyclopropanation catalyzed by complex $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$

[^1]Scheme $1.34 \mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ catalyzed C-H insertion of aryldiazoacetate 190 and adamantane

The small size of the aryl group in complexes $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$ was considered to be the reason for their moderate asymmetric induction in the cyclopropanation reaction. Hence
aryldiazoacetate $\mathbf{1 9 0}$ with 2,6-difluorophenyl as the aryl group was synthesized, but the C-H insertion into adamantane produced compound 191 in only 20% yield and 8% ee (Scheme 1.34).

Recently, a comprehensive study of $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ catalyzed cyclopropanation reaction with a wide variety of aryldiazoacetates was carried out in the Davies group. This study showed that the interaction between the phthalimido group of the catalyst and the aryl group of the diazoacetate had dramatic effect on the enantioselectivity of the reaction. These results provide valuable insights for the re-evaluation of complexes $\mathbf{1 8 2}$ and 183, and the further study is being carried out by other group members of the Davies group.

1.3 Conclusion

The synthesis of highly symmetric and efficient dirhodium complexes for the asymmetric transformation of donor/acceptor carbenoid was studied. Chiral dirhodium complexes containing mono, di, and tetra binaphthylphosphate ligands were synthesized and fully characterized. Their catalytic reactivities were evaluated by the cyclopropanation of phenyldiazoacetate and styrene, and moderate enantioselecticities were obtained. The synthesis of chiral dirhodium phosphinate complex was also attempted, but the ligand exchange with $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ failed to generate the corresponding complex. The synthesis of chiral dirhodium carboxylate complex containing admantyl groups was also briefly explored, and two complexes were successfully synthsized. The evaluation of these two complexes by the cyclopropanation of phenyldiazoacetate and styrene generated cyclopropanes with up to 67% enantiomeric excess.

1.4 Experimental

1.4.1 General Information

${ }^{1} \mathrm{H}$ NMR spectra were recorded on 500 MHz Varian spectrometer, and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 300 MHz Gemini spectrometer at 75 MHz with the sample solvent being CDCl_{3} and reference against TMS unless otherwise noted. ${ }^{31} \mathrm{P}$ NMR spectra were recorded on 400 MHz Varian spectrometer at 162 MHz with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. Coupling constants were taken from the spectra directly and are uncorrected. Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. IR spectra were collected on a Nicolet iS10 FT-IR spectrometer as neat films. Mass spectral determinations were carried out by GC-MS (EI), LC-MS (ESI) in the Instrument Center, Department of Chemistry, SUNY University at Buffalo. Elemental analysis were performed by Atlantic Microlabs Inc., Norcross GA. Analytical TLC was performed on Whatman 0.25 mm aluminum backed silica gel ($60 \mathrm{~F}-254$) plates using UV light and/or phosphomolybdic acid (PMA) stain for visualization. Glassware was dried in an oven $\left(90^{\circ} \mathrm{C}\right)$ overnight or flame dried under vacuum prior to use. Reactions were conducted under argon atmosphere unless otherwise stated. All heating was done with a silicone oil bath. Column chromatography was carried out on Merck silica gel $60(230-400$ mesh $)$. All reaction solvents $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, hexanes, diethyl ether, THF and toluene) were dried by passing through activated A2 alumina columns (Grubbs type solvent purifier) and degassed (by bubbling argon gas through for 5-10 min) prior to use. Commercially available reagents were used without additional purification unless noted. Optical rotations were measured using a Jasco DIP-370 digital
polarimeter. The 3-D modeling was carried out with Spartan software, based on the fixed dirhodium core from the X-ray structure of $\mathrm{Rh}_{2}(S \text {-BNP })_{4}$.

1.4.2 Synthetic procedures and characterization

Tetrakis[(R)-1,1'-binaphthylphosphate] dirhodium $\left(\mathbf{R h}_{2}(R-B N P)_{4}(87)\right)$

Prepared by following the literature procedure. ${ }^{37}$ To a 25 ml round bottom flask equipped with a Soxhlet extractor containing a $1: 1$ molecular sieves and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ mixture, was added (R)-1,1'-binapthylhydrogen phosphate ($1.5 \mathrm{~g}, 4.3 \mathrm{mmol}, 14$ equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ $(132 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 15 ml of chlorobenzene. The mixture was heated to reflux at 160 ${ }^{\circ} \mathrm{C}$ for 3 days, then solvent was distilled out. The residue was extracted with dichloromethane. After filtration, the dichloromethane solution was concentrated under vacuum to give the crude product, which was purified by flash chromatography on silica gel eluting with benzene/acetonitrile (50:1). The complex 87 was isolated as a greenyellow solid (343 mg, 72\% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $8 \mathrm{H}), 7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.62(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 16 \mathrm{H}), 7.30(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 8 \mathrm{H}$); IR (neat): $1590,1507,1464,1325,1231,1204,1057,964,948,883,816$, $750,730 \mathrm{~cm}^{-1}$; HRMS (FAB) m/z: calcd for $\mathrm{C}_{80} \mathrm{H}_{48} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Rh}_{2} \mathrm{M}^{+}$, 1593.9997; found: 1594.0057. Data are consistent with the literature.

(1R,2S)-Methyl 1,2-diphenylcyclopropanecarboxylate (108)

Methyl phenyldiazoacetate (107) ($60 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ equiv.) in 2 mL of degassed toluene was added to the solution of $\mathrm{Rh}(\mathrm{II})$ catalyst ($\mathbf{9 1}$) ($5.8 \mathrm{mg}, 0.0034 \mathrm{mmol}, 1 \mathrm{~mol} \%$) and styrene ($0.39 \mathrm{~mL}, 3.4 \mathrm{mmol}, 10$ equiv.) in 2 mL of toluene at room temperature over 2 h . After addition, the solution was stirred for 2 h , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with hexanes/acetate (95:5) to afford cyclopropane 108 as a white solid ($43 \mathrm{mg}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.11-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.76-6.74(\mathrm{~m}$, $2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}$, $J=7.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.4,136.4,134.8,132.0,128.1$, $127.8,127.1,126.4,52.7,37.5,33.2,20.6$; IR (neat): $1714,1498,1433,1254,1191,695$ cm^{-1}; HRMS (APCI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 253.12231$, found: 253.12238. HPLC analysis: 26% ee, (R, R)-Whelk O1, 2.0% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$: $254 \mathrm{~nm}, t_{\mathrm{R}}: 10.3 \mathrm{~min}$ (major), 11.9 min (minor). Data are consistent with the reference. ${ }^{14 \mathrm{~d}}$

(R)-3,3'-Dimethyl-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (109)

Prepared by following the literature procedure. ${ }^{51}$ To a solution of (R)-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl ($1.0 \mathrm{~g}, 2.7 \mathrm{mmol}$) in 45 mL of diethyl ether, was
slowly added n-BuLi solution (1.6M in hexanes, $5.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h under argon. Then 30 mL of THF was added. After 1 h , the deep brown suspension was cooled to $0^{\circ} \mathrm{C}$, iodomethane ($0.5 \mathrm{ml}, 8.0 \mathrm{mmol}$) was added quickly. The reaction mixture was warmed to room temperature and stirred for 45 min. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (10:1) to afford 109 as a white solid ($0.94 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.81-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H}), 2.58(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 153.2,133.0,131.6,131.0,129.8,127.1,126.2,125.6,125.4,124.9,98.7,56.5$, 17.9. Data are consistent with the literature.

(R)-3,3'-Dibromo-2,2'-bis(methoxymethoxy)-1,1-binaphthyl (110)

Prepared by following the literature procedure. ${ }^{51}$ In a 500 mL of round bottom flask, was added $(R)-2,2^{\prime}$-bis(methoxymethoxy)-1, ''-binaphthyl ($9.2 \mathrm{~g}, 24.5 \mathrm{mmol}$) and 420 mL of diethyl ether. n - BuLi (2.5 M in hexanes, $29.4 \mathrm{~mL}, 73.5 \mathrm{mmol}$) was slowly added. The solution was stirred at room temperature for 3 h . Then 270 mL of THF was added, and the mixture was stirred at room temperature for another 1 h . After cooled $0{ }^{\circ} \mathrm{C}$, 2dibromotetrachloroethane ($23.9 \mathrm{~g}, 73.5 \mathrm{mmol}$) was added to the flask in one portion. The
solution was allowed warm to room temperature and stirred for 4 h , then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The solvent was removed under vacuum, the residue was extracted with diethyl ether. The combined ether solution was dried over MgSO_{4}, filtered, and concentrated to give the crude, which was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (20:1) to afford $\mathbf{1 1 0}$ as a white solid (10.4 $\mathrm{g}, 80 \%$ yield). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.27(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1,133.1,133.0,131.5,127.4,126.9,126.5,126.0$, 117.4, 99.1, 56.3; HRMS (EI): calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Br}_{2} \mathrm{M}^{+}$: 529.9723 , found: 529.9734.

(R)-3,3'-Dimethyl-2,2'-dihydroxy-1,1'-binaphthyl (111)

Prepared by following the literature procedure. ${ }^{51}$ To a solution of $(R)-3,3$ '-dimethyl-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (109) (0.78 g, 1.9 mmol$)$ in THF/MeOH (1:1, 40 mL) were added Amberlyst 15 resin $(1.5 \mathrm{~g})$. The mixture was heated to reflux for 15 h under argon, then cooled to room temperature and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash chromatography eluting with hexanes/ethyl acetate (10:1) to afford 111 as a white solid ($0.59 \mathrm{~g}, 97 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
152.1, 132.1, 130.7, 129.4, 127.5, 127.0, 126.4, 124.0, 123.9, 110.5, 17.0. Data are consistent with the literarture.

(R)-3,3'-Dibromo-2,2'-dihydroxy-1,1'-binaphthyl (112)

Prepared by following the procedure for compound 111, using (R)-3,3'-dibromo-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (110) (1.5 g, 2.82 mmol$)$ in THF/MeOH (1:1, 100 $\mathrm{mL})$ and Amberlyst 15 resin (2.0 g). The crude material was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (10:1) and afforded 112 as a white solid ($1.24 \mathrm{~g}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.25(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 148.1,132.8,129.8,127.6,127.4$, 124.9, 124.6, 114.7, 112.3. Data are consistent with the literature. ${ }^{51}$

(R)-3,3'-Dimethyl-1,1'-binaphthylhydrogen phosphate (113)

Prepared by following the literature procedure. ${ }^{38 \mathrm{c}}$ To a solution of $(R)-3,3^{\prime}$ 'dimethyl-2,2'-dihydroxy-1,1'-binaphthyl (111) ($635 \mathrm{mg}, 2.0 \mathrm{mmol}$) in 10 mL of pyridine, was slowly added $\mathrm{POCl}_{3}(0.3 \mathrm{ml}, 3.2 \mathrm{mmol})$. The reaction mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 2.5 h ,
then cooled to room temperature and 0.1 mL of water was added. The reaction mixture was reheated to $80^{\circ} \mathrm{C}$ for 90 min , then cooled to room temperature and concentrated under vacuum. To this residue, was added 15 mL of 6 N aqueous HCl and the mixture was heated to $80^{\circ} \mathrm{C}$ for 90 min . The white precipitate was filtered, washed with water thoroughly, and dried under vacuum. Further purification on silica gel eluting with dichloromethane/methanol (4:1) afforded 113 as a white solid ($518 \mathrm{mg}, 68 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-434.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$): $\delta 7.89-7.86(\mathrm{~m}, 4 \mathrm{H})$, $7.39(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 4 \mathrm{H}), 2.62(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{MeOH}-d_{4}\right): \delta 149.5(d, J=$ $9.7 \mathrm{~Hz}), 132.6,131.8,130.8,128.6,127.7,126.2,125.9,123.3,17.9 ;{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{MeOH}-d_{4}$): 3.4 ; IR (neat): $1504,1414,1260,1238,1208,1181,1148,1089,1016$, 965, 907, 749, $732 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}-\mathrm{H}]:$: 375.07917, found: 375.07916 .

(R)-3,3'-Dibromo-1,1'- binaphthylhydrogen phosphate (114)

Prepared by following the procedure for compound 113, using (R)-3,3'-dibromo-2,2'-dihydroxy-1,1'-binaphthyl (112) ($1.23 \mathrm{~g}, 2.7 \mathrm{mmol}$) in 15 mL of pyridine and POCl_{3} $(0.42 \mathrm{~mL}, 4.5 \mathrm{mmol})$. The white precipitate was filtered, washed with water, dried under vacuum. To completely remove the small amount of pyridine impurity, this white solid was dissolved with dichloromethane, washed with 1 N aqueous HCl , dried over MgSO_{4}, and filtered. The solution was concentrated under vacuum to afford $\mathbf{1 1 4}$ as a white solid.

Weight: $1.33 \mathrm{~g}, 95 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): $\delta 8.31(\mathrm{~s}, 2 \mathrm{H})$, $7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$): $\delta 149.9(\mathrm{~d}, J=9.7 \mathrm{~Hz}, \mathrm{C}), 133.2(\mathrm{CH})$, $131.4(\mathrm{C}), 131.0(\mathrm{C}), 127.1(\mathrm{CH}), 126.6(\mathrm{CH}), 126.4(\mathrm{CH}), 126.1(\mathrm{CH}), 122.8(\mathrm{C}), 114.5$ (d, $J=3.4 \mathrm{~Hz}, \mathrm{C}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}$): $\delta 2.2 ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 503$, 505, 507 ([M-H] ${ }^{-}$, intensity: 1:2:1).

Tetrakis[(R)-3,3'-dimethyl-1,1'-binaphthylphosphate] dirhodium (91)

Prepared by following the procedure for compound 87, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(31 \mathrm{mg}, 0.07$ mmol), (R)-3,3'-dimethyl-1,1'-binaphthylhydrogen phosphate (113) (376 mg, 1 mmol), and 7 mL of chlorobenzene. The mixture was heated at $150-160^{\circ} \mathrm{C}$ for 3 days, then the solvent was distilled out. The residue was dissolved with diethyl ether and passed through a short silica gel column. The green band was collected and concentrated. The residue was further purified on silica gel eluting with dichloromethane/diethyl ether (10:1) to afford 91 as a green solid ($65 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.61(\mathrm{~s}, 8 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.72(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.24(\mathrm{~s}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 147.2(\mathrm{~m}), 131.4,131.1,130.9$, 130.0, 127.4, 127.1, 125.1, 125.0, 121.4, 17.7; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.8 ; \mathrm{MS}$ (FAB): $1706\left(\mathrm{M}^{+}, 100 \%\right), 1331$ ([M-L] $\left.{ }^{+}, 42 \%\right), 956$ ([M-2L] $\left.{ }^{+}, 45 \%\right)$.

Tetrakis $[(R)$-3,3'-dibromo-1,1'-binaphthylphosphate] dirhodium (115)

Prepared by following the procedure for compound $\mathbf{8 7}$, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(105 \mathrm{mg}, 0.23$ mmol), (R)- 3,3'-dibromo -1,1'-dinaphthylhydrogen phosphate (114) ($0.96 \mathrm{~g}, 1.9 \mathrm{mmol}$), and 20 mL of chlorobenzene. The mixture was heated to $150-160^{\circ} \mathrm{C}$ for 3 days. Then it was passed through a short dry silica gel column, and washed with hexanes, dichloromethane, and diethyl ether. The diethyl ether solution was collected and concentrated. The residue was separated by flash chromatography on silica gel eluting with benzene/acetonitrile (30:1). The first green band was collected, and concentrated under vacuum to afford 115 as a yellow-green solid ($61 \mathrm{mg}, 12 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}-190.9^{\circ}(c$ $\left.0.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.09(\mathrm{~s}, 8 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.40$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 144.6(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 133.5,131.6,131.1,127.2,127.0,126.4,126.1,122.7$, 115.2; ${ }^{31}$ P NMR (162 MHz, CDCl_{3}): $\delta 21.5$; IR (neat): 1396, 1239, 1214, 1065(s), 976, $749 \mathrm{~cm}^{-1}$; MS (FAB) $m / z: 2225\left(\mathrm{M}^{+}\right)$.

(R)-2,2'-Dihexyloxy-1,1'-binaphthyl (117)

Prepared by following the literature procedure. ${ }^{52}$ To a solution of (R)-BINOL $(6.04 \mathrm{~g}$, $21 \mathrm{mmol})$ and 1-bromohexane $(12 \mathrm{~mL}, 105 \mathrm{mmol})$ in acetonitrile $(100 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{~g}, 105 \mathrm{mmol})$ at room temperature. The mixture was heated to reflux for 16 h . After cooled to room temperature, water was added and the mixture was extracted with hexanes. Combined hexane solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (50:1 to 20:1) to afford $\mathbf{1 1 7}$ as slight yellow oil (9.58 g, quantitative). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.83$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.95-$ $3.87(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.06-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.73(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.5,134.2,129.3,129.0,127.7,126.0,125.5,123.3,120.8,115.9$, $69.8,31.3,29.3,25.3,22.4,13.9$. Data are consistent with the literature.

(R)-4,4'-6,6'-Tetrabromo-2,2'-hexyloxy-1,1'-binaphthyl (118)

Prepared by following the literature procedure. ${ }^{52}$ To a solution of (R)-2,2'-dihexyloxy-1,1'-binaphthyl (117) ($9.5 \mathrm{~g}, 21 \mathrm{mmol})$ in 200 mL of acetic acid in a 500 mL round bottom flask was added bromine ($11 \mathrm{ml}, 214 \mathrm{mmol}$) over 30 min at room temperature. The resulting solution was stirred at room temperature for 6 h , then cooled to $0{ }^{\circ} \mathrm{C}$. Aqueous $25 \% \mathrm{NaHSO}_{3}$ solution (100 mL)was added to quench the excess bromine. The
mixture was extracted with ethyl acetate. Combined acetate solution was washed with brine, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/ ethyl acetate (100:1) and afforded 118 as slight yellow oil $\left(13.7 \mathrm{~g}, 85 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.39(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.97-3.87(\mathrm{~m}$, $4 \mathrm{H}), 1,43-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.09-0.90(\mathrm{~m}, 12 \mathrm{H}), 0.74(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.4,133.1,130.5,129.3,128.8,127.3,122.4,120.3,119.2,119.2$, $69.8,31.2,29.0,25.3,22.4,13.8$. Data are consistent with the literature.

(R)-4,4'-6,6'-Tetraphenyl-2,2'-dihydroxy-1,1'-binaphthyl (119)

Prepared by following the literature procedure. ${ }^{52}$ To a solution of (R)-4,4',6,6'-tetrabromo-2,2'-hexyloxy-1,1'-binaphthyl (118) (1.58 g, 2.05 mmol$)$ and phenylboronic acid $(1.25 \mathrm{~g}, 10.25 \mathrm{mmol})$ in 40 mL of THF, was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(284 \mathrm{mg}, 12 \mathrm{~mol} \%)$ and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 24 \mathrm{~mL})$. The mixture was degassed with argon for 10 min , then heated to reflux for 48 h . After cooling down to room temperature, it was poured into a mixture of ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. Combined acetate solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was dissolved in 40 mL of dichloromethane and cooled to -78 ${ }^{\circ} \mathrm{C}, \mathrm{BBr}_{3}(1 \mathrm{M}$ in $\mathrm{DCM}, 6 \mathrm{~mL})$ was slowly added. The reaction mixture was then warmed
to room temperature and stirred for 24 h . Water was added to quench the reaction. The aqueous layer was extracted with dichloromethane. Combined dichloromethane solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give the crude product, which was purified by flash chromatography on silica gel eluting with hexane/ethyl acetate (5:1) to afford $\mathbf{1 1 9}$ as pale foamy solid ($1.09 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.67-7.30(\mathrm{~m}, 26 \mathrm{H}), 5.23(\mathrm{br} ., 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3,144.2,141.0,139.8,137.0,133.2,129.9,128.8,128.5,128.2,127.8,127.3$, 127.2, 127.1, 125.3, 124.8, 119.2, 110.4. Data are consistent with the literature.
(R)-4,4'-6,6'-Tetra(2,4,6-trimethylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl (120)

Prepared by following the procedure for compound 119, using (R)-4,4',6,6'-tetrabromo-2,2'-hexyloxy-1,1'-binaphthyl (118) ($1.56 \mathrm{~g}, 2.02 \mathrm{mmol}$), 2,4,6-trimethylphenylboronic acid $(2.00 \mathrm{~g}, 12.12 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(284 \mathrm{mg}, 12 \mathrm{~mol} \%)$, and aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 24$ mL). The mixture was heated to reflux for 3 days. The crude product after the deprotection with BBr_{3} was purified by flash chromatography on silica gel eluting with hexane/ethyl acetate (10:1) to afford $\mathbf{1 2 0}$ as a white solid ($1.30 \mathrm{~g}, 85 \%$ yield). $[\alpha]^{20}{ }_{D}$ $23.2^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}$,
$2 \mathrm{H}), 7.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (s, 4H), $6.90(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 12 \mathrm{H})$, $1.97(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.4,142.9,138.8$, 137.1, 136.7, 136.6, 136.5, 136.4, 136.2, 136.2, 135.9, 132.4, 129.5, 128.5, 128.3, 128.1, 126.5, 124.5, 118.6, 110.0, 21.1, 20.9, 20.9, 20.4, 20.3; IR (neat): 3536, 2918, 1612, 1592, 1480, 1376, 1194, 1175, 1138, $850 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd. for $\mathrm{C}_{56} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{M}^{+}$: 758.4118, found: 758.4106 .

(R)-4,4'-6,6'-Tetraphenyl-1,1'-binaphthylhydrogen phosphate (121)

Prepared by following the procedure for compound 113, using $(R)-4,4^{\prime}, 6,6^{\prime}$ 'tetraphenyl-2,2'-dihydroxy-1, 1'-binaphthyl (119) $(0.83 \mathrm{~g}, 1.4 \mathrm{mmol})$ in 7 mL of pyridine, and POCl_{3} $(0.21 \mathrm{~mL}, 2.2 \mathrm{mmol})$. The white precipitate was filtered, washed with water, and dried under vacuum. Yield: $0.84 \mathrm{~g}, 92 \%$ yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.14$ (s, 2H), 7.79 (dd, $J=9.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.53(\mathrm{~m}, 12 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 6 \mathrm{H})$, $7.35(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, DMSO- d_{6}): $\delta 3.0$; MS (ESI) $m / z: 651$ ([M-$\left.\mathrm{H}]^{-}, 100 \%\right)$. Data are consistent with the literature. ${ }^{38 \mathrm{c}}$

(R)-4,4'-6,6'-(2,4,6-Trimethylphenyl)-1,1'-binaphthylhydrogen phosphate (122)

Prepared by following the procedure for compound 113, using (R)-4,4',6,6'-(2,4,6-trimethylphenyl)-2,2'-dihydroxy-1,1'-binaphthyl (120) (1.0 g, 1.4 mmol) in 7 mL of pyridine, and $\mathrm{POCl}_{3}(0.19 \mathrm{~mL}, 2.1 \mathrm{mmol})$. The white precipitate was filtered, washed with water, and dried under vacuum. Yield: $1.07 \mathrm{~g}, 96 \% .[\alpha]^{20}{ }_{\mathrm{D}}-23.2^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 4 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}$, $6 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.7(\mathrm{~d}, J=$ $9.1 \mathrm{~Hz}), 142.9,139.1,138.6,137.6,137.3,137.3,136.2,136.6,136.5,135.9,132.0$, 131.1, 128.9, 128.7, 128.6, 128.2, 126.7, 122.5, 121.0, 21.6, 21.5, 21.3, 21.3, 20.9, 20.8; ${ }^{31}$ P NMR (162 MHz, CDCl_{3}): $\delta 4.4$; IR (neat): 2918, 1612, 1574, 1480, 1442, 1020, 968, $851 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z : calcd for $\mathrm{C}_{56} \mathrm{H}_{53} \mathrm{O}_{4} \mathrm{P} \mathrm{M}^{+}: 820.36870$, found: 820.36884 .

Prepared by following the procedure for compound 87, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(25 \mathrm{mg}, 0.05$ mmol) and (R)-4,4',6,6'-tetraphenyl-1,1'-binaphthylhydrogen phosphate (121) (262 mg, 0.40 mmol), and 7 mL of chlorobenzene. The mixture was heated to $150-160{ }^{\circ} \mathrm{C}$ for 5 h , then all of the solvent was distilled out. The residue was purified with $50-70 \%$ of dichloromethane in petroleum ether on a silica gel column. The blue band was collected and concentrated. Further purification using the same condition to afford 92 as a bluegreen solid ($37 \mathrm{mg}, 34 \%$). $[\alpha]^{20} \mathrm{D}^{-38.9^{\circ}}$ (c $0.19, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 8 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.52-7.70(\mathrm{~m}, 32 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 8 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 24 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 24 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): 17.3; IR (neat): 1587, 1570, 1363, 1342, 1212, 1152, 1059, 974, 897, $758,698 \mathrm{~cm}^{-1}$; MS (FAB) $m / z: 2812\left(\mathrm{M}^{+}\right)$. Data are consistent with the literature. ${ }^{38 \mathrm{c}}$

Tetrakis-[(R)-4,4'-6,6'-(2,4,6-trimethylphenyl)-1,1'-binaphthylphosphate] dirhodium (123)

Prepared by following the procedure for compound 87, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(25 \mathrm{mg}, 0.05$ $\mathrm{mmol}),(R)-4,4 ’, 6,6 ’-(2,4,6$-trimethylphenyl)-1,1’- binaphthylhydrogen phosphate (122) ($328 \mathrm{mg}, 0.4 \mathrm{mmol}$), and 10 mL of chlorobenzene. The mixture was heated to $150-160$ ${ }^{\circ} \mathrm{C}$ for 2 days. The solvent was distilled out, and the resulting residue was dissolved with dichloromethane, passed a short silica column, the first blue band was collected and concentrated under vacuum. The residue was further purified on silica gel with 20-40\% dichloromethane in hexanes to afford $\mathbf{1 2 3}$ as a blue-green solid ($57 \mathrm{mg}, 33 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+119.2^{\circ}\left(c 0.21, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~m}, 8 \mathrm{H}), 7.34(\mathrm{~s}$, $8 \mathrm{H}), 7.12(\mathrm{~s}, 4 \mathrm{H}), 7.08(\mathrm{~s}, 4 \mathrm{H}), 7.00(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 20 \mathrm{H}), 6.79(\mathrm{~s}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 4 \mathrm{H})$, $6.72(\mathrm{~s}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 24 \mathrm{H}), 2.19(\mathrm{~s}, 12 \mathrm{H}), 2.17(\mathrm{~s}, 12 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 60 \mathrm{H}), 1.79-1.75$ (m, 36H); ${ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): 18.4; IR (neat): 1611, 1573, 1478, 1450, 1210, $1185,1057,969,906,849,729 \mathrm{~cm}^{-1} ;$ MA (FAB) $m / z: 3485\left(\mathrm{M}^{+}\right)$.

Trans-Rh $\left.\mathbf{2}^{(O A c)} \mathbf{2}^{(T F A)}\right)_{2}(129)$

Prepared by following the literature procedure. ${ }^{43} \mathrm{Rh}_{2}(\mathrm{TFA})_{4}(270 \mathrm{mg}, 0.41 \mathrm{mmol})$ was dissolved with 6 mL of acetonitrile in a 25 mL round bottom flask under argon. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and n-tetrabutylammonium acetate ($250 \mathrm{mg}, 0.82 \mathrm{mmol}$) was added in one portion. The solution was stirred for 15 min and the solvent was removed under vacuum. The residue was separated by flash chromatography on silica gel eluting with dichloromethane/acetonitrile (98:2). The first purple band was collected and concentrated to afford 129 as purple solid ($106 \mathrm{mg}, 47 \%$ yield). $R_{f} 0.51$ (10% acetonitrile/benzene). ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.45$ (s , the coordinated acetontrile), $1.99(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.1$; MS (ECI, reaction gas: isobutane) $m / z: \quad 550.7\left([M+H]^{+}, \quad 100 \%\right), \quad 591.7\left(\left[M+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}, \quad 26 \%\right), \quad 606.7$ $\left(\left[\mathrm{M}+\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{H}\right]^{+}, 46 \%\right)$. Data are consistent with the literature.

$\mathrm{Rh}_{2}(R \text {-BNP })_{4}(87)(70 \mathrm{mg}, 0.044 \mathrm{mmol})$ and n-tetrabutylammonium acetate $(26 \mathrm{mg}$, 0.088 mmol) were dissolved with 3 mL of dichloromethane at room temperature under argon. The solution was stirred for 7 h , then concentrated under vacuum. The residue was separated by flash chromatography on silica gel eluting with benzene/acetonitrile (50:1 to 10:1). The first green band was the unreacted $\mathrm{Rh}_{2}(R-\mathrm{BNP})_{4}$, the second green band was collected and concentrated to afford 131 as a green solid ($6 \mathrm{mg}, 14 \%$ yield). $R_{f} 0.11$ (benzene/ $\left.\mathrm{CH}_{3} \mathrm{CN} 10: 1\right) .[\alpha]^{20}{ }_{\mathrm{D}}+18.5^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ $8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 8 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 194.6(\mathrm{C})$, 147.7 (m, C), $132.6(\mathrm{C}), 132.1(\mathrm{C}), 131.4(\mathrm{CH}), 128.8(\mathrm{CH}), 127.3(\mathrm{CH}), 127.0(\mathrm{CH})$, $126.0(\mathrm{CH}), 121.8(\mathrm{C}), 120.7(\mathrm{CH}), 24.7\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 18.1$; IR (neat): $1557,1508,1464,1412,1231,1193,1060,946,948,884 \mathrm{~cm}^{-1} ;$ MS (FAB) m / z : $1018.3\left(\mathrm{M}^{+}, 100 \%\right), 959.1$ ([M-OAc] $\left.{ }^{+}, 41 \%\right), 670.9$ ([M-BNP] $\left.{ }^{+}, 31 \%\right)$; HRMS (FAB) m / z : calcd for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2} \mathrm{M}^{+}$: 1017.9317, found: 1017.9302.

$\mathrm{Cis}^{-\mathrm{Rh}_{2}(\mathrm{OAc})_{2}(\mathrm{R}-\mathrm{BNP})_{2}(\mathbf{1 3 2)})}$

In a 25 ml round bottom flask equipped with a short-path distillation apparatus, was added (R)-BNP $(0.1 \mathrm{~g}, 0.28 \mathrm{mmol}, 2.0$ equiv. $), \mathrm{Rh}_{2}(\mathrm{OAc})_{4}(63 \mathrm{mg}, 0.14 \mathrm{mmol})$ and 10 mL of chlorobenzene. The solution was heated to $160^{\circ} \mathrm{C}$ to distill out chlorobenzene. At the same time, new chlorobenzene was added into the flask to maintain the same amount
of chlorobenzene in the flask. This process was kept going for 1.5 h , then all the chlorobenzene was distilled out. The residue was dissolved with dichloromethane, and passed through a short silica gel column to remove the unreacted ligand. The filtrate was concentrated under vacuum and the residue was separated by flash chromatography on silica gel eluting with benzene/acetonitrile (50:3). The third green band was collected and concentrated to afford 132 as a green solid ($72 \mathrm{mg}, 49 \%$ yield). $[\alpha]^{20}{ }_{D}-107.2^{\circ}(c 0.1$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.25(\mathrm{~m}, 16 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 193.9$ (C), 148.1(C, d, $J=9.7 \mathrm{~Hz}), 147.92(\mathrm{~d}, J=9.7 \mathrm{~Hz}, \mathrm{C}), 132.7(\mathrm{C}), 132.6$ (C), 132.1 (C), 132.1 (C), 131.3 (CH), $131.2(\mathrm{CH}), 128.8(\mathrm{CH}), 128.8(\mathrm{CH}), 127.3(\mathrm{CH})$, $127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 126.0(\mathrm{CH}), 125.9(\mathrm{CH}), 122.0(\mathrm{C}, \mathrm{d}, J=2.2 \mathrm{~Hz})$, $121.9(\mathrm{C}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 121.5(\mathrm{CH}, \mathrm{d}, J=2.8 \mathrm{~Hz}), 120.9(\mathrm{CH}, \mathrm{d}, J=2.2 \mathrm{~Hz}), 23.2$ $\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 17.1; IR (neat): 1557, 1508, 1421, 1232, 1086, $1061,964,947,881 \mathrm{~cm}^{-1}$; MS (FAB) $m / z: 1018.4\left(\mathrm{M}^{+}, 100 \%\right), 959.2$ ([M-OAc] ${ }^{+}, 17 \%$), 670.8 ([M-BNP] ${ }^{+}, 45 \%$); HRMS (FAB) m / z : calcd. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2} \mathrm{M}^{+}$: 1017.9317, found: 1017.9351.

Cis-bis[(R)-3,3'-dimethyl-1,1'-binaphthylphosphate]diacetate dirhodium (133)

Prepared by following the procedure for comound 132, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(66 \mathrm{mg}, 0.15$ mmol) and (R)-3,3'-dimethyl-1,1'-binaphthylhydrogen phosphate (113) (113 mg, 0.30
mmol, 2 equiv.). The crude material was separated by flash chromatography on silica gel eluting with benzene/acetonitrile (10:1 to 7:1). The third blue band was collected and concentrated to afford 133 as a green solid ($72 \mathrm{mg}, 45 \%$ yield). $[\alpha]^{20}{ }_{D}-35.6^{\circ}(c 0.11$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.69(\mathrm{~s}$, 2H), $2.48(\mathrm{~s}, 12 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.4,147.2(\mathrm{~d}, J=9.4$ $\mathrm{Hz}), 147.1(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 131.8,131.7,131.4,131.3,130.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.4,130.0$ $(\mathrm{d}, J=2.6 \mathrm{~Hz}), 127.7,127.6,127.3,127.1,125.5,121.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 121.8(\mathrm{~d}, J=2.2$ Hz), 23.3, 18.1, 17.3; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.3$; IR (neat): 1557, 1416, 1240, 1085, 1064, 1045, 926, 875, 749, $731 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{48} \mathrm{H}_{38} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 1075.00214$, found: 1075.01840 .

(R)-(+)- 3,3'-Diphenyl-2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (134)

Prepared by following the literature procedure. ${ }^{51}$ To a solution of (R)-3,3'-dibromo-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (8) (1.0 g, 1.88 mmol$)$ in 13 mL of degassed dimethoxyethane, were added phenylboronic acid ($0.8 \mathrm{~g}, 6.58 \mathrm{mmol}$), aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ $(2 \mathrm{M}, 5 \mathrm{~mL}, 9.78 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.22 \mathrm{~g}, 0.19 \mathrm{mmol})$. The reaction mixture was heated to reflux for 24 h under argon. Then it was cooled to room temperature, and concentrated under vacuum. The residue was extracted with dichloromethane, and the combined dichloromethane solution was washed with brine, dried over MgSO_{4}, and
concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (95:5) to afford $\mathbf{1 3 4}$ as a white solid (0.92 g, 93% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (m, 4H), $7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 4 \mathrm{H}), 4.40(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.3$, $139.0,135.5,133.6,130.8,130.5,129.6,128.3,127.8,127.3,126.5,126.4,126.3,125.1$, 98.5, 55.8; HRMS (EI) m / z : calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{M}^{+}: 526.2139$, found: 526.2139. Data are consistent with the literature.

(R) -3,3'-Bis(2,4,6-trimethylphenyl)-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (135)

Preparation of the Grignard reagent: In a flame-dry 25 mL round bottom flask equipped with a condenser, was added magnesium ($0.33 \mathrm{~g}, 13.6 \mathrm{mmol}$). 2-bromomesitylene (1.5 g , 7.5 mmol) was dissolved with 8 mL of diethyl ether and 2 mL of this solution was added to the flask. After $5 \mathrm{~min}, 0.05 \mathrm{~mL}$ of 1,2-dibromoethane was added to the flask, the reaction was initiated and began to reflux. The remaining 2-bromomesitylene ether solution was slowly added. The mixture was heated to reflux for 24 h , and cooled to room temperature.

The coupling reaction: In a 100 mL of round bottom flask was added $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($170 \mathrm{mg}, 0.24 \mathrm{mmol}$), (R) -3,3'-dibromo-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (110) $(1.0 \mathrm{~g}, 1.8 \mathrm{mmol})$, and 25 mL of diethyl ether. The mesitylmagnesium bromide solution was slowly added to the flask. The reaction mixture was stirred at room temperature for 10 min , then heated to reflux for 24 h . After cooled to room temperature, it was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The ether solution was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by flash chromatography eluting with hexanes/diethyl ether (30:1) to afford $\mathbf{1 3 5}$ as a white solid ($0.46 \mathrm{~g}, 40 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-6.5^{\circ}\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H})$, $6.96(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H})$, $2.22(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.9$ (C), 137.1 (C), 136.8 (C), 136.6 (C), 135.5 (C), 134.6 (C), 133.6 (C), 130.8 (C), 130.7 (CH), 128.0 (CH), 127.7 $(\mathrm{CH}), 126.3(\mathrm{C}), 126.2(\mathrm{CH}), 126.1(\mathrm{CH}), 124.9(\mathrm{CH}), 97.9\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 1156, 998, 973, $733 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{4}: 610.3078$, found: 610.3093.

Prepared by following the procedure for compound 135. Magnesium ($0.78 \mathrm{~g}, 32 \mathrm{mmol}$) and $2,4,6$-triisopropylphenyl bromide $(5.0 \mathrm{~g}, 17 \mathrm{mmol})$ were used to prepare the corresponding Grignard reagent. $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(340 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $(R)-3,3$ '-dibromo-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (110) ($2.0 \mathrm{~g}, 3.7 \mathrm{mmol}$) were used during the coupling reaction with the Grignard reagent. The crude was purified by flash chromatography on silica gel eluting with hexane/ether (50:1) to afford $\mathbf{1 3 6}$ as a foamy white solid ($2.63 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.78(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 2 \mathrm{H}), 4.22(\mathrm{~s}$, $4 \mathrm{H}), 2.80-2.95(\mathrm{~m}, 6 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.18-1.29(\mathrm{~m}, 30 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.3,148.3,147.4,146.9,134.2,133.6,133.2,131.0,130.4$, $127.8,126.2,126.0,125.9,124.8,120.7,120.5,97.6,55.1,34.3,31.0,30.8,25.8,25.3$, 24.1, 23.2, 23.1; HRMS (ESI) m/z: calcd for $\mathrm{C}_{54} \mathrm{H}_{66} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 801.4853$, found: 801.4842 .
(R)- 3,3'-Diphenyl -1,1'-dinaphthylhydrogen phosphate (137)

Diol 137a was prepared by following the literature procedure. ${ }^{50}$ To a solution of $(R)-(+)$ -3,3'-diphenyl -2,2'-bis(methoxymethoxy)-1,1'-binaphthyl (134) ($0.91 \mathrm{~g}, 1.73 \mathrm{mmol}$) in 28 mL of $\mathrm{THF} / \mathrm{MeOH}(1: 1)$ were added Amberlyst 15 resin $(1.0 \mathrm{~g})$. The mixture was heated to reflux for 15 h under argon, then cooled to room temperature and filtered. The filtrate was concentrated under vacuum. The residue was purified by flash chromatography eluting with hexanes/ethyl acetate (10:1) to afford diol 137a as a white solid ($0.76 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.1,137.5$, 133.0, 131.3, 130.7, 129.6, 129.4, 128.4, 127.7, 127.3, 124.3, 124.2, 112.4.

Phosphoric acid 137 was prepared by following the procedure for compound 113, using diol $137 \mathrm{a}(887 \mathrm{mg}, 2.0 \mathrm{mmol})$ in 10 mL of pyridine and $\mathrm{POCl}_{3}(0.3 \mathrm{~mL}, 3.2 \mathrm{mmol})$. The white precipitate was filtered and washed with water. Then it was dissolved with dichloromethane, washed with 1 N aqueous HCl to completely remove pyridine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to afford 137 as a pale solid (1.0 g , 99% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$
(d, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $144.9(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 137.1,134.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 132.1,131.4,131.2,129.8$, 128.3, 128.1, 127.3, 127.0, 126.3, 125.7, 122.7; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.5$; IR (neat): $1498,1410,1269,1245,1181,1151,1020,961,894,765,750,699 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z : calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P} \mathrm{M}^{+}: 500.11830$, found: 500.11832 .
(R)- 3,3'- Bis(2,4,6-trimethylphenyl)-1,1'-dinaphthylhydrogen phosphate (138)

In a 100 ml RB flask, was added (R)-3,3'-bis(2,4,6-trimethylphenyl)-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (135) $(0.44 \mathrm{~g}, 0.73 \mathrm{mmol}), 7 \mathrm{~mL}$ of 2 N HCl ether solution, and 7 mL of methanol. The solution was heated to reflux for 12 h . After cooled to room temperature, saturated aqueous NaHCO_{3} was carefully added to neutralize the solution. The solvent was removed under vacuum. The residue was extracted with diethyl ether, and the ether solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/diethyl ether (20:1) to afford diol 138a as a foamy solid (0.34 g, 89% yield). $[\alpha]^{20}{ }_{\mathrm{D}}+34.8^{\circ}\left(c\right.$ 1.3, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.87(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.00(\mathrm{~s}, 4 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 2.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 150.0$ (C), 137.7 (C), 137.1 (C), 137.1 (C), 133.4 (C), 132.9 (C), 130.6 (CH), $129.4(\mathrm{C}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 126.8(\mathrm{CH}), 124.5(\mathrm{CH}), 123.8(\mathrm{CH})$, $112.9(\mathrm{C}), 21.1\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3525, 1437, 1259, 1234, 908, $733 \mathrm{~cm}^{-1} ;$ HRMS (EI) m / z : calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{M}^{+}: 522.2553$, found: 522.2558 .

Phosphoric acid 138 was prepared by following the procedure for compound 113, using diol 138a ($325 \mathrm{mg}, 0.62 \mathrm{mmol}$) in 5 mL of pyridine and $\mathrm{POCl}_{3}(0.09 \mathrm{ml}, 0.93 \mathrm{mmol})$. The white precipitate was filtered and washed with water. Then it was dissolved with diethyl ether, washed with 1 N aqueous HCl to completely remove pyridine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solution was concentrated under vacuum to afford $\mathbf{1 3 8}$ as a white solid ($360 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H})$, $2.10(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.3(\mathrm{C}, J=9.2$ $\mathrm{Hz}), 137.1$ (C), 136.9 (C), 136.8 (C), 132.9 (C), $132.9(\mathrm{C}, J=2.8 \mathrm{~Hz}), 131.9(\mathrm{C}), 131.7$ $(\mathrm{CH}), 131.5(\mathrm{C}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 126.3(\mathrm{CH}), 125.7$ $(\mathrm{CH}), 122.2(\mathrm{C}, J=2.2 \mathrm{~Hz}), 20.9\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, CDCl_{3}): $\delta 2.8$; IR (neat): $1279,1194,1024,908,752,733 \mathrm{~cm}^{-1} ;$ MS (ESI) $m / z: 585$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$.

Diol 139a was prepared by following the procedure for diol 138a, using (R)-3,3'-bis(2,4,6-triisopropylphenyl)-2,2'-bis(methoxymethoxy)-1,1-dinaphthyl (136) (2.62 g, $3.37 \mathrm{mmol}), 30 \mathrm{~mL}$ of 2 N HCl ether solution, and 30 mL of methanol. The crude product was purified by flash chromatography on silica gel eluting with hexanes/diethyl ether (40:1) to afford diol 139a as a foamy solid (2.30 g, 99% yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.70-$ $2.67(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.10-1.08(\mathrm{~m}, 12 \mathrm{H})$, $1.02(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.6,149.1,147.8$, 147.7, $133.4,130.6,130.4,129.1,129.0,128.2,126.6,124.5,123.8,121.2,121.2,113.1,34.3$, $30.9,30.8,24.3,24.3,24.0,23.9,23.9,23.7$. Data are consistent with the literature. ${ }^{53}$

Phosphoric acid 139 was prepared by following the procedure for compound 113, using diol $139 \mathrm{a}(1.38 \mathrm{~g}, 2.0 \mathrm{mmol})$ in 10 mL of pyridine, and $\mathrm{POCl}_{3}(0.3 \mathrm{~mL}, 3.2 \mathrm{mmol})$. The white precipitate was filtered, washed with water, and dried under vacuum to afford $\mathbf{1 3 9}$ $(1.48 \mathrm{~g}, 99 \%$ yield $) \cdot[\alpha]^{20}{ }_{\mathrm{D}}-33.1^{\circ}\left(c 0.38, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$
(d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~s}, 4 \mathrm{H})$, , $2.82-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}), 1.02-0.98(\mathrm{~m}, 12 \mathrm{H})$, $0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.80(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.9$, 147.3, $146.4(\mathrm{~d}, ~ J=9.6 \mathrm{~Hz}), 141.3,132.5,132.4,131.8,130.8,128.0,127.3,126.4$, $126.0,125.3,122.2,121.0,120.1,34.1,30.8,30.7,26.1,24.9,24.0,23.9,23.3,23.2 ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): δ 2.4; IR (neat): 2960, 1606, 1460, 1411, 1362, 1241, 1197, 1020, 997, 970, 904, 750, $732 \mathrm{~cm}^{-1}$; MS (ESI) $m / z: 751$ ([M-H], 100%); HRMS (ESI) m / z : calcd for $\mathrm{C}_{50} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{P} \mathrm{M}^{+}: 752.40000$, found: 752.39901.
$\operatorname{Trans}[(R)$ - 3,3'-bis(2,4,6-trimethylphenyl)-1,1'-binaphthyl phosphate] diacetate dirhodium (141) and $\operatorname{Mono}[(R)$ - 3,3'-bis(2,4,6-trimethylphenyl)-1,1'-binaphthyl phosphate] triacetate dirhodium (143)

Prepared by following the procedure for compound 87, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(69 \mathrm{mg}, 0.15$ mmol), (R)-3,3'-bis(2,4,6-trimethyl-phenyl)-1,1'-binaphthylhydrogen phosphate (138) $(182 \mathrm{mg}, 0.30 \mathrm{mmol})$, and 6 mL of chlorobenzene. The mixture was heated to $150-160$ ${ }^{\circ} \mathrm{C}$ for 2 days. Then chlorobenzene was distilled out. The residue was further purified on silica gel eluting with hexanes/diethyl ether (3:1 to $1: 2$). The first green band was collected and concentrated under vacuum to afford 141 as a green solid $(51 \mathrm{mg}, 22 \%$
yield). The second green band was collected and concentrated under vacuum to afford 143 as a green solid ($60 \mathrm{mg}, 40 \%$ yield). Compound 141: $[\alpha]^{20}{ }_{\mathrm{D}}+220.1^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~s}, 4 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 4H), $7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.99(\mathrm{~s}, 4 \mathrm{H}), 6.72(\mathrm{~s}, 4 \mathrm{H}), 2.37(\mathrm{~s}$, $12 \mathrm{H}), 2.23(\mathrm{~s}, 12 \mathrm{H}), 1.79(\mathrm{~s}, 12 \mathrm{H}), 0.97(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.1(\mathrm{C})$, 145.7 (C), 137.1 (C), 136.7 (C), 136.6 (C), 133.8 (C), 132.6 (C), 132.1 (C), 131.5 (CH), $131.2(\mathrm{C}), 128.5(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 126.7(\mathrm{CH}), 126.2(\mathrm{CH}), 125.4(\mathrm{CH})$, $122.2(\mathrm{C}), 22.0\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right)$; ${ }^{31} \mathrm{P}$ NMR: (162 MHz , CDCl_{3}): $\delta 17.9$; IR (neat): $1557,1434,1411,1068,974,909,731 \mathrm{~cm}^{-1} ;$ HRMS (APCI) m / z : calcd for $\mathrm{C}_{80} \mathrm{H}_{70} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$1491.25254, found: 1491.27799. Compound 143: $[\alpha]^{20}{ }_{\mathrm{D}}+160.8^{\circ}\left(c 0.08, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.77(\mathrm{~s} .2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 6 \mathrm{H}), 1.43$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.2$ (C), 191.4 (C), $145.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.7 \mathrm{~Hz}, \mathrm{C}\right)$, 137.3 (C), 136.7 (C), 134.1 (C), 132.6 (C), 132.1 (C), 131.7 (CH), 131.3 (C), 128.6 (CH), $127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 126.8(\mathrm{CH}), 126.3(\mathrm{CH}), 125.5(\mathrm{CH}), 122.4(\mathrm{C}), 22.9\left(\mathrm{CH}_{3}\right)$, $22.4\left(\mathrm{CH}_{3}\right), 21.7\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR: $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 16.9$; IR (neat): 1573, 1415, 1083, 910, $731 \mathrm{~cm}^{-1}$; MS (FAB) m/z: $966\left(\mathrm{M}^{+}, 17 \%\right), 907$ ([M$\left.\mathrm{OAc}]^{+}, 100 \%\right)$.

Trans-bis[(R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthylphosphate] diacetate dirhodium (142)

Prepared by following the procedure for compound 87 , using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(88 \mathrm{mg}, 0.2$ mmol), (R)-3,3'-bis(2,4,6-triisopropyl-phenyl)-1,1'-binaphthylhydrogen phosphate (139) ($376 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 10 mL of chlorobenzene. The mixture was heated to $150-160$ ${ }^{\circ} \mathrm{C}$ for 2 days. Then chlorobenzene was distilled out. The residue was dissolved with dichloromethane, passed through a short silica column, the green band was collected and concentrated under vacuum. The residue was further purified on silica gel eluting with hexanes/ ether (5:1) to afford $\mathbf{1 4 2}$ as a brown solid ($141 \mathrm{mg}, 38 \%$ yield). $[\alpha]^{25}{ }_{\mathrm{D}}+220.3^{\circ}(c$ $\left.0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.71(\mathrm{~s}, 4 \mathrm{H}), 7.40(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~s}, 4 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.88(\mathrm{~s}$, $4 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $12 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 36 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}), 0.92(\mathrm{~s}, 6 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.2,147.8,147.8,146.2,133.1,132.5,132.0$, 131.7, 130.6, 127.8, 127.0, 126.0, 125.4, 122.1, 121.7, 120.2, 34.2, 30.8, 30.6, 26.4, 24.9, 24.6, 24.1, 23.7, 23.5, 23.0, ${ }^{31} \mathrm{P}$ NMR (162MHz, CDCl_{3}): $\delta 17.8$; IR (neat): 1557,1415 , 1215, 1192, 1064(s), 974, 889, $753 \mathrm{~cm}^{-1}$; MS (FAB) $m / z: 1827\left(\mathrm{M}^{+}, 16 \%\right), 767$ ([M-
$\left.\mathrm{OAc}^{+}, 26 \%\right), 1707\left([\mathrm{M}-2 \mathrm{OAc}]^{+}, 100 \%\right) ;$ HRMS (+ESI) m/z: calcd for $\mathrm{C}_{104} \mathrm{H}_{118} \mathrm{O}_{12} \mathrm{P}_{2} \mathrm{Rh}_{2}[\mathrm{M}+\mathrm{K}]^{+}: 1865.58402$, found 1865.59037.

Tris-[(R)-3,3'-diphenyl-binaphthylphosphate] monoacetate dirhodium (144)

Prepared by following the procedure for compound 87, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(88 \mathrm{mg}, 0.2$ mmol), (R)-3,3'-diphenyl -1,1'-dinaphthylhydrogen phosphate (137) (275 mg, 0.5 mmol , 2.5 equiv.), and 10 mL of chlorobenzene. The mixture was heated to $150-160^{\circ} \mathrm{C}$ for 1.5 days. After cooled to room temperature, it was passed through a short dry silica gel column, washed with hexanes, 60% dichloromethane/hexanes and dichloromethane (100\%). The blue band washed down by pure dichloromethane was collected and concentrated. The residue was further purified by flash chromatography on silica gel column eluting with benzene/acetonitrile (50:1) to afford $\mathbf{1 4 4}$ as a blue-green solid (40 $\mathrm{mg}, 12 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-160.4^{\circ}\left(c \quad 0.18, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05-$ $7.99(\mathrm{~m}, 8 \mathrm{H}), 7.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.52-7.16(\mathrm{~m}, 36 \mathrm{H}), 6.51(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 4 \mathrm{H}), 6.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.12$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,145.4(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 144.9(\mathrm{~d}, J=9.7 \mathrm{~Hz})$, $144.7(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 137.3,137.2,136.9,135.0,135.0,134.0$, 132.1, 132.0, 131.8, $131.5,131.4,131.4,131.3,129.5,129.4,128.4,128.1,128.1,128.0,127.8,127.6,127.2$, $126.9,126.9,126.7,126.6,126.2,125.9,125.9,125.6,123.6,123.5,123.0,22.2 ;{ }^{31} \mathrm{P}$

NMR (162 MHz, CDCl_{3}) $\delta 21.2,19.3$; IR (neat): 3056, 3013, 1498, 1413, 1060, 972, $750 \mathrm{~cm}^{-1}$; MS (FAB) m/z: $1763\left(\mathrm{M}^{+}, 100 \%\right), 1703$ ([M-OAc] ${ }^{+}, 35 \%$), 1263 ([M-L] ${ }^{+}$, 57%), 1203 ([M-OAc-L] $]^{+}, 88 \%$); HRMS (+ESI) m/z: calcd for $\mathrm{C}_{98} \mathrm{H}_{63} \mathrm{O}_{14} \mathrm{P}_{3} \mathrm{Rh}_{2}[\mathrm{M}+\mathrm{K}]^{+}$: 1801.11724, found 1801.13411.

(R)-3,3'-Bis(dihydroxyborane)-2,2'-dimethoxy-1,1'-binaphthyl (145)

Prepared by following the literature procedure. ${ }^{54}$ To a solution of TMEDA ($4.42 \mathrm{~mL}, 29$ mmol) in 150 mL of diethyl ether was added n-BuLi (2.5 M in hexanes, $11.7 \mathrm{~mL}, 29$ mmol) at room temperature. The solution was stirred for 30 min , solid (R)-2,2'-dimethoxy-1,1'-dinaphthyl ($3.05 \mathrm{~g}, 9.7 \mathrm{mmol}$) was added in one portion, and the reaction mixture was stirred for 3 h . The resulting light brown suspension was cooled to $-78{ }^{\circ} \mathrm{C}$, and triethyl borate $(11.6 \mathrm{~mL}, 68 \mathrm{mmol})$ was slowly added over 10 min . The solution was allowed to warm to room temperature and stirred overnight. Then it was cooled to $0{ }^{\circ} \mathrm{C}$, aqueous $1 \mathrm{M} \mathrm{HCl}(75 \mathrm{~mL})$ was added and the mixture was stirred for 4 h at room temperature. The ether layer was separated, washed (aqueous 1 N HCl , brine), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to give the crude product as a pale yellow solid, which was further recrystallized in toluene to afford 145 as a white solid $(1.40 \mathrm{~g}, 36 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.62(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 4 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H})$. Data are consistent with the lieterature.

2-(4'-Bromophenyl)naphthalene (146)

Prepared by following the literature procedure. ${ }^{54}$ In a 100 mL round bottom flask, was added 2-naphthylboronic acid $(1.55 \mathrm{~g}, 9.0 \mathrm{mmol}), \mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}(8.95 \mathrm{~g}, 28.3 \mathrm{mmol}$, $)$ $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(219 \mathrm{mg}, 0.19 \mathrm{mmol})$, 1-bromo-4-iodobenzene $(3.21 \mathrm{~g}, 11.3 \mathrm{mmol})$, and 40 mL of degassed dioxane $/ \mathrm{H}_{2} \mathrm{O}$ (3:1) solution. The mixture was heated to reflux for 24 h under argon. Then it was cooled to room temperature and concentrated under vacuum. The residue was extracted with dichloromethane. The dichloromethane solution was washed with 1 M aqueous HCl , brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, then concentrated under vacuum to give the crude product which was purified by flash chromatography on silica gel eluting with hexanes to afford $146\left(1.49 \mathrm{~g}, 58 \%\right.$ Yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.68(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 4 \mathrm{H})$, 7.52-7.47 (m, 2H). Data are consistent with the lieterature.

(R)-3,3'-Bis(4-naphthalen-2-yl-phenyl)-1,1'-binaphthyl-2,2'-diol (147)

Prepared by following the literature procedure. ${ }^{54}$ To a solution of $(R)-3,3^{\prime}$ -Bis(dihydroxyborane)-2,2'-dimethoxy-1,1-dinaphthyl (145) (437 mg, 1.09 mmol$)$ in 8 mL of degassed dioxane $/ \mathrm{H}_{2} \mathrm{O}$ (3:1) solution was added 2-(4'-bromophenyl)naphthalene (146) $(925 \mathrm{mg}, 3.27 \mathrm{mmol}), \mathrm{Ba}(\mathrm{OH})_{2} .8 \mathrm{H}_{2} \mathrm{O}(1.03 \mathrm{~g}, 3.27 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(138 \mathrm{mg}$, $0.12 \mathrm{mmol})$. The reaction mixture was heated to reflux for 40 h under argon, then cooled to room temperature. The solvent was removed under vacuum, and the residue was extracted with dichloromethane. The dichloromethane solution was washed with 1 M aqueous HCl , brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate to give the coupling product. To a solution of the coupling product in dichloromethane $(20 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.45 \mathrm{ml}, 2.45 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$, then it was warmed to room temperature and stirred for 24 h . The mixture was poured into a mixture of dichloromethane/water. The organic layer was separated, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, and concentrated under vacuum. The crude product was further purified by flash chromatography on silica gel eluting with hexanes/ dichloromethane (3:1 to 3:2) to afford 147 as a white solid ($602 \mathrm{mg}, 80 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-158.6^{\circ}$ (c 1.0 , CHCl_{3}). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12(\mathrm{~s}, 4 \mathrm{H}), 7.97-7.81(\mathrm{~m}, 18 \mathrm{H}), 7.53-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{~s}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.3,140.5,138.0,136.5,133.7,132.9,132.7$, $131.4,130.3,130.1,129.5,128.5,128.2,127.6,127.4,126.3,126.0,125.8,125.5,124.4$, 124.3, 112.4. Data are consistent with the literarture.

Prepared by following the procedure for compound 113, using $(R)-3,3^{\prime}$ - $\operatorname{Bis}(4$-naphthalen-2-yl-phenyl)-1,1'-binaphthyl-2,2'-diol (147) ($345 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 2.5 mL of pyridine, and $\mathrm{POCl}_{3}(0.07 \mathrm{~mL}, 0.8 \mathrm{mmol})$. The white precipitate was filtered, and washed with water. Then it was dissolved with dichloromethane, washed with aqueous 1 N HCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to afford 148 ($371 \mathrm{mg}, 99 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta 8.34(\mathrm{~s}, 2 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 8.05-8.01 (m, 8H), 7.97-7.94 (m, 8H), 7.56-7.51 (m, 6H), $7.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 145.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 138.9$, $136.9,136.4,133.4,133.2,133.2,132.3,131.5,130.9,130.7,130.5,128.7,128.5,128.2$, $127.4,126.7,126.6,126.4,126.1,126.0,125.6,125.2,124.9,122.4 ;{ }^{31} \mathrm{P}$ NMR (162 MHz , DMSO- $\left.d_{6}\right): \delta 1.5$.

$\mathbf{R h}_{\mathbf{2}} \mathbf{(O A c}_{\mathbf{3}} \mathbf{3}$ (TFA) (149)

n-Tetrabutylammonium acetate ($1.14 \mathrm{~g}, 3.78 \mathrm{mmol}, 2.2$ equiv.) was added to $\mathrm{Rh}_{2}(\mathrm{TFA})_{4}$ $(1.12 \mathrm{~g}, 1.7 \mathrm{mmol})$ solution in 22 mL of acetonitrile at $0{ }^{\circ} \mathrm{C}$. After 15 min , the solution was concentrated under vacuum. The residue was separated by flash chromatography on
silica gel eluting with dichloromethane/acetonitrile (98:2 to 90:10). Concentration of the third purple band afforded 149 as a purple solid ($0.42 \mathrm{~g}, 49 \%$ yield). ${ }^{1} \mathrm{H}$ NMR: (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.98(\mathrm{~s}, 6 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone $-d_{6}$): δ 191.4, 22.9, 22.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.1$; IR (neat): 1638, 1560, 1433, 1197, 1160, 864, 712, 697, $617 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{8} \mathrm{~F}_{3} \mathrm{Rh}_{2} \mathrm{M}^{+}: 495.8354$, found: 495.8331.

Mono[(R)-3,3'-bis(2,4,6-triisopropylphenyl)-1,1'-binaphthylphosphate]

triacetate dirhodium (150)

In a 25 mL round bottom flask equipped with Soxhlet extractor filled with $1: 1 \mathrm{Na}_{2} \mathrm{CO}_{3}$ and molecular sieves, was added $\mathrm{Rh}_{2}(\mathrm{OAc})_{3}(\mathrm{TFA})(149)(58 \mathrm{mg}, 0.1 \mathrm{mmol}),(R)-3,3^{\prime}-$ Bis(2,4,6-triisopropylphenyl)-1,1'-binaphthylhydrogen phosphate (139) (75 mg, 0.1 mmol), and 5 mL of 1,2-dichloroethane. The mixture was heated to $110-120^{\circ} \mathrm{C}$ for 1.5 days. Then the solvent was distilled out. The residue was dissolved with dichloromethane, passed through a short silica column, washed with dichloromethane and diethyl ether. The ether solution was collected and concentrated under vacuum. The residue was further purified on silica gel eluting with dichloromethane/diethyl ether (10:1) to afford $\mathbf{1 5 0}$ as a green solid ($15 \mathrm{mg}, 13 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
$7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 4 \mathrm{H})$, 6.94-6.91 (m, 4H), 2.97-2.94 (m, 2H), 2.89-2.85 (m, 2H), 2.68-2.64 (m, 2H), $1.86(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.25-1.23(\mathrm{~m}, 12 \mathrm{H}), 1.19-1.09$ $(\mathrm{m}, 12 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.4,148.2,147.9$, $147.3,146.3(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 133.9,132.8,132.7,131.7,131.6,130.5,127.8,127.0$, $126.2,125.4,122.0,120.6,34.0,31.3,30.6,25.9,24.8,24.1,23.9,23.8,23.1,22.6 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.2$; IR (neat): $1567,1415,1073,750 \mathrm{~cm}^{-1} ; \operatorname{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$: 1075 ([M-OAc] $\left.{ }^{+}, 82 \%\right)$.

$\operatorname{Mono}[(R)-3,3$ '-Bis(4-naphthalen-2-yl-phenyl)-1,1'-binaphthylphosphate] triacetate

 dirhodium (151)

Prepared by following the procedure for compound 151, using $\mathrm{Rh}_{2}(\mathrm{OAc})_{3}(\mathrm{TFA})$ (149) $(58 \mathrm{mg}, \quad 0.1 \mathrm{mmol}),(R)-3,3$ '-bis(4-naphthalen-2-yl-phenyl)-1,1'-binaphthylhydrogen phosphate (148) ($75 \mathrm{mg}, 0.1 \mathrm{mmol}$), and 6 mL of 1,2-dichloroethane. The mixture was heated to $120^{\circ} \mathrm{C}$ for 3 days. Then it was concentrated under vacuum. The residue was separated by flash chromatography on silica gel eluting with dichloromethane/diethyl ether (20:1). The first green band was collected, concentrated, and further purified on
silica gel eluting with benzene/acetonitrile (10:1) to afford $\mathbf{1 5 1}$ as a green solid (18 mg, 16% yield). $[\alpha]^{20}{ }_{\mathrm{D}}-82.6^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~s}, 2 \mathrm{H})$, $7.93(\mathrm{~s}, 2 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 12 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.22(\mathrm{~s}, 4 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.4,191.9$, $145.0(\mathrm{~d}, J=9.6$ $\mathrm{Hz}), 139.7,138.0,136.8,133.7,132.7,132.1,132.0,131.1,130.4,128.5,128.3,128.2$, 128.0, 127.6, 127.4, 127.1, 126.4, 126.3, 125.9, 125.8, 125.6, 125.4, 122.8, 23.3, 22.6; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 16.1$; IR (neat): $1570,1419,1075,747 \mathrm{~cm}^{-1}$; HRMS (FAB) m / z : calcd for $\mathrm{C}_{58} \mathrm{H}_{41} \mathrm{O}_{10} \mathrm{PRh}_{2} \mathrm{M}^{+}$: 1134.0542 , found: 1134.0575.

1-[(N,N)-Diisopropylamino]-1 -oxo-2-phenylphosphol-3-ene (166)

Prepared by following the literature procedure. ${ }^{46} \mathrm{~N}$-diisopropylphosphiamidous dichloride $(2.02 \mathrm{~g}, 10 \mathrm{mmol})$ was added to a stirred suspension of $\mathrm{AlCl}_{3}(1.27 \mathrm{~g}, 9.5$ mmol) in 15 mL of dichloromethane at room temperature under argon. After 45 min , the clear yellow solution was cooled to $0^{\circ} \mathrm{C}$, and (E)-1-phenyl-butadiene solution (1.17 g in 40 mL of dichloromethane) was slowly added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h , then poured into a mixture of 40 mL of aqueous EDTA $(0.2 \mathrm{M})$ and 20 mL of aqueous saturated NaHCO_{3} solution. The biphasic mixture was stirred vigorously for 4 h at $0^{\circ} \mathrm{C}$, then filtered with a celite pad. The dichloromethane layer was separated, washed with saturated $\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{HCl}$, and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum to give the crude product as light yellow oil. Purification by flash
chromotrograhy on silica gel (ethyl acetate/ethanol: 50:1 to 50:3) afforded cis-166 ($1.46 \mathrm{~g}, 53 \%$ yield) and trans-166 ($0.69 \mathrm{~g}, 25 \%$ yield). cis-166: light yellow solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{~d}, J=30.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=$ $21.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.78(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{C}), 131.5(\mathrm{~d}, J=18.0$ $\mathrm{Hz}, \mathrm{CH}), 128.1(\mathrm{~d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}), 127.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}), 127.3(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $\mathrm{CH}), 126.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}), 51.5(\mathrm{~d}, J=79.0 \mathrm{~Hz}, \mathrm{CH}), 46.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}, \mathrm{CH}), 31.8$ (d, $\left.J=77.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 23.0\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 22.7\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR: ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 64.3$; IR (neat): 1493, 1451, 1403, 1366, 1229, 1206, 1154, 992, 882, 765, 691, $639 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 278.16683$, found: 278.16688. trans-166: light yellow solid. M.p.: 66-67 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.17-5.95(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.31$ $(\mathrm{m}, 2 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.24(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.8(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{C}), 133.1(\mathrm{~d}, J=17.7 \mathrm{~Hz}, \mathrm{CH}), 128.5(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, \mathrm{CH}), 128.0(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}), 127.3(\mathrm{~d}, J=12.0 \mathrm{~Hz}, \mathrm{CH}), 126.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $\mathrm{CH}), 48.7(\mathrm{~d}, J=74.4 \mathrm{~Hz}, \mathrm{CH}), 45.5(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}), 31.6\left(\mathrm{~d}, J=80.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 22.8$ (d, $J=1.0 \mathrm{~Hz}, \mathrm{CH}_{3}$), $22.6\left(\mathrm{~d}, J=1.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.2$; IR (neat): 2965, 1491, 1453, 1400, 1367, 1225, 1207, 1182, 1156, 1108, 993, 880, 764, 729, 697, $688 \mathrm{~cm}^{-1}$; HRMS (APCI) $m / z:$ calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 278.16683$, found: 278.16682; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24}$ NOP: C, 69.29; H, 8.72; N, 5.05. Found: C, 69.07; H, 8.68; N, 5.04.

Cis-1-[(N,N)-diisopropylamino]-1-oxo-2-phenylphospholane (cis-167)

In the bottle of the hydrogenation reactor, was added solution of cis-1-[(N,N)-diisopropylamino]-1 -oxo-2-phenylphosphol-3-ene (cis-166) (1.0 g in 5 mL of methanol) and $5 \% \mathrm{Pd}-\mathrm{C}(0.8 \mathrm{~g}, 10 \mathrm{~mol} \%)$. The system was purged with hydrogen for three times, then filled with hydrogen (50 bar) and reacted for 24 h at room temperature. The mixture was passed through a celite pad, and the filtrate was concentrated under vacuum. The residue was purified by flash chromotrograhy on silica gel (ethyl acetate/ethanol 50:3) to afford cis-167 as a white solid ($0.87 \mathrm{~g}, 86 \%$ yield). M.p.: $141-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$, $0.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{C}), 128.1$ (d, $J=1.7 \mathrm{~Hz}, \mathrm{CH}), 127.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{CH}), 126.1(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}), 47.8(\mathrm{~d}, J=$ $79.0 \mathrm{~Hz}, \mathrm{CH}), 45.5(\mathrm{~d}, J=4.0 \mathrm{~Hz}, \mathrm{CH}), 29.5\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.3(\mathrm{~d}, J=76.1 \mathrm{~Hz}$, CH_{2}), $22.4\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.3\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 21.0\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta 66.3$; IR (neat): 2964, 1497, 1450, 1401, 1366, 1250, 1205, 1191, 1154, 1134, 989, 758, $690 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 280.18248$, found: 280.18254; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NOP}$: C, 68.79 ; H, 9.38; N, 5.01. Found: C, 68.97; H, 9.42; N, 5.02.

Prepared by following the procedure for cis-167, using trans-1-[(N,N)-diisopropylamino]-1-oxo-2-phenylphosphol-3-ene (trans-166) (0.5 g in 5 mL of methanol) and $5 \% \mathrm{Pd}-\mathrm{C}(0.4 \mathrm{~g}, 10 \mathrm{~mol} \%)$. The crude product was purified by flash chromotrograhy on silica gel eluting with ethyl acetate to afford trans-167 as white solid $\left(0.47 \mathrm{~g}, 95 \%\right.$ yield). M.p.: $121-123{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.18(\mathrm{~m}$, $5 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.64(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 137.0(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{C}), 129.1(\mathrm{~d}, J=5.2 \mathrm{~Hz}, \mathrm{CH}), 127.9(\mathrm{~s}, \mathrm{CH}), 126.1(\mathrm{~d}, J$ $=1.7 \mathrm{~Hz}, \mathrm{CH}), 46.0(\mathrm{~d}, J=76.1 \mathrm{~Hz}, \mathrm{CH}), 45.3(\mathrm{~d}, J=5.2 \mathrm{~Hz}, \mathrm{CH}), 32.1(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 27.0\left(\mathrm{~d}, J=81.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 23.2\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 22.6\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 21.7(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, \mathrm{CH}_{2}$); ${ }^{31} \mathrm{P}$ NMR: (162 MHz, CDCl_{3}): $\delta 61.6$; IR (neat): 2966, 1493, 1453, 1367, 1208, 1189, 1156, $1367 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}$: 280.18248, found: 280.18251; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NOP}: \mathrm{C}, 68.79 ; \mathrm{H}, 9.38 ; \mathrm{N}, 5.01$. Found: C, 68.85; H, 9.46; N, 5.01.

1-Hydroxy-1-oxo-2-phenylphospholane (racemic 161)

A mixture of cis-1-[(N, N)-diisopropylamino]-1-oxo-2-phenylphospholane (cis-167) in 35 mL of concentrated HCl was heated to $117-120^{\circ} \mathrm{C}$ for 3.5 days. Then it was cooled to room temperature, diluted with water, and basified with 10% aqueous NaOH . After extracted with dichloromethane for 3 times, the aqueous solution was acidified with HCl , and extracted with dichloromethane. The dichloromethane solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum to afford racemic 161 as a white solid $(0.54 \mathrm{~g}, 96 \%$ yield). M.p.: $95-96{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.54$ (br., 1 H), $7.29-7.20(\mathrm{~m}, 5 \mathrm{H})$, 3.02-2.94 (m, 1H), 2.28-2.17 (m, 1H), 2.08-1.97(m, 2H), 1.80-1.61 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.6(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{C}), 128.3(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{CH}), 128.2(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, \mathrm{CH}), 126.5(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}), 45.3(\mathrm{~d}, J=89.3 \mathrm{~Hz}, \mathrm{CH}), 30.3(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, CH_{2}), $25.0\left(\mathrm{~d}, J=90.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 20.4\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}): $\delta 73.9$; IR (neat): $1601,1495,1451,1256,1164,1089,968,759,698 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI) $m / z: 195\left([\mathrm{M}-\mathrm{H}]^{-}, 100 \%\right)$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 197.07259, found: 197.07265; Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 61.22$; $\mathrm{H}, 6.73$. Found: C, 61.25; H, 6.73.

1-[N-(R)-(1-Methyl)benzylamino]-1-oxo-2-phenylphospholane (169)

169

dia-169

To the solution of 1-hydroxy-1-oxo-2-phenylphospholane (racemic 161) ($0.7 \mathrm{~g}, 3.6$ $\mathrm{mmol})$ in 20 mL of THF was slowly added oxalyl chloride $(1.39 \mathrm{~mL}, 16.5 \mathrm{mmol}, 4.5$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at room temperature for 2 h and concentrated
under vacuum. The residue was dissolved with 10 mL of anhydrous benzene, cooled to $10{ }^{\circ} \mathrm{C}$, and $(R)-(+)$-methylbenzylamine ($1.40 \mathrm{~mL}, 11.0 \mathrm{mmol}, 3$ equiv.) in 5 mL of anhydrous benzene was slowly added. The reaction mixture was stirred at room temperature for one day, and heated to reflux for one day. Then it was concentrated under vacuum. The residue was dissolved with dichloromethane, washed with 0.5 N aqueous HCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was separated by flash chromotrograhy on silica gel eluting with ethyl acetate/ethanol (10:1) to afford compound 169 and its diastereomer dia-169. Compound 169: white solid, 0.30 g, 27% yield. M.p.: $163-164{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-76.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.38-7.13(\mathrm{~m}, 10 \mathrm{H}), 4.40-4.37(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.17(\mathrm{~m}$, $1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.1$ (C), 136.4 (C), 128.8 (d, $\left.J=5.1 \mathrm{~Hz}, \mathrm{CH}\right), 128.6$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 127.3(\mathrm{CH}), 126.5(\mathrm{CH}), 126.1(\mathrm{CH}), 50.8(\mathrm{CH}), 45.5(\mathrm{~d}, J=80.0 \mathrm{~Hz}$, $\mathrm{CH}), 32.5\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 26.4\left(\mathrm{~d}, J=71.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 25.9\left(\mathrm{~d}, J=17.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 21.3 (d, $J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}$); ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 59.1$; IR (neat): 3197, 1601, 1493, 1449, 1253, 1174, 1126, 1093, 759, $699 \mathrm{~cm}^{-1}$; HRMS (APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 300.15118$, found: 300.15114. dia-169: white solid, $0.43 \mathrm{~g}, 40 \%$ yield. M.p.: $128-130{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+157.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.37-7.16 (m, 10H), 4.41-4.36(m, 1H), 2.89-2.83(m, 2H), 2.28-2.20(m, 1H), 2.14$2.03(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.1,136.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 128.6,128.3$, 127.2, 126.4, 125.9, 50.6, $44.9(\mathrm{~d}, J=80.7 \mathrm{~Hz}), 32.6(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 27.3(\mathrm{~d}, J=83.0$ $\mathrm{Hz}), 26.1(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 21.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 58.5$;

IR(neat): $3179,1601,1493,1450,1252,1173,1124,1089,757,697 \mathrm{~cm}^{-1} ;$ HRMS (APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]^{+}: 300.15118$, found: 300.15120 .

1-Hydroxy-1-oxo-2-phenylphospholane (enantiopure 161)

The solution of 1-[N-(R)-(1-methyl)benzylamino]-1-oxo-2-phenylphospholane (169) $(0.30 \mathrm{~g})$ in 17 mL of concentrated HCl was heated to reflux for 1 day under argon. Then it was cooled to room temperature, diluted with water, then basified with 10% aqueous NaOH . The solution was extracted with dichloromethane. The aqueous part was acidified with HCl , and extracted with dichloromethane. The dichloromethane solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to afford enantiopure 169 as a white solid $(0.19 \mathrm{~g}, 97 \%$ yield $) .[\alpha]^{25}{ }_{\mathrm{D}}+1.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The spectra data are identical as racemic 161.

To determine the enantiomeric excess, enantiopure 161 was converted into the methyl ester following the following procedure: compound $\mathbf{1 6 1}(6 \mathrm{mg})$ was dissolved with 1 mL of diethyl ether in the outside tube of the diazomethane-generator. MNNG (1-methyl-3-nitro-1-nitrosoguanidine, 68 mg) was added to the inside tube with 0.3 mL of water. The diazomethane-generator was assembled and held together by tightening the 32 mm screw cap. Its lower part was immersed in an ice bath and 0.3 mL of 5 N aqueous NaOH was slowly added through the septum via a syringe with a narrow gauge needle (No. 22). After 2 h , the cap was removed, and the solution was concentrated with air stream. The
residue was used for HPLC analysis without purification. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}: 19.0 \mathrm{~min}$ (major), 34.5 min (major), 20.1 min (minor), 24.6 min (minor).

Methyl (R)-2-adamantyl-2-(4-bromophenyl)acetate (176)

Prepared by following the literature procedure. ${ }^{26 a}$ The solution of methyl 4bromophenyldiazoacetate (174) (2.00 g in 60 mL of degassed 2,2-dimethylbutane) was added to a solution of $\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(75 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.5 \mathrm{~mol} \%)$ and adamantane $\left(2.14 \mathrm{~g}, 15.68 \mathrm{mmol}, 2\right.$ equiv.) in 40 mL of degassed $2,2^{\prime}$-dimethylbutane with a syringe pump over 2 h at room temperature. The resulting solution was stirred for 2 h , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with 4% diethyl ether in petroleum ether to afford $\mathbf{1 7 6}$ as a white solid $\left(1.78 \mathrm{~g}, 63 \%\right.$ yield, 95% ee). $[\alpha]^{20}{ }_{\mathrm{D}}-15.3^{\circ}$ (c 1.6, CHCl_{3}). M.p.: $127-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, $3.23(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.46(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7(\mathrm{C})$, $133.8(\mathrm{C}), 131.8(\mathrm{CH}), 130.7(\mathrm{CH}), 121.2(\mathrm{C}), 62.3(\mathrm{CH}), 51.3\left(\mathrm{CH}_{3}\right), 39.7\left(\mathrm{CH}_{2}\right), 36.6$ $\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2906, 2848, 1734, 1488, 1447, 1434, 1341, 1263, 1198, 1152, 1075, 1011, $834 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{BrO}_{2} \mathrm{M}^{+}$: 362.0876, found: 362.0886 . Data are consistent with the literature. To determine the ee, small amount of compound $\mathbf{1 7 6}$ was reduced to alcohol with LiAlH_{4}. HPLC analysis:
95% ee, (S, S)-Whelk O1, 20% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}$: 15.1 min (minor), 26.7 min (major).

Methyl (R)-2-adamantyl-2-(4-trifluoromethylphenyl)acetate (177)

Prepared by following the procedure for 176, using methyl 4trifluoromethylphenyldiazoacetate (175) (2.0 g), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(77 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.5$ $\mathrm{mol} \%$), and adamantane ($2.2 \mathrm{~g}, 16.4 \mathrm{mmol}, 2$ equiv.). The crude material was purified by flash chromatography on silica gel eluting with 1.5% diethyl ether in petroleum ether to afford compound 177 as white solid ($0.87 \mathrm{~g}, 31 \%$ yield). M.p.: $124-126^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}-12.1^{\circ}$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) ; R_{f}, 0.28$ (1.5\% diethyl ether/petroleum ether); ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}$, $1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.49(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5(\mathrm{C}), 138.9$ (C), $130.4(\mathrm{CH}), 124.5\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.3\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}, \mathrm{C}\right), 124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=\right.$ $272 \mathrm{~Hz}, \mathrm{C}), 62.7(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 39.8\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2907, 2850, 1735, 1325, 1154, 1126, 1113, $1069 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{M}^{+}: 352.1645$, found: 352.1643; Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{2}: \mathrm{C}, 68.17 ; \mathrm{H}$, 6.58. Found: C, 67.94; H, 6.54. HPLC analysis: 90% ee, (S, S)-Whelk O1, 0.3% isopropanol/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 13.3 \mathrm{~min}$ (minor), 14.7 min (major).

(R)-2-Adamantyl-2-(4-bromophenyl)ethanol (178)

LiAlH_{4} solution (2.4 M in THF, $0.8 \mathrm{~mL}, 0.7$ equiv.) was added dropwise to methyl (R)-2-adamantanyl-2-(4-bromophenyl)acetate (176, $>99 \%$ ee) $(1.0 \mathrm{~g}, 2.75 \mathrm{mmol})$ in 15 mL of THF at $0^{\circ} \mathrm{C}$. After addition, the solution was stirred for 1 h at $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for another 3 h . Then it was carefully quenched with water at 0 ${ }^{\circ} \mathrm{C}$. The mixture was concentrated under vacuum and the residue was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by flash chromatrograhy on silica gel eluting with diethyl ether/petroleum ether (10 to 30\%) to afford compound $\mathbf{1 7 8}$ as white solid ($0.87 \mathrm{~g}, 94 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}+1.0^{\circ}\left(c \quad 1.3, \mathrm{CHCl}_{3}\right)$. M.p.: $159-161{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J$ $=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}$, 3H), 1.66-1.39 (m, 12H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.8$ (C), $131.6(\mathrm{CH}), 131.1$ $(\mathrm{CH}), 120.5(\mathrm{C}), 61.4\left(\mathrm{CH}_{2}\right), 59.6(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 34.9(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): $3258,2903,2847,1489,1045,1009 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}$ $\mathrm{M}^{+}: 334.0927$, found: 334.0922; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}: \mathrm{C}, 64.48 ; \mathrm{H}, 6.91$. Found: C, 64.32 ; H, 6.86. HPLC analysis: $>99 \%$ ee, (S, S)-Whelk O1, 20% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 15.1 \mathrm{~min}$ (minor), 26.7 min (major).

(R)-2-Adamantyl-2-(4-trifluoromethylphenyl)ethanol (179)

Prepared by following the procedure for 178, using LiAlH_{4} solution (2.4 M in THF, 0.8 $\mathrm{mL}, 0.7$ equiv.), Methyl (R)-2-adamantanyl-2-(4-trifluoromethylphenyl)acetate (177) (0.3 $\mathrm{g}, 0.85 \mathrm{mmol})$. The crude product was purified by flash column chromotrograhy on silica gel eluting with 10% ethyl actate/hexanes to afford compound $\mathbf{1 7 9}$ as a white solid (0.26 g, 94% yield). M.p.: $129-131^{\circ} \mathrm{C} .[\alpha]^{20} \mathrm{D}+4.4^{\circ}\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) . R_{f}, 0.30(10 \%$ ethyl acetate/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=11.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.39(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0(\mathrm{C})$, $130.1(\mathrm{CH}), 124.8\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=4.0 \mathrm{~Hz}, \mathrm{CH}\right), 128.8\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}, \mathrm{C}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272\right.$ $\mathrm{Hz}, \mathrm{C}), 61.3(\mathrm{CH}), 59.9(\mathrm{CH}), 40.6\left(\mathrm{CH}_{2}\right), 36.8\left(\mathrm{CH}_{2}\right), 35.0(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 3300 (broad), 2906, 2850, 1326, 1164, 1123, $1070 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O} \mathrm{M}^{+}: 324.1696$, found: 324.1705; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}: \mathrm{C}, 70.35$; H , 7.15. Found: C, 70.58; H, 7.21. HPLC analysis: 99% ee, (R, R)-Whelk O1, 15% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 7.0 \mathrm{~min}$ (major), $9.4 \min$ (minor).

(R)- 2-Adamantyl-2-(4-bromophenyl)acetic acid (180)

(R)-2-adamantanyl-2-(4-bromophenyl)ethanol (178) $(0.2 \mathrm{~g}, 0.6 \mathrm{mmol})$ in 10 mL of acetone was added to the solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(0.26 \mathrm{~g}, 0.9 \mathrm{mmol}, 1.5$ equiv. $)$ in 6 mL of 1.5 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$. After addition, the mixture was warmed to room temperature and stirred for 2 h , then 10 mL of diethyl ether was added. The ether layer was separated and concentrated under vacuum. The residue was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by flash column chromotrograhy on silica gel eluting hexanes/ethyl acetate (10:1 to 8:1) to afford compound 180 as a white solid ($198 \mathrm{mg}, 95 \%$ yield). M.p.: $210-212^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-14.5^{\circ}(c$ $1.5, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.0-10.0$ (br., 1 H), $7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.4(\mathrm{C}), 133.3(\mathrm{C}), 131.9(\mathrm{CH}), 130.9(\mathrm{CH}), 121.5(\mathrm{C}), 62.6(\mathrm{CH})$, $39.7\left(\mathrm{CH}_{2}\right), 36.6\left(\mathrm{CH}_{2}\right), 36.1(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2903, 2848, 1692, 1448, 1267, $1213 \mathrm{~cm}^{-1}$; MS (ESI, -c): 347 ([M-H] ${ }^{-} 100 \%$); HRMS (EI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{2}$ $\mathrm{M}^{+}: 348.0719$, found: 348.0724; Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrO}_{2}: \mathrm{C}, 61.90 ; \mathrm{H}, 6.06$. Found: C, 62.00; H, 6.12. HPLC analysis: $>99 \%$ ee, (S, S)-whelk O1, 1.0% isopropanaol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}$, $t_{\mathrm{R}}: 20.7 \mathrm{~min}$ (major), 30.5 min (minor).

(R)- 2-Adamantyl-2-(4-trifluoromethylphenyl)acetic acid (181)

Prepared by following the procedure for 180, using (R)-2-adamantanyl-2-(4trifluoromethylphenyl)ethanol (179) ($0.23 \mathrm{~g}, 0.72 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(0.32 \mathrm{~g}, 1.1 \mathrm{mmol}, 1.5$ equiv.), and 6 mL of 1.8 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$. The crude product was purified by flash chromotrograhy on silica gel eluting with hexanes/acetate (8:1 to $5: 1$) to afford compound 181 as a white solid ($225 \mathrm{mg}, 92 \%$ yield). M.p.: $142-145^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-16.3^{\circ}(c 1.2$, CHCl_{3}). $R_{f}, 0.28$ (hexanes/ethyl acetate $5: 1$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 12.0-10.0$ (broad, 1H), $7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$, 1.70-1.56(m, 12H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.5(\mathrm{C}), 138.4(\mathrm{C}), 130.5(\mathrm{CH})$, $124.6\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{CH}\right), 129.5\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}, \mathrm{C}\right), 124.2\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{C}\right), 63.1$ $(\mathrm{CH}), 39.8\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2906, 2850, 1697, 1618, 1446, 1431, 1410, 1326, 1224, 1163, 1129, 1070, 1021, 908, 845, $735 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{M}^{+}$: 338.1488, found: 338.1492.
(R)- 2-Adamantyl-2-(4-bromophenyl)acetate dirhodium (II,II) complex (182)

In a 10 ml of round bottom flask equipped with a short distill path, was added (R)-2-adamantyl-2-(4-bromophenyl)acetic acid (180) ($160 \mathrm{mg}, 0.46 \mathrm{mmol}, 6$ equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})$ 4 ($33 \mathrm{mg}, 0.08 \mathrm{mmol}, 1$ equiv.) and 4 mL of dry chlorobenzene. The solution was stirred for 10 min at room temperature, then heated to $160-170{ }^{\circ} \mathrm{C}$ to distill out chlorobenzene. Proper amount of chlorobenzene was added at the same time to maintain the same amount of solvent in the flask. This process was continued for 5 h . Then the solution was concentrated under vacuum. The residue was purified by flash chromatography on silica gel eluting with hexanes/acetate (20:1) to afford compound 182 as a green solid (96 mg , 79% yield $) .[\alpha]^{20}{ }_{\mathrm{D}}+20.1^{\circ}\left(c \quad 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 8 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 12 \mathrm{H}), 1.51(\mathrm{~m}, 12 \mathrm{H}), 1.30-1.19$ (m, 36H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.2$ (C), $135.0(\mathrm{C}), 131.7(\mathrm{CH}), 130.3(\mathrm{CH})$, $120.7(\mathrm{C}), 65.6(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 36.5\left(\mathrm{CH}_{2}\right), 36.2(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2905, 2848, 1582, 1487, $1390 \mathrm{~cm}^{-1}$; HRMS (-ESI) m/z: calcd for $\mathrm{C}_{74} \mathrm{H}_{80} \mathrm{Br}_{4} \mathrm{O}_{8} \mathrm{Rh}_{2}\left[\mathrm{M}+\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{-}$: 1707.05526, found 1707.05389.

(R)-2-Adamantyl-2-(4-trifluoromethylphenyl)acetate dirhodium (II,II) complex

 (183)

Prepared by following the procedure for 182, using (R)-2-adamantyl-2-(4trifluoromethylphenyl)acetic acid (181) (200 mg, $0.59 \mathrm{mmol}, 6$ equiv.), $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(44$
$\mathrm{mg}, 0.01 \mathrm{mmol}, 1$ equiv.) and 5 mL of dry chlorobenzene. The ligand exchange was continued for 7 h . Then the solution was concentrated under vacuum. The residue was purified by flash chromatography on silica gel eluting with hexane/acetate (10:1) to afford compound $\mathbf{1 8 3}$ as a green solid ($127 \mathrm{mg}, 82 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+63.9^{\circ}\left(c 0.1, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 8 \mathrm{H}), 3.03(\mathrm{~s}$, 4H), 1.71 (s, 12H), 1.50-1.17 (m, 48H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 191.7$ (C), 140.2 (C), $130.3(\mathrm{CH}), 128.7\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=32 \mathrm{~Hz}, \mathrm{C}\right), 124.3\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=272 \mathrm{~Hz}, \mathrm{C}\right), 124.0\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=\right.$ $3.4 \mathrm{~Hz}, \mathrm{CH}), 65.9(\mathrm{CH}), 40.0\left(\mathrm{CH}_{2}\right), 36.4\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{C}), 28.5(\mathrm{CH})$; IR (neat): 2907, 2850, 1582, 1393, 1326, 1165, 1127, 1070, 1020, 908, $735 \mathrm{~cm}^{-1}$; HRMS (-ESI) m/z: calcd for $\mathrm{C}_{76} \mathrm{H}_{80} \mathrm{~F}_{12} \mathrm{O}_{8} \mathrm{Rh}_{2}\left[\mathrm{M}+\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{-}: 1667.36275$, found 1667.35995.

2,4-Dimethyl-3-pentyl phenyldiazoacetate(185)

n - BuLi ($10.6 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexanes, 26.6 mmol) was added to 2,4-dimethyl-3-pentanol ($3.73 \mathrm{~mL}, 26.6 \mathrm{mmol}$) in 60 mL of THF at $-10^{\circ} \mathrm{C}$. The solution was stirred for 10 min , and methyl phenylacetate $(2.0 \mathrm{~g}, 13.3 \mathrm{mmol})$ in 20 mL of THF was added slowly. The reaction mixture was warmed to room temperature and stirred overnight. It was concentrated under vacuum, the residue was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined dichloromethane solutioin was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with 2% diethyl ether /pentane to afford compound 185a as colorless oil ($3.1 \mathrm{~g}, 99 \%$ yield). $R_{f}, 0.47$ (2% diethyl ether/pentane); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0$
$\mathrm{Hz}, 6 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 171.5 (C), 134.4 (C), $129.3(\mathrm{CH}), 128.4(\mathrm{CH}), 126.9(\mathrm{CH}), 82.9(\mathrm{CH}), 41.7\left(\mathrm{CH}_{2}\right), 29.3(\mathrm{CH}), 19.4\left(\mathrm{CH}_{3}\right), 17.0$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): 2966, 2936, 1731, 1258, 1130, $974 \mathrm{~cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{M}^{+}: 234.1614$, found: 234.1611.

DBU was added to the solution of 2,4-dimethyl-3-pentyl phenylacetate (185a) (2.95 g, 12.6 mmol , 1 equiv.) and $p-\operatorname{ABSA}(3.63 \mathrm{~g}, 15.1 \mathrm{mmol}, 1.2$ equiv.) in 30 mL of acetonitrile in one portion at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight with temperature rising to room temperature. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$), and the combined ether solution was washed with water $(2 \times 100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with 1% diethyl ether/pentane to afford compound $\mathbf{1 8 5}$ as orange oil $(2.56 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.17(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $165.3(\mathrm{C}), 128.8(\mathrm{CH}), 128.5(\mathrm{C})$, $125.6(\mathrm{CH}), 123.8(\mathrm{CH}), 83.4(\mathrm{CH}), 29.5(\mathrm{CH}), 19.6\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 2967, 2083, 1704, 1499, 1465, 1389, 1371, 1357, 1333, 1243, 1165, 1132, 1097, 1012, 996, $755,691 \mathrm{~cm}^{-1}$.
(1R, 2S)-Isopropyl 1,2-diphenylcyclopropanecarboxylate (187)

Isopropyl phenyldiazoacetate (184) ($58 \mathrm{mg}, 0.28 \mathrm{mmol}, 1$ equiv.) in 2 mL of degassed toluene was added to the solution of $\mathrm{Rh}(\mathrm{II})$ catalyst (182) $9.0 \mathrm{mg}, 0.0056 \mathrm{mmol}, 2$ $\mathrm{mol} \%$) and styrene ($0.33 \mathrm{~mL}, 2.8 \mathrm{mmol}, 10$ equiv.) in 2 mL of toluene at room temperature over 2 h . After addition, the solution was stirred for 1 h , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with hexanes/acetate (95:5) to afford cyclopropane 187 as a white solid (65 mg , 81% yield). M.p.: $63-66^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-6.2^{\circ}\left(c 2.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.10-7.00(\mathrm{~m}, 8 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ $(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=7.0 .5 .0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $173.3,136.8,135.1,132.1,128.3,127.8,127.7,126.9,126.4,68.7,38.0,32.9,21.9,20.0 ;$ IR (neat): $1708,1253,1168,1107,1092,782,762,695 \mathrm{~cm}^{-1} ;$ HRMS (APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 281.15361$, found: 281.15373. HPLC analysis: $34 \% \mathrm{ee},(R, R)-$ Whelk O1, 2% isopropanaol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, ~ U V ~ 254 \mathrm{~nm}, t_{\mathrm{R}}: 6.6 \mathrm{~min}$ (major), 7.9 $\min ($ minor $)$.

(1R, 2S)-2,4-Dimethylpentan-3-yl 1,2-diphenylcyclopropanecarboxylate (188)

Prepared by following the procedure for compound 186, using 2,4-dimethyl-3-pentyl phenyldiazoacetate (185) ($74 \mathrm{mg}, 0.28 \mathrm{mmol}, 1$ equiv.), $\mathrm{Rh}(\mathrm{II})(\mathbf{1 8 2})(9.0 \mathrm{mg}, 0.0056$ $\mathrm{mmol}, 2 \mathrm{~mol} \%$), and stryene ($0.33 \mathrm{~mL}, 2.8 \mathrm{mmol}, 10$ equiv.). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (100:1) to afford cyclopropane $\mathbf{1 8 8}$ as clear oil $\left(35 \mathrm{mg}, 37 \%\right.$ yield). $R_{f}, 0.22$ (pentane/diethyl
ether 50:1). $[\alpha]^{20}{ }_{\mathrm{D}}-5.2^{\circ}\left(c\right.$ 1.8, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.10-7.01 (m, $8 \mathrm{H}), 6.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}$, $J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.71(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 173.6 (C), 136.7 (C), 135.2 (C), $131.9(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 126.7(\mathrm{CH}), 126.2(\mathrm{CH}), 83.4(\mathrm{CH}), 37.7(\mathrm{C}), 32.5(\mathrm{CH}), 29.4(\mathrm{CH})$, $29.4(\mathrm{CH}), 19.9\left(\mathrm{CH}_{2}\right), 19.5\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 17.0\left(\mathrm{CH}_{3}\right), 16.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 2965, 2932, 1712, 1256, 1170, $697 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{M}^{+}$: 336.2084, found: 336.2085. HPLC analysis: 47% ee, OJ, 0.2% isopropanaol $/$ hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 7.2 \mathrm{~min}$ (major), 12.0 min (minor).

(1R, 2S)-tert-Butyl 1,2-diphenylcyclopropanecarboxylate (189)

Prepared by following the procedure for compound 187, using t-butyl phenyldiazoacetate (186) ($40 \mathrm{mg}, 0.18 \mathrm{mmol}, 1$ equiv.), $\mathrm{Rh}(\mathrm{II})(\mathbf{1 8 2})(5.8 \mathrm{mg}, 0.0056 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, and stryene ($0.20 \mathrm{~mL}, 1.8 \mathrm{mmol}, 10$ equiv.). The crude product was purifed by flash chromatography on silica gel eluting with pentane/diethyl ether (50:1) to afford cyclopropane 189 as a white solid ($22 \mathrm{mg}, 42 \%$ yield). M.p.: $82-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.11-7.00(\mathrm{~m}, 8 \mathrm{H}), 6.77-7.75(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}$, $J=9.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 172.9, 137.0, 135.5, 132.0, 128.2, 127.8, 127.6, $126.8,126.3,81.0,38.8,32.5,28.2,19.8$; IR (neat): 1709, 1367, 1272, 1254, 1154, 696
cm^{-1}; HRMS (APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 295.16926$, found: 295.16972.
HPLC analysis: 4% ee, (S, S)-whelk O1, 2.0% isopropanaol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 7.6 \mathrm{~min}$ (major), 6.9 min (minor).

Methyl 2,6-difluorophenyldiazoacetate (190)

2,6-difluorophenylacetic acid ($3.4 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved with 50 mL of methanol. A few drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added, and the solution was heated to reflux overnight. Then it was cooled to room temperature, 100 mL of diethyl ether and 100 mL of water were added. The ether layer was separated, dried over MgSO_{4}, concentrated under vacuum to give the corresponding methyl ester as colorless oil. The solution of this oil and $p-\mathrm{ABSA}\left(4.8 \mathrm{~g}, 20 \mathrm{mmol}, 1\right.$ equiv.) in 50 mL of acetonitrile was cooled to $0{ }^{\circ} \mathrm{C}$, DBU ($3.2 \mathrm{~mL}, 21.6 \mathrm{mmol}, 1.08$ equiv.) was added in one portion. The reaction mixture was stirred overnight with temperature rising to room temperature. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extraced with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with water ($2 \times 100 \mathrm{~mL}$), dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with 6% diethyl ether/petroleum ether to afford compound 190 as a yellow soild ($2.0 \mathrm{~g}, 48 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.37$7.31(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.8 (C), 160.4 (dd, $J=5.7,252.0 \mathrm{~Hz}, \mathrm{C}), 130.9(\mathrm{t}, J=10.0 \mathrm{~Hz}, \mathrm{CH}), 111.9-111.5(\mathrm{~m}, \mathrm{CH}), 103.4$ (C), $52.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 2105, 1713, 1493, 1469, 1437, 1272, 1237, 1195, 1161, 1035,

1001, 786, $745 \mathrm{~cm}^{-1}$; HRMS (EI) m / z : calcd. for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{M}^{+}$: 212.0392, found: 212.0400 .

Methyl 2-adamantyl-2-(2,6-difluorophenyl)acetate (191)

The solution of Methyl 2,6-difluorophenyldiazoacetate (190) (100 mg, 0.47 mmol$)$ in 3 mL of degassed $2,2^{\prime}$-dimethylbutane was added to a solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(4.5 \mathrm{mg}$, $0.5 \mathrm{~mol} \%$) and adamantane ($130 \mathrm{mg}, 0.94 \mathrm{mmol}, 2$ equiv.) in 2 mL of degassed 2,2dimethylbutane with a syringe pump over 2 h at room temperature. After addition, the solution was stirred overnight, then concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with 5% ether in petroleum ether to afford compound 191 as a white solid ($30 \mathrm{mg}, 20 \%$ yield). M.p.: $69-72{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H})$, $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $170.9(\mathrm{C}), 161.4(\mathrm{dd}, J=$ $247.9,8.0 \mathrm{~Hz}, \mathrm{C}), 128.6(\mathrm{t}, J=10.5 \mathrm{~Hz}, \mathrm{CH}), 113.9(\mathrm{t}, J=19.1 \mathrm{~Hz}, \mathrm{C}), 111.3(\mathrm{~d}, J=$ $24.1 \mathrm{~Hz}, \mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 50.0(\mathrm{CH}), 39.3\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 28.6(\mathrm{CH})$; IR (neat): 2903, 2849, 1747, 1622, 1590, 1467, 1264, 1229, 1198, 1156, 1020, 997, 973, 790, 756 cm^{-1}; HRMS (EI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{M}^{+}$: 320.1582, found: 320.1581. HPLC analysis: 8% ee, CHIRALCEL OD-H, 0.3% isopropanol/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}$, UV 230 $\mathrm{nm}, t_{\mathrm{R}}: 13.3 \mathrm{~min}$ (major), 14.7 min (minor).

References:

(1) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylide; Wiley: New York, 1998. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (c) Davies, H. M. L. Compr. Asymmetric Catal., Suppl.; Springer: Berlin, 2004; Vol. 1, p 83. (d) Davies, H. M. L.; Walji, A. M. Modern RhodiumCatalyzed Organic Reactions; Wiley: New York, 2005; p 301. (e) Wee, A. G. H. Curr. Org. Synth. 2006, 3, 499. (f) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577. (g) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417. (h) Padwa, A. J. Org. Chem. 2009, 74, 6421. (i) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(2) a) Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1973, 14, 2233. (b) Saegusa, T.; Ito, Y.; Kobayashi, S.; Hirota, K.; Shimizu, T. J. Org. Chem. 1968, 33, 544.
(3) Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple Bonds between Metal Atoms, $3{ }^{\text {rd }}$ ed.; Oxford University Press, New York, 2005.
(4) Hansen, J.; Davies, H. M. L. Coord. Chem. Rev. 2008, 252, 545.
(5) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
(6) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
(7) Baleiza, C.; Garcia, H. Chem. Rev. 2006, 106, 3987.
(8) LeCloux, D. D.; Keyes, M. C.; Osawa, M.; Reynolds, V.; Tolman, W. B. Inorg. Chem. 1994, 33, 6361.
(9) (a) Halterman, R. L.; Jan, S. J. Org. Chem. 1991, 56, 5253. (b) Che, C.; Huang, J.; Lee, F.; Li, Y.; Lai, T.; Kwong, H.; Teng, P.; Lee, W.; Lo, W.; Peng, S.; Zhong, Z. J. Am. Chem. Soc. 2001, 123, 4119. (c) Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074.
(10) Brunner, H.; Kluschanzoff, H.; Wutz, K. Bull. Soc. Chim. Belg. 1989, 98, 63.
(a) Doyle, M. P. Recl. Trav. Chim. Pays-Bas. 1991, 110, 305. (b) Singh, V. K.; Arpita, D.; Sekar, G. Synthesis, 1997, 137.
(a) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos, G. H. P. J. Chem. Soc., Chem. Commun. 1990, 361. (b) Ye, T. McKervey, M. A.; Brandes, B. D.; Doyle, M. P. Tetrahedron Lett. 1994, 35, 7269. (c) Ye, T.; Garcia, C. F.; McKervey, M. A. J. Chem. Soc., Perkin Trans. 1 1995, 1373. (d) Garcia, C. F.; McKervey, M. A.; Ye, T. J. Chem. Soc., Chem. Commun. 1996, 1465.
(13) Davies, H. M. L.; Hutcheson, D. K. Tetrahedron Lett. 1993, 34, 7243.
(a) Davies, H. M. L.; Bruzinski, P.; Hutcheson, D. K.; Kong, N.; Fall, M. 1
J. J Am Chem Soc. 1996, 118, 6897. (b) Davies, H. M. L.; Bruzinski, P. R.; Fall, M. J. Tetrahedron Lett. 1996, 37, 4133. (c) Davies, H. M. L.; Townsend, R. J. J. Org Chem. 2001, 66, 6595. (d) Davies, H. M. L.; Venkateramani, C, Org. Lett. 2003, 5, 1403. (e) Hedley, S. J.; Ventura, D. L.; Dominiak, P. M.; Nygren, C. L.; Davies, H. M. L. J. Org. Chem. 2006, 71, 5349. (f) Ni, A.; France, J.; Davies, H. M. L. J. Org. Chem. 2006, 71, 5594. (g) Ventura, D. L.; Li, Z.; Coleman, M. G.; Davies, H. M. L. Tetrahedron 2009, 65, 3052.
(a) Davies, H. M. L.; Stafford, D. G.; Doan, B. D.; Houser, J. H. J. Am. Chem. Soc. 1998, 120, 3326. (b) Olson, J. P.; Davies, H. M. L. Org. Lett. 2008, 10, 573.
(16) Davies, H. M. L.; Lee, G.H. Org. Lett. 2004, 6, 1233.
(a) Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769. (b) Davies, H. M. L.; Yang, J.; Nikolai, J. J. Organomet. Chem. 2005, 690, 6111. (c) Davies, H. M. L.; Hedley, S. J.; Bohall, B. R. J. Org. Chem. 2005, 70, 10737. (d) Davies, H. M. L.; Jin, Q. Org. Lett. 2005, 7, 2293. (e) Davies, H. M. L.: Ni, A. Chem. Commun. 2006, 3110. (f) Davies, H. M. L.; Coleman, M. G.; Ventura, D. L. Org. Lett. 2007, 9, 4971. (g) Nadeau, E.; Li, Z.; Morton, D.; Davies, H. M. L. Synlett. 2009, 151.
(a) Davies, H. M. L.; Jin, Q., J. Am. Chem. Soc. 2004, 126, 10862. (b) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44, 1733. (c)Davies, H. M. L.; Manning, J. R. J. Am. Chem. Soc. 2006, 128, 1060. (d) Davies, H. M. L.; Dai, X. J. Am. Chem. Soc. 2006, 128, 2485. (e) Nadeau, E.; Ventura,D. L.; Brekan, J. A.; Davies, H. M. L. J. Org. Chem. 2010, 75, 1927. (f) Hansen, J.; Autschbach, J.; Davies, H. M. L. . J. Org. Chem. 2009, 74, 6555.
(20) Davies, H. M. L. Eur. J. Org. Chem. 1999, 10, 2459.
(21) Nowlan, D. T., III; Gregg, T. M.; Davies, H. M. L.; Singleton, D. A. J. Am. Chem. Soc. 2003, 125, 15902.
(22) Hansen, J.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6555.
(a) Davies, H. M.; Kong, N. Tetrahedron Lett. 1997, 38, 4203. (b)

Davies, H. M. L.; Panaro, S. A. Tetrahedron Lett. 1999, 40, 5287.
(a) Yamawaki, M. ; Tsutsui, H. ; Kitagaki, S. ; Anada, M. ; Hashimoto, S. Tetrahedron Lett. 2002, 43, 9561. (b) Tsutsui, H. ; Yamaguchi, Y. ; Kitagaki, S. ; Nakamura, S.; Anada, M. ; Hashimoto, S. Tetrahedron : Asymmetry 2003, 14, 817.
(25) Kitagaki, S.; Anada, M. ; Kataoka, O. ; Matsuno, K. ; Umeda, C. ; Watanabe, N. ; Hashimoto, S. J. Am. Chem. Soc. 1999, 121, 1417.
(a) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett., 2006, 8, 3437.
(b) Reddy, R. P.; Lee, H. M. L. Org. Lett. 2006, 8, 5013.
(a) Müller, P.; Lacrampe, F. Tetrahedron: Asymmetry 2003, 14, 1503. (b)

Müller, P.; Bernardinelli, G.; Allenbach, Y. F.; Flack, H. D. Org. Lett. 2004, 6, 1725. (c) Liang, C.; Collet, F.; Robert-Peillard,F.; Müller, P.; Dodd, R. H.; Dauban, P. J. Am. Chem. Soc. 2008, 130, 343.
(a) Marcoux, D.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 6970. (b) Vincent N. G. Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 16383. (c) DeAngelis, A.; Dmitrenko, O.; Yap, G. P. A.; and Fox, J. M. J. Am. Chem. Soc. 2009, 131, 7230. (d) Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc. 2010, 132, 2510.
(29) Schwartz, B. D.; Denton, J. R.; Lian, Y.; Davies, H. M. L.; Williams, C. M. J. Am. Chem. Soc. 2009, 131, 8329.
(30) Anada, M.; Kitagaki, S.; Hashimoto, S. Heterocycles 2000, 52, 875.
(31) Denton, J. R. Ph. D. thesis, SUNY University at Buffalo, 2009.

Doyle, M. P.; Austin, R. E.; Bailey, A. S.; Dwyer, M. P.; Dyatkin, A.
B.; Kalinin, A. V.; Kwan, M. M. Y.; Liras, S. ; Oalmann, C. J.; Pieters, R. J.;

Protopopova, M. N.; Raab, C. E.; Roos, G. H. P.; Zhou, Q. L. J. Am. Chem. Soc. 1995, 117, 5763.

Doyle, M. P.; Protopopova, M.; Muller, P.; Ene, D.; Shapiro, E.A. J. Am. Chem. Soc.1994, 116, 8492.
(34) Welch, C. J.; Tu, Q.; Wang, T.; Raab, C.; Wang, P.; Jia, X.; Bu, X.; Bykowski, D.; Hohenstaufen, B.; Doyle, M. P. Adv. Synth. Catal. 2006, 348, 821.
(a) Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V.; Simonsen,' S. H.; and Ghosht, R. J. Am. Chem. Soc. 1993, 115, 9968. (b) Doyle, M. P.; Dyatkin, A. B.; Protopopova, M. N.; Yang, C. I.; Miertschin, C. S.; Winchester, W. R.; Simonsen, S. H.; Lynch, V.; Ghosh, R. Recl. Trav. Chim. Pays-Bas 1995, 114, 163.
(36) Doyle, M. P.; Morgan, J. P.; Fettinger, J. C.; Zavalij, P. Y.; Colyer, J. T.;

Timmons, D. J.; Carducci, M. D. J. Org. Chem. 2005, 70, 529.
(37) Pirrung M. C.; Zhang J. Tetrahedron Lett. 1992, 33, 5987.
(a) Hodgson, D. M.; Stupple, P. A.; Pierard, D. Y. T. M.; Labande, A. H.; and Johnstone, C. Chem. Eur. J. 2001, 7, 4465. (b) Hodgson, D. M.; and Petroliagi, M. Tetrahedron: Asymmetry 2001, 12, 877. (c) Hodgson, D.M.; Selden, D. A.; and Dossetter, A. G. Tetrahedron: Asymmetry 2003, 14, 3841.
(a) Liao, M.; Wang, J. Green Chem. 2007, 9, 184. (b) Liang, J.; Yuan, S.; Chan, P. W.. H.; Che, C. Tetrahedron Lett. 2003, 44, 5917.

$$
\begin{equation*}
\text { McCarthy, N.; Pirrung M. C.; Ye, T. Tetrahedron Lett. 1992, 33, } 5983 . \tag{40}
\end{equation*}
$$

(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909. (c) Doyle, A. G.; Jacobsen, E. N. Chem. Rev., 2007, 107, 5713. (d) Akiyama, T. Chem. Rev. 2007, 107, 5744. (e) Terada, M. Chem. Commun 2008, 35, 4097.
(a) Hutcheson, D. K. M.S. dissertation, 1993, Wake Forest University. (b). Grazini-Rocha, M.; unpublished results. (c). Thompson, J. L. Ph. D. dissertation, 2005, the State University of New York, University at Buffalo.

Lou, Y.; Remarchuk, T. P.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 14223.

Bear, J. L.; Kitchens, J.; Willcott, M. R. III. J. Inorg. Chem. 1971, 33, 3479.
(45) Johnson, S. A.; Hunt, H. R.; Neumann, H. M. Inorg. Chem. 1963, 2, 960.
(46) Adjabeng, G. M.; Gerritsma, D. A.; Bhanabhai, H.; Frampton, C. S.; Capretta, A. Organometallics 2006, 25, 32.

Guillen, F.; Rivard, M.; Toffano, M.; Legros, J.; Daran, J.; and Fiaud, J.
Tetrahedron 2002, 58, 5895.
(a) Cowley, A. H.; Kemp, R.A.; Lasch, J. G.; Norman, N. C.; Stewart, C, A. J. Am. Chem. Soc.1983, 105, 7444. (b) Cowley, A. H.; Kemp, R.A.; Lasch, J. G.; Norman, N. C.; Stewart, C. A.; Whittlesey, B. R.; Wright, T. C. Inorg. Chem. 1986, 25, 740. (c) Polniaszek, R., J. Org. Chem. 1992, 57, 5189.
(a) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 6, 2625. (b) Denton, J. R.; Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238. (c) Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787.
(50) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312.
(51) Wu, T. R.; Shen, L.; Chong, J. M. Org. Lett. 2004, 6, 2701.
(53) Zhu, S. S.; Cefalo, D. R.; La, D. S.; Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am. Chem. Soc. 1999, 121, 8251.
(54) Wipf, P.; Jung, J. J. Org. Chem. 2000, 65, 6319.

Chapter 2 Highly Enantioselective C-C Bond Formation by RhodiumCatalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Allylic Alcohols/Propargylic Alcohols

2.1 Introduction

Transition metal catalyzed decomposition of diazo compounds results in a wide variety of useful transformations, such as cyclopropanation, $\mathrm{C}-\mathrm{H}$ and $\mathrm{X}-\mathrm{H}$ insertion, and ylide formation. ${ }^{1}$ It is generally accepted that these transformations involve highly electrophilic carbenoid intermediates. ${ }^{2}$ Due to their high reactivity, it has been very challenging to achieve high levels of chemo and stereoselectivity. A large number of transition metal catalyst systems have been developed in the past two decades in order to address these challenges. ${ }^{1,3-7}$

Figure 2.1 Classification of carbenoid intermediates

A different strategy developed by the Davies group is to attenuate the carbenoid reactivity with both an electron-withdrawing group and an electron-donating group (Figure 2.1). ${ }^{1 b, 8}$ Compared with the traditional carbenoids containing only one electron
withdrawing group (acceptor carbenoids) or two electron withdrawing groups (acceptor/acceptor carbenoids), donor/acceptor substituted carbenoids are more stable and are capable of a range of intermolecular transformations with high chemoselectivity. Most importantly, excellent enantioselectivity in these carbenoid transformations was also realized with the utilization of chiral dirhodium catalysts, such as $\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}(\mathbf{1})$, $\mathrm{Rh}_{2}(S \text {-biTISP })_{2}$ (2) and $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ (3) (Figure 2.2).

Figure 2.2 Chiral dirhodium carboxylate catalysts developed by the Davies group

$\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(1)$

$\mathrm{Rh}_{2}(S \text {-biTISP) })_{2}(\mathbf{2})$
$\mathrm{R}=\mathrm{SO}_{2}-2,4,6-$ triiPrC $\mathrm{C}_{6} \mathrm{H}_{2}$

2.1.1 Intermolecular cyclopropanation

The transition metal catalyzed decomposition of alkyldiazoacetate in the presence of alkenes has been an excellent method for the synthesis of cyclopropanes. ${ }^{1 a}$ Although many catalysts, ${ }^{3,4,6-7}$ particularly copper catalysts in the early days, had been successfully applied to the intermolecular version of this transformation, dirhodium catalysts have achieved very limited success. The major limitation is that, in general, the reactions are not particularly stereoselective, as can be seen in the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-catalyzed cyclopropanation of ethyl diazoacetate (5) with styrene. The diastereomeric ratio of cyclopropane $\mathbf{8}$ was only 1.8:1 slightly favoring the trans isomer (Table 2.1, entry 1). The
introduction of donor/acceptor substituted carbenoids, however, completely changed this poor selectivity. The reactions of methyl phenyldiazoacetate (6) and methyl styryldiazoacetate (7) (the two most widely used donor/acceptor carbenoid precursors) with styrene produced cyclopropanes $\mathbf{9}$ and 10 with $>30: 1$ and $>50: 1$ diastereomeric ratio, respectively (entries 2 and 3). ${ }^{9}$

Table 2.1 Effect of rhodium carbenoid structure on the cyclopropanation diastereoselectivity

When dirhodium tetraprolinate, $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, was used as catalyst, the cyclopropanation of styryldiazoacetate 7 with a wide range of monosubstituted alkenes generated cyclopropanes $\mathbf{1 0}$ and $\mathbf{1 8} \mathbf{- 2 4}$ with very high diastereoselectivity (dr 15:1 to $>40: 1$), as well as high enantioselectivity ($90-98 \%$ ee) (Table 2.2). ${ }^{10}$ Aryl groups containing either electron withdrawing (such as Cl) or electron donating groups (such as OMe) were all tolerated in the reaction (entries 1-3). The reaction with simple alkenes also worked very well (entries 4-8). Because of the catalyst's high reactivity and excellent solubility in the hydrocarbon solvent, the reactions were able to be conducted at $-78^{\circ} \mathrm{C}$.
$\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed cyclopropanation of 1,1 '-disubstituted alkene 25 with phenyldiazoacetate $\mathbf{6}$ produced tetrasubstituted cyclopropane $\mathbf{2 6}$ with an E / Z ratio of

84:16, the major diastereomer was isolated in 75% yield and 98% ee (Scheme 2.1). ${ }^{11}$ Considering that the diastereocontrol was caused by the distant para substituents on the aryl groups, the high diastereoselectivity of this reaction is remarkable. Cyclopropane 26 was transformed into the Tamoxifen analogue 27 in a few standard steps. ${ }^{12}$

Table 2.2 Cyclopropanation of styryldiazoacetate 7 with alkenes

Cr_{R}	 7			$\xrightarrow[\text { pentane, }-78^{\circ} \mathrm{C}]{\mathrm{Rh}_{2}(S-D O S P)_{4}}$		
entry	R		temp, ${ }^{\circ} \mathrm{C}$	product	ee, \%	yield, \%
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	4	-78	10	98	68
2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	11	-78	18	>97	70
3	$p-\mathrm{MeOC}_{6} \mathrm{H}$	412	-78	19	90	41
4	AcO	13	-78	20	95	26
5	EtO	14	-78	21	93	65
6	n-Bu	15	25	22	>90	63
7	Et	16	25	23	>95	65
8	i-Pr	17	25	24	95	58

Scheme 2.1 Cyclopropanation of phenyldiazoacetate $\mathbf{6}$ with 1,1-disubstituted alkene

Although a trans double bond is generally considered to be too sterically crowded for cyclopropanation, ${ }^{10}$ due to the electronic activation by the p-methoxy group, transanethole (28) reacted with styryldiazoacetate 7 to smoothly generate tetrasubstituted cyclopropane 29 in 61% yield, $>97: 3 \mathrm{dr}$ and 78% ee (Scheme 2.2). ${ }^{14}$

Scheme 2.2 Cyclopropanation of styryldiazoacetate 7 with trans-alkene

Cyclopropanation by aryldiazoacetates and electron rich trisubstituted alkenes were also extensively studied. ${ }^{15} \quad \mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed reaction of p bromophenyldiazoacetate (30) with silyl enol ether 31 generated pentasubstituted cyclopropane 32 as a single diastereomer in 84% isolated yield and 95% ee (Scheme 2.3). This stereoselective synthesis of highly functionalized cyclopropanes effectively broadened the scope of the cyclopropanation chemistry.

Scheme 2.3 Cyclopropanation of p-bromophenyldiazoacetate $\mathbf{3 0}$ with trisubstituted
alkene

In recent years, donor/acceptor carbenoids were also expanded to include diazo substrates containing phosphate, trifluoromethyl, cyano, and ketones as the electron withdrawing groups. $\mathrm{Rh}_{2}(\mathrm{PTAD})_{4}$-catalyzed cyclopropanation reactions of these carbenoid precursors with styrene are summarized in Scheme 2.4. High diastereo- and enantioselectivity were routinely observed in these reactions. ${ }^{16-19}$

Scheme 2.4 Cyclopropanation of other donor/acceptor carbenoid precursors with styrene

Asymmetric synthesis of highly functionalized cycloheptadienes was achieved through a tandem cyclopropanation/Cope rearrangement of vinyldiazoacetates and dienes (Scheme 2.5). ${ }^{20}$ The initial cyclopropanation step produces cis-divinylcyclopropane in a highly selective manner, which then undergoes a Cope rearrangement through a boat transition state to form a cycloheptadiene with full control of stereochemistry at three stereogenic centers. A variety of dienes, including cyclopentadiene and furan can be used for this transformation.

A recent development of the tandem cyclopropanation/Cope rearrangement is the asymmetric synthesis of tropanes by $\mathrm{Rh}_{2}(S-\mathrm{PTAD})_{4}$-catalyzed [4+3] cycloaddition between siloxyvinyldiazoacetate (41) and pyroles. ${ }^{21}$ A variety of highly substituted tropanes were synthesized in $64-86 \%$ yield and $84-98 \%$ ee (Scheme 2.6). The $[4+3]$ cycloaddition between diazo 41 and diene $\mathbf{4 2}$ also leads to the rapid generation of the
cycloheptane core (43) of (-)-5-epi-vibsanin (44) in 65% yield and 90% ee (Scheme 2.7). ${ }^{22}$

Scheme 2.5 Tandem cyclopropanation/Cope rearrangement between vinyldiazoacetate and diene

Scheme $2.6[4+3]$ cycloaddition between siloxyvinyldiazoacetate 41 and pyroles

Scheme $2.7[4+3]$ cycloaddition in the synthesis of (-)-5-epi-vibsanin E

2.1.2 Intermolecular $\mathbf{C}-\mathbf{H}$ insertion

Carbon-hydrogen bond $(\mathrm{C}-\mathrm{H})$ functionalization has been extensively studied in the past two decades, and considerable progress has been achieved. ${ }^{1,23}$ Distinct from the traditional approach of conducting transformations on the pre-existing functional groups, $\mathrm{C}-\mathrm{H}$ functionalization relies on the selective modification of ubiquitous $\mathrm{C}-\mathrm{H}$ bonds in organic molecules. This approach has the potential to dramatically shorten the complex molecule synthesis sequence and improve the synthetic efficiency and atom economy. However, in order to be synthetically practical, C-H functionalization has to overcome two fundamental challenges: 1 . The inert nature of most $\mathrm{C}-\mathrm{H}$ bonds; 2. The selective functionalization of a single $\mathrm{C}-\mathrm{H}$ bond within a complex molecule. One strategy to overcome these two challenges is to use transition metals to react with the $\mathrm{C}-\mathrm{H}$ bonds and produce far more reactive $\mathrm{C}-\mathrm{M}$ bonds which can then be converted to new functional groups under mild conditions. ${ }^{23}$ In order to achieve selectivity, directing groups are needed to bind to the metal center and selectively deliver the catalyst to the proximal CH bond. Another strategy that has been shown to be very successful is to use highly electrophilic carbenoid intermediate generated from the metal (particularly rhodium) catalyzed decomposition of diazo compounds to directly insert into the $\mathrm{C}-\mathrm{H}$ bonds (Figure 2.3). ${ }^{1}$

The traditional acceptor carbenoids and acceptor/acceptor carbenoids have been successfully applied to the intramolecular C-H insertion transformations. ${ }^{1 d}$ Particularly, chiral dirhodium carboxamidates catalyzed decomposition of alkyl diazoacetates has been extensively studied by Doyle and co-workers. The generated carbenoids undergo
intramolecular C-H insertion to form five-member ring with high diastereoselectivity and enantioselectivity. However, these conventional carbenoids are too reactive for highly chemoselective intermolecular C-H insertion. Also, carbene dimerization is a favorable competing side reaction. One example is the rhodium catalyzed $\mathrm{C}-\mathrm{H}$ insertion of ethyl diazoacetate (5) into 2-methylbutane (Table 2.3). ${ }^{24}$ All of the four possible $\mathrm{C}-\mathrm{H}$ insertion products were formed, although the catalysts had a profound influence on the product distribution.

Figure 2.3 Carbenoid induced C-H insertion

The donor/acceptor carbenoids, however, are much more chemoselective and less prone to carbene dimerization than the conventional acceptor carbenoids and acceptor/acceptor carbenoids. ${ }^{25}$ Combined with chiral dirhodium catalysts, particularly $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, a wide range of highly diastereoselective and enantioselective intermolecular $\mathrm{C}-\mathrm{H}$ insertion reactions have been successfully developed. ${ }^{1 \mathrm{~b}, 8 \mathrm{c}}$ An illustrative example of the distinguished chemoselectivity in these systems is the $\mathrm{Rh}_{2}(S$ DOSP) $)_{4}$-catalyzed C-H insertion of phenyldiazoacetate (6) with 2-methylbutane (Scheme 2.8). ${ }^{26}$ Selective insertion into the tertiary $\mathrm{C}-\mathrm{H}$ bond produced compound 46 in 60% yield and 68% ee.

Table 2.3 Intermolecular C-H insertion of ethyl diazoacetate with 2-methylbutane

Scheme 2.8 C-H insertion of phenyldiazoacetate with 2-methylbutane

High enantioselectivity was routinely observed in the $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed $\mathrm{C}-\mathrm{H}$ insertion of aryldiazoacetates with cycloalkanes (Table 2.4). ${ }^{26}$ Either para-, meta-, or ortho-substituted aryldiazoacetates all reacted efficiently with the cycloalkanes and produced compounds $\mathbf{4 9 - 5 4}$ in $47-80 \%$ yield and $90-96 \%$ ee.

Rhodium catalyzed intermolecular $\mathrm{C}-\mathrm{H}$ insertion of donor/acceptor carbenoids also provides valuable new strategies for organic synthesis. For example, C-H insertion adjacent to oxygen produces compounds that would be commonly derived from an Aldol reaction (Scheme 2.9). ${ }^{27-29} \mathrm{C}-\mathrm{H}$ insertion adjacent to nitrogen produces compounds that would be commonly derived from the Mannich reaction. ${ }^{30-33}$ Some excellent
demonstrations of this novel strategy include the concise and highly stereoselective synthesis of drug motifs Venlafaxine (57) (Scheme 2.10) and Ritalin (59) (Scheme 2.11).

Table 2.4 C-H insertion of aryldiazoacetates with cycloalkanes

	${ }_{2} \mathrm{Me}^{+}$			$\frac{\mathrm{Rh}_{2}(S-D O S P)}{10^{\circ} \mathrm{C}}$	 $23-80 \%$ yield, $88-96 \%$ ee	
	Ar		n	product	yield, \%	ee, \%
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	6	1	49	72	96
2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	11	1	50	70	95
3	$\mathrm{C}_{6} \mathrm{H}_{5}$	6	2	51	80	95
4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	11	2	52	76	94
5	$o-\mathrm{ClC}_{6} \mathrm{H}_{4}$	47	2	53	81	90
6	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	48	2	54	47	94

Scheme 2.9 C-H insertion of aryldiazoacetates adjacent to oxygen

Scheme 2.10 Asymmetric synthesis of Venlafaxine

Scheme 2.11 Asymmetric synthsis of Ritalin

When vinyldiazoacetates were used as the donor/acceptor carbenoid precursor, combined $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement occurred. ${ }^{34-39}$ Extremely high enantioselectivity is characteristic of this type of transformation. $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}{ }^{-}$ catalyzed reaction of methyl 3,4-dichlorophenylvinyldiazoacetate (60) with 1,3cyclohexadiene (61) produced the combined C-H activation/Cope rearrangement product 62 in 59% yield and 99% ee, which could be converted into $(+)$-sertraline using standard operations (Scheme 2.12). ${ }^{34}$

Scheme 2.12 Synthesis of (+)-sertraline

The $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$-catalyzed reaction of vinyldiazoacetate 64 with racemic dihydronaphthalene 65 involved an enantiodivergent process (Scheme 2.13). ${ }^{40}$ Only (R)65 reacted with the carbenoid through combined $\mathrm{C}-\mathrm{H}$ activation/Cope rearrangement to form compound $\mathbf{6 6}$ in 90% ee with the concomitant establishment of all three stereogenic centers. On the other hand, $(S)-65$ reacted with the carbenoid to form cyclopropane 67.

This remarkable reactivity has been applied to the highly efficient synthesis of a number of natural products derived from the West Indian gorgonian coral Pseudopterogorgia elisabethae, such as (+)-erogorgiaene (68), (-)-colombiasin A (69) and (-)-elisapterosin B (70) (Figure 2.4). ${ }^{40-42}$

Scheme 2.13 Enantiodivergent reaction between vinyldiazoacetate $\mathbf{6 4}$ with racemic dihydronaphthalene $\mathbf{6 5}$

Figure 2.4 Natural products synthesized by the combined C-H activation/Cope

2.1.3 Ylide formation

The highly electrophilic carbenoid intermediate derived from the transition metal catalyzed decomposition of diazo compounds can readily react with hetereoatoms including oxygen, sulfur, and nitrogen to form ylides. The generated ylides are usually very reactive and can further undergo a wide variety of transformations, such as $\mathrm{X}-\mathrm{H}$
insertion (X can be oxygen, nitrogen and sulfur), [2,3]-sigmatropic rearrangement, Stevens rearrangement, and 1,3-dipolar cycloaddition. ${ }^{1,43}$

Donor/acceptor carbenoids have been successfully used for the highly enantioselective $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ insertions. The copper/planar-chiral ligand (-)-bpy* catalyst system developed by Fu and co-workers accomplished the $\mathrm{N}-\mathrm{H}$ insertion of a wide range of aryldiazoacetates with carbomate $\mathbf{7 1}$ in good yield and enantioselectivity (Table 2.5). ${ }^{44}$ AgSbF_{6} works as co-catalyst to generate the halide-free copper complex. This method provides an efficient entry for the asymmetric synthesis of α-amino acids.

Table 2.5 Asymmetric $\mathrm{N}-\mathrm{H}$ insertion of aryldiazoacetates with carbomate

$(-)-B P Y^{*}$

entry	Ar	diazo	product	yield, \%	ee, $\%$
1	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{7 2}$	$\mathbf{7 9}$	75	94
2	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$\mathbf{7 3}$	$\mathbf{8 0}$	61	95
3	$p-\left(\mathrm{NHBoc}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathbf{7 4}\right.$	$\mathbf{8 1}$	$\mathbf{7 7}$	91	
4	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	$\mathbf{7 5}$	$\mathbf{8 2}$	71	81
5	3-MeC H_{4}	$\mathbf{7 6}$	$\mathbf{8 3}$	75	88
6	2-naphthyl	$\mathbf{7 7}$	$\mathbf{8 4}$	73	91
7	3-thienyl	$\mathbf{7 8}$	$\mathbf{8 5}$	48	80

The copper/planar-chiral ligand (+)-BISAF catalyst system was effecive in the asymmetric $\mathrm{O}-\mathrm{H}$ insertion of phenyldiazoacetate $\mathbf{6}$ with a variety of alcohols, such as methanol, ethanol, and benzylalcohol. ${ }^{45}$ The highest enantioselectivity was obtained with 2-trimethylsilylethanol as substrate, and the $\mathrm{O}-\mathrm{H}$ insertion product $\mathbf{8 7}$ was formed in 84% yield and 90% ee (Table 2.6).

Table 2.6 Asymmetric O-H insertion of phenyldiazoacetate $\mathbf{6}$ with alcohols

(+)BISAF

Scheme 2.14 Asymmetric O-H insertion of phenyldiazoacetate $\mathbf{6}$ with water

89

Highly enantioselective O-H insertion of phenyldiazoacetate 6 with water was also achieved with the copper/chiral spirobox (89) catalyst system by Zhou and co-workers. ${ }^{46}$ α-hydroxyphenylacetate (90) was formed in 91\% yield and 90\% ee (Scheme 2.14).

Dirhodium carboxylates have been introduced as highly efficient catalysts in the carbenoid $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ insertion reactions since 1970s. ${ }^{47-48}$ The most notable application is the $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$-catalyzed intramolecular insertion into a β-lactam N - H bond, a key step in the Merck synthesis of thienamycin (Scheme 2.15). ${ }^{49}$ Bicyclic ketoester 92 was formed in quantitative yield. However, compared with the success of the asymmetric cyclopropanation and $\mathrm{C}-\mathrm{H}$ insertion reactions, chiral dirhodium catalysts have not proved to be effective in the asymmetric $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ insertion reactions. ${ }^{50}$ The reaction of phenyldiazoacetate $\mathbf{6}$ with alcohols catalyzed by various chiral dirhodium
carboxylates produced the $\mathrm{O}-\mathrm{H}$ insertion products in excellent yield, while all in racemic form. ${ }^{51}$

Scheme 2.15 Intramolecular N-H insertion of diazoketoester 91

The dramatic difference between chiral copper and dirhodium catalysts on the asymmetric $\mathrm{O}-\mathrm{H}$ insertion of phenyldiazoacetate $\mathbf{6}$ was studied by Yu using density functional theory (DFT) calculations with the B3LYP functional. ${ }^{52}$ The computational results showed that a water-catalyzed [1,2]-proton shift process was much more favorable than the widely accepted direct [1,2]-proton shift with both catalysts (Scheme 2.16). The free ylide A-2 is the reactive precursor for the [1,2]-proton shift in the $\mathrm{Rh}(\mathrm{II})$-catalyzed $\mathrm{O}-\mathrm{H}$ insertion, while the copper-associated ylide $\mathbf{B}-\mathbf{2}$ is the reactive precursor for the [1,2]-proton shift in the Cu-catalyzed O-H insertion. The neutral character of dirhodium catalyst might be responsible for its easy dissociation from the ylide intermediate.

Scheme 2.16 $\mathrm{Rh}(\mathrm{II})$ and Cu catalyzed $\mathrm{O}-\mathrm{H}$ insertion

Besides the $\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ insertion, donor/acceptor carbenoids also found broad application in the three-component reactions with alcohols and aldehydes (or imines). ${ }^{53-57}$ The oxonium ylide derived from the aryldiazoacetate and alcohol has proper stability to "delay" the [1,2]-proton shift and works as nucleophile to attack imine, ${ }^{54,56}$ aldehyde, ${ }^{55}$ or α, β-unsaturated carbonyl compounds (Scheme 2.17). ${ }^{57} \mathrm{~A}$ variety of compounds containing one quaternary center were formed with very high diastereoselectivity. In the case of using a chiral co-catalyst to activate the imine or carbonyl, high enantioselectivity was also achieved. In most of these reactions, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ was used as catalyst to decompose the aryldiazoacetates. Although it was proposed that the equilibrium of the metal-associated ylide and the free ylide exist during the reaction, racemic product was formed when chiral dirhodium catalyst such as $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ was used. ${ }^{53}$

Scheme 2.17 Three component reactions of aryldiazoacetates

The reaction of donor/acceptor carbenoids with aldehydes is a highly diastereoselective method for the synthesis of epoxides. ${ }^{58}$ Trisubstituted expoxide $\mathbf{9 4}$ was formed as a single diastereomer in 76% yield from the reaction of phenyldiazoacetate $\mathbf{6}$ with benzaldehyde
(Scheme 2.18). In a similar fashion to the $\mathrm{O}-\mathrm{H}$ insertion and three-component reaction involving oxonium ylides derived from donor/acceptor carbenoids, chiral dirhodium catalysts did not have any asymmetric influence on the epoxide formation. With $\mathrm{Rh}_{2}(S$ DOSP) $)_{4}$ as catalyst, compound 94 was formed in racemic form.

Scheme 2.18 The epoxide formation with phenyldiazoacetate 6

Donor/acceptor carbenoids have also been used for the sulfur ylide associated transformations, in which chiral dirhodium catalysts usually give moderate enantioselectivity on the product formation. ${ }^{59-60} \mathrm{Rh}_{2}(S \text {-DOSP })_{4}$-catalyzed sulfur ylide formation/[2,3]-sigmatropic rearrangement between p-methoxyphenyldiazoacetate 12 and aryl allyl sulfide $\mathbf{9 5}$ produced allene $\mathbf{9 6}$ bearing one quaternary center in 91% yield and 48% ee (Scheme 2.19). ${ }^{59}$

Scheme 2.19 Sulfur ylide formation/[2,3]-sigmatropic rearrangement with aryldiazoacetate 12

Compared with its outstanding performance in the intermolecular cyclopropanation and $\mathrm{C}-\mathrm{H}$ insertion reactions, it is surprising that $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ has poor asymmetric influence in the donor/acceptor carbenoid ylide transformations. Although the dissociation of metal to form the free ylide intermediate is the most reasonable
explanation, how to prevent this dissociation process and achieve high stereoselectivity remains a challenge.

2.2 Results and discussion

2.2.1 New discovery

Extensive experimental and calculation studies show that the $\mathrm{C}-\mathrm{H}$ functionalizations by donor/acceptor substituted rhodium carbenoids proceed through a concerted nonsynchronous manner, with positive charge buildup on the carbon to be functionalized. ${ }^{25}$ A site that can stabilize this positive charge will be reactive toward $\mathrm{C}-\mathrm{H}$ functionalization. Meanwhile, steric influence is also critical. If the site is too crowded, $\mathrm{C}-\mathrm{H}$ functionalization will be blocked, even when the site is electronically activated.

During the study of selective $\mathrm{C}-\mathrm{H}$ functionalization of the tertiary $\mathrm{C}-\mathrm{H}$ bonds with donor/acceptor carbenoids, (E)-4-methylpent-2-ene (97) was chosen as substrate. It contains two allylic $\mathrm{C}-\mathrm{H}$ bonds that could be functionalized, and it was anticipated that the allylic tertiary $\mathrm{C}-\mathrm{H}$ bond at 4 -position would be more reactive than the allylic primary C-H bond at 1-position. The reaction of 97 with phenyldiazoacetate $\mathbf{6}$ catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ worked smoothly to give one product in 34% yield, which was initially assigned as compound 98 largely based on its ${ }^{1} \mathrm{H}$ NMR spectrum (Scheme 2.20). This assignment was also consistent with the original hypothesis that the allylic tertiary $\mathrm{C}-\mathrm{H}$ bond would be more reactive. However, upon very careful analysis of its ${ }^{13} \mathrm{C}$ NMR spectrum, two questions arose: 1 . The chemical shift of the benzylic tertiary carbon was $\sim 80 \mathrm{ppm}$ which is further down field than that of similar compounds $(\sim 60 \mathrm{ppm}) ;{ }^{61} 2$. This carbon signal had similar intensity as the carbonyl carbon which suggested it could be a
quaternary carbon. Indeed, a follow-up DEPT spectrum confirmed it was a quaternary carbon. Combined with HRMS spectrum and $\mathrm{D}_{2} \mathrm{O}$ exchange experiment, this product was determined to be compound $\mathbf{9 9}$, containing a tertiary hydroxy group at the benzylic position (eventually, compound $\mathbf{9 8}$ was isolated in 10% yield from the reaction of $\mathbf{6}$ with another batch of alkene 97. Its ${ }^{13} \mathrm{C}$ NMR spectrum showed that the chemical shift of the benzylic carbon was 61.6 ppm).

Scheme 2.20 Reaction of phenyldiazoacetate $\mathbf{6}$ with (E)-4-methylpent-2-ene 97

Scheme 2.21 Reaction of phenyldiazoacetate 6 with allylic alcohols

Considering the possibility that this unexpected product 99 might result from an alcohol impurity in the sample of alkene 97, allylic alcohol $\mathbf{1 0 0}$ and $\mathbf{1 0 1}$ were tested in reactions with phenyldiazoacetate 6 (Scheme 2.21). Interestingly, the reaction of alcohol
$\mathbf{1 0 0}$ with $\mathbf{6}$ produced another α-hydroxycarboxylate 102 as a $4: 1$ diastereomeric mixture in 79% combined yield and 88% ee for the major diastereomer and 65% ee for the minor diastereomer (Eq (a)). Meanwhile, no $\mathrm{O}-\mathrm{H}$ insertion product was detected in this reaction. The reaction of alcohol 101 with 6, however, produced a 5:1 mixture of compound 99 and the $\mathrm{O}-\mathrm{H}$ insertion product 103 in 94% combined yield ($\mathrm{Eq}(\mathrm{b})$). The major product, compound 99 was formed in 84% ee. Based on these results, it was concluded that allylic alcohol 101 was the impurity in the sample of alkene 97 . A reasonable mechanism for this reaction is shown in Scheme 2.22. The reaction of $\mathbf{6}$ with alcohol 100 and 101 went through a tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement process and produced α-hydroxycarboxylate 102 and 99 , respectively.

Scheme 2.22 Tandem ylide formation/[2,3]-sigmatropic rearrangement between allylic alcohol and phenyldiazoacetate

Since the O-H insertion between carbenoid and alcohol has been a well-established reaction, it is very surprisingly that the reaction of phenyldiazoacetate 6 with allylic alcohol $\mathbf{1 0 0}$ or $\mathbf{1 0 1}$ gave the [2,3]-sigmatropic rearrangement product as the major product. Moreover, considering the fact that chiral dirhodium catalysts always have very low asymmetric induction in the $\mathrm{O}-\mathrm{H}$ insertion reactions, it is more interesting that the [2,3]-sigmatropic rearrangement product 99 and 102 were formed with good
enantioselectivity $(65-88 \%$ ee). In order to understand this newly discovered transformation, a series of detailed studies were undertaken.

2.2.2 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols -generation of one stereogenic center

It is generally accepted that the formation of achiral enol intermediate III through proton transfer process and the formation of free ylide IV through the dissociation of rhodium catalyst from metal associated ylide II are the major causes of the racemic $\mathrm{O}-\mathrm{H}$ insertion product formation in rhodium catalyzed carbenoid $\mathrm{O}-\mathrm{H}$ insertions (Scheme 2.23). ${ }^{52}$ It would be reasonable to propose that the newly discovered tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between the allylic alcohol and phenyldiazoacetate $\mathbf{6}$ involves a relatively stable metal associated ylide II as the major intermediate. Two factors would favor its formation: 1. a highly substituted allyl moiety would effectively stabilize the positive charge in ylide II and subsequently suppress the achiral enol III formation. 2. nonpolar solvents, such as 2,2-dimethylbutane and pentane, could suppress the dissociation of rhodium catalyst from ylide II and subsequently suppress the free ylide IV formation.

Considering these factors, the reaction of 4-methoxy-2-methylpent-2-ene (104) and phenyldiazoacetate 6 in pentane would have better selectivity favoring the [2,3]sigmatropic rearrangement than the reaction of alcohol 101 and 6. Compound 104 contains similar highly substituted allyl moiety as 101, but does not have the free OH group for the competing $\mathrm{O}-\mathrm{H}$ insertion reaction, these structural features would make the formation of the metal associated ylide intermediate more favorable. Unfortunately,
instead of forming the [2,3]-sigmatropic rearrangement product, the reaction of $\mathbf{1 0 4}$ and $\mathbf{6}$ in pentane with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced the $\mathrm{C}-\mathrm{H}$ insertion product $\mathbf{1 0 5}$ as a 2:1 diastereomeric mixture in 54% yield (Scheme 2.24). Even though it is a failure in terms of the desired rearrangement transformation, it is still a most compelling example of the complementary influence of steric and electronic effects on the regioselectivity of $\mathrm{C}-\mathrm{H}$ functionalization. The allylic $\mathrm{C}-\mathrm{H}$ bond of $\mathbf{1 0 4}$ is electronically highly activated, but, due to its overwhelming steric influence with donor/acceptor carbenoids, $\mathrm{C}-\mathrm{H}$ functionalization at the methyl group preferentially occurs.

Scheme 2.23 Rationale of the reaction of allylic alcohol with donor/acceptor carbenoids

Scheme 2.24 Reaction of allyl mether ether 105 with phenyldiazoacetate 6

After finding out that the hydroxyl group was necessary for the tandem ylide formation/[2,3]-sigmatropic rearrangement reaction, our focus turned to the use of allylic alcohols as starting material. The optimal reaction conditions favoring the formation of [2,3]-sigmatropic rearrangement product, as well as the systematic study including the effects of dirhodium catalyst, solvent, substrates, and carbenoids on the reaction selectivity were all extensively explored.

2.2.2.1 Optimal reaction conditions

In order to establish the optimal reaction conditions for the formation of [2,3]sigmatropic rearrangement products, the reaction of alcohol 101 and phenyldiazoacetate 6 was chosen as a standard reaction. The reaction outcomes under different conditions are summarized in Table 2.7. The solvent had a significant effect on the ratio of [2,3]sigmatropic rearrangement product 99 and $\mathrm{O}-\mathrm{H}$ insertion product 103 (entries 1-3). Using pentane as solvent, the ratio of $\mathbf{9 9} / \mathbf{1 0 3}$ was $5: 1$. However, it decreased to $3: 1$ when toluene was used as solvent, and further decreased to $1: 1$ when more polar solvents such as dichloromethane were used. The enantioselectivity of $\mathbf{9 9}$ also decreased from 84% ee to 74% ee when the solvent was changed from pentane to dichloromethane, which was consistent with previous observation that $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ had better asymmetric induction in a nonpolar hydrocarbon solvent. ${ }^{10}$ The other two excellent chiral dirhodium catalysts
for the reactions of aryldiazoacetates are $\mathrm{Rh}_{2}(S \text {-PTAD })_{4}$ and $\mathrm{Rh}_{2}(S \text {-biTISP })_{2}$. But neither of these were as effective as $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ at favoring the formation of $\mathbf{9 9}$ over $\mathbf{1 0 3}$ (entries 4-5). Compound 99 was formed in only 37% ee with the opposite major enantiomer in $\mathrm{Rh}_{2}(S \text {-biTISP })_{2}$-catalyzed reaction. Interestingly, the common achiral dirhodium catalysts, such as $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}, \mathrm{Rh}_{2}(\mathrm{OOct})_{4}$ and the very electrophilic $\mathrm{Rh}_{2}(\mathrm{TFA})_{4}$ all strongly favored the $\mathrm{O}-\mathrm{H}$ insertion product formation (entries 6-9). The only exception was $\mathrm{Rh}_{2}(\mathrm{esp})_{2}$, developed by Du Bois, ${ }^{62}$ which slightly favored the [2,3]sigmatropic rearrangement product formation with the ratio of $\mathbf{9 9 / 1 0 3}$ as $2: 1$ (entry11). In all of these reactions, $\mathrm{O}-\mathrm{H}$ insertion product $\mathbf{1 0 3}$ was formed as a 1:1 diastereomeric mixture, and both diastereomers had $<10 \%$ ee in the chiral catalyst catalyzed reactions.

After finding out that $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and pentane gave the best selectivity favoring the [2,3]-sigmatropic rearrangement product formation, the influence of temperature and stoichiometries were also studied (Table 2.8). The reaction of phenyldiazoacetate $\mathbf{6}$ and 4 equiv. of racemic $\mathbf{1 0 1}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst and pentane as solvent at room temperature gave a slightly higher ratio of $\mathbf{9 9} / \mathbf{1 0 3}$ (6:1), compared with the reaction with only 2 equiv. of racemic 101 (entry 2). Further increasing the amount of $\mathbf{1 0 1}$ to 10 equiv. decreased this ratio to $4: 1$ (entry 3). The temperature also had slight influence on the reaction selectivity (entry 4-5). The reaction at either $40{ }^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ produced a $4: 1$ mixture of $\mathbf{9 9}$ and 103. Notably, under all of these conditions, compound 99 was isolated in very good enantiomeric excess ($81-91 \%$ ee).

Table 2.7 Effects of dirhodium catalyst and solvent on the ratio of $\mathbf{9 9} / \mathbf{1 0 3}$

Table 2.8 Effect of temperature and the amount of allylic alcohol on the ratio of 99/103

	${ }^{-1}+\mathrm{Ph}$	$\xrightarrow[\text { pentane }]{\substack{\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4} \\(1 \mathrm{~mol} \%)}}$		 99	
entry	101	temp.	99/103 ${ }^{\text {a }}$	$\begin{gathered} \text { yield of } \\ (99+103), \%^{b} \\ \hline \end{gathered}$	ee of $99, \%^{\text {c }}$
1	2 equiv.	rt	5:1	94	84
2	4 equiv.	rt	6:1	86	86
3	10 equiv.	rt	4:1	77	88
4	4 equiv.	$0^{\circ} \mathrm{C}$	4:1	81	91
5	4 equiv.	$40^{\circ} \mathrm{C}$	4:1	99	81

[^2]Based on these results in Table 2.7 and 2.8, it was concluded that the optimal reaction conditions for the selective formation of [2,3]-sigmatropic rearrangement product were to use 4 equiv. of alcohol and pentane as solvent. The reaction should be carrried out at room temperature with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst.

2.2.2.2 Effect of allylic alcohols

The optimal reaction conditions were then applied to the reactions of phenyldiazoacetate 6 with a variety of allylic alcohols. The results are summarized in Table 2.9. Tertiary allylic alcohol and primary allylic alcohol had completely different influences on the reaction outcome. The reaction of $\mathbf{6}$ with tertiary alcohol 106 gave clean [2,3]-sigmatropic rearrangement product 113 in 70% yield and 79% ee, and no trace of the competing $\mathrm{O}-\mathrm{H}$ insertion product was observed (entry1). However, the reaction of $\mathbf{6}$ with primary allylic alcohol $\mathbf{1 1 2}$ gave clean $\mathrm{O}-\mathrm{H}$ insertion product $\mathbf{1 1 9}$ in 63% yield and no trace of the competing [2,3]-sigmatropic rearrangement product was observed (entry 8). As typical with rhodium catalyzed $\mathrm{O}-\mathrm{H}$ insertion reactions, $\mathbf{1 1 9}$ was afforded in racemic form. The reaction of $\mathbf{6}$ with secondary allylic alcohol $\mathbf{1 0 8}$ produced a 4:1 mixture of $[2,3]$-sigmatropic rearrangement product 115 and the competing $\mathrm{O}-\mathrm{H}$ insertion product, and 115 was isolated as a $1: 1$ diastereomeric mixture in 66% yield, 90% ee and 85% ee for each diastereomer (entry 4). The substituent on the terminal double bond was also important for the reaction selectivity. Tertiary allylic alcohol 107 containing an unsubstituted terminal double bond only had a 5:1 ratio favoring the [2,3]sigmatropic rearrangement product formation (entry 3). While secondary allylic alcohol 110 containing an unsubstituted terminal double bond had 1:14 ratio strongly favoring the $\mathrm{O}-\mathrm{H}$ insertion product formation (entry 6).

Table 2.9 Effect of allyl alcohols on the formation of [2,3]-sigmatropic rearrangement
(4 equiv.)

[^3]
2.2.2.3 Effect of carbenoid structure

Table 2.10 Reactions of alcohol 101 with different donor/acceptor carbenoids

${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC. ${ }^{d}$ Determined by ${ }^{1} \mathrm{H}$ NMR with addition of $\mathrm{Eu}(\mathrm{ffc})_{3}$.

Having established that highly substituted allylic alcohols prefer the [2,3]-sigmatropic rearrangement product formation, the effect of carbenoid structure on the reaction selectivity was carried out. Different donor/acceptor carbenoid precursors were reacted with racemic alcohol 101, and the results are summarized in Table 2.10. pbromophenyldiazoacetate (30) gave slightly higher selectivity than phenyldiazoacetate (6), and [2,3]-sigmatropic rearrangement product $\mathbf{1 2 3}$ was isolated in 70% yield and 88% ee (entry 2). However, p-methoxyphenyldiazoacetate (12) gave much lower selectivity, and its reaction with $\mathbf{1 0 1}$ produced a 1:2 mixture slightly favoring the $\mathrm{O}-\mathrm{H}$ insertion, the [2,3]-sigmatropic rearrangement product 122 was isolated in only 17% yield and 92% ee
(entry 1). Vinyldiazoacetates are another type of widely used donor/acceptor carbenoid precursors. The reaction of styryldiazoacetate 7 with 101 produced a 10:1 mixture strongly favoring the [2,3]-sigmatropic rearrangement product formation, and compound $\mathbf{1 2 5}$ was isolated in 70% yield and 95% ee (entry 4).

Scheme 2.25 Reactions of alcohol 101 with conventional carbenoids

The reaction of $\mathbf{1 0 1}$ with the conventional carbenoids was also studied (Scheme 2.25). No [2,3]-sigmatropic rearrangement product was observed in the reaction of 101 with ethyl diazoacetate (5) and O-H insertion product $\mathbf{1 2 7}$ was formed in 67% yield and 5% ee. The reaction with diazomalonate $\mathbf{1 2 8}$ produced a $1: 2$ mixture favoring the $\mathrm{O}-\mathrm{H}$ insertion product formation in 52% combined yield.

This study demonstrated that the carbenoid structure had significant influence on the reaction selectivity between [2,3]-sigmatropic rearrangement and $\mathrm{O}-\mathrm{H}$ insertion. Donor/acceptor carbenoids displayed better selectivity than the conventional acceptor carbenoids and acceptor/acceptor carbenoids in favor of the [2,3]-sigmatropic rearrangement.

2.2.2.4 Effect of chiral alcohol

Table 2.11 Effect of the alcohol chirality on the product formation

			$\xrightarrow[\text { pentane, rt }]{\mathrm{Rh}(\mathrm{II})(1 \mathrm{~mol} \%)}$		
Entry	configuration of 101		configuration of 99	yield, \% ${ }^{\text {a }}$	ee,$\%^{\text {b }}$
1	(R / S)	$\mathrm{Rh}_{2}(\mathrm{~S} \text {-DOSP })_{4}$	s	69	88
2	(S) 84 \%ee	$\mathrm{Rh}_{2}(S-\text { DOSP })_{4}$	4 S	61	85
3	$(R) 83$ \%ee	$\mathrm{Rh}_{2}(S-\text { DOSP })_{4}$	S	59	94
4	(R/S)	$\mathrm{Rh}_{2}(\mathrm{R} \text {-DOSP })_{4}$	$4 \quad R$	74	87

${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by chiral HPLC.

One of the most unexpected features of this newly discovered tandem ylide formation/[2,3]-sigmatropic rearrangement transformation was the high asymmetric induction obtained, despite the fact in many cases racemic allylic alcohols were used as starting material. To explore the effect of alcohol chirality on the reaction selectivity, the reactions of phenyldiazoacetate $\mathbf{6}$ with enantioenriched alcohol 101 were carried out, and the results are summarized in Table 2.11. In all of these reactions, a stoichiometric amount of alcohol 101 was used. The reaction of $\mathbf{6}$ with racemic (R / S) - $\mathbf{1 0 1}$ gave the [2,3]sigmatropic rearrangement product (S)-99 in 69% isolated yield and 88% ee (entry 1). The formation of (S)-99 in higher than 50% yield indicated that both enantiomers of $\mathbf{1 0 1}$ were capable of generating (S-99. This was confirmed by conducting the reaction with enantioenriched alcohol 101. The reaction of $\mathbf{6}$ with (S)-101 (84% ee) produced $(S)-99$ in 61% isolated yield and 85% ee, while the reaction of 6 with $(R)-101(83 \%$ ee) also produced (S)-99 in 59% isolated yield and 94% ee. All the reactions went with high
efficiency, and the moderate yields were due to the difficult separation on the chromatography from the $\mathrm{O}-\mathrm{H}$ insertion byproducts, which were formed in $10-15 \%$ yield. The control reaction of racemic (R / S) - $\mathbf{1 0 1}$ with $\mathbf{6}$ using $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ as catalyst produced $(R)-99$ in 74% isolated yield and 87% ee. These results clearly demonstrated that the chiral catalyst had the dominant effect on the configuration of the tertiary alcohol stereogenic center in the [2,3]-sigmatropic rearrangement product.

2.2.2.5 Reactions of styryldiazoacetate 7 with racemic allylic alcohols

Since styryldiazoacetate 7 had improved selectivity and favored the [2,3]-sigmatropic rearrangement product formation, further study focused on the reactions of different allylic alcohols with 7 . Lowering the reaction temperature from room temperature to 0 ${ }^{\circ} \mathrm{C}$, and using only 1 equivalent of racemic alcohol 101, [2,3]-sigmatropic rearrangement product $\mathbf{1 2 5}$ still formed in 66% isolated yield and 98% ee from the reaction of 7 with 101. This excellent chemo- and stereoselectivity could also relay to the reactions of 7 with a wide range of allylic alcohols containing different R groups on the carbinol carbon (Table 2.12). Different alkyl groups including very bulky t-butyl are all tolerated very well and the [2,3]-sigmatropic rearrangement products formed in 66-73\% yield and 94$98 \%$ ee (entries 1-5). Functional groups such as protected ketones and alcohol were also compatible, and extremely high enantioselectivity was routinely obtained (entries 6-11, $95-98 \%$ ee). The reaction of 7 with 1 equivalent alcohol 135 containing an unsubstituted terminal double bond gave [2,3]-sigmatropic rearrangement product 144 in only 32% yield, presumably because of other possible competing reactions with the active double bond. The yield of $\mathbf{1 4 4}$ could be increased to 69% by using 4 equivalent alcohol $\mathbf{1 3 5}$.

Similar differences were also observed in the reaction of 7 with alcohol 137. Using 4 equivalent 137, [2,3]-sigmatropic rearrangement product 146 was formed in higher yield than in the reaction using only 1 equivalent 137 (50% yield versus 23% yield, entries 9 10). In all of these reactions, the ratio of $[2,3]$-sigmatropic rearrangement over $\mathrm{O}-\mathrm{H}$ insertion was higher than 10:1. The only exception that gave lower ratio was the reaction of 7 with alcohol 139 which contained an electron withdrawing ester group at the β position of the carbinol carbon. A mixture of [2,3]-sigmatropic rearrangement and $\mathrm{O}-\mathrm{H}$ insertion product was formed in 80% combined yield. Even though the chemoselectivity was low, [2,3]-sigmatropic rearrangement product 148 was still formed in 94% ee (entry 12).

Excellent enantioselectivity was also observed in the reactions of styryldiazoacetate 7 with tertiary allylic alcohols (Table 2.13). Compared with phenyldiazoacetate 6, the reactions of $\mathbf{7}$ with tertiary alcohols 106 and $\mathbf{1 0 7}$ produced the [2,3]-sigmatropic rearrangement products with much higher enantioselectivity (entries 1-2). Particularly, for the reaction of 7 with alcohol 107, no competing $\mathrm{O}-\mathrm{H}$ insertion product was observed.

Table 2.12 Reactions of styryldiazoacetate 7 with secondary allylic alcohols

Table 2.13 Reactions of styryldiazoacetate 7 with tertiary allylic alcohols

				$\xrightarrow[\text { pentane, } 0^{\circ} \mathrm{C}]{\substack{\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4}}}$		
entry	R		ylide-[2,3]-sig / $\mathrm{O}-\mathrm{H}$ insertion ${ }^{\text {a }}$	produc	yield, \% ${ }^{\text {b }}$	ee, \% ${ }^{\text {c }}$
1	Me	106	> 20:1	149	62	93
2	H	107	> 20:1	150	45	96

${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{b}$ Isolated yield of major product. ${ }^{c}$ Determined by chiral HPLC.

Figure 2.5 X-ray structure of compound 142

Compound 142 was recrystallized from cold hexanes, and its absolute configuration was determined to be (R) by the X-ray crystallography (Figure 2.5). The drawn absolute configurations of other [2,3]-sigmatropic rearrangement products were tentatively
assigned according to $\mathbf{1 4 2}$, assuming that a similar mode of asymmetric induction occured for all of the substrates.

Similar to the reaction of phenyldiazoacetate $\mathbf{6}$ with primary allylic alcohols (Table 2.9), the reaction of styryldiazoacetate 7 with 3-methylbut-2-en-1-ol (109) gave racemic O-H insertion product 151 in 74% yield (Scheme 2.26). No [2,3]-sigmatropic rearrangement product was observed in the reaction.

Scheme 2.26 Reaction of styryldiazoacetate 7 with primary allylic alcohol 109

The synthetic potential of the tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols can be demonstrated from the reaction of styryldiazoacetate 7 with cis-($1 R, 5 R$)-(-)-pulegol (152) (Scheme 2.27). When $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ was used as catalyst, the reaction of 7 and $\mathbf{1 5 2}$ produced a 6:1 diastereomeric mixture in 64% combined yield. The major diastereomer 153 was selectively recrystallized from hexanes, and both its relative and absolute configurations were determined by the X-ray crystallography (Figure 2.6). The observed (R) configuration at the tertiary alcohol stereocenter was consistent with the (R) configuration in compound 142, supporting the assumption that a similar mode of asymmetric induction occured for all of the substrates. When $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ was used as catalyst, the reaction of $\mathbf{7}$ and $\mathbf{1 5 2}$ produced a $10: 1$ diastereomeric mixture of the [2,3]-sigmatropic
rearrangement products in 74% combined yield. The major diastereomer 154 was the same as the minor diastereomer in the reaction of $\mathbf{7}$ and 152 catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, and the configuration at the tertiary alcohol stereocenter was assigned as (S). This assignment was also consistent with the previous results that the chiral catalyst had dominant effect on the configuration at the tertiary alcohol stereocenter in the [2,3]sigmatropic rearrangement products (Table 2.11).

Scheme 2.27 Reactions of styryldiazoacetate 7 with cis-($1 R, 5 R$)-(-)-pulegol 152

Figure 2.6 X-ray structure of compound 153

2.2.2.6 Other features

Dirhodium prolinates have been used as efficient catalysts with extremely low loading in a variety of donor/acceptor carbenoid transformations. ${ }^{63}$ To explore if this was appliable to the tandem ylide formation/[2,3]-sigmatropic rearrangement reactions between donor/acceptor carbenoids and allylic alcohols, the reaction of styryldiazoacetate 7 with racemic alcohol 101 was chosen as a standard reaction. To ensure the efficient conversion of alcohol 101 under low catalyst conditions, 2 equivalent of 7 was used. With $1 \mathrm{~mol} \%$ of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, the reaction of $\mathbf{7}$ and $\mathbf{1 0 1}$ produced the [2,3]-sigmatropic rearrangement product $\mathbf{1 2 5}$ in 67% yield and 98% ee (Table 2.14 , entry 1), the same as the previous reaction using only 1.1 equivalent of 7 (Table 2.12, entry 1). Lowering the catalyst loading to $0.1 \mathrm{~mol} \%$, compound $\mathbf{1 2 5}$ was isolated in 63% yield and 91% ee (entry 4). With CaCl_{2} as additive, the reaction with $0.01 \mathrm{~mol} \%$ catalyst loading produced 125 in 51% yield and 96% ee (entry 6). It is proposed that CaCl_{2} traps the moisture in the solution and prevent the catalyst decomposition. ${ }^{63}$ High enantioselectivity is a distinctive character of this reaction under low catalyst loadings. With $0.001 \mathrm{~mol} \%$ catalyst loading, even though most of $\mathbf{7}$ could not get decomposed and $\mathbf{1 2 5}$ was isolated in only 9% yield, the ee of $\mathbf{1 2 5}$ was still as high as 96%.

Table 2.14 Effect of catalyst loading

The reactions of styryldiazoacetate $\mathbf{7}$ with a mixture of allylic alcohol 101 and alkyl alcohol revealed another interesting feature of the tandem ylide formation/[2,3]sigmatropic rearrangement reaction (Table 2.15). $\mathrm{O}-\mathrm{H}$ insertion product $\mathbf{1 5 8}$ was the major product in the reaction of $\mathbf{7}$ with a mixture containing equal amount of $\mathbf{1 0 1}$ and 1propanol (155) (45\% isolated yield), and [2,3]-sigmatropic rearrangement product $\mathbf{1 2 5}$ was formed in only 3% yield (entry 1). In contrast, no O-H insertion with alkyl alcohols was detected in the reactions of $\mathbf{7}$ with a mixture of $\mathbf{1 0 1}$ and secondary alcohol $\mathbf{1 5 6}$ or tertiary alcohol 157 (entries 2-3), and the only product that could be isolated in both reactions was $[2,3]$-sigmatropic rearrangement product $\mathbf{1 2 5}$. Diazo dimerization accounts for the low yield of $\mathbf{1 2 3}$ in both reactions, and further optimization with slower addition of diazo solution are required in order to improve the yield. These results indicated that the oxonium ylide formation between the steric demanding donor/acceptor carbenoid and alcohol was a reversible process. The [2,3]-sigmatropic rearrangement was far less
favorable than the [1,2]-proton shift from a primary carbinol, but far more favorable than the [1,2]-proton shift from a secondary and tertiary carbinol. This reactivity difference could lead to an efficient method for selective functionalization of different types of hydroxyl groups in more complex scaffolds.

Table 2.15 Reaction of styryldiazoacetate with alcohol mixture

${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by chiral HPLC. ${ }^{c}$ compound 125 was also formed in 3\% yield and 99\% ee

Substrates similar to allylic alcohol 101, containing other heteroatoms such as sulfur and nitrogen, were also briefly investigated. The reaction of styryldiazoacetate 7 with 4-methylpent-3-ene-2-thiol (159) produced a $1: 1$ mixture of [2,3]-sigmatropic rearrangement product 160 and the $\mathrm{S}-\mathrm{H}$ insertion product (Scheme 2.28). The low selectivity could be explained by the favorable [1,2]-proton shift due to the weaker S-H bond. Moreover, the pink solution of this reaction also indicated that thiol 159 poisoned the catalyst. Compound $\mathbf{1 6 0}$ was only isolated in 14% yield and 78% ee, and its absolute configuration was assigned as (R) assuming that a similar asymmetric induction occurred as its alcohol analogue.

Scheme 2.28 Reactions of styryldiazoacetate 7 with thiol $\mathbf{1 5 9}$

The reactions of phenyldiazoacetate $\mathbf{6}$ with allylic amines were summarized in Table 2.16. Neither $\mathrm{N}-\mathrm{H}$ insertion nor [2,3]-sigmatropic rearrangement product was observed in the reaction with Boc-protected secondary amine 161 . With primary amine 162 , clean $\mathrm{N}-$ H insertion product $\mathbf{1 6 3}$ was formed in 36% isolated yield.

Table 2.16 Reaction of phenyldiazoacetate with allylic amines

${ }^{a}$ Isolated yield.

2.2.3 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols - generation of two stereogenic centers.

2.2.3.1 Reactions with enantiomerically pure allylic alcohols

The tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and racemic allylic alcohols such as $\mathbf{1 0 1}, \mathbf{1 3 1 - 1 3 9}$ provided an efficient method to synthesize α-hydroxycarboxylate compounds containing two adjacent quaternary centers including one tertiary alcohol stereocenter with high enantioselectivity. The effect that the chiral dirhodium catalyst dominates the configuration of the tertiary alcohol stereocenter was particularly noteworthy.

In order to further expand the scope of this chemistry and particularly to improve the understanding of how the chirality of alcohol effects the product formation, (E)-pent-3-en-2-ol (108) was chosen as substrate. Previous studies showed that the reaction of racemic alcohol 108 with phenyldiazoacetate $\mathbf{6}$ produced a 1:1 diastereomeric mixture of [2,3]-sigmatropic rearrangement product $\mathbf{1 1 5}$ containing two adjacent stereocenters with good enantioselectivity ($85-90 \%$ ee) (Table 2.9 , entry 4). It was envisioned that the diastereomeric ratio of $\mathbf{1 1 5}$ could be influenced by the chirality of alcohol 108. Indeed, the reaction of enantiomerically pure $(S, E)-\mathbf{1 0 8}(>99 \%$ ee $)$ and phenyldiazoacetate $\mathbf{6}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced $(2 S, 3 R)-\mathbf{1 1 5}$ as the major diastereomer (dr: 94:6) in 56% isolated yield and $>99 \%$ ee (Table 2.17 , entry 1). This high diastereoselectivity and extremely high enantioselectivity were also apparent in the reaction of $(S, E)-\mathbf{1 0 8}$ with
other donor/acceptor carbenoid precursors (Table 2.17, entries 2-4). Compound 166 was readily recrystallized from hexanes and its relative and absolute configuration was determined by the X-ray crystallography as $(2 R, 3 R)$ (Figure 2.7). The observed (R) configuration at the tertiary alcohol stereocenter in $\mathbf{1 6 6}$ is consistent with the compounds from the reaction of donor/acceptor carbenoids with racemic allylic alcohols such as 101, 131-139 (section 2.2.2). The absolute configurations of compound $(2 S, 3 R)-115,(2 S$, $3 R)-\mathbf{1 6 5}$, and $(2 R, 3 R)-\mathbf{1 6 7}$ were assigned according to $\mathbf{1 6 6}$, assuming that a similar mode of asymmetric induction occurred in all the reactions.

Table 2.17 Reaction of (S, E)-108 with different diazoacetates

entry	R	product	$\mathrm{dr}^{\text {a }}$	yield, $\%^{\text {b }}$	ee, $\%^{\text {c }}$
1	$\begin{gathered} \mathrm{Ph} \\ \mathbf{6} \end{gathered}$		94:6	56	>99
2	$\begin{gathered} p-\mathrm{BrPh} \\ 30 \end{gathered}$		90:10	66	>99
3	$\begin{gathered} (E)-p-\mathrm{BrPhCH}=\mathrm{CH} \\ 121 \end{gathered}$		94:6	69	>99
4	$\begin{gathered} \mathrm{CH}_{2}=\mathrm{CH} \\ \mathbf{1 6 4} \end{gathered}$		79:21	43	99

[^4] determined by chiral HPLC.

Figure 2.7 X-ray structure of compound 166

The high diastereoselectivity and extremely high enantioselectivity in Table 2.17 indicated that the chirality of the allylic alcohol could be effectively transferred to the second stereocenter produced during the rearrangement step. To further confirm it, both $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 0 8}(99 \%$ ee $)$ and $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 0 8}(97 \%$ ee $)$ were used as substrates, and the results of their reactions with styryldiazoacetates 7 were summarized in Table 2.18. The reaction of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 0 8}(99 \%$ ee $)$ and $\mathbf{7}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced $\left.\mathbf{(2 R}, \mathbf{3 R}\right) \mathbf{- 1 6 8}$ in 70% isolated yield and $>99 \%$ ee (entry 1), its absolute stereochemistry was assigned according to that of compound 166. Interestingly, the reaction of $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 0 8}(97 \%$ ee $)$ and $\mathbf{7}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced another diastereomer of $\left.\mathbf{(2 R}, \mathbf{3 R}\right) \mathbf{- 1 6 8}$ in 64% isolated yield and $>99 \%$ ee (entry 2) and its absolute stereochemistry was assigned as $(2 R, 3 S)$, assuming that the chiral catalyst dominates the configuration of the tertiary alcohol stereocenter. More interestingly, the reaction of $\boldsymbol{(S , E}, \mathbf{- 1 0 8}$ and 7 with $\mathrm{Rh}_{2}(R-$ DOSP $)_{4}$ as catalyst produced the opposite enantiomer of $(\mathbf{2 R}, \mathbf{3 S}) \mathbf{- 1 6 8}$ (determined by
chiral HPLC), and it was assigned as ($\mathbf{2 S}, \mathbf{3 R}$)-168 (entry 3). Similarly, the reaction of (\boldsymbol{R}, $\boldsymbol{E}) \mathbf{- 1 0 8}$ and $\mathbf{7}$ with $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ as catalyst produced the opposite enantiomer of ($\mathbf{2 R}$, $\mathbf{3 R}$)-168 (determined by chiral HPLC), and it was assigned as (2S, 3S)-168 (entry 4). Overall, through the combination of the enantiomerically pure allylic alcohol $\mathbf{1 0 8}$ and chiral dirhodium catalyst, all of the four stereoisomers of $\mathbf{1 6 8}$ were produced with high diastereo- and enantioselectivity ($\mathrm{dr}:>90: 10,>99 \%$ ee). These results also confirmed that the chiral catalyst dominates the configuration of the tertiary alcohol stereocenter, while the chirality of the allylic alcohol dominates the second stereocenter produced during the rearrangement step. As a control experiment, the reaction of racemic 108 and 7 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced a $1: 1$ diastereomeric mixture of $\mathbf{1 6 8}$ in 72% combined yield, both diastereomers had very high enantiomeric excess ($97,98 \%$ ee, entry 6).

The geometry of the alkene was also critical for the product stereochemistry. The reaction of $(S, Z) \mathbf{- 1 0 8}(98 \%$ ee $)$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced $(2 R, 3 S) \mathbf{- 1 6 8}$ as the major diastereomer, which has the opposite configuration at the 3-position comparing with $(2 R, 3 R)-\mathbf{1 6 8}$ produced from the reaction of $(S, E)-\mathbf{1 0 8}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst (entry 5 versus entry 1). In this case, however, the reaction gave lower diastereoselectivity (dr: 75:25), and ($2 R, 3 S$) $\mathbf{- 1 6 8}$ was isolated in 35% yield and $>99 \%$ ee.

Table 2.18 Reaction of pent-3-en-2-ol (108) with styryldiazoacetate 7

	 allylic alcohol			$\underbrace{\stackrel{\mathrm{Rh}(\mathrm{II})(1 \mathrm{~mol} \%)}{\mathrm{R}})}_{\text {product }}$					
entry					$\mathrm{dr}^{\text {a }}$	yield,	ee, \% ${ }^{\text {c }}$		
1	$\begin{aligned} & (S, E)-108 \\ & 99 \% \mathrm{ee} \end{aligned}$	$\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4}$				Me $(2 R, 3 R)-168$	92:8	70	>99
2	$\begin{aligned} & (R, E)-108 \\ & 97 \% \mathrm{ee} \end{aligned}$	$\mathrm{Rh}_{2}(\mathrm{~S} \text {-DOSP })_{4}$			$\begin{aligned} & \underbrace{}_{(2 R, 3 S)-168} \end{aligned}$	91:9	64	>99	
3	$\begin{aligned} & (S, E)-108 \\ & 99 \% \mathrm{ee} \end{aligned}$	$\mathrm{Rh}_{2}(\mathrm{R}-\mathrm{DOSP})_{4}$			Me $(2 S, 3 R)-168$	92:8	54	>99	
4	$\begin{aligned} & (R, E)-108 \\ & 97 \% \mathrm{ee} \end{aligned}$	$\mathrm{Rh}_{2}(R-\mathrm{DOSP})_{4}$			$\overbrace{(2 S, 3 S)-168}^{\mathrm{Ne}_{2}}$	95:5	78	>99	
5	$\begin{aligned} & (S, Z)-108 \\ & 98 \% \mathrm{ee} \end{aligned}$	$\mathrm{Rh}_{2}(\mathrm{~S} \text {-DOSP })_{4}$			$\sim_{(2 R, 3 S)-168}$	75:25	35	>99	
6	(rac, E)-108	$\mathrm{Rh}_{2}(S-D O S P)_{4}$				$50: 50$	72	97, 98	

[^5]A variety of other enantiomerically pure (S)-allylic alcohols were obtained from the kinetic resolution of the racemic material by either enzymatic resolution or by Sharpless enantioselective epoxidation (See experimental). Their reactions with styryldiazoacetate 7 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst were summarized in Table 2.19. Products $\mathbf{1 7 6 - 1 8 2}$ with two adjacent stereocenters including one tertiary alcohol stereocenter were formed with extremely high diastereo- and enantioselectivity (Table 2.19, entry 1-6, dr: $>95: 5,>99 \%$ ee). In all of these reactions, the competing $\mathrm{O}-\mathrm{H}$ insertion product could not be detected from the ${ }^{1} H$ NMR spectra of the crude reaction mixture. Substituent R_{1} group such as methyl and isopropyl, R_{2} group such as methyl, R_{3} group such as n-pentyl, phenyl, and trimethylsilyl, were all tolerated in the reaction (entries 1-4). The reaction of (S)-1cyclohexenylethanol $\mathbf{1 7 4}$ also gave compound $\mathbf{1 8 1}$ in 77% isolated yield with $>97: 3 \mathrm{dr}$ and $>99 \%$ ee. Most impressively, the reaction of (S, E)-4, 8-dimethylnona-3,7-dien-2-ol (175) and $\mathbf{7}$ produced compound $\mathbf{1 8 2}$ containing two adjacent quaternary centers as a 95:5 inseparable diastereomeric mixture in 63% isolated yield and $>99 \%$ ee for the major diastereomer.

Both compounds $\mathbf{1 7 7}$ and $\mathbf{1 8 1}$ were recrystallized from hexanes and their relative and absolute configurations were determined by the X-ray crystallography, which are consistent with that of $\mathbf{1 6 6}$ (Figure 2.8, 2.9). These two X-ray structures also confirmed that a similar mode of asymmetric induction occurred for all the substrates in this tandem ylide formation/[2,3]-sigmatropic rearrangement transformation between donor/acceptor carbenoids and enantiomerically pure allylic alcohols.

Table 2.19 Reaction of (S)-allylic alcohol with styryldiazoacetate 7

entry

[^6]Figure 2.8 X-ray structure of compound 177

Figure 2.9 X-ray structure of compound 181

The highly diastereo- and enantioselective synthesis of $\mathbf{1 7 6 - 1 8 2}$ gave rise to the question: can all of the four stereoisomers of $\mathbf{1 7 6 - 1 8 2}$ be synthesized through the combination of chiral alcohol and chiral dirhodium catalyst, in the same manner as the synthesis of all four stereoisomers of $\mathbf{1 6 8}$ in Table 2.18?

To answer this question, the compatibility of R_{1} and R_{3} with the chiral dirhodium catalyst was studied, with the possibility that a large R_{1} or R_{3} group might result in a mismatch situation with the chiral catalyst and subsequently prevent the reaction from taking place. First, (E)-1-cyclohexylbut-2-en-1-ol 183 containing R_{1} as cyclohexyl group was chosen. With $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst, the reaction of (S, E) - $\mathbf{1 8 3}$ and styryldiazoacetate $\mathbf{7}$ produced ($\mathbf{2 R}, \mathbf{3 R}$)-184 in 86% isolated yield with high diastereo-and enantioselectivity (dr: $>97: 3,>99 \%$ ee, Table 2.20 , entry 1). Its relative and absolute configuration was determined by the X-ray crystallography (Figure 2.10), which is also consistent with previous products derived from the reaction of (S)-alcohol and 7 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst (Table 2.19). Interestingly, the reaction of $(R, E) \mathbf{- 1 8 3}$ with $\mathbf{7}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst produced $(\mathbf{2 R}, \mathbf{3 S})$ - $\mathbf{1 8 4}$ in 74% isolated yield with high diastereo-and enantioselectivity (dr: $>97: 3,>99 \%$ ee, Table 20, entry 2). The relative and absolute configuration of $(\mathbf{2 R}, \mathbf{3 S}) \mathbf{- 1 8 4}$ was also determined by its X-ray crystallography (Figure 2.11). These two reactions not only demonstrated that both (R) and (S) allylic alcohol with a bulky group at the carbinol position were compatible with the $\mathrm{Rh}_{2}(S$ DOSP $)_{4}$ catalyst, but also confirmed that the chirality of the catalyst dominated the configuration of the tertiary alcohol stereocenter, and the chirality of the alcohol could be
effectively transferred to the second stereocenter generated during the rearrangement step.

Table 2.20 Reaction of (R) and (S) - $\mathbf{1 8 3}$ with styryldiazoacetate 7

[^7]Figure 2.10 X-ray structure of compound (2R, 3R)-184

Figure 2.11 X-ray structure of compound (2R, 3S)-184

Focus then turned to how the size of R_{3} group effected the reaction outcome. With R_{3} group as phenyl, as described in Table 2.19, the reaction of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 7 0}$ and styryldiazoacetate 7 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst had a match situation, and produced ($\mathbf{2 R}, \mathbf{3 S}$)-177 with excellent result (dr: $>97: 3,71 \%$ isolated yield, $>99 \%$ ee, Table 2.21, entry 1 (same as Table 2.19 , entry 2)). However, when $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ was used as catalyst, a mismatch situation occurred. The diastereoselectivity of the reaction dropped to $86: 14$ (entry 2). The isolated yield of $(\mathbf{2 S}, \mathbf{3 S}) \mathbf{- 1 7 7}$ also dramatically dropped to 30%. Even though an inferior result was obtained in this mismatched reaction, the high enantiomeric excess of $(\mathbf{2 S}, \mathbf{3 S}) \mathbf{- 1 7 7}(>99 \%)$ was still an excellent example of the highly
stereoselective nature of the tandem oxonium ylide formation/[2, 3]-sigmatropic rearrangement of donor/acceptor carbenoids with enantiomerically pure allylic alcohols.

Table 2.21 Reaction of (R, E) - $\mathbf{1 7 0}$ with styryldiazoacetate 7

${ }^{\text {a }}$ Determined by crude ${ }^{1} \mathrm{H}$-NMR. ${ }^{b}$ Isolated yield of the major diasteromer. ${ }^{c}$ ee of the major diastereomer, determined by chiral HPLC.

With these results in hand, it would be reasonable to predict that eithor (R) or (S) allylic alcohol $169,172,173,174$ containing small R_{3} groups will be compatible with both $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ and $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$, and all of the four stereoisomers of their [2,3]sigmatropic rearrangement products with styrldiazoacetate 7 could be synthesized with very high stereoselectivity. But for allylic alcohols containing large R_{3} group, such as $\mathbf{1 7 1}$ (R_{3} as trimethylsilyl), only two stereoisomers could be synthesized with very high stereoselectivity, and only in the cases where the chirality of the alcohol matchs the chirality of the catalyst.

2.2.3.2 Rationale of the stereoselectivity

With the established model for the D_{2} symmetric $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ catalyst, ${ }^{10}$ it is proposed that the alcohol approaches the carbenoid from the front open face to form the oxonium ylide, which subsequently goes through the [2,3]-sigmatropic rearrangement via an envelope transition state and produces the final product. Two other important assumptions include: 1. the oxonium ylide intermediate should be a rhodium-associated ylide instead of a free ylide due to the high asymmetric induction of the chiral dirhodium catalyst on the product formation; 2. this rhodium-associated ylide involves inversion of configuration at the rhodium-bound carbon to release the metal during the rearrangement step. Both assumptions had also been used by Doyle et al to explain the stereochemical outcome of the chiral dirhodium carboxamidtes catalyzed oxonium formation/[2,3]sigmatropic rearrangement between ethyl diazoacetate (EDA) and cinnamyl methyl ether. ${ }^{64}$ Calculation studes on the lithium associated anionic [2,3]-sigmatropic rearrangement system by Houk also support the configuration inversion at the metal associated carbon center. ${ }^{65}$ The detailed role of the hydroxy group in the transformation is not clear. It is possible that the hydrogen bonding between the hydroxy group and the carbonyl of the ester group in the oxonium intermediate is also critical for this highly stereoselective transformation.

In order to explain the influence of the alcohol chirality on the product formation, two different transition states were proposed (Figure 2.12). In the reaction of (S)-alcohol and carbenoid derived from styryldiazoacetate 7 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst, the reaction goes through an envelope transition state $\mathbf{A - 1}$ to form the product with $(2 R, 3 R)$
configuration. However, in the reaction of (R)-alcohol with the same carbenoid, the reaction goes through a different envelope transition state B-1 to form the product with $(2 R, 3 S)$ configuration in order to avoid the steric conflict between R_{1} group and the left blocking group (arylsulfonyl) of the catalyst. In addition to the ability to explain the stereochemistry of all the products from (R) and (S) allylic alcohol with donor/acceptor carbenoids, these two transition states also explain the good compatibility of the large R_{1} group in either (R) or (S) allylic alcohols with the chiral dirhodium catalysts (see Table 2.20). This compatibility can be further confirmed with R_{1} as t-butyl group. The low diastereomeric ratio of $\mathbf{1 8 6}$ (dr: 59:41) in the reaction of racemic alcohol 185 and 0.6 equivalent $\mathbf{7}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst indicated that both enantiomer of $\mathbf{1 8 5}$ had similar reactivity during the reaction (Scheme 2.29).

It is reasonable to propose that the orientation of R_{2} group in the transition state $\mathbf{A - 1}$ is more favorable than that in B-1 taking account of the steric interaction between R_{2} and the left blocking group (arylsulfonyl) from the catalyst. The reactivity difference derived from this orientation difference was demonstrated in the reaction of $(S) \mathbf{- 1 7 0}$ with styryldiazoacetate 7 (Table 2.21), in which $(S) \mathbf{- 1 7 0}$ matches with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, and mismatches with $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$. Another example is the reaction of (E)-2-methylpent-3-en-2-ol (100) and p-bromostyryldiazoacetate 121 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst (Scheme 2.30), in which ($\mathbf{2 R}, \mathbf{3 R}$)-187 and ($\mathbf{2 R}, \mathbf{3 S}$) $\mathbf{- 1 8 7}$ were produced as a $3: 1$ diastereomeric mixture. With alcohol 100, the orientation of methyl group on the double bond in the transition state determined the reaction diastereoselectivity. Clearly, Transition state A-1 (affording the major diastereomer ($\mathbf{2 R}, \mathbf{3 R} \mathbf{)} \mathbf{- 1 8 7}$) is about three times more favorable than
transition state B-1 (affording the minor diastereomer (2R, 3S)-187). The relative and absolute configuration of $\mathbf{(2 R}, \mathbf{3 R}) \mathbf{- 1 8 7}$ and $(\mathbf{2 R}, \mathbf{3 S})$-187 were determined by their X-ray crystallographies (Figure 2.13, 2.14).

Figure 2.12 Transition state analysis of (R) and (S) allylic alcohol with donor/acceptor carbenoid

attack from the front face A

A-1

Scheme 2.29 Reaction of alcohol 185 with styryldiazoacetate 7

Scheme 2.30 Reaction of alcohol $\mathbf{1 0 0}$ with aryldiazoacetate $\mathbf{1 2 1}$

Figure 2.13 X-ray structure of compound (2R, 3R)-187

Figure 2.14 X-ray structure of compound (2R, 3S)-187

2.2.3.3 Further transformation

The synthesis of α-hydroxycarboxylate compounds containing a β-carbonyl moiety has been extensively studied. ${ }^{66}$ Among those, the asymmetric aldol reaction between $\alpha-$ keto ester and ketone catalyzed by organocatalysts such as proline has been most successful in terms of high diastereo- and enantioselectivity. ${ }^{66 a-\mathrm{c}}$

The tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and enantiomerically pure allylic alcohols provides a highly stereoselective method to synthesize the α-hydroxycarboxylate compounds. Particularly, the excellent diastereoselective and enantioselective control on the product formation by the chiral dirhodium catalyst and the chiral allylic alcohol give a unique opportunity to selectively synthesize each of the four possible stereoisomers. As a further demonstration
of this powerful method, the two diastereomers of $\mathbf{1 8 9}$ were chosen to be prepared (Scheme 2.31). The reaction of alcohol (S) $\mathbf{- 1 7 4}$ and phenyldiazoacetate $\mathbf{6}$ catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ produced $(\mathbf{2 S}, \mathbf{3 R})-\mathbf{1 8 8}$ in 60% yield, the subsequent ozonolysis provided ($\mathbf{2 S}, \mathbf{3 S}$)-189 in 65% yield and $>99 \%$ ee. Similarly, the reaction of $(S) \mathbf{- 1 7 4}$ and $\mathbf{6}$ catalyzed by $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$, followed with ozonolysis to give ($\mathbf{2 R}, \mathbf{3 S}$)-189 in 66% yield and $>99 \%$ ee. Both $(\mathbf{2 S}, \mathbf{3 S})-\mathbf{1 8 9}$ and $(\mathbf{2 R}, \mathbf{3 S})$-189 are known compounds, and their spectral data are consistent with the literature. ${ }^{66, \mathrm{c}}$ Although this is a two-step sequence to synthesize α-hydroxycarboxylate compounds containing β-carbonyl moiety, the excellent and predictable stereocontrol on the product formation offers an attractive advantage over the conventional methods to synthesize this type of compounds.

Scheme 2.31 Synthesis of compound 189

Scheme 2.32 Oxy-Cope rearrangement of (2S, 3S)-177

Scheme 2.33 Oxy-Cope rearrangement of ($2 R, 3 S$)-177

Another important transformation of compounds derived from tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols is the oxy-Cope rearrangement. Originally, it was found that (2S, 3S)-177 ($>99 \%$ ee) in CDCl_{3} at room temperature slowly rearranged into enol $\mathbf{1 9 0}$ as a single diastereomer (Scheme 2.32). Presumably, this oxy-Cope rearrangement goes through a very favorable chair transition state with the ester, phenyl, and methyl groups at the equatorial positions, and the hydroxyl group at the axial position. This rearrangement could be much faster at higher temperature. Upon refluxing in cyclohexane for only 5 hours ($80{ }^{\circ} \mathrm{C}$), ($\mathbf{2 S} \boldsymbol{S}, \mathbf{3 S}$)-177 quantitatively rearranged to enol $\boldsymbol{s y n} \mathbf{- 1 9 0}$ as a single diastereomer, which tautomerized upon addition of silica gel into α-keto ester syn-191 in
$\mathbf{8 5 \%}$ yield and 99% ee (Scheme 2.32). In contrast, reflux of ($\mathbf{2 R}, \mathbf{3 S}$)-177 ($>99 \%$ ee) for 5 hours, followed with the tautomerization on silica gel produced a $2: 1$ diastereomeric mixture with syn-191 as the minor diastereomer (Scheme 2.33). The major diastereomer, anti-191, was formed in 99% ee. It is apparent that the preferred equatorial orientation of phenyl group at the 3-position eroded the diastereoselectivity, both chair and boat transition states might get involved in the rearrangement process.

This low diastereoselectivity limitation could be avoided by using compounds containing two methyl groups at the 3-position (Scheme 2.34). (\boldsymbol{R})-125 (96% ee) was refluxed in toluene for 5 hours, followed with the tautomerization on silica gel to produce α-keto ester 192 as a single diastereomer in 71% yield and 81% ee.

Scheme 2.34 Oxy-Cope rearrangement of (R) - $\mathbf{1 2 5}$

It should be noted that both the relative and absolute configuration of 191 and 192 have not been unambiguously determined. More detailed studies of this oxy-Cope rearrangement chemistry are being carried out by other group members of the Davies group.

2.2.4 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols containing silyl group

Scheme 2.35 Synthesis of α-hydroxycarboxylates through halodesilylation-coupling
strategy

Vinylsilane can be easily converted into vinyl iodide upon treatment of N iodosuccinimide (NIS) with retention of olefin geometry. ${ }^{67,68}$ Vinyl iodide can undergo a wide variety of transition metal catalyzed cross coupling reaction, such as NHK coupling, ${ }^{69}$ Sonogashira coupling, ${ }^{70}$ Heck coupling, ${ }^{71}$ and Suzuki coupling. ${ }^{72}$ It was envisioned that vinylsilanes derived from the tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoid and allylic alcohols containing silyl groups on the carbinol position would be also easily converted to the corresponding vinyl iodides. Combined with the well-established coupling methods, these vinyl iodides could be further converted into much more complex molecules (Scheme 2.35). Although it is a two-step sequence, it could avoid the tedious synthesis of complex chiral allylic alcohol, particularly those containing other functional groups.

Table 2.22 Reaction of racemic alcohol 193 with donor/acceptor carbenoids

entry	R	product	$[2,3]-$ sigma/O-H insertion ${ }^{a}$	yield, $\%^{b}$	ee, $\%^{c}$
1	Ph 6	194	$>20: 1$	72	88
2	$(E)-\mathrm{PhCH}=\mathrm{CH}$	$\mathbf{7}$	$\mathbf{1 9 5}$	$>20: 1$	69

${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC.

This study started with racemic allylic alcohol 193. Its reaction with both phenyldiazoacetate 6 and styryldiazoacetate 7 worked very well and produced the [2,3]sigmatropic rearrangement product 194 in 72% yield with 88% ee, and 195 in 69% yield with 92% ee, respectively (Table 2.22). In both reactions, the competing $\mathrm{O}-\mathrm{H}$ insertion product couldn't be detected from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture. The (R) configuration of $\mathbf{1 9 4}$ and $\mathbf{1 9 5}$ was assigned according other analogues in section 2.2.2.

The excellent selectivity of $[2,3]$-sigmatropic rearrangement over $\mathrm{O}-\mathrm{H}$ insertion was also observed in the reactions of secondary allylic alcohol 196 with styryldiazoacetate 7 . However, the poor diastereoselectivity of these reactions was in sharp contrast with that of other reactions involving secondary allylic alcohols without trimethylsilyl group (section 2.2.3). In order to have a full understanding, a detailed study was carried out and the results are summarized in Table 2.23. First, the reaction of racemic 196 with 7 produced a $1: 1$ diastereomeric mixture of 197 in 35% combined yield with moderate enantioselectivity (71 and 69\% ee, entry 1). With either (R) or (S) enantioenriched 196, the diastereoselectivity of the reaction kept constantly around $3: 1$, with the major
diastereomer $97-98 \%$ ee and the minor diastereomer $<26 \%$ ee (entries 2-5). The relative and absolute configuration of $\mathbf{(2 R}, \mathbf{3 R})$-197 (entry 2) and $\mathbf{(2 S , 3 R}) \mathbf{- 1 9 7}$ (entry 3) were assigned based on the configuration of other similar compounds from the reaction of enantiomerically pure allylic alcohols and styryldiazoacetate 7 with chiral dirhodium catalyst (section 2.3), while the other products were assigned based on the HPLC traces comparing with these two.

Table 2.23 Reaction of alcohol 196 with styryldiazoacetate 7

Through careful comparison of the absolute configuration of the two diastereomers of 197 (entries 2-5), it is found that the minor diastereomer in each reaction always had the opposite configuration at the tertiary alcohol stereocenter, compared with that of the major diastereomer. Previous study showed that the chiral catalyst dominated the
configuration of this tertiary alcohol stereocenter during the rearrangement step (section 2.2.2 and 2.2.3, particularly Scheme 2.29). The low diastereomeric ratio of $\mathbf{1 9 7}$ in all the reactions, however, showed that this effect from the chiral catalyst was very limited for alcohol 196. More studies are needed to understand whether the large size of trimethylsilyl group or other effects are responsible for this decline.

2.2.5 Tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and propargylic alcohols.

α-Allenic alcohols are versatile and useful intermediates in organic synthesis due to their unique reactivities and the ease of further conversion into compounds with other functional groups. ${ }^{73}$ They are generally prepared by allenylation of carbonyl compounds (aldehydes in most cases), and a variety of enantioselective synthesis have also been developed. ${ }^{74,75}$ The enantioselective synthesis of α-allenic alcohols containing a tertiary alcohol stereocenter, however, remains a formidable challenge. The success with the studies of the tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and allylic alcohols prompted us to explore the reactions of donor/acceptor carbenoids with propargylic alcohols. It would be reasonable to propose that these reactions would also go through a similar oxonium ylide formation/[2,3]sigmatropic rearrangement process to form α-allenic alcohols containing a tertiary alcohol stereocenter (Scheme 2.36).

Scheme 2.36 Synthesis of α-allenic alcohols with donor/acceptor carbenoids and propargylic alcohols

2.2.5.1 Reactions with achiral propargylic alcohols

Although rhodium catalyzed sulfonium ylide formation/[2,3]-sigmatropic rearrangement between propargyl sulfide and carbenoid has been extensively studied, there was no report using propargyl alcohols for a similar transformation due to the competing $\mathrm{O}-\mathrm{H}$ insertion. ${ }^{\text {1a,c }}$ The only exception was the rhodium catalyzed reaction of diazoketone 198 with propargyl alcohol $199 .{ }^{76}$ It was reported that the $\mathrm{O}-\mathrm{H}$ insertion between the carbenoid and alcohol $\mathbf{1 9 9}$ formed alkoxy enol intermediate 200, which can either go through a [3,3]-sigmatropic rearrangement to give tertiary α-allenic alcohol 201 when electron rich $\mathrm{Rh}_{2}(\mathrm{cap})_{4}$ was used as catalyst (Scheme 2.37, Eq (a)), or go through a [2,3]-sigmatropic rearrangement to give α-allenic alcohol 202 when electrodeficient $\mathrm{Rh}_{2}(\mathrm{tfa})_{4}$ was used as catalyst (Eq (b)). Interestingly, when $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ was used as catalyst, α-allenic alcohol 202 was selectively formed in 42% isolated yield in racemic form, presumably due to the achiral enol intermediate formation. In order to achieve enantioselectivity for the [2,3]-sigmatropic rearrangement process, it was envisioned that the enol intermediate formation could be suppressed by using diazo ester instead of diazo ketone as the carbenoid precursor since the carbonyl in the ester would be much less nucleophilic than that in the ketone, and subsequently less prone to trap the proton and form the enol intermediate. To our surprise, the reaction of phenyldiazoacetate 6 with
propargyl alcohol 199 catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ did not give any allene product. Instead, the racemic $\mathrm{O}-\mathrm{H}$ insertion product 203 was isolated in 50% yield (Eq. (c)).

Scheme 2.37 Reactions of propargyl alcohol 199

Previous studies showed that tertiary allylic alcohol had superior selectivity than secondary and primary allylic alcohols in favor of the [2,3]-sigmatropic rearrangement during its reaction with donor/acceptor carbenoids (Table 2.9). In order to promote the rearrangement, tertiary propargylic alcohol, 2-methyl-3-butyn-2-ol (204) was used instead of propargyl alcohol 199 (Scheme 2.38, Eq (a)). The reaction of 204 with phenyldiazoacetate 6 gave a 3:1 mixture of [2,3]-sigmatropic rearrangement product 206 and $\mathrm{O}-\mathrm{H}$ insertion product 207. Compound 206 was formed in 42% yield and 27% ee. As a typical rhodium catalyzed $\mathrm{O}-\mathrm{H}$ insertion reaction, compound 207 was formed as racemate in 12% isolated yield. A dramatic change was observed when 2-methyl-3-hexnye-2-ol (205) was used (Eq (b)). [2,3]-sigmatropic rearrangement product 208 was cleanly formed in 61% isolated yield with 79% ee when the reaction was carried out at
room temperature. Further, on lowering the reaction temperature to $0^{\circ} \mathrm{C}, \mathbf{2 0 8}$ was cleanly formed in 85% isolated yield with 85% ee without any detection of the $\mathrm{O}-\mathrm{H}$ insertion product from the crude ${ }^{1} \mathrm{H}$ NMR spectrum. However, this excellent chemo- and stereoselectivity did not work with diazo ketone 198 (Eq (c)). The reaction of 205 with 198 produced a mixture of [2,3]-sigmatropic rearrangement product 209 and [3,3]sigmatropic rearrangement product 210. Compound 209 was only isolated in 4% yield and 18% ee.

Scheme 2.38 Reactions of tertiary propargyl alcohols

After finding that the reaction of tertiary propargylic alcohol $\mathbf{2 0 5}$ and diazo ester $\mathbf{6}$ gave the best chemo- and stereoselectivity in favor of the [2,3]-sigmatropic rearrangement product formation, attention turned to test other diazo esters. Not surprisingly, the $\mathrm{O}-\mathrm{H}$ insertion product 211 was the only isolable product from the reaction of ethyl diazoacetate $\mathbf{5}$ with $\mathbf{2 0 5}$ (Scheme 2.39, Eq (a)). The reaction of methyl diazomalonate $\mathbf{1 2 8}$ with $\mathbf{2 0 5}$ gave a mixture of [2,3]-sigmatropic rearrangement product

212 and the $\mathrm{O}-\mathrm{H}$ insertion product with a ratio of $7: 1$, and $\mathbf{2 1 2}$ was isolated in 59% yield (Scheme 2.39, Eq (b)). In contrast with the conventional diazo ester 5 and 128, the reaction of stryldiazoacetate 7 with 205 gave clean [2,3]-sigmatropic rearrangement product 213 in 74% isolated yield and 96% ee (Scheme 2.39, Eq (c)). As phenyldiazoacetate $\mathbf{6}$ and styryldiazoacetate 7 are widely used donor/acceptor carbenoid precursors, these results clearly demonstrated that donor/acceptor carbenoids had much better selectivity in favor of the [2,3]-sigmatropic rearrangement than the conventional carbenoids containing only one or two electron withdrawing groups.

Scheme 2.39 Effect of carbenoid structure on the reaction selectivity

The excellent chemo- and stereoselectivity were also apparent in the reactions of other arylvinyldiazoacetates with alcohol 205 (Table 2.24). The electron-withdrawing groups such as $\mathrm{Br}-, \mathrm{CF}_{3}, \mathrm{Cl}-$ on the aryl group were tolerated in the reactions and [2,3]sigmatropic rearrangement product 218-212 were formed with good yield and very high enantioselectivity (Table 2.24, entries $1-4,77-85 \%$ yield, $85-97 \%$ ee). Even though low yield of [2,3]-sigmatropic rearrangement product 222 was obtained in the reaction of
diazoacetate 217 and 205 (34% yield), its high enantioselectivity was still impressive (92% ee, entry 4). In all of these cases, no competing $\mathrm{O}-\mathrm{H}$ insertion products were observed from the ${ }^{1} \mathrm{H}$-NMR spectra of the crude reaction mixture.

Table 2.24 Reaction of arylvinyldiazoacetates with alcohol 205

${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by chiral HPLC.
Further exploration with other propargylic alcohols showed that the reactions had very broad substrate scope, and high enantioselectivities were routinely obtained in all of the cases (Table 2.25). Alkyl groups (linear or cyclic, entries 1-6), TBS protected alcohols (entries 8-9) and substituents containing phenyl groups (entries 10-13) were all compatible in the reaction, even though other active $\mathrm{C}-\mathrm{H}$ activation or cyclopropanation sites were present in these substrates. Alcohols with very bulky R groups such as t-butyl and trimethylsilyl, however, gave lower yield (entry 14-15), due to the competing [1,2]-
shift product formation (section 2.2.6). Compound $\mathbf{2 4 3}$ was recrystallized from hexanes and its absolute configuration was determined to be (R) by X-ray crystallography (Figure 2.15). The drawn absolute configuration of the other products is the tentatively assigned stereochemistry, assuming that a similar mode of asymmetric induction occurs for all the substrates.

Figure 2.15 X-ray structure of compound 243

Table 2.25 Reaction of alcohol 223-237 with styryldiazoacetate 7

	R + 7 (2		$\xrightarrow[{\begin{array}{c}\text { pentane, } 0^{\circ} \mathrm{C} \\ {[2,3]-\text { sigma/O-H }} \\ \text { insertion: }>20: 1\end{array}}\end{array}]{\mathrm{Rh}_{2}(\mathrm{~S}-\mathrm{DOSP})_{4}}$		
entry	R	alcohol	product	yield, \% ${ }^{\text {a }}$	ee, $\%^{b}$
1	CH_{3}	223	238	77	96
2	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	224	239	86	95
3	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	225	240	88	96
4	OEt	226	241	44	95
5	$-\xi-$	227	242	60	92
6		228	243	78	98
7		229	244	51	97
8		230	245	66	90
9	每 OTBS	231	246	84	96
10		232	247	72	97
11		233	248	59	94
12		234	249	44	92
13		235	250	79	95
14	- $\}$-t-Bu	236	251	44	96
15	$\xi-\mathrm{Si}(\mathrm{Me})_{3}$	237	252	37	94

[^8]Instead of dimethyl groups, alcohol 253-255 containing cyclic subunits were also good substrates for the α-allenic alcohol formation (Table 2.26). Compound 256-258 containing five, six, and seven member rings were cleanly formed in $69-85 \%$ yield with 88-94\% ee.

Table 2.26 Reaction of alcohol 253-255 with styryldiazoacetate 7

2.2.5.2 Reactions with chiral tertiary propargylic alcohols

Previous studies of the tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoids and chiral allylic alcohols showed that the chiral catalyst dominated the tertiary alcohol stereocenter, and the chirality of the alcohol could be effectively transferred to the second stereocenter during the rearrangement (section 2.2.3). With the perspective that this stereocontrol could also be applied to the reactions of donor/acceptor carbenoids and chiral propargylic alcohols, the following studies were carried out.

A more effective way to do these studies would be to use racemic propargylic alcohols as starting material and avoid the tedious synthesis of enantiomerically pure alcohols. For this purpose, alcohol $\mathbf{2 5 9}$, containing methyl and cyclohexyl groups on the carbinol position, was chosen with the hope that the size difference between these two
groups could cause the two enantiomers of $\mathbf{2 5 9}$ to have different reactivity during their reaction with donor/acceptor carbenoids. The ideal situation would be that one enantiomer of $\mathbf{2 5 9}$ could react with the carbenoids, while another enantiomer could not react and subsequently get enriched during the reaction.

Gratefully, the reaction of racemic alcohol 259 with styryldiazoacetate 7 worked smoothly to produce α-allenic alcohol $\mathbf{2 6 0}$ with good diastereoselectivity (Scheme 2.40, dr: 86:14). The major diastereomer ($\mathbf{2 R}, \mathbf{4 S} \mathbf{~} \mathbf{- 2 6 0}$ was isolated in 41% yield and 88% ee. More interestingly, ($\boldsymbol{R} \mathbf{)} \mathbf{- 2 5 9}$ was also isolated in $\mathbf{3 5 \%}$ yield and $\mathbf{9 5 \%}$ ee. The absolute configuration of $(\boldsymbol{R}) \mathbf{- 2 5 9}$ was assigned according to its analogue $(\boldsymbol{R}) \mathbf{- 2 6 1}\left(96 \% \mathrm{ee},[\alpha]^{20}{ }_{\mathrm{D}}\right.$ $:+1.94^{\circ}\left(c 6.03, \mathrm{Et}_{2} \mathrm{O}\right)$, lit. $\left.+1.44^{\circ}\left(c 6.03, \mathrm{Et}_{2} \mathrm{O}\right)\right)$ from the reaction of racemic 261 and p bromophenylvinyldiazoacetate 218 (Scheme 2.41).

Scheme 2.40 Reaction of racemic alcohol 259 with styryldiazoacetate 7

(2R, 4S)-260
(41% yield, 88% ee)

(R)-259
(35\% yield, 95% ee)

Scheme 2.41 Reaction of racemic alcohol 261 with p-bromophenylvinyldiazoacetate
218

The reaction of racemic alcohol $\mathbf{2 5 9}$ and styryldiazoacetate $\mathbf{7}$ was carried out on a one gram scale to provide (\boldsymbol{R})-259 ($0.35 \mathrm{~g}, 31 \%$ yield, 96% ee) with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst and (S)-259 (0.38 g, 34\% yield, 95% ee) with $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ as catalyst, respectively. With the enantiomerically pure alcohol 259 in hand, their reactions with styryldiazoacetate 7 were carried out and the results revealed an interesting match/mismatch issue between the chiral alcohol and the chiral catalyst (Table 2.27). The reaction of $\mathbf{7}$ and $(\boldsymbol{S}) \mathbf{- 2 5 9}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst and the reaction of 7 and (R) 259 with $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ as catalyst resulted in matched reactions, and the [2,3]sigmatropic rearrangement products were formed as single diastereomer with extremely high enantioselectivity ($>97: 3 \mathrm{dr},>99 \%$ ee, Table 2.27 , entry 1 and 3). However, The reaction of $\mathbf{7}$ and $(\boldsymbol{S})-\mathbf{2 5 9}$ with $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}$ as catalyst and the reaction of 7 and $(R)-$ 259 with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst resulted in mismatched reactions, and the [2,3]sigmatropic rearrangement products were formed as $2: 1$ diastereomereric mixtures (entries 2 and 3). The α-allenic alcohol 260 from the reaction of $(\boldsymbol{S}) \mathbf{- 2 5 9}$ and $\mathbf{7}$ with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ as catalyst was recrystallized from cold hexanes (entry $1,>99 \%$ ee), and its X-ray crystallography determined that the absolute configuration of the tertiary
alcohol stereocenter was (R) and the configuration of the chiral allene moiety was (S) (Figure 2.16). The (R) configuration at the tertiary alcohol stereocenter was also consistent with that of compound 243 (Figure 2.15).

Table 2.27 Reaction of enantiomerically pure alcohol $\mathbf{2 5 9}$ with styryldiazoacetate 7

Figure 2.16 X-ray structure of compound (2R, 4S)-260

Besides alcohol 259, other racemic alcohols such as 263 and 264 containing large iso-propyl and t-butyl groups can also be used in the reaction with styryldiazoacetate 7 (Table 2.28). The $(R) \mathbf{- 2 6 3}$ and (R) - $\mathbf{2 6 4}$ were enriched to 81% ee and 77% ee, respectively (entries 1 and 2). Meanwhile, the major diastereomer of α-allenic alcohol 265 and 266 were also formed in high enantioselectivity (93% ee), and their absolute configuration was assigned according to compound $(\mathbf{2 R}, \mathbf{4 S}) \mathbf{- 2 6 0}$. Further lowering the reaction temperature to $-45^{\circ} \mathrm{C}$ did not significantly enhance the stereoselectivity (entry 3).

Table 2.28 Reactions of racemic alcohol 263 and 264 with styryldiazoacetate 7

entry	R	alcohol	temp., ${ }^{\circ} \mathrm{C}$	$d{ }^{\text {a }}$	α-allenic alcohol			(R)-alcohol	
						ld,	ee, \% ${ }^{\text {c }}$	yield, \% ${ }^{\text {d }}$	ee, \% ${ }^{e}$
1	$i-\mathrm{Pr}$	263	0	77: 23	265	47	93	36	81
2	$t-\mathrm{Bu}$	264	0	87:13	266	50	93	42	77
3	t-Bu	264	-45	87:13	266	44	97	50	65

${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}$-NMR. ${ }^{b}$ Combined yield of two diastereomers. ${ }^{c}$ ee of the major diastereomer, determined by chiral HPLC. ${ }^{d}$ Isolated yield. ${ }^{e}$ Determined by chiral HPLC

2.2.5.3 Reactions with chiral secondary propargylic alcohols

The reaction of styryldiazoacetate 7 with secondary chiral propargylic alcohol was also briefly investigated. Both enantiomerically pure (R) - and (S)- alcohol 267 were synthesized following the literature procedure. ${ }^{77}$ Their reactions with styryldiazoacetate 7 are summarized in Table 2.29. Similar to the reactions of $\mathbf{7}$ with tertiary alcohol $\mathbf{2 5 9}$ (Table 2.27), the combination of $(R)-\mathbf{2 6 7}$ and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ resulted in a mismatch situation and only small amount of α-allenic alcohol 268 could be observed from the ${ }^{1} \mathrm{H}$

NMR of the crude reaction mixture (entry 1). The combination of $(R)-267$ and $\mathrm{Rh}_{2}(R-$ DOSP $)_{4}$ or $(S)-267$ and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ produced much better results. Both ($\mathbf{2 S} \boldsymbol{S}, \mathbf{4 R}$)-268 and (2R,4S)-268 were isolated in $\sim 30 \%$ yield and $>99 \%$ ee. Their absolute configurations were assigned according to the X-ray crystallography of (2S, 4R)-268 (Figure 2.17). The low selectivity between [2,3]-sigmatropic rearrangement and $\mathrm{O}-\mathrm{H}$ insertion was the major cause of the low isolated yields of $\mathbf{2 6 8}$ (ratio of [2,3]-sigma/O-H insertion: 1:1).

Table 2.29 Reactions of chiral secondary alcohol 267 with styryldiazoacetate 7

${ }^{a}$ Isolated yield. ${ }^{b}$ ee determined by chiral HPLC.
Since the ability to stabilize the positive charge in the oxonium ylide intermediate is critical for the selectivity between [2,3]-sigmatropic rearrangement and $\mathrm{O}-\mathrm{H}$ insertion (section 2.2.2), it is expected that adding the electron donating methoxy group on the para position of phenyl in alcohol 268 would effectively stabilize the positive charge in the ylide intermediate and hence favor the [2,3]-sigmatropic rearrangement. Indeed, using alcohol $\mathbf{2 6 9}(86 \%$ ee $)$ as substrate, the ratio of [2,3]-sigmatropic rearrangement over $\mathrm{O}-\mathrm{H}$ insertion improved from 1:1 to 5:1 compared with alcohol 267, and α-allenic alcohol 270 was isolated in 48% yield and 99% ee (Scheme 2.42).

Figure 2.17 X-ray structure of compound (2S, 4R)-268

Scheme 2.42 Reactions of chiral secondary alcohol 269 with styryldiazoacetate 7

2.2.5.4 Stereoselective cyclization of $\boldsymbol{\alpha}$-allenic alcohols

One of the most favorable transformations of α-allenic alcohols is their stereoselective conversion into 2,5-dihydrofurans. ${ }^{73}$ This transformation has also been successfully applied to the total synthesis of a variety of natural products containing the 2,5dihydrofuran subunit such as Amphidinolide X and $\mathrm{Y},{ }^{78}$ and Boivinnianin $\mathrm{B} .{ }^{79}$ The highly substituted α-allenic alcohols synthesized from the reactions of arylvinyldiazoacetates and tertiary propargylic alcohols can also be easily transformed into various 2,5-dihydrofuran derivatives with the $>99 \%$ chirality transfer (Scheme 2.43). Treatment of (2R, 4S)-260(99\% ee) with AgNO_{3} and CaCO_{3} or NBS, 2,5-dihydrofurans 271 and 272 containing two quaternary stereocenters were smoothly formed as single
diastereomers in $69-95 \%$ yield and 99% ee. The chirality on the allene moiety was effectively transferred to the stereocenter at the 5-position of the dihydrofuran ring. NOE study of $\mathbf{2 7 1}$ and $\mathbf{2 7 2}$ showed that the ester group at 2-position and the methyl group at 5position were on the same side of the furan ring in both compounds. Their absolute configurations were assigned assuming that the stereocenter at 2-position did not change during the cyclization step.

Scheme 2.43 Formation of 2,5-dihydrofurans

2.2.5.5 Rationalization of the stereoselectivity

All of the α-allenic alcohols derived from the reaction of styryldiazoacetate 7 and various propargylic alcohols catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ had the same (R) configuration at the tertiary alcohol stereocenter. This is also consistent with all of the products derived from the reaction of 7 and various allylic alcohols catalyzed by the same catalyst (section 2.2.1-2.2.4). This extraordinary consistency signifies that similar ylide intermediates are involved in all of the reactions. Therefore, some important assumptions used for the transition state analysis of the [2,3]-sigmatropic rearrangement between donor/acceptor carbenoid and allylic alcohols (section 2.2.3) were also applied here. They included the catalyst $\mathrm{Rh}_{2}(S \text {-DOSP })_{4} D_{2}$-symmetric conformation and the chirality inversion of the rhodium associated carbon stereocenter during the rearrangement. A simple transition
state analysis using alcohol 223 as substrate was shown in Figure 2.18. Alcohol 223 approaches the carbenoid from the front open side to form ylide $\mathbf{A - 1}$, which subsequently goes through the [2,3]-sigmatropic rearrangement via a rigid five-center transition state along with the inversion of the rhodium associated carbon stereocenter and gives rise to the product with (R) configuration at the tertiary alcohol stereocenter.

Figure 2.18 Transition state analysis for the formation of α-allenic alcohol

When the chiral propargylic alcohol containing two different groups as R_{L} and R_{S} on the carbinol position is used as substrate, this alcohol would also approach the carbenoid
in a similar way as alcohol 223. Experimental data shows that the carbenoid prefers to react with the (S)-alcohol and produces the [2,3]-sigmatropic rearrangement product with (R)-configuration at the tertiary alcohol stereocenter and (S)-configuration at the chiral allene moiety. These results support the transition state analysis (ylide formation, followed with the [2,3]-sigmatropic rearrangement) shown in Figure 2.18.B with R_{S} group of the (S)-alcohol on the left and R_{L} group on the right. This arrangement would have the minimum steric interaction between the R groups of the alcohol and the blocking groups of the carbenoid.

High level of kinetic resolution in the reactions of styryldiazoacetate 7 with various racemic propargylic alcohols (Scheme 2.40, Table 2.28) might also originate from this type of steric interaction. In a mismatched reaction with (R)-alcohol, a similar analysis will have R_{L} group of the (R)-alcohol on the left side and its strong steric interaction with blocking group A will prevent the following [2,3]-sigmatropic rearrangement process (Figure 2.18, C). One possible factor that could enhance this match/mismatch effect is the hydrogen bonding between the carbonyl of the ester and the hydroxyl group of the alcohol in the oxonium ylide. This hydrogen bonding can further draw the R groups of the alcohol closer to blocking group A. Of course, more detailed studies, particularly the theoretical calculation studies will eventually lead to an improved and more accurate understanding of this chemistry.

2.2.6 Highly enantioselective intermolecular [1,2]-Stevens rearrangement between donor/acceptor carbenoids and tertiary alcohols

[1,2]-Stevens rearrangement of ylides derived from metal carbenoid and heteroatoms such as nitrogen, sulfur and oxygen is a very useful synthetic method, particularly for the construction of medium-size heterocycles through ring expansion. ${ }^{\text {1a,80 }}$ Dirhodium tetraacetate $\left(\mathrm{Rh}_{2}(\mathrm{OAc})_{4}\right)$ is one of the most widely used catalysts in this chemistry.The asymmetric [1,2]-Stevens rearrangement has also been observed as the competing reaction with the $[2,3]$-sigmatropic rearrangement in the chiral dirhodium complex catalyzed ylide transformations. ${ }^{81}$ One such examples is the $\mathrm{Rh}_{2}(S \text {-PTTL })_{4}$ catalyzed decomposition of diazo 273 (Scheme 2.44). ${ }^{81 b}$ The major product in this reaction is compound 274, derived from the [2,3]-sigmatropic rearrangement of the oxonium ylide intermediate. The minor product, compound 275 was formed from the [1,2]-Stevens rearrangement of the same ylide intermediate in 65% ee.

Scheme 2.44 Asymmetric [1,2]-Stevens rearrangement catalyzed by $\mathrm{Rh}_{2}(S \text {-PTTL })_{4}$

During the study of tandem ylide formation/[2,3]-sigmatropic rearrangement between donor/acceptor carbenoid and allylic alcohols (chapter 2.2.2), tertiary allylic alcohol 107 was used as subtrate to react with phenyldiazoacetate 6. Surprisingly, besides the expected [2,3]-sigmatropic rearrangement product 114, compound 276 was also isolated
in 10% yield and 66% ee (Scheme 2.45). Presumably, both compound 114 and 276 were formed from the same oxonium ylide intermediate, and stabilization of the positive charge by the tertiary carbon moiety in the ylide intermediate contributed the [1,2]Stevens rearrangement product formation.

Scheme 2.45 Formation of compound 273

[1,2]-Stevens rearrangement products were also observed as byproducts in the reaction of styryldiazoacetate 7 with tertiary propargylic alcohols. In most cases, they were formed in $<2 \%$ yield. Much higher yield was obtained when alcohol containing large group on the triple bond was used as substrate. For example, with R as trimethylsilyl and t-butyl, [1,2]-Stevens rearrangement products 277 and 278 could be isolated in 13-18\% yield and $88-92 \%$ ee (Scheme 2.46).

Scheme 2.46 Formation of compound 277 and 278

Impressed with the highly enantioselective formation of compound 277 and 278, a further study to develop this methodology was undertaken. Initially, alcohol 279 was chosen as substrate with the expectation that the tertiary benzylic carbon would effectively stabilize the positive charge in the ylide intermediate and subsequently suppress the competing $\mathrm{O}-\mathrm{H}$ insertion reaction. Indeed, no $\mathrm{O}-\mathrm{H}$ insertion product was observed in the reaction of 279 with styryldiazoacetate 7 catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$. However, [1,2]-Stevens rearrangement product $\mathbf{2 8 1}$ was formed in only 21% isolated yield due to a lot of other unknown product formation (Table 2.30, entry 1). A much cleaner reaction was observed when alcohol 280 containing methoxy group on the para position of phenyl was used as substrate (entry 2). The low yield of $\mathbf{2 8 2}$ was due to its difficult separation with the diazo dimerization byproducts (48% yield). The reaction of 280 with p-bromopheylvinyldiazoacetate 218 produced [1,2]-Stevens rearrangement product $\mathbf{2 8 3}$ in $\mathbf{4 0 \%}$ yield and 87% ee (entry 3), which could be further enriched to 94% ee through recrystallization from hexanes. Its X-ray crystallography determined the absolute configuration of the tertiary alcohol stereocenter as (R) (Figure 2.19). The configurations of all of the other [1,2]-Stevens rearrangement products were tentatively assigned as (R), assuming that a similar mode of asymmetric induction occurred in all the reactions.

Table 2.30 Reaction of alcohol $\mathbf{2 7 9}$ and $\mathbf{2 8 0}$ with arylvinyldiazoacetates

Figure 2.19 X-ray structure of compound 283

Low selectivity between [1,2]-Stevens rearrangement and $\mathrm{O}-\mathrm{H}$ insertion reaction was observed when phenyldiazoacetate $\mathbf{6}$ was used as the donor/acceptor carbenoid precursor (Scheme 2.47). The reaction of $\mathbf{6}$ with alcohol 280 produced a $3: 1$ mixture of [1,2]Stevens rearrangement product 284 and the $\mathrm{O}-\mathrm{H}$ insertion product. Compound $\mathbf{2 8 4}$ was isolated in 58% yield and 78% ee. (Note: the reaction in Table 2.30 , entry 3 and the
reaction in Scheme 2.47 were conducted by undergraduate student Robbin Hoggins under my supervision).

Scheme 2.47 Reaction of alcohol 280 with phenyldiazoacetate 6

The mechanism of the [1,2]-Stevens rearrangement has been extensively studied via various calculations. ${ }^{82}$ Generally it is considered as a diradical mechanism, through the homolytic dissociation of the migrating group to form a radical couple, followed with the radical coupling. It has been documented that the [1,2]-Stevens rearrangement of oxonium ylide also goes through this rapid radical dissociation-recombination mechanism. ${ }^{81 b, 83}$ The [1,2]-Stevens rearrangement of donor/acceptor carbenoids with tertiary alcohols, however, suggest that the reaction might involve a carbocation intermediate, since the ability of the tertiary alcohols to stablize the carbocation intermediate is critical for the rearrangement to occuur (Scheme 2.48).

Scheme 2.48 Possible mechanism of the [1,2]-Stevens rearrangement

The (R) configuration of the tertiary alcohol stereocenter in the [1,2]-Stevens rearrangement product is consistent with the products derived from the reaction of
donor/acceptor carbenoids with allylic alcohols and propargylic alcohols catalyzed by $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, which suggests that the oxonium ylide intermediates with similar configuration are involved in all of these transformations. Presumably, the tertiary alcohol approachs the carbenoid in a similar trajector to the allylic alcohols and propargylic alcohols to form the oxonium ylide, then this ylide will undergo the carbocation intermediate formation and the rapid $\mathrm{C}-\mathrm{C}$ bond formation with inversion of configuration at the rhodium-bound carbon. Further studies to elucidate a more detailed understanding of the mechanism are underway in the Davies group.

2.3 Conclusion

A novel tandem oxonium ylide formation/[2,3]-sigmatropic rearrangement of donor/acceptor carbenoids and allylic alcohols/propargylic alcohols was discovered and the scope and limitaions were explored. α-Hydroxycarboxylate derivatives were synthesized with very high stereoselectivity (up to $>97: 3 \mathrm{dr}$ and $>99 \%$ ee). Dirhodium tetraprolinate, $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$, was the best catalyst for this type of transformation, and its chirality dominated the configuration of the tertiary alcohol stereocenter in the product. When chiral allylic alcohols were used as substrates, the chirality of the alcohol was effectively transformed to the second stereocenter in the product. When chiral propargylic alcohols were used as substrates, the chirality of the alcohol was effectively transformed to the allene moiety in the product. These studies not only provide a novel and efficient method to synthesize α-hydroxycarboxylate derivatives with high stereoselectivity, but also demonstrate that the donor/acceptor carbenoids have superior
reactivity over the conventional acceptor carbenoid and acceptor/acceptor carbenoids to suppress the competing $\mathrm{O}-\mathrm{H}$ insertion reaction.

A highly enantioselective [1,2]-Stevens rearrangement between donor/acceptor carbenoids and tertiary alcohols was also briefly studied. α-Hydroxycarboxylate derivatives containing two adjacent quaternary centers were synthesized in 20-60\% yield and $78-94 \%$ ee.

2.4 Experimental

2.4.1 General Information

All experiments were performed under anhydrous conditions in an argon atmosphere with oven-dried glassware. Pentane was dried by a solvent-purification system (passed through activated alumina columns) and degassed with argon before use. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at either 400 MHz on an INOVA- 400 spectrometer, or at 600 MHz on an INOVA-600 spectrometer. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and DEPT spectra were recorded at 100 MHz , or 150 MHz on the same instruments. NMR spectra were recorded in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ solutions, with residual chloroform $\left(\delta 7.27 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and δ 77.23 ppm for ${ }^{13} \mathrm{C}-\mathrm{NMR}$) taken as the internal standard, and were reported in parts per million (ppm). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q , quartet; m , multiplet. Coupling constants were taken from the spectra directly and are uncorrected. IR spectra were collected on a Nicolet iS10 FT-IR spectrometer as neat films. Mass spectra determinations were carried out on a Thermo Finnigan LTQFTMS spectrometer with ESI or APCI ionization. Optical rotations were measured on JASCO P-2000 polarimeter. Elemental analysis was performed by Atlantic Microlab Inc, P. O. Box 2288, Norcross, Georgia. GC-MS analysis was performed on Shimadzu GC17 A , column condition: $80^{\circ} \mathrm{C}$, keep 1 min , then $10^{\circ} \mathrm{C} / \mathrm{min}$ to $250^{\circ} \mathrm{C}$, keep 5 min . GC analysis was performed on Agilent 7890A, column condition: $30^{\circ} \mathrm{C}$ for 1 min , then increase to $180^{\circ} \mathrm{C}$ at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$, then keep 5 min . Analytical TLC was performed on silica gel plates using UV light or stained with 5% phosphomolybdic acid-ethanol
solution. Flash column chromatography was performed with silica gel 60 A (230-400 mesh).

2.4.2 Synthetic procedures and characterization for Chapter 2.2.1 and

2.2.2

2.4.2.1 General procedure of the $\mathbf{R h}_{2}(\boldsymbol{S} \text {-DOSP })_{4}$-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement of carbenoid with allylic alcohol:

A solution of $\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and allylic alcohol (0.5-2.0 mmol, 1-4 equiv.) in 1 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. Diazo solution ($0.5-0.55 \mathrm{mmol}, 1-1.1$ equiv.) in 5 mL of degassed pentane was added by syringe pump over 1 h . The syringe was rinsed with another 1 mL of degassed pentane and added to the reaction mixture. After addition, the solution was stirred for 30 \min at $0^{\circ} \mathrm{C}$, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel.

2.4.2.2 Characterization of compounds in Chapter 2.2.1 and 2.2.2

Methyl stryldiazoacetate (7)

Prepared by following the literature procedure. ${ }^{37}$ A solution of benzaldehyde $(6.1 \mathrm{~mL}, 60$ mmol, 1 equiv.) and carboxyethyltriphenylphosphorium chloride ($26.7 \mathrm{~g}, 72 \mathrm{mmol}, 1.2$ equiv.) in 130 mL of THF was cooled to $0^{\circ} \mathrm{C}$ under argon. Potassium t-butoxide (16.8 g , $150 \mathrm{mmol}, 2.5$ equiv.) in 80 mL of THF was slowly added over 30 min with cannula.

After addition, the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , then warmed to room temperature and stirred for 20 min . Dimethyl sulfate ($11.4 \mathrm{~mL}, 120 \mathrm{mmol}, 2.0$ equiv.) was added in one portion, and the solution was stirred at room temperature for 2.5 h . Then it was cooled to $0^{\circ} \mathrm{C}$, p-ABSA ($18.7 \mathrm{~g}, 78 \mathrm{mmol}, 1.3$ equiv.) was added in one portion, followed with the rapid addition of $\mathrm{DBU}(11.7 \mathrm{~mL}, 78 \mathrm{mmol}, 1.3$ equiv.). The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , then warmed to room temperature and concentrated under vacuum. The residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (12:1) to afford compound 7 as red oil $(9.9 \mathrm{~g}, 82 \%$ yield).). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{84}$

Methyl p-methoxyphenyldiazoacetate (12)

Prepared by following the literature procedure. ${ }^{26}$ In a 500 mL round bottom flask, was added methyl p-methoxyphenylacetate ($11.4 \mathrm{~g}, 63 \mathrm{mmol}$), p-ABSA $(18.2 \mathrm{~g}, 76 \mathrm{mmol}, 1.2$ equiv.), and 120 mL of acetonitrile. $\mathrm{DBU}(13.6 \mathrm{~mL}, 91 \mathrm{mmol}, 1.4$ equiv.) was slowly added. The solution was stirred at room temperature for 12 h . Then 100 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with diethyl ether (3 x 100 mL), the combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford compound $\mathbf{1 2}$ as orange solid (5.6 g ,
43% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{26}$

Methyl p-bromophenyldiazoacetate (30)

Prepared by following the literature procedure. ${ }^{26}$ In a 250 mL round bottom flask, was added p-bromophenylacetic acid $(10.6 \mathrm{~g}, 49 \mathrm{mmol})$ and 150 mL of methanol. Acetyl chloride (1.5 mL) was slowly added, and the solution was stirred at room temperatur overnight. Then it was concentrated under vacuum. 30 mL of water was added to the residue, the mixture was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined ether solution was dried over MgSO_{4}, and concentrated under vacuum to give the corresponding ester which was used without further purification.

Methyl p-bromophenylacetate from last step was dissolved with 100 mL of acetonitrile and cooled to $0{ }^{\circ} \mathrm{C}$. Then p-ABSA ($14.2 \mathrm{~g}, 59 \mathrm{mmol}, 1.2$ equiv.) was added in one portion, followed with DBU ($8.8 \mathrm{~mL}, 59 \mathrm{mmol}, 1.2$ equiv.). The mixture was stirred at room temperature overnight, then concentrated under vacuum. To the residue, was added 100 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$), the combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (9:1) to afford compound $\mathbf{3 0}$ as orange solid (11.1 g, 88% yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{26}$

(E)-Methyl 3,3-dimethyl-2-phenylhex-4-enoate (98)

A solution of $\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and 4-methyl-pent-2-ene (97) ($0.65 \mathrm{~mL}, 5 \mathrm{mmol}, 10$ equiv.) in 1 mL of degassed 2,2-dimethylbutane was heated to reflux $\left(50{ }^{\circ} \mathrm{C}\right)$ under argon. Methyl phenyldiazoacetate (6) (88mg, 0.5 mmol$)$ in 5 mL of degassed 2,2-dimethylbutane was added by syringe pump over 5 h . After addition, the solution was stirred for 30 min at $50^{\circ} \mathrm{C}$, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 98 as clear oil (12mg, 10\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{dq}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28$ $(\mathrm{dq}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ (s, 3H), $1.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.4(\mathrm{C}), 138.2(\mathrm{CH}), 136.0(\mathrm{C})$, $130.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 123.0(\mathrm{CH}), 61.6(\mathrm{CH}), 51.6\left(\mathrm{CH}_{3}\right), 39.6(\mathrm{C}), 26.7$ $\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 1736, 1454, 1433, 1362, 1199, 1165, 1140, 1022, $974,738,702 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 233.15361$, found: 233.15334 .

4-Methylpent-3-en-2-ol (rac-101)

Prepared by following the literature procedure. ${ }^{86}$ The suspension of $\mathrm{LiAlH}_{4}(4.9 \mathrm{~g}, 0.13$ mol) in 100 mL of diethyl ether was cooled to $0{ }^{\circ} \mathrm{C}$ with ice-bath. A solution of 4-methyl-

3-penten-2-one ($25.0 \mathrm{~g}, 0.25 \mathrm{~mol}$) in 100 mL of diethyl ether was slowly added. After addition, the mixture was stirred at room temperature for 1 h , then cooled to $0^{\circ} \mathrm{C}$, and carefully quenched with cold water. 15 mL of 15% aqueous NaOH solution and 50 mL of water were added to the mixture. The organic layer was separated, washed with brine, and dried over MgSO_{4}. After filtration, the solution was concentrated under vacuum, and the crude material was distilled with kugelrhor under vacuum to afford compound $\mathbf{1 0 1}$ as clear liquid (20.5 g, 80\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48-4.44(m, 1H), $1.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{br} ., 1 \mathrm{H}), 1.22$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.3(\mathrm{C}), 129.3(\mathrm{CH}), 64.4(\mathrm{CH})$, $25.4\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right)$. Data are consistent with the literature. ${ }^{86}$

(S)-4-Methylpent-3-en-2-ol ((S)-101)

Prepared by following the literature procedure. ${ }^{87}$ To the solution of racemic alcohol 101 $(5.0 \mathrm{~g}, 0.05 \mathrm{~mol})$ and vinyl acetate ($12.5 \mathrm{~mL}, 0.14 \mathrm{~mol}, 2.8$ equiv) in 250 mL of hexanes, was added Amano AK enzyme (2.5 g) and 4 A molecular sieves (3.0 g). The mixture was stirred vigorously at room temperature for 15 h . After filtration, the solution was concentrated and the crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1 to $1: 1$) to $\operatorname{afford}(\boldsymbol{S}) \mathbf{- 1 0 1}(2.2 \mathrm{~g}, 44 \%$ yield) and (R)-101a ($2.7 \mathrm{~g}, 38 \%$ yield). (S)-101: Chiral capillary GC analysis: 69\% ee, CHIRALDEX B-PM column, t_{R} : 5.31 min (minor), 6.74 min (major). This material was
further enriched to 84% ee following the same procedure. (R)-101a: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.56-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
(R)-4-Methylpent-3-en-2-ol ((R)-101)

$(R)-101 \mathrm{a}(2.6 \mathrm{~g})$ was dissolved with KOH solution $(6.0 \mathrm{~g}, 0.11 \mathrm{~mol})$ in 15 mL of ethanol/ $/ \mathrm{H}_{2} \mathrm{O}$ (7:3). The solution was heated to reflux for 2.5 h . After cooled to $0{ }^{\circ} \mathrm{C}, 100$ mL of cold water was added, and the solution was neutralized with aqueous HCl . The solution was extracted with diethyl ether. The combined diethyl ether solution was dried over MgSO_{4}, and concentrated to give the crude product, which was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 2:1) to afford (R) 101 ($1.0 \mathrm{~g}, 56 \%$ yield). Chiral capillary GC analysis: 83% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 5.31 \mathrm{~min}$ (major), 6.74 min (minor).

Methyl 2-hydroxy-3,5-dimethyl-2-phenylhex-4-enoate (102)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (93 mg, $0.5 \mathrm{mmol})$ and (E)-2-methylpent-3-en-2-ol (100) (202 mg, $2.0 \mathrm{mmol}, 4$ equiv.) at $40{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound 102: pure major diastereomer (80 mg), a mixture of two
diastereomers (7 mg), and pure minor diastereomer (18 mg). Combined yield: 105 mg , 79% yield. Major diastereomer: clear oil, $[\alpha]^{20}{ }_{\mathrm{D}}+75.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.32$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.77$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 176.1$ (C), 140.7 (C), 133.1 (C), $128.3(\mathrm{CH}), 127.7(\mathrm{CH}), 126.4(\mathrm{CH}), 124.9(\mathrm{CH}), 80.9(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 40.8(\mathrm{CH}), 26.3$ $\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3511, 1723, 1447, 1436, 1250, 1151, 1122, 1013, 727, $699 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$231.13796, found: 231.13802. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.70, H, 8.18. HPLC analysis: 88% ee, (S, S) - Whelk- O1, 0.3% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 8.5 \mathrm{~min}$ (major), 10.3 min (minor). Minor diastereomer: white solid. $[\alpha]^{20}{ }_{\mathrm{D}}+6.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). M.p.: 94-95 ${ }^{\circ} \mathrm{C} . R_{f}, 0.26$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.99$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}$, $3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1$ (C), 141.4 (C), 132.7 (C), $127.9(\mathrm{CH}), 127.5(\mathrm{CH}), 126.2(\mathrm{CH}), 124.2(\mathrm{CH}), 81.3(\mathrm{C}), 53.5\left(\mathrm{CH}_{3}\right), 40.6$ $(\mathrm{CH}), 25.9\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 16.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 1723, 1447, 1436, 1246, 1123, 730, $698 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}:$249.14852, found: 249.14854. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.29, H, 8.23. HPLC analysis: 65% ee, CHIRAL PAK AS-H, 0.3% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 9.6 \mathrm{~min}$ (major), 12.5 min (minor).

(S, E)-Methyl 2-hydroxy-3,3-dimethyl-2-phenylhex-4-enoate (99) and methyl 2-((4-

 methylpent-3-en-2-yl)oxy)-2-phenylacetate (103)

99

103

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (91 mg, 0.5 mmol) and 4-methylpent-3-en-2-ol (101) (racemic, $203 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded pure compound 99 (clear oil, 77 mg), mixture of compound 99 and compound 103 ($1^{\text {st }}$ diastereomer) (clear oil, 26 mg), and pure compound $\mathbf{1 0 3}$ ($2^{\text {nd }}$ diastereomer) (clear oil, 8 mg). Combined yield: $111 \mathrm{mg}, 86 \%$ yield. Compound 99: $[\alpha]^{20}{ }_{\mathrm{D}}-30.4^{\mathrm{o}}\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=$ $6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$; With the addition of $\mathrm{D}_{2} \mathrm{O}$, peak at 3.66 ppm disappeared; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.7$ (C), $138.8(\mathrm{C}), 136.8(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH}), 124.3(\mathrm{CH}), 83.1(\mathrm{C}), 52.9\left(\mathrm{CH}_{3}\right), 44.3(\mathrm{C}), 23.5\left(\mathrm{CH}_{3}\right)$, $23.3\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3502, 1717, 1447, 1434, 1227, 1161, 1061, 978, 745, $701 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249.14852$, found: 249.14862. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 72.55; H, 8.12. Found: C, 72.34, H, 8.29. HPLC analysis: 86% ee, (S, S)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV 230 nm , $t_{\mathrm{R}}: 10.2 \mathrm{~min}$ (major), 12.6 min (minor). Compound 103: $\mathbf{1}^{\text {st }}$ diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}$,
$1 \mathrm{H}), 4.39-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.32(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.6(\mathrm{C}), 137.4(\mathrm{C}), 136.5(\mathrm{C})$, $128.7(\mathrm{CH}), 128.5(\mathrm{CH}), 127.3(\mathrm{CH}), 126.6(\mathrm{CH}), 77.5(\mathrm{CH}), 71.4(\mathrm{CH}), 52.3\left(\mathrm{CH}_{3}\right), 26.0$ $\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 1750, 1451, 1435, 1207, 1170, 1117, 1070, $728,696 \mathrm{~cm}^{-1}$; GC-MS analysis: $\mathrm{t}_{R}: 9.05 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 55$ (68\%), 67 (78\%), 77 (61\%), 79 (75\%), 83 (100\%), 107 (82\%), 166 (3\%). HPLC analysis: 10% ee, (S, S)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV 230 nm , $t_{\mathrm{R}}: 14.7 \mathrm{~min}$ (major), 17.5 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 3 \mathrm{H}), 5.15-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 171.9(\mathrm{C}), 137.4(\mathrm{C}), 136.3(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.6(\mathrm{CH}), 126.6$ $(\mathrm{CH}), 77.9(\mathrm{CH}), 70.5(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $1757,1435,1204,1168,1114,1067,729,697 \mathrm{~cm}^{-1}$; GC-MS analysis: $\mathrm{t}_{R}: 9.25 \mathrm{~min}, \mathrm{~m} / \mathrm{z}$ 55 (67\%), 67 (96\%), 77 (72\%), 79 (89\%), 83 (95\%), 107 (100\%), 166 (3\%). HPLC analysis: 7\% ee, (S, S)-Whelk-O1, 1.0 \% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, ~ U V ~ 230 \mathrm{~nm}$, $t_{\mathrm{R}}: 14.9 \mathrm{~min}$ (major), 23.1 min (minor).

4-Methoxy-2-methylpent-2-ene (104)

Prepared by following the literature procedure. ${ }^{85}$ A solution of 4-methyl-3-penten-2-ol (101) $(5.5 \mathrm{~g}, 54 \mathrm{mmol})$ in 6 mL of diehtyl ether was slowly added to the suspension of $\mathrm{NaH}(1.8 \mathrm{~g}, 71 \mathrm{mmol}, 1.3$ equiv.) in 25 mL of diethyl ether under argon. The mixture was
heated to reflux for 1 h . After cooled to room temperature, MeI $(5.4 \mathrm{~mL}, 87 \mathrm{mmol}, 1.6$ equiv.) was slowly added, and the solution was reluxed for another 8 h . Then it was carefully quenched with water at $0^{\circ} \mathrm{C}$, the mixture was extracted with diethyl ether (3 x 50 mL). The combined ether solution was washed with brine, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, and concentrated under vacuum. The crude material was distilled with kugelrhor under vacuum to afford compound $\mathbf{1 0 4}$ as clear oil ($3.8 \mathrm{~g}, 61 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$. Data are consistent with the literature. 85

Methyl 3-((4-methylpent-3-en-2-yl)oxy)-2-phenylpropanoate (105)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (91 mg, 0.5 mmol) and 4-methoxy-2-methylpent-2-ene (104) (racemic, $230 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$), and afforded compound 105 as an inseparable diastereomeric mixture (clear oil, dr: 2:1, $75 \mathrm{mg}, 54 \%$ yield). Major diastereomer: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.10-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 1 \mathrm{H})$, $4.02(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}) 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=9.2,5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; IR (neat): $1738,1454,1435,1202,1164,1104,1077,699 \mathrm{~cm}^{-1}$; GC-MS analysis: Major diastereomer: $\mathrm{t}_{R}: 10.27 \mathrm{~min}, m / z 55(70 \%), 67$ (37\%), 83 (100\%), 99 (18\%), 118 (10%),

150 (18\%); Minor diastereomer: $\mathrm{t}_{R}: 10.21 \mathrm{~min}, m / z 55$ (64\%), 67 (23\%), 83 (100\%), 99 (16\%), 118 (11\%), 150 (17\%).

(S)-Methyl 2-hydroxy-3,3,5-trimethyl-2-phenylhex-4-enoate (113)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (91 mg, $0.5 \mathrm{mmol})$ and 2,4-dimethylpent-3-en-2-ol (106) ($239 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound $\mathbf{1 1 3}$ as clear oil ($98 \mathrm{mg}, 72 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-32.0^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.33$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.72$ $(\mathrm{m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, 3H), 1.22 ($\mathrm{s}, 3 \mathrm{H}$), 1.17 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9$ (C), 138.9 (C), $133.2(\mathrm{C}), 129.8(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3(\mathrm{CH}), 83.9(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 45.0$ (C), $29.2\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3500, 1717, 1446, 1434, $1249,1178,1063,1023,746,701 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 263.16417, found: 263.16412. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 73.25; H, 8.45. Found: C, 73.42, H, 8.32. HPLC analysis: 79% ee, (S, S) Whelk-O1, 0.3 \% isopropanol/hexanes, 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 7.2 \mathrm{~min}$ (major), 8.5 min (minor).

(S)-Methyl 2-hydroxy-5-methyl-2-phenylhex-4-enoate (114)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (90 mg, $0.5 \mathrm{mmol})$ and 2-methylbut-3-en-2-ol (107) (178 mg, $2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $\mathbf{1 1 4}$ as clear oil ($49 \mathrm{mg}, 40 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+13.7^{\circ}(c 1.0$, CHCl_{3}); $R_{f}, 0.17$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.61$ (m, 2H), 7.39-7.29 (m, 3H), 5.16-5.13 (m, 1H), 3.77 (s, 3H), $3.64(\mathrm{~s}, 1 \mathrm{H}), 2.98$ (dd, $J=$ $14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6$ (C), 141.8 (C), 136.6 (C), 128.4 $(\mathrm{CH}), 127.9(\mathrm{CH}), 125.6(\mathrm{CH}), 117.7(\mathrm{CH}), 78.6(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 38.8\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right)$, $18.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3511,1727,1447,1436,1231,1101,1072,730,697 \mathrm{~cm}^{-1} ;$ HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}:$252.15942, found: 252.15957. HPLC analysis: 79% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV 230 $\mathrm{nm}, t_{\mathrm{R}}: 22.9 \min$ (major), 20.7 min (minor).

Methyl 2-hydroxy-3-methyl-2-phenylhex-4-enoate (115)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (92 mg, 0.5 mmol) and (E)-pent-3-en-2-ol (108) (racemic, $172 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at rt . The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound 115 ($81 \mathrm{mg}, 66 \%$ yield). $\mathbf{1}^{\text {st }}$ diastereomer: clear oil, $[\alpha]^{20}{ }_{\mathrm{D}}+70.9^{\circ}$ (c 1.0 , CHCl_{3}). $R_{f}, 0.32$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.61(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5,47(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$,
$3 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 175.9(\mathrm{C}), 140.4(\mathrm{C}), 131.6(\mathrm{CH}), 128.3(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 127.4(\mathrm{CH}), 126.3(\mathrm{CH}), 81.2(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 45.2(\mathrm{CH}), 18.4\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1724,1447,1435,1244,1140,1005,966,759,727,698 \mathrm{~cm}^{-1} ;$ HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 252.15942$, found: 252.15958. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 71.77; H, 7.74. Found: C, 71.75, H, 7.85. HPLC analysis: $90 \% \mathrm{ee},(S$, S)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 9.3 \mathrm{~min}$ (major), 10.5 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer: $[\mathrm{a}]^{20}{ }_{\mathrm{D}}-12.6^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$). $R_{f}, \quad 0.23$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 5.31(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.17(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.8(\mathrm{C}), 141.1(\mathrm{C}), 130.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH})$, $126.3(\mathrm{CH}), 81.1(\mathrm{C}), 53.5\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{CH}), 18.2\left(\mathrm{CH}_{3}\right), 15.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3511, 1724, 1447, 1435, 1238, 1192, 1138, 1072, 1022, 1007, 966, 729, $698 \mathrm{~cm}^{-1} ;$ HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 252.15942$, found: 252.15952. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 71.77; $\mathrm{H}, 7.74$. Found: $\mathrm{C}, 71.98, \mathrm{H}, 7.87$. HPLC analysis: 85% ee, CHIRAL PAK AS-H, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 11.2 \mathrm{~min}$ (major), 13.3 min (minor).

Methyl 2-((3-methylbut-2-en-1-yl)oxy)-2-phenylacetate (116)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (93 mg, 0.5 mmol) and 3-methylbut-2-en-1-ol (109) (179 mg, $2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $\mathbf{1 1 6}$ as clear oil (104 mg, 84\% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 171.5$ (C), 138.3 (C), 136.7 (C), $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 120.2$ $(\mathrm{CH}), 79.6(\mathrm{CH}), 65.8\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 1750, 1453, 1435, 1206, 1169, 1093, 1070, 1010, 728, $696 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 252.15942$, found: 252.15902. HPLC analysis: 0% ee, (S, S) -Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 31.2 \mathrm{~min}, 49.4 \mathrm{~min}$.

Methyl 2-(but-3-en-2-yloxy)-2-phenylacetate (117)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (92 mg, 0.5 mmol) and but-3-en-2-ol (110) (racemic, $157 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $117\left(71 \mathrm{mg}, 61 \%\right.$ yield). $\mathbf{1}^{\text {st }}$ diastereomer: clear oil, R_{f}, 0.27 (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.30 (m, 3H), 5.78-5.70(m, 1H), 5.23-5.18(m, 2H), $5.01(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.2(\mathrm{C}), 139.4$
$(\mathrm{CH}), 137.1(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.4(\mathrm{CH}), 117.3\left(\mathrm{CH}_{2}\right), 78.0(\mathrm{CH}), 76.8$ (CH), $52.3\left(\mathrm{CH}_{3}\right), 21.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 1749, 1208, 1170, 1095, 1072, 990, 926, 728, $696 \mathrm{~cm}^{-1}$; HRMS (+ESI) m/z: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 238.14377$, found: 238.14396. HPLC analysis: 6% ee, (S, S)-Whelk-O1, 0.5% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV} 230 \mathrm{~nm}, t_{\mathrm{R}}: 13.3 \mathrm{~min}$ (major), 17.9 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer: clear oil, $R_{f}, 0.20$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.27 (m, 3H), 5.82-5.74 (m, 1H), $5.20(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.6(\mathrm{C}), 139.3(\mathrm{CH}), 137.0(\mathrm{C}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.5(\mathrm{CH})$, $117.5\left(\mathrm{CH}_{2}\right), 78.2(\mathrm{CH}), 75.8(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $1755,1205,1169$, 1093, 1071, 994, 920, $729,697 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 238.14377, found: 238.14399. HPLC analysis: 5% ee, (S, S)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 33.5 \mathrm{~min}$ (major), 20.8 min (minor).

(E)-Methyl 2-(but-2-en-1-yloxy)-2-phenylacetate (118)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (0.089 $\mathrm{g}, 0.5 \mathrm{mmol}$) and (E)-but-2-en-1-ol (111) ($150 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $\mathbf{1 1 8}$ as clear oil ($81 \mathrm{mg}, 72 \%$ yield). $R_{f}, 0.18$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 5.77-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}$,
$1 \mathrm{H}), 1.72(\mathrm{dd}, J=6.0,0.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6(\mathrm{C}), 136.6(\mathrm{C})$, $131.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 79.6(\mathrm{CH}), 70.3\left(\mathrm{CH}_{2}\right)$, 52.4($\left.\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; IR (neat): $1750,1453,1435,1206,1170,1099,1062,1014,966$, $728,696 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 238.14377$, found: 238.14341. HPLC analysis: 5% ee, (R, R)-Whelk-O1, 0.7% isopropanol/hexanes, 0.8 $\mathrm{mL} / \mathrm{min}, ~ U V 230 \mathrm{~nm}, t_{\mathrm{R}}: 20.0 \mathrm{~min}$ (major), 15.9 min (minor).

Methyl 2-(allyloxy)-2-phenylacetate (119)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (87 mg, $0.5 \mathrm{mmol})$ and prop-2-en-1-ol (112) ($117 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at rt . The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound 119 as clear oil ($65 \mathrm{mg}, 63 \%$ yield). $R_{f}, 0.18$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.98-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{dq}, J=$ $17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dq}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{dt}, J=6.0,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.4(\mathrm{C}), 136.5(\mathrm{C}), 133.9(\mathrm{CH})$, $128.9(\mathrm{CH}), 128.8(\mathrm{CH}), 127.5(\mathrm{CH}), 118.4\left(\mathrm{CH}_{2}\right), 79.8(\mathrm{CH}), 70.5\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $1750,1454,1434,1258,1207,1171,1097,1071,1015,924,729,696 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 224.12812$, found: 224.12779. HPLC analysis: 1% ee, (R, R)-Whelk-O1, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV 230 nm , $t_{\mathrm{R}}: 13.7 \mathrm{~min}, 16.9 \mathrm{~min}$.

(E)-Methyl 2-diazohex-3-enoate (120)

Prepared by following the literature procedure. ${ }^{88}$ Trans-3-hexenoate $(4.0 \mathrm{~g}, 31 \mathrm{mmol})$ and p-ABSA ($11.2 \mathrm{~g}, 47 \mathrm{mmol}, 1.5$ equiv.) was dissolved with 100 mL of acetonitrile and cooled to $0{ }^{\circ} \mathrm{C}$ with ice bath. $\mathrm{DBU}(7.0 \mathrm{~mL}, 47 \mathrm{mmol}, 1.5$ equiv.) was slowly added. The reaction mixture was stirred at room temperature for 3 h , then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and extracted with diehtyl ether ($3 \times 100 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude material was purified on silica gel eluting with pentane/diethyl ether (30:1) to afford compound 120 as orange oil ($1.5 \mathrm{~g}, 31 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.72(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dt}, J=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, ; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 155.08150, found: 155.08152 .

(S, E)-Methyl 2-hydroxy-2-(4-methoxyphenyl)-3,3-dimethylhex-4-enoate (122)

Prepared by following the general procedure with methyl p-methoxyphenyldiazoacetate (12) (108 mg, 0.5 mmol$)$ and 4-methylpent-3-en-2-ol (101) (racemic, $209 \mathrm{mg}, 2.0 \mathrm{mmol}$, 4 equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (5:1), and afforded compound $\mathbf{1 2 2}$ as clear oil ($25 \mathrm{mg}, 17 \%$ yield).
$[\alpha]^{20}{ }_{\mathrm{D}}-17.8^{\circ}\left(c 0.8, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.27$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.61(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=15.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{dq}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=$ $6.6,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9(\mathrm{C})$, $159.1(\mathrm{C}), 136.9(\mathrm{CH}), 130.9(\mathrm{C}), 129.0(\mathrm{CH}), 124.3(\mathrm{CH}), 112.6(\mathrm{CH}), 82.8(\mathrm{C}), 55.4$ $\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{C}), 22.5\left(\mathrm{CH}_{3}\right), 22.3\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3500, 1717, $1608,1509,1440,1298,1246,1177,1090,1068,1035,978,830.802,778 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}:$296.18564, found: 296.18526. HPLC analysis: 92% ee, (S, S)-whelk O1, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}$, $t_{\mathrm{R}}: 15.7 \mathrm{~min}$ (major), 18.8 min (minor). $\mathrm{O}-\mathrm{H}$ insertion products were also isolated from this reaction (combined yield of two diastereomers: $47 \mathrm{mg}, 31 \%$ yield). $\mathbf{1}^{\text {st }}$ diastereomer of the $\mathbf{O}-\mathbf{H}$ insertion product: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8$ (C), 159.9 (C), 136.4 (C), 130.9 (C), 129.6 (C), 128.7 (CH), 126.7 $(\mathrm{CH}), 114.1(\mathrm{CH}), 77.0(\mathrm{CH}), 71.2(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 52.2\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 21.7$ $\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 1749, 1611, 1512, 1246, 1208, 1170, 1117, 1104, 1066, 1033, 827, $794 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 296.18564$, found: 296.18521. HPLC analysis: 7\% ee, (S, S)-whelk O1, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $230 \mathrm{~nm}, t_{\mathrm{R}}: 22.2 \mathrm{~min}$ (major), 30.4 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer of the O-H insertion product: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.81$
$(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1$ (C), 159.9 (C), 136.1 (C), 129.4 (C), 128.9 (CH), 126.7 (CH), $114.1(\mathrm{CH}), 77.4(\mathrm{CH}), 70.1(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 52.3\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 21.8\left(\mathrm{CH}_{3}\right), 18.3$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): 1755, 1733, 1610, 1511, 1440, 1246, 1206, 1169, 1115, 1102, 1067, 1032, 829, $794 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}:$296.18564, found: 296.18520. HPLC analysis: 2% ee, (S, S)-whelk O1, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 36.2 \mathrm{~min}$ (minor), 64.9 min (major).

(S, E)-Methyl 2-(4-bromophenyl)-2-hydroxy-3,3-dimethylhex-4-enoate (123)

Prepared by following the general procedure with methyl p-bromophenyldiazoacetate (30) (129 mg, 0.5 mmol) and 4-methylpent-3-en-2-ol (101) (racemic, $204 \mathrm{mg}, 2.0 \mathrm{mmol}$, 4 equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound 123 as clear oil (116 mg, 70\% yield). $[\alpha]^{20}{ }_{\mathrm{D}}-8.3^{0}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.32$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.61(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{dq}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.3$ (C), 137.8 (C), $136.3(\mathrm{CH}), 130.3(\mathrm{CH}), 129.6(\mathrm{CH}), 124.8(\mathrm{CH}), 122.0(\mathrm{C}), 82.7(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 44.4$ (C), $23.4\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3510, 1719, 1486, 1229, 1160, 1076, 1009, $978,821,783,731 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 309.04847, found: 309.04841. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Br}: \mathrm{C}, 55.06$; $\mathrm{H}, 5.85$. Found: C,
$55.28, \mathrm{H}, 5.87$. HPLC analysis: 88% ee, (S, S) Whelk-O1, 0.3% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm}, t_{\mathrm{R}}: 10.8 \mathrm{~min}$ (major), 12.5 min (minor).

($\boldsymbol{R}, \boldsymbol{E}$)-Methyl 2-hydroxy-2-((E)-2-methylpent-3-en-2-yl)hex-3-enoate (124)

Prepared by following the general procedure with (E)-methyl 2-diazohex-3-enoate (120) ($154 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ equiv.) and 4-methylpent-3-en-2-ol (101) (racemic, $51 \mathrm{mg}, 0.5$ mmol) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$), and afforded compound $\mathbf{1 2 4}$ as clear oil ($53 \mathrm{mg}, 46 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-42.1^{\circ}$ (c $1.2, \mathrm{CHCl}_{3}$). $R_{f}, 0.33$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.92$ (dt, $J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dq}, J$ $=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dd}, J=6.0,1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 175.7(\mathrm{C}), 136.6(\mathrm{CH}), 134.1(\mathrm{CH}), 126.2(\mathrm{CH}), 124.0(\mathrm{CH}), 81.3(\mathrm{C}), 52.7$ $\left(\mathrm{CH}_{3}\right), 43.8(\mathrm{C}), 25.6\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 13.8\left(\mathrm{CH}_{3}\right)$; IR (neat): $3517,2963,1723,1436,1383,1260,1237,1165,1147,1118,976 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 209.15361, found: 209.15353. Enantiomeric excess was determined as 92% ee by ${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 2 4}$ with addition of $\mathrm{Eu}(\mathrm{tfc})_{3}, 3.90 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right.$, major enantiomer), $3.87\left(\mathrm{OCH}_{3}\right.$, minor enantiomer $)$.

(R, E)-Methyl 2-hydroxy-3,3-dimethyl-2-((E)-styryl)hex-4-enoate (125)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 4-methylpent-3-en-2-ol (101) (racemic, $50 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $\mathbf{1 2 5}$ as clear oil ($91 \mathrm{mg}, 66 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-26.1^{\circ}$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.35 (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{dd}, J=.16 .0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 1.72$ (dd, $J=6.0,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 175.2 (C), $137.0(\mathrm{C}), 136.4(\mathrm{CH}), 130.9(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH})$, $126.9(\mathrm{CH}), 124.4(\mathrm{CH}), 81.8(\mathrm{C}), 52.9\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{C}), 23.1\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 18.5$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1722,1447,1435,1235,1132,972,753,740,691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 275.16417$, found: 275.16420. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 74.42 ; H, 8.08. Found: C, $74.27, \mathrm{H}, 8.25$. HPLC analysis: 98% ee, (S, S) Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 12.8 \mathrm{~min}$ (major), $15.2 \min$ (minor).

(R, E)-Methyl 2-(4-bromostyryl)-2-hydroxy-3,3-dimethylhex-4-enoate (126)

Prepared by following the general procedure with methyl p bromophenylvinyldiazoacetate (121) ($315 \mathrm{mg}, 1.1 \mathrm{mmol}, 1.1$ equiv.) and 4-methylpent-3-en-2-ol (101) (racemic, $102 \mathrm{mg}, 1.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1 to 10:1), and afforded compound $\mathbf{1 2 6}$ as a white solid (204 mg, 56% yield). M.p.: $54-57{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-12.0^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.46$ (pentane/diethyl ether 7:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=16.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.48(\mathrm{dq}, \mathrm{J}=16.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=6.6,1.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 174.8(\mathrm{C}), 136.1$ $(\mathrm{CH}), 135.7(\mathrm{C}), 131.6(\mathrm{CH}), 129.7(\mathrm{CH}), 128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 124.3(\mathrm{CH}), 121.3$ (C), $81.6(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 44.2(\mathrm{C}), 22.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3511, $1722,1487,1435,1236,1134,1072,1036,1008,974,815,790,750,707 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 353.07468, found: 353.07462. HPLC analysis: 98% ee, (R, R) Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: 254 $\mathrm{nm}, t_{\mathrm{R}}: 11.2 \min ($ minor $), 12.2 \min$ (major).

Ethyl 2-((4-methylpent-3-en-2-yl)oxy)acetate (127)

Prepared by following the general procedure with ethyl diazoacetate (5) (62 mg, 0.5 mmol) and 4-methylpent-3-en-2-ol (101) (racemic, $204 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (5:1), and afforded compound 127 as clear oil ($68 \mathrm{mg}, 67 \%$ yield). $R_{f}, 0.33$ (pentane/diethyl
ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.06-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.21$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $171.2(\mathrm{C}), 136.5(\mathrm{C}), 126.4(\mathrm{CH}), 72.4(\mathrm{CH}), 65.2\left(\mathrm{CH}_{2}\right), 60.8\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 21.5$ $\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 1754, 1197, $1125 \mathrm{~cm}^{-1}$; Chiral-GC: 5% ee, CHIRALDEX B-DM ($60{ }^{\circ} \mathrm{C}, 2{ }^{\circ} \mathrm{C} / \mathrm{min}$ to $150{ }^{\circ} \mathrm{C}$, keep 5 min), t_{R} : 17.9 min (major), 17.7 $\min \left(\right.$ minor). GC-MS analysis: $\mathrm{t}_{R}: 4.28 \mathrm{~min}, m / z 55$ (47\%), 67 (100\%), 83 (36\%), 99 (35\%), 171 (2\%).

(E)-Dimethyl 2-hydroxy-2-(2-methylpent-3-en-2-yl)malonate (129) and dimethyl 2-

 ((4-methylpent-3-en-2-yl)oxy)malonate (130)

Prepared by following the general procedure with methyl diazomalonate (128) (81 mg , 0.5 mmol) and 4-methylpent-3-en-2-ol (101) (racemic, $203 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at room temperature. The crude was purified on silica gel eluting with pentane/diethyl ether (3:1), and afforded compound $\mathbf{1 2 9}$ and $\mathbf{1 3 0}$ as an inseparable mixture, clear oil (65 mg , 52% yield). $R_{f}, 0.28$ (pentane/diethyl ether 3:1). Compound 129: ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.64(\mathrm{dq}, J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dq}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$, $1.67(\mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3$ (C), 168.1 (C), 167.5 (C), 138.0 (C), $135.5(\mathrm{CH}), 125.4(\mathrm{CH}), 124.7(\mathrm{CH}), 83.4(\mathrm{C}), 76.1$ $(\mathrm{CH}), 72.9(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 52.8\left(\mathrm{CH}_{3}\right), 43.1(\mathrm{C}), 25.9\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{3}\right)$,
$21.5\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 231.1227, found: 231.1228. Compound 130: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.04(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.65$ $(\mathrm{s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2,5-Dimethylhex-4-en-3-ol (131)

3-methyl-2-butanal ($4.0 \mathrm{~g}, 47 \mathrm{mmol}$) in 20 mL of diethyl ether was slowly added to the isopropyl magnesium bromide solution ($28 \mathrm{~mL}, 2.0 \mathrm{M}$ in diethyl ether) at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred for 1 h at room temperature. Then it was cooled to $0{ }^{\circ} \mathrm{C}$ and carefully quenched with cold saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was dried over MgSO_{4} and concentrated under vacuum. The crude material was distilled with kugelrhor under vacuum to afford compound $\mathbf{1 3 1}$ as clear liquid ($4.8 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.04(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68-$ $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

2,6-Dimethylhept-2-en-4-ol (132)

Prepared by following the procedure for compound 131, using 3-methyl-2-butanal (4.0 g, 47 mmol) and isobutyl magnesium bromide solution ($29 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF). The crude
product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford compound $\mathbf{1 3 2}$ as clear liquid ($5.1 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.15(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

2,2,5-Trimethylhex-4-en-3-ol (133)

t-Butyl lithium solution (1.7 M in pentane, 33 mL) was slowly added to the 3-methyl-2butanal solution ($4.0 \mathrm{~g}, 47 \mathrm{mmol}$) in 20 mL of diethyl ether at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$. Then it was carefully quenched with cold saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether (3 x 50 mL). The combined ether solution was washed with brine, dried over MgSO_{4} and concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound $\mathbf{1 3 3}$ as clear liquid (2.3 g , 34% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$.

2-Methyldec-2-en-4-ol (134)

Prepared by following the procedure for compound 131, using 3-methyl-2-butanal (4.0 g, 47 mmol) and hexyl magnesium bromide solution ($29 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford Compound $\mathbf{1 3 4}$ as clear liquid ($7.3 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.15(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.29(\mathrm{~m}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

6-Methylhepta-1,5-dien-4-ol (135)

Prepared by following the procedure for compound 131, using 3-methyl-2-butanal (4.0 g, 47 mmol) and allyl magnesium bromide solution ($57 \mathrm{~mL}, 1.0 \mathrm{M}$ in diethyl ether). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford compound 135 as clear liquid ($4.2 \mathrm{~g}, 70 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$.

5-Methyl-1-(2-methyl-1,3-dioxolan-2-yl)hex-4-en-3-ol (136)

Prepared by following the literature procedure. ${ }^{89}$ To the solution of 3-methyl-2-butanal $(10.0 \mathrm{~g}, 119 \mathrm{mmol})$ and 3-buten-2-one $(8.3 \mathrm{~g}, 119 \mathrm{mmol})$ in 100 mL of ethanol, was added 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium ($3.2 \mathrm{~g}, 12 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and sodium acetate ($3.9 \mathrm{~g}, 47 \mathrm{mmol}$). The reaction mixture was heated to reflux for 20 h . After cooled to room temperature, it was concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (2:1 to $1: 1$) to afford compound $\mathbf{1 3 6 a}$ as yellow oil $(15.8 \mathrm{~g}, 86 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.10(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$.

To the solution of compound $\mathbf{1 3 6 a}(4.0 \mathrm{~g}, 26 \mathrm{mmol})$ in 250 mL of toluene, was added ethylene glycol ($2.8 \mathrm{~g}, 44 \mathrm{mmol}, 1.7$ equiv.), and pyridium tosylate ($1.0 \mathrm{~g}, 3.9 \mathrm{mmol}, 15$ mol\%). The reaction mixture was heated to reflux with continuous removal of water with a Dean-Stark apparatus for 16 h . Then it was cooled to room temperature, and concentrated under vacuum. The residue was diluted with diethyl ether (100 mL), washed with saturated NaHCO_{3}, dried over MgSO_{4}, and concentrated under vacuum. The crude was purified flash chromatography on silica gel eluting with pentane/diethyl ether (2:1) to afford compound $\mathbf{1 3 6 b}$ as yellow oil ($2.7 \mathrm{~g}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.08(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$, $1.32(\mathrm{~s}, 3 \mathrm{H})$.

The solution of compound $\mathbf{1 3 6 b}(2.7 \mathrm{~g}, 14 \mathrm{mmol})$ in 20 mL of diethyl ether was slowly added to the suspension of $\mathrm{LiAlH}_{4}(0.3 \mathrm{~g}, 7 \mathrm{mmol}, 0.5$ equiv.) in 20 mL of diethyl ether at $0^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred at room temperature for 1 h . Then it was carefully quenched with 10% aqueous NaOH at $0{ }^{\circ} \mathrm{C}$. The ether solution was
separated, washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified flash chromatography on silica gel eluting with hexanes/acetate (1:1) to afford compound $\mathbf{1 3 6}$ as clear oil ($2.4 \mathrm{~g}, 89 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}$, $4 \mathrm{H}), 1.80(\mathrm{br} ., 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H})$, 1.33 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 135.1(\mathrm{C}), 128.2(\mathrm{CH}), 110.1(\mathrm{C}), 68.7$ $(\mathrm{CH}), 64.8\left(\mathrm{CH}_{2}\right), 35.2\left(\mathrm{CH}_{2}\right), 32.2\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$. Data are consistent with the literature.

1-((tert-Butyldimethylsilyl)oxy)-4-methylpent-3-en-2-ol (137)

Prepared by following the procedure for compound 131, using t butyldiemthylsilyloxyacetaldehyde (2.0 g, 12 mmol$)$ and 2-methyl-1-propenyl magnesium bromide solution (0.5 M in THF, 30 mL). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 137 as clear oil $(1.9 \mathrm{~g}, 73 \%$ yield $) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.09(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=10.0,8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 9H), $0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 137.5(\mathrm{C}), 123.3(\mathrm{CH}), 69.4(\mathrm{CH})$, $67.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right), 26.0(\mathrm{C}), 18.6\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right),-5.1\left(\mathrm{CH}_{3}\right),-5.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3416 (broad), 1253, 1113, 1059, 835, $776 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 213.1669$, found: 213.1668.

1-((tert-Butyldimethylsilyl)oxy)-5-methylhex-4-en-3-ol (138)

Prepared by following the procedure for compound 131, using t-butyldimethylsiloxyl-1propanal ${ }^{90}(2.2 \mathrm{~g}, 12 \mathrm{mmol})$ and 2-methyl-1-propenyl magnesium bromide solution (0.5 M in THF, 30 mL). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound $\mathbf{1 3 8}$ as clear oil (1.9 $\mathrm{g}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.21(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.75(\mathrm{~m}$, 2H), 2.95 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.90(9 \mathrm{H}, \mathrm{s}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 134.5(\mathrm{C}), 127.9(\mathrm{CH}), 68.4(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 39.4\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{3}\right), 25.9(\mathrm{C}), 18.3$ $\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3384 (broad), 1254, 1098, 835, $775 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 227.1825, found: 227.1826.

Ethyl 3-hydroxy-5-methylhex-4-enoate (139)

Prepared by following the literature procedure. ${ }^{91}$ Ethyl acetate $(5.7 \mathrm{~mL}, 75 \mathrm{mmol})$ was added to the LDA solution ($49 \mathrm{~mL}, 98 \mathrm{mmol}, 1.3$ equiv.) in 150 mL of THF at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min , and 3-methyl-2-butenal $(5.5 \mathrm{~mL}, 75 \mathrm{mmol})$ was slowly added. The reaction mixture was stirred for another 1 h and quenched with glacial acetic acid (12 g in 100 mL of THF). Then it was warmed to room temperature, and added 100 mL of saturated NaHCO_{3}. The organic layer was separated. The aqueous
layer was extracted with diethyl ether (3 x 50 mL). The combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (1:1) to afford compound $\mathbf{1 3 9}$ as red oil $\left(9.4 \mathrm{~g}, 73 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. Data are consistent with literature.

(R, E)-Methyl 2-hydroxy-3,3,6-trimethyl-2-((E)-styryl)hept-4-enoate (140)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 2,5-dimethylhex-4-en-3-ol (131) (racemic, $64 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound $\mathbf{1 4 0}$ as clear oil $(103 \mathrm{mg}, 68 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-26.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.33 (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 0.99 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.2$ (C), 137.0 (C), 136.9 $(\mathrm{CH}), 132.5(\mathrm{CH}), 130.9(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.8(\mathrm{CH}), 81.9$ (C), $52.9\left(\mathrm{CH}_{3}\right), 44.1(\mathrm{C}), 31.6(\mathrm{CH}), 23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3511, 1722, 1237, 1135, $974,755,740,692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}-$
$\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}: 285.18491$, found: 285.18503. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$: C, 75.46; H, 8.67. Found: C, 75.25, H, 8.73. HPLC analysis: 97% ee, CHIRALCEL OD-H, 0.3% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 14.7 \mathrm{~min}$ (major), 16.1 min (minor).

(R, E)-Methyl 2-hydroxy-3,3,7-trimethyl-2-((E)-styryl)oct-4-enoate (141)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (117 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 2,6-dimethylhept-2-en-4-ol (132) (racemic, $71 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound $\mathbf{1 4 1}$ as clear oil $(104 \mathrm{mg}, 66 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-25.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.37 (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}$, $1 \mathrm{H}), 1.94(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.3$ (C), 137.0 (C), $136.5(\mathrm{CH}), 130.9$ $(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 81.7(\mathrm{C}), 53.0$ $\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{C}), 42.4\left(\mathrm{CH}_{2}\right), 28.7(\mathrm{CH}), 23.2\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3512, 1723, 1238, 1071, 974, 754, $691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 299.20056$, found: 299.20068. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}: \mathrm{C}, 75.91$; H , 8.92. Found: C, 75.70, H, 9.06. HPLC analysis: 96% ee, (S, S) Whelk-O1, 0.2% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 8.4 \mathrm{~min}$ (major), 9.9 min (minor).

(R, E)-Methyl 2-hydroxy-3,3,6,6-tetramethyl-2-((E)-styryl)hept-4-enoate (142)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 2,2,5-trimethylhex-4-en-3-ol (133) (racemic, $71 \mathrm{mg}, 0.5$ mmol) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound $\mathbf{1 4 2}$ as a white crystal ($112 \mathrm{mg}, 71 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-23.8^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$). $R_{f}, 0.32$ (pentane/diethyl ether 10:1). M.p. $75-77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.2(\mathrm{C}), 140.6(\mathrm{CH}), 137.1(\mathrm{C}), 130.9(\mathrm{CH}), 130.1(\mathrm{CH}), 128.7(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 126.8(\mathrm{CH}), 81.9(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 43.9(\mathrm{C}), 33.1(\mathrm{C}), 29.9$ $\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3511, 1724, 1240, 1158, 1129, 975, 755, 692 cm^{-1}; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 299.20056$, found: 299.20071. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 75.91 ; H, 8.92. Found: C, 75.75, H, 8.93. HPLC analysis: 94% ee, CHIRALPAK AD-H, 0.2% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254$ $\mathrm{nm}, t_{\mathrm{R}}: 17.5 \min$ (major), $14.2 \min$ (minor).

(R, E)-Methyl 2-hydroxy-3,3-dimethyl-2-((E)-styryl)undec-4-enoate (143)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (114 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 2-methyldec-2-en-4-ol (134) (racemic, $85 \mathrm{mg}, 0.5 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (30:1), and afforded compound $\mathbf{1 4 3}$ as clear oil ($125 \mathrm{mg}, 73 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-18.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.34 (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}$, $1 \mathrm{H}), 2.04(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 8 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.2(\mathrm{C}), 137.0(\mathrm{C}), 135.4(\mathrm{CH}), 130.9$ $(\mathrm{CH}), 130.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 81.8(\mathrm{C}), 52.9$ $\left(\mathrm{CH}_{3}\right), 44.3(\mathrm{C}), 33.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 23.0\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3511,1723,1447,1435,1237,1135,974,754,740$, $691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 327.23186$, found: 327.23206. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3}$: C, 76.70; H, 9.36. Found: C, 76.57, H, 9.48. HPLC analysis: 96% ee, (s, s) Whelk-O1, 0.2% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, ~ U V: 254 \mathrm{~nm}$, $t_{\mathrm{R}}: 8.4 \min$ (major), $9.9 \min$ (minor).

(R, E)-Methyl 2-hydroxy-3,3-dimethyl-2-((E)-styryl)octa-4,7-dienoate (144)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (111 mg, 0.5 mmol) and 6-methylhepta-1,5-dien-4-ol (135) (racemic, $256 \mathrm{mg}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1 to 10:1), and
afforded compound 144 as clear oil ($114 \mathrm{mg}, 69 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-22.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.27 (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.66(\mathrm{dt}, J=16.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=16.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.10$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.2(\mathrm{C}), 137.3(\mathrm{CH}), 136.9(\mathrm{C}), 136.8(\mathrm{CH})$, $131.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 115.2\left(\mathrm{CH}_{2}\right)$, $81.8(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 44.5(\mathrm{C}), 37.1\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3508, 1722, 1447, 1434, 1204, 1132, 973, 911, 754, 740, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 283.16926$, found: 283.16940. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$: C, 75.97 ; H, 8.05. Found: C, 75.69, H, 8.05 . HPLC analysis: 95% ee, (S, S) Whelk-O1, 0.2% isopropanol/hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 9.6 \mathrm{~min}$ (major), 11.1 min (minor).

(R, E)-Methyl 2-hydroxy-3,3-dimethyl-7-(2-methyl-1,3-dioxolan-2-yl)-2-((E)-

 styryl)hept-4-enoate (145)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (115 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and 5-methyl-1-(2-methyl-1,3-dioxolan-2-yl)hex-4-en-3-ol (136) (racemic, $103 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (3:1 to $2: 1$), and afforded compound $\mathbf{1 4 5}$ as clear oil ($133 \mathrm{mg}, 69 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-26.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.23$ (pentane/diethyl ether 2:1). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}$,
$J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dt}, J=15.6$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.70$ (m, 2H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 174.9$ (C), 136.9 (C), $135.3(\mathrm{CH}), 130.9(\mathrm{CH}), 129.7(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 127.3$ $(\mathrm{CH}), 126.8(\mathrm{CH}), 110.0(\mathrm{C}), 81.7(\mathrm{C}), 64.8\left(\mathrm{CH}_{2}\right), 52.8\left(\mathrm{CH}_{3}\right), 44.3(\mathrm{C}), 39.1\left(\mathrm{CH}_{3}\right)$, $27.8\left(\mathrm{CH}_{2}\right), 23.9\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$; IR (neat): $3508,1723,1447,1435,1134$, 1058, 1040, 974, 754, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 357.20604, found: 357.20607. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5}$: C, 70.56; H, 8.07. Found: C, 70.41, H, 8.17. HPLC analysis: 95\% ee, CHIRALCEL OD-H, 3.0\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 10.3 \mathrm{~min}$ (major), 12.0 min (minor).

($R, \quad E)$-Methyl 6-((tert-butyldimethylsilyl)oxy)-2-hydroxy-3,3-dimethyl-2-(E)-

 styryl)hex-4-enoate (146)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (106 mg, $0.5 \mathrm{mmol})$ and 1-((tert-butyldimethylsilyl)oxy)-4-methylpent-3-en-2-ol (137) (racemic, $466 \mathrm{mg}, 2.0 \mathrm{mmol}, 4$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound 146 as clear oil ($107 \mathrm{mg}, 50 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-13.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.51$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=$ $16.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H})$,
$1.10(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.2(\mathrm{C}), 136.9$ $(\mathrm{C}), 135.6(\mathrm{CH}), 131.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.2(\mathrm{CH}), 126.9(\mathrm{CH}), 81.7(\mathrm{C})$, $64.2\left(\mathrm{CH}_{2}\right), 53.1\left(\mathrm{CH}_{3}\right), 44.2(\mathrm{C}), 26.2\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 18.6(\mathrm{C}),-4.9$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3512,1724,1251,1135,1102,974,834,776 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 387.23500$, found: 387.23503. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 68.27$; H, 8.97. Found: C, $68.21, \mathrm{H}, 8.98$. HPLC analysis: 98% ee, (S, S) Whelk-O1, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 10.7 \mathrm{~min}$ (major), $12.0 \min$ (minor).
(R, E)-Methyl 7-((tert-butyldimethylsilyl)oxy)-2-hydroxy-3,3-dimethyl-2-((E)-styryl)hept-4-enoate (147)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (115 mg, $0.57 \mathrm{mmol}, 1.1$ equiv.) and 1-((tert-butyldimethylsilyl)oxy)-5-methylhex-4-en-3-ol (138) (racemic, $126 \mathrm{mg}, 0.51 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound 147 as clear oil ($150 \mathrm{mg}, 70 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-17.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.23$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dt}, J=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 1.11$ $(\mathrm{s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}),-0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 175.2$ (C), $137.4(\mathrm{CH}), 136.9(\mathrm{C}), 131.0(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 126.8$
$(\mathrm{CH}), 126.2(\mathrm{CH}), 81.7(\mathrm{C}), 63.5\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{3}\right), 44.5(\mathrm{C}), 36.7\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right)$, $23.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}),-5.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3512, 1724, 1251, 1134, 1098, 974, 834, $774 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 401.25065$, found: 401.25075. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}$: C, 68.86; H, 9.15. Found: C, 69.09, H, 9.16. HPLC analysis: 97% ee, (S, S) Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, $\mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 10.7 \mathrm{~min}$ (major), 12.3 min (minor).

(R, E)-1-Ethyl 7-methyl 6-hydroxy-5,5-dimethyl-6-((E)-styryl)hept-3-enedioate (148)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (116 mg, $0.55 \mathrm{mmol}, 1.1$ equiv.) and (139) (racemic, $88 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (4:1), and afforded a mixture of compound $\mathbf{1 4 8}$ the $\mathrm{O}-\mathrm{H}$ insertion products as clear oil ($141 \mathrm{mg}, 80 \%$ yield). Pure $\mathbf{1 4 8}$ was obtained by preparative HPLC. $[\alpha]^{20}{ }_{\mathrm{D}}-17.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.33$ (pentane/diethyl ether $2: 1) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dq}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.54$ $(\mathrm{s}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.1$ (C), 172.1 (C), 139.7 (CH), 136.9 (C), 131.3 (CH), $128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 121.5(\mathrm{CH}), 81.7(\mathrm{C}), 60.8\left(\mathrm{CH}_{2}\right), 53.1$ $\left(\mathrm{CH}_{3}\right), 44.6(\mathrm{C}), 38.5\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3507, 1729, $1241,1161,1029,975,756,693 \mathrm{~cm}^{-1} ;$ HRMS (+ESI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$:
369.16725, found: 369.16717. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 69.34; H, 7.56. Found: C, 69.44, H, 7.66. HPLC analysis: 94% ee, CHIRALCEL OD-H, 1.5\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 14.1 \mathrm{~min}$ (minor), 25.6 min (major).

(R, E)-Methyl 2-hydroxy-3,3,5-trimethyl-2-styrylhex-4-enoate (149)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.56 \mathrm{mmol}, 1.1$ equiv.) and 2,4-dimethylpent-3-en-2-ol (106) ($58 \mathrm{mg}, 0.51 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound 149 as clear oil ($92 \mathrm{mg}, 62 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-46.1^{\circ}$ (c 1.0, CHCl_{3}). R_{f}, 0.25 (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.4(\mathrm{C}), 137.0$ (C), $133.3(\mathrm{C}), 131.0(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 82.7(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 44.9(\mathrm{C}), 29.2\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 19.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3511,1720,1447,1435,1251,1143,974,754,741,691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 271.16926$, found: 271.16937. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$: C, 74.97; H, 8.39. Found: C, 74.75, H, 8.55. HPLC analysis: 93% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 10.5 \mathrm{~min}$ (major), 12.1 min (minor).

(S, E)-Methyl 2-hydroxy-5-methyl-2-styrylhex-4-enoate (150)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.56 \mathrm{mmol}, 1.1$ equiv.) and 2-methylbut-3-en-2-ol (107) ($44 \mathrm{mg}, 0.51 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1 to $5: 1$), and afforded compound $\mathbf{1 5 0}$ as clear oil ($60 \mathrm{mg}, 45 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-14.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}$, 0.15 (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=14.8,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 175.4(\mathrm{C}), 136.6(\mathrm{C}), 136.5(\mathrm{C}), 130.1(\mathrm{CH}), 129.9(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 126.9(\mathrm{CH}), 117.3(\mathrm{CH}), 77.8(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 38.6\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3515,1730,1447,1436,1228,1128,971,745,691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 243.13796, found: 243.13806. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 73.82; H, 7.74. Found: C, 73.67, H, 7.85. HPLC analysis: 96% ee, CHIRALCEL OD-H, 0.1% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 15.6 \mathrm{~min}$ (major), 14.6 min (minor).

(E)-Methyl 2-((3-methylbut-2-en-1-yl)oxy)-4-phenylbut-3-enoate (151)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (103 mg, $0.5 \mathrm{mmol})$ and 3-methylbut-2-en-1-ol (109) (193 mg, $2.0 \mathrm{mmol}, 4$ equiv.) at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1 to 5:1), and afforded compound 151 as clear oil ($98 \mathrm{mg}, 74 \%$ yield). $R_{f}, 0.28$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 171.5(\mathrm{C}), 138.5(\mathrm{C}), 136.1(\mathrm{C}), 134.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{CH}), 126.8(\mathrm{CH})$, $124.2(\mathrm{CH}), 120.3(\mathrm{CH}), 78.7(\mathrm{CH}), 66.0\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $1749,1448,1435,1257,1171,1133,1071,1013,966,735,690 \mathrm{~cm}^{-1} ;$ HPLC analysis: 0\% ee, CHIRALCEL OD-H, 1.0% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV: 254 $\mathrm{nm}, t_{\mathrm{R}}: 13.1 \mathrm{~min}, 15.4 \mathrm{~min}$.

cis-(1R,5R)-(-)-Pulegol (152)

Prepared by following the literature procedure. ${ }^{92}$ The suspension of NaBH_{4} (0.8 g , $21 \mathrm{mmol}, 1.1$ equiv.) in 42 mL of ethanol was slowly added to the $(R)-(+)$-pulegone solution ($3.0 \mathrm{~g}, 20 \mathrm{mmol}$) in 36 mL of ethanol at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred at room temperature for 2 h . Then 50 mL of brine was added, and the solution was extracted with hexanes (3 x 50 mL). The combined hexanes solution was dried over MgSO_{4} and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with hexanes/acetate (5:1) to afford compound

152 as a white solid ($1.6 \mathrm{~g}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.72(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55(\mathrm{~m}$, $2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. Data are consistent with literature.

(R, E)-Methyl 2-hydroxy-2-(2-((R)-4-methylcyclohex-1-en-1-yl)propan-2-yl)-4-phenylbut-3-enoate (153)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (116 mg, $0.57 \mathrm{mmol}, 1.1$ equiv.) and cis-($1 R, 5 R$)-(-)-pulegol (152) ($83 \mathrm{mg}, 0.54 \mathrm{mmol}$) with $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound 153 as a diastereomeric mixture (white solid, dr: $10: 1,113 \mathrm{mg}, 64 \%$ yield). $R_{f}, 0.44$ (pentane/diethyl ether 10:1). Further recrystallization in cold hexanes afforded pure compound 150 as a white crystal suitable for X-ray spectroscopy analysis. M.p.: 81-83 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~m}$, $1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.18-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.14$ $(\mathrm{s}, 3 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 175.0 (C), 140.6 (C), 137.2 (C), $130.5(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 124.5(\mathrm{CH}), 81.4(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 47.3(\mathrm{C}), 34.7\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 28.1(\mathrm{CH})$, $27.2\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 1725, 1448, 1434, 1248,

1127, 1072, 1040, 975, 754, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}: 311.20056$, found: 311.20089. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 76.79; H, 8.59. Found: C, 76.58, H, 8.61.

(S, E)-Methyl 2-hydroxy-2-(2-((R)-4-methylcyclohex-1-en-1-yl)propan-2-yl)-4-phenylbut-3-enoate (154)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.56 \mathrm{mmol}, 1.1$ equiv.) and cis-($1 R, 5 R$)-(-)-pulegol (152) ($77 \mathrm{mg}, 0.50 \mathrm{mmol}$) with $\mathrm{Rh}_{2}(R-\text { DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound 154 as a diastereomeric mixture (dr: 10:1, clear oil, $122 \mathrm{mg}, 74 \%$ yield). $R_{\mathrm{f}}, 0.44$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~m}, 1 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.28$ $(\mathrm{s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 175.2$ (C), 141.1 (C), 137.1 (C), $130.4(\mathrm{CH}), 128.7(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 126.8(\mathrm{CH}), 124.0(\mathrm{CH}), 82.2(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 47.1(\mathrm{C}), 34.7\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right)$, $28.0(\mathrm{CH}), 27.0\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3509, 1723, 1448, 1435, 1249, 1154, 1127, 975, 906, 753, 733, $691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 311.20056$, found: 311.20097 .

(E)-Methyl 4-phenyl-2-propoxybut-3-enoate (158)

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%$, 4-methylpent-3-en-2-ol (101) (racemic, $50 \mathrm{mg}, 0.5 \mathrm{mmol}$), and 1-propanol ($0.04 \mathrm{~mL}, 0.5 \mathrm{mmol}$) in 2 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. Methyl stryldiazoacetate (7) ($105 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 5 mL of degassed pentane was added by syringe pump over 1 h. After addition, the solution was stirred for 2 h with temperature rising to room temperature, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound $\mathbf{1 5 8}$ as clear oil ($54 \mathrm{mg}, 45 \%$ yield). $R_{f}, 0.34$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=6.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.6$ (C), $136.2(\mathrm{C}), 134.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.3$ $(\mathrm{CH}), 126.9(\mathrm{CH}), 124.3(\mathrm{CH}), 80.1(\mathrm{CH}), 71.9\left(\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 10.7$ $\left(\mathrm{CH}_{3}\right)$. Compound $\mathbf{1 2 5}$ was also isolated in 4 mg (3% yield, 99% ee) from the reaction mixture.

4-Methylpent-3-ene-2-thiol (159)

Prepared by following the literature procedure. ${ }^{93}$ The mixture of 2-methylpentane-2,4diol (159a) (100 mL), aqueous $\operatorname{HBr}(48 \%, 2 \mathrm{~mL})$, and aniline $(1.6 \mathrm{~mL})$ was heated to reflux and distilled with vigreux column at $130^{\circ} \mathrm{C}$ to get a two phase mixture. The top phase was separated, washed with water, dried over MgSO_{4}, and further distilled with the vigreux column. The fraction at $74{ }^{\circ} \mathrm{C}$ was collected to give diene 159b as clear liquid (19 g). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.15(18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=18.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

Diene 159b (19 g) was added to a solution of thiourea (19.4 g of thiourea dissolved in 35 mL of 48% aqueous HBr solution) at $10^{\circ} \mathrm{C}$. The reaction mixture was shaken vigorously with cooling. After 5-6 min, the mixture solidified, and the cake, after another 30 min , was shaken into a slurry with 25 mL of 20% aqueous HBr solution. `The solid was filtered, resuspended in acetone (50 mL), filtered, and dried under vacuum to afford compound 159 c as a white solid ($36 \mathrm{~g}, 65 \%$ yield).

Compound 159c (20 g) was added in portions to a cold solution of $\mathrm{NaOH}(5 \mathrm{~g})$ and $\mathrm{NaCN}(63 \mathrm{mg})$ in 25 mL of water. After 2 h , the reaction mixture was extracted with pentane (3 x 50 mL). The combined pentane solution was dried over MgSO_{4}, concentrated under vacuum to give the crude product, which was further distilled to afford the pure thiol 159 as clear oil with characteristic odour of thiol ($4.5 \mathrm{~g}, 46 \%$ yield). ${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.16(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 1.69$ (s, 3H), $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

(\boldsymbol{R}, E)-Methyl 2-mercapto-3,3-dimethyl-2-styrylhex-4-enoate (160)

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(21 \mathrm{mg}, 0.011 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and 4-methylpent-3-ene-2thiol (159) ($75 \mathrm{mg}, 0.65 \mathrm{mmol}$) in 2 mL of degassed pentane was stirred at room temperature (pink solution) under argon. Methyl stryldiazoacetate (7) (145 mg, 0.71 mmol, 1.1 equiv.) in 6 mL of degassed pentane was added by syringe pump over 1 h . After addition, the solution was stirred for 30 min , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (50:1 to 30:1), and afforded compound 160 as clear oil ($27 \mathrm{mg}, 14 \%$ yield). $R_{f}, 0.63$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{dq}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dq}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 291.14133, found: 291.14151. HPLC analysis: 78% ee, CHIRALCEL OD-H, 0.2% isopropanol $/$ hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$, UV: 254 $\mathrm{nm}, t_{\mathrm{R}}: 8.6 \mathrm{~min}$ (minor), 10.2 min (major).

4-Methoxy- N -(3-methylbut-2-en-1-yl) aniline (162)

Prepared by following the literature procedure. ${ }^{94}$ The solution of 3-methyl-2-butenal (1.2 $\mathrm{g}, 14 \mathrm{mmol})$ and p-anisidine $(2.0 \mathrm{~g}, 16 \mathrm{mmol})$ in 100 mL of dichloromethane/acetic acid (99:1) was stirred for 45 min at $0^{\circ} \mathrm{C} . \mathrm{NaB}(\mathrm{OAc})_{3} \mathrm{H}$ was then added in portions. After addition, it was warmed to room temperature and stirred for 6 h . The reaction mixture was carefully quenched with 50 mL of cold water. The organic layer was separated, and the aqueous layer was extracted with dichloromethane ($3 \times 125 \mathrm{~mL}$). The combined dichloromethane solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1 to 5:1), and afforded compound $\mathbf{1 6 2}$ as clear oil $\left(1.87 \mathrm{~g}, 69 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H})$, $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 2-((4-methoxyphenyl)(3-methylbut-2-enyl)amino)-2-phenylacetate (163)

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and 4-methoxy-N-(3-methylbut-2-enyl)aniline ($\mathbf{1 6 2}$) ($88 \mathrm{mg}, 0.5 \mathrm{mmol}$) in 2 mL of degassed pentane was heated to reflux (pink solution) under argon. Methyl phenyldiazoacetate (6) (176 mg, 1.0 mmol, 2 equiv.) in 9 mL of degassed pentane was added by syringe pump over 1 h . After addition, the solution was stirred for 30 min , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl
ether (10:1), and afforded compound $\mathbf{1 6 3}$ as clear oil ($57 \mathrm{mg}, 36 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H})$, $5.05(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.8$ (C), $153.7(\mathrm{C}), 143.4$ (C), $136.5(\mathrm{C}), 133.7(\mathrm{C}), 129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.2(\mathrm{CH}), 122.2(\mathrm{CH}), 119.3(\mathrm{CH})$, $114.5(\mathrm{CH}), 68.0(\mathrm{CH}), 55.7\left(\mathrm{CH}_{3}\right), 52.1\left(\mathrm{CH}_{3}\right), 48.1\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 17.9\left(\mathrm{CH}_{3}\right)$; IR (neat): $1743,1508,1452,1241,1194,1154,1040,815,724,697 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 340.19072$, found: 340.19108.

2.4.3 Synthetic procedures and characterization for Chapter 2.2.3

2.4.3.1 General procedure I : the enzymatic resolution of allylic alcohols ${ }^{87}$

To a vigorously stirred solution of racemic allylic alcohol ($2 \mathrm{~g}, 1$ equiv) and vinyl acetate (2.7 equiv) in 100 mL of hexanes was added Amano AK enzyme ($0.6 \mathrm{~g}, 30 \%$ weight) and molecular sieves $(1 \mathrm{~g})$. The mixture was allowed to proceed at room temperature with periodic aliquotting and analysis by chiral GC or HPLC. After the enantiomeric excess of the alcohol exceeded 98%, the mixture was filtered and concentrated under vacuum. Flash chromatography of the crude material on silica gel afforded the enantiomerically pure (S)-alcohol.

2.4.3.2 General procedure II: the kinetic resolution of allylic alcohols by Sharpless enantioselective epoxidation ${ }^{95}$

The solution of racemic allylic alcohol ($10 \mathrm{mmol}, 1$ equiv) and D-(-)-DIPT ($2.55 \mathrm{~mL}, 12$ mmol, 1.2 equiv) in 100 mL of dichloromethane was cooled to $-20^{\circ} \mathrm{C}$. Then $\mathrm{Ti}(i-\mathrm{OPr})_{4}$
($3.00 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ equiv) was slowly added. The solution was stirred for 30 min and followed with the slow addition of TBHP (5.5 M in decane, $1.1 \mathrm{~mL}, 6 \mathrm{mmol}, 0.6$ equiv). After stirring at $-20{ }^{\circ} \mathrm{C}$ for 15 h , the reaction was quenched with cold citric $\mathrm{acid} / \mathrm{FeSO}_{4}$ solution (33 g of FeSO_{4} and 11 g of citric acid were dissolved in 100 mL of water). The mixture was stirred vigorously at room temperature until two layers were formed. The organic layer was separated and the aqueous layer was extracted with dichloromethane. The combined organic solution was concentrated under vacuum, and the residue was dissolved with 100 mL of diethyl ether. To this ether solution was added 10 mL of NaOH solution $(30 \mathrm{~g}$ of NaOH and 5 g of NaCl were dissolved in 90 mL of water) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$, then 100 mL of water was added to dissolved the solid formed during the reaction. The ether solution was separated, dried over MgSO_{4}, filtered, and concentrated under vacuum. Flash chromatography of the crude material on silica gel afforded the enantiomerically pure (S)-alcohol.

2.4.3.3 General procedure III: the $\mathrm{Rh}_{2}(S \text {-DOSP) })_{4}$-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement of donor/acceptor carbenoid with enantiomerically pure allylic alcohol

A solution of enantiomerically pure allylic alcohol ($0.5 \mathrm{mmol}, 1$ equiv) and $\mathrm{Rh}_{2}(S$ DOSP $)_{4}(0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ in 1 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. Diazo solution ($1 \mathrm{mmol}, 2$ equiv) in 9 mL of degassed pentane (1 mmol, 2 equiv) was added by syringe pump over 90 min . After addition, the reaction mixture was stirred for 2 h with temperature rising to room temperature. Then it was
concentrated under vacuum, the crude material was purified by flash chromatography on silica gel to afford the desired product.

2.4.3.4. Synthetic procedures and characterization in Chapter 2.2.3

(S, E)-Pen-3-en-2-ol ((S, E)-108)

Prepared by following the general procedure I with racemic (E)-pen-3-en-2-ol (108) (3.0 g, $34.8 \mathrm{mmol}, 1$ equiv), vinyl acetate ($8.7 \mathrm{~mL}, 94.0 \mathrm{mmol}, 2.7$ equiv), and Amano AK enzyme ($1.0 \mathrm{~g}, 30 \%$ weight). The reaction mixture was stirred for 8 h at room temperature and filtered. After concentration, the residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 2:1) to afford (\boldsymbol{S}, $\boldsymbol{E}) \mathbf{- 1 0 8}$ as clear oil $(0.95 \mathrm{~g}, 63 \%$ yield). Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 5.10 \mathrm{~min}$ (minor), 5.27 min (major). $[\alpha]^{20}{ }_{\mathrm{D}}-14.5^{\circ}$ (c 3.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.66(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dd}, J=$ $15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

($R, E)$-Pen-3-en-2-ol ($(R, E)-108)$

Prepared by following the general procedure I with racemic (E)-pen-3-en-2-ol (108) (3.0 $\mathrm{g}, 34.8 \mathrm{mmol}$, 1 equiv), vinyl acetate ($8.7 \mathrm{~mL}, 94.0 \mathrm{mmol}, 2.7$ equiv), and Amano AK enzyme ($1.0 \mathrm{~g}, 30 \%$ weight). The reaction mixture was stirred for 4 h at room
temperature and filtered. After concentration, the residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to $2: 1$) to afford (R, $E)$-pent-3-en-2-yl acetate $((\boldsymbol{R}, \boldsymbol{E})$-108a) as clear oil $(1.5 \mathrm{~g})$. Chiral capillary GC analysis: 85% ee, CHIRALDEX B-PM column $\mathrm{t}_{\mathrm{R}}: 6.34 \mathrm{~min}$ (minor), 6.90 min (major). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.72(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.27(\mathrm{~m}$, $1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{dd}, J=6.4,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
(R, E)-pent-3-en-2-yl acetate (85% ee, $1.5 \mathrm{~g}, 11.7 \mathrm{mmol}, 1$ equiv) was dissolved with KOH solution $(3.9 \mathrm{~g}$ of KOH dissolved in 7 mL of ethanol and 3 mL of water, 70.2 mmol, 6 equiv) and heated to reflux for 3.5 h . After cooled to room temperature, the solution was carefully neutralized with aqueous HCl , and extracted with diethyl ether. The combined ether solution was dried over MgSO_{4}, filtered, and concentrated to give $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 0 8}$ as clear oil. This material was subject to the second enzyme resolution for 4 h , and purification on silica gel gave (R, E)-pent-3-en- 2 -yl acetate $(0.43 \mathrm{~g}, 99 \%$ ee $)$. Finally a second hydrolysis of this acetate afforded $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 0 8}$ as clear oil $(0.19 \mathrm{~g}, 13 \%$ overall yield). Chiral capillary GC analysis: 97% ee, CHIRALDEX B-PM column $\mathrm{t}_{\mathrm{R}}: 5.10 \mathrm{~min}$ (major), 5.27 min (minor). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra was identical as $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 0 8}$.

(S, Z)-3-Penten-2-ol ((S, Z)-108)

To a solution of 1-propynylmagnesium bromide (0.5 M in THF, $100 \mathrm{~mL}, 50 \mathrm{mmol}, 1$ equiv) was slowly added acetaldehyde ($5.6 \mathrm{~mL}, 100 \mathrm{mmol}$, 2 equiv) in 50 mL of diethyl
ether at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction mixture was stirred 5 h with temperature rising to room temperature. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$, the organic phase was separated and washed with brine, dried over MgSO_{4}, concentrated under vacuum. The crude was distilled under reduced pressure $(20 \mathrm{mmHg})$ at $70-80{ }^{\circ} \mathrm{C}$ to afford racemic 3-pentyn-2-ol (108b) as clear oil (2.50 g, 59\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.50-4.48(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

To the solution of racemic 3-pentyn-2-ol (108b) ($1.35 \mathrm{~g}, 11.9 \mathrm{mmol})$ in 50 mL of vinyl acetate was added Amano AK enzyme ($0.4 \mathrm{~g}, 30 \%$ weight). The mixture was stirred at 30 ${ }^{\circ} \mathrm{C}$ for 20 h . After the filtration, the solution was concentrated under vacuum. Purification by flash chromatography on silica gel (pentane $/ \mathrm{Et}_{2} \mathrm{O}, 10: 1$ to $3: 1$) afforded $(S)-(+)-3-$ pentyn-2-ol $((S)-108 b)$ as a clear oil $(0.43 \mathrm{~g}, 64 \%$ recovery $) .[\alpha]^{20}{ }_{\mathrm{D}}-36.9^{\circ}\left(c 6.9, \mathrm{CHCl}_{3}\right)$. Chiral capillary GC analysis: 98% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 7.21 \mathrm{~min}$ (minor), 7.38 min (major).

To the solution of $(S)-(+)-3$-pentyn-2-ol $((S)-\mathbf{1 0 8 b})(215 \mathrm{mg}, 2.56 \mathrm{mmol})$ in 2 mL of pentane were added Pd on CaCO_{3} poisoned with Pb (Lindlar catalyst, 12.4 mg) and one drop of quinoline. The flask was purged with H_{2} and stirred for 20 h at room temperature. The suspension was filtered and the solution was concentrated under vacuum. Purification by flash chromatography on silica gel (pentane/Et $\mathrm{E}_{2} \mathrm{O}$, 5:1 to $3: 1$) afforded (\boldsymbol{S}, $Z)-108$ as a clear oil ($120 \mathrm{mg}, 54 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.55-5.54(\mathrm{~m}$, $2 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 3H). Data are consistent with the literature. ${ }^{96}$

(2S, 3R, E)-Methyl 2-(4-bromophenyl)-2-hydroxy-3-methylhex-4-enoate (165)

Prepared by following the general procedure III with $\boldsymbol{(S , \boldsymbol { E }) \mathbf { - 1 0 8 } (9 9 \% \text { ee, } 4 5 \mathrm { mg } , 0 . 5}$ $\mathrm{mmol}, 1$ equiv), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and p-bromophenyldiazoacetate $\mathbf{3 0}$ (259 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford 165 as clear oil ($109 \mathrm{mg}, 66 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+80.3^{0}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.54$ (pentane/diethyl ether $\left.10: 1\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{dq}, J=15.2,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{ddq}, J=15.2,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H})$, $1.68(\mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 175.4 (C), 139.5 (C), $131.4(\mathrm{CH}), 131.3(\mathrm{CH}), 128.3(\mathrm{CH}), 127.7(\mathrm{CH}), 121.9(\mathrm{C}), 81.0$ (C), $53.5\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 18.4\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right)$; IR (neat): $3503,1728,1486,1436$, 1395, 1246, 1141,1090, 1075, 1010, 966, 824, 780, 745, $719 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 295.03282$, found: 295.03308. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.8$ (minor), 17.5 min (major).
(2R, 3R, E)-Methyl 2-(4-bromostyryl)-2-hydroxy-3-methylhex-4-enoate (166)

Prepared by following the general procedure III with $\boldsymbol{(S , \boldsymbol { E }) \mathbf { - 1 0 8 } (9 9 \% \text { ee, } 4 4 \mathrm { mg } , 0 . 5}$ mmol, 1 equiv), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and p-bromophenylvinyldiazoacetate $121(281 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv, in 9 mL of pentane and 0.5 mL of toluene). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford 166 as a white solid ($119 \mathrm{mg}, 69 \%$ yield). M.p.: $76-78{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}$ $+35.2^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.36$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dq}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{ddq}, J=15.2,8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=$ 7.2 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.4(\mathrm{C}), 135.6(\mathrm{C}), 131.8(\mathrm{CH}), 131.2$ $(\mathrm{CH}), 130.0(\mathrm{CH}), 129.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.5(\mathrm{CH}), 121.7(\mathrm{C}), 80.5(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right)$, $44.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3512,1731,1487,1435,1243,1145,1072$, $1009,972,817,754,725 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 321.04847, found: 321.04923. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $230 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.8$ (minor), 14.9 min (major).

(2R, 3R, E)-Methyl 2-hydroxy-3-methyl-2-vinylhex-4-enoate (167)

Prepared by following the general procedure III with $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 0 8}(99 \%$ ee, $45 \mathrm{mg}, 0.5$ mmol, 1 equiv), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and vinyldiazoacetate $164(160 \mathrm{mg}$, 1.25 mmol , 2.5 equiv). The diazo solution in 5 mL of pentane was added by syringe pump over 60 min . After addition, the reaction mixture was stirred for 20 min at $0{ }^{\circ} \mathrm{C}$.

Then it was concentrated under vacuum, the crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford $\mathbf{1 6 7}$ as clear oil (41 mg, 43% yield). $[\alpha]^{20}{ }_{\mathrm{D}}-52.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.39$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.64$ (dd, $J=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6$ $(\mathrm{C}), 137.7(\mathrm{CH}), 131.4(\mathrm{CH}), 127.2(\mathrm{CH}), 116.2\left(\mathrm{CH}_{2}\right), 80.6(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 44.3(\mathrm{CH})$, $18.3\left(\mathrm{CH}_{3}\right), 14.0\left(\mathrm{CH}_{3}\right)$; IR (neat): $3519,2975,2935,1732,1437,1264,1244,1159,993$, 969, $930 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 185.11722$, found: 185.11726. Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 14.7$ \min (major), $15.2 \min$ (minor).
(2R, 3R, E)-Methyl 2-hydroxy-3-methyl-2-styrylhex-4-enoate ((2R, 3R)-168)

Prepared by following the general procedure III with $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 0 8}(99 \%$ ee, $44 \mathrm{mg}, 0.5$ mmol, 1 equiv), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(205 \mathrm{mg}, 1$ mmol, 2 equiv). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford (2R, $\mathbf{3 R}$) - $\mathbf{- 1 6 8}$ as clear oil $(93 \mathrm{mg}, 70 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+19.7^{0}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.25$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dq}, J=15.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddq}, J=$ $15.2,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=6.0$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6(\mathrm{C}), 137.7$
(C), $131.4(\mathrm{CH}), 130.8(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 80.5(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 44.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3514, 1731, 1448, 1436, 1243, 1144, 971, 749, 716, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 243.13796, found: 243.13791. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$: C : 73.82; H 7.74. Found: C, 74.11, H, 7.87. HPLC analysis: >99\% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: 254 nm . $\mathrm{t}_{\mathrm{R}}: 17.6 \mathrm{~min}$ (major), 21.9 min (minor).

(2S, 3R, E)-Methyl 2-hydroxy-3-methyl-2-styrylhex-4-enoate ((2S, 3R)-168)

Prepared by following the general procedure III with $\boldsymbol{(S , \boldsymbol { E }) \mathbf { - 1 0 8 } (9 9 \% \text { ee, } 4 5 \mathrm { mg } , 0 . 5}$ $\mathrm{mmol}, 1$ equiv. $), \mathrm{Rh}_{2}(R-\text { DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(202 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (15:1) to afford ($2 \boldsymbol{S}, \mathbf{3 R}$) - $\mathbf{- 1 6 8}$ as clear oil $(73 \mathrm{mg}, 54 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+53.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.21$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{dq}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddq}, J=$ $15.2,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 1 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=6.0$, $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6$ (C), 136.8 (C), $130.5(\mathrm{CH}), 130.4(\mathrm{CH}), 129.9(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 79.9(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 44.9(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 15.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 1727, 1448, 1436, 1236, 1152, 966, 746, 716, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for
$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 243.13796$, found: 243.13803. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}$: 73.82; H, 7.74. Found: C, 73.62; H, 7.85. HPLC analysis: >99\% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 18.5$ (minor), 19.9 min (major).

(S, E)-Non-3-en-2-ol $((S, E)-169)$

To a solution of (E)-3-nonen-2-one (3.0 g , $21.4 \mathrm{mmol}, 1$ equiv.) in 30 mL of methanol was slowly added $\mathrm{NaBH}_{4}(0.9 \mathrm{~g}, 22.9 \mathrm{mmol}, 1.07$ equiv) solution in 30 mL of methanol at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction mixture was warmed to room temperature and stirred for 3 h . Then it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was concentrated under vacuum, and the residue was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum to give the crude product, which was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford racemic (\boldsymbol{E}) $\mathbf{- 1 6 9}$ as clear oil ($2.7 \mathrm{~g}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.64(1 \mathrm{H}, \mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.29$ $(\mathrm{m}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

The synthesis of $(S, E) \mathbf{- 1 2}$ followed the general procedure \mathbf{I} with racemic $(E) \mathbf{- 1 6 9}(2.0 \mathrm{~g}$, $14.7 \mathrm{mmol}, 1$ equiv.), vinyl acetate ($3.7 \mathrm{~mL}, 39.6 \mathrm{mmol}, 2.7$ equiv.), and Amano AK enzyme ($0.6 \mathrm{~g}, 30 \%$ weight). The reaction mixture was stirred for 3 h at room temperature and filtered. After concentration, the residue was purified by flash
chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford (S, $\boldsymbol{E}) \mathbf{- 1 6 9}$ as clear oil $(0.77 \mathrm{~g}, 77 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-10.2^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right)($ lit. for $\boldsymbol{(R ,} \boldsymbol{E}) \mathbf{- 1 6 9}$: $[\alpha]^{20}{ }_{\mathrm{D}}+10.68^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right), 97 \%$ ee $) .{ }^{97 \mathrm{a}}$ The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic (E)-169. Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 15.10$ \min (minor), $14.17 \min$ (major).

(S, E)-4-Phenylbut-3-en-2-ol ((S, E)-170)

To a solution of (E)-4-phenylbut-3-en-2-one ($5.0 \mathrm{~g}, 34.2 \mathrm{mmol}, 1$ equiv.) in 50 mL of methanol was slowly added $\mathrm{NaBH}_{4}(1.4 \mathrm{~g}, 36.6 \mathrm{mmol}, 1.07$ equiv.) in 50 mL of methanol at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction mixture was warmed to room temperature and stirred for 2 h . Then it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was concentrated under vacuum, and the residue was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, and concentrated under vacuum to give the crude product, which was purified by flash chromatography on silica gel eluting with hexanes/ethyl acetate (3:1) to afford racemic $(\boldsymbol{E}) \mathbf{- 1 7 0}$ as a white solid ($4.9 \mathrm{~g}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=16.0,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54-4.47(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.

The synthesis of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 7 0}$ followed the general procedure I with racemic $(\boldsymbol{E}) \mathbf{- 1 7 0}$ (1.0 $\mathrm{g}, 6.7 \mathrm{mmol}$, 1 equiv.), vinyl acetate ($1.7 \mathrm{~mL}, 18.2 \mathrm{mmol}$, 2.7 equiv.), and Amano AK
enzyme ($0.5 \mathrm{~g}, 20 \%$ weight). The reaction mixture was stirred for 24 h at room temperature and filtered. After concentration, the residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford (S, $\boldsymbol{E}) \mathbf{- 1 7 0}$ as a white solid $(0.43 \mathrm{~g}, 84 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-33.9^{\circ}\left(c 5.2, \mathrm{CHCl}_{3}\right)$ (lit. $[\alpha]^{20}{ }_{\mathrm{D}}-24.2^{\circ}(c 5.2$, $\left.\mathrm{CHCl}_{3}\right), 98 \%$ ee $) .{ }^{97 \mathrm{~b}}$ The ${ }^{1} \mathrm{H}$ NMR data are the same as racemic $(\boldsymbol{E}) \mathbf{- 1 7 0}$. Chiral HPLC analysis: 99% ee, CHIRALCEL OD-H, 5% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 21.9 \mathrm{~min}$ (minor), 35.6 min (major).

(S, E)-4-(Trimethylsilyl)but-3-en-2-ol ((S, E)-171)

4-(trimethylsilyl)but-3-yn-2-ol ($2.6 \mathrm{~g}, 18.2 \mathrm{mmol}, 1$ equiv) in 40 mL of diethyl ether was cooled to $0{ }^{\circ} \mathrm{C}$, Red-Al ($11.0 \mathrm{~mL}, 36.4 \mathrm{mmol}, 2$ equiv.) was slowly added. The reaction mixture was allowed to warm up to room temperature over 2 h , and quenched with 1 mL of water and 2 mL of $3.6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C} .100 \mathrm{~mL}$ of water and 100 mL of diethyl ether were added to the solution. The ether solution was separated, and the aqueous part was washed with diethyl ether. The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated to give the crude product. Purification on silica gel by flash chromatography eluting with pentane/diethyl ether (10:1 to 5:1) afforded $\operatorname{racemic}(\boldsymbol{E}) \mathbf{- 1 7 1}$ as clear oil $(1.62 \mathrm{~g}, 62 \%$ yield $) .{ }^{98}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.09$ $(\mathrm{dd}, J=18.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$. Data are consistent with the literature. ${ }^{99}$
racemic (\boldsymbol{E})-171 ($1.0 \mathrm{~g}, 6.9 \mathrm{mmol}$, 1 equiv.) in 30 mL of pentane was added vinyl acetate ($3.2 \mathrm{~mL}, 34.6 \mathrm{mmol}, 5$ equiv.) and Amano AK enzyme ($0.5 \mathrm{~g}, 50 \%$ weight). The mixture was heated to reflux for 15 h . After filtration, the solution was concentrated. The residue was purified by flash chromatography eluting with pentane/diethyl ether (10:1 to $5: 1$) to afford $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 7 1}$ as clear oil $(0.30 \mathrm{~g}, 60 \%$ yield $) .{ }^{100}[\alpha]^{20}{ }_{\mathrm{D}}+5.2^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic (E)-171. Chiral capillary GC analysis: $\mathbf{9 9 \%}$ ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 11.58 \mathrm{~min}$ (major), 11.89 min (minor).

(S, E)-2-Methylhex-4-en-3-ol ((S, E)-172)

Isopropylmagnesium bromide solution $(2.0 \mathrm{M}$ in diethyl ether, $43 \mathrm{~mL}, 85.6 \mathrm{mmol}, 1.2$ equiv.) was cooled to $0^{\circ} \mathrm{C}$ with ice bath. Crotonaldehyde (172a) ($\left.5.0 \mathrm{~g}, 71.3 \mathrm{mmol}\right)$ in 10 mL of diethyl ether was slowly added. After addition, the ice bath was removed and the reaction was stirred at room temperature for 1 h . Then it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was washed with diethyl ether. The combined ether solution was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude was distilled under vacuum at $65{ }^{\circ} \mathrm{C}$ to afford racemic (E)-172 as clear oil (5.7 g, 70\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.65(\mathrm{dq}$, $J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=15.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J$ $=6.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

The synthesis of $\boldsymbol{(S , E} \boldsymbol{E} \mathbf{- 1 7 2}$ followed the general procedure II with racemic $\boldsymbol{(E)} \mathbf{- 1 7 2}$ (1.14 g, 10 mmol). Flash chromatography of the crude product on silica gel eluting with pentane/diethyl ether (10:1 to 5:1) afforded ($\boldsymbol{S}, \boldsymbol{E}$)-172 as clear oil ($0.28 \mathrm{~g}, 49 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+10.4^{\mathrm{o}}\left(c \quad 3.7, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data identical as racemic (E)-172. Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 9.83 \mathrm{~min}$ (minor), 9.85 \min (major).

(S, E)-3-Methylpent-3-en-2-ol ((S, E)-173)

To the solution of (E)-2-methyl-2-butanal (173a) (4.4 g, 52.4 mmol$)$ in 100 mL of THF was slowly added MeLi solution (1.6 M in diethyl ether, $39 \mathrm{~mL}, 62.5 \mathrm{mmol}, 1.2$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After addition, the reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h , and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was extracted with diethyl ether. The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. Flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) afforded racemic (\boldsymbol{E})-173 as clear oil (4.5 g , 86% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.49(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H})$, $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39($ br., 1 H$), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{101}$

The synthesis of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 7 3}$ followed the general procedure I with racemic $\boldsymbol{(E)} \mathbf{- 1 7 3}$ (3.5 g, 34.8 mmol , 1 equiv.), vinyl acetate ($8.7 \mathrm{~mL}, 94.0 \mathrm{mmol}$, 2.7 equiv.), and Amano AK
enzyme ($1.0 \mathrm{~g}, 29 \%$ weight). The reaction mixture was stirred for 12 h at room temperature and filtered. After concentration, the residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford (S, \boldsymbol{E})-173 as clear oil ($1.29 \mathrm{~g}, 74 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-11.7^{\circ}\left(c 2.3, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic (\boldsymbol{E})-173. Chiral capillary GC analysis: 97\% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 8.76 \mathrm{~min}$ (minor), 8.98 min (major).

(S)-1-Cyclohexenylethanol ((S)-174)

To the solution of lithium aluminum hydride ($0.6 \mathrm{~g}, 16.7 \mathrm{mmol}, 0.5$ equiv.) in 15 mL of diethyl ether at $0{ }^{\circ} \mathrm{C}$, was slowly added 1-acetylcyclohexene (174a) (4.0 g, $32.2 \mathrm{mmol}, 1$ equiv.) in 15 mL of diethyl ether. After addition, the reaction mixture was warmed to room temperature and stirred 1 h . Then it was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with cold water, followed with 5 mL of 10% sulfuric acid. The ether solution was separated, washed with saturated NaHCO_{3}, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was distilled at $100{ }^{\circ} \mathrm{C}$ under vacuum to afford racemic $\mathbf{1 7 4}$ as clear oil ($3.8 \mathrm{~g}, 93 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.67(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{br} ., 1 \mathrm{H}), 1.26(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.

The synthesis of $\mathbf{(S) - 1 7 4}$ followed the general procedure II racemic $\mathbf{1 7 4}(1.20 \mathrm{~g}, 10$ mmol). Flash chromatography of the crude product on silica gel eluting with
pentane/diethyl ether (5:1) afforded $(\boldsymbol{S}) \mathbf{- 1 7 4}$ as clear oil ($0.39 \mathrm{~g}, 64 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-3.0^{\circ}$ (c 2.4, EtOH) (lit. for (R)-174: $[\alpha]^{20}{ }_{\mathrm{D}}+3.29^{\circ}(c 2.49, \mathrm{EtOH}),>98 \%$ ee $) .{ }^{95 b}$ The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic (\boldsymbol{E})-174. Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, $\mathrm{t}_{\mathrm{R}}: 16.50 \mathrm{~min}$ (minor), 16.60 min (major).

(S, E)-4,8-Dimethylnona-3,7-dien-2-ol (175)

Dimethyl sulfoxide ($6.5 \mathrm{~mL}, 90.7 \mathrm{mmol}, 2.8$ equiv.) was slowly added to the oxalyl chloride ($4.1 \mathrm{~mL}, 48.6 \mathrm{mmol}, 1.5$ equiv.) in 40 mL of dichloromethane at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred for 1.5 h , then geraniol (175a) ($5.0 \mathrm{~g}, 32.4 \mathrm{mmol}$, 1 equiv.) in 60 mL of dichloromethane was slowly added. After stirring for 2 h at $-78{ }^{\circ} \mathrm{C}$, triethylamine (24.0 $\mathrm{mL}, 171.7 \mathrm{mmol}, 5.3$ equiv.) was slowly added. The solution was allowed to warm to room temperature and stirred overnight. Then it was poured into 100 mL of water. The organic layer was separated, and the aqueous layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO_{4}, filtered, and concentrated to give the crude product, which was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford the geranial (175b) as clear oil (3.9 g, 80\% yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.19(\mathrm{~m}$, $4 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$.

Methyl lithium solution (1.6 M in diethyl ether, $21 \mathrm{~mL}, 33.3 \mathrm{mmol}, 1.3$ equiv) was slowly added to the geranial solution ($3.9 \mathrm{~g}, 25.6 \mathrm{mmol}, 1$ equiv) in 150 mL of diethyl ether at $-78{ }^{\circ} \mathrm{C}$. After stirring for 1.5 h , it was quenched with 1 mL of aqueous HCl . The organic layer was separated, washed with water, brine, dried over MgSO_{4}, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (6:1 to $3: 1$) to afford racemic $\mathbf{1 7 5}$ as clear oil ($3.4 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.60$ $(\mathrm{s}, 3 \mathrm{H}), 1.33(\mathrm{br} ., 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{102}$

The synthesis of $\boldsymbol{(S)} \mathbf{- 1 7 5}$ followed the general procedure II with racemic $\mathbf{1 7 5}(1.68 \mathrm{~g}, 10$ mmol). Flash chromatography of the crude product on silica gel eluting with pentane/diethyl ether (5:1 to $3: 1$) afforded $(\mathbf{S}) \mathbf{- 1 7 5}$ as a clear oil $(0.49 \mathrm{~g}, 57 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-25.8^{\mathrm{o}}\left(c\right.$ c 3.3, $\left.\mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic $(\boldsymbol{E}) \mathbf{- 1 7 5}$. Chiral capillary GC analysis: 99% ee, CHIRALDEX B-PM column, t_{R} : 18.92 min (minor), 19.32 min (major).
(2R, 3R)-Methyl 2-hydroxy-3-((E)-prop-1-enyl)-2-styryloctanoate (176)

Prepared by following the general procedure III with $(S, E) \mathbf{- 1 6 9}(99 \%$ ee, $71 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1$ equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(206 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel
eluting with pentane/diethyl ether (30:1 to 20:1) to afford $\mathbf{1 7 6}$ as clear oil ($131 \mathrm{mg}, 83 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-4.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.38$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{ddq}, J=$ $15.2,9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=$ $6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.08(\mathrm{~m}, 7 \mathrm{H}), 0.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.6$ (C), 136.7 (C), 130.8 (C), 130.2 (CH), 129.4 (CH), $128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8(\mathrm{CH}), 80.9(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 50.9(\mathrm{CH}), 31.9$ $\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 1731, 1447, 1436, 1242, 1228, 1136, 972, 753, $691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$299.20056, found: 299.20031. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.7$ (major), 16.8 min (minor).

(2R, 3S, E)-Methyl 2-hydroxy-3-phenyl-2-styrylhex-4-enoate ((2R, 3S)-177)

Prepared by following the general procedure III with (S, E) - $\mathbf{1 7 0}(99 \%$ ee, $77 \mathrm{mg}, 0.5$ mmol, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(203 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether ($30: 1$ to $10: 1$) to afford ($\mathbf{2 R}, \mathbf{3 S}$)-177 as a white solid $\left(119 \mathrm{mg}, 71 \%\right.$ yield). M.p.: $112-114{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-148.5^{\circ}$ (c 1.1, CHCl_{3}). $R_{f}, 0.27$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-$
$7.14(\mathrm{~m}, 8 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{ddq}, J=15.2$, 9.2, 1.6 Hz, 1H), $5.31(\mathrm{dq}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=6.4,1.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.1$ (C), 139.4 (C), 136.7 (C), 130.8 (CH), 129.5 (CH), 129.1 (CH), $129.0(\mathrm{CH}), 128.8$ (CH), $128.6(\mathrm{CH}), 128.2(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{CH}), 80.9(\mathrm{C}), 57.2\left(\mathrm{CH}_{3}\right), 53.3$ $\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3506, 1728, 1448, 1436, 1239, 1140, 1118, 969, 745, 696 cm^{-1}; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 305.15361$, found: 305.15353. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 25.3$ (major), 32.0 min (minor).

(2S, 3S, E)-Methyl 2-hydroxy-3-phenyl-2-styrylhex-4-enoate ((2S, 3S)-177)

Prepared by following the general procedure III with $(S, E)-\mathbf{1 7 0}(99 \%$ ee, $74 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1$ equiv. $), \mathrm{Rh}_{2}(R-\mathrm{DOSP})_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(213 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether ($30: 1$ to $10: 1$) to afford ($\mathbf{2 S}, \mathbf{3 S}$)-177 as a white solid (49 mg, 30% yield). M.p.: $96-97{ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}+53.0^{\circ}\left(c 0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddq}, J=15.2,8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{ddq}, J=15.2,6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=6.4,1.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.7$ (C), 140.1 (C), 136.8 (C), 131.1 (CH), 129.5 (CH), $129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH})$,
$126.9(\mathrm{CH}), 80.5(\mathrm{C}), 56.7\left(\mathrm{CH}_{3}\right), 53.1\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3508, 1732, 1448, $1436,1244,1135,966,747,701 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}: 305.15361$, found: 305.15353 . HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 25.8$ (major), 38.9 min (minor).
(2S, 3R, E)-Methyl 2-hydroxy-2-styryl-3-(trimethylsilyl)hex-4-enoate (178)

Prepared by following the general procedure III with $(S, E)-\mathbf{1 7 1}(99 \%$ ee, $73 \mathrm{mg}, 0.5$ mmol, 1 equiv.) and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate 7 (208 mg, 1 mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (30:1 to 20:1) to afford 178 as a white solid (68 mg , 42% yield). M.p.: $58-60{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-63.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.50$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.34(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}$, $3 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 176.1$ (C), $136.8(\mathrm{C}), 131.1(\mathrm{CH}), 129.8(\mathrm{CH}), 128.8(\mathrm{CH})$, $127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 126.8(\mathrm{CH}), 80.5(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 43.9(\mathrm{CH}), 18.4\left(\mathrm{CH}_{3}\right),-0.3$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3512,2953,1728,1448,1436,1245,1233,1099,973,872,839,748$, $691 \mathrm{~cm}^{-1} ;$ HRMS $(+\mathrm{APCI}) \mathrm{m} / \mathrm{z}:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 301.16184$, found: 301.16197. HPLC analysis: 99% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.1 \mathrm{~min}$ (major), 16.5 min (minor).

(2R, 3R, E)-Methyl 2-hydroxy-3,6-dimethyl-2-styrylhept-4-enoate (179)

Prepared by following the general procedure III with $(S, E) \mathbf{- 1 7 2}(99 \%$ ee, $59 \mathrm{mg}, 0.5$ mmol, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(201 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (30:1 to 20:1) to afford $\mathbf{1 7 9}$ as clear oil ($112 \mathrm{mg}, 75 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+28.8^{\mathrm{o}}$ (c 1.0, CHCl_{3}). $R_{f}, 0.43$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=$ $16.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.02$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.6(\mathrm{C}), 140.2(\mathrm{CH}), 136.7(\mathrm{C}), 130.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH})$, $127.9(\mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 80.7(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 45.0(\mathrm{CH}), 31.3(\mathrm{CH}), 22.9$ $\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3515,1731,1448,1436,1236,1142,972,747$, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 271.16926$, found: 271.16939. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 15.9$ (major), 19.6 min (minor).

(2R, 3R, E)-Methyl 2-hydroxy-3,4-dimethyl-2-styrylhex-4-enoate (180)

Prepared by following the general procedure III with $(S, E) \mathbf{- 1 7 3}(97 \%$ ee, $45 \mathrm{mg}, 0.5$ mmol, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(214 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford $\mathbf{1 8 0}$ as clear oil ($86 \mathrm{mg}, 61 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+29.4^{\mathrm{o}}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.30$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dq}, J=6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}$, $1 \mathrm{H}), 2.70(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{dd}, J=6.8,0.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8(\mathrm{C}), 136.8(\mathrm{C}), 136.7(\mathrm{C})$, $130.5(\mathrm{CH}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8(\mathrm{CH}), 122.3(\mathrm{CH}), 81.3(\mathrm{C}), 52.9$ $\left(\mathrm{CH}_{3}\right), 49.7(\mathrm{CH}), 14.0\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{3}\right), 12.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 3513, 1729, 1448, 1436, 1248, 1145, 973, 742, $691 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 257.15361, found: 257.15360. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}$: 17.3 (major), 33.4 min (minor).
(\boldsymbol{R}, E)-Methyl 2-(($R, E)$-2-ethylidenecyclohexyl)-2-hydroxy-4-phenylbut-3-enoate (181)

Prepared by following the general procedure III with (S)-174 (99% ee, $64 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(202 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.). The crude material was purified by flash chromatography on silica gel eluting
with pentane/diethyl ether (30:1) to afford 181 as a white solid ($117 \mathrm{mg}, 77 \%$ yield). M.p.: $136-137{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-58.6^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.47$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1$ (C), 139.3 (C), 136.7 (C), $130.8(\mathrm{CH}), 130.6(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9(\mathrm{CH})$, $126.9(\mathrm{CH}), 118.5(\mathrm{CH}), 82.6(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 48.9(\mathrm{CH}), 27.5\left(\mathrm{CH}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right), 27.3$ $\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 13.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3503, 1729, 1447, 1242, 1159, 1133, 973, 749, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 283.16926$, found: 283.16897. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 29.7$ (minor), 33.1 min (major).
(2R, 3R)-Methyl 2-hydroxy-3,7-dimethyl-3-((E)-prop-1-enyl)-2-styryloct-6-enoate (182)

Prepared by following the general procedure III with (S, E) - $\mathbf{1 7 5}(99 \%$ ee, $85 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1$ equiv. $), \mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(200 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (30:1 to $10: 1$) to afford $\mathbf{1 8 2}$ as a diastereomeric mixture (dr: 95:5, clear oil, $109 \mathrm{mg}, 63 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-29.4^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.44$
(pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dq}, J=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$, $1.61-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $175.2(\mathrm{C}), 137.0(\mathrm{C}), 134.8(\mathrm{CH}), 131.3(\mathrm{C}), 130.9(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7$ $(\mathrm{CH}), 126.9(\mathrm{CH}), 125.9(\mathrm{CH}), 125.1(\mathrm{CH}), 82.4(\mathrm{C}), 53.0\left(\mathrm{CH}_{3}\right), 47.6(\mathrm{C}), 35.2\left(\mathrm{CH}_{2}\right)$, $25.9\left(\mathrm{CH}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3507, 1721, 1448, 1436, 1376, 1240, 1144, 975, 753, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 343.22677$, found: 343.22640 . HPLC analysis: $>99 \%$ ee (major diastereomer), CHIRALPAK AD-H, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 29.7$ (minor), 18.1 min (major).

(S, E)-1-Cyclohexylbut-2-en-1-ol (S, E)-183

Cyclohexylmagnesium bromide solution (1.0 M in THF, $32 \mathrm{~mL}, 32.0 \mathrm{mmol}, 1.5$ equiv.) was cooled to $0^{\circ} \mathrm{C}$ with ice bath. Crotonaldehyde (172a) ($\left.1.5 \mathrm{~g}, 21.4 \mathrm{mmol}\right)$ in 10 mL of THF was slowly added over 10 min . After addition, the ice bath was removed and the reaction was stirred at room temperature for 1 h . Then it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer was washed with diethyl ether. The combined ether solution was dried over MgSO_{4}, filtered, and
concentrated under vacuum. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford racemic (E)-183 as clear oil (2.2 g, 67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.62(\mathrm{dq}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{ddq}, J$ $=15.2,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.72(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-0.93(\mathrm{~m}, 6 \mathrm{H})$.

The synthesis of $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 8 3}$ followed the general procedure II with racemic $\boldsymbol{(} \boldsymbol{E}) \mathbf{- 1 7 3}$ (1.54 g, 10 mmol). Flash chromatography of the crude product on silica gel eluting with pentane/diethyl ether (5:1) afforded (S, \boldsymbol{E}) $\mathbf{- 1 8 3}$ as clear oil ($0.55 \mathrm{~g}, 71 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}$ $+12.5^{\circ}(c 2.7, \mathrm{EtOH})\left(\right.$ lit. for $\left.(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 8 3}:[\alpha]^{20}{ }_{\mathrm{D}}-13.33^{\circ}(c 2.76, \mathrm{EtOH}),>94 \% \mathrm{ee}\right) .{ }^{95 \mathrm{~b}}$ The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic $(\boldsymbol{E}) \mathbf{- 1 8 3}$. The enantiomeric excess was determined to be $>98 \%$ from the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of its MTPA ester.
(2R, 3R, E)-Methyl 5-cyclohexyl-2-hydroxy-3-methyl-2-styrylpent-4-enoate ((2R, 3R)-184)

Prepared by following the general procedure III with $(\boldsymbol{S}, \boldsymbol{E}) \mathbf{- 1 8 3}(>98 \%$ ee, $78 \mathrm{mg}, 0.5$ mmol, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(9 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate 7 (204 mg, 1 mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$) to afford ($\mathbf{2 R}, \mathbf{3 R}$)-184 as a white solid $\left(143 \mathrm{mg}, 86 \%\right.$ yield). M.p.: $130-131{ }^{\circ} \mathrm{C} .[\alpha]^{20} \mathrm{D}+34.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.43$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.34-$
$7.31(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.43 (dd, $J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H})$, $2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.13(\mathrm{~m}, 4 \mathrm{H}), 1.08-1.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6(\mathrm{C}), 139.0(\mathrm{CH})$, $136.7(\mathrm{C}), 130.8(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8(\mathrm{CH})$, $80.8(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 45.1(\mathrm{CH}), 40.9(\mathrm{CH}), 33.4\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3516, 2922, 2849, 1730, 1447, 1243, 1144, 971, 747, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 311.20056$, found: 311.20048. HPLC analysis: $>99 \%$ ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 16.4 \mathrm{~min}$ (major), 19.9 min (minor).

(2R, 3R, E)-Methyl 5-cyclohexyl-2-hydroxy-3-methyl-2-styrylpent-4-enoate ((2R,

 3S)-184)

Prepared by following the general procedure III with $(\boldsymbol{R}, \boldsymbol{E}) \mathbf{- 1 8 3}(>98 \% \mathrm{ee}, 80 \mathrm{mg}, 0.5$ mmol, 1 equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and styryldiazoacetate $7(205 \mathrm{mg}, 1$ mmol, 2 equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$) to afford ($\mathbf{2 R}, \mathbf{3 S}$)-184 as a white solid $\left(126 \mathrm{mg}, 74 \%\right.$ yield). M.p.: $82-84{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-83.6^{\circ}$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.31$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.45(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{ddd}, J=15.6,8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.40$ (s, 1H), 2.70-2.67 (m, 1H), 1.95-1.88 (m, 1H), 1.70-1.59 (m, 1H), 1.29-1.06 (m, 4H), $1.06-1.00(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.7$ (C), $139.1(\mathrm{CH}), 136.9(\mathrm{C}), 130.2(\mathrm{CH}), 130.0(\mathrm{CH}), 128.6(\mathrm{CH}), 127.7(\mathrm{CH}), 127.0(\mathrm{CH})$, $126.8(\mathrm{CH}), 79.9(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 45.3(\mathrm{CH}), 40.8(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 33.2\left(\mathrm{CH}_{2}\right), 26.3$ $\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 15.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3517, 2922, 2849, 1728, 1447, 1239, 1160, 966, 746, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 311.20056, found: 311.20070. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 29.2 \mathrm{~min}$ (minor), 37.5 min (major).

2,2-Dimethylhex-4-en-3-ol (185)

t-Butyl lithium solution (1.7 M in pentane, $40 \mathrm{~mL}, 68 \mathrm{mmol}, 1.2$ equiv.) was added slowly to the crotonaldehyde ($4.0 \mathrm{~g}, 57 \mathrm{mmol}$) in 100 mL of diethyl ether at $0^{\circ} \mathrm{C}$. After addition, the solution was stirred for 4 h , and then quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 185 as clear oil ($2.85 \mathrm{~g}, 44 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.67(\mathrm{dq}, J=15.2$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{ddq}, J=15.2,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dd, $J=6.0,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$.

Methyl 2-hydroxy-3,6,6-trimethyl-2-styrylhept-4-enoate (186)

To a solution of (E)-2,2-dimethylhex-4-en-3-ol (185) (129 mg, $1.0 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(19 \mathrm{mg}, 1 \mathrm{~mol} \%)$ in 2 mL of degassed pentane at $0{ }^{\circ} \mathrm{C}$, was added the solution of styryldiazoacetate 7 in 5 mL of pentane and ($128 \mathrm{mg}, 0.6 \mathrm{mmol}, 0.6$ equiv.) by syringe pump over 1 h . After addition, the reaction mixture was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$. Then it was concentrated under vacuum, the residue was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (30:1) to afford $1^{\text {st }}$ diastereomer of $\mathbf{1 8 6}$ ($41 \mathrm{mg}, 21 \%$ yield) and $2^{\text {nd }}$ diastereomer of $\mathbf{1 8 6}(81 \mathrm{mg}, 42 \%$ yield $)$. $1^{\text {st }}$ diastereomer: clear oil. $[\alpha]^{20}{ }_{\mathrm{D}}+32.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.37$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23$ (m, 1H), $6.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.6(\mathrm{C}), 144.0(\mathrm{CH}), 136.7$ (C), $130.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 124.9(\mathrm{CH}), 80.8(\mathrm{C})$, $53.0\left(\mathrm{CH}_{3}\right), 45.1(\mathrm{CH}), 33.1(\mathrm{C}), 29.8\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 2953, 1731, $1448,1435,1364,1243,1202,1141,974,757,745,713,692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 285.18491$, found: 285.18464. HPLC analysis: 84% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 14.8 \mathrm{~min}$ (major), 16.5 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer: white solid. M.p.: $68-71{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-69.8^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$). $R_{f}, 0.25$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
7.39-7.36 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.21 (m, 1H), $6.75(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.25(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=15.6,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.8$ (C), 144.3 (CH), 136.9 (C), 130.1 (CH), 128.7 (CH), $127.7(\mathrm{CH}), 126.7(\mathrm{CH}), 124.3(\mathrm{CH}), 80.0(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 45.5(\mathrm{CH}), 33.1(\mathrm{C}), 29.9$ $\left(\mathrm{CH}_{3}\right), 15.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3518, 2957, 1729, 1448, 1436, 1363, 1238, 1203, 1162, 1131, $969,758,745,713,692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 285.18465 , found: 285.18464 . HPLC analysis: 89% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 31.9 \mathrm{~min}$ (minor), 39.0 min (major).
(2R, 3R)-Methyl 2-(4-bromostyryl)-2-hydroxy-3,5-dimethylhex-4-enoate ((2R, 3R)187) and (2R, 3S)-methyl 2-(4-bromostyryl)-2-hydroxy-3,5-dimethylhex-4-enoate ($(2 R, 3 S)-187)$

(2R, 3R)-187

(2R, 3S)-187

Prepared by following the general procedure III with (E)-2-methylpent-3-en-2-ol (100) $\left(53 \mathrm{mg}, \quad 0.5 \mathrm{mmol}, 1\right.$ equiv.), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4} \quad(9 \mathrm{mg}, \quad 1 \mathrm{~mol} \%)$ and p bromophenylvinyldiazoacetate 121 ($280 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1 to $\mathbf{1 5 : 1)}$ to afford ($\mathbf{2 R}, \mathbf{3 R}$)-187 (white solid, $108 \mathrm{mg}, 58 \%$ yield) and ($\mathbf{2 R}, \mathbf{3 S}$)-187 (white solid, $37 \mathrm{mg}, 20 \%$ yield). (2R, 3R)-187: M.p.: $105-106^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+42.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
$R_{f}, 0.26$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.93-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.63(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 175.6 (C), 135.7 (C), 133.3 (C), $131.9(\mathrm{CH}), 130.3(\mathrm{CH}), 129.7(\mathrm{CH}), 128.4(\mathrm{CH}), 124.6$ $(\mathrm{CH}), 121.6(\mathrm{C}), 80.3(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 40.3(\mathrm{CH}), 26.2\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $3513,1730,1487,1436,1246,1206,1136,1073,1009,974,851,816,797,757$, $729 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 335.06412$, found: 335.06427. HPLC analysis: 98% ee, CHIRALCEL OD-H, 0.2% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 44.6 \mathrm{~min}$ (minor), 51.3 min (major). (2R, 3S)-187: M.p.: 84-87 ${ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}-9.8^{\mathrm{o}}\left(c \mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.21$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.22(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.97-2.89$ $(\mathrm{m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.7$ (C), 135.9 (C), 133.5 (C), 131.8 (CH), 130.5 (CH), $129.0(\mathrm{CH}), 128.3(\mathrm{CH}), 124.1(\mathrm{CH}), 121.5(\mathrm{C}), 80.4(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 40.7(\mathrm{CH}), 26.1$ $\left(\mathrm{CH}_{3}\right), 18.5\left(\mathrm{CH}_{3}\right), 15.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 3515, 1728, 1487, 1436, 1244, 1205, 1161, $1129,1072,1009,972,815,796,727 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Br}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 335.06412$, found: 335.06409. HPLC analysis: 97% ee, CHIRALPAK AS$\mathrm{H}, 0.5 \%$ isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.2 \mathrm{~min}$ (major), 16.4 min (minor).
(S)-Methyl 2-((R, E)-2-ethylidenecyclohexyl)-2-hydroxy-2-phenylacetate ((2S, 3R)188)

Prepared by following the general procedure III with $\boldsymbol{(S) - 1 7 4}(99 \%$ ee, $63 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1 equiv), $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and phenyldiazoacetate $6(179 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether ($30: 1$ to $10: 1$) to afford $(\mathbf{2 S}, \mathbf{3 R}) \mathbf{- 1 8 8}$ as clear oil ($83 \mathrm{mg}, 60 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+0.4^{\mathrm{o}}$ (c 2.2, CHCl_{3}). $R_{f}, 0.52$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H})$, $5.38(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.56(\mathrm{~m}$, 1H), 1.47-1.27 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 176.4$ (C), 141.7 (C), 139.7 (C), $128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 126.3(\mathrm{CH}), 118.0(\mathrm{CH}), 82.9(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 50.8(\mathrm{CH}), 27.8$ $\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 24.4\left(\mathrm{CH}_{2}\right), 13.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3497, 2930, 1724, 1446, 1247, 1176, 1160, 1139, 728, 712, $698 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 7 5 . 1 6 4 1 7}$, found: 275.16398.
(R)-Methyl 2-((R, E)-2-ethylidenecyclohexyl)-2-hydroxy-2-phenylacetate ((2R, 3R)188)

Prepared by following the general procedure III with (S)-174 (99\% ee, $65 \mathrm{mg}, 0.5 \mathrm{mmol}$, 1 equiv.), $\mathrm{Rh}_{2}(R \text {-DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ and phenyldiazoacetate $6(180 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.). The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether ($30: 1$ to $10: 1$) to afford $(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 1 8 8}$ as clear oil $(82 \mathrm{mg}, 58 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-79.4^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.47$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H})$, $4.82(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.6(\mathrm{C}), 141.7(\mathrm{C}), 136.2(\mathrm{C}), 128.0(\mathrm{CH}), 127.3(\mathrm{CH}), 126.1(\mathrm{CH})$, $120.0(\mathrm{CH}), 82.5(\mathrm{C}), 53.6\left(\mathrm{CH}_{3}\right), 50.1(\mathrm{CH}), 30.3\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 13.0\left(\mathrm{CH}_{3}\right)$; IR (neat): $3502,2927,1722,1447,1243,1139,1124,730,697 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 275.16417$, found: 275.16395 .

(S)-Methyl 2-hydroxy-2-((S)-2-oxocyclohexyl)-2-phenylacetate ((2S, 3S)-189)

The solution of $(\mathbf{2 S}, \mathbf{3 R}) \mathbf{- 1 8 8}(61 \mathrm{mg}, 0.22 \mathrm{mmol})$ in 10 mL of dichloromethane was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{O}_{3}$ gas was bubbled through the solution until a stable blue color appeared. The excess O_{3} in the solution was removed by passing air for 10 min . Then dimethylsulfide ($0.04 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.5$ equiv) was added. The solution was stirred for 24 h with temperature rising to room temperature. It was concentrated under vacuum and the crude material was purified by flash chromatography on silica gel eluting with
pentane/diethyl ether (3:1) to afford (2S, 3S)-189 as clear oil (38 mg, 65\% yield). $[\alpha]^{20}{ }_{\mathrm{D}}$ $175.5^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.54(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 213.4,175.3,138.9,128.6,128.0,125.4,77.9,59.0,53.2$, 42.6, 27.8, 27.4, 25.1; IR (neat): 3520, 2947, 1731, 1703, 1448, 1434, 1245, 1211, 1132, 729, $698 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) $m / z:$ calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 263.12779$, found: 263.12763. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 10% isopropanol/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{UV} 254 \mathrm{~nm}, t_{\mathrm{R}}: 28.5 \mathrm{~min}$ (minor), 33.6 min (major). Data are consistent with the literature. ${ }^{66 a}$

(R)-Methyl 2-hydroxy-2-((S)-2-oxocyclohexyl)-2-phenylacetate ((2R, 3S)-189)

Prepared by following the procedure for ($\mathbf{2 S}, \mathbf{3 S}$)-189, using ($\mathbf{2 R}, \mathbf{3 R}$)-188 (75 mg, 0.27 mmol) as starting material. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (2:1) to afford (2R, $\mathbf{3 S}$) $\mathbf{- 1 8 9}$ as clear oil (48 $\mathrm{mg}, 66 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-28.9^{\circ}\left(c 1.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.50(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.22$ (dd, $J=12.8,5.28 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.58(\mathrm{~m}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 213.0(\mathrm{C}), 173.5(\mathrm{C}), 140.5(\mathrm{C}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH})$, $125.7(\mathrm{CH}), 79.6(\mathrm{C}), 59.7(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 43.2\left(\mathrm{CH}_{2}\right), 30.7\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2}\right), 25.5$
$\left(\mathrm{CH}_{2}\right)$; IR (neat): $3502,1948,1728,1699,1449,1434,1242,1206,1130,729,699 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 263.12779$, found: 263.12771. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 10% isopropanol/hexanes, $0.5 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}, t_{\mathrm{R}}: 33.1 \mathrm{~min}$ (major), 38.2 min (minor). Data are consistent with the literature. ${ }^{66 \mathrm{c}}$
(2Z, $6 E$)-Methyl 2-hydroxy-5-methyl-4,7-diphenylhepta-2,6-dienoate (190) and (E)methyl Syn-5-methyl-2-oxo-4,7-diphenylhept-6-enoate (syn-191)

The solution of ($\mathbf{2 S} \boldsymbol{S} \mathbf{3 S}$) $\mathbf{- 1 7 7}(36 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.016 \mathrm{M})$ in 7 mL of cyclohexane was heated to reflux for 5 h .1 mL of solution was taken out and concentrated under vacuum. Its ${ }^{1} \mathrm{H}$-NMR spectrum showed the quantitative formation of $\mathbf{1 9 0}$. Then the solution was cooled to room temperature and 1 g of silica gel was added. The mixture was stirred vigorously at room temperature for 5 h , then filtered and concentrated under vacuum to give syn-191 as clear oil (31 mg, 85% yield). Compound 190: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.34-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.39(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=15.6,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.92(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.1$ (C), 142.8 (C), 139.4 (C), 138.0 (C), 134.1 (CH), 129.9 (CH), 128.7 (CH), 128.7 (CH), $128.3(\mathrm{CH}), 127.2(\mathrm{CH}), 126.7(\mathrm{CH}), 126.4(\mathrm{CH}), 116.2(\mathrm{CH}), 53.1\left(\mathrm{CH}_{3}\right), 48.1(\mathrm{CH})$, $43.3(\mathrm{CH}), 19.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3448,1703,1494,1441,1245,968,749,698 \mathrm{~cm}^{-1}$. Compound syn-191: $[\alpha]^{20}{ }_{\mathrm{D}}-109.3^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . \quad R_{f}, 0.45$ (pentane/diethyl ether 5:1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 4 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=16.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.18(\mathrm{dt}, J=9.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 193.2(\mathrm{C}), 161.2(\mathrm{C}), 142.9(\mathrm{C}), 137.1$ (C), $134.9(\mathrm{CH}), 131.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.0(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 52.9\left(\mathrm{CH}_{3}\right), 47.6(\mathrm{CH}), 44.9(\mathrm{CH}), 44.6\left(\mathrm{CH}_{2}\right), 19.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 1727, 1494, 1452, 1284, 1260, 1242, 1065, 971, 750, $695 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 323.16417$, found: 323.16427. HPLC analysis: 99.6% ee, $(R, R)-$ Whelk O1, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 28.2 \mathrm{~min}$ (major), 64.0 min (minor).

Anti-5-methyl-2-oxo-4,7-diphenylhept-6-enoate (anti-191)

The solution of ($\mathbf{2 R}, \mathbf{3 S}$)-177 ($>99 \%$ ee) ($53 \mathrm{mg}, 0.17 \mathrm{mmol}, 0.016 \mathrm{M}$) in 10 mL of cyclohexane was heated to reflux for 5 h . Then the solution was cooled to room temperature and 0.5 g of silica gel was added. The mixture was stirred vigorously at room temperature for 5 h , then filtered and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford pure $\boldsymbol{s y n} \mathbf{- 1 9 1}(13 \mathrm{mg})$, the mixture of $\boldsymbol{s y n} \mathbf{- 1 9 1}$ and $\boldsymbol{s y n} \mathbf{- 1 9 1}(7 \mathrm{mg})$, pure anti-191 (27 mg). Combined yield: $47 \mathrm{mg}, 88 \%$ yield. Anti-191: clear oil. $[\alpha]^{20}{ }_{\mathrm{D}}-5.8^{0}$ (c 1.0, CHCl_{3}). $R_{f}, 0.36$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.15$
$(\mathrm{m}, 10 \mathrm{H}), 6.30(\mathrm{dd}, J=16.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.40-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 193.4$ (C), 161.7 (C), 140.9 (C), 137.6 (C), 132.8 (CH), $130.6(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.4(\mathrm{CH}), 126.9(\mathrm{CH}), 126.3(\mathrm{CH})$, $53.1\left(\mathrm{CH}_{3}\right), 46.0(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right), 42.0(\mathrm{CH}), 18.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 1728, 1494, 1452, 1244, 1066, 972, 750, $695 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 323.16417, found: 323.16432. HPLC analysis: 99.7% ee, (R, R)-Whelk O1, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 47.3 \mathrm{~min}$ (major), 67.6 min (minor).

Methyl 5,7-dimethyl-2-oxo-4-phenyloct-6-enoate (192)

The solution of $(\boldsymbol{R}) \mathbf{- 1 2 5}(100 \mathrm{mg}, 0.36 \mathrm{mmol}, 0.016 \mathrm{M})$ in 23 mL of toluene was heated to reflux for $\mathbf{4}$ h. TLC showed that all of $(\boldsymbol{R}) \mathbf{- 1 2 5}$ was consumed. The solution was cooled to room temperature and 2 g of silica gel was added. The mixture was stirred vigorously at room temperature for 5 h , then filtered and concentrated under vacuum. The crude material was further by flash chromatography on silica gel eluting with pentane/diethyl ether (15:1) to afford $\mathbf{1 9 2}$ as clear oil ($70 \mathrm{mg}, 71 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+63.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$. $R_{f}, 0.23$ (pentane/diethyl ether 10:1). Compound 192: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.88(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 193.2$ (C), 161.4 (C),
$143.3(\mathrm{C}), 132.8(\mathrm{C}), 130.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.3(\mathrm{CH}), 126.7(\mathrm{CH}), 53.0\left(\mathrm{CH}_{3}\right), 48.3$ $(\mathrm{CH}), 44.6\left(\mathrm{CH}_{2}\right), 39.0(\mathrm{CH}), 26.0\left(\mathrm{CH}_{3}\right), 19.5\left(\mathrm{CH}_{3}\right), 18.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 1728, 1452, 1268, 1239, 1096, 1061, 762, $701 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 275.16417$, found: 275.16393. HPLC analysis: 81% ee, (R, R)-whelk O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 22.3 \mathrm{~min}$ (minor), 34.3 min (major).

2.4.4 Synthetic procedures and characterization for Chapter 2.2.4

2.4.4.1 General procedure :

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and allylic alcohol $(0.5$ mmol, 1 equiv.) in 1 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. diazo solution ($0.55 \mathrm{mmol}, 1.1$ equiv.) in 5 mL of degassed pentane was added by syringe pump over 1 h . The syringe was rinsed with another 1 mL of degassed pentane and added to the reaction mixture. After addition, the solution was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel.

2.4.4.2 Characterization in Chapter 2.2.4

3-Methyl-1-(trimethylsilyl)but-2-en-1-ol (193)

Prepared by following the literature procedure. ${ }^{103} n$-butyl lithium solution $(2.5 \mathrm{M}$ in hexanes, $15 \mathrm{~mL}, 38 \mathrm{mmol}, 1.1$ equiv.) was slowly added to the 3-methyl-2-buten-1-ol
solution ($3.0 \mathrm{~g}, 35 \mathrm{mmol}$) in 20 mL of THF at $-78^{\circ} \mathrm{C}$. After 1 h of stirring, $\mathrm{TMSCl}(4.5$ $\mathrm{mL}, 35 \mathrm{mmol}$) was added, and the solution was stirred for another 2.5 h . sec-butyl lithium solution (1.4 M in cyclohexane, $30 \mathrm{~mL}, 42 \mathrm{mmol}, 1.2$ equiv.) was slowly added, and the solution was stirred for 2 h . Then it was warmed to room temperature, and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. THF was removed under vacuum. The residue was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$), and the combined ether solution was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified on silica gel eluting with pentane/diethyl ether (5:1), and afforded compound 193 as clear oil (1.2 g, 22% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.

(S, E)-Methyl 2-hydroxy-3,3-dimethyl-2-phenyl-5-(trimethylsilyl)pent-4-enoate (194)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (91 mg, 0.52 mmol) and 3-methyl-1-(trimethylsilyl)but-2-en-1-ol (193) (racemic, $82 \mathrm{mg}, 0.51$ mmol) at $0^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (30:1), and afforded compound 194 as clear oil ($115 \mathrm{mg}, 72 \%$ yield). $[\alpha]^{20}{ }_{D}-12.7^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.36$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.70-7.67 (m, 2H), 7.31-7.27 (m, 3H), $6.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 174.7 (C), 151.7 (CH), 138.7 (C), $128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 83.0$ (C), $53.0\left(\mathrm{CH}_{3}\right), 46.2(\mathrm{C}), 22.8\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right),-1.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3502, 2953,
$1720,1246,1065,867,835,743,701 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 289.16184$, found: 289.16180. HPLC analysis: 88% ee, (S, S)-whelk O1, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $230 \mathrm{~nm}, t_{\mathrm{R}}: 7.5 \mathrm{~min}$ (major), 8.5 min (minor).
(R, E)-Methyl 2-hydroxy-3,3-dimethyl-2-((E)-styryl)-5-(trimethylsilyl)pent-4-enoate (195)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (115 mg, $0.57 \mathrm{mmol}, 1.1$ equiv.) and 3-methyl-1-(trimethylsilyl)but-2-en-1-ol (193) (racemic, 81 $\mathrm{mg}, 0.51 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (20:1), and afforded compound 195 as clear oil (117 mg, 69\% yield). $[\alpha]^{20}{ }_{\mathrm{D}}-15.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.26$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ $(\mathrm{d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 175.1$ (C), $151.4(\mathrm{CH}), 137.0(\mathrm{C}), 131.0(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 127.2(\mathrm{CH}), 126.8(\mathrm{CH}), 81.6(\mathrm{C}), 52.9\left(\mathrm{CH}_{3}\right), 46.3(\mathrm{C})$, $22.4\left(\mathrm{CH}_{3}\right), 22.2\left(\mathrm{CH}_{3}\right),-1.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3512, 1724, 1245, 1145, 1126, 974, 866, 834, 739, $690 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) $m / z:$ calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 315.17749$, found: 315.17745. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: C, 68.63 ; H, 8.49. Found: C, 68.90, H,
8.65. HPLC analysis: 92% ee, CHIRALCEL OD-H, 0.3% isopropanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}, \mathrm{UV}: 254 \mathrm{~nm}, t_{\mathrm{R}}: 13.3 \min$ (major), 11.6 min (minor).

(S, E)-1-(Trimethylsilyl)hex-2-en-1-ol ((S, E)-196)

Racemic (\boldsymbol{E})-196 was prepared literature procedure. ${ }^{103} n$-butyl lithium solution (2.5 M in hexanes, $31 \mathrm{~mL}, 77 \mathrm{mmol}, 1.1$ equiv.) was slowly added to the trans-2-hexen-1-ol (196a) solution ($7.0 \mathrm{~g}, 70 \mathrm{mmol}$) in 40 mL of THF at $-78{ }^{\circ} \mathrm{C}$. After 1 h of stirring, TMSCl (8.9 $\mathrm{mL}, 70 \mathrm{mmol}$) was added, and the solution was stirred for another 2.5 h . sec-butyl lithium solution (1.4 M in cyclohexane, $60 \mathrm{~mL}, 84 \mathrm{mmol}, 1.2$ equiv.) was slowly added, and the solution was stirred for 2 h . Then it was warmed to room temperature, and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. THF was removed under vacuum. The residue was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$), and the combined ether solution was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded racemic $(\boldsymbol{E}) \mathbf{- 1 9 6}$ as clear oil (8.3 g , 69% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.59$ (dd, $\left.J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.46(\mathrm{dt}, J=$ 15.6, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.6,127.7,68.6$, 34.8, 23.0, 13.8, -4.0. Data are consistent with the literature.

DMSO ($3.7 \mathrm{~mL}, 52 \mathrm{mmol}, 2.8$ equiv.) was slowly added to the oxalyl chloride solution ($2.4 \mathrm{~mL}, 28 \mathrm{mmol}, 1.5$ equiv.) in 20 mL of dichloromethane at $-78^{\circ} \mathrm{C}$. After stirred for 1.5 h racemic (\boldsymbol{E})-196 ($3.2 \mathrm{~g}, 18 \mathrm{mmol}, 1.0$ equiv.) in 30 mL of dichloromethane was added, and the solution was stirred for 2 h at $-78^{\circ} \mathrm{C}$. Triethylamine $(13.4 \mathrm{~mL}, 96 \mathrm{mmol}$, 5.3 equiv.) was then added, and the solution was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . The reaction mixture was poured into 50 mL of water, the organic layer was separated, and the aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined dichloromethane solution was washed with dilute aqueous HCl , dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified on silica gel eluting with pentane/diethyl ether (15:1), and afforded compound 196b as yellow oil (2.9 $\mathrm{g}, 92 \%$ yield $).{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.76(\mathrm{dt}, J=16.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}$, 9H).

The solution of $\mathbf{1 9 6 b}(1.2 \mathrm{~g}, 7.6 \mathrm{mmol})$ in 10 mL of THF was added to $(+)-\mathrm{DIPCl}(3.9 \mathrm{~g}$, $12.1 \mathrm{mmol}, 1.6$ equiv.) in 10 mL of THF at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 20 h , then warmed to room temperature and concentrated under vacuum. The residue was mixed with diethanolamine ($3.8 \mathrm{~g}, 36.0 \mathrm{mmol}, 4.7$ equiv.) in 50 mL diethyl ether. The mixture was vigorously stirred at room temperature for 24 h . After filtration, the solution was concentrated under vacuum. The crude product was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded compound $\boldsymbol{(S , \boldsymbol { E }}$)-196 as yellow oil (1.0 g, 78\% yield). $[\alpha]^{20}{ }_{\mathrm{D}}-37.0^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{103}$ The ${ }^{1} \mathrm{H}$ NMR data are identical as the racemic (\boldsymbol{E}) -
196. Chiral capillary GC analysis: 82% ee, CHIRALDEX B-PM column, t_{R} : 13.68 min (major), 13.87 min (minor).

(Z)-1-(Trimethylsilyl)hex-2-en-1-ol ((Z)-196)

Compound (\boldsymbol{Z})-196 was synthesized by the same procedure as racemic $(\boldsymbol{E}) \mathbf{- 1 9 6}$ with cis-2-hexen-1-ol ($3.5 \mathrm{~g}, 35 \mathrm{mmol}$) as starting material. The crude product was purified on silica gel eluting with pentane/diethyl ether (10:1), and afforded racemic (Z) $\mathbf{- 1 9 6}$ as yellow oil ($3.8 \mathrm{~g}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.47(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40-5.34 (m, 1H), $4.25(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.30(\mathrm{~m}, 3 \mathrm{H}), 0.91$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 130.9(\mathrm{CH}), 129.5$ $(\mathrm{CH}), 64.2(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right),-3.9\left(\mathrm{CH}_{3}\right)$.
(2R, 3R)-Methyl 2-hydroxy-2-styryl-3-((E)-2-(trimethylsilyl)vinyl)hexanoate ((2R, 3R)-197)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (115 mg, $0.57 \mathrm{mmol}, 1.1$ equiv) and (S, E)-1-(trimethylsilyl)hex-2-en-1-ol ($\boldsymbol{S}, \boldsymbol{E}$)-196(82\% ee, 87 $\mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ at room temperature. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl
ether (30:1) to afford (2R, 3R)-197 as clear oil (57 mg, 33\% yield). $[\alpha]^{20}{ }_{\mathrm{D}}+6.7^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.38$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=18.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.09$ $(\mathrm{m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.4(\mathrm{C}), 145.6(\mathrm{CH})$, $136.7(\mathrm{C}), 134.8(\mathrm{CH}), 131.0(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH})$, $80.8(\mathrm{C}), 54.8(\mathrm{CH}), 53.1\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right),-1.0\left(\mathrm{CH}_{3}\right)$; IR (neat): $3515,2954,1732,1247,1234,1136,997,973,867,836,752,691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 329.19318$, found: 329.19318. HPLC analysis: 97% ee, (S, S)-DACH DNB, 0.2% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}$: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 37.2 \mathrm{~min}$ (major), 50.6 min (minor). ($\mathbf{2 S}, \mathbf{3 R}$)-197 was also isolated as a white solid from this reaction ($22 \mathrm{mg}, 13 \%$ yield). Its spectra data are identical as that of compound (2R, 3S)-197.
(2R, 3S)-Methyl 2-hydroxy-2-styryl-3-((E)-2-(trimethylsilyl)vinyl)hexanoate ((2R, 3S)-197)

Prepared by following the general procedure with methyl stryldiazoacetate (7) (113 mg, $0.56 \mathrm{mmol}, 1.1$ equiv.) and (R, E)-1-(trimethylsilyl)hex-2-en-1-ol $\boldsymbol{(} \boldsymbol{R}, \boldsymbol{E})$ - $\mathbf{- 1 9 6}$ (85% ee, 88 $\mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}(10 \mathrm{mg}, 1 \mathrm{~mol} \%)$ at room temperature. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl
ether ($30: 1$) to afford ($\mathbf{2 R}, \mathbf{3 S}$)-197 as a white solid ($50 \mathrm{mg}, \mathbf{2 8 \%}$ yield). M.p.: $79-81{ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}-58.5^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right) . R_{f}, 0.25$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=18.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=$ $18.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.42-$ $1.27(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 175.8(\mathrm{C}), 144.6(\mathrm{CH}), 136.9(\mathrm{C}), 135.1(\mathrm{CH}), 130.1(\mathrm{CH}), 130.0(\mathrm{CH}), 128.6(\mathrm{CH})$, $127.7(\mathrm{CH}), 126.8(\mathrm{CH}), 79.9(\mathrm{C}), 55.2(\mathrm{CH}), 53.3\left(\mathrm{CH}_{3}\right), 31.1\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{2}\right), 14.2$ $\left(\mathrm{CH}_{3}\right),-1.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3526, 2954, 1725, 1247, 1231, 1143, 868, 836, 756, 742, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 329.19318$, found: 329.19319. Anal. Calcd for C16H20O3: C, 69.32; H, 8.73. Found: C, 769.52; H, 8.92. HPLC analysis: 97% ee, CHIRALCEL OD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV: $254 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 13.1 \mathrm{~min}$ (minor), 14.6 min (major). ($\mathbf{2 S} \boldsymbol{S}, \mathbf{3 S}$)-197 was also isolated as clear oil from this reaction ($17 \mathrm{mg}, 10 \%$ yield). Its spectra data are identical as that of compound (2R, 3R)-197.

2.4.5 Synthetic procedures and characterization for Chapter 2.2.5

2.4.5.1 General procedure I: synthesis of tertiary propargylic alcohols:

n-Butyl lithium solution (2.5 M in hexanes, $5.3 \mathrm{~mL}, 13.2 \mathrm{mmol}, 1.1$ equiv.) was slowly added to the alkyne solution ($11.9 \mathrm{mmol}, 1$ equiv.) in 50 mL of THF at $-78{ }^{\circ} \mathrm{C}$. After 30 min, acetone ($1.0 \mathrm{~mL}, 13.2 \mathrm{mmol}, 1.1$ equiv.) was slowly added. The reaction was stirred for 1 h with temperature rising to room temperature, then quenched with aqueous
saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$), and the combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel.
2.4.5.2 General procedure II: the $\mathrm{Rh}_{2}(\boldsymbol{S} \text {-DOSP) })_{4}$-catalyzed tandem ylide formation/[2,3]-sigmatropic rearrangement of donor/acceptor carbenoid with propargylic alcohol:

A solution of $\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and propargylic alcohol $(0.5$ mmol) in 1 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. Diazo ($1.0 \mathrm{mmol}, 2$ equiv.) in 9 mL of degassed pentane was added by syringe pump over 1.5 h . After addition, the solution was stirred for 2 h with temperature rising to room temperature, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel.

2.4.5.3 characterization for Chapter 2.2.5

1-Diazo-1-phenylpropan-2-one (198)

Prepared by following the literature procedure. ${ }^{19}$ The solution of phenylacetone (2.5 g , 18.6 mmol) and ρ - $\operatorname{ABSA}(5.4 \mathrm{~g}, 22.3 \mathrm{mmol}, 1.2$ equiv.) in 125 mL of acetonitrile was cooled to $0{ }^{\circ} \mathrm{C}$ with ice bath under argon. DBU ($3.3 \mathrm{~mL}, 22.1 \mathrm{mmol}, 1.2$ equiv.) was
slowly added. The solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 1 h at room temperature. Saturated aqueous NaHCO_{3} solution $(100 \mathrm{~mL})$ and diethyl ether $(100 \mathrm{~mL})$ were added. The organic layer was separated, and the aqueous layer was extracted with diethyl ether. The combined organic solution was dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1 to $5: 1$) to afford compound 198 as orange crystal ($2.6 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 1H), $2.37(\mathrm{~s}, 3 \mathrm{H})$. Data are consistent with the literature.

3-Hydroxy-3-phenylhexa-4,5-dien-2-one (202)

To a solution of $\mathrm{Rh}_{2}(S-\text { DOSP })_{4}(19 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and propargyl alcohol (199) ($67 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.) in 1 mL of degassed pentane and 0.5 mL of toluene, was added diazo ketone (198) ($161 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 9 mL of degassed pentane by syringe pump over 1.5 h at room temperature. After addition, the solution was stirred for 30 min , then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$) to afford compound 202 as clear oil ($80 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.61(\mathrm{~s}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$. Data are consistent with the literature. ${ }^{76}$ HPLC analysis: 0% ee (Note).Compound 202a was also isolated as byproduct from this reaction (clear oil, 21
$\mathrm{mg}, 11 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dt}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{dt}, J=6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.92-4.83 (m, 2H), 2.22 (s, 3H). Data are consistent with the literature. ${ }^{76}$ HPLC analysis: 0% ee, (R, R)-whelk O1, 0.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}: 230 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}: 12.7$ $\min , 16.4 \mathrm{~min}$.

Note: Compound 202 was converted to compound 202a by treating with AgBF_{4} in order to determine the enantiomeric excess.

Methyl 2-phenyl-2-(prop-2-ynyloxy)acetate (203)

Prepared by following the general procedure II with methyl phenyldiazoacetate (6) (177 mg , 1.0 mmol), propargyl alcohol (199) (70 mg , 1.2 mmol , 1.2 equiv.), and $\mathrm{Rh}_{2}(S$ DOSP $)_{4}(20 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at room temperature. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1 to 7:1) to afford compound 203 as clear oil (103 mg, 50\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H})$, 7.41-7.34 (m, 3H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=15.6,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.8(\mathrm{C})$, $135.5(\mathrm{C}), 129.2(\mathrm{CH}), 128.9(\mathrm{CH}), 127.7(\mathrm{CH}), 78.8(\mathrm{CH}), 75.9(\mathrm{C}), 56.4\left(\mathrm{CH}_{2}\right), 52.6$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3284,1746,1455,1436,1263,1210,1174,1097,1074,1024,731,696$ cm^{-1}; HPLC analysis: 0% ee, (R, R)-Whelk-O1, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $230 \mathrm{~nm} . t_{\mathrm{R}}: 20.0 \mathrm{~min}, 27.6 \mathrm{~min}$.

(S)-Methyl 2-hydroxy-5-methyl-2-phenylhexa-3,4-dienoate (206) and Methyl 2-(2-

 methylbut-3-yn-2-yloxy)-2-phenylacetate (207)

207

Prepared by following the general procedure II with methyl phenyldiazoacetate (6) (176 $\mathrm{mg}, 1.0 \mathrm{mmol}$), 2-methyl-3-butyn-2-ol (204) ($84 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.), and $\mathrm{Rh}_{2}(S$ DOSP $)_{4}(20 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at room temperature. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 206 (clear oil, $97 \mathrm{mg}, 42 \%$ yield) and compound 207 (clear oil, $28 \mathrm{mg}, 12 \%$ yield). Compound 206: $[\alpha]^{20}{ }_{\mathrm{D}}+20.9^{\circ}$ (c 1.0, CHCl_{3}). $R_{f,} 0.26$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 5.56-5.54(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.73(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 200.5$ (C), 174.6 (C), $141.0(\mathrm{C}), 128.2$ $(\mathrm{CH}), 128.1(\mathrm{CH}), 126.6(\mathrm{CH}), 101.1(\mathrm{C}), 94.3(\mathrm{CH}), 78.0(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$, $20.3\left(\mathrm{CH}_{3}\right)$; IR (neat): $3498,1728,1448,1435,1252,1186,1173,734,697 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$215.10666, found: 215.10657. HPLC analysis: 27% ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 230 $\mathrm{nm} . t_{\mathrm{R}}: 31.4 \mathrm{~min}$ (major), 34.4 min (minor). Compound 207: $R_{f}, 0.37$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 172.7$ (C), 137.9 (C), $128.7(\mathrm{CH}), 128.5(\mathrm{CH})$,
$127.1(\mathrm{CH}), 85.5(\mathrm{CH}), 76.2(\mathrm{CH}), 73.4(\mathrm{C}), 72.4(\mathrm{C}), 52.4\left(\mathrm{CH}_{3}\right), 29.6\left(\mathrm{CH}_{3}\right), 29.4$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): 3282, 1754, 1454, 1535, 1382, 1366, 1274, 1229, 1206, 1152, 1090, 1069, 1015, 723, $696 \mathrm{~cm}^{-1}$; HPLC analysis: 0% ee, (R, R)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 230 nm . $t_{\mathrm{R}}: 16.3 \mathrm{~min}, 21.6 \mathrm{~min}$.

(R)-Methyl 3-ethyl-2-hydroxy-5-methyl-2-phenylhexa-3,4-dienoate (208)

Prepared by following the general procedure II with methyl phenyldiazoacetate (6) (180 $\mathrm{mg}, 1 \mathrm{mmol})$ and 2-methylhex-3-yn-2-ol (205) ($59 \mathrm{mg}, 0.5 \mathrm{mmol}$) at room temperature. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) and afforded Compound 208 as clear oil ($115 \mathrm{mg}, 85 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+144.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.21$ (pentane/diethyl ether $\left.10: 1\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.05-$ $1.96(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.2$ (C), 175.0 (C), 139.6 (C), 127.9 (CH), 127.8 (CH), $127.4(\mathrm{CH}), 107.9(\mathrm{C}), 100.4(\mathrm{C}), 81.9(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 20.4$ $\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3501, 1724, 1448, 1435, 1251, 1187, 1172, 1059, 740, 698 $\mathrm{cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 243.1379$, found: 243.1380. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 73.82; $\mathrm{H}, 7.74$. Found: $\mathrm{C}, 73.56 ; \mathrm{H}, 7.86$. HPLC analysis: 85% ee, CHIRALPAK AD-H, 0.5% isopropanol $/$ hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $230 \mathrm{~nm} . t_{\mathrm{R}}$: $22.4 \min$ (major), $29.4 \min$ (minor).

4-Ethyl-3-hydroxy-6-methyl-3-phenylhepta-4,5-dien-2-one (209) and 3-ethyl-2-hydroxy-2,5-dimethyl-1-phenylhexa-3,4-dien-1-one (210)

Prepared by following the general procedure II with 1-diazo-1-phenylpropan-2-one (198) ($160 \mathrm{mg}, 1.0 \mathrm{mmol}, 2$ equiv.), 2-methylhex-3-yn-2-ol (205) (59 mg, 0.5 mmol) at room temperature. The crude material was purified on silica gel eluting with pentane/diethyl ether (30:1) to afford Compound 209 (clear oil, $5 \mathrm{mg}, 4 \%$ yield) and Compound 210 (clear oil, $15 \mathrm{mg}, 12 \%$ yield). Compound 209: $\mathrm{R}_{f,} 0.50$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 208.6,199.4,139.8,128.6$, 128.1, 127.7, 106.2, 100.3, 85.6, 25.7, 21.1, 21.0, 20.4, 12.4; IR (neat): 3451, 1708, 1448, 1355, 1212, 1183, 1172, 1131, 1060, 750, $702 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 227.14304$, found: 227.14286. Anal. HPLC analysis: 18% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $230 \mathrm{~nm} . t_{\mathrm{R}}: 12.8 \mathrm{~min}$ (minor), 21.4 min (major). Compound 210: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.08(\mathrm{~m}$, $1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 203.5,199.2,133.7,133.6,129.9,128.4,109.5,101.5$, 79.5, 26.5, 21.0, 20.7, 19.8, 12.5; IR (neat): 3452, 2965, 2931, 1669, 1598, 1449, 1363,

1246, 1176, 1134, 1067, 958, 905, 712, $689 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 227.14304$, found: 227.14288. HPLC analysis: 2% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $230 \mathrm{~nm} . t_{\mathrm{R}}: 18.3 \mathrm{~min}$ (minor), 20.6 min (major).

Ethyl 2-(2-methylhex-3-yn-2-yloxy)acetate (211)

Prepared by following the general procedure II with ethyl diazoacetate (5) (122 mg, 1 mmol, 2 equiv.) and 2-methylhex-3-yn-2-ol (205) ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1 to $5: 1$) to afford compound 211 as clear oil ($29 \mathrm{mg}, 27 \%$ yield). $R_{f,} 0.44$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{q}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2(\mathrm{C}), 87.2(\mathrm{C}), 80.7(\mathrm{C}), 71.9(\mathrm{C}), 62.9\left(\mathrm{CH}_{2}\right), 60.9\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 14.1\left(\mathrm{CH}_{3}\right), 12.5\left(\mathrm{CH}_{2}\right)$; IR (neat): 2981, 1761, 1732, 1378, 1251, $1186,1152,1115,1034 \mathrm{~cm}^{-1}$.

Dimethyl 2-hydroxy-2-(5-methylhexa-3,4-dien-3-yl)malonate (212)

Prepared by following the general procedure II with methyl diazomalonate (128) (170 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv., dissolved with 1 mL of toluene and 8 mL of pentane) and 2-methylhex-3-yn-2-ol (205) ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (5:1 to $3: 1$) to afforded compound $\mathbf{2 1 2}$ as clear oil (79 mg, 59\% yield). $R_{f,} 0.14$ (pentane/diethyl ether $3: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.7$ (C), 170.5 (C), 104.0 (C), 101.8 (C), $81.9(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3481, 1736, 1436, 1249, 1222, 1116, 1086, $1022 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 243.12270, found: 243.12264 .

(E)-Methyl 2-diazo-4-(4-(trifluoromethyl)phenyl)but-3-enoate (214)

Prepared by following the procedure of Davies. ${ }^{37}$ This compound was made available by Dr James R. Manning. ${ }^{104}$

(E)-Methyl 2-diazo-4-(2,3-dichlorophenyl)but-3-enoate (215)

Prepared by following the procedure of Davies. ${ }^{37}$ This compound was made available by Dr James R. Manning. ${ }^{104}$

(E)-Methyl 2-diazo-4-(3,4-dichlorophenyl)but-3-enoate (216)

Prepared by following the procedure of Davies. ${ }^{37}$ This compound was made available by Dr James R. Manning. ${ }^{104}$

(E)-Methyl 4-(benzo[d][1,3]dioxol-5-yl)-2-diazobut-3-enoate (217)

Prepared by following the procedure of Davies. ${ }^{37}$ This compound was made available by Dr James R. Manning. ${ }^{104}$

(R, E)-Methyl 3-ethyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (213)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (209 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methylhex-3-yn-2-ol (205) (56 mg, 0.5 mmol$)$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 213 as clear oil ($106 \mathrm{mg}, 74 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+59.9^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.28$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 199.1 (C), 175.1 (C), $137.0(\mathrm{C}), 129.9(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 107.4(\mathrm{C}), 101.0(\mathrm{C}), 79.3(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right)$, $12.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1731,1448,1435,1247,1128,971,751,692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$269.1536, found: 269.1531. HPLC analysis: 96% ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}$. UV 254 $\mathrm{nm} . t_{\mathrm{R}}: 20.4 \min$ (major), $23.9 \min$ (minor).

($\boldsymbol{R}, \boldsymbol{E}$)-Methyl 2-(4-bromostyryl)-3-ethyl-2-hydroxy-5-methylhexa-3,4-dienoate (218)

Prepared by following the general procedure II with methyl pbromophenylvinyldiazoacetate (121) ($281 \mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 2-methylhex-3-yn-2-ol (205) ($58 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 218 as clear oil ($153 \mathrm{mg}, 81 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+63.8^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.25$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.0(\mathrm{C}), 174.8(\mathrm{C}), 135.9(\mathrm{C}), 131.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 121.5(\mathrm{C}), 107.3(\mathrm{C}), 101.1(\mathrm{C}), 79.2(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5$
$\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right) ;$ IR (neat): $3504,1730,1487,1435,1243,1128,1072,1008,972,810$, $742 \mathrm{~cm}^{-1}$; HRMS (+APCI) $m / z:$ calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 347.0641$, found: 347.0640. HPLC analysis: 97% ee, (S, S)-Whelk O1, 0.5% isoprpanol/hexanes, 0.7 $\mathrm{mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 15.0 \mathrm{~min}$ (major), 17.7 min (minor).

($R, \quad E)$-Methyl 3-ethyl-2-hydroxy-5-methyl-2-(4-(trifluoromethyl)styryl)hexa-3,4dienoate (219)

Prepared by following the general procedure II with vinyldiazoacetate 214 ($356 \mathrm{mg}, 1$ mmol, 2 equiv.) and 2-methylhex-3-yn-2-ol (205) ($58 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 219 as clear oil ($155 \mathrm{mg}, 85 \%$ yield $) \cdot[\alpha]^{20}{ }_{D}+46.6^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.25$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~d}, J=$ 8.4 Hz, 2H), 7.49 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}$, $3 \mathrm{H}), 1.71$ (s, 3H), $0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.1$ (C), $174.8(\mathrm{C}), 140.5(\mathrm{C}), 131.4(\mathrm{CH}), 129.6\left(\mathrm{C}, \mathrm{q},{ }^{2} J_{\mathrm{CF}}=31.9 \mathrm{~Hz}\right), 128.6(\mathrm{CH}), 127.0(\mathrm{CH})$, $125.7\left(\mathrm{CH}, \mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.8 \mathrm{~Hz}\right), 107.2(\mathrm{C}), 101.3(\mathrm{C}), 79.2(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5$ $\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3504, 1732, 1615, 1437, 1322, 1247, 1162, 1121, 1105, 1067, $822 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~F}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 337.14099$, found: 337.14099. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~F}_{3} \mathrm{O}_{3}$: C, 64.40; H, 5.97. Found: C, 64.30, H,
5.85. HPLC analysis: 96% ee, CHIRALCEL OD-H, 0.5% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 8.5 \mathrm{~min}$ (major), 9.5 min (minor).

(R, E)-Methyl 2-(2,3-dichlorostyryl)-3-ethyl-2-hydroxy-5-methylhexa-3,4-dienoate

 (220)

Prepared by following the general procedure II with vinyldiazoacetate 215 ($273 \mathrm{mg}, 1$ mmol, 2 equiv., dissolved with 2 mL of toluene and 8 mL of pentane) and 2-methylhex-3-yn-2-ol (205) ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 220 as white solid ($155 \mathrm{mg}, 81 \%$ yield). M.p.: $95-96^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+31.8^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.43$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{dd}, J=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $1.91(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 199.1$ (C), 174.6 (C), 137.7 (C), 133.5 (C), 132.9 (CH), 131.7 (C), 129.4 (CH), $127.2(\mathrm{CH}), 126.6(\mathrm{CH}), 125.5(\mathrm{CH}), 107.2(\mathrm{C}), 101.1(\mathrm{C}), 79.3(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3484, 1730, 1449, 1266, 1253, 1238, 1181, 1157, 1128, 1042, 974, 963, $775 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 337.07566$, found: 337.07569. HPLC analysis: $85 \% \mathrm{ee},(S$,
S)-Whelk O1, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 17.1 \mathrm{~min}$ (major), $19.5 \min$ (minor).
(R, E)-Methyl 2-(3,4-dichlorostyryl)-3-ethyl-2-hydroxy-5-methylhexa-3,4-dienoate (221)

Prepared by following the general procedure with II vinyldiazoacetate 216 ($272 \mathrm{mg}, 1$ mmol, 2 equiv., dissolved with 3 mL of toluene and 7 mL of pentane) and 2-methylhex-3-yn-2-ol (205) (59 mg, 0.5 mmol) at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 221 as slight yellow solid (143 mg, 77% yield). M.p.: $64-67^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+68.8^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.29$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 199.0$ (C), 174.7 (C), 137.1 (C), 132.8 (C), 131.4 (C), 130.8 (CH), 130.6 (CH), $128.4(\mathrm{CH}), 127.7(\mathrm{CH}), 126.2(\mathrm{CH}), 107.2(\mathrm{C}), 101.3(\mathrm{C}), 79.2(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 20.6$ $\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{2}\right), 12.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3501, 1731, 1472, 1391, 1242, 1131, 1028, 971, $813 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 337.07566$, found: 337.07548. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Cl}_{2}$: C, 60.86 ; H, 5.67. Found: C, 61.15, H,
5.54. HPLC analysis: 96% ee, (R, R)-Whelk $\mathrm{O} 1,0.5 \%$ isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 13.5 \mathrm{~min}$ (minor), 14.6 min (major).

(R, E)-Methyl 2-(2-(benzo[d][1,3]dioxol-5-yl)vinyl)-3-ethyl-2-hydroxy-5-methylhexa-

 3,4-dienoate (222)

Prepared by following the general procedure II with vinyldiazoacetate $217(247 \mathrm{mg}, 1$ mmol, 2 equiv., dissolved with 7 mL of toluene and 4 mL of pentane) and 2-methylhex-3-yn-2-ol (205) (58 mg, 0.5 mmol) at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 222 as clear oil $(59 \mathrm{mg}, 34 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}+69.3^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.20$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ $(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 3.78$ (s, 3H), $3.53(\mathrm{~s}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 198.9(\mathrm{C}), 175.1$ (C), 148.2 (C), $147.4(\mathrm{C}), 131.4(\mathrm{C}), 129.4(\mathrm{CH}), 126.9(\mathrm{CH}), 121.6(\mathrm{CH}), 108.5(\mathrm{CH}), 107.5(\mathrm{C}), 106.1$ $(\mathrm{CH}), 101.2\left(\mathrm{CH}_{2}\right), 101.0(\mathrm{C}), 79.2(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{2}\right)$, $12.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $3501,1731,1504,1490,1445,1249,1232,1037,970,930,804$ cm^{-1}; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 313.14344$, found: 313.14325. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 69.07$; $\mathrm{H}, 6.71$. Found: C, $68.88, \mathrm{H}, 6.71$.

HPLC analysis: 92% ee, (R, R)-Whelk O1, 1.0% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 15.9 \mathrm{~min}$ (minor), 17.2 min (major).

2-Methylpent-3-yn-2-ol (223)

Acetone ($1.0 \mathrm{~mL}, 13.2 \mathrm{mmol}$) in 10 mL of THF was slowly added to the 1 propynylmagnesium bromide solution (0.5 M in THF, $52 \mathrm{~mL}, 25.9 \mathrm{mmol}, 1.9$ equiv.) at 0 ${ }^{\circ} \mathrm{C}$. After addition, the solution was stirred 30 min at $0^{\circ} \mathrm{C}$, and 1 h at room temperature. Then it was cooled to $0{ }^{\circ} \mathrm{C}$, and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (2:1 to $1: 1$) to afford compound 223 as slightly yellow oil ($1.1 \mathrm{~g}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.93$ (s, 1H), $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H})$.

2-Methyloct-3-yn-2-ol (224)

Prepared by following the general procedure I with 1-hexyne ($1.0 \mathrm{~g}, 11.9 \mathrm{mmol}$). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 224 as clear oil ($1.3 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl_{3}): $\delta 2.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}$,
$6 \mathrm{H}), 1.47-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 85.4(\mathrm{C}), 82.4(\mathrm{C}), 65.2(\mathrm{C}), 31.8\left(\mathrm{CH}_{3}\right), 30.9\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{2}\right), 18.4$ $\left(\mathrm{CH}_{2}\right), 13.7\left(\mathrm{CH}_{3}\right)$; IR (neat): $3354,2979,2959,1458,1362,1239,1164,945 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \operatorname{PrOH}\right]^{+}: 183.17434$, found: 183.17445.

2-Methyltetradec-3-yn-2-ol (225)

Prepared by following the general procedure I with 1-dodecyne ($2.0 \mathrm{~g}, 11.9 \mathrm{mmol}$). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 225 as clear oil ($2.0 \mathrm{~g}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.27$ $(\mathrm{m}, 16 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 85.3(\mathrm{C}), 82.7(\mathrm{C})$, $65.4(\mathrm{C}), 32.1\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.3$ $\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{2}\right), 18.7\left(\mathrm{CH}_{2}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3350, 2923, 2854, 1459, 1362, 1239, 1164, $947 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 267.26824$, found: 267.26841 .

4-Ethoxy-2-methylbut-3-yn-2-ol (226)

Prepared by following the general procedure I with ethyl ethynyl ether $(1.7 \mathrm{~g}, 50 \% \mathrm{wt}$ in hexanes). The crude product was used for the carbenoid reaction without further purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.36$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 91.4,74.4,65.1,43.5,32.4,14.3$; IR (neat): $3385,2979,2259,1376,1167,1113,995,951,870 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 129.09101, found: 129.09107.

4-Cyclopropyl-2-methylbut-3-yn-2-ol (227)

Prepared by following the general procedure \mathbf{I} with cyclopropylacetylene ($1.6 \mathrm{~g}, 23.8$ mmol, 1.0 equiv.), n-butyl lithium (2.5 M in hexanes, $10.6 \mathrm{~mL}, 26.4 \mathrm{mmol}, 1.1$ equiv.), and acetone ($2.0 \mathrm{~mL}, 26.4 \mathrm{mmol}, 1.1$ equiv.). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford compound 227 as clear oil ($2.8 \mathrm{~g}, 92 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, $6 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.74(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 85.5(\mathrm{C}), 80.6(\mathrm{C}), 65.2(\mathrm{C}), 31.8\left(\mathrm{CH}_{2}\right), 8.2\left(\mathrm{CH}_{2}\right),-0.6(\mathrm{C})$; IR (neat): 3351, 1361, 1246, 1162, 1029, 998, 946, 877, $813 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 167.14304$, found: 167.14316 .

4-Cyclohexyl-2-methylbut-3-yn-2-ol (228)

Prepared by following the general procedure I with cyclohexylacetylene (1.3 g, 11.9 $\mathrm{mmol})$. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (6:1) to afford compound 228 as clear oil ($1.6 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 4 \mathrm{H})$, $1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 1.45-1.26(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 86.5$ (C), $85.3(\mathrm{C}), 65.2(\mathrm{C}), 32.8\left(\mathrm{CH}_{2}\right), 31.9\left(\mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{3}\right), 28.9(\mathrm{CH}), 26.0\left(\mathrm{CH}_{2}\right), 24.9$ $\left(\mathrm{CH}_{2}\right)$; IR (neat): $3347,2928,2853,1448,1361,1238,1164,1142,946,867 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}$: 209.18999, found: 209.19012.

4-(Cyclohex-1-en-1-yl)-2-methylbut-3-yn-2-ol (229)

Prepared by following the general procedure I with 1-ethynylcyclohexene (1.3 g, 11.9 $\mathrm{mmol})$. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (4:1) to afford compound $\mathbf{2 2 9}$ as clear oil ($1.4 \mathrm{~g}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.10-6.08(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.66-$ $1.57(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 135.0(\mathrm{CH}), 120.3(\mathrm{C}), 91.4$ (C), $83.9(\mathrm{C}), 65.6(\mathrm{C}), 31.7\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{2}\right), 22.4\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{2}\right)$; IR (neat): 3344, 2979, 2929, 1437, 1360, 1272, 1247, 1164, 1151, 1135, 951, 919, 893, 841 cm^{-1}; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \operatorname{PrOH}\right]^{+}: 207.17434$, found: 207.17448 .

5-((tert-Butyldimethylsilyl)oxy)-2-methylpent-3-yn-2-ol (230)

Prepared by following the general procedure I with tert-butyldimethyl(prop-2-yn-1yloxy)silane ($2.0 \mathrm{~g}, 11.9 \mathrm{mmol}$). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1 to 3:1) to afford compound 230 as clear oil ($2.2 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.34(\mathrm{~s}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H})$, $1.52(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 89.7(\mathrm{C}), 80.9$ (C), $65.2(\mathrm{C}), 51.9\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}),-4.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3363, 2931, 2859, 1363, 1254, 1097, 836, $778 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 271.20879$, found: 271.20895.

6-((tert-Butyldimethylsilyl)oxy)-2-methylhex-3-yn-2-ol (231)

Prepared by following the general procedure \mathbf{I} with (but-3-yn-1-yloxy)(tertbutyl)dimethylsilane ($2.2 \mathrm{~g}, 11.9 \mathrm{mmol}$). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 231 as clear oil ($2.3 \mathrm{~g}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.70(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 86.4(\mathrm{C}), 79.4(\mathrm{C}), 65.2(\mathrm{C}), 62.0\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{3}\right), 31.8$ $\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right), 18.4(\mathrm{C}),-5.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3365, 2955, 2930, 1254,

1107, 837, $776 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}$: 285.22444 , found: 285.22461 .

4-(4-(tert-Butyl)phenyl)-2-methylbut-3-yn-2-ol (233)

Prepared by following the general procedure \mathbf{I} with 4-t-butylphenylacetylene $(1.9 \mathrm{~g}, 11.9$ mmol). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 233 as white solid ($2.0 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.09(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 151.6(\mathrm{C}), 131.5$ $(\mathrm{CH}), 125.4(\mathrm{CH}), 119.9(\mathrm{C}), 93.3(\mathrm{C}), 82.4(\mathrm{C}), 65.8(\mathrm{C}), 34.9(\mathrm{C}), 37.7\left(\mathrm{CH}_{3}\right), 31.3$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3334,2959,1508,1465,1363,1265,1159,1146,959,904,836 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \operatorname{PrOH}\right]^{+}: 259.20564$, found: 259.20580.

2-Methyl-5-phenylpent-3-yn-2-ol (234)

Prepared by following the general procedure I with 3-phenyl-1-propyne (1.4 g, 11.9 mmol). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford compound $\mathbf{2 3 4}$ as yellow oil ($1.5 \mathrm{~g}, 72 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H})$.

2-Methyl-6-phenylhex-3-yn-2-ol (235)

Prepared by following the general procedure I with 4-phenyl-1-butyne (1.5 g, 11.9 $\mathrm{mmol})$. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (4:1 to 3:1) to afford compound 235 as clear oil ($1.4 \mathrm{~g}, 65 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 2.82$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 140.7(\mathrm{C}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 126.3(\mathrm{CH}), 86.2(\mathrm{C}), 81.7(\mathrm{C}), 65.2$ (C), $35.2\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{3}\right), 31.7\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{2}\right)$; IR (neat): 3362, 1454, 1362, 1238, 1163, $949,748,698 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}$: 231.17434, found: 231.17451 .

2,5,5-Trimethylhex-3-yn-2-ol (236)

Prepared by following the general procedure I with 3,3-dimethylbutyne (1.0 g, 11.9 $\mathrm{mmol})$. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 236 as clear oil ($1.2 \mathrm{~g}, 69 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.85(\mathrm{br} ., 1 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 90.9(\mathrm{C}), 83.7(\mathrm{C}), 65.3(\mathrm{C}), 32.0\left(\mathrm{CH}_{3}\right), 31.2\left(\mathrm{CH}_{3}\right), 27.3(\mathrm{C})$; IR (neat):

3286, 2970, 1361, 1276, 1164, 1146, 942, $858 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 183.17434$, found: 183.17445 .

2-Methyl-4-(trimethylsilyl)but-3-yn-2-ol (237)

Prepared by following the general procedure I with trimethylsilylacetylene (1.2 g, 11.9 $\mathrm{mmol})$. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (6:1) to afford compound 237 as white solid (1.6 g, 86\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.95(\mathrm{~s}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 110.8,86.1,65.5,31.6,0.1$; IR (neat): 3269, 2988, 2869, 1251, 1221, 1143, 970, 917, 838, $758 \mathrm{~cm}^{-1}$.

(R, E)-Methyl 2-hydroxy-3,5-dimethyl-2-styrylhexa-3,4-dienoate (238)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (212 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methylpent-3-yn-2-ol (223) (49 mg, 0.5 mmol$)$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 238 as clear oil ($105 \mathrm{mg}, 77 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+59.4^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.41$ (pentane/diethyl ether 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.5(\mathrm{C}), 175.0(\mathrm{C}), 137.0(\mathrm{C}), 130.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH})$, $127.8(\mathrm{CH}), 126.8(\mathrm{CH}), 100.1(\mathrm{C}), 98.5(\mathrm{C}), 79.3(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5$ $\left(\mathrm{CH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1730,1436,1245,1129,1070,971,752,692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}{ }^{+}$: 255.13796, found: 255.13797. HPLC analysis: 96% ee, CHIRALPAK AD-H, 1.0% isoprpanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 27.3 \mathrm{~min}$ (major), 37.7 min (minor).

(R, E)-Methyl 2-hydroxy-3-(2-methylprop-1-enylidene)-2-styrylheptanoate (239)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (208 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 2-methyloct-3-yn-2-ol (224) (71 mg, 0.5 mmol$)$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 239 as clear oil ($136 \mathrm{mg}, 86 \%$ yield). $[\alpha]^{20}{ }_{D}+41.3^{\circ}(c$ $1.0, \mathrm{CHCl}_{3}$). $R_{f}, 0.20$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 2.09-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$, $1.71(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 199.2 (C), 175.1 (C), 137.0 (C), $129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 105.6(\mathrm{C}), 100.4(\mathrm{C}), 79.4(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right)$, $20.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3507, 2853, 2929, 1731, 1448, 1435, 1246, 1129, 1100, 1071, 971, 754, $692 \mathrm{~cm}^{-1} ;$ HRMS (+ESI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}$
$[\mathrm{M}+\mathrm{Na}]^{+}: 337.17742$, found: 377.17754 . HPLC analysis: 95% ee, CHIRALPAK AD-H, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 26.8 \mathrm{~min}$ (major), 36.9 min (minor).

($\boldsymbol{R}, \boldsymbol{E}$)-Methyl 2-hydroxy-3-(2-methylprop-1-enylidene)-2-styryltridecanoate (240)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (207 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methyltetradec-3-yn-2-ol (225) (115 mg, 0.5 mmol$)$ at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 240 as clear oil ($181 \mathrm{mg}, 88 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+30.8^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.20$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 2.06-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.73(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.2$ (C), 175.1 (C), 137.0 (C), 129.8 (CH), 128.7 (CH), 128.7 (CH), $127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 105.6(\mathrm{C}), 100.4(\mathrm{C}), 79.4(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 32.1\left(\mathrm{CH}_{2}\right), 30.0$ $\left(\mathrm{CH}_{2}\right), 29.8\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 20.6$ $\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3512, 2923, 2853, 1732, 1448, 1435, 1247, 1130, 1071, 971, 752, $691 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 421.27132, found: 421.27150. HPLC analysis: 96\% ee, CHIRALPAK AD-H, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 20.0 \mathrm{~min}$ (major), 26.2 min (minor).

(R, E)-Methyl 3-ethoxy-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (241)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (205 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 4-ethoxy-2-methylbut-3-yn-2-ol (226) $(61 \mathrm{mg}, 0.5 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether/triethylamine (5:1:1\% to 3:1:1\%) to afford compound 241 as clear oil ($63 \mathrm{mg}, 44 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-125.5^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.29$ (pentane/diethyl ether/triethylamine $3: 1: 1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 186.4$ (C), 173.9 (C), 136.9 (C), 130.3 $(\mathrm{CH}), 130.1(\mathrm{C}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 114.4(\mathrm{C}), 78.1(\mathrm{C})$, $64.6\left(\mathrm{CH}_{2}\right), 53.5\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CH}_{3}\right)$; IR (neat): 3504, 1736, 1436, 1243, 1173, 1143, 1072, 1056, 970, 760, 737, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$285.14852, found: 285.14859. HPLC analysis: 95% ee, CHIRALPAK AD-H, 1.2% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254 nm . $t_{\mathrm{R}}: 26.4 \mathrm{~min}$ (minor), 44.1 min (major).

(R, E)-Methyl 3-cyclopropyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (242)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (207 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 4-cyclopropyl-2-methylbut-3-yn-2-ol (227) (63 mg, 0.5 mmol) at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 242 as clear oil ($91 \mathrm{mg}, 60 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}$ $-15.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) \cdot R_{f}, 0.15$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.33-1.27(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.66(\mathrm{~m}, 2 \mathrm{H}), 0.40-0.35(\mathrm{~m}, 1 \mathrm{H}), 0.30-0.26(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 197.3(\mathrm{C}), 175.1(\mathrm{C}), 137.0(\mathrm{C}), 129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 109.6(\mathrm{C}), 101.9(\mathrm{C}), 79.2(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$, $8.7(\mathrm{CH}), 7.9\left(\mathrm{CH}_{2}\right), 7.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3507, 1731, 1448, 1435, 1244, 1204, 1120, 1071, 1014, 968, 751, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 281.15361, found: 281.15330. HPLC analysis: 92% ee, CHIRALCEL OD-H, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 21.0 \mathrm{~min}$ (major), 25.9 min (minor).

(R, E)-Methyl 3-cyclohexyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (243)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (210 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 4-cyclohexyl-2-methylbut-3-yn-2-ol (228) ($85 \mathrm{mg}, 0.5 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (15:1 to 10:1) to afford compound $\mathbf{2 4 3}$ as white solid ($136 \mathrm{mg}, \mathbf{7 8 \%}$
yield). M.p.: $135-137{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+17.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.19$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.60$ (m, 3H), 1.29-1.05 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.6$ (C), 175.2 (C), 137.1 (C), $129.7(\mathrm{CH}), 128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 111.4(\mathrm{C}), 101.0(\mathrm{C})$, $79.5(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 37.2(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 24.6\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right), 26.2$ $\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right) .20 .6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3524, 2925, 2849, 1728, 1447, 1249, 1128, 1107, 973, 756, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 323.20056, found: 323.20068. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$: C, 77.61; H, 8.29. Found: C, 77.45, H, 8.23. HPLC analysis: 98% ee, CHIRALCEL OD-H, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 13.6 \mathrm{~min}$ (major), 19.0 min (minor).

(R, E)-Methyl 3-cyclohexenyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (244)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (212 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 4-cyclohexenyl-2-methylbut-3-yn-2-ol (229) (83 mg, 0.5 mmol) at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 244 as clear oil ($87 \mathrm{mg}, 51 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}$ $-103.9^{\circ}\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.43$ (pentane/diethyl ether $3: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=15.6$
$\mathrm{Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 2.10-2.02$ (m, 4H), $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 202.7 (C), 175.6 (C), 137.1 (C), 131.0 (C), 130.5 (CH), 129.5 (CH), 128.7 (CH), 127.7 $(\mathrm{CH}), 126.8(\mathrm{CH}), 125.0(\mathrm{CH}), 124.9(\mathrm{CH}), 108.5(\mathrm{C}), 100.4(\mathrm{C}), 79.0(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right)$, $28.2\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 3501, 2927, 1730, 1447, 1435, 1244, 1131, 1070, 970, 754, 737, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 321.18491$, found: 321.18497. HPLC analysis: 97% ee, CHIRALCEL OD-H, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}$: 11.8 min (major), 15.6 min (minor).

($\boldsymbol{R}, \quad E)$-Methyl 3-((tert-butyldimethylsilyloxy)methyl)-2-hydroxy-5-methyl-2-

 styrylhexa-3,4-dienoate (245)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (210 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 5-(tert-butyldimethylsilyloxy)-2-methylpent-3-yn-2-ol (230) $(117 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 245 as clear oil (137 $\mathrm{mg}, 66 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-23.8^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.33$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22$ (m, 1H), $6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$,

9H), 0.08 ($\mathrm{s}, 3 \mathrm{H}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.9$ (C), 174.3 (C), 137.0 (C), $129.6(\mathrm{CH}), 129.1(\mathrm{CH}), 128.7(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 104.1(\mathrm{C})$, $100.3(\mathrm{C}), 78.4(\mathrm{C}), 62.6\left(\mathrm{CH}_{2}\right), 53.1\left(\mathrm{CH}_{3}\right), 26.0\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 18.5$ (C), $-5.3\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3502, 1733, 1249, 1135, 1071, 1050, 971, 835, 777, 753, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 385.21935$, found: 385.21890. HPLC analysis: 90% ee, CHIRALCEL OD-H, 0.5% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 7.1 \mathrm{~min}$ (major), 8.6 min (minor).

($\boldsymbol{R}, \quad E$)-Methyl 3-(2-(tert-butyldimethylsilyloxy)ethyl)-2-hydroxy-5-methyl-2-

 styrylhexa-3,4-dienoate (246)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (208 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 5-(tert-butyldimethylsilyloxy)-2-methylpent-3-yn-2-ol (231) $(124 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 246 as clear oil (179 mg , 84% yield). $[\alpha]^{20}{ }_{\mathrm{D}}+51.0^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.35$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.68$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{td}, J=6.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.0(\mathrm{C}), 174.4$ (C), 137.0 (C), $129.8(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 127.7(\mathrm{CH}), 126.9(\mathrm{CH}), 102.4(\mathrm{C}), 100.0(\mathrm{C})$,
$79.1(\mathrm{C}), 66.6\left(\mathrm{CH}_{2}\right), 52.9\left(\mathrm{CH}_{3}\right), 31.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 18.5$ (C), $-5.2\left(\mathrm{CH}_{3}\right)$; IR (neat): $3510,1732,1250,1129,1092,971,834,775,752,692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 399.23555$, found: 399.23502. HPLC analysis: 96% ee, CHIRALPAK AD-H, 0.8% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 12.5 \mathrm{~min}$ (major), 14.3 min (minor).

(R, E)-Methyl 2-hydroxy-5-methyl-3-phenyl-2-styrylhexa-3,4-dienoate (247)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (207 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methyl-4-phenylbut-3-yn-2-ol (232) ($81 \mathrm{mg}, 0.5 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1 to 7:1) to afford compound 247 as white solid ($121 \mathrm{mg}, 72 \%$ yield). M.p.: $126-128^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-55.8^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.22$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.19$ $(\mathrm{m}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 203.0(\mathrm{C}), 175.2(\mathrm{C}), 136.8(\mathrm{C}), 135.5(\mathrm{C}), 130.4(\mathrm{CH}), 129.5(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.2(\mathrm{CH}), 127.9(\mathrm{CH}), 127.0(\mathrm{CH}), 126.9(\mathrm{CH}), 106.9(\mathrm{C}), 100.8$ (C), $79.4(\mathrm{C}), 53.5\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3495, 1729, 1598, 1494, 1447, 1247, 1131, 1071, 971, 751, $693 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 357.14612, found: 357.14629. HPLC analysis: 97% ee, CHIRALCEL OD-H, 1.0% isoprpanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 13.9 \mathrm{~min}$ (major), 19.6 min (minor).

(R, E)-Methyl 3-(4-tert-butylphenyl)-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate

 (248)

Prepared by following the general procedure II with methyl styryldiazoacetate (205 mg , $1 \mathrm{mmol}, 2$ equiv.) and 4-(4-tert-butylphenyl)-2-methylbut-3-yn-2-ol (233) (111 mg, 0.5 mmol) at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (10:1) to afford compound 248 as white solid ($118 \mathrm{mg}, 59 \%$ yield). M.p.: $108-111{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-50.1^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.33$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.24(\mathrm{~m}, 9 \mathrm{H}), 6.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 202.8$ (C), 175.2 (C), 149.8 (C), 136.9 (C), 132.2 (C), 130.3 (CH), $129.6(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 125.3(\mathrm{CH}), 106.7(\mathrm{C})$, $100.7(\mathrm{C}), 79.4(\mathrm{C}), 53.5\left(\mathrm{CH}_{3}\right), 34.6(\mathrm{C}), 31.5\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right)$; IR (neat): 3501, 2954, 1731, 1447, 1362, 1247, 1131, 1071, 970, 837, 755, 734, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 373.21621$, found: 373.21623. HPLC analysis: $94 \% \mathrm{ee}$, CHIRALPAK AD-H, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 30.0 \mathrm{~min}$ (major), 54.6 min (minor).

(R, E)-Methyl 3-benzyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (249)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (205 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 2-methyl-5-phenylpent-3-yn-2-ol (234) (90 mg, 0.5 mmol$)$ at $0{ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether ($10: 1$ to $5: 1$) to afford compound 249 as clear oil ($79 \mathrm{mg}, 44 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+46.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.26$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.1$ (C), 174.8 (C), 140.1 (C), 136.9 (C), $130.0(\mathrm{CH}), 129.3(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7(\mathrm{CH}), 128.1(\mathrm{CH})$, $127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 126.0(\mathrm{CH}), 105.2(\mathrm{C}), 100.4(\mathrm{C}), 79.0(\mathrm{C}), 53.2\left(\mathrm{CH}_{3}\right), 34.7$ $\left(\mathrm{CH}_{2}\right), 20.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3499, 1729, 1494, 1448, 1435, 1247, 1128, 970, 757, 732, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 331.16926$, found: 331.16918. HPLC analysis: 92% ee, CHIRALCEL OD-H, 0.8% isoprpanol/hexanes, 0.8 $\mathrm{mL} / \mathrm{min}$. UV 254nm. $t_{\mathrm{R}}: 15.5 \mathrm{~min}$ (major), 19.4 min (minor).

($\boldsymbol{R}, \boldsymbol{E}$)-Methyl 2-hydroxy-5-methyl-3-phenethyl-2-styrylhexa-3,4-dienoate (250)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (204 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methyl-6-phenylhex-3-yn-2-ol (235) ($99 \mathrm{mg}, 0.5 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound $\mathbf{2 5 0}$ as white solid ($149 \mathrm{mg}, 79 \%$ yield). M.p.: $86-89{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+31.0^{\circ}\left(c\right.$ 1.0, CHCl_{3}). $R_{f}, 0.45$ (pentane/diethyl ether 3:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25$ $(\mathrm{m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 199.4$ (C), 174.9 (C), 142.2 (C), 136.9 (C), 130.0 (CH), $128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 125.8(\mathrm{CH})$, $105.0(\mathrm{C}), 101.1(\mathrm{C}), 79.4(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right), 20.5$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3503,1729,1496,1448,1435,1247,1127,1071,1030,971,749,731$, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 345.18491$, found: 345.18496. HPLC analysis: 95% ee, CHIRALPAK AD-H, 0.8% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 35.4 \mathrm{~min}$ (minor), 39.9 min (major).

(\boldsymbol{R}, E)-Methyl 3-tert-butyl-2-hydroxy-5-methyl-2-styrylhexa-3,4-dienoate (251)

Prepared by following the general procedure II with methyl styryldiazoacetate (211 mg , $1 \mathrm{mmol}, 2$ equiv.) and 2,5,5-trimethylhex-3-yn-2-ol (236) (70 mg, 0.5 mmol$)$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl
ether (20:1) to afford compound $\mathbf{2 5 1}$ as clear oil ($68 \mathrm{mg}, 44 \%$ yield). $[a]^{20}{ }_{\mathrm{D}}:-43.8^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.26$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9$ (C), 176.2 (C), 137.2 (C), $131.3(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 128.6(\mathrm{CH}), 127.7(\mathrm{CH}), 126.8(\mathrm{CH}), 113.0(\mathrm{C}), 98.7(\mathrm{C}), 79.7(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right)$, $35.5(\mathrm{C}), 31.3\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3504,1728,1447,1436,1362,1243,1130$, 970, 749, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}_{-} \mathrm{H}_{2} \mathrm{O}\right]^{+}:$297.18491, found: 297.18490. HPLC analysis: 96% ee, CHIRALCEL OD-H, 0.5% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. t_{R} : 13.2 min (major), 20.8 min (minor).

(S, E)-Methyl 2-hydroxy-5-methyl-2-styryl-3-(trimethylsilyl)hexa-3,4-dienoate (252)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (203 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 2-methyl-4-(trimethylsilyl)but-3-yn-2-ol (237) (62 mg, 0.5 $\mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford compound $\mathbf{2 5 2}$ as clear oil ($48 \mathrm{mg}, 37 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+58.9^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.23$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 0.12(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 205.9$ (C), 175.3 (C), $137.0(\mathrm{C}), 130.3(\mathrm{CH}), 129.0$
$(\mathrm{CH}), 128.8(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 101.0(\mathrm{C}), 93.2(\mathrm{C}), 79.1(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right)$, $19.8\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{CH}_{3}\right), 0.4\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1727,1436,1354,1245,1136,1070$, 971, 885, 838, 748, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 313.16184, found: 313.16144. HPLC analysis: 94% ee, CHIRALCEL OD-H, 0.3% isoprpanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$. UV 254nm. t_{R} : 11.2 min (major), 15.9 min (minor).

1-(Prop-1-yn-1-yl)cyclopentanol (253)

cyclopentanone ($1.2 \mathrm{~mL}, 13.5 \mathrm{mmol}, 1$ equiv.) in 20 mL of THF was slowly added to the 1-propynylmagnesium bromide solution (0.5 M in THF, $50 \mathrm{~mL}, 25.0 \mathrm{mmol}, 1.9$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After addition, the solution was stirred overnight with temperature rising to room temperature. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford compound 253 as clear oil ($1.4 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.94-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 83.4(\mathrm{C}), 78.9(\mathrm{C}), 74.6(\mathrm{C}), 42.4\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 3.5$ $\left(\mathrm{CH}_{3}\right)$; IR (neat): $3363,2962,1222,992 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 167.14304$, found: 167.14315 .

1-(Prop-1-yn-1-yl)cycloheptanol (255)

Prepared by following the procedure for compound 253, using cycloheptanone (1.5 g , 13.0 mmol) as starting material. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford compound $\mathbf{2 5 5}$ as clear oil ($1.8 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.00-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.82-$ $1.78(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 84.4(\mathrm{C}), 79.1$ (C), $71.9(\mathrm{C}), 43.4\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 3.6\left(\mathrm{CH}_{3}\right)$; IR (neat): 3363, 2920, 2856, 1459, 1445, 1022, 997, $952 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 195.17434$. Found: 195.17445.

(\boldsymbol{R}, E)-Methyl 4-cyclopentylidene-2-hydroxy-3-methyl-2-styrylbut-3-enoate (256)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (209 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 1 -(prop-1-ynyl)cyclopentanol (253) (67 mg, 0.5 mmol$)$ at 0 ${ }^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1) to afford compound 256 as clear oil ($111 \mathrm{mg}, 69 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+49.4^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.29$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 2.43-2.26(\mathrm{~m}, 4 \mathrm{H})$,
$1.72(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.2(\mathrm{C}), 175.0(\mathrm{C})$, $136.9(\mathrm{C}), 129.9(\mathrm{CH}), 127.7(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8(\mathrm{CH}), 107.1(\mathrm{C}), 102.6$ (C), $79.5(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 31.4\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right)$; IR (neat): $3502,2951,1728,1435,1245,1128,970,750,732,692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 281.15361$, found: 281.15359. HPLC analysis: 88% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}$: $18.9 \min$ (major), $29.4 \min$ (minor).

(R, E)-Methyl 4-cyclohexylidene-2-hydroxy-3-methyl-2-styrylbut-3-enoate (257)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (206 $\mathrm{mg}, 1 \mathrm{mmol}$, 2 equiv.) and 1-(prop-1-ynyl)cyclohexanol (254) (72 mg, 0.5 mmol) at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound 257 as clear oil ($139 \mathrm{mg}, 85 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}+13.7^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.31$ (pentane/diethyl ether 7:1). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 4 \mathrm{H})$, 1.71 (s, 3H), 1.69-1.41 (m, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.4(\mathrm{C}), 175.0(\mathrm{C})$, $136.8(\mathrm{C}), 129.8(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 127.8(\mathrm{CH}), 126.8(\mathrm{CH}), 105.7(\mathrm{C}), 99.8$ (C), $79.2(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 31.5\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 14.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 3508, 2926, 1728, 1435, 1243, 1132, 997, 971, 750, 731, $691 \mathrm{~cm}^{-1} ;$ HRMS
(+APCI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 295.16926$, found: 295.16892. HPLC analysis: 94\% ee, CHIRALPAK AD-H, 1.5\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254 $\mathrm{nm} . t_{\mathrm{R}}: 17.8 \mathrm{~min}$ (major), 22.6 min (minor).

(R, E)-Methyl 4-cycloheptylidene-2-hydroxy-3-methyl-2-styrylbut-3-enoate (258)

Prepared by following the general procedure II with methyl styryldiazoacetate (7) (210 $\mathrm{mg}, 1 \mathrm{mmol}, 2$ equiv.) and 1-(prop-1-ynyl)cyclohexanol (254) (76 mg, 0.5 mmol$)$ at $0^{\circ} \mathrm{C}$. The crude was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (7:1) to afford compound $\mathbf{2 5 8}$ as clear oil ($133 \mathrm{mg}, 82 \%$ yield). $[\alpha]^{20}{ }_{\mathrm{D}}-0.2^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.33$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 200.0$ (C), 175.1 (C), 136.8 (C), 129.8 (CH), 128.7 (CH), 128.6 (CH), 127.8 $(\mathrm{CH}), 126.8(\mathrm{CH}), 107.7(\mathrm{C}), 99.7(\mathrm{C}), 79.1(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 32.4\left(\mathrm{CH}_{2}\right), 32.3\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 14.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3508, 2923, 1728, 1435, 1246, 1128, 971, 757, 732, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) $m / z:$ calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 309.18491$, found: 309.18488 . HPLC analysis: 95% ee, CHIRALPAK AD$\mathrm{H}, 1.5 \%$ isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 18.2 \mathrm{~min}$ (major), 22.0 min (minor).

2-Cyclohexyl-4-phenylbut-3-yn-2-ol (259)

Prepared by following the general procedure I with phenylacetylene $(1.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv.), cyclohexyl methyl ketone ($2.1 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.1$ equiv.), and n-butyl lithium (2.5 M in hexanes, $6.6 \mathrm{~mL}, 16.5 \mathrm{mmol}$, 1.1 equiv.). The crude product was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether 5:1 with 1% triethylamine before loading the sample) eluting with pentane/diethyl ether (5:1) to afford compound 259 as clear oil ($2.9 \mathrm{~g}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.45-7.42 (m, 2H), 7.33-7.30(m, 3H), 2.06-1.68(m,5H), $2.02(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.32-1.15(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 131.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH})$, $123.1(\mathrm{C}), 92.7(\mathrm{C}), 84.1(\mathrm{C}), 71.7(\mathrm{C}), 49.1(\mathrm{CH}), 28.1\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right)$, $27.5\left(\mathrm{CH}_{3}\right) 26.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right)$; IR (neat): 3381, 2926, 2852, 1489, 1443, 1108, 1067, 928, 754, $690 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 229.15869 , found: 229.15855 .
(2R, 4S)-Methyl 5-cyclohexyl-2-hydroxy-3-phenyl-2-styrylhexa-3,4-dienoate (260) and (R)-2-cyclohexyl-4-phenylbut-3-yn-2-ol ((R)-259)

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(0.101 \mathrm{~g}, 0.05 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and racemic 2-cyclohexyl-4-phenylbut-3-yn-2-ol (259) ($1.13 \mathrm{~g}, 5 \mathrm{mmol}, 1$ equiv.) in 10 mL of degassed pentane was stirred for 10 min at room temperature, then cooled to $0{ }^{\circ} \mathrm{C}$ with ice bath under argon. Styryldiazoacetate (7) (1.01 g, $5 \mathrm{mmol}, 1$ equiv.) in 40 mL of degassed pentane was added by syringe pump over 2 h . After addition, the solution was stirred for 2 h with temperature rising to room temperature, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether/ triethylamine (20:1:1\%) before loading the sample) eluting with pentane/diethyl ether ($20: 1,10: 1,5: 1,3: 1$) to afford pure compound 260 (the absolute stereochemistry was assigned as (2R, $\mathbf{4 S} \mathbf{)} \mathbf{- 2 6 0}$) (white solid, 0.780 g), the mixture of compound 260 and its minor diastereomer (clear oil, 0.199 g). Combined yield: 0.979 g , 49\% yield. (\boldsymbol{R})-259 was also isolated in $0.354 \mathrm{~g}, 31 \%$ yield. Compound 260: M.p.: 78-80 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-70.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right.$). $R_{f}, 0.31$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 3 \mathrm{H})$, $1.80(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 201.9 (C), 175.2 (C), 136.8 (C), 135.5 (C), 130.4 (CH), 129.6 (CH), 128.7 (CH), 128.3 $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 110.5(\mathrm{C}), 108.7(\mathrm{C}), 79.5(\mathrm{C})$, $53.4\left(\mathrm{CH}_{3}\right), 42.5(\mathrm{CH}), 32.0\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 17.2\left(\mathrm{CH}_{3}\right)$; IR (neat): 3501, 2924, 2850, 1730, 1494, 1447, 1247, 1127, 1068, 969, 908, 750, 731, 692 cm^{-1}; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 385.21621$, found: 385.21563. HPLC analysis: 87% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254 nm . t_{R} : 27.4 min (major), 34.5 min (minor). The minor
diastereomer: $[a]^{20}{ }_{\mathrm{D}}:-50.8^{\circ}\left(c\right.$ 1.0, $\left.\left.\mathrm{CHCl}_{3}\right).\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.44-7.42$ (m, 2H), 7.38-7.33 (m, 2H), 7.33-7.16 (m, 6H), $6.91(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.22-1.04(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 202.4$ (C), 175.3 (C), 136.8 (C), 135.7 (C), 130.2 $(\mathrm{CH}), 129.9(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 110.5(\mathrm{C}), 108.7(\mathrm{C}), 79.1(\mathrm{C}), 53.5\left(\mathrm{CH}_{3}\right), 42.2(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{2}\right)$, $26.6\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 26.4\left(\mathrm{CH}_{2}\right), 17.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3503, 2924, 2851, 1730, 1494, 1447, 1246, 1136, 1069, 970, 753, $693 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 385.21621$, found: 385.21579 . HPLC analysis: 88% ee, CHIRALPAK AD$\mathrm{H}, 1.5 \%$ isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}$: 41.4 min (minor), 62.9 min (major). (R)-259: $[\alpha]^{20}{ }_{\mathrm{D}}-6.8^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic 259. HPLC analysis: 96% ee, CHIRALCEL OD-H, 1.0% isopropanol/hexanes, 0.8 $\mathrm{mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 17.8 \mathrm{~min}$ (major), 36.9 min (minor).

2,2,3-Trimethylhex-4-yn-3-ol (261)

pinacolone ($2.6 \mathrm{~g}, 26.3 \mathrm{mmol}, 1$ equiv.) in 20 mL of THF was slowly added to the 1 propynylmagnesium bromide solution (0.5 M in $\mathrm{THF}, 100 \mathrm{~mL}, 50.0 \mathrm{mmol}, 1.9$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After addition, the solution was stirred overnight with temperature rising to room temperature. Then it was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product
was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether 20:1 with 1% triethylamine before loading the sample) eluting with pentane/diethyl ether ($20: 1$ to $10: 1$) to afford compound 261 as clear oil ($2.5 \mathrm{~g}, 68 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 83.1(\mathrm{C}), 79.6(\mathrm{C}), 74.1(\mathrm{C}), 38.3(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right)$, $25.1\left(\mathrm{CH}_{3}\right), 3.5\left(\mathrm{CH}_{3}\right)$; IR (neat): $3462,2959,1368,1181,1084,997,908 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 183.17434$, found: 183.17447.

(2R, 4S)-Methyl 2-hydroxy-3,5,6,6-tetramethyl-2-styrylhepta-3,4-dienoate (262) and (R)-2,2,3-trimethylhex-4-yn-3-ol ((R)-261)

Prepared by following the procedure for compound 260, using $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(0.103 \mathrm{~g}$, $0.05 \mathrm{mmol}, 1 \mathrm{~mol} \%$), racemic 2,2,3-trimethylhex-4-yn-3-ol (261) (0.702 g, $5 \mathrm{mmol}, 1$ equiv.), and p-bromophenylvinyldiazoacetate (218, 1.40 g , $5 \mathrm{mmol}, 1$ equiv., dissolved in 36 mL of degassed pentane and 4 mL of toluene). The crude material was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether/triethylamine (20:1:1\%) before loading the sample) eluting with pentane/diethyl ether (10:1) to give pure compound 262 (major diastereomer, clear oil, 0.873 g), mixture of two diastereomers of compound $\mathbf{2 6 2}$ and (R)-261 which was further separated by distillation with Kugelrohr under vacuum to afford diastereomers of compound 262
$(0.173 \mathrm{~g})$ and pure $(\boldsymbol{R}) \mathbf{- 2 6 1}(0.104 \mathrm{~g})$, pure minor diastereomer of compound $\mathbf{2 6 2}(0.184$ g , white solid). Combined yield of two diastereomers of 262: $1.229 \mathrm{~g}, 62 \%$ yield. Compound 262 (major diastereomer): $[\alpha]^{20}{ }_{\mathrm{D}}+52.8^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . \quad R_{f}, \quad 0.43$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 198.4 (C), 174.8 (C), 135.8 (C), $131.8(\mathrm{CH}), 129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 128.4(\mathrm{CH}), 121.6$ (C), $111.7(\mathrm{C}), 101.2(\mathrm{C}), 79.3(\mathrm{C}), 53.3\left(\mathrm{CH}_{3}\right), 34.3(\mathrm{C}), 29.1\left(\mathrm{CH}_{3}\right), 14.9\left(\mathrm{CH}_{3}\right), 14.6$ $\left(\mathrm{CH}_{3}\right) ;$ IR (neat): $3508,2961,1732,1488,1435,1360,1248,1130,1073,1008,973$, 813, 790, 753, 716, $694 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 375.09542, found: 375.09577. HPLC analysis: 92\% ee, CHIRALPAK AD-H, 1.5\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 13.4 \mathrm{~min}$ (major), 17.7 min (minor). Compound 262 (minor diastereomer): $\left[\begin{array}{lllllll}\alpha]^{20} \\ \mathrm{D} & -4.0^{\circ} & (c & 1.2, & \left.\mathrm{CHCl}_{3}\right) & R_{f}, & 0.36\end{array}\right.$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ 198.5 (C), 174.7 (C), 135.7 (C), $131.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 121.5$ $(\mathrm{C}), 111.7(\mathrm{C}), 101.2(\mathrm{C}), 78.9(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 34.0(\mathrm{C}), 29.0\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right), 14.7$ $\left(\mathrm{CH}_{3}\right) ;$ IR (neat): $3508,2961,1731,1488,1435,1360,1244,1135,1073,1008,972$, 813, 790, 753, 717, $665 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 375.09542, found: 375.09580. HPLC analysis: 97% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 14.6 \mathrm{~min}$ (major), 16.7 min (minor).
(R)-261: $0.104 \mathrm{~g}, 15 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}+1.9^{\circ}\left(c 6.0, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic 261. Chiral capillary GC analysis: 96% ee, CHIRALDEX B-PM column, t_{R} : 12.57 min (minor), 12.70 min (major).

3,4-Dimethyl-1-phenylpent-1-yn-3-ol (263)

Prepared by following the general procedure I with phenylacetylene $(1.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv.), 3-methyl-2-butanone ($1.4 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.1$ equiv.), and n-butyl lithium (2.5 M in hexanes, $6.6 \mathrm{~mL}, 16.5 \mathrm{mmol}, 1.1$ equiv.). The crude product was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether 5:1 with 1% triethylamine before loading the sample) eluting with pentane/diethyl ether (5:1) to afford compound 263 as clear oil ($2.2 \mathrm{~g}, 79 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.45-7.42 (m, 2H), 7.32-7.30 (m, 3H), $2.02(\mathrm{~s}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 131.8$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 123.1(\mathrm{C}), 92.3(\mathrm{C}), 84.1(\mathrm{C}), 72.2(\mathrm{C}), 39.3(\mathrm{CH}), 27.4$ $\left(\mathrm{CH}_{3}\right), 27.4\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$; IR (neat): 3386, 2965, 1489, 1370, 1142, 1095, 1038, 1027, 921, 870, 754, $690 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ $\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i-\mathrm{PrOH}\right]^{+}: 231.17434$, found: 231.17450.

3,4,4-Trimethyl-1-phenylpent-1-yn-3-ol (264)

Prepared by following the general procedure I with phenylacetylene $(1.5 \mathrm{~g}, 15 \mathrm{mmol}, 1.0$ equiv.), pinacolone ($1.6 \mathrm{~g}, 16.5 \mathrm{mmol}, 1.1$ equiv.), and n-butyl lithium (2.5 M in hexanes, $6.6 \mathrm{~mL}, 16.5 \mathrm{mmol}, 1.1$ equiv.). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether/triethylamine (10:1:1\% to 5:1:1\%) to afford compound 264 as clear oil ($2.4 \mathrm{~g}, 80 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.45-7.42 (m, 2H), 7.33-7.30(m, 3H), $1.98(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 131.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.2(\mathrm{CH}), 123.2(\mathrm{C}), 93.1(\mathrm{C}), 84.0(\mathrm{C})$, 74.5 (C), $38.6(\mathrm{C}), 25.4\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$; IR (neat): 3454, 2968, 1449, 1369, 1134, 1070, 1005, 927, 901, $754,690 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 203.14304, found: 203.14323.

(2R, 4S)-Methyl 2-hydroxy-5,6-dimethyl-3-phenyl-2-styrylhepta-3,4-dienoate (265)

A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(20 \mathrm{mg}, 0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and racemic 3,4-dimethyl-1-phenylpent-1-yn-3-ol (263) ($186 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 2 mL of degassed pentane was stirred for 10 min at room temperature, then cooled to $0{ }^{\circ} \mathrm{C}$ with ice bath under argon. Styryldiazoacetate (7) ($206 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.) in 9 mL of degassed pentane was added by syringe pump over 1.5 h . After addition, the solution was stirred for 2 h with temperature rising to room temperature, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether/ triethylamine (20:1:1\%) before loading the sample) eluting with
pentane/diethyl ether ($10: 1,7: 1,5: 1,3: 1$) to afford pure compound 265 (clear oil, 47 mg), mixture of compound 260 and its minor diastereomer (clear oil, 121 mg). Combined yield: $168 \mathrm{mg}, \mathbf{4 7 \%}$ yield. (\boldsymbol{R})-263 was also isolated in $68 \mathrm{mg}, \mathbf{3 6 \%}$ yield. Compound 265: $[\alpha]^{20}{ }_{\mathrm{D}}-92.2^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) . R_{f}, 0.25$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 6 \mathrm{H}), 6.92(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 201.6$ (C), 175.2 (C), $136.8(\mathrm{C}), 135.5(\mathrm{C}), 130.3(\mathrm{CH}), 129.6(\mathrm{CH}), 128.7$ $(\mathrm{CH}), 128.3(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 126.9(\mathrm{CH}), 111.3(\mathrm{C}), 108.9$ (C), $79.4(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right), 32.9(\mathrm{CH}), 21.5\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$; IR (neat): 3500, 2960, $1730,1494,1447,1435,1246,1129,970,746,692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 345.18407$, found: 345.18434. HPLC analysis: 93% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 30.0 \mathrm{~min}$ (major), 36.9 min (minor). (R)-263: $[\alpha]^{20}{ }_{\mathrm{D}}-17.7^{\circ}\left(c 2.0, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic 263. HPLC analysis: 81% ee, CHIRALCEL OD-H, 1.0% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 19.1 \mathrm{~min}$ (major), 33.6 min (minor).

(2R, 4S)-Methyl 2-hydroxy-5,6,6-trimethyl-3-phenyl-2-styrylhepta-3,4-dienoate

 (266)

Prepared by following the procedure for compound 265, using $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(19 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1 \mathrm{~mol} \%$), racemic 3,4,4-trimethyl-1-phenylpent-1-yn-3-ol (264) (206 mg, 1 mmol, 1 equiv.), and styryldiazoacetate ($7,209 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv.). The crude material was purified by flash chromatography on silica gel (the column was washed with pentane/diethyl ether/ triethylamine (20:1:1\%) before loading the sample) eluting with pentane/diethyl ether ($7: 1$ to $5: 1$) to afford mixture of the two diastereomers of compound $\mathbf{2 6 6}$ and (\boldsymbol{R})-264 (ratio of $\mathbf{2 6 6}$ and (\boldsymbol{R})-264: 1.2:1) (clear oil, 277 mg . calculated yield of 266: 50\% yield, calculated yield of (R)-264: 42\% yield). Further purification was carried out by preparative HPLC. Compound 266: $[\alpha]^{20}{ }_{\mathrm{D}}-98.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.34$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.94(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 201.5 (C), 175.3 (C), 136.8 (C), 136.5 (C), 130.4 (CH), 129.6 (CH), 128.7 (CH), 128.3 $(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 114.1(\mathrm{C}), 108.0(\mathrm{C}), 79.5(\mathrm{C}), 53.4\left(\mathrm{CH}_{3}\right)$, 34.8 (C), $29.1\left(\mathrm{CH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 3504, 2962, 1731, 1493, 1447, 1435, 1361, 1247, 1203, 1129, 1069, 967, 767, 739, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 359.20056$, found: 359.20061. HPLC analysis: 93% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 25.9 \mathrm{~min}$ (major), 30.5 min (minor). (R)-264: $[\alpha]^{20}{ }_{\mathrm{D}}-3.9^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right.$). The ${ }^{1} \mathrm{H}$ NMR data are identical as racemic compound 264. HPLC analysis: 77\% ee, CHIRALPAK AD-H, 1.5\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 17.6 \mathrm{~min}$ (major), 20.9 min (minor).

(R)-1-Cyclohexyl-3-phenylprop-2-yn-1-ol ((R)-267)

Prepared by following the literature procedure. ${ }^{77}$ To a 50 mL of round bottom flask, was added zinc triflate $(1.0 \mathrm{~g}, 2.7 \mathrm{mmol}, 1.1$ equiv. $)$ and $(+)$ - N -methylephedrine $(0.54 \mathrm{~g}, 3.0$ $\mathrm{mmol}, 1.2$ equiv.). The flask was purged with argon for 15 min , then 7.5 mL of toluene and triethylamine ($0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.2$ equiv.) were added. The reaction mixture was stirred for 2 h at room temperature, followed with the addition of phenylacetylene (0.33 $\mathrm{mL}, 3.0 \mathrm{mmol}, 1.2$ equiv.). After stirred for 15 min , cyclohexanecarboxaldehyde (0.30 $\mathrm{mL}, 2.5 \mathrm{mmol}, 1.0$ equiv.) was added. The reaction mixture was stirred for 2 h , and quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}$. It was extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). The combined ether solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (5:1) to afford compound (\boldsymbol{R})-267 as clear oil ($0.51 \mathrm{~g}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}$, $3 \mathrm{H}), 4.39(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.13(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 131.8(\mathrm{CH}), 128.4(\mathrm{CH}), 122.9(\mathrm{C}), 89.5(\mathrm{C}), 85.8(\mathrm{C}), 67.8(\mathrm{CH}), 44.5$ (CH), $28.8\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 3339, 2923, 2851, 1489, 1449, 1021, 755, $690 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O} \quad[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}+i \mathrm{PrOH}\right]^{+}: 257.18999$, found: 257.19016 . HPLC analysis: 97% ee, CHIRALCEL OD, 10% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 10.4 \mathrm{~min}$ (major), 22.1 min (minor). Data are consistent with the literature.
(2S, 4R)-Methyl 5-cyclohexyl-2-hydroxy-3-phenyl-2-styrylpenta-3,4-dienoate ((2S, 4R)-268)

Prepared by following the general procedure with II methyl stryldiazoacetate (7) (209 $\mathrm{mg}, 1.0 \mathrm{mmol}, 2$ equiv), (R)-1-cyclohexyl-3-phenylprop-2-yn-1-ol (($\boldsymbol{R})-\mathbf{2 6 7})(108 \mathrm{mg}$, $0.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(R-\mathrm{DOSP})_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (20:1 to $10: 1$) to afford compound $(2 S, 4 R)-268$ as white solid ($65 \mathrm{mg}, 33 \%$ yield). M.p.: $90-92{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}+89.1^{\circ}(c 1.0$, CHCl_{3}). $R_{f}, 0.28$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.48$ (m, 2H), 7.41-7.39 (m, 2H), 7.35-7.19 (m, 6H), $6.94(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.15(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.9(\mathrm{C}), 174.9$ (C), $136.7(\mathrm{C}), 134.9(\mathrm{C}), 130.5(\mathrm{CH}), 129.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.0(\mathrm{CH})$, $127.2(\mathrm{CH}), 127.0(\mathrm{CH}), 109.8(\mathrm{C}), 102.3(\mathrm{CH}), 79.1(\mathrm{C}), 53.6\left(\mathrm{CH}_{3}\right), 38.0(\mathrm{CH}), 33.3$ $\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right)$; IR (neat): 3498, 2923, 2850, 1731, 1494, 1447, 1247, 1129, 1066, 970, 909, 890, 752, 735, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 371.20056$, found: 371.20103. HPLC analysis: $>99 \%$ ee, CHIRALPAK AD-H, 1.2% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 57.3 \mathrm{~min}$ (major), 65.0 min (minor). The $\mathrm{O}-\mathrm{H}$ insertion products were also isolated and characterized. $\mathbf{1}^{\text {st }}$ diastereomer of $\mathbf{O}-\mathbf{H}$ insertion product: $15 \mathrm{mg}, 8 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}-$ $64.6^{\circ}\left(c 0.58, \mathrm{CHCl}_{3}\right) . R_{f}, 0.46$ (pentane/diethyl ether $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.46-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.83(\mathrm{dd}, J=1.2,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=$ $6.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=1.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 2.02-1.69 (m, 6H), 1.32-1.20(m, 5H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.7$ (C), 136.4 (C), $133.4(\mathrm{CH}), 132.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.2(\mathrm{CH}), 126.9$ $(\mathrm{CH}), 124.4(\mathrm{CH}), 122.8(\mathrm{C}), 87.6(\mathrm{C}), 86.7(\mathrm{C}), 77.5(\mathrm{CH}), 74.4(\mathrm{CH}), 52.4\left(\mathrm{CH}_{3}\right), 43.1$ $(\mathrm{CH}), 29.3\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 2925, 2852, $1749,1489,1448,1252,1198,1133,1101,1071,1027,965,755,735,690 \mathrm{~cm}^{-1}$; HPLC analysis: 97% ee, CHIRALPAK AD-H, 0.7% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV 254 $\mathrm{nm} . t_{\mathrm{R}}: 10.2 \mathrm{~min}$ (major), 13.5 min (minor). $\mathbf{2}^{\text {nd }}$ diastereomer of $\mathbf{O}-\mathbf{H}$ insertion product: $9 \mathrm{mg}, 5 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}+254.7^{\circ}\left(c 0.85, \mathrm{CHCl}_{3}\right) . R_{f}, 0.40$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 171.3(\mathrm{C}), 136.0(\mathrm{C}), 125.6(\mathrm{CH}), 132.0(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5$ $(\mathrm{CH}), 128.5(\mathrm{CH}), 127.0(\mathrm{CH}), 123.8(\mathrm{CH}), 122.9(\mathrm{C}), 87.6(\mathrm{C}), 86.7(\mathrm{C}), 78.2(\mathrm{CH})$, $73.5(\mathrm{CH}), 52.5\left(\mathrm{CH}_{3}\right), 42.9(\mathrm{CH}), 29.5\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right)$; IR (neat): 2925, 2852, 1756, 1489, 1449, 1328, 1263, 1196, 1170, 1071, 1028, 968, 756, 691 cm^{-1}; HPLC analysis: 97% ee, CHIRALPAK AD-H, 1.2% isopropanol/hexanes, 0.8 $\mathrm{mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 20.0 \mathrm{~min}$ (major), 43.1 min (minor).

(S)-1-Cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-ol (269)

Prepared by following the procedure for compound $(\boldsymbol{R})-\mathbf{2 6 7}$, using (-)-N-methylephedrine $(0.54 \mathrm{~g}, 3.0 \mathrm{mmol}, 1.1$ equiv.) and 4-ethynylanisole ($0.40 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.2$ equiv.). The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (3:1) to afford compound 269 as clear oil $(0.61 \mathrm{~g}, 100 \%$ yield $)$. $[\alpha]^{20}{ }_{\mathrm{D}}+9.7^{\circ}\left(c 1.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.63(\mathrm{~m}, 7 \mathrm{H}), 1.31-$ $1.12(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.6(\mathrm{C}), 133.2(\mathrm{CH}), 115.0(\mathrm{C}), 113.9$ $(\mathrm{CH}), 88.0(\mathrm{C}), 85.5(\mathrm{C}), 67.7(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 44.4(\mathrm{CH}), 28.8\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 26.5$ $\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right)$; IR (neat): 3385, 2924, 2851, 1606, 1508, 1450, 1289, 1245, 1172, 1031, $830 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}+i \operatorname{PrOH}\right]^{+}$: 287.20056. Found: 287.20072. HPLC analysis: 86% ee, CHIRALCEL OD-H, 10% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}$. UV 254 nm . t_{R} : 12.1 min (minor), 33.5 min (maor).

(2R, 4S)-Methyl 5-cyclohexyl-2-hydroxy-3-(4-methoxyphenyl)-2-styrylpenta-3,4-

 dienoate (270)

Prepared by following the general procedure II with methyl stryldiazoacetate (7) (206 $\mathrm{mg}, 1.0 \mathrm{mmol}$, 2 equiv.), (S)-1-cyclohexyl-3-(4-methoxyphenyl)prop-2-yn-1-ol (269) $(127 \mathrm{mg}, 0.5 \mathrm{mmol})$, and $\mathrm{Rh}_{2}(S-\mathrm{DOSP})_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude was purified on silica gel eluting with pentane/diethyl ether (10:1 to 5:1) to afford compound 270 as clear oil $(105 \mathrm{mg}, 48 \%$ yield $) .[\alpha]^{20}{ }_{\mathrm{D}}-82.2^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.33$
(pentane/diethyl ether 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.51(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, $2.20-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.4(\mathrm{C}), 175.0(\mathrm{C}), 158.8(\mathrm{C}), 136.7(\mathrm{C}), 130.5(\mathrm{CH}), 129.3(\mathrm{CH}), 129.2(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 128.0(\mathrm{CH}), 127.1(\mathrm{C}), 127.0(\mathrm{CH}), 113.8(\mathrm{CH}), 109.3(\mathrm{C}), 102.1(\mathrm{CH}), 79.3(\mathrm{C})$, $55.4\left(\mathrm{CH}_{3}\right), 53.5\left(\mathrm{CH}_{3}\right), 38.0(\mathrm{CH}), 33.3\left(\mathrm{CH}_{2}\right), 33.1\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{2}\right)$; IR (neat): 3491, 2923, 2849, 1731, 1605, 1509, 1448, 1245, 1178, 1131, 1031, 971, 933, $736,693 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 401.21112$, found: 401.21104. HPLC analysis: 99\% ee, CHIRALPAK AD-H, 3.0\% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 53.8 \mathrm{~min}$ (minor), 72.0 min (major).

(2R, 5S)-Methyl 5-cyclohexyl-5-methyl-3-phenyl-2-styryl-2,5-dihydrofuran-2-

 carboxylate (271)

To the solution of ($\mathbf{2 R}, \mathbf{4 S} \mathbf{S} \mathbf{- 2 6 0}\left(99 \%\right.$ ee) $(54 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 2.5 mL of acetone $/ \mathrm{H}_{2} \mathrm{O}$ (4:1), was added AgNO_{3} ($25 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.1$ equiv.) and CaCO_{3} ($26 \mathrm{mg}, 0.26 \mathrm{mmol}$, 2.0 equiv.) at room temperature. The reaction mixture was stirred in the dark for 24 h , then concentrated under vacuum. The residue was extracted with dichloromethane (3 x 15 mL). The combined dichloromethane solution was passed through a short celite pad, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (20:1 to

10:1) to afford compound 271 as clear oil ($52 \mathrm{mg}, 95 \%$ yield). $[\alpha]^{20}{ }_{D}-17.1^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.28$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.09(\mathrm{~s}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.9$ (C), 139.3 (C), 137.0 (C), 133.0 (C), 132.9 $(\mathrm{CH}), 132.8(\mathrm{CH}), 131.6(\mathrm{CH}), 128.7(\mathrm{CH}), 128.6(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 127.0(\mathrm{CH}), 93.9(\mathrm{C}), 92.0(\mathrm{C}), 52.8\left(\mathrm{CH}_{3}\right), 48.4(\mathrm{CH}), 28.9\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 2926, 2851, 1733, 1447, 1243, 1159, 1070, 1036, 967, 912, 745, $691 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 403.22677, found: 403.22727. HPLC analysis: 99% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 14.8 \mathrm{~min}$ (minor), 16.9 min (major).
(2R, 5S)-Methyl 4-bromo-5-cyclohexyl-5-methyl-3-phenyl-2-styryl-2,5-dihydrofuran -2-carboxylate (272)

$(\mathbf{2 R}, \mathbf{4 S}) \mathbf{- 2 6 0}(99 \%$ ee) $(51 \mathrm{mg}, 0.13 \mathrm{mmol})$ and NBS ($24 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved with 2.0 mL of acetonitrile and 0.14 mL of $\mathrm{H}_{2} \mathrm{O}$. The solution was stirred for 3 h at room temperature, then quenched with 0.5 mL of aqueous NaHCO_{3}, and concentrated under vacuum. The residue was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined dichloromethane solution was washed with brine, dried over MgSO_{4}, filtered, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel eluting with pentane/diethyl ether (30:1 to 20:1) to afford compound 272 as
clear oil (42 mg, 69% yield). $[\alpha]^{20}{ }_{\mathrm{D}}+0.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.38$ (pentane/diethyl ether 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.16(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.6$ (C), 137.3 (C), 136.6 (C), 132.8 (C), $131.1(\mathrm{CH}), 129.4$ $(\mathrm{CH}), 128.8(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 128.1(\mathrm{CH}), 127.0(\mathrm{CH}), 126.7(\mathrm{C}), 126.0$ $(\mathrm{CH}), 94.4(\mathrm{C}), 92.3(\mathrm{C}), 52.7\left(\mathrm{CH}_{3}\right), 45.0(\mathrm{CH}), 27.7\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{3}\right)$; IR (neat): 2930, 2851, 1735, 1492, 1448, 1237, 1160, 1069, 1022, 987, 972, 907, 747, 731, $692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Br} \quad[\mathrm{M}+\mathrm{H}]^{+}:$481.13728, found: 481.13811. HPLC analysis: 99% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$. UV $254 \mathrm{~nm} . t_{\mathrm{R}}: 9.3 \mathrm{~min}$ (minor), 10.5 min (major).

2.4.6 Synthetic procedures and characterization for Chapter 2.2.6

2.4.6.1 General procedure of the $\mathbf{R h}_{2}(\boldsymbol{S} \text {-DOSP) })_{4}$-catalyzed tandem ylide

 formation/[1,2]-Stevens rearrangement of donor/acceptor carbenoid with tertiary alcohol:A solution of $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ and tertiary alcohol $(0.5$ mmol) in 1 mL of degassed pentane was cooled to $0^{\circ} \mathrm{C}$ with ice bath under argon. Diazo ($1.0 \mathrm{mmol}, 2$ equiv.) in 9 mL of degassed pentane was added by syringe pump over 1.5 h . After addition, the solution was stirred for 2 h with temperature rising to room
temperature, then concentrated under vacuum. The crude material was purified by flash chromatography on silica gel.

2.4.6.2 Characterization of Chapter 2.2.6

(S)-Methyl 2-hydroxy-3,3-dimethyl-2-phenylpent-4-enoate (276)

Isolated as byproduct from the synthesis of compound 114. Compound 276: clear oil, 13 $\mathrm{mg}, 10 \%$ yield. $R_{f,} 0.36$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (dd, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.07(\mathrm{dd}, J=17.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}$, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.6(\mathrm{C}), 144.2(\mathrm{CH}), 138.7(\mathrm{C}), 127.8(\mathrm{CH})$, $127.7(\mathrm{CH}), 127.4(\mathrm{CH}), 113.6\left(\mathrm{CH}_{2}\right), 82.9(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 45.1(\mathrm{C}), 23.0\left(\mathrm{CH}_{3}\right), 22.7$ $\left(\mathrm{CH}_{3}\right) ;$ IR (neat): $3502,1719,1447,1435,1250,1162,1101,1067,916,743,702 \mathrm{~cm}^{-1}$; HRMS (+ESI) m / z : calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 252.15942$, found: 252.15966. HPLC analysis: 66\% ee, (S, S)-Whelk-O1, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV 230 nm , $t_{\mathrm{R}}: 10.7 \mathrm{~min}$ (major), 12.9 min (minor).

(R, E)-Methyl 2-hydroxy-3,3,6,6-tetramethyl-2-styrylhept-4-ynoate (277)

Isolated as byproduct from the synthesis of compound 251. Compound 277: clear oil, 21 $\mathrm{mg}, 13 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}+12.5^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.33$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$

NMR (400 MHz, CDCl_{3}): $\delta 7.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 1 \mathrm{H})$, $1.27(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 174.8(\mathrm{C}), 136.9$ (C), $131.2(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 91.3(\mathrm{C}), 82.9(\mathrm{C}), 81.2(\mathrm{C}), 53.0$ $\left(\mathrm{CH}_{3}\right), 39.5(\mathrm{C}), 31.4\left(\mathrm{CH}_{3}\right), 27.5(\mathrm{C}), 25.3\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right)$; IR (neat): 3509, 2969, $1724,1448,1436,1361,1285,1256,1220,1205,1161,1141,975,756,741,692 \mathrm{~cm}^{-1}$; HRMS (+APCI) m / z : calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 297.18491, found: 297.18491. HPLC analysis: 92% ee, CHIRALPAK AD-H, 0.5% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}$: 15.2 min (minor), 22.4 min (major).

(\boldsymbol{R}, E)-Methyl 2-hydroxy-3,3-dimethyl-2-styryl-5-(trimethylsilyl)pent-4-ynoate (278)

Isolated as byproduct from the synthesis of compound 252. Compound 278: clear oil, 24 $\mathrm{mg}, 18 \%$ yield. $[\alpha]^{20}{ }_{\mathrm{D}}+15.9^{\circ}$ (c 1.0, CHCl_{3}). $R_{f}, 0.29$ (pentane/diethyl ether $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26$ $(\mathrm{m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.6(\mathrm{C}), 136.8$ (C), $131.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH}), 111.3(\mathrm{C}), 86.6(\mathrm{C})$, $80.9(\mathrm{C}), 53.1\left(\mathrm{CH}_{3}\right), 40.4(\mathrm{C}), 25.0\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 0.34\left(\mathrm{CH}_{3}\right)$; IR (neat): 3508, $2160,1725,1249,1161,1142,974,871,840,758,693 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 313.16184$, found: 313.16189. HPLC analysis: 88% ee,

CHIRALPAK AD-H, 0.3% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 14.4 \mathrm{~min}$ (minor), 18.5 min (major).

(R, E)-Methyl 2-hydroxy-4-phenyl-2-(2-phenylpropan-2-yl)but-3-enoate (281)

Prepared by following the general procedure with methyl styryldiazoacetate (7) (177 mg, 1.0 mmol), 2-phenylpropan-2-ol (279) ($69 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv.), and $\mathrm{Rh}_{2}(S \text {-DOSP })_{4}$ $(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at ${ }^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1 to 5:1) to afford Compound 281 as white solid (33 mg , 21% yield). M.p.: $95-98^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-34.3^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.52$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.7$ (C), 144.7 (C), $137.0(\mathrm{C}), 131.4(\mathrm{CH}), 128.8$ $(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.1(\mathrm{CH}), 126.9(\mathrm{CH}), 126.8(\mathrm{CH}), 82.3$ (C), $52.9\left(\mathrm{CH}_{3}\right), 46.4(\mathrm{C}), 24.8\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right)$; IR (neat): $3509,1723,1447,1435$, 1241, 1163, 1134, 1103, 1072, 1032, 975, 776, 755, 734, $692 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m/z: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}: 293.15361$, found: 293.15363. HPLC analysis: 88% ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 19.0 \mathrm{~min}$ (minor), 21.4 min (major).
(R, E)-Methyl 2-hydroxy-2-(2-(4-methoxyphenyl)propan-2-yl)-4-phenylbut-3-enoate (282)

Prepared by following the general procedure with methyl styryldiazoacetate (7) (210 mg, 1.0 mmol), 2-(4-methoxyphenyl)propan-2-ol (280) ($83 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S$ DOSP $)_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (4:1) to afford compound $\mathbf{2 8 2}$ as slight yellow solid $\left(82 \mathrm{mg}, 48 \%\right.$ yield). M.p.: $78-81{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}-33.1^{\circ}$ (c $\left.1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.36$ (pentane/diethyl ether 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33$ (m, 4H), 7.29-7.25 (m, 1H), 6.87-6.83 (m, 3H), $6.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 174.8 (C), 158.3 (C), 137.0 (C), 136.8 (C), 131.3 (CH), $128.8(\mathrm{CH}), 128.7(\mathrm{CH}), 127.9$ $(\mathrm{CH}), 127.3(\mathrm{CH}), 126.9(\mathrm{CH}), 113.0(\mathrm{CH}), 82.4(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 45.9(\mathrm{C})$, $25.0\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right)$; IR (neat): $3507,1725,1513,1248,1187,1165,1137,1035,977$, 832, 749, $693 \mathrm{~cm}^{-1}$; HRMS (+APCI) $m / z:$ calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}:$323.16417, found: 323.16424. HPLC analysis: 94\% ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.6 \mathrm{~mL} / \mathrm{min}$, UV $254 \mathrm{~nm}, t_{\mathrm{R}}: 54.3 \mathrm{~min}$ (minor), 69.8 min (major).

(R, E)-Methyl 4-(4-bromophenyl)-2-hydroxy-2-(2-(4-methoxyphenyl)propan-2-

 yl)but-3-enoate (283)

Prepared by following the general procedure with methyl p bromophenylvinyldiazoacetate (218) (282 mg, 1.0 mmol), 2-(4-methoxyphenyl)propan-2-ol (280) ($81 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S-D O S P)_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0{ }^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (5:1) to afford compound 283 as white solid ($83 \mathrm{mg}, 40 \%$ yield). M. p.: $127-128^{\circ} \mathrm{C} \cdot[\alpha]^{20} \mathrm{D}^{-}$ 23.4^{o} (c 1.0, CHCl_{3}). $R_{f}, 0.49$ (pentane/diethyl ether 3:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H})$, 1.43 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.5$ (C), 158.3 (C), 136.6 (C), 135.9 (C), $131.9(\mathrm{CH}), 130.2(\mathrm{CH}), 128.7(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 121.6(\mathrm{C}), 113.1(\mathrm{CH})$, $82.3(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 45.9(\mathrm{C}), 25.0\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right)$; IR (neat): 3505, 1727, 1513, 1487, 1249, 1187, 1137, 1098, 1072, 1036, 1009, 978, $832 \mathrm{~cm}^{-1} ;$ HRMS (+APCI) m / z : calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Br}\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$: 401.07468 , found: 401.07467. HPLC analysis: 87% ee, CHIRALPAK AD-H, 1.5% isopropanol/hexanes, $0.8 \mathrm{~mL} / \mathrm{min}$, UV 254 $\mathrm{nm}, t_{\mathrm{R}}: 27.5 \mathrm{~min}$ (major), 32.0 min (minor).

(R)-Methyl 2-hydroxy-3-(4-methoxyphenyl)-3-methyl-2-phenylbutanoate (284)

Prepared by following the general procedure with methyl phenyldiazoacetate (6) (182 $\mathrm{mg}, 1.0 \mathrm{mmol}$), 2-(4-methoxyphenyl)propan-2-ol (280) ($86 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $\mathrm{Rh}_{2}(S$ DOSP $)_{4}(10 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ at $0^{\circ} \mathrm{C}$. The crude material was purified on silica gel eluting with pentane/diethyl ether (10:1) to afford pure compound $\mathbf{2 8 4}$ as clear oil (94 mg) and a mixture of $\mathbf{2 8 4}$ and the O-H insertion product (51 mg). Combined yield: 145 $\mathrm{mg}, 89 \%$ yield. Compound 284: $[\alpha]^{20}{ }_{\mathrm{D}}-14.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) . R_{f}, 0.32$ (pentane/diethyl ether 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.78$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.2$ (C), 158.2 (C), 138.8 (C), 137.0 (C), 129.4 (CH), $127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.3(\mathrm{CH}), 112.7(\mathrm{CH}), 83.3(\mathrm{C}), 55.3\left(\mathrm{CH}_{3}\right), 52.9\left(\mathrm{CH}_{3}\right), 45.7$ (C), $25.4\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right)$; IR (neat): $3498,1717,1512,1246,1187,1065,1035,831$, $735,703 \mathrm{~cm}^{-1}$; HRMS (+APCI) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 337.14103$, found: 337.14084. HPLC analysis: 87% ee, CHIRALPAK AD-H, 1.0% isopropanol/hexanes, $0.7 \mathrm{~mL} / \mathrm{min}$, UV $230 \mathrm{~nm}, t_{\mathrm{R}}: 30.5 \mathrm{~min}$ (minor), 41.8 min (major).

References:

(1) (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylide; Wiley: New York, 1998. (b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (c) Padwa, A. J. Org. Chem. 2009, 74, 6421. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(2) Some stable dirhodium carbenoid intermediates have been isolated and characterized by single X-ray crystallographic analysis. See, (a) Snyder, J. P.; Padwa, A.; Stengel, T. J. Am. Chem. Soc. 2001, 123, 11318. (b) Na, S. J.; Lee, B. Y.; Bui, N,-N.; Mho, S.p Jang, H.-Y. J. Organomet. Chem. 2007, 692, 5523.
(3) (a) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726. (b) Lo, M. M. -C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 10270.
(c) Flynn, C. J.; Elcoate, C. J.; Lawrence, S. E.; Maguire, A. R. J. Am. Chem. Soc. 2010, 132, 1184.
(4) Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074.
(5) Choi, M. K.-W.; Yu, W.-Y.; Che, C.-M. Org. Lett. 2005, 7, 1081.
(6) Miller, J. A.; Jin, W.; Nguyen, S. T. Angew. Chem. Int. Ed. 2002, 41, 16.
(7) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur, H.; DiazRequejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126, 10846.
(8) (a) Davies, H. M. L. Compr. Asymmetric Catal., Suppl.; Springer: Berlin, 2004; Vol. 1, p 83. (b) Davies, H. M. L.; Walji, A. M. Modern Rhodium-Catalyzed

Organic Reactions; Wiley: New York, 2005; p 301. (c) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(9) Davies, H. M. L.; Panaro, S. A. Tetrahedron 2000, 56, 4871.
(10) Davies, H. M. L.; Bruzinski, P.; Hutcheson, D. K.; Fall, M. J. J. Am. Chem. Soc. 1996, 118, 6897.
(11) Davies, H. M. L.; Nagashima, T.; Klino, J., III Org. Lett. 2000, 2, 823.
(12) Crommentuyn, K. M. L.; Schellens, J. H. M.; Vandenberg, J. D.; Beijnen J. H. Cancer Treat. Rev. 1998, 24, 345.

Davies, H. M. L.; Peng, Z. Q.; Houser, J. H. Tetrahedron Lett. 1994, 36, 8939.

Davies, H. M. L.; Coleman, M. G.; Ventura, D. L. Org. Lett. 2007, 9, 4971.
(15) Ventura, D. L.; Li, Z.; Coleman, M. G.; Davies, H. M. L. Tetrahedron 2009, 65, 3052.
(a) Davies, H. M. L.; Lee, G. H. Org. Lett. 2004, 6, 2117. (b) Reddy, R. P.; Lee, G. H.; Davies, H. M. L. Org. Lett., 2006, 8, 3437
(17) Denton, J. R.; Sukumaran, D.; Davies, H. M. L. Org. Lett. 2007, 6, 2625.

Denton, J. R.; Cheng, K.; Davies, H. M. L. Chem. Commun. 2008, 1238.
Denton, J. R.; Davies, H. M. L. Org. Lett. 2009, 11, 787.
Davies, H. M. L.; Stafford, D. G.; Doan, B. D.; Houser, J. H. J. Am. Chem.
Soc. 1998, 120, 3326.
(21) Reddy, R. P.; Davies, H. M. L. J. Am. Chem. Soc. 2007, 129, 10312.
(22) Schwartz, B. D.; Denton, J. R.; Lian, Y.; Davies, H. M. L.; Williams, C. M. J. Am. Chem. Soc. 2009, 131, 8329.
(23)
(a) Shilov, A. E. Chem. Rev. 1997, 97, 2879. (b) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (c) Godula, K.; Sames, D. Science 2006, 312, 67. (d) Dyker, G. Handbook of C-H Transformation Vols 12, Wiley-VCH, Weinheim, 2005. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(24) Demonceau, A.; Noels, A. F.; Hubert, A. J.; Teyssie', P. Bull. Soc. Chim. Belg. 1984, 93, 945.
(25) Hansen, J.; Autschbach, J.; Davies, H. M. L. J. Org. Chem. 2009, 74, 6555.
(26) Davies, H. M. L.: Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063.
(27) Davies, H. M. L.; Yang, J.; Nikolai, J. J. Organomet. Chem., 2005, 690, 6111.
(28) Davies, H. M. L.; Hedley, S. J.; Bohall, B. R. J. Org. Chem. 2005, 70, 10737.
(29) Davies, H. M. L.; Beckwith, R. E. J.; Antoulinakis, E. G.; Jin, Q. J. Org. Chem. 2003, 68, 6126.
(30) Davies, H. M. L.; Venkataramani, C. Org. Lett. 2001, 3, 1773.
(31) Davies, H. M. L.; Venkateramani, C.; Hansen, T.; Hopper, D. W. J. Am. Chem. Soc. 2003, 125, 6462.
(32) Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769.
(33) Davies, H. M. L.; Ni, A. Chem. Commun. 2006, 3110.

Davies, H. M. L.; Stafford, D. G.; Hansen, T. Org. Lett. 1999, 1, 233.
Davies, H. M. L.; Jin, Q. J. Am. Chem. Soc. 2004, 126, 10862.
Davies, H. M. L.: Beckwith, R. E. J. J. Org. Chem. 2004, 69, 9241.
Davies, H. M. L.; Yang, J.; Manning, J. R. Tetrahedron Asymmetry 2006, 17, 665.
(38) Davies, H. M. L.; Manning, J. R. J. Am. Chem. Soc. 2006, 128, 1060.
(39) Nadeau, E.; Ventura, D. L.; Brekan, J. A.; Davies, H. M. L. J. Org. Chem. 2010, 75, 1927.
(40) Davies, H. M. L.; Walji, A. M. Angew. Chem., Int. Ed. 2005, 44, 1733.
(41) Davies, H. M. L.; Dai, X. Tetrahedron 2006, 62, 10477.
(42) Davies, H. M. L.; Dai, X. Tetrahedron 2006, 62, 10477.
(a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263. (b) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (c) Zhang, Z.; Wang, J. Tetrahedron 2009, 64, 6577.
(44) Lee, E. C.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 12066.
(45) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594.

Zhu, S.-F.; Chen, C.; Cai, Y.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2008, 47, 932.
(47) Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1973, 14, 2233.
(48)

Paulissen, R,; Hayez, E.; Hubert, A. J.; Teyssie, P. Tetrahedron Lett. 1974, 15, 607.
(49) Ratcliffe, R. W.; Salzman, T. N.; Christensen, B. G. Tetrahedron Lett. 1980, 21, 31.
(50) Moody, C. J. Angew. Chem., Int. Ed. 2007, 46, 9148.
(51) Ferris, L.; Haigh, D.; Moody, C. J. Tetrahedron Lett. 1996, 37, 107.
(52) Liang, Y.; Zhou, H.; Yu, Z.-X. J. Am. Chem. Soc. 2009, 131, 17783.
(53) Lu, C.-D.; Liu, H.; Chen, Z.-Y.; Hu, W.; Mi, A.-Q. Org. Lett. 2005, 7, 83.
(54) Huang, H.; Guo, X.; Hu, W. Angew. Chem., Int. Ed. 2007, 46, 1337.
(55) Zhang, X.; Huang, H.; Guo, X.; Guan, X.; Yang, L.; Hu, W. Angew. Chem., Int. Ed. 2008, 47, 6647.
(56) Hu, W.; Xu, X.; Zhou, J.; Liu, W.; Huang, H.; Hu, J.; Yang, L.; Gong, L. J. Am. Chem. Soc. 2008, 130, 7782.
(57) Guan, X.; Yang, L.-P.; Hu, W. Angew. Chem., Int. Ed. 2010, 49, 2190.
(58) Davies, H. M. L.; DeMeese, J. Tetrahedron Lett. 2001, 42, 6803.
(59) Liao, M.; Wang, J. Green Chem. 2007, 9, 184.
(60) Zhang, X.; Qu, Z.; Ma, Z.; Shi, W.; Jin, X.; Wang, J. J. Org Chem. 2002, 67, 5621.
(61) Nadeau, E.; Li, Z.; Morton, D.; Davies, H. M. L. Synlett 2009, 151.
(a) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 7558. (b) Trost, B. M.; Malhotra, S.; Olson, D. E.; Maruniak, A.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 4190. (c) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. Tetrahedron 2009, 65, 3042. (d) Olson, D. E.; Du Bois, J. J. Am. Chem. Soc. 2008, 130, 11248.
(63) Davies, H. M. L.; Venkateramani, C, Org. Lett. 2003, 5, 1403.

Doyle, M. P.; Forbes, D. C.; Vsabinder, M. M.; Peterson, C. S. J. J. Am. Chem. Soc. 1998, 120, 7653.
(a) Wu, Y.-D.; Houk, K. N.; Marshall, J. A. J. Org Chem. 1990, 55, 1421.
(b) Mikami, K.; Uchida, T.; Hirano, T.; Wu, Y. -D.; Houk, K. N. Tetrahedron 1994, 50, 5917. (c) Haeffner, F.; Houk, K. N.; Schulze, S. M.; Lee, J. K. J. Org Chem. 2003, 68, 2310.
(a) Tokuda, O.; Kano, T.; Gao, W.; Ikemoto, T.; Maruoka, K. Z. Org. Lett. 2005, 7, 5103. (b) Zheng, C.; Wu, Y.; Wang, X.; Zhao, G. Adv. Synth. Catal. 2008, 350, 2690. (c) Raj, M.; Parashari, G. S.; Singh, V. K. Adv. Synth. Catal. 2009, 351, 1284. (d) Yanagisawa, A.; Terajima, Y.; Sugita, K.; Yoshida, K. $A d v$. Synth. Catal. 2009, 351, 1757.

For general reviews of importance and versatility of vinylsilanes in organic synthesis, see: (a) Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857. (b) Fleming, I.; Barbero, I. A.; Walter, D. Chem. Rev. 1997, 97, 2063. (c) Hiyama, T.; Shirakawa, E. Top. Curr. Chem. 2002, 219, 61.
(a) Staamos, D. P.; Taylor, A. G.; Kishi, Y. Tetrahedron Lett. 1996, 37, 8647. (b) Paquette, W. D.; Taylor, R. E. Org. Lett. 2004, 6, 103. (c) Ganta, A.; Snowden, T. S. Org. Lett. 2008, 10, 5103. (d) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Org. Lett. 2008, 10, 1727.
(a) Chen, C. P.; Tagami, K.; Kishi, Y. J. Org Chem. 1995, 60, 5386. (b)

Harried, S. S.; Lee, C. P.; Yang, G.; Lee, T. I. H.; Myles, D. C. J. Org Chem. 2003, 68, 6646.
(a)Sonogashira, K. In Metal Catalyzed Cross-Coupling Reactions; Stang, P. J.; Diederich, F.; Eds.; Wiley-VCH: Weinheim, 1998, pp 203-229. (b) Ma, S.; Zhang, J.; Cai, Y.; Lu, L. J. Am. Chem. Soc. 2003, 125, 13954.
(71) Leyva, A.; Blum, F. E.; Hewitt, P. R.; Ley, S. V. Tetrahedron 2008, 64, 2348.
(72) Kobayashi, Y.; Yoshida, S.; Nakayama, Y. Eur. J. Org. Chem. 2001, 1873.
(a) Marshall, J. A.; Pinney, K. G. J. Org. Chem. 1993, 58, 7180. (b)

Laurens, M.; Delanghe, P. H. M. J. Am. Chem. Soc. 1994, 116, 8526. (c) Ma, S.; Zhao, S. J. Am. Chem. Soc. 1999, 121, 7943. (d) Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3, 2537. (e) Krause, N.; Hoffmann-Roder, A.; Canisius, J. Synthesis 2002, 1759. (f) Y oneda, E.; Zhang, S.; Zhou, D.; Onitsuka, K.; Takahashi, S. J. Org Chem. 2003, 68, 8571. (g) Mukai, C.; Nomura, I.; Kitagaki, S. J. Org Chem. 2003, 68, 1376. (h) Hashima, S. K.; Blanco, M. C.; Fischer, D.; Bats, J. W. Eur. J. Org. Chem. 2006, 1387. (i) Deutsch, C.; Gockel, B.; Hoffmann-Roder, A.; Krause, N. Synlett 2007, 1790. (j) Poonoth, M.; Krause, N. Adv. Synth. Catal. 2009, 351, 117. (k) Li, J.; Kong, W.; Yu, Y.; Fu, C.; Ma, S. J. Org. Chem. 2009, 74, 8733. (1) Alcaide, B.; Almendros, P.; Martinez del Campo, T.; Quiros, M. T. Chem. Eur. J. 2009, 15, 3344.
(a) Kobayashi, S.; Nishio, K. J. Am. Chem. Soc. 1995, 117, 6392. (b) Hamada, T.; Mizojiri, R.; Urabe, H.; Sato, F. J. Am. Chem. Soc. 2000, 122, 7138. (c) Lin, M.-J.; Loh, T.-P. J. Am. Chem. Soc. 2003, 125, 13042. (d) T. Nishikawa, H. Shinokubo, K. Oshima, Tetrahedron 2003, 59, 9661.

Enantioselective synthesis of α-allenic alcohols, see: (a) Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878. (b) Marshall, J. A.; Perkins, J. J. Org. Chem. 1994, 59, 3509. (c) Brown, H. C.; Khire, U. R.; Narla, G. J. Org. Chem. 1995, 60, 8130. (d) Marshall, J. A.; Adams, N. D. J. Org. Chem. 1997, 62, 8976. (e) Yu, C.-M.; Yoon, S.-K.; Baek, K.; Lee, J.-Y. Angew. Chem., Int. Ed. 1998, 37, 2392 (f) Ma, S.; Hou, H.; Zhao, S.; Wang, G. Synthesis 2002, 1643. (g) Xu, D.; Li, Z.; Ma, S. Chem. Eur. J. 2002, 8, 5012. (h) Furstner, A.; Mendez, M. Angew. Chem., Int. Ed. 2003, 42, 5355. (i) Xu, D.; Li, Z.; Ma, S. Tetrahedron: Asymmetry 2003, 14, 3657. (j) Yu, C.-M.; Kim, C.; Kweon, J.-H. Chem. Commun. 2004, 2494. (k) Hernandez, E.; Soderquist, J. A. Org. Lett. 2005, 7, 5397. (1) Hernandez, E.; Burgos, C. H.; Alicea, E.; Soderquist, J. A. Org. Lett. 2006, 8, 4089. (j) Inoue, M.; Nakada, M. Angew. Chem., Int. Ed. 2006, 45, 252. (k) Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 496. (1) Miura, T.; Shimada, M.; Ku, S.-Y.; Tamai, T.; Murakami, M. Angew. Chem., Int. Ed. 2007, 46, 7101. (m) Li, J.; Kong, W.; Fu, C.; Ma, S. J. Org. Chem. 2009, 74, 5104.
(76) Moniz, G. A.; Wood, J. L. J. Am. Chem. Soc. 2001, 123, 5095.

Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806.
(a) Lepage, O.; Kattnig, E.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 15970. (b) Furstner, A.; Kattnig, E.; Lepage, O. J. Am. Chem. Soc. 2006, 128, 9194.

Miura, T.; Shimada, M.; Mendoza, P. de; Deutsch, C.; Krause, N.; Murakami, M. J. Org. Chem. 2009, 74, 6050.
(a) Vanecko, J. A.; Wan, H.; West, F. G. Tetrahedron 2006, 62, 1043. (b)

West, F. G. In Modern Rhodium Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; pp 417-429.
(a) Doyle, M. P.; Ene, D. G.; Forbes, D. C.; Tedrow, J. S. Tetrahedron Lett. 1997, 38, 4367. (b) Kitagaki, S.; Yanamoto, Y.; Tsutsui, H.; Anada, M.; Nakajima, M.; Hashimoto, S. Tetrahedron Lett. 2001, 42, 6361.

Heard, G. L.; Frankcombe, K. E.; Yates, B. F. Aust. J. Chem. 1993, 46, 1375. (b) Heard, G. L.; Yates, B. F. Aust. J. Chem. 1994, 47, 1685. (c) Heard, G. L.; Yates, B. F. THEOCHEM 1994, 116, 197. (d) Heard, G. L.; Yates, B. F. Aust. J. Chem. 1995, 48, 1413. (e) Heard, G. L.; Yates, B. F. J. Comput. Chem. 1996, 17, 1444. (f) Heard, G. L.; Yates, B. F. J. Org. Chem. 1996, 61, 7276. (g) Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini, G. J. Org. Chem. 2010, 75, 3608.
(83) Eberlein, T. H.; West, F. G.; Tester, R. W. J. Org. Chem. 1992, 57, 3479.

Baum, J. S.; Shook, D. A.; Davies, H. M. L.; Smith, H. D. Synth. Соттип. 1987, 17, 1709.
(85) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 3353.
(86) Griesbeck, A. G.; Bondock, S. J. Am. Chem. Soc. 2001, 123, 6191.
(87) Wood, J. L.; Moniz, G. A.; Pflum, D. A.; Stoltz, B. M.; Holubec, A. A.; Dietrich, H.-J. J. Am. Chem. Soc. 1999, 121, 1748.
(88) Bulugahapitiya, P.; Landais, Y.; Para-Rapado, L.; Planchenault, D.; Weber, V. J. Org. Chem. 1997, 62, 1630.

Griesbeck, A. G.; Blunk, D.; El-Idreesy, T. T.; Raabe, A. Angew. Chem. Int. Ed. 2007, 46, 8883.
(90) Evans, D. A.; Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.

Chamberlin, A. R.; Dezube, M.; Reich, S. H.; Sall, D. J. J. Am. Chem. Soc. 1989, 111, 6247.
(92) Dams, I.; Bialonska, A.; Ciunik, Z.; Wawrzenczyk, C. Eur. J. Org. Chem. 2004, 2662.
(93) Saville, B. J. Chem. Soc. 1962, 5040.
(94) Lee, S. J.; Beak, P. J. Am. Chem. Soc. 2006, 128, 2178.
(a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. 1981, 103, 6237. (b) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
(96) Muri, D.; Carreira, E. M. J. Org. Chem. 2009, 74, 8695.
(a) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529. (b) Tanno, N.; Terashima, S. Chem. Pharm. Bull. 1983, 31, 837.
(98) Hwu, J. R.; Furth, P. S. J. Am. Chem. Soc. 1989, 111, 8834.
(99) Kacprzynski, M. A.; Kazane, S. A.; May, T. L.; Hoveyda, A. H. Org. Lett. 2007, 9, 3187.
(100) Sparks, M. A.; Panek, J. S. Tetrahedron Lett. 1991, 32, 4085.
(101) Gau, A.-H; Lin, G.-L; Uang, B.-J; Liao, F.-L.; Wang, S.-L. J. Org. Chem. 1999, 64, 2194.
(102) Usuda, H.; Kuramochi, A.; Kanai, M.; Shibasaki, M. Org. Lett. 2004, 6, 4387.
(103) Kamimura, A.; Kaneko, Y.; Ohta, A.; Matsuura, K.; Fujimoto, Y.; Kakehi, A.; Kanemasa, S. Tetrahedron 2002, 58, 9613.
(104) Manning, J. R. Ph. D. Thesis, University at Buffalo, SUNY, 2008.

APPENDIX

1. Crystal structure of compound 142

Table 1. Crystal data and structure refinement for compound 142.

Compound	142
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}$
Formula weight	316.42
Temperature	172(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=5.9909(10) \AA$ A $\quad \alpha=90^{\circ}$.
	$b=9.1703(13) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=34.141(5) \AA \quad \gamma=90^{\circ}$.
Volume	1875.7(5) \AA^{3}
Z	4
Density (calculated)	$1.121 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.582 \mathrm{~mm}^{-1}$
F(000)	688
Crystal size	$0.23 \times 0.05 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	2.59 to 65.52°.
Index ranges	$-6<=\mathrm{h}<=5,-10<=\mathrm{k}<=9,-34<=\mathrm{l}<=40$
Reflections collected	7161
Independent reflections	$2888[\mathrm{R}(\mathrm{int})=0.0718]$
Completeness to theta $=65.52^{\circ}$	93.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9715 and 0.8778
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2888 / 0 / 216
Goodness-of-fit on F^{2}	1.010
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0545, \mathrm{wR} 2=0.1070$
R indices (all data)	$\mathrm{R} 1=0.1525, \mathrm{wR} 2=0.1593$
Absolute structure parameter	0.0(6)
Extinction coefficient	0.0024(3)
Largest diff. peak and hole	0.371 and -0.365 e. ${ }^{\text {a }}$-3

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 142 . $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
C(1)	5747(8)	-1434(5)	1768(2)	43(1)
C(2)	7071(9)	-2490(5)	1947(2)	47(2)
C(3)	6310(9)	-3238(6)	2271(2)	47(2)
C(4)	4214(9)	-2936(6)	2413(2)	45(1)
C(5)	2879(9)	-1886(5)	2240(1)	42(1)
C(6)	3614(8)	-1121(5)	1914(2)	36(1)
C(7)	2153(9)	-17(6)	1735(2)	40(1)
C(8)	2849(8)	1075(5)	1507(2)	39(1)
C(9)	1373(7)	2169(6)	1309(1)	35(1)
$\mathrm{C}(10)$	1615(7)	3755(5)	1481(1)	32(1)
$\mathrm{C}(11)$	359(8)	4785(5)	1221(2)	40(1)
$\mathrm{C}(12)$	1232(9)	5813(5)	983(1)	38(1)
C(13)	-9(8)	6743(5)	694(2)	40(1)
$\mathrm{C}(14)$	-2546(8)	6604(6)	727(2)	56(2)
$\mathrm{C}(15)$	681(11)	8323(6)	746(2)	71(2)
$\mathrm{C}(16)$	697(10)	6225(7)	288(2)	61(2)
C(17)	1833(9)	2193(6)	867(2)	43(1)
C(18)	4592(9)	2391(7)	371(1)	65(2)
$\mathrm{C}(19)$	514(9)	3770(6)	1893(1)	47(2)
$\mathrm{C}(20)$	4094(7)	4177(5)	1534(2)	41(1)
$\mathrm{O}(1)$	-939(5)	1739(4)	1351(1)	44(1)
$\mathrm{O}(2)$	406(6)	2086(4)	619(1)	50(1)
O(3)	4016(5)	2327(4)	787(1)	46(1)

Table 3. Bond lengths [$\AA \AA$] and angles [${ }^{\circ}$] for compound $\mathbf{1 4 2}$.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.394(7)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(6)$	1.401(7)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1)$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.377(7)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.374(7)$	$\mathrm{C}(17)-\mathrm{O}(2)$	$1.207(6)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9500	$\mathrm{C}(17)-\mathrm{O}(3)$	1.341 (6)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.384(7)$	$\mathrm{C}(18)-\mathrm{O}(3)$	$1.463(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.388(6)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.471(7)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.334(7)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.500(6)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.447(5)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(17)$	$1.533(7)$	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8400
$\mathrm{C}(9)-\mathrm{C}(10)$	1.576 (7)		
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.500(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.3(5)
$\mathrm{C}(10)-\mathrm{C}(20)$	$1.545(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	119.9
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.551(6)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	119.9
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.350(6)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.7(5)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	119.7
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.500(7)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	119.7
$\mathrm{C}(12)-\mathrm{H}(12)$	0.9500	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.0(5)
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.517(7)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.5
$\mathrm{C}(13)-\mathrm{C}(16)$	$1.527(7)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.5
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.529(7)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	121.2(5)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.4
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.4
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.7(5)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7

$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.1(5)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.5(5)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.4(5)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	124.9(5)	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	117.5	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	117.5	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	125.5(5)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	117.2	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	117.2	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	109.7(4)	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)$	105.8(4)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	110.4(4)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	107.6(4)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	113.2(4)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)$	109.7(4)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(20)$	113.2(4)	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	108.6(4)	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)$	123.8(5)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(19)$	107.6(4)	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(9)$	124.1(5)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	108.2(4)	$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(9)$	112.1(4)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(9)$	111.3(4)	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	107.9(4)	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	127.0(4)	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	116.5	$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	116.5	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	126.9(5)	$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	116.5	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	116.5	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	109.3(5)	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	106.5(4)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(16)$	109.2(5)	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	113.4(5)	$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	109.9(5)	$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(16)-\mathrm{C}(13)-\mathrm{C}(14)$	108.4(5)	$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5	$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5

$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$115.5(4)$
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 142. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U^{11}+\ldots\right.$ $+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C(1)	42(3)	31(3)	55(3)	2(3)	1(3)	1(3)
C(2)	42(3)	35(3)	64(4)	0(3)	0(3)	11(3)
C(3)	57(4)	32(3)	52(4)	5(3)	-12(3)	1(3)
C(4)	54(4)	38(3)	43(3)	-1(3)	0 (3)	1(3)
C(5)	50(3)	35(3)	41(3)	3(3)	-4(3)	4(3)
C(6)	36(3)	31(3)	42(3)	2(3)	0(3)	2(3)
C(7)	38(3)	38(3)	44(3)	-3(3)	-3(3)	2(3)
C(8)	31(3)	36(3)	49(3)	1(3)	1(3)	6 (3)
C(9)	23(3)	36(3)	46(3)	12(3)	-1(2)	-1(2)
C(10)	31(3)	28(3)	39(3)	9(3)	-2(2)	0(2)
$\mathrm{C}(11)$	31(3)	36(3)	54(4)	$5(3)$	-3(3)	5(3)
C(12)	36(3)	36(3)	43(3)	$5(3)$	-2(3)	-3(3)
C(13)	40(3)	29(3)	52(3)	$5(3)$	4(3)	2(3)
C(14)	42(3)	65(4)	60(4)	19(4)	-1(3)	5(3)
C(15)	81(5)	37(3)	95(5)	16(4)	-24(4)	-8(4)
C(16)	72(4)	64(4)	45(3)	12(4)	1(3)	9(4)
C(17)	48(4)	25(3)	55(4)	1(3)	-4(3)	3(3)
C(18)	63(4)	92(5)	40(3)	-1(4)	15(3)	5(4)
C(19)	53(4)	49(4)	38(3)	2(3)	-1(3)	7(3)
C(20)	31(3)	38(3)	55(3)	2(3)	-8(3)	-6(3)
$\mathrm{O}(1)$	28(2)	47(2)	58(2)	4(2)	-6(2)	-7(2)
$\mathrm{O}(2)$	51(2)	46(2)	53(2)	-4(2)	-11(2)	3(2)
$\mathrm{O}(3)$	37(2)	60(3)	40(2)	-3(2)	7(2)	5(2)

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound $\mathbf{1 4 2}$.

	x	y	z	U(eq)
H(1)	6294	-923	1545	51
H(2)	8513	-2696	1846	57
H(3)	7221	-3951	2394	57
H(4)	3673	-3458	2634	54
H(5)	1445	-1685	2346	50
H(7)	598	-85	1786	48
H(8)	4413	1166	1467	46
H(11)	-1222	4705	1223	48
H(12)	2797	5964	1000	46
H(14A)	-2994	5605	662	84
H(14B)	-3257	7285	544	84
H(14C)	-3011	6835	995	84
H(15A)	169	8674	1002	106
H(15B)	7	8916	539	106
H(15C)	2310	8399	732	106
H(16A)	2313	6346	258	91
H(16B)	-76	6804	88	91
H(16C)	307	5194	256	91
H(18A)	4025	1518	239	97
H(18B)	6218	2436	343	97
H(18C)	3919	3261	254	97
H(19A)	720	4731	2013	70
H(19B)	1211	3024	2058	70
H(19C)	-1084	3564	1867	70
H(20A)	4855	4128	1280	62
H(20B)	4806	3499	1717	62
H(20C)	4194	5172	1637	62
H(1A)	-1511	1630	1128	66

Table 6. Torsion angles [${ }^{\circ}$] for compound 142.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.2(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$0.5(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.8(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.0(8)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	-0.7(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.7(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	0.3 (7)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	179.9(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	158.5(5)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-21.1(8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	177.1(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	-8.8(7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	-125.1(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.5(5)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-67.6(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	170.9(4)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	47.1(5)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	167.5(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	46.0(5)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	-77.8(5)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	49.7(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-71.8(5)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	164.4(4)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	13.2(7)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	132.5(5)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-110.6(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	173.6(5)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	131.8(6)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$	-110.4(6)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	8.7(8)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	10.0(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	128.7(5)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	-105.9(6)

$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$-169.1(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$-50.4(6)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$75.0(5)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$2.2(8)$
$\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$-178.7(5)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound 142 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2)$	0.84	2.12	$2.643(5)$	119.8

Symmetry transformations used to generate equivalent atoms:
2. Crystal structure of compound 153

Table 1. Crystal data and structure refinement for compound 153.

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 153 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y	Z	$\mathrm{U}(\mathrm{eq})$
C(1)	-6566(4)	-2022(1)	-1379(3)	38(1)
C(2)	-7076(4)	-1315(1)	-1469(3)	43(1)
C(3)	-5660(4)	-845(1)	-2034(2)	43(1)
C(4)	-3750(4)	-1085(1)	-2524(2)	42(1)
C(5)	-3263(4)	-1788(1)	-2443(2)	36(1)
C(6)	-4647(3)	-2272(1)	-1845(2)	31(1)
C(7)	-4158(3)	-3024(1)	-1687(2)	32(1)
C(8)	-2267(3)	-3325(1)	-1734(2)	31(1)
C(9)	-1852(3)	-4102(1)	-1593(2)	31(1)
C(10)	-1136(3)	-4409(1)	-3311(2)	33(1)
C(11)	-729(3)	-5200(1)	-3104(2)	31(1)
C(12)	-2315(4)	-5673(1)	-3472(2)	38(1)
C(13)	-1984(4)	-6451(1)	-3443(3)	45(1)
C(14)	334(4)	-6662(1)	-3334(3)	51(1)
C(15)	1720(4)	-6209(1)	-2039(3)	50(1)
C(16)	1544(4)	-5444(1)	-2534(3)	40(1)
C(17)	698(7)	-7439(2)	-2930(5)	72(1)
C(18)	871(4)	-4041(1)	-3758(3)	38(1)
C(19)	-2991(4)	-4253(1)	-4783(2)	41(1)
$\mathrm{C}(20)$	-137(3)	-4252(1)	-7(2)	32(1)
$\mathrm{C}(21)$	3166(4)	-3890(1)	1626(3)	47(1)
O(1)	-3772(2)	-4436(1)	-1282(2)	37(1)
O(2)	-285(3)	-4719(1)	984(2)	49(1)
O(3)	1494(2)	-3793(1)	152(2)	38(1)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound 153.

$\mathrm{C}(1)-\mathrm{C}(2)$	1.388 (3)	$\mathrm{C}(15)-\mathrm{H}(22)$	1.02(3)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.395(3)$	$\mathrm{C}(15)-\mathrm{H}(23)$	1.01(3)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.96 (3)	$\mathrm{C}(16)-\mathrm{H}(24)$	0.97(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.383(3)$	$\mathrm{C}(16)-\mathrm{H}(25)$	0.96 (3)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.95(3)	$\mathrm{C}(17)-\mathrm{H}(18)$	0.96(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.391 (3)	$\mathrm{C}(17)-\mathrm{H}(19)$	0.90(4)
$\mathrm{C}(3)-\mathrm{H}(3)$	1.02 (3)	$\mathrm{C}(17)-\mathrm{H}(20)$	0.99(5)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.376(3)$	$\mathrm{C}(18)-\mathrm{H}(12)$	0.95(3)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.98 (3)	$\mathrm{C}(18)-\mathrm{H}(13)$	0.93(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.398 (3)	$\mathrm{C}(18)-\mathrm{H}(14)$	0.96 (3)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.90 (3)	$\mathrm{C}(19)-\mathrm{H}(9)$	0.95(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.470 (3)	$\mathrm{C}(19)-\mathrm{H}(10)$	1.00(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.324(3)$	$\mathrm{C}(19)-\mathrm{H}(11)$	0.96 (2)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.92(2)	$\mathrm{C}(20)-\mathrm{O}(2)$	1.197(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.508(2)$	$\mathrm{C}(20)-\mathrm{O}(3)$	$1.338(2)$
$\mathrm{C}(8)-\mathrm{H}(8)$	0.99(2)	$\mathrm{C}(21)-\mathrm{O}(3)$	1.453(2)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.417(2)	$\mathrm{C}(21)-\mathrm{H}(26)$	0.86(4)
$\mathrm{C}(9)-\mathrm{C}(20)$	$1.546(3)$	$\mathrm{C}(21)-\mathrm{H}(27)$	0.95(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.598(2)$	$\mathrm{C}(21)-\mathrm{H}(28)$	1.04(3)
$\mathrm{C}(10)-\mathrm{C}(18)$	$1.529(3)$	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	0.76(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.537(3)$		
$\mathrm{C}(10)-\mathrm{C}(19)$	1.541(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.4(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.343 (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	116.5(15)
$\mathrm{C}(11)-\mathrm{C}(16)$	1.504 (3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	121.9(15)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.500(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.6(2)
$\mathrm{C}(12) \mathrm{H}(15)$	0.96 (2)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	121.8(14)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.500(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	118.6(14)
$\mathrm{C}(13)-\mathrm{H}(16)$	0.93(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.9(2)
$\mathrm{C}(13)-\mathrm{H}(17)$	1.01(3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	115.6(16)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.509(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	124.5(16)
$\mathrm{C}(14)-\mathrm{C}(17)$	$1.527(4)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.2(2)
$\mathrm{C}(14)-\mathrm{H}(21)$	1.06 (2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	121.7(16)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.511(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.0(16)

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.1(2)	$\mathrm{H}(16)-\mathrm{C}(13)-\mathrm{H}(17)$	104(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5(15)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	109.84(19)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4(15)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	112.7(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	117.82(18)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(17)$	111.4(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.31(17)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(21)$	105.8(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.87(18)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(21)$	108.1(13)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.72(18)	$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{H}(21)$	108.8(13)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	119.2(14)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.61(18)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	114.0(14)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(22)$	105.4(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.77(17)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(22)$	111.2(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	123.6(13)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(23)$	114.2(16)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	111.6(14)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(23)$	103.2(17)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	108.32(16)	$\mathrm{H}(22)-\mathrm{C}(15)-\mathrm{H}(23)$	111(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)$	106.47(14)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	113.98(18)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	109.45(14)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(24)$	110.2(13)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	109.63(14)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(24)$	108.3(13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.49(14)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(25)$	107.7(15)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)$	111.31(15)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(25)$	108.8(16)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(11)$	110.30(16)	$\mathrm{H}(24)-\mathrm{C}(16)-\mathrm{H}(25)$	107.6(19)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(19)$	107.09(16)	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(18)$	103(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	111.29(15)	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(19)$	110(3)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(9)$	111.89(15)	$\mathrm{H}(18)-\mathrm{C}(17)-\mathrm{H}(19)$	120(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	109.54(13)	$\mathrm{C}(14)-\mathrm{C}(17)-\mathrm{H}(20)$	105(2)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	106.67(16)	$\mathrm{H}(18)-\mathrm{C}(17)-\mathrm{H}(20)$	109(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	119.58(18)	$\mathrm{H}(19)-\mathrm{C}(17)-\mathrm{H}(20)$	108(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	122.23(18)	$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{H}(12)$	110.5(15)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	118.15(16)	$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{H}(13)$	108.4(14)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	124.5(2)	$\mathrm{H}(12)-\mathrm{C}(18)-\mathrm{H}(13)$	101.2(19)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(15)$	119.8(14)	$\mathrm{C}(10)-\mathrm{C}(18)-\mathrm{H}(14)$	112.9(14)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(15)$	$115.0(14)$	$\mathrm{H}(12)-\mathrm{C}(18)-\mathrm{H}(14)$	112.4(19)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	113.48(19)	$\mathrm{H}(13)-\mathrm{C}(18)-\mathrm{H}(14)$	111(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(16)$	111.8(16)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(9)$	109.2(14)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(16)$	108.2(17)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(10)$	109.7(11)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(17)$	106.1(15)	$\mathrm{H}(9)-\mathrm{C}(19)-\mathrm{H}(10)$	109.3(19)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(17)$	112.5(15)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(11)$	108.6(13)

$\mathrm{H}(9)-\mathrm{C}(19)-\mathrm{H}(11)$	$111(2)$	$\mathrm{H}(26)-\mathrm{C}(21)-\mathrm{H}(27)$	$113(3)$
$\mathrm{H}(10)-\mathrm{C}(19)-\mathrm{H}(11)$	$109.0(17)$	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(28)$	$104.7(17)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)$	$124.04(18)$	$\mathrm{H}(26)-\mathrm{C}(21)-\mathrm{H}(28)$	$111(3)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(9)$	$123.40(18)$	$\mathrm{H}(27)-\mathrm{C}(21)-\mathrm{H}(28)$	$109(2)$
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(9)$	$112.54(15)$	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	$109(2)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(26)$	$108(2)$	$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$116.20(16)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(27)$	$110(2)$	-	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound 153. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+\right.$ $2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$32(1)$	$36(1)$	$47(1)$	$1(1)$	$7(1)$	$1(1)$
$\mathrm{C}(2)$	$40(1)$	$42(1)$	$46(1)$	$-1(1)$	$6(1)$	$10(1)$
$\mathrm{C}(3)$	$55(2)$	$33(1)$	$39(1)$	$0(1)$	$2(1)$	$7(1)$
$\mathrm{C}(4)$	$52(2)$	$32(1)$	$41(1)$	$8(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(5)$	$34(1)$	$36(1)$	$37(1)$	$4(1)$	$5(1)$	$2(1)$
$\mathrm{C}(6)$	$28(1)$	$33(1)$	$31(1)$	$-1(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(7)$	$31(1)$	$30(1)$	$35(1)$	$0(1)$	$2(1)$	$-5(1)$
$\mathrm{C}(8)$	$27(1)$	$32(1)$	$34(1)$	$0(1)$	$2(1)$	$-3(1)$
$\mathrm{C}(9)$	$27(1)$	$30(1)$	$36(1)$	$1(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(10)$	$32(1)$	$34(1)$	$32(1)$	$-1(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(11)$	$31(1)$	$34(1)$	$26(1)$	$-2(1)$	$4(1)$	$0(1)$
$\mathrm{C}(12)$	$35(1)$	$40(1)$	$39(1)$	$-3(1)$	$2(1)$	$1(1)$
$\mathrm{C}(13)$	$58(2)$	$36(1)$	$38(1)$	$-3(1)$	$-1(1)$	$-7(1)$
$\mathrm{C}(14)$	$62(2)$	$41(1)$	$51(1)$	$-6(1)$	$13(1)$	$6(1)$
$\mathrm{C}(15)$	$41(2)$	$47(1)$	$58(1)$	$-2(1)$	$-2(1)$	$11(1)$
$\mathrm{C}(16)$	$34(1)$	$39(1)$	$45(1)$	$-4(1)$	$3(1)$	$2(1)$
$\mathrm{C}(17)$	$93(3)$	$43(2)$	$79(2)$	$-10(1)$	$10(2)$	$11(2)$
$\mathrm{C}(18)$	$42(1)$	$37(1)$	$36(1)$	$2(1)$	$11(1)$	$-5(1)$
$\mathrm{C}(19)$	$43(2)$	$40(1)$	$36(1)$	$2(1)$	$-3(1)$	$2(1)$
$\mathrm{C}(20)$	$37(1)$	$30(1)$	$30(1)$	$-1(1)$	$8(1)$	$3(1)$
$\mathrm{C}(21)$	$42(2)$	$60(2)$	$35(1)$	$0(1)$	$-5(1)$	$2(1)$
$\mathrm{O}(1)$	$33(1)$	$27(1)$	$50(1)$	$-1(1)$	$9(1)$	$-4(1)$
$\mathrm{O}(2)$	$60(1)$	$41(1)$	$43(1)$	$11(1)$	$1(1)$	$-6(1)$
$\mathrm{O}(3)$	$34(1)$	$44(1)$	$33(1)$	$4(1)$	$-2(1)$	$-5(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 153.

	x	y	z	U(eq)
H(1)	-7540(40)	-2322(13)	-900(30)	50(6)
H(2)	-8360(40)	-1165(12)	-1080(30)	38(6)
H(3)	-6110(40)	-334(16)	-2040(30)	63(7)
H(4)	-2800(40)	-741(15)	-2950(30)	61(8)
H(5)	-2040(40)	-1939(13)	-2790(30)	40(6)
H(7)	-5300(40)	-3295(12)	-1490(30)	35(5)
H(8)	-950(40)	-3063(12)	-1880(30)	39(6)
H(9)	-4290(40)	-4445(14)	-4500(30)	47(6)
H(10)	-3160(30)	-3735(13)	-4940(20)	34(5)
H(11)	-2640(30)	-4455(12)	-5820(30)	40(6)
H(12)	580(40)	-3562(14)	-4000(30)	47(6)
H(13)	1130(40)	-4202(11)	-4820(30)	40(6)
H(14)	2120(40)	-4108(12)	-2900(30)	43(6)
H(15)	-3740(40)	-5522(12)	-3940(30)	41(6)
H(16)	-2830(40)	-6641(14)	-4410(30)	56(7)
H(17)	-2520(40)	-6682(14)	-2440(30)	50(6)
H(18)	-290(60)	-7665(19)	-3820(50)	93(11)
H(19)	620(70)	-7520(20)	-1820(60)	107(13)
H(20)	2190(80)	-7540(20)	-3130(50)	112(14)
H(21)	760(40)	-6558(12)	-4570(30)	44(6)
H(22)	1170(40)	-6296(14)	-890(40)	59(7)
H(23)	3310(50)	-6305(16)	-1940(30)	63(8)
H(24)	2210(30)	-5170(12)	-1560(30)	39(5)
H(25)	2340(40)	-5366(14)	-3460(30)	51(7)
H(26)	3930(60)	-4250(20)	1440(50)	91(12)
H(27)	2550(50)	-3932(16)	2650(40)	75(9)
H(28)	4070(50)	-3433(18)	1690(40)	76(9)
H(1O)	-3530(50)	-4821(17)	-1080(40)	66(9)

Table 6. Torsion angles [${ }^{\circ}$] for compound 153.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.1(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$0.6(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-0.2(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-1.0(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$-1.3(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$178.53(17)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.8(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$-178.09(16)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-165.34(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	14.5(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.02(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	-4.1(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	-119.84(19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$116.56(19)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(18)$	177.22(15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(18)$	57.3(2)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(18)$	-65.25(19)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-60.14(18)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	179.92(15)
$C(20)-C(9)-C(10)-C(11)$	57.39(19)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	60.42(19)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-59.5(2)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	177.94(16)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-149.56(17)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-30.8(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	86.9(2)
$\mathrm{C}(18)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	28.1(2)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	146.77(18)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	-95.52(19)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-3.2(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	174.39(17)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-12.4(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	43.2(2)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(17)$	$168.0(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$-60.4(3)$
$\mathrm{C}(17)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$174.0(3)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$-13.6(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$168.76(16)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$45.4(3)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$19.3(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$136.19(19)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-100.1(2)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-159.22(14)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-42.4(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$81.35(18)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$0.6(3)$
$\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$179.18(17)$

Symmetry transformations used to generate equivalent atoms:
3. Crystal structure of compound 166

Table 1. Crystal data and structure refinement for compound 166.

Compound	166
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{Br} \mathrm{O}_{3}$
Formula weight	339.22
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2
Unit cell dimensions	$a=7.9626(3) \AA \quad \alpha=90^{\circ}$.
	$b=36.6534(11) \AA$ A $\quad \beta=90^{\circ}$.
	$\mathrm{c}=5.6635(2) \AA \AA^{\circ} \mathrm{A}=90^{\circ}$.
Volume	1652.93(10) \AA^{3}
Z	4
Density (calculated)	$1.363 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.427 \mathrm{~mm}^{-1}$
F(000)	696
Crystal size	$0.48 \times 0.12 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	2.41 to 67.55°.
Index ranges	$-8<=h<=8,-43<=k<=43,-6<=1<=6$
Reflections collected	10887
Independent reflections	$2788[\mathrm{R}(\mathrm{int})=0.0324]$
Completeness to theta $=67.55^{\circ}$	94.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9042 and 0.2900
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2788 / 0 / 181
Goodness-of-fit on F^{2}	1.089
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0368, \mathrm{wR} 2=0.0913$
R indices (all data)	$\mathrm{R} 1=0.0401, \mathrm{wR} 2=0.0926$
Absolute structure parameter	0.02(3)
Largest diff. peak and hole	0.452 and -0.340 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound $\mathbf{1 6 6}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
$\operatorname{Br}(1)$	3150(1)	1730(1)	4087(1)	52(1)
C(1)	1866(6)	2456(1)	9409(6)	40(1)
C(2)	2084(6)	2139(1)	8096(6)	40(1)
C(3)	2888(5)	2159(1)	5959(7)	37(1)
C(4)	3519(5)	2485(1)	5108(7)	38(1)
C(5)	3278(5)	2800(1)	6423(6)	35(1)
C(6)	2434(5)	2791(1)	8582(6)	32(1)
C(7)	2186(5)	3119(1)	10048(6)	34(1)
C(8)	2353(5)	3461(1)	9390(6)	33(1)
C(9)	2057(5)	3783(1)	10984(7)	35(1)
$\mathrm{C}(10)$	3501(5)	4062(1)	10910(10)	48(1)
$\mathrm{C}(11)$	3081(6)	4395(1)	12314(9)	52(1)
C(12)	2888(6)	4727(1)	11509(10)	63(1)
C(13)	2480(8)	5057(1)	12972(12)	80(2)
C(14)	5113(6)	3886(1)	11784(14)	90(2)
C(15)	420(5)	3973(1)	10211(6)	37(1)
C(16)	-950(8)	4287(2)	7148(9)	84(2)
$\mathrm{O}(1)$	1834(4)	3667(1)	13352(4)	43(1)
$\mathrm{O}(2)$	-765(4)	4008(1)	11467(6)	58(1)
O(3)	513(5)	4094(1)	8025(5)	59(1)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound $\mathbf{1 6 6 .}$

$\operatorname{Br}(1)-\mathrm{C}(3)$	1.906 (3)	$\mathrm{C}(15)-\mathrm{O}(3)$	$1.318(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.389(5)$	$\mathrm{C}(16)-\mathrm{O}(3)$	1.450 (6)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.392(5)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9800
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.371(6)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(5)$		
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.388(5)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.2(3)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.395(5)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.1(3)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.475(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.4
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.315(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.4
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.5(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.504(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	119.9(3)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Br}(1)$	118.6(3)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.419(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.8(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.540(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.6
$\mathrm{C}(9)-\mathrm{C}(15)$	$1.541(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.6
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.494(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.1(3)
$\mathrm{C}(10)-\mathrm{C}(14)$	$1.521(6)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.308(6)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.2(3)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.2(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.501(7)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.6(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	127.2(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.4
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.4
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.2(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.9
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.9
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.6(3)
$\mathrm{C}(15)-\mathrm{O}(2)$	$1.189(5)$	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	108.6(3)

$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	112.8(3)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(15)$	107.4(3)	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)$	108.5(3)	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)$	108.9(3)	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)$	111.3(4)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	111.2(3)	$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(9)$	109.8(3)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{O}(3)$	124.8(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{C}(9)$	123.4(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	126.9(5)	$\mathrm{O}(3)-\mathrm{C}(15)-\mathrm{C}(9)$	111.8(4)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	125.6(5)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	117.2	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	117.2	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(15)-\mathrm{O}(3)-\mathrm{C}(16)$	116.2(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 166. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+\right.$ $2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Br}(1)$	$69(1)$	$41(1)$	$46(1)$	$-2(1)$	$-4(1)$	$13(1)$
$\mathrm{C}(1)$	$45(2)$	$46(2)$	$28(2)$	$6(2)$	$2(2)$	$-5(2)$
$\mathrm{C}(2)$	$45(3)$	$39(2)$	$34(2)$	$9(2)$	$-3(2)$	$0(2)$
$\mathrm{C}(3)$	$42(2)$	$35(2)$	$33(2)$	$-2(2)$	$-11(2)$	$6(2)$
$\mathrm{C}(4)$	$32(2)$	$48(2)$	$33(2)$	$4(2)$	$0(2)$	$2(2)$
$\mathrm{C}(5)$	$33(2)$	$40(2)$	$31(2)$	$6(1)$	$1(2)$	$-4(2)$
$\mathrm{C}(6)$	$27(2)$	$42(2)$	$28(2)$	$6(1)$	$-6(1)$	$0(1)$
$\mathrm{C}(7)$	$31(2)$	$43(2)$	$28(2)$	$3(1)$	$-2(2)$	$0(2)$
$\mathrm{C}(8)$	$30(2)$	$43(2)$	$27(2)$	$4(2)$	$2(1)$	$3(1)$
$\mathrm{C}(9)$	$30(2)$	$40(2)$	$35(2)$	$4(2)$	$2(2)$	$4(1)$
$\mathrm{C}(10)$	$30(3)$	$41(2)$	$72(3)$	$-4(2)$	$7(2)$	$-2(2)$
$\mathrm{C}(11)$	$40(3)$	$49(2)$	$68(3)$	$-12(2)$	$0(3)$	$-1(2)$
$\mathrm{C}(12)$	$53(3)$	$46(2)$	$90(4)$	$-4(2)$	$24(3)$	$-6(2)$
$\mathrm{C}(13)$	$65(4)$	$52(3)$	$123(5)$	$-21(3)$	$20(3)$	$-2(2)$
$\mathrm{C}(14)$	$34(3)$	$55(3)$	$183(8)$	$-25(4)$	$-6(4)$	$5(2)$
$\mathrm{C}(15)$	$37(3)$	$42(2)$	$33(2)$	$0(2)$	$3(2)$	$5(2)$
$\mathrm{C}(16)$	$114(5)$	$85(4)$	$53(3)$	$-10(3)$	$-28(3)$	$61(4)$
$\mathrm{O}(1)$	$54(2)$	$48(1)$	$28(1)$	$-1(1)$	$1(1)$	$8(1)$
$\mathrm{O}(2)$	$33(2)$	$79(2)$	$60(2)$	$7(2)$	$10(2)$	$12(2)$
$\mathrm{O}(3)$	$82(3)$	$60(2)$	$36(2)$	$3(1)$	$0(2)$	$34(2)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 166.

	x	y	z	U(eq)
H(1A)	1320	2443	10898	48
H(2A)	1681	1912	8671	48
H(4A)	4106	2493	3649	45
H(5A)	3695	3026	5843	42
H(7A)	1871	3079	11645	41
H(8A)	2682	3508	7806	40
H(10A)	3674	4138	9230	57
H(11A)	2939	4362	13965	63
H(12A)	3017	4762	9857	76
H(13A)	2410	5272	11949	120
H(13B)	3364	5094	14153	120
H(13C)	1402	5020	13770	120
H(14A)	6031	4064	11718	136
H(14B)	5387	3676	10781	136
H(14C)	4960	3803	13416	136
H(16A)	-749	4364	5516	126
H(16B)	-1162	4501	8135	126
H(16C)	-1928	4125	7199	126
H(1B)	1469	3841	14166	65

Table 6. Torsion angles [${ }^{\circ}$] for compound $\mathbf{1 6 6}$.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.6(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.5(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	-178.4(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-2.2(6)
$\operatorname{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	177.7(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	0.8(6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-1.9(6)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.5(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.2(6)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	178.7(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-166.5(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	16.0(6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	179.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	9.0(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	130.9(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)$	-108.4(4)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-63.0(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	174.0(4)
$\mathrm{C}(15)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$53.5(5)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	60.6(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	-62.4(5)
$\mathrm{C}(15)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	177.2(4)
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	121.6(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-115.7(5)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.4(5)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(2)$	$0.2(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(2)$	119.7(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(2)$	-117.2(4)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(3)$	179.5(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(3)$	-61.1(4)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(3)$	62.1(4)
$\mathrm{O}(2)-\mathrm{C}(15)-\mathrm{O}(3)-\mathrm{C}(16)$	0.8(7)
$\mathrm{C}(9)-\mathrm{C}(15)-\mathrm{O}(3)-\mathrm{C}(16)$	-178.4(4)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound 166 [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(3) \# 1$	0.84	2.49	$3.250(4)$	150.5

Symmetry transformations used to generate equivalent atoms:
\#1 x, y, z+1
4. Crystal structure of compound 177

Table 1. Crystal data and structure refinement for compound 177.

Compound	177	
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{3}$	
Formula weight	322.39	
Temperature	173(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P2(1)	
Unit cell dimensions	$\mathrm{a}=11.1117(5) \AA$	$\alpha=90^{\circ}$.
	$\mathrm{b}=5.5288(3) \AA$	$\beta=104.084(2)^{\circ}$.
	$\mathrm{c}=14.6321(7) \AA$	$\gamma=90^{\circ}$.
Volume	871.89(7) \AA^{3}	
Z	2	
Density (calculated)	$1.228 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.646 \mathrm{~mm}^{-1}$	
F(000)	344	
Crystal size	$0.42 \times 0.17 \times 0.16 \mathrm{~mm}^{3}$	
Theta range for data collection	3.11 to $68.04{ }^{\circ}$.	
Index ranges	$-12<=\mathrm{h}<=13,-6<=\mathrm{k}<=5,-16<=\mathrm{l}<=17$	
Reflections collected	6114	
Independent reflections	$2555[\mathrm{R}(\mathrm{int})=0.0138]$	
Completeness to theta $=68.04^{\circ}$	95.9 \%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9038 and 0.7732	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	2555 / 1/305	
Goodness-of-fit on F^{2}	1.013	
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0254, \mathrm{wR} 2=0.0692$	
R indices (all data)	$\mathrm{R} 1=0.0258, \mathrm{wR} 2=0.0697$	
Absolute structure parameter	-0.20(16)	
Largest diff. peak and hole	0.143 and -0.133 e. A $^{-3}$	

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 177 . U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for compound 177.

$\mathrm{C}(1)-\mathrm{C}(2)$	1.392(2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.383(2)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.395(2)$	$\mathrm{C}(16)-\mathrm{H}(16)$	0.948(19)
$\mathrm{C}(1)-\mathrm{H}(1)$	1.031 (19)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.379(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.384(3)$	$\mathrm{C}(17)-\mathrm{H}(17)$	0.949(18)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.97(3)	$\mathrm{C}(18)-\mathrm{C}(19)$	1.388(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.368 (3)	$\mathrm{C}(18)-\mathrm{H}(18)$	0.95(2)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.93(2)	$\mathrm{C}(19)-\mathrm{H}(19)$	0.964(18)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.383(2)$	$\mathrm{C}(20)-\mathrm{O}(2)$	$1.2049(17)$
$\mathrm{C}(4)-\mathrm{H}(4)$	0.99(2)	$\mathrm{C}(20)-\mathrm{O}(3)$	1.3240(18)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.392(2)$	$\mathrm{C}(21)-\mathrm{O}(3)$	1.4510 (16)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.94(2)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.96 (2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.4737(19)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.966(17)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.327(2)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.94(2)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.96 (2)	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	0.882(19)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.5122(18)		
$\mathrm{C}(8)-\mathrm{H}(8)$	0.989(19)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	57(16)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.4166(18)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	118.5(11)
$\mathrm{C}(9)-\mathrm{C}(20)$	$1.5388(17)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	120.8(11)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5624(19)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.01(19)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.5100(18)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	122.3(12)
$\mathrm{C}(10)-\mathrm{C}(14)$	1.5198(17)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	117.6(12)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.979(18)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.94(16)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.313(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	117.6(13)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.95(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	122.3(13)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.503(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.25(17)
$\mathrm{C}(12)-\mathrm{H}(12)$	1.04(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.3(13)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.98 (3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.5(13)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	1.00 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.27(18)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	1.00 (4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.9(11)
$\mathrm{C}(14)$-C(15)	$1.388(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	118.7(11)
$\mathrm{C}(14)-\mathrm{C}(19)$	1.390 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.94(14)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.387(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.07(14)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.942(17)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	121.97(13)

$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$125.48(14)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$118.54(12)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	$116.8(10)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(10)$	$119.76(12)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	$117.7(10)$	$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(10)$	$121.67(12)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$125.22(14)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	$121.04(14)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	$121.4(9)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	$119.7(9)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	$113.3(9)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	$119.2(9)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$111.60(11)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	$119.82(14)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)$	$107.45(11)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	$119.5(10)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	$107.41(10)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	$120.7(10)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$110.14(11)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	$119.78(13)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$111.64(11)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	$120.9(12)$
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)$	$108.42(10)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	$119.2(12)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)$	$112.18(11)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.37(15)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.19(12)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	$120.2(11)$
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(9)$	$111.91(10)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	$119.4(11)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	$107.3(8)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	$120.44(14)$
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{H}(10)$	$107.9(8)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	$121.0(10)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	$106.0(9)$	$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{H}(19)$	$118.6(10)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$124.24(18)$	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)$	$124.49(12)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	$119.5(11)$	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(9)$	$122.31(13)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	$116.2(11)$	$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(9)$	$113.19(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$125.0(2)$	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	$104.5(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	$117.8(13)$	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	$109.5(10)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	$117.2(13)$	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	$112.5(16)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	$107.7(17)$	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	$110.5(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$109.3(14)$	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	$109.6(18)$
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$109(2)$	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	$110.1(15)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	$107.6(18)$	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	$103.7(12)$
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	$108(3)$	$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$114.63(12)$
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	$115(3)$		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound 177. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+\right.$ $2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$41(1)$	$47(1)$	$47(1)$	$-1(1)$	$15(1)$	$0(1)$
$\mathrm{C}(2)$	$48(1)$	$54(1)$	$65(1)$	$-10(1)$	$24(1)$	$-12(1)$
$\mathrm{C}(3)$	$36(1)$	$79(1)$	$56(1)$	$-23(1)$	$14(1)$	$-11(1)$
$\mathrm{C}(4)$	$35(1)$	$78(1)$	$46(1)$	$-4(1)$	$7(1)$	$7(1)$
$\mathrm{C}(5)$	$38(1)$	$53(1)$	$40(1)$	$0(1)$	$11(1)$	$7(1)$
$\mathrm{C}(6)$	$33(1)$	$40(1)$	$30(1)$	$-6(1)$	$11(1)$	$3(1)$
$\mathrm{C}(7)$	$37(1)$	$34(1)$	$30(1)$	$0(1)$	$12(1)$	$1(1)$
$\mathrm{C}(8)$	$34(1)$	$31(1)$	$29(1)$	$-1(1)$	$10(1)$	$0(1)$
$\mathrm{C}(9)$	$33(1)$	$28(1)$	$31(1)$	$2(1)$	$8(1)$	$0(1)$
$\mathrm{C}(10)$	$32(1)$	$31(1)$	$31(1)$	$3(1)$	$8(1)$	$0(1)$
$\mathrm{C}(11)$	$35(1)$	$49(1)$	$35(1)$	$2(1)$	$10(1)$	$-4(1)$
$\mathrm{C}(12)$	$38(1)$	$75(1)$	$41(1)$	$-3(1)$	$2(1)$	$11(1)$
$\mathrm{C}(13)$	$37(1)$	$134(3)$	$58(1)$	$-13(2)$	$-1(1)$	$13(1)$
$\mathrm{C}(14)$	$27(1)$	$33(1)$	$32(1)$	$3(1)$	$9(1)$	$3(1)$
$\mathrm{C}(15)$	$35(1)$	$32(1)$	$35(1)$	$3(1)$	$10(1)$	$0(1)$
$\mathrm{C}(16)$	$40(1)$	$42(1)$	$34(1)$	$-3(1)$	$8(1)$	$4(1)$
$\mathrm{C}(17)$	$42(1)$	$46(1)$	$31(1)$	$8(1)$	$14(1)$	$10(1)$
$\mathrm{C}(18)$	$43(1)$	$39(1)$	$43(1)$	$11(1)$	$19(1)$	$4(1)$
$\mathrm{C}(19)$	$38(1)$	$34(1)$	$38(1)$	$2(1)$	$11(1)$	$-2(1)$
$\mathrm{C}(20)$	$28(1)$	$31(1)$	$31(1)$	$-2(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(21)$	$52(1)$	$41(1)$	$28(1)$	$0(1)$	$10(1)$	$0(1)$
$\mathrm{O}(1)$	$44(1)$	$28(1)$	$36(1)$	$1(1)$	$10(1)$	$-1(1)$
$\mathrm{O}(2)$	$50(1)$	$36(1)$	$37(1)$	$-6(1)$	$7(1)$	$-3(1)$
$\mathrm{O}(3)$	$45(1)$	$32(1)$	$27(1)$	$1(1)$	$9(1)$	$-1(1)$
-						

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 177.

	X	y	Z	U(eq)
H(1)	7223(17)	8940(40)	2071(13)	54(5)
H(2)	9218(19)	10500(50)	2631(14)	64(6)
H(3)	10726(19)	8320(40)	3791(13)	62(5)
H(4)	10229(19)	4810(40)	4457(14)	65(6)
H(5)	8227(17)	3240(40)	3901(13)	53(5)
H(7)	6178(15)	3150(40)	2770(11)	40(4)
H(8)	5251(13)	7830(30)	2167(10)	35(4)
H(10)	3039(13)	7910(30)	2171(10)	28(4)
H(11)	1492(16)	3760(40)	1672(12)	46(5)
H(12)	1050(20)	8810(50)	1302(16)	77(7)
H(13A)	-620(30)	6980(60)	120(20)	111(10)
H(13B)	-1080(20)	7070(50)	1078(18)	99(9)
H(13C)	-520(30)	4510(70)	700 (20)	103(10)
H(15)	3987(14)	8870(30)	3736(11)	31(4)
H(16)	4249(15)	8260(40)	5353(12)	43(4)
H(17)	3508(16)	4760(30)	5892(13)	48(5)
H(18)	2514(16)	1830(40)	4815(12)	45(5)
H(19)	2267(15)	2420(40)	3189(11)	39(4)
H(21A)	3422(17)	9740(40)	-534(13)	54(5)
H(21B)	2591(16)	7340 (40)	-770(11)	43(4)
H(21C)	4009(16)	7290(40)	-719(12)	48(5)
H(1O)	3795(16)	1770(30)	1466(13)	48(5)

Table 6. Torsion angles [${ }^{\circ}$] for compound 177.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.7(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.9(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.6(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	0.4(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.27(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-0.5(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.30(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	158.53(14)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-22.7(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	174.43(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	4.06 (19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	-113.46(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	127.81(14)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-68.77(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	166.66(12)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	48.54(15)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	57.56(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	-67.01(14)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)$	174.87(11)
$\mathrm{C}(14)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$110.54(17)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-123.28(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-176.81(16)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(15)$	-137.08(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(15)$	97.13(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(19)$	40.96(18)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(19)$	-84.83(15)
$\mathrm{C}(19)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-0.78(19)
$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	177.33(12)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-0.2(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	0.7(2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-0.3(2)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	-0.7(2)

$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$1.22(19)$
$\mathrm{C}(10)-\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$-176.84(12)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$0.15(16)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$120.35(14)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-118.87(14)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-178.85(11)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-58.65(14)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$62.13(13)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$-0.83(18)$
$\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$178.15(11)$
-	

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound 177 [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O}) \ldots \mathrm{O}(2)$	$0.882(19)$	$2.014(19)$	$2.6288(14)$	$125.7(16)$

Symmetry transformations used to generate equivalent atoms:
5. Crystal structure of compound 181

Table 1. Crystal data and structure refinement for compound 181.

Compound	181
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}$
Formula weight	300.38
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	$\mathrm{a}=5.7546(12) \AA \quad \alpha=104.48(2)^{\circ}$.
	$\mathrm{b}=12.147(2) \AA \quad \beta=90.08(3)^{\circ}$.
	$\mathrm{c}=12.151(2) \AA \quad \gamma=90.16(3)^{\circ}$.
Volume	822.4(3) \AA^{3}
Z	2
Density (calculated)	$1.213 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.641 \mathrm{~mm}^{-1}$
F(000)	324
Crystal size	$0.34 \times 0.10 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	3.76 to 65.09°.
Index ranges	$-6<=\mathrm{h}<=5,-14<=\mathrm{k}<=14,-14<=\mathrm{l}<=13$
Reflections collected	8095
Independent reflections	$3637[\mathrm{R}(\mathrm{int})=0.0146]$
Completeness to theta $=65.09^{\circ}$	87.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9446 and 0.8115
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3637 / 3 / 398
Goodness-of-fit on F^{2}	1.020
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0299, \mathrm{wR} 2=0.0860$
R indices (all data)	$\mathrm{R} 1=0.0300, \mathrm{wR} 2=0.0861$
Absolute structure parameter	-0.02(16)
Extinction coefficient	0.0100(9)
Largest diff. peak and hole	0.194 and -0.138 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 181 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

				y

C(8B)	$-4320(4)$	$-7171(2)$	$-6886(2)$	$26(1)$
C(9B)	$-5828(4)$	$-8222(2)$	$-7011(2)$	$26(1)$
C(10B)	$-5282(4)$	$-9103(2)$	$-8161(2)$	$25(1)$
C(11B)	$-5836(4)$	$-8652(2)$	$-9207(2)$	$33(1)$
C(12B)	$-8385(5)$	$-8737(2)$	$-9569(2)$	$41(1)$
C(13B)	$-9288(4)$	$-9943(2)$	$-9707(2)$	$42(1)$
C(14B)	$-8965(4)$	$-10334(2)$	$-8609(2)$	$36(1)$
C(15B)	$-6450(4)$	$-10245(2)$	$-8239(2)$	$27(1)$
C(16B)	$-5264(4)$	$-11087(2)$	$-7996(2)$	$32(1)$
C(17B)	$-6157(5)$	$-12257(2)$	$-8002(3)$	$52(1)$
C(18B)	$-5225(4)$	$-8773(2)$	$-6040(2)$	$27(1)$
C(19B)	$-2321(4)$	$-9659(2)$	$-5204(2)$	$37(1)$
O(1B)	$-8199(2)$	$-7920(1)$	$-6907(1)$	$29(1)$
O(2B)	$-6649(3)$	$-8945(1)$	$-5377(2)$	$38(1)$
O(3B)	$-2979(3)$	$-9029(1)$	$-6022(1)$	$30(1)$

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound 181.

$\mathrm{C}(1)-\mathrm{C}(2)$	1.390 (3)	$\mathrm{C}(14)$-H(14B)	0.9900
$\mathrm{C}(1)-\mathrm{C}(6)$	1.401(3)	$\mathrm{C}(15)-\mathrm{C}(16)$	1.327(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{C}(17)$	1.509(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.372(4)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.386 (3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	1.390 (3)	$\mathrm{C}(18)-\mathrm{O}(2)$	1.199(3)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{O}(3)$	1.335(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.390 (3)	$\mathrm{C}(19)-\mathrm{O}(3)$	1.447(3)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	1.474 (3)	C(19)-H(19B)	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	1.321(3)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(8)-\mathrm{C}(9)$	1.518(3)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	1.388(3)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.398 (3)
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.419(2)$	$\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BA})$	0.9500
$\mathrm{C}(9)-\mathrm{C}(18)$	$1.535(3)$	C(2B)-C(3B)	1.373(4)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.562(3)$	$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BA})$	0.9500
$\mathrm{C}(10)-\mathrm{C}(15)$	1.526 (3)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.370(4)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.534 (3)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{BA})$	0.9500
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	1.391(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.516 (3)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{BA})$	0.9500
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	1.386 (3)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{BA})$	0.9500
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.530(3)$	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	1.479(3)
$\mathrm{C}(12) \mathrm{H}(12 \mathrm{~A})$	0.9900	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.329(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9900	$\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{BA})$	0.9500
$\mathrm{C}(13)-\mathrm{C}(14)$	1.524(4)	C(8B)-C(9B)	1.518(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9900	$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{BA})$	0.9500
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9900	$\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	1.411(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.494(3)$	C(9B)-C(18B)	1.535(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	1.566(3)

$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	$1.521(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.8(2)
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	$1.539(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1
$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	1.0000	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$1.527(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.4(2)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	0.9900	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	$1.522(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.53(19)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	0.9900	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7
$\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	0.9900	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$1.535(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.31(18)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{C})$	0.9900	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.69(18)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.0(2)
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	1.511(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	125.8(2)
$\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	0.9900	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.1
$\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	0.9900	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.1
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$1.324(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.0(2)
$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	$1.509(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	118.0
$\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	0.9500	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	118.0
$\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{D})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.04(16)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{E})$	0.9800	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(18)$	107.53(16)
$\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~F})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(18)$	107.64(16)
C(18B)-O(2B)	$1.204(3)$	$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	112.04(16)
C(18B)-O(3B)	$1.332(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.64(16)
$\mathrm{C}(19 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	1.449 (3)	$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)$	108.79(16)
C(19B)-H(19D)	0.9800	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)$	112.04(17)
C(19B)-H(19E)	0.9800	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	111.29(16)
C(19B)-H(19F)	0.9800	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	113.30(17)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BB})$	0.8400	$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	106.6
		$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	106.6
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.7(2)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	106.6
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.6	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	115.09(19)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.6	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.2(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.5

$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	107.5	$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	109.88(19)	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7	$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.7	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7	$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.7	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.2	$\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{C}(19)$	115.93(18)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.32(18)	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	120.5(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.4	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BA})$	119.7
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.4	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BA})$	119.7
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.4	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	120.3(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.4	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BA})$	119.9
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	108.0	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{BA})$	119.9
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	112.08(19)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	119.9(2)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{BA})$	120.1
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2	$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{BA})$	120.1
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.2	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	120.5(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.2	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{BA})$	119.7
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.9	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{H}(4 \mathrm{BA})$	119.7
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	123.95(19)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	120.5(2)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(10)$	119.94(19)	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{BA})$	119.8
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	116.10(18)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{BA})$	119.8
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	126.4(2)	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	118.33(19)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	116.8	$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	122.67(19)
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	116.8	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	119.0(2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	125.0(2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{BA})$	117.5
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5	$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{H}(7 \mathrm{BA})$	117.5
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	123.4(2)
$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{BA})$	118.3
$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5	$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{BA})$	118.3
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{O}(3)$	124.8(2)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	110.44(16)
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(9)$	123.2(2)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})$	107.68(16)
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{C}(9)$	111.93(17)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})$	108.20(16)
$\mathrm{O}(3)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5	$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	112.41(17)

$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	110.07(17)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	109.4
C(18B)-C(9B)-C(10B)	107.89(15)	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	109.4
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	111.44(17)	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	109.4
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	112.03(16)	$\mathrm{H}(14 \mathrm{C})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{D})$	108.0
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	112.95(16)	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	124.08(19)
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	106.6	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	120.13(19)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	106.6	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	115.79(18)
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{~B})$	106.6	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})$	127.1(2)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	115.12(19)	$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	116.4
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	108.5	$\mathrm{C}(17 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})-\mathrm{H}(16 \mathrm{~B})$	116.4
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{C})$	108.5	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{D})$	109.5
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	108.5	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{E})$	109.5
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	108.5	H(17D)-C(17B)-H(17E)	109.5
$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{D})$	107.5	$\mathrm{C}(16 \mathrm{~B})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~F})$	109.5
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	110.50(18)	$\mathrm{H}(17 \mathrm{D})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~F})$	109.5
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	109.6	$\mathrm{H}(17 \mathrm{E})-\mathrm{C}(17 \mathrm{~B})-\mathrm{H}(17 \mathrm{~F})$	109.5
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{C})$	109.6	$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	124.8(2)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	109.6	$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	122.9(2)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	109.6	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	112.39(17)
$\mathrm{H}(12 \mathrm{C})-\mathrm{C}(12 \mathrm{~B})-\mathrm{H}(12 \mathrm{D})$	108.1	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{D})$	109.5
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	111.24(19)	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{E})$	109.5
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{C})$	109.4	$\mathrm{H}(19 \mathrm{D})-\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{E})$	109.5
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{C})$	109.4	$\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})-\mathrm{H}(19 \mathrm{~F})$	109.5
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	109.4	H(19D)-C(19B)-H(19F)	109.5
$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	109.4	H(19E)-C(19B)-H(19F)	109.5
$\mathrm{H}(13 \mathrm{C})-\mathrm{C}(13 \mathrm{~B})-\mathrm{H}(13 \mathrm{D})$	108.0	$\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BB})$	109.5
C(15B)-C(14B)-C(13B)	111.1(2)	$\mathrm{C}(18 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(19 \mathrm{~B})$	115.55(18)
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{H}(14 \mathrm{C})$	109.4		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 181. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+\right.$ $2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	36(1)	29(1)	35(1)	8(1)	0 (1)	2(1)
C(2)	48(2)	25(1)	44(2)	13(1)	1(1)	0 (1)
C(3)	47(1)	28(1)	38(1)	7(1)	-1(1)	-10(1)
C(4)	39(1)	36(1)	36(1)	11(1)	-7(1)	-10(1)
C(5)	38(1)	26(1)	35(1)	10(1)	-3(1)	-2(1)
C(6)	34(1)	25(1)	23(1)	5(1)	6(1)	-1(1)
C(7)	31(1)	29(1)	25(1)	$8(1)$	-2(1)	-1(1)
C(8)	28(1)	27(1)	24(1)	6 (1)	$0(1)$	-2(1)
C(9)	22(1)	26(1)	24(1)	6 (1)	0 (1)	1(1)
$\mathrm{C}(10)$	24(1)	25(1)	26(1)	5(1)	-2(1)	-1(1)
C(11)	42(1)	31(1)	23(1)	7(1)	-3(1)	-1(1)
$\mathrm{C}(12)$	46(2)	43(1)	28(1)	10(1)	9(1)	11(1)
C(13)	34(1)	46(1)	46(2)	21(1)	13(1)	3(1)
C(14)	28(1)	33(1)	45(2)	16(1)	-2(1)	-4(1)
C(15)	26(1)	24(1)	27(1)	10(1)	-3(1)	-1(1)
C(16)	39(1)	24(1)	32(1)	7 (1)	-1(1)	-1(1)
C(17)	67(2)	29(1)	48(2)	-2(1)	-2(2)	-6(1)
C(18)	29(1)	21(1)	29(1)	10(1)	-3(1)	-3(1)
C(19)	41(1)	32(1)	29(1)	$3(1)$	8(1)	3(1)
$\mathrm{O}(1)$	23(1)	28(1)	36(1)	$9(1)$	-2(1)	2(1)
$\mathrm{O}(2)$	37(1)	45(1)	29(1)	$8(1)$	-9(1)	0 (1)
$\mathrm{O}(3)$	31(1)	29(1)	25(1)	4(1)	2(1)	1(1)
C(1B)	39(1)	30(1)	34(1)	7(1)	4(1)	2(1)
C(2B)	52(2)	26(1)	37(1)	-1(1)	3(1)	-1(1)
C(3B)	53(2)	30(1)	41(2)	7(1)	-4(1)	-15(1)
C(4B)	41(1)	38(1)	39(1)	8(1)	2(1)	-11(1)
$\mathrm{C}(5 \mathrm{~B})$	39(1)	29(1)	33(1)	$3(1)$	3(1)	-3(1)
C(6B)	33(1)	28(1)	24(1)	10(1)	-5(1)	-2(1)
C(7B)	32(1)	27(1)	23(1)	7(1)	-1(1)	-1(1)

C(8B)	$26(1)$	$28(1)$	$24(1)$	$8(1)$	$-1(1)$	$0(1)$
C(9B)	$25(1)$	$25(1)$	$26(1)$	$5(1)$	$2(1)$	$1(1)$
C(10B)	$23(1)$	$24(1)$	$26(1)$	$6(1)$	$4(1)$	$0(1)$
C(11B)	$41(1)$	$32(1)$	$27(1)$	$9(1)$	$4(1)$	$3(1)$
C(12B)	$46(2)$	$47(1)$	$30(1)$	$11(1)$	$-3(1)$	$14(1)$
C(13B)	$33(1)$	$50(1)$	$36(1)$	$-2(1)$	$-9(1)$	$5(1)$
C(14B)	$28(1)$	$33(1)$	$41(1)$	$1(1)$	$-1(1)$	$-3(1)$
C(15B)	$26(1)$	$27(1)$	$25(1)$	$2(1)$	$4(1)$	$-3(1)$
C(16B)	$33(1)$	$26(1)$	$35(1)$	$6(1)$	$3(1)$	$1(1)$
C(17B)	$61(2)$	$33(1)$	$63(2)$	$17(1)$	$5(2)$	$-6(1)$
C(18B)	$30(1)$	$24(1)$	$25(1)$	$3(1)$	$1(1)$	$-4(1)$
C(19B)	$42(1)$	$38(1)$	$36(1)$	$18(1)$	$-4(1)$	$2(1)$
O(1B)	$25(1)$	$28(1)$	$31(1)$	$5(1)$	$3(1)$	$0(1)$
O(2B)	$37(1)$	$49(1)$	$32(1)$	$17(1)$	$7(1)$	$-2(1)$
O(3B)	$30(1)$	$31(1)$	$30(1)$	$12(1)$	$-1(1)$	$-1(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 181.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	-3192	-11007	-1899	40
H(2A)	-5473	-12648	-2408	46
H(3A)	-9023	-12617	-3310	45
H(4A)	-10348	-10931	-3679	44
H(5A)	-8062	-9289	-3204	39
H(7A)	-2366	-9056	-1931	33
H(8A)	-6109	-7774	-2322	32
H(10A)	-5159	-5770	-2289	30
H(11A)	-3603	-7214	-3884	38
H(11B)	-3927	-5966	-4064	38
H(12A)	-380	-6638	-4840	46
H(12B)	397	-6966	-3694	46
H(13A)	2194	-5227	-3763	49
H(13B)	-286	-4681	-3902	49
H(14A)	1285	-5315	-1907	41
H(14B)	914	-4037	-2002	41
H(16A)	-4765	-4112	-986	38
H(17A)	-3211	-2429	-27	75
H(17B)	-1484	-2504	-1075	75
H(17C)	-759	-3055	-58	75
H(19A)	-8236	-5297	858	52
H(19B)	-5691	-4756	1103	52
H(19C)	-6263	-5954	1369	52
H(1B)	112	-6712	-1235	43
H(1BA)	-5853	-4072	-5144	41
H(2BA)	-3665	-2405	-4855	48
H(3BA)	-159	-2395	-5797	50
H(4BA)	1170	-4045	-7034	48
H(5BA)	-985	-5726	-7338	42

H(7BA)	-6640	-6034	-6189	33
H(8BA)	-2761	-7268	-7147	31
H(10B)	-3568	-9240	-8171	29
H(11C)	-5351	-7845	-9045	39
H(11D)	-4891	-9079	-9854	39
H(12C)	-9320	-8203	-8990	49
H(12D)	-8549	-8519	-10298	49
H(13C)	-8445	-10465	-10334	50
H(13D)	-10958	-9974	-9910	50
H(14C)	-9931	-9858	-7999	43
H(14D)	-9495	-11132	-8735	43
H(16B)	-3676	-10937	-7796	38
H(17D)	-4889	-12711	-7805	77
H(17E)	-6752	-12629	-8760	77
H(17F)	-7409	-12193	-7444	77
H(19D)	-647	-9810	-5258	55
H(19E)	-3174	-10382	-5364	55
H(19F)	-2696	-9213	-4435	55
$\mathrm{H}(1 \mathrm{BB})$	-8936	-8396	-6646	43

Table 6. Torsion angles [${ }^{\circ}$] for compound 181.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.4(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.4(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.0(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-1.5(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.0(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-1.0(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	179.5(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	14.3(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-166.2(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	177.0(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	19.1(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(18)$	-97.8(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	143.5(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-63.7(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	173.14(18)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	55.1(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	63.7(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-59.5(2)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-177.58(17)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	45.0(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-82.0(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-52.9(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	57.4(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-55.7(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-131.9(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	48.6(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	138.0(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)$	-94.0(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	-42.5(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(14)$	85.5(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-3.4(4)
$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	176.0(2)

$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(2)$	3.3(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(2)$	121.8(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(2)$	-118.3(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(3)$	-175.92(13)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(3)$	-57.4(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(3)$	62.53(19)
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{C}(19)$	4.9(3)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{C}(19)$	-175.89(15)
$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	0.1(4)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	$0.2(4)$
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	-0.2(4)
$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})$	-0.1(4)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	0.4(3)
$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	-179.9(2)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	-0.4(3)
$\mathrm{C}(2 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	179.9(2)
$\mathrm{C}(5 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	16.5(3)
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	-163.8(2)
$\mathrm{C}(6 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	178.52 (19)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	17.5(3)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(18 \mathrm{~B})$	-100.1(2)
$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	142.2(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	-65.9(2)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	170.57 (17)
$\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	52.7(2)
$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	61.0(2)
$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	-62.6(2)
$\mathrm{C}(18 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	$179.53(17)$
$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	45.6(3)
$\mathrm{C}(9 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	-81.5(2)
$\mathrm{C}(10 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	-52.2(3)
$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	56.7(3)
$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	-56.4(3)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	-128.3(2)
$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(10 \mathrm{~B})$	51.3(2)

C(11B)-C(10B)-C(15B)-C(16B)	$134.3(2)$
C(9B)-C(10B)-C(15B)-C(16B)	$-98.1(2)$
C(11B)-C(10B)-C(15B)-C(14B)	$-45.3(3)$
C(9B)-C(10B)-C(15B)-C(14B)	$82.4(2)$
C(14B)-C(15B)-C(16B)-C(17B)	$-2.0(4)$
C(10B)-C(15B)-C(16B)-C(17B)	$178.5(2)$
O(1B)-C(9B)-C(18B)-O(2B)	$3.6(2)$
C(8B)-C(9B)-C(18B)-O(2B)	$123.0(2)$
C(10B)-C(9B)-C(18B)-O(2B)	$-118.0(2)$
O(1B)-C(9B)-C(18B)-O(3B)	$-176.29(16)$
C(8B)-C(9B)-C(18B)-O(3B)	$-56.9(2)$
C(10B)-C(9B)-C(18B)-O(3B)	$62.15(19)$
O(2B)-C(18B)-O(3B)-C(19B)	$6.3(3)$
$C(9 B)-C(18 B)-O(3 B)-C(19 B)$	$-173.82(17)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound $\mathbf{1 8 1}\left[\AA^{\circ}\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(1)-H(1 B) \ldots O(3) \# 1$	0.84	2.62	$3.361(2)$	148.5
$\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{BB}) \ldots \mathrm{O}(3 \mathrm{~B}) \# 2$	0.84	2.62	$3.354(2)$	146.7

Symmetry transformations used to generate equivalent atoms:
\#1 x+1, y, z \#2 x-1,y,z
6. Crystal structure of compound ($2 R, 3 R$)-184

Table 1. Crystal data and structure refinement for compound ($\mathbf{2 R}, \mathbf{3 R}$)-184.

Compound
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.44^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
(2R, 3R)-184
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$
328.43

173(2) K
$1.54178 \AA$
Triclinic
P1
$a=5.5849(4) \AA \quad \alpha=116.623(5)^{\circ}$.
$b=9.4558(6) \AA \quad \beta=94.611(6)^{\circ}$.
$\mathrm{c}=9.9361(7) \AA \quad \gamma=90.704(4)^{\circ}$.
466.88(6) \AA^{3}

1
$1.168 \mathrm{Mg} / \mathrm{m}^{3}$
$0.604 \mathrm{~mm}^{-1}$
178
$0.25 \times 0.18 \times 0.09 \mathrm{~mm}^{3}$
5.00 to 67.44°.
$-6<=\mathrm{h}<=6,-11<=\mathrm{k}<=11,-11<=1<=11$
3568
$1969[\mathrm{R}(\mathrm{int})=0.0221]$
82.5 \%

Semi-empirical from equivalents
0.9477 and 0.8637

Full-matrix least-squares on F^{2}
1969 / 3 / 217
1.048
$\mathrm{R} 1=0.0448, \mathrm{wR} 2=0.1175$
$\mathrm{R} 1=0.0484, \mathrm{wR} 2=0.1214$
0.0(3)
0.200 and -0.203 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 R}, \mathbf{3 R}$)-184. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
C(1)	-2307(5)	-9699(3)	-4730(4)	36(1)
C (2)	-640(6)	-10279(4)	-3999(4)	41(1)
C(3)	1493(5)	-9456(4)	-3307(4)	39(1)
C(4)	2021(5)	-8038(4)	-3343(4)	37(1)
C(5)	392(5)	-7454(3)	-4079(4)	33(1)
C(6)	-1791(5)	-8280(3)	-4788(3)	30(1)
C(7)	-3563(5)	-7712(3)	-5591(3)	30(1)
C(8)	-3141(4)	-6641(3)	-6066(3)	29(1)
$\mathrm{C}(9)$	-5058(4)	-6134(3)	-6907(3)	29(1)
C(10)	-5068(4)	-4302(3)	-6244(3)	30(1)
C(11)	-6930(5)	-3852(3)	-7143(3)	32(1)
C(12)	-6537(5)	-3162(3)	-8004(3)	32(1)
C(13)	-8505(5)	-2727(3)	-8861(3)	33(1)
C(14)	-8172(6)	-3432(3)	-10550(3)	40(1)
C(15)	-10283(6)	-3052(4)	-11404(4)	47(1)
C(16)	-10576(6)	-1272(4)	-10739(4)	46(1)
C(17)	-10812(5)	-540(4)	-9054(4)	41(1)
C(18)	-8694(5)	-939(3)	-8215(4)	37(1)
C(19)	-5555(6)	-3570(4)	-4580(4)	41(1)
C(20)	-4571(5)	-6847(3)	-8577(4)	31(1)
C(21)	-1845(6)	-6927(4)	-10283(4)	44(1)
$\mathrm{O}(1)$	-7369(3)	-6737(2)	-6853(3)	36(1)
$\mathrm{O}(2)$	-5972(4)	-7755(3)	-9582(3)	49(1)
$\mathrm{O}(3)$	-2447(3)	-6335(2)	-8750(2)	35(1)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound $(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 1 8 4}$.

$\mathrm{C}(1)-\mathrm{C}(6)$	1.396 (4)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.399(4)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.516(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.365(5)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.387(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.540 (4)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	1.390 (4)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.393(4)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.475(4)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	1.321(4)	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{O}(2)$	1.198(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.517 (3)	$\mathrm{C}(20)-\mathrm{O}(3)$	1.329 (3)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{O}(3)$	1.439(4)
$\mathrm{C}(9)-\mathrm{O}(1)$	1.419(3)	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(20)$	$1.535(4)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.553(3)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{C}(11)$	1.504(3)	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.529(4)$		
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	120.4(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.317(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.8
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.8
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.508(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.7(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.6
$\mathrm{C}(13)-\mathrm{C}(18)$	1.524(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.6
$\mathrm{C}(13)-\mathrm{C}(14)$	1.531(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.6(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	1.0000	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.2
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.537(4)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.2
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.3(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8
$\mathrm{C}(15)-\mathrm{C}(16)$	1.524(4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.7(2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.7
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.5(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	118.3(2)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.5(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.2(2)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.2(2)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.1
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.9	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	111.2(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.9	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	123.1(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	118.4	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	118.4	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.6(2)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.0
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)$	107.2(2)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	111.9(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	108.6(2)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.2
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	109.1(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.2
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.7(2)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.2
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)$	109.49(18)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.2
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	110.6(2)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	107.9
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	110.0(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	111.1(3)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	110.3(2)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.6	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.6	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.6	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	126.9(2)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.0
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	110.7(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	124.0(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	118.0	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	118.0	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	112.1(2)	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.1
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	111.8(2)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	109.8(2)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.7	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.7	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5

$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)$	$125.3(3)$	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(9)$	$122.8(2)$	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(9)$	$111.9(2)$	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$115.9(2)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound (2R, 3R)184. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$44(1)$	$30(1)$	$38(2)$	$19(1)$	$5(1)$	$4(1)$
$\mathrm{C}(2)$	$58(2)$	$32(2)$	$44(2)$	$24(1)$	$11(2)$	$14(1)$
$\mathrm{C}(3)$	$48(2)$	$38(2)$	$35(2)$	$20(1)$	$7(1)$	$19(1)$
$\mathrm{C}(4)$	$41(1)$	$33(1)$	$37(2)$	$15(1)$	$3(1)$	$8(1)$
$\mathrm{C}(5)$	$38(1)$	$29(1)$	$37(2)$	$17(1)$	$3(1)$	$5(1)$
$\mathrm{C}(6)$	$40(1)$	$25(1)$	$27(2)$	$12(1)$	$7(1)$	$9(1)$
$\mathrm{C}(7)$	$31(1)$	$28(1)$	$30(2)$	$13(1)$	$2(1)$	$5(1)$
$\mathrm{C}(8)$	$29(1)$	$27(1)$	$32(2)$	$14(1)$	$3(1)$	$6(1)$
$\mathrm{C}(9)$	$25(1)$	$30(1)$	$34(2)$	$18(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(10)$	$34(1)$	$24(1)$	$34(2)$	$15(1)$	$1(1)$	$4(1)$
$\mathrm{C}(11)$	$33(1)$	$28(1)$	$37(2)$	$17(1)$	$3(1)$	$8(1)$
$\mathrm{C}(12)$	$37(1)$	$26(1)$	$36(2)$	$15(1)$	$3(1)$	$7(1)$
$\mathrm{C}(13)$	$37(1)$	$28(1)$	$38(2)$	$19(1)$	$3(1)$	$6(1)$
$\mathrm{C}(14)$	$52(2)$	$30(2)$	$33(2)$	$11(1)$	$2(1)$	$14(1)$
$\mathrm{C}(15)$	$59(2)$	$45(2)$	$34(2)$	$16(2)$	$-4(2)$	$12(2)$
$\mathrm{C}(16)$	$58(2)$	$41(2)$	$49(2)$	$30(2)$	$-2(2)$	$9(1)$
$\mathrm{C}(17)$	$45(1)$	$27(1)$	$52(2)$	$21(1)$	$-1(1)$	$10(1)$
$\mathrm{C}(18)$	$45(1)$	$27(1)$	$38(2)$	$15(1)$	$2(1)$	$9(1)$
$\mathrm{C}(19)$	$51(2)$	$36(2)$	$37(2)$	$16(1)$	$5(1)$	$13(1)$
$\mathrm{C}(20)$	$33(1)$	$25(1)$	$36(2)$	$15(1)$	$-3(1)$	$5(1)$
$\mathrm{C}(21)$	$52(2)$	$49(2)$	$30(2)$	$16(1)$	$8(1)$	$7(1)$
$\mathrm{O}(1)$	$29(1)$	$37(1)$	$49(1)$	$27(1)$	$2(1)$	$3(1)$
$\mathrm{O}(2)$	$48(1)$	$51(1)$	$38(1)$	$12(1)$	$-5(1)$	$-6(1)$
$\mathrm{O}(3)$	$36(1)$	$38(1)$	$31(1)$	$16(1)$	$2(1)$	$4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{X}\right.$ 10^{3}) for compound ($\mathbf{2 R}, \mathbf{3 R}$)-184.

	x	y	z	U(eq)
H(1A)	-3799	-10273	-5188	43
H(2A)	-996	-11257	-3984	50
H(3A)	2609	-9853	-2804	46
H(4A)	3504	-7461	-2863	44
H(5A)	773	-6481	-4097	40
H(7A)	-5161	-8159	-5785	35
H(8A)	-1561	-6166	-5872	35
H(10A)	-3450	-3890	-6316	36
H(11A)	-8563	-4093	-7084	38
H(12A)	-4917	-2922	-8091	39
H(13A)	-10065	-3183	-8758	39
H(14A)	-8075	-4595	-10968	48
H(14B)	-6647	-2992	-10688	48
H(15A)	-9997	-3470	-12483	56
H(15B)	-11784	-3582	-11348	56
H(16A)	-9165	-762	-10922	56
H(16B)	-12025	-1071	-11256	56
H(17A)	-12341	-940	-8876	49
H(17B)	-10859	625	-8649	49
H(18A)	-7178	-455	-8314	44
H(18B)	-8928	-490	-7127	44
H(19A)	-5565	-2416	-4177	62
H(19B)	-4293	-3841	-4005	62
H(19C)	-7121	-3984	-4492	62
H(21A)	-257	-6478	-10288	66
H(21B)	-3050	-6621	-10863	66
H(21C)	-1818	-8084	-10743	66
H(1B)	-7372	-7727	-7209	54

Table 6. Torsion angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{3 R}$)-184.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$1.3(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.7(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	0.0 (5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	0.0 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	0.6 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.5(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-1.2(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	178.9(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	17.8(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-162.3(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	179.1(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	10.7(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	-106.7(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	132.4(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-59.4(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	178.0(2)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	57.7(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	62.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-59.8(3)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	179.9(2)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	124.9(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-113.0(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.2(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	110.9(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-125.4(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	176.6(2)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-58.3(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	56.2(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-54.3(4)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	54.3(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	-176.6(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	58.5(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	-56.6(3)

$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-0.9(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$118.7(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-119.1(3)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$179.2(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-61.3(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$60.9(2)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$0.7(4)$
$\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$-179.3(2)$

Symmetry transformations used to generate equivalent atoms:
7. Crystal structure of compound (2R, 3S)-184

Table 1. Crystal data and structure refinement for compound ($\mathbf{2 R}, \mathbf{3 S}$)-184.

Compound
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=65.51^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
(2R, 3S)-184
$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$
328.43

173(2) K
1.54178 Å

Orthorhombic
P2(1)2(1)2(1)
$a=5.4496(4) \AA \quad a=90^{\circ}$.
$b=13.7116(8) \AA \quad b=90^{\circ}$.
$\mathrm{c}=25.4795(15) \AA \quad \mathrm{g}=90^{\circ}$.
1903.9(2) \AA^{3}

4
$1.146 \mathrm{Mg} / \mathrm{m}^{3}$
$0.592 \mathrm{~mm}^{-1}$
712
$0.41 \times 0.09 \times 0.07 \mathrm{~mm}^{3}$
3.47 to 65.51°.
$-6<=\mathrm{h}<=4,-16<=\mathrm{k}<=16,-29<=\mathrm{l}<=30$
16001
$3218[\mathrm{R}(\mathrm{int})=0.0341]$
99.6 \%

Semi-empirical from equivalents
Full-matrix least-squares on F^{2}
3218 / 0 / 218
1.176
$\mathrm{R} 1=0.0356, \mathrm{wR} 2=0.0832$
$\mathrm{R} 1=0.0527, \mathrm{wR} 2=0.0970$
0.1(3)
0.0037(4)
0.176 and -0.195 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 R}, \mathbf{3 S}$)-184. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{C}(1)$	$8707(4)$	$4366(2)$	$9942(1)$	$39(1)$
$\mathrm{C}(2)$	$9687(5)$	$4390(2)$	$10444(1)$	$45(1)$
$\mathrm{C}(3)$	$8532(5)$	$3911(2)$	$10849(1)$	$50(1)$
$\mathrm{C}(4)$	$6391(5)$	$3402(2)$	$10756(1)$	$48(1)$
$\mathrm{C}(5)$	$5397(4)$	$3381(2)$	$10258(1)$	$40(1)$
$\mathrm{C}(6)$	$6552(4)$	$3852(1)$	$9840(1)$	$34(1)$
$\mathrm{C}(7)$	$5471(4)$	$3795(1)$	$9311(1)$	$37(1)$
$\mathrm{C}(8)$	$6693(4)$	$3878(1)$	$8867(1)$	$34(1)$
$\mathrm{C}(9)$	$5552(4)$	$3836(1)$	$8328(1)$	$32(1)$
$\mathrm{C}(10)$	$6691(4)$	$4619(1)$	$7963(1)$	$35(1)$
$\mathrm{C}(11)$	$6344(4)$	$5612(1)$	$8204(1)$	$37(1)$
$\mathrm{C}(12)$	$8112(4)$	$6139(1)$	$8411(1)$	$37(1)$
$\mathrm{C}(13)$	$7841(4)$	$7110(1)$	$8676(1)$	$38(1)$
$\mathrm{C}(14)$	$9447(5)$	$7891(2)$	$8415(1)$	$50(1)$
$\mathrm{C}(15)$	$9342(5)$	$8861(2)$	$8704(1)$	$56(1)$
$\mathrm{C}(16)$	$10009(5)$	$8744(2)$	$9277(1)$	$55(1)$
$\mathrm{C}(17)$	$8346(5)$	$8008(2)$	$9538(1)$	$52(1)$
$\mathrm{C}(18)$	$8466(5)$	$7028(2)$	$9258(1)$	$49(1)$
$\mathrm{C}(19)$	$5614(4)$	$4556(2)$	$7408(1)$	$45(1)$
$\mathrm{C}(20)$	$5968(4)$	$2821(1)$	$8100(1)$	$33(1)$
$\mathrm{C}(21)$	$8802(4)$	$1616(1)$	$7852(1)$	$42(1)$
$\mathrm{O}(1)$	$2969(3)$	$3980(1)$	$8360(1)$	$40(1)$
$\mathrm{O}(2)$	$4317(3)$	$2279(1)$	$7980(1)$	$45(1)$
$\mathrm{O}(3)$	$8343(3)$	$2590(1)$	$8052(1)$	$36(1)$
-				

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound ($\mathbf{2 R}, \mathbf{3 S}$)-184.

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(3)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.393(3)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.511(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.376(3)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.380(3)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.523 (3)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.379(3)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.395(3)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.473(2)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.318(3)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{O}(2)$	$1.207(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.510(2)$	$\mathrm{C}(20)-\mathrm{O}(3)$	$1.338(2)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{O}(3)$	1.451 (2)
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.424(2)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(20)$	$1.525(3)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.549(3)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.506(3)$	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.533(3)$		
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.52(19)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.315(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.7
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.7
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.500(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.3(2)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.527(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.534(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.93(19)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	1.0000	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.522(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.0
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.1(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.0
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.512(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.0

$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.0(2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.2
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	112.27(18)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.5	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.22(17)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.2
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.28(17)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.2
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.50(19)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.2
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	125.4(2)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	107.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.3	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	111.4(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.3	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.3
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.8(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.3
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.6	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.3
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.6	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.3
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.42(16)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.0
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)$	107.19(16)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	110.6(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	108.66(15)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	109.60(16)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.78(16)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)$	110.11(15)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	112.23(16)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.1
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	109.36(15)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	110.97(19)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	111.16(17)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.0	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.0	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.0	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	124.7(2)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.0
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	117.7	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	112.35(17)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	117.7	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	126.6(2)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	116.7	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.1
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	116.7	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.1
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	110.45(16)	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	107.9
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	111.61(17)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	110.21(19)	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.2	$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	108.2	$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5

$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5	$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)$	$123.51(18)$	$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(9)$	$123.23(19)$	$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(20)-\mathrm{C}(9)$	$113.26(17)$	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5	$\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$114.62(16)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5		

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \mathrm{X}^{103}$) for compound (2R, 3S)184. The anisotropic displacement factor exponent takes the form: $-2 p^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$42(2)$	$37(1)$	$38(1)$	$-2(1)$	$2(1)$	$0(1)$
$\mathrm{C}(2)$	$42(2)$	$44(1)$	$49(1)$	$-8(1)$	$-7(1)$	$6(1)$
$\mathrm{C}(3)$	$64(2)$	$48(1)$	$37(1)$	$-3(1)$	$-8(1)$	$16(1)$
$\mathrm{C}(4)$	$68(2)$	$42(1)$	$35(1)$	$3(1)$	$10(1)$	$8(1)$
$\mathrm{C}(5)$	$45(2)$	$34(1)$	$41(1)$	$-2(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(6)$	$39(1)$	$29(1)$	$34(1)$	$-3(1)$	$3(1)$	$6(1)$
$\mathrm{C}(7)$	$35(1)$	$34(1)$	$40(1)$	$-3(1)$	$1(1)$	$1(1)$
$\mathrm{C}(8)$	$33(1)$	$31(1)$	$37(1)$	$-2(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(9)$	$24(1)$	$34(1)$	$38(1)$	$-3(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(10)$	$37(1)$	$32(1)$	$35(1)$	$-1(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(11)$	$38(1)$	$33(1)$	$39(1)$	$0(1)$	$-1(1)$	$3(1)$
$\mathrm{C}(12)$	$38(1)$	$32(1)$	$41(1)$	$-1(1)$	$3(1)$	$2(1)$
$\mathrm{C}(13)$	$38(1)$	$33(1)$	$44(1)$	$-3(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(14)$	$61(2)$	$36(1)$	$52(1)$	$-1(1)$	$8(1)$	$-6(1)$
$\mathrm{C}(15)$	$69(2)$	$35(1)$	$63(1)$	$-4(1)$	$16(1)$	$-7(1)$
$\mathrm{C}(16)$	$48(2)$	$44(1)$	$73(2)$	$-21(1)$	$-5(1)$	$-1(1)$
$\mathrm{C}(17)$	$67(2)$	$44(1)$	$44(1)$	$-7(1)$	$-5(1)$	$4(1)$
$\mathrm{C}(18)$	$63(2)$	$39(1)$	$46(1)$	$-3(1)$	$2(1)$	$0(1)$
$\mathrm{C}(19)$	$57(2)$	$40(1)$	$38(1)$	$0(1)$	$-4(1)$	$2(1)$
$\mathrm{C}(20)$	$35(1)$	$36(1)$	$29(1)$	$2(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(21)$	$43(2)$	$31(1)$	$52(1)$	$-13(1)$	$-1(1)$	$1(1)$
$\mathrm{O}(1)$	$30(1)$	$41(1)$	$49(1)$	$-6(1)$	$-2(1)$	$3(1)$
$\mathrm{O}(2)$	$38(1)$	$40(1)$	$58(1)$	$-10(1)$	$-4(1)$	$-8(1)$
$\mathrm{O}(3)$	$30(1)$	$31(1)$	$46(1)$	$-9(1)$	$-1(1)$	$1(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound ($\mathbf{2 R}, \mathbf{3 S}$)-184.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(1A)	9510	4702	9665	47
H(2A)	11162	4739	10508	54
H(3A)	9208	3931	11192	60
H(4A)	5601	3066	11034	58
H(5A)	3903	3041	10199	48
H(7A)	3752	3688	9288	44
H(8A)	8417	3972	8888	40
H(10A)	8494	4490	7938	41
H(11A)	4734	5877	8206	44
H(12A)	9725	5878	8391	44
H(13A)	6088	7318	8645	46
H(14A)	11168	7660	8405	59
H(14B)	8894	7987	8049	59
H(15A)	10492	9326	8537	67
H(15B)	7666	9135	8676	67
H(16A)	11735	8526	9307	66
H(16B)	9856	9381	9457	66
H(17A)	6637	8252	9534	62
H(17B)	8846	7924	9909	62
H(18A)	7304	6570	9428	59
H(18B)	10138	6754	9296	59
H(19A)	6367	5056	7186	68
H(19B)	3837	4662	7423	68
H(19C)	5949	3910	7260	68
H(21A)	10575	1507	7827	63
H(21B)	8058	1548	7504	63
H(21C)	8081	1135	8092	63
H(1B)	2243	3481	8249	60

Table 6. Torsion angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{3 S}$)-184.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.4(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	0.1(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.6(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$1.4(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	1.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.01(18)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	-1.6(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	178.51(19)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	26.0(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-154.1(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-178.80(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	16.9(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)$	-100.4(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	138.6(2)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	64.4(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-57.7(2)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-177.93(17)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-60.1(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	177.83(16)
$\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	57.6(2)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-127.8(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	108.4(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-177.13(17)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	113.9(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-123.1(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-175.66(19)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-52.5(3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	55.1(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-56.8(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	57.2(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	-56.2(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	177.0(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	53.2(3)

$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-0.2(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$119.2(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(2)$	$-119.3(2)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-179.55(15)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$-60.2(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)$	$61.3(2)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$-1.4(2)$
$\mathrm{C}(9)-\mathrm{C}(20)-\mathrm{O}(3)-\mathrm{C}(21)$	$178.03(14)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound (2R, 3S)-184 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$O(1)-H(1 B) \ldots \mathrm{O}(2)$	0.84	2.11	$2.6306(19)$	119.5
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(3) \# 1$	0.84	2.50	$3.2562(19)$	150.0

Symmetry transformations used to generate equivalent atoms:
\#1 x-1,y, z
8. Crystal structure of compound ($2 R, 3 R$)-187

Table 1. Crystal data and structure refinement for compound ($\mathbf{2 R}, \mathbf{3 R}$)-187.

Compound
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=69.29^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
(2R, 3R)-187
$\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{Br} \mathrm{O}_{3}$
353.25

173(2) K
$1.54178 \AA$
Monoclinic
P2(1)
$a=5.75640(10) \AA \quad \alpha=90^{\circ}$.
$b=7.8526(2) \AA \quad \beta=96.2410(10)^{\circ}$.
$\mathrm{c}=18.9358(4) \AA \quad \gamma=90^{\circ}$.
850.88(3) \AA^{3}

2
$1.379 \mathrm{Mg} / \mathrm{m}^{3}$
$3.350 \mathrm{~mm}^{-1}$
364
$0.34 \times 0.09 \times 0.04 \mathrm{~mm}^{3}$
2.35 to 69.29°.
$-6<=\mathrm{h}<=6,-7<=\mathrm{k}<=9,-22<=1<=21$
5758
$2337[\mathrm{R}(\mathrm{int})=0.0180]$
97.8 \%

Semi-empirical from equivalents
0.8693 and 0.3954

Full-matrix least-squares on F^{2}
2337/1/190
1.050
$\mathrm{R} 1=0.0236, \mathrm{wR} 2=0.0642$
$\mathrm{R} 1=0.0240, \mathrm{wR} 2=0.0644$
0.015(17)
0.291 and -0.219 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 R}, \mathbf{3 R}$)-187. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{Uij}^{\mathrm{ij}}$ tensor.

	x	y	Z	U(eq)
$\operatorname{Br}(1)$	-4854(1)	-10060(1)	-11512(1)	54(1)
C(1)	-6265(3)	-10198(4)	-9419(1)	35(1)
C(2)	-5222(4)	-10414(3)	-10036(1)	37(1)
C(3)	-6337(3)	-9796(3)	-10670(1)	37(1)
C(4)	-8473(4)	-8986(4)	-10698(1)	41(1)
C(5)	-9495(4)	-8783(3)	-10075(1)	38(1)
C(6)	-8419(4)	-9359(3)	-9424(1)	32(1)
C(7)	-9576(4)	-9098(3)	-8779(1)	34(1)
C(8)	-8567(4)	-9218(3)	-8120(1)	36(1)
C(9)	-9806(4)	-8928(3)	-7462(1)	35(1)
$\mathrm{C}(10)$	-9328(5)	-10419(3)	-6931(1)	49(1)
$\mathrm{C}(11)$	-9992(4)	-9934(4)	-6206(1)	47(1)
C(12)	-8667(4)	-10035(5)	-5594(1)	49(1)
C(13)	-6186(6)	-10678(7)	-5514(2)	81(1)
C(14)	-9535(6)	-9519(5)	-4903(2)	67(1)
C(15)	-10641(12)	-12001(4)	-7210(2)	100(2)
$\mathrm{C}(16)$	-8935(4)	-7275(3)	-7110(1)	36(1)
$\mathrm{C}(17)$	-5703(5)	-5784(6)	-6568(2)	78(1)
$\mathrm{O}(1)$	-12253(3)	-8780(2)	-7636(1)	44(1)
$\mathrm{O}(2)$	-6633(3)	-7290(3)	-6929(1)	50(1)
$\mathrm{O}(3)$	-10174(3)	-6117(3)	-7002(1)	54(1)

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for compound $(\mathbf{2 R}, \mathbf{3 R}) \mathbf{- 1 8 7}$.

$\operatorname{Br}(1)-\mathrm{C}(3)$	1.901(2)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	1.380 (3)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(6)$	1.403(3)	$\mathrm{C}(16)-\mathrm{O}(3)$	1.187(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{O}(2)$	$1.332(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.386(3)$	$\mathrm{C}(17)-\mathrm{O}(2)$	1.440(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.380 (3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.383(3)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(5)-\mathrm{C}(6)$	1.393 (3)		
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.18(19)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.467 (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.322(3)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.1(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.517(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.4
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.4
$\mathrm{C}(9)-\mathrm{O}(1)$	1.416 (3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.4(2)
$\mathrm{C}(9)-\mathrm{C}(16)$	1.520 (3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Br}(1)$	119.83(16)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.548 (3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	118.73(16)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.515(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.7(2)
$\mathrm{C}(10)-\mathrm{C}(15)$	1.519 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.7
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.7
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.318(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.8(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.1
$\mathrm{C}(12)-\mathrm{C}(14)$	1.506 (4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.1
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.507(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.7(2)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.50(19)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.75(19)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	125.7(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.1
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.1
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.5(2)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.7

$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.7	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	111.46(18)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)$	107.75(18)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)$	109.02(19)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	108.4(2)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.65(19)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)$	109.5(2)	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	110.8(3)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	110.7(2)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	110.3(3)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	127.0(2)	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{O}(2)$	124.2(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(9)$	123.7(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.5	$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(9)$	112.1(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	122.1(3)	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	124.1(2)	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(13)$	113.8(2)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	H(17B)-C(17)-H(17C)	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{O}(2)-\mathrm{C}(17)$	115.0(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound (2R, 3R)187. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

		U^{11}	U^{22}	U^{33}	U^{23}	U^{13}
					U^{12}	
$\mathrm{Br}(1)$	$52(1)$	$76(1)$	$35(1)$	$-14(1)$	$7(1)$	$-3(1)$
$\mathrm{C}(1)$	$36(1)$	$34(1)$	$34(1)$	$3(1)$	$-2(1)$	$5(1)$
$\mathrm{C}(2)$	$34(1)$	$34(1)$	$41(1)$	$-4(1)$	$1(1)$	$2(1)$
$\mathrm{C}(3)$	$37(1)$	$41(1)$	$31(1)$	$-6(1)$	$2(1)$	$-7(1)$
$\mathrm{C}(4)$	$36(1)$	$53(2)$	$32(1)$	$3(1)$	$-6(1)$	$-3(1)$
$\mathrm{C}(5)$	$32(1)$	$41(1)$	$40(1)$	$4(1)$	$-4(1)$	$3(1)$
$\mathrm{C}(6)$	$31(1)$	$30(1)$	$35(1)$	$-1(1)$	$-2(1)$	$-3(1)$
$\mathrm{C}(7)$	$31(1)$	$30(1)$	$40(1)$	$2(1)$	$1(1)$	$1(1)$
$\mathrm{C}(8)$	$34(1)$	$35(1)$	$39(1)$	$-1(1)$	$3(1)$	$5(1)$
$\mathrm{C}(9)$	$35(1)$	$33(1)$	$37(1)$	$2(1)$	$4(1)$	$5(1)$
$\mathrm{C}(10)$	$72(2)$	$35(2)$	$42(1)$	$5(1)$	$14(1)$	$13(1)$
$\mathrm{C}(11)$	$56(1)$	$41(1)$	$45(1)$	$8(1)$	$16(1)$	$6(2)$
$\mathrm{C}(12)$	$55(1)$	$48(1)$	$46(1)$	$3(2)$	$15(1)$	$-2(2)$
$\mathrm{C}(13)$	$59(2)$	$125(4)$	$57(2)$	$8(2)$	$4(1)$	$10(2)$
$\mathrm{C}(14)$	$76(2)$	$84(3)$	$42(1)$	$2(2)$	$14(1)$	$2(2)$
$\mathrm{C}(15)$	$212(6)$	$31(2)$	$60(2)$	$0(2)$	$28(3)$	$-18(2)$
$\mathrm{C}(16)$	$36(1)$	$38(1)$	$36(1)$	$2(1)$	$6(1)$	$1(1)$
$\mathrm{C}(17)$	$54(2)$	$123(3)$	$58(2)$	$-47(2)$	$18(1)$	$-35(2)$
$\mathrm{O}(1)$	$35(1)$	$49(1)$	$49(1)$	$-5(1)$	$6(1)$	$-1(1)$
$\mathrm{O}(2)$	$34(1)$	$75(1)$	$43(1)$	$-17(1)$	$6(1)$	$-4(1)$
$\mathrm{O}(3)$	$53(1)$	$38(1)$	$72(1)$	$-11(1)$	$3(1)$	$6(1)$
-						

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound ($\mathbf{2 R}, \mathbf{3 R}$)-187.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
H(1A)	-5512	-10625	-8984	42
$\mathrm{H}(2 \mathrm{~A})$	-3759	-10978	-10025	44
H(4A)	-9226	-8576	-11136	49
H(5A)	-10971	-8235	-10091	46
H(7A)	-11190	-8817	-8841	41
H(8A)	-6955	-9506	-8052	43
H(10A)	-7616	-10676	-6884	59
H(11A)	-11532	-9510	-6190	56
H(13A)	-5737	-10993	-5981	121
H(13B)	-6066	-11678	-5202	121
H(13C)	-5141	-9782	-5306	121
H(14A)	-11157	-9127	-4993	100
H(14B)	-8558	-8595	-4687	100
H(14C)	-9456	-10497	-4580	100
H(15A)	-10318	-12936	-6870	150
H(15B)	-10131	-12324	-7668	150
H(15C)	-12323	-11764	-7270	150
H(17A)	-4011	-5910	-6451	116
H(17B)	-6442	-5625	-6131	116
H(17C)	-6023	-4792	-6878	116
H(1B)	-12541	-7971	-7923	66

Table 6. Torsion angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{3 R}$)-187.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-0.4(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.6(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	178.72(19)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.5(4)$
$\operatorname{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-178.81(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	0.6 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	-1.4(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	179.5(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$1.3(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.7(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-163.8(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	17.2(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	179.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	9.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)$	-109.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	130.1(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-72.7(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	164.8(2)
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	44.6(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	50.3(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-72.2(3)
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	167.6(3)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	110.4(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-126.9(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	-179.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-0.2(6)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	$1.3(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	122.4(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	-116.4(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	-179.69(19)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	-58.6(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	62.6(3)
$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{O}(2)-\mathrm{C}(17)$	$1.3(4)$

Symmetry transformations used to generate equivalent atoms:
Table 7. Hydrogen bonds for compound (2R, 3R)-187 [Å and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{Br}(1) \# 1$	0.84	2.88	$3.651(2)$	154.1

Symmetry transformations used to generate equivalent atoms:
\#1-x-2,y+1/2,-z-2

9. Crystal structure of compound (2R, 3S)-187

Table 1. Crystal data and structure refinement for compound (2R, 3S)-187.

Compound
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=69.26^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
($2 R, 3 S$)-187
C17 H21 Br O3
353.25

173(2) K
1.54178 Å

Orthorhombic
P2(1)2(1)2(1)
$a=5.76370(10) \AA \quad \alpha=90^{\circ}$.
$b=13.8437(3) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=20.8594(5) \AA \quad \gamma=90^{\circ}$.
$1664.39(6) \AA^{3}$
4
$1.410 \mathrm{Mg} / \mathrm{m}^{3}$
$3.426 \mathrm{~mm}^{-1}$
728
$0.34 \times 0.17 \times 0.05 \mathrm{~mm}^{3}$
3.83 to 69.26°.
$-4<=\mathrm{h}<=6,-16<=\mathrm{k}<=15,-17<=1<=25$
6741
$2632[\mathrm{R}(\mathrm{int})=0.0178]$
95.4 \%

Semi-empirical from equivalents
0.8474 and 0.3888

Full-matrix least-squares on F^{2}
2632 / 0/190
1.050
$\mathrm{R} 1=0.0196, \mathrm{wR} 2=0.0524$
$\mathrm{R} 1=0.0200, \mathrm{wR} 2=0.0527$
0.031(13)
0.267 and -0.273 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 R}, \mathbf{3 S}$) -187. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{3 S}$) $\mathbf{- 1 8 7}$.

$\mathrm{Br}(1)-\mathrm{C}(3)$	1.8993 (19)	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.387(3)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800
$\mathrm{C}(1)-\mathrm{C}(6)$	1.393 (3)	$\mathrm{C}(16)-\mathrm{O}(2)$	1.200 (2)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{O}(3)$	$1.334(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.380 (3)	$\mathrm{C}(17)-\mathrm{O}(3)$	1.446 (2)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	1.378 (3)	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.392(3)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(5)-\mathrm{C}(6)$	1.396 (3)		
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.46(18)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.476 (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.3
$\mathrm{C}(7)-\mathrm{C}(8)$	1.315 (3)	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.3
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	118.90(19)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.513 (3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.6
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.6
$\mathrm{C}(9)-\mathrm{O}(1)$	1.423 (2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.41(18)
$\mathrm{C}(9)-\mathrm{C}(16)$	$1.535(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Br}(1)$	119.51(15)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.552(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	119.04(15)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.502(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.02(19)
$\mathrm{C}(10)-\mathrm{C}(15)$	1.528 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	1.0000	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.322(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.09(19)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.5
$\mathrm{C}(12)-\mathrm{C}(14)$	1.489(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.5
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.513(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	118.04(18)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9800	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	119.10(18)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9800	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	122.86(18)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.85(19)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9800	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.6
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.6
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.48(18)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8

$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8	$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.60(16)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)$	107.47(15)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)$	107.81(13)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	109.04(15)	$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	111.51(16)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)$	110.34(15)	$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	110.65(16)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	110.22(16)	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(9)$	110.98(16)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{C}(10)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.3	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	127.85(18)	$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{O}(3)$	123.91(16)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.1	$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{C}(9)$	123.30(17)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	116.1	$\mathrm{O}(3)-\mathrm{C}(16)-\mathrm{C}(9)$	112.78(15)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	125.2(2)	$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.92(19)	$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(14)-\mathrm{C}(12)-\mathrm{C}(13)$	113.92(19)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{H}(17 \mathrm{~B})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5	$\mathrm{C}(16)-\mathrm{O}(3)-\mathrm{C}(17)$	114.69(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \mathrm{X}_{10}{ }^{3}\right)$ for compound (2R, 3S)187. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Br}(1)$	$59(1)$	$31(1)$	$41(1)$	$5(1)$	$-8(1)$	$4(1)$
$\mathrm{C}(1)$	$29(1)$	$32(1)$	$38(1)$	$-6(1)$	$3(1)$	$-3(1)$
$\mathrm{C}(2)$	$39(1)$	$31(1)$	$33(1)$	$-1(1)$	$2(1)$	$-5(1)$
$\mathrm{C}(3)$	$40(1)$	$25(1)$	$30(1)$	$-3(1)$	$-8(1)$	$0(1)$
$\mathrm{C}(4)$	$32(1)$	$30(1)$	$37(1)$	$-4(1)$	$-2(1)$	$3(1)$
$\mathrm{C}(5)$	$31(1)$	$30(1)$	$34(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(6)$	$29(1)$	$26(1)$	$27(1)$	$-4(1)$	$-4(1)$	$-3(1)$
$\mathrm{C}(7)$	$29(1)$	$29(1)$	$33(1)$	$-5(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(8)$	$28(1)$	$28(1)$	$26(1)$	$-5(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(9)$	$25(1)$	$29(1)$	$25(1)$	$-3(1)$	$-3(1)$	$1(1)$
$\mathrm{C}(10)$	$31(1)$	$31(1)$	$26(1)$	$-3(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(11)$	$29(1)$	$43(1)$	$26(1)$	$-1(1)$	$-2(1)$	$-1(1)$
$\mathrm{C}(12)$	$37(1)$	$34(1)$	$25(1)$	$-4(1)$	$3(1)$	$-6(1)$
$\mathrm{C}(13)$	$46(1)$	$53(1)$	$38(1)$	$-18(1)$	$7(1)$	$-13(1)$
$\mathrm{C}(14)$	$45(1)$	$58(2)$	$47(1)$	$-13(1)$	$-1(1)$	$12(1)$
$\mathrm{C}(15)$	$56(1)$	$35(1)$	$32(1)$	$3(1)$	$2(1)$	$0(1)$
$\mathrm{C}(16)$	$29(1)$	$22(1)$	$23(1)$	$3(1)$	$2(1)$	$2(1)$
$\mathrm{C}(17)$	$29(1)$	$39(1)$	$33(1)$	$-11(1)$	$-2(1)$	$-1(1)$
$\mathrm{O}(1)$	$25(1)$	$35(1)$	$34(1)$	$-6(1)$	$-3(1)$	$2(1)$
$\mathrm{O}(2)$	$28(1)$	$30(1)$	$32(1)$	$-5(1)$	$4(1)$	$2(1)$
$\mathrm{O}(3)$	$24(1)$	$35(1)$	$30(1)$	$-11(1)$	$-2(1)$	$2(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound ($\mathbf{2 R}, \mathbf{3 S}$)-187.

	x	y	Z	U(eq)
H(1A)	6900	7374	553	39
$\mathrm{H}(2 \mathrm{~A})$	5832	8882	148	41
H(4A)	-229	8726	1121	39
H(5A)	817	7200	1509	38
H(7A)	6287	6028	1299	36
H(8A)	1671	5552	1456	33
H(10A)	1241	4156	2233	35
H(11A)	5164	4666	3001	39
H(13A)	4957	5825	3749	68
H(13B)	2389	5982	4023	68
H(13C)	3457	6735	3521	68
H(14A)	-489	5334	2549	75
H(14B)	29	6423	2764	75
H(14C)	-1025	5670	3268	75
H(15A)	2818	2868	2840	61
H(15B)	5268	3005	2491	61
H(15C)	3061	2645	2090	61
H(17A)	-1031	2923	481	51
H(17B)	1304	2326	606	51
H(17C)	1295	3202	106	51
H(1B)	7201	4141	1433	47

Table 6. Torsion angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{3 S}$)-187.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.3(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	2.4(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	-175.25(15)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-3.1(3)
$\operatorname{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	174.56(14)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	1.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-2.2(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	177.59(17)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-178.29(18)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-154.44(19)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	25.4(3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	177.64(16)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	10.3(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)$	-106.89(19)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	131.84(18)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	58.3(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-64.1(2)
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	176.11(16)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	-64.6(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	172.95(16)
$\mathrm{C}(16)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(15)$	53.2(2)
$\mathrm{C}(15)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-134.1(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	102.8(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(14)$	-0.5(4)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	179.75(19)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	-5.5(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	113.71(19)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(2)$	-124.30(18)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	175.31(15)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	-65.5(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(16)-\mathrm{O}(3)$	56.5(2)
$\mathrm{O}(2)-\mathrm{C}(16)-\mathrm{O}(3)-\mathrm{C}(17)$	0.9(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound (2R, 3S)-187 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2)$	0.84	2.14	$2.6467(18)$	118.4
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(3) \# 1$	0.84	2.60	$3.2936(18)$	140.4

Symmetry transformations used to generate equivalent atoms:
\#1 x+1, y , z
10. Crystal structure of compound 243

Table 1. Crystal data and structure refinement for compound 243.

Compound	243
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$
Formula weight	340.44
Temperature	293(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2(1)
Unit cell dimensions	$a=5.9599(4) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=14.1275(7) \AA \quad \beta=92.370(5)^{\circ}$.
	$\mathrm{c}=11.3539(6) \AA \quad \gamma=90^{\circ}$.
Volume	955.16(9) \AA^{3}
Z	2
Density (calculated)	$1.184 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.609 \mathrm{~mm}^{-1}$
F(000)	368
Crystal size	$0.33 \times 0.27 \times 0.11 \mathrm{~mm}^{3}$
Theta range for data collection	3.90 to 69.38°.
Index ranges	$-6<=\mathrm{h}<=6,-16<=\mathrm{k}<=16,-13<=\mathrm{l}<=13$
Reflections collected	5844
Independent reflections	$2934[\mathrm{R}(\mathrm{int})=0.0273]$
Completeness to theta $=69.38^{\circ}$	89.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9360 and 0.8243
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2934 / 1/226
Goodness-of-fit on F^{2}	1.007
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0455, \mathrm{wR} 2=0.1037$
R indices (all data)	$\mathrm{R} 1=0.0532, \mathrm{wR} 2=0.1116$
Absolute structure parameter	-0.1(3)
Largest diff. peak and hole	0.246 and -0.292 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 243. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound 243.

$\mathrm{C}(1)-\mathrm{C}(6)$	$1.401(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.542(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.403(4)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9700
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.470(4)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9700
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.374(4)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9700
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9300	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9700
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.379(5)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.308(4)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9300	$\mathrm{C}(18)$-C(20)	$1.494(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.392(5)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.502(4)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9300	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9600
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.374(4)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9600
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9300	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9600
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9300	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9600
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.322(4)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9600
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9300	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9600
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.509(4)$	$\mathrm{C}(21)-\mathrm{O}(3)$	$1.204(4)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9300	$\mathrm{C}(21)-\mathrm{O}(2)$	$1.323(4)$
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.408(4)$	$\mathrm{C}(22)-\mathrm{O}(2)$	$1.455(4)$
$\mathrm{C}(9)-\mathrm{C}(21)$	$1.546(4)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9600
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.543(4)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9600
$\mathrm{C}(10)-\mathrm{C}(17)$	$1.306(4)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9600
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.532(4)$	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8200
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.512(4)$		
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.536(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	117.2(3)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	123.1(3)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.537(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	119.7(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9700	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.3(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9700	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.4
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.504(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.4
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9700	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	120.7(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9700	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.6
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.516(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	119.6
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9700	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.0(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9700	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5

$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.5	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	120.5(3)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.3
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.3
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	121.2(3)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	107.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.4	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	111.6 (3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	119.4	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	126.2(3)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.9	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	116.9	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.4(3)	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	111.2(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.4(2)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(21)$	108.0(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)$	110.7(2)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	110.6(2)	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	109.8(2)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	111.1(2)
$\mathrm{C}(21)-\mathrm{C}(9)-\mathrm{C}(10)$	107.2(2)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(11)$	122.4(3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(9)$	121.7(3)	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	115.9(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	111.9(2)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.0
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	110.4(2)	$\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)$	176.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	110.7(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	121.8(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.9	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	122.0(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.9	$\mathrm{C}(20)-\mathrm{C}(18)-\mathrm{C}(19)$	116.2(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.9	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	110.8(3)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5	H(19A)-C(19)-H(19B)	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	109.5	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	H(19A)-C(19)-H(19C)	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	109.5	H(19B)-C(19)-H(19C)	109.5
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.1	$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	111.7(3)	$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5

$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{C}(18)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{O}(2)$	$125.3(3)$	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	109.5
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{C}(9)$	$121.9(3)$	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{C}(9)$	$112.8(2)$	$\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(22)$	$115.5(2)$
$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	109.5		
-			

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound 243. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+\right.$ $2 \mathrm{hka} \mathrm{a}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
C (1)	45(2)	23(1)	30(1)	1(1)	5(1)	-1(1)
C(2)	52(2)	35(2)	34(1)	-2(1)	6 (1)	6 (1)
C(3)	77(3)	36(2)	34(2)	-5(1)	6 (2)	-1(2)
C(4)	68(3)	43(2)	35(2)	-1(1)	-9(2)	-12(2)
C(5)	50(2)	41(2)	44(2)	6 (2)	-7(2)	-2(2)
C(6)	49(2)	29(2)	35(1)	2(1)	1(1)	2(1)
C(7)	37(2)	28(1)	32(1)	3(1)	5(1)	2(1)
C (8)	34(2)	28(2)	34(1)	3(1)	3(1)	0 (1)
C(9)	38(2)	31(2)	29(1)	-1(1)	3(1)	-1(1)
$\mathrm{C}(10)$	38(2)	31(2)	29(1)	-4(1)	1(1)	3(1)
C(11)	43(2)	28(2)	29(1)	-2(1)	4(1)	4(1)
C (12)	37(2)	28(2)	46(2)	-7(1)	-1(1)	2(1)
C(13)	39(2)	28(2)	60(2)	-10(1)	0 (2)	0 (1)
C(14)	51(2)	26(2)	49(2)	-1(1)	10(1)	3(1)
$\mathrm{C}(15)$	43(2)	31(2)	44(2)	4(1)	-1(1)	6(1)
C(16)	37(2)	29(2)	44(2)	1(1)	$0(1)$	1(1)
C(17)	39(2)	31(2)	31(1)	1(1)	-2(1)	0 (1)
C(18)	44(2)	29(2)	32(1)	-2(1)	4(1)	-1(1)
C(19)	53(2)	46(2)	40(2)	-8(1)	-1(2)	3(2)
C(20)	46(2)	32(2)	48(2)	-1(1)	5(2)	3(1)
C(21)	45(2)	32(2)	28(1)	1(1)	1(1)	-3(1)
C(22)	64(2)	25(2)	52(2)	-7(1)	-2(2)	6 (1)
$\mathrm{O}(1)$	41(1)	34(1)	44(1)	-3(1)	$6(1)$	0 (1)
$\mathrm{O}(2)$	47(1)	26(1)	42(1)	-5(1)	-4(1)	3(1)
$\mathrm{O}(3)$	51(2)	34(1)	56(1)	-4(1)	-2(1)	-7(1)

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 243.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2A)	568	4097	3091	48
H(3A)	2492	4524	4797	59
H(4A)	6052	3938	5230	59
H(5A)	7653	2890	3928	55
H(6A)	5720	2435	2235	45
H(7A)	54	3061	1380	39
H(8A)	3877	2335	484	39
H(11A)	605	3952	-882	40
H(12A)	4416	4191	-1233	45
H(12B)	3898	4184	-2600	45
H(13A)	2401	5601	-1034	51
H(13B)	4206	5762	-1981	51
H(14A)	1528	5597	-3492	50
H(14B)	699	6372	-2621	50
H(15A)	-2220	5305	-3159	47
H(15B)	-1736	5307	-1789	47
H(16A)	-2036	3727	-2422	44
H(16B)	-194	3891	-3350	44
H(19A)	430	1587	-4363	69
H(19B)	2185	770	-4487	69
H(19C)	2461	1719	-5182	69
H(20A)	6563	1971	-2779	63
H(20B)	6410	1970	-4160	63
H(20C)	6149	1020	-3465	63
H(22A)	5467	-230	-1020	71
H(22B)	3463	-164	-1956	71
H(22C)	3060	-557	-691	71
H(1A)	-1592	2870	-236	59

Table 6. Torsion angles [${ }^{\circ}$] for compound 243.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-1.3(4)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	178.0(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.2(5)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-0.4(5)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.3(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	0.1(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	0.7(4)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-178.6(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	-14.5(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	166.2(3)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	178.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	-7.8(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)$	-127.4(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	114.4(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)$	-121.6(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)$	116.3(3)
$\mathrm{C}(21)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)$	-4.0(4)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	55.7(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-66.4(3)
$\mathrm{C}(21)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	173.3(2)
$\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	65.1(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	-112.2(3)
$\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-58.5(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	124.2(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	56.2(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.4(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-55.6(4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	55.0(4)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-54.9(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	179.7(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	-56.5(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	56.0(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)$	144(6)

$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)$	$-39(6)$
$\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(20)$	$-51(6)$
$\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$129(6)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(3)$	$19.0(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(3)$	$140.0(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(3)$	$-100.3(3)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(2)$	$-162.8(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(2)$	$-41.8(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(2)$	$77.9(3)$
$\mathrm{O}(3)-\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(22)$	$6.9(4)$
$\mathrm{C}(9)-\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(22)$	$-171.2(2)$
-	

Symmetry transformations used to generate equivalent atoms:

Comparing experimental Parsons' Q-values with those from calculated dataset 1 Correlation coefficient 14.02, GooF 0.9354, Flack x -0.0765 (0.1232)
11. Crystal structure of compound ($2 R, 4 S$)-260

Table 1. Crystal data and structure refinement for compound (2R, 4S)-260.

Compound	($2 R, 4 S$ - 260
Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3}$
Formula weight	402.51
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=5.7202(2) \AA \quad \alpha=90^{\circ}$.
	$b=14.8351(6) \AA$ A $\quad \beta=90^{\circ}$.
	$\mathrm{c}=26.7155(11) \AA$ A $\quad \gamma=90^{\circ}$.
Volume	2267.07(15) \AA^{3}
Z	4
Density (calculated)	$1.179 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.593 \mathrm{~mm}^{-1}$
F(000)	864
Crystal size	$0.54 \times 0.25 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	3.31 to 69.36°.
Index ranges	-6<=h<=6, -16<=k<=18, -30<=l<=29
Reflections collected	20515
Independent reflections	$4004[\mathrm{R}(\mathrm{int})=0.0177]$
Completeness to theta $=69.36^{\circ}$	96.4 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9174 and 0.7399
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4004 / 0 / 271
Goodness-of-fit on F^{2}	1.042
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0298, \mathrm{wR} 2=0.0754$
R indices (all data)	$\mathrm{R} 1=0.0305, \mathrm{wR} 2=0.0761$
Absolute structure parameter	0.06(15)
Largest diff. peak and hole	0.131 and -0.193 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 R}, \mathbf{4 S}$)-260. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
C(1)	12400(2)	7454(1)	6613(1)	38(1)
C(2)	13794(3)	7228(1)	6210(1)	48(1)
C(3)	13120(4)	7467(1)	5732(1)	60(1)
C(4)	11056(4)	7926(1)	5660(1)	63(1)
C(5)	9635(3)	8132(1)	6061(1)	45(1)
C(6)	10297(2)	7912(1)	6547(1)	32(1)
C(7)	8802(2)	8187(1)	6969(1)	31(1)
C(8)	9546(2)	8298(1)	7434(1)	28(1)
C(9)	8041(2)	8603(1)	7869(1)	27(1)
C(10)	8514(2)	7972(1)	8317(1)	26(1)
C(11)	9577(2)	8279(1)	8717(1)	28(1)
C(12)	10783(2)	8597(1)	9094(1)	30(1)
C(13)	9624(2)	8954(1)	9565(1)	33(1)
C(14)	10658(3)	8535(1)	10039(1)	41(1)
C(15)	9420(4)	8876(1)	10509(1)	53(1)
C(16)	9530(4)	9893(1)	10538(1)	61(1)
C(17)	8510(4)	10326(1)	10071(1)	65(1)
C(18)	9733(3)	9982(1)	9598(1)	50(1)
C(19)	7952(2)	6991(1)	8262(1)	28(1)
C(20)	9537(2)	6353(1)	8437(1)	41(1)
C(21)	9060(3)	5440(1)	8401(1)	51(1)
C(22)	7004(3)	5143(1)	8196(1)	43(1)
C(23)	5415(3)	5763(1)	8021(1)	40(1)
C(24)	5881(2)	6681(1)	8051(1)	35(1)
C(25)	8689(2)	9575(1)	8019(1)	29(1)
C(26)	11601(2)	10655(1)	8147(1)	42(1)
C(27)	13423(2)	8613(1)	9057(1)	39(1)
$\mathrm{O}(1)$	5655(2)	8609(1)	7726(1)	32(1)
$\mathrm{O}(2)$	7217(2)	10119(1)	8127(1)	43(1)

$\mathrm{O}(3)$	$10962(2)$	$9740(1)$	$8011(1)$	$32(1)$

Table 3. Bond lengths [\AA] $]$ and angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{4 S}$)-260.

-			
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.382(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.512(2)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.393(2)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.379(2)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.520(2)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.376(3)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.531(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.380(2)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.3917(19)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9900
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.4734(18)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.3902(18)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.3222(18)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.3912(18)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.386(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.5148(17)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.370(2)$
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.4173(15)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{C}(25)$	$1.5421(17)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.374(2)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.5438(17)$	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.3895(18)$	
$\mathrm{C}(10)-\mathrm{C}(19)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9500	
$\mathrm{C}(11)-\mathrm{C}(12)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500	
$\mathrm{C}(12)-\mathrm{C}(27)$	$\mathrm{C}(25)-\mathrm{O}(2)$	$1.2014(15)$	
$\mathrm{C}(12)-\mathrm{C}(13)$	$\mathrm{C}(25)-\mathrm{O}(3)$	$1.3234(15)$	
$\mathrm{C}(13)-\mathrm{C}(18)$	$\mathrm{C}(26)-\mathrm{O}(3)$	$1.4521(15)$	
$\mathrm{C}(13)-\mathrm{C}(14)$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800	
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800	
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.3080(18)$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	$1.5134(17)$	$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	0.9800
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	$1.5185(17)$	$\mathrm{H}(27 \mathrm{~B})$	0.9800
	$1.5291(19)$		

$\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	0.9800	$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	118.41(10)
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	175.44(13)
		$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(27)$	118.84(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	121.17(13)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.27(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4	$\mathrm{C}(27)-\mathrm{C}(12)-\mathrm{C}(13)$	118.89(11)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.4	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	112.21(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	119.86(16)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	112.07(11)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.1	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	110.03(11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	120.1	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	119.83(15)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.4
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	107.4
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.1	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	111.48(12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.36(15)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.3
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.88(15)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.3
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.6	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.0
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.6	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	110.71(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.87(13)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.47(13)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.64(11)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	124.52(12)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.7	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.1
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.7	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	111.29(14)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	125.07(11)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.5	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.4
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.5	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	110.06(10)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.4
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)$	107.14(10)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)$	109.96(10)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	111.20 (15)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	112.42(10)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	108.35(9)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	109.4
$\mathrm{C}(25)-\mathrm{C}(9)-\mathrm{C}(10)$	108.90(9)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	121.09(11)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	109.4
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.21(11)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.0

$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$111.14(14)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.4
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.4
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.4
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.4
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.0
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)$	$117.80(12)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(10)$	$122.98(11)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(10)$	$119.21(11)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.87(13)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.6
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.6
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$120.75(14)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	119.6
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	119.6
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.22(13)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	120.4
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	120.4
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.61(13)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	119.7
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	119.7

$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$120.74(12)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.6
$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.6
$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{O}(3)$	$124.61(12)$
$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{C}(9)$	$121.50(11)$
$\mathrm{O}(3)-\mathrm{C}(25)-\mathrm{C}(9)$	$113.89(10)$
$\mathrm{O}(3)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(12)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~A})$	109.5
$\mathrm{C}(12)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{~B})$	109.5
$\mathrm{C}(12)-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~A})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{H}(27 \mathrm{~B})-\mathrm{C}(27)-\mathrm{H}(27 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(25)-\mathrm{O}(3)-\mathrm{C}(26)$	$114.60(10)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound ($\mathbf{2 R}, \mathbf{4 S}$)260. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\right.$ $\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$44(1)$	$38(1)$	$32(1)$	$-1(1)$	$2(1)$	$-2(1)$
$\mathrm{C}(2)$	$50(1)$	$47(1)$	$47(1)$	$-6(1)$	$10(1)$	$3(1)$
$\mathrm{C}(3)$	$74(1)$	$66(1)$	$39(1)$	$-14(1)$	$17(1)$	$0(1)$
$\mathrm{C}(4)$	$86(1)$	$78(1)$	$26(1)$	$-7(1)$	$-3(1)$	$0(1)$
$\mathrm{C}(5)$	$57(1)$	$48(1)$	$32(1)$	$-4(1)$	$-7(1)$	$3(1)$
$\mathrm{C}(6)$	$40(1)$	$26(1)$	$29(1)$	$-3(1)$	$-1(1)$	$-7(1)$
$\mathrm{C}(7)$	$32(1)$	$30(1)$	$30(1)$	$1(1)$	$-4(1)$	$0(1)$
$\mathrm{C}(8)$	$28(1)$	$28(1)$	$29(1)$	$1(1)$	$0(1)$	$-1(1)$
$\mathrm{C}(9)$	$24(1)$	$30(1)$	$28(1)$	$0(1)$	$-2(1)$	$1(1)$
$\mathrm{C}(10)$	$22(1)$	$30(1)$	$25(1)$	$-2(1)$	$1(1)$	$1(1)$
$\mathrm{C}(11)$	$25(1)$	$30(1)$	$28(1)$	$2(1)$	$4(1)$	$4(1)$
$\mathrm{C}(12)$	$27(1)$	$34(1)$	$28(1)$	$0(1)$	$-3(1)$	$0(1)$
$\mathrm{C}(13)$	$29(1)$	$43(1)$	$28(1)$	$-5(1)$	$-3(1)$	$0(1)$
$\mathrm{C}(14)$	$50(1)$	$41(1)$	$31(1)$	$2(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(15)$	$72(1)$	$57(1)$	$29(1)$	$-1(1)$	$4(1)$	$5(1)$
$\mathrm{C}(16)$	$93(1)$	$59(1)$	$32(1)$	$-13(1)$	$0(1)$	$9(1)$
$\mathrm{C}(17)$	$100(2)$	$54(1)$	$42(1)$	$-8(1)$	$4(1)$	$26(1)$
$\mathrm{C}(18)$	$72(1)$	$43(1)$	$33(1)$	$0(1)$	$-1(1)$	$14(1)$
$\mathrm{C}(19)$	$30(1)$	$30(1)$	$23(1)$	$-1(1)$	$4(1)$	$1(1)$
$\mathrm{C}(20)$	$33(1)$	$34(1)$	$56(1)$	$3(1)$	$-7(1)$	$1(1)$
$\mathrm{C}(21)$	$46(1)$	$34(1)$	$75(1)$	$5(1)$	$-5(1)$	$7(1)$
$\mathrm{C}(22)$	$50(1)$	$28(1)$	$51(1)$	$-3(1)$	$9(1)$	$-4(1)$
$\mathrm{C}(23)$	$42(1)$	$40(1)$	$39(1)$	$-8(1)$	$-1(1)$	$-9(1)$
$\mathrm{C}(24)$	$38(1)$	$34(1)$	$33(1)$	$-2(1)$	$-5(1)$	$1(1)$
$\mathrm{C}(25)$	$29(1)$	$31(1)$	$27(1)$	$2(1)$	$-1(1)$	$4(1)$
$\mathrm{C}(26)$	$36(1)$	$29(1)$	$62(1)$	$-9(1)$	$6(1)$	$-3(1)$
$\mathrm{C}(27)$	$26(1)$	$51(1)$	$39(1)$	$-2(1)$	$0(1)$	$0(1)$
$\mathrm{O}(1)$	$25(1)$	$35(1)$	$36(1)$	$-1(1)$	$-6(1)$	$3(1)$
$\mathrm{O}(2)$	$32(1)$	$34(1)$	$65(1)$	$-9(1)$	$-2(1)$	$6(1)$

$\mathrm{O}(3)$	$27(1)$	$27(1)$	$42(1)$	$-5(1)$	$4(1)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound (2R, 4S)-260.

	X	y	Z	U(eq)
H(1A)	12885	7293	6941	46
H(2A)	15213	6908	6261	57
H(3A)	14077	7316	5454	72
H(4A)	10608	8101	5331	76
H(5A)	8186	8427	6004	55
H(7A)	7193	8292	6903	37
H(8A)	11148	8178	7500	34
H(13A)	7937	8780	9551	40
H(14A)	10511	7871	10021	49
H(14B)	12342	8685	10060	49
H(15A)	7766	8680	10503	63
H(15B)	10170	8613	10809	63
H(16A)	11177	10085	10577	74
H(16B)	8650	10102	10835	74
H(17A)	8687	10988	10092	78
H(17B)	6819	10187	10051	78
H(18A)	8973	10247	9299	59
H(18B)	11387	10178	9601	59
H(20A)	10966	6546	8583	49
H(21A)	10170	5015	8520	62
H(22A)	6681	4516	8174	52
H(23A)	3986	5562	7879	48
H(24A)	4771	7101	7927	42
H(26A)	13304	10721	8132	63
H(26B)	11056	10783	8487	63
H(26C)	10873	11079	7912	63

$\mathrm{H}(27 \mathrm{~A})$	13908	8360	8735	58
$\mathrm{H}(27 \mathrm{~B})$	14092	8253	9330	58
$\mathrm{H}(27 \mathrm{C})$	13977	9236	9084	58
$\mathrm{H}(1 \mathrm{~B})$	4947	9015	7885	48

Table 6. Torsion angles [${ }^{\circ}$] for compound ($\mathbf{2 R}, \mathbf{4 S}$)-260.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	0.8(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-0.3(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-1.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$2.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$-2.0(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$176.56(14)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$0.4(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	-178.13(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-156.06(13)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	22.41(19)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	178.45 (11)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$9.52(16)$
$C(7)-C(8)-C(9)-C(25)$	-108.28(13)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	132.81(12)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-126.17(12)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$111.98(12)$
$C(25)-C(9)-C(10)-C(11)$	-7.60(15)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	59.88(14)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-61.98(13)
$C(25)-C(9)-C(10)-C(19)$	178.44(10)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	110.8(16)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-63.0(16)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(27)$	-21.0(17)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	158.7(16)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	-106.59(15)
$\mathrm{C}(27)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	73.12(17)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	129.02(13)
$\mathrm{C}(27)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-51.27(17)

$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-178.04(12)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	56.37(17)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-56.81(19)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	56.2(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-55.9(2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	178.85(13)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	-55.64(19)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	55.8(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)$	141.13(12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)$	-44.97(16)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)$	-37.64(17)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)$	136.26(12)
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	0.0 (2)
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	178.86(14)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-0.5(3)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$0.5(3)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	0.1(2)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	-0.6(2)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	0.49 (19)
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	-178.29(12)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	19.44(16)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	139.03(12)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	-102.39(13)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	-160.12(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	-40.53(13)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	78.06(13)
$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{O}(3)-\mathrm{C}(26)$	-0.05(18)
$\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)-\mathrm{C}(26)$	179.49(10)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound (2R, 4S)-260 [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2)$	0.84	2.19	$2.6385(13)$	113.5
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(3) \# 1$	0.84	2.54	$3.2556(12)$	143.3

Symmetry transformations used to generate equivalent atoms:
\#1 x-1,y , z

12. Crystal structure of compound ($2 S, 4 R$)-268

Table 1. Crystal data and structure refinement for compound (2S, 4R)-268.

Compound	($2 S, 4 R$)-268
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}$
Formula weight	388.48
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=5.3970(11) \AA \quad \alpha=90^{\circ}$.
	$b=15.026(4) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=26.570(5) \AA$ ® $\quad \gamma=90^{\circ}$.
Volume	2154.6(8) \AA^{3}
Z	4
Density (calculated)	$1.198 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.607 \mathrm{~mm}^{-1}$
F(000)	832
Crystal size	$0.30 \times 0.08 \times 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	3.33 to 69.46°.
Index ranges	$-6<=\mathrm{h}<=4,-18<=\mathrm{k}<=16,-31<=1<=28$
Reflections collected	8134
Independent reflections	$3776[\mathrm{R}(\mathrm{int})=0.1016]$
Completeness to theta $=69.46^{\circ}$	97.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9820 and 0.8390
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3776 / 0 / 263
Goodness-of-fit on F^{2}	1.019
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0688, \mathrm{wR} 2=0.0926$
R indices (all data)	$\mathrm{R} 1=0.2561, \mathrm{wR} 2=0.1298$
Absolute structure parameter	-0.2(7)
Extinction coefficient	0.0040(2)
Largest diff. peak and hole	0.236 and -0.258 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound ($\mathbf{2 S}, \mathbf{4 R}$)-268. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
C(1)	-7215(17)	-2704(6)	-6498(3)	67(3)
C(2)	-5875(16)	-2115(6)	-6223(3)	77(3)
C(3)	-6661(17)	-1898(5)	-5726(3)	80(3)
C(4)	-8782(18)	-2274(6)	-5544(3)	82(3)
C(5)	-10071(17)	-2866(6)	-5827(4)	87(3)
C(6)	-9303(16)	-3077(5)	-6309(3)	69(2)
C(7)	-6239(14)	-2943(5)	-7005(3)	73(3)
C(8)	-7526(14)	-3288(5)	-7377(3)	70(3)
C(9)	-6510(14)	-3540(6)	-7898(3)	61(2)
C(10)	-7603(14)	-2925(6)	-8302(3)	67(3)
C(11)	-8895(16)	-3282(6)	-8669(4)	76(3)
C(12)	-10133(16)	-3620(5)	-9046(3)	79(3)
C(13)	-8900(16)	-3899(6)	-9547(3)	79(3)
$\mathrm{C}(14)$	-10395(15)	-3545(5)	-9982(3)	92(3)
C(15)	-9268(18)	-3847(6)	-10482(3)	116(4)
C(16)	-9322(17)	-4847(7)	-10503(3)	120(4)
C(17)	-7795(17)	-5231(6)	-10082(3)	111(3)
C(18)	-8931(15)	-4905(5)	-9563(3)	99(3)
C(19)	-7340(18)	-1929(7)	-8252(3)	73(3)
C(20)	-5292(15)	-1545(6)	-8038(2)	73(3)
C(21)	-5043(16)	-602(6)	-8029(3)	79(3)
C(22)	-6867(16)	-96(6)	-8223(3)	83(3)
C(23)	-8915(16)	-474(6)	-8436(3)	87(3)
C(24)	-9134(16)	-1408(6)	-8447(3)	74(3)
C(25)	-7020(17)	-4524(6)	-8049(3)	67(3)
C(26)	-9954(12)	-5708(5)	-8051(2)	79(3)
$\mathrm{O}(1)$	-3873(8)	-3421(3)	-7901(2)	69(2)
$\mathrm{O}(2)$	-9319(9)	-4775(3)	-7917(2)	68(2)
$\mathrm{O}(3)$	-5510(9)	-4961(3)	-8252(2)	75(2)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound ($\mathbf{2 S}, \mathbf{4 R}$)-268.

$\mathrm{C}(1)-\mathrm{C}(6)$	$1.354(9)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.504(9)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.356(9)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9900
$\mathrm{C}(1)-\mathrm{C}(7)$	1.491(9)	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9900
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.426(9)$	$\mathrm{C}(17)-\mathrm{C}(18)$	1.586 (8)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9900
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.365(8)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9900
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9900
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.355(9)$	C(18)-H(18B)	0.9900
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.348(9)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.384(8)$	$\mathrm{C}(19)-\mathrm{C}(20)$	1.370 (9)
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.423(9)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9500
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.314(8)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.346 (9)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9500
$\mathrm{C}(8)-\mathrm{C}(9)$	1.537(9)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.365(9)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{O}(1)$	1.434(7)	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.408(8)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.535(9)$	$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9500
$\mathrm{C}(9)-\mathrm{C}(25)$	$1.556(10)$	$\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	0.9500
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.314(10)$	$\mathrm{C}(25)-\mathrm{O}(3)$	1.177 (8)
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.509(10)$	$\mathrm{C}(25)-\mathrm{O}(2)$	1.344 (8)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.306 (9)	$\mathrm{C}(26)-\mathrm{O}(2)$	$1.487(7)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.547(9)$	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	0.9800
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	0.9800
$\mathrm{C}(13)-\mathrm{C}(14)$	1.506 (8)	$\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	0.9800
$\mathrm{C}(13)-\mathrm{C}(18)$	1.513(8)	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	0.8400
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	1.0000		
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.528(9)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.0(9)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)$	121.9(9)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9900	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	117.0(9)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.504(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.2(9)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	120.4
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9900	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	120.4

$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	118.9(9)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.5
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.6	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	120.6	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.4(7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.4(9)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.6
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.6
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	119.8	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.6(9)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.6
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	108.1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.7	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	108.8(8)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119.8(9)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.9
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	120.1	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	120.1	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(1)$	126.0(8)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.0	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	108.3
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.0	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	110.2(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	125.9(8)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.6
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.1	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	109.6
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.1	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.6
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	107.6(7)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	109.6
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	109.2(7)	$\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	108.1
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	110.2(7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	108.4(8)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)$	107.0(7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(25)$	108.8(7)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	110.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)$	113.8(7)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.0
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	121.3(9)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	110.0
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.6(9)	$\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	108.4
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	120.0(8)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	109.1(7)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	178.0(9)	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.9
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	123.0(8)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.9
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	118.5	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.9
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	118.5	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.9
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	109.1(7)	$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	108.3
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	109.6(7)	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)$	119.6(10)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	106.8(7)	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(10)$	118.3(9)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	110.5	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(10)$	122.0(9)

$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$120.1(9)$	$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.7
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.9	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24 \mathrm{~A})$	119.7
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.9	$\mathrm{O}(3)-\mathrm{C}(25)-\mathrm{O}(2)$	$127.0(9)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	$119.1(9)$	$\mathrm{O}(3)-\mathrm{C}(25)-\mathrm{C}(9)$	$121.8(9)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.4	$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{C}(9)$	$111.2(8)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	120.4	$\mathrm{O}(2)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~A})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.0(9)$	$\mathrm{O}(2)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.5	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{~B})$	109.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	119.5	$\mathrm{O}(2)-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$119.4(9)$	$\mathrm{H}(26 \mathrm{~A})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	120.3	$\mathrm{H}(26 \mathrm{~B})-\mathrm{C}(26)-\mathrm{H}(26 \mathrm{C})$	109.5
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	120.3	$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5
$\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	$\mathrm{C}(25)-\mathrm{O}(2)-\mathrm{C}(26)$	$114.5(6)$	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound (2S, 4R)-268. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} \mathrm{a}^{* 2} \mathrm{U}^{11}+\ldots\right.$ $+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{C}(1)$	$58(7)$	$78(7)$	$64(6)$	$1(5)$	$-2(6)$	$7(6)$
$\mathrm{C}(2)$	$71(7)$	$78(7)$	$80(7)$	$13(5)$	$7(6)$	$-7(6)$
$\mathrm{C}(3)$	$92(8)$	$75(7)$	$73(7)$	$-4(5)$	$-16(6)$	$-9(6)$
$\mathrm{C}(4)$	$84(8)$	$94(9)$	$68(7)$	$7(6)$	$11(6)$	$22(7)$
$\mathrm{C}(5)$	$87(8)$	$86(8)$	$89(7)$	$12(6)$	$12(7)$	$-19(7)$
$\mathrm{C}(6)$	$64(7)$	$54(6)$	$90(7)$	$-4(5)$	$0(5)$	$-4(5)$
$\mathrm{C}(7)$	$58(6)$	$71(6)$	$91(7)$	$8(5)$	$-6(5)$	$-15(5)$
$\mathrm{C}(8)$	$56(6)$	$70(7)$	$85(7)$	$17(5)$	$25(5)$	$15(6)$
$\mathrm{C}(9)$	$44(6)$	$62(6)$	$78(7)$	$-5(5)$	$-3(5)$	$0(5)$
$\mathrm{C}(10)$	$48(6)$	$75(8)$	$77(7)$	$11(6)$	$-4(5)$	$0(6)$
$\mathrm{C}(11)$	$58(7)$	$73(8)$	$97(8)$	$26(6)$	$18(6)$	$6(6)$
$\mathrm{C}(12)$	$62(7)$	$68(7)$	$106(8)$	$8(6)$	$3(6)$	$-1(6)$
$\mathrm{C}(13)$	$99(7)$	$66(7)$	$73(7)$	$3(5)$	$4(6)$	$5(6)$
$\mathrm{C}(14)$	$113(8)$	$80(7)$	$84(6)$	$3(6)$	$-6(6)$	$27(7)$
$\mathrm{C}(15)$	$156(9)$	$122(9)$	$70(7)$	$6(7)$	$-3(7)$	$2(9)$
$\mathrm{C}(16)$	$134(9)$	$135(10)$	$91(8)$	$-34(8)$	$-16(7)$	$6(10)$
$\mathrm{C}(17)$	$125(9)$	$85(8)$	$122(9)$	$-13(7)$	$4(7)$	$0(7)$
$\mathrm{C}(18)$	$139(8)$	$91(8)$	$67(6)$	$-7(6)$	$10(6)$	$2(8)$
$\mathrm{C}(19)$	$65(7)$	$87(8)$	$66(6)$	$-3(6)$	$2(5)$	$15(7)$
$\mathrm{C}(20)$	$73(7)$	$83(7)$	$61(5)$	$6(5)$	$-12(5)$	$-10(6)$
$\mathrm{C}(21)$	$86(7)$	$67(7)$	$83(6)$	$-1(5)$	$6(6)$	$-9(7)$
$\mathrm{C}(22)$	$71(7)$	$68(7)$	$111(8)$	$-19(6)$	$-7(6)$	$1(6)$
$\mathrm{C}(23)$	$70(7)$	$63(7)$	$129(8)$	$-2(6)$	$-7(6)$	$23(6)$
$\mathrm{C}(24)$	$72(7)$	$51(6)$	$100(7)$	$-7(5)$	$4(5)$	$-10(6)$
$\mathrm{C}(25)$	$62(7)$	$73(8)$	$66(6)$	$9(5)$	$-14(6)$	$-1(6)$
$\mathrm{C}(26)$	$73(6)$	$61(5)$	$102(6)$	$5(5)$	$15(5)$	$11(6)$
$\mathrm{O}(1)$	$71(4)$	$65(4)$	$71(4)$	$2(3)$	$-2(3)$	$7(3)$
$\mathrm{O}(2)$	$63(4)$	$65(4)$	$75(3)$	$-4(3)$	$4(3)$	$8(4)$
$\mathrm{O}(3)$	$73(4)$	$67(4)$	$83(4)$	$-12(3)$	$5(3)$	$4(4)$

Table 5. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for compound ($\mathbf{2 S}, 4 R$)-268.

	x	y	z	U (eq)
H(2)	-4428	-1849	-6361	92
H(3A)	-5725	-1499	-5524	96
H(4A)	-9359	-2120	-5218	98
H(5A)	-11514	-3138	-5692	105
H(6A)	-10238	-3482	-6508	83
H(7A)	-4529	-2837	-7065	88
H(8A)	-9239	-3390	-7318	84
$\mathrm{H}(12 \mathrm{~A})$	-11871	-3699	-9010	95
$\mathrm{H}(13 \mathrm{~A})$	-7160	-3672	-9564	95
$\mathrm{H}(14 \mathrm{~A})$	-10428	-2887	-9969	111
$\mathrm{H}(14 \mathrm{~B})$	-12122	-3763	-9957	111
$\mathrm{H}(15 \mathrm{~A})$	-10228	-3597	-10766	139
H(15B)	-7539	-3633	-10509	139
$\mathrm{H}(16 \mathrm{~A})$	-8657	-5052	-10830	144
H(16B)	-11053	-5059	-10473	144
H(17A)	-6055	-5029	-10112	133
H(17B)	-7819	-5889	-10098	133
$\mathrm{H}(18 \mathrm{~A})$	-10653	-5124	-9529	119
H(18B)	-7945	-5147	-9280	119
H (20A)	-4038	-1909	-7894	87
H (21A)	-3608	-334	-7889	94
H(22A)	-6726	534	-8212	100
$\mathrm{H}(23 \mathrm{~A})$	-10182	-110	-8575	105
$\mathrm{H}(24 \mathrm{~A})$	-10560	-1674	-8593	89
$\mathrm{H}(26 \mathrm{~A})$	-11641	-5842	-7938	118
H (26B)	-8786	-6115	-7888	118
H (26C)	-9854	-5782	-8417	118
H(1A)	-3176	-3920	-7912	104

Table 6. Torsion angles $\left[^{\circ}\right]$ for compound $(\mathbf{2 S}, \mathbf{4 R})$-268.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	1.1(12)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-176.9(7)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-1.7(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	2.2(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-2.1(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-1.0(12)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	176.9(7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$1.5(13)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	22.3(12)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	-159.7(9)
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.5(7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	$5.5(11)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-112.4(9)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)$	125.0(9)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.8(8)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-120.2(9)
$\mathrm{C}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	5.2(11)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-63.6(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	55.3 (10)
$\mathrm{C}(25)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-179.2(7)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	54(27)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-130(27)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	39(27)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-133.3(9)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)$	108.8(9)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-61.0(9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-177.5(7)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	61.3(10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-61.5(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	60.2(10)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	59.2(9)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	177.5(7)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	-59.1(10)

$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)$	$26.0(13)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)$	$-149.5(7)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)$	$-150.9(8)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)$	$33.6(12)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$-1.2(12)$
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$175.7(7)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$1.6(12)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$-1.4(13)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$0.7(13)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	$0.5(13)$
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(23)$	$-176.4(7)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$-0.3(13)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	$-18.0(11)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	$98.0(9)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(3)$	$-138.7(9)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	$161.8(6)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	$-82.2(8)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)$	$41.1(9)$
$\mathrm{O}(3)-\mathrm{C}(25)-\mathrm{O}(2)-\mathrm{C}(26)$	$-0.6(12)$
$\mathrm{C}(9)-\mathrm{C}(25)-\mathrm{O}(2)-\mathrm{C}(26)$	$179.7(5)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound (2S, 4R)-268 [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(3)$	0.84	2.20	$2.647(6)$	113.2
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 1$	0.84	2.45	$3.191(6)$	148.2

Symmetry transformations used to generate equivalent atoms:
\#1 x+1, y, z

13. Crystal structure of compound 283

Table 1. Crystal data and structure refinement for compound 283.

Compound	283
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Br} \mathrm{O}_{4}$
Formula weight	419.30
Temperature	173(2) K
Wavelength	1.54178 A
Crystal system	Orthorhombic
Space group	P2(1)2(1)2(1)
Unit cell dimensions	$a=6.1466(9) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=11.3882(15) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=27.357(4) \AA \quad \gamma=90^{\circ}$.
Volume	1915.0(5) \AA^{3}
Z	4
Density (calculated)	$1.454 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.116 \mathrm{~mm}^{-1}$
F(000)	864
Crystal size	$0.50 \times 0.21 \times 0.11 \mathrm{~mm}^{3}$
Theta range for data collection	3.23 to 66.59°.
Index ranges	$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=12,-32<=\mathrm{l}<=32$
Reflections collected	16252
Independent reflections	3227 [$\mathrm{R}(\mathrm{int})=0.0428]$
Completeness to theta $=66.59^{\circ}$	96.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7256 and 0.3048
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	3227 / 0 / 235
Goodness-of-fit on F^{2}	1.010
Final R indices [$\mathrm{l}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0334, \mathrm{wR} 2=0.0809$
R indices (all data)	$\mathrm{R} 1=0.0378, \mathrm{wR} 2=0.0855$
Absolute structure parameter	0.04(2)
Largest diff. peak and hole	0.638 and -0.408 e. \AA^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 283. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U(eq)
$\operatorname{Br}(1)$	-4655(1)	-9774(1)	-2304(1)	50(1)
C(1)	-4348(6)	-6732(3)	-1474(1)	38(1)
C(2)	-3862(6)	-7801(3)	-1693(2)	41(1)
C(3)	-5341(7)	-8330(3)	-1989(1)	37(1)
C(4)	-7361(6)	-7826(3)	-2075(1)	36(1)
C(5)	-7846(6)	-6753(3)	-1858(1)	34(1)
C(6)	-6362(6)	-6188(3)	-1553(1)	31(1)
C(7)	-6801(5)	-5055(3)	-1312(1)	31(1)
C(8)	-8736(6)	-4542(3)	-1268(1)	30(1)
C(9)	-9107(5)	-3371(3)	-1023(1)	28(1)
C(10)	-10161(6)	-2459(3)	-1399(1)	30(1)
C(11)	-10408(6)	-1260(3)	-1147(1)	30(1)
C(12)	-12286(6)	-987(3)	-881(1)	36(1)
C(13)	-12516(6)	95(3)	-659(1)	40(1)
C(14)	-10920(6)	947(3)	-698(1)	35(1)
C(15)	-9058(6)	694(3)	-958(1)	35(1)
C(16)	-8812(6)	-403(3)	-1177(1)	33(1)
C(17)	-10559(6)	-3561(3)	-570(1)	29(1)
C(18)	-13537(6)	-4574(3)	-223(1)	39(1)
$\mathrm{C}(19)$	-12373(6)	-2881(3)	-1594(1)	35(1)
$\mathrm{C}(20)$	-8592(6)	-2376(3)	-1836(1)	36(1)
$\mathrm{C}(21)$	-9652(8)	2863(3)	-493(2)	54(1)
$\mathrm{O}(1)$	-7107(4)	-2911(2)	-854(1)	31(1)
$\mathrm{O}(2)$	-10188(5)	-3102(2)	-183(1)	41(1)
$\mathrm{O}(3)$	-12180(4)	-4309(2)	-647(1)	33(1)
$\mathrm{O}(4)$	-11309(5)	1990(2)	-465(1)	49(1)

Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for compound 283.

$\mathrm{Br}(1)-\mathrm{C}(3)$	1.902(3)	$\mathrm{C}(17)-\mathrm{O}(2)$	1.203 (4)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.389(5)$	$\mathrm{C}(17)-\mathrm{O}(3)$	1.327 (4)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.401(5)$	$\mathrm{C}(18)-\mathrm{O}(3)$	1.460 (4)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9800
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.359(6)$	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9800
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9500	$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9800
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.388(6)$	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	0.9800
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.391(5)$	C(19)-H(19B)	0.9800
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9500	$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9800
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.394(5)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9800
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9500	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	0.9800
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.474(5)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	0.9800
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.331(5)$	$\mathrm{C}(21)-\mathrm{O}(4)$	$1.425(5)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9800
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.509(4)$	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9800
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9500	$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9800
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.414(4)$	$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	0.8400
$\mathrm{C}(9)-\mathrm{C}(17)$	$1.543(5)$		
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.598(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.8(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.536(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.6
$\mathrm{C}(10)-\mathrm{C}(19)$	$1.537(5)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	119.6
$\mathrm{C}(10)-\mathrm{C}(20)$	$1.539(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.1(3)
$\mathrm{C}(11)-\mathrm{C}(16)$	$1.386(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.401(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	119.9
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.380(5)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9500	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	120.3(3)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.384(5)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{Br}(1)$	118.6(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9500	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.9(3)
$\mathrm{C}(14)-\mathrm{O}(4)$	$1.369(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.6
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.379(5)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.6
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.392(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.4(3)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9500	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.3
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9500	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.3

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	117.8(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	123.5(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	118.7(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	126.1(3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	117.0
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	124.3(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	117.8
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	109.9(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)$	107.0(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	108.6(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	108.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.6(3)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)$	111.9(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(19)$	110.2(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(20)$	110.9(3)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(20)$	107.7(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	109.2(2)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(9)$	112.2(3)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(9)$	106.6(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	117.2(3)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(10)$	122.0(3)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.8(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.8(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	119.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	119.6
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.3(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	119.4
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	119.4
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)$	124.5(3)
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(13)$	116.7(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	118.8(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119.9(3)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.0

$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	120.0
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	122.0(3)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	119.0
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	119.0
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)$	124.0(3)
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{C}(9)$	122.5(3)
$\mathrm{O}(3)-\mathrm{C}(17)-\mathrm{C}(9)$	113.4(3)
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	109.5
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	109.5
$\mathrm{O}(3)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~A})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{H}(18 \mathrm{~B})-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~A})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{H}(20 \mathrm{~B})-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{C})$	109.5
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	109.5
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	109.5
$\mathrm{O}(4)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	109.5
$\mathrm{C}(9)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5
$\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	115.9(3)
$\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(21)$	117.1(3)

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for compound 283. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots\right.$ $+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$]

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Br}(1)$	$68(1)$	$29(1)$	$53(1)$	$-5(1)$	$14(1)$	$7(1)$
$\mathrm{C}(1)$	$30(2)$	$34(2)$	$50(2)$	$-3(2)$	$-4(2)$	$1(2)$
$\mathrm{C}(2)$	$34(2)$	$33(2)$	$56(2)$	$2(2)$	$3(2)$	$9(2)$
$\mathrm{C}(3)$	$51(2)$	$21(2)$	$38(2)$	$0(1)$	$8(2)$	$3(2)$
$\mathrm{C}(4)$	$38(2)$	$34(2)$	$37(2)$	$-3(1)$	$1(2)$	$-1(2)$
$\mathrm{C}(5)$	$35(2)$	$28(2)$	$39(2)$	$2(1)$	$2(2)$	$2(2)$
$\mathrm{C}(6)$	$29(2)$	$29(2)$	$35(2)$	$0(1)$	$4(2)$	$-3(1)$
$\mathrm{C}(7)$	$30(2)$	$25(2)$	$39(2)$	$2(1)$	$-3(1)$	$-3(1)$
$\mathrm{C}(8)$	$29(2)$	$23(2)$	$39(2)$	$-1(1)$	$-3(2)$	$-4(1)$
$\mathrm{C}(9)$	$26(2)$	$23(2)$	$35(2)$	$-2(1)$	$-1(1)$	$-2(1)$
$\mathrm{C}(10)$	$27(2)$	$26(2)$	$36(2)$	$1(1)$	$2(2)$	$-1(1)$
$\mathrm{C}(11)$	$30(2)$	$28(2)$	$31(2)$	$6(1)$	$3(2)$	$3(1)$
$\mathrm{C}(12)$	$28(2)$	$28(2)$	$52(2)$	$2(2)$	$4(2)$	$-3(1)$
$\mathrm{C}(13)$	$33(2)$	$38(2)$	$49(2)$	$-2(2)$	$9(2)$	$7(2)$
$\mathrm{C}(14)$	$44(2)$	$24(2)$	$37(2)$	$2(1)$	$0(2)$	$6(2)$
$\mathrm{C}(15)$	$38(2)$	$29(2)$	$39(2)$	$5(1)$	$-3(2)$	$-4(2)$
$\mathrm{C}(16)$	$32(2)$	$29(2)$	$38(2)$	$2(1)$	$3(2)$	$0(2)$
$\mathrm{C}(17)$	$29(2)$	$20(2)$	$40(2)$	$0(1)$	$-1(2)$	$2(1)$
$\mathrm{C}(18)$	$37(2)$	$41(2)$	$39(2)$	$7(2)$	$6(2)$	$-6(2)$
$\mathrm{C}(19)$	$33(2)$	$32(2)$	$40(2)$	$0(2)$	$-3(2)$	$0(2)$
$\mathrm{C}(20)$	$36(2)$	$33(2)$	$40(2)$	$2(2)$	$6(2)$	$2(2)$
$\mathrm{C}(21)$	$65(3)$	$29(2)$	$67(3)$	$-7(2)$	$-3(3)$	$0(2)$
$\mathrm{O}(1)$	$24(1)$	$28(1)$	$42(1)$	$-4(1)$	$-3(1)$	$-2(1)$
$\mathrm{O}(2)$	$47(2)$	$38(1)$	$37(1)$	$-5(1)$	$1(1)$	$-7(1)$
$\mathrm{O}(3)$	$32(1)$	$31(1)$	$37(1)$	$0(1)$	$6(1)$	$-7(1)$
$\mathrm{O}(4)$	$59(2)$	$31(2)$	$57(2)$	$-8(1)$	$11(2)$	$0(1)$

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for compound 283.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
H(1A)	-3302	-6366	-1269	45
H(2A)	-2493	-8163	-1636	49
H(4A)	-8394	-8207	-2279	43
H(5A)	-9219	-6398	-1918	41
H(7A)	-5589	-4652	-1177	37
H(8A)	-9965	-4940	-1398	36
H(12A)	-13416	-1552	-852	44
H(13A)	-13794	258	-476	48
H(15A)	-7943	1267	-989	42
H(16A)	-7512	-568	-1351	40
H(18A)	-14676	-5132	-317	58
H(18B)	-14208	-3849	-102	58
H(18C)	-12637	-4920	36	58
H(19A)	-12958	-2297	-1822	53
H(19B)	-13385	-2981	-1320	53
H(19C)	-12187	-3632	-1763	53
H(20A)	-9181	-1828	-2079	54
H(20B)	-8425	-3154	-1985	54
H(20C)	-7172	-2095	-1724	54
H(21A)	-10116	3563	-313	81
H(21B)	-9395	3069	-836	81
H(21C)	-8306	2557	-349	81
H(1B)	-7216	-2742	-556	47

Table 6. Torsion angles [${ }^{\circ}$] for compound 283.

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$0.3(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-0.7(6)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Br}(1)$	178.4(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.9(6)$
$\operatorname{Br}(1)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	-178.1(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-0.8(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$0.5(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.7(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	-0.2(5)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	180.0(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	14.5(6)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-165.7(4)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-179.2(3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(1)$	0.1(5)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)$	-116.5(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.3(4)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-56.3(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-177.1(3)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	61.7(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-178.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	60.4(4)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(19)$	-60.9(3)
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	$63.5(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	-57.3(3)
$\mathrm{C}(17)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	-178.5(3)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	-143.8(3)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	-24.7(4)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	92.5(4)
$\mathrm{C}(19)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	35.4(4)
$\mathrm{C}(20)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	154.6(3)
$C(9)-C(10)-C(11)-C(12)$	-88.3(4)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$0.0(5)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-179.3(3)

$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$0.9(6)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)$	$179.8(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$-0.9(6)$
$\mathrm{O}(4)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$179.2(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$0.1(5)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$-0.9(5)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$178.4(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$0.8(5)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	$17.3(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	$135.8(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(2)$	$-101.8(4)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$-160.1(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$-41.6(4)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)$	$80.8(3)$
$\mathrm{O}(2)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$-0.7(5)$
$\mathrm{C}(9)-\mathrm{C}(17)-\mathrm{O}(3)-\mathrm{C}(18)$	$176.7(3)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(21)$	$-0.7(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(21)$	$178.5(3)$

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for compound 283 [\AA and ${ }^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2)$	0.84	2.13	$2.647(3)$	119.2
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(2) \# 1$	0.84	2.56	$3.282(3)$	144.4

Symmetry transformations used to generate equivalent atoms:
\#1 x+1/2,-y-1/2,-z

[^0]: Date

[^1]: ${ }^{\text {a }}$ Determined by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude reaction mixture.
 ${ }^{b}$ Hexanes used as solvent.
 ${ }^{c}$ The reaction was conducted at $-78^{\circ} \mathrm{C}$

[^2]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-$ NMR. ${ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC.

[^3]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ Isolated yield of the major product. ${ }^{c}$ ee of the major product, determined by chiral HPLC. ${ }^{d} 4: 1$ diastereomers. ${ }^{e} 1: 1$ diastereomers. ${ }^{f}$ the reaction was conducted at $40^{\circ} \mathrm{C}$.

[^4]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}$-NMR. ${ }^{b}$ Isolated yield of the major diasteromer. ${ }^{c}$ ee of the major diastereomer,

[^5]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ Isolated yield of the major diasteromer. ${ }^{c}$ ee of the major diastereomer, determined by chiral HPLC.

[^6]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ Isolated yield of the major diasteromer. ${ }^{c}$ ee of the major diastereomer, determined by chiral HPLC.

[^7]: ${ }^{a}$ Determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR} .{ }^{b}$ Isolated yield of the major diasteromer. ${ }^{c}$ ee of the major diastereomer, determined by chiral HPLC.

[^8]: ${ }^{a}$ Isolated yield. ${ }^{b}$ Determined by chiral HPLC.

