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Abstract

Conditional Sampling and Density Estimation with Triangular Convex Flows
By Zheyu Wang

We introduce Triangular Convex Flows (TC-Flow), a method for learning condi-
tional probability distributions given samples from the joint probability distributions.
Unlike previous methods that rely on constructing monotone triangular transport
maps through soft penalties and partial integration, TC-Flow uses a novel map pa-
rameterization based on the input gradient of scalar-valued fully and partially input
convex neural networks (FICNN and PICNN). The approach guarantees monotone
maps without requiring specific network weights and ensures optimal maps under op-
timal transport theory by approximating Kantorovich potentials. During training, we
parallelize the process over map components and minimize the expected negative log-
likelihood of the samples. We demonstrate the effectiveness of TC-Flow on synthetic
two-dimensional datasets and compare it to existing triangular maps model on high-
dimensional benchmark problems. Our numerical experiments show that TC-Flow is
competitive with the state-of-the-art model in both expressiveness and scalability.
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Chapter 1

Introduction

Conditional probability distributions play a fundamental role in describing depen-

dence between random variables distributed according to a joint probability distri-

bution. Direct sampling from such conditional distributions is a crucial task for

numerous problems in machine learning, statistics, and engineering.

One example is the widely studied inverse problems. Generally, inverse problems

involve a system y = Ψ(x) + ϵ, where y denotes noisy observations, Ψ denotes

the forward operator, x denotes parameters, and ϵ denotes noise. The problem’s

objective is to estimate or sample from the posterior distribution πpos(x|y) in the

Bayesian framework. However, since the parameters x are typically high-dimensional

and the operator Ψ is usually non-linear, the resulting posterior can be extremely

complex and impossible to sample directly from. This particular challenge extends

to most other problems that involve conditional probability distributions.

To overcome such difficulty, [8] proposed a measure transport approach for under-

standing complex probability distributions in general. The core method is to construct

invertible transport maps, or generators in machine learning literature, g : Rn → Rn

between a reference distribution η and the complex target distribution of interest π,

whose densities we denote as ρ1 and ρ0 respectively. Invertibility is necessary since



2

learning direct maps g and performing density estimation require the inverse maps

g−1.

To introduce notations and provide an intuitive example, let us assume that sam-

ples (x, y) ∼ π are from the two-dimensional joint distribution we wish to characterize

and samples (zx, zy) ∼ η are from the two-dimensional reference distribution. In this

setting, if g is the true transport map, then it must satisfy ρ0(x, y) = ρ1
(
g−1(x, y)

)
.

In another word, g is said to push forward η to π if the previous condition is satisfied.

Map g is also known as a deterministic coupling between η and π as g(zx, zy) ∼ π.

With this formulation, there exist infinitely many possible maps. To construct

unique transport maps that are guaranteed to be invertible, we will focus on a

special type of transport maps proposed in [8]: the monotone triangular transport

maps. These maps are unique under theoretical guarantee from optimal transport

and are automatically invertible due to monotonicity constraints on the map com-

ponents over the reference input arguments. Moreover, each component of the map

exposes a coupling between the reference marginal η(zk) and the target conditional

π(xk|x1, . . . , xk−1), which are pivotal for conditional sampling. For efficiency and

solving problems that involve conditional sampling and density estimation, we also

consider the block triangular transport maps proposed in [7].

The proposed TC-Flow method represents the strict triangular and block trian-

gular maps using the gradient fields of input convex neural networks (ICNN)[1]. This

way, monotonicity is naturally imposed due to the convex structure of the networks.

TC-Flow therefore saves the computational costs induced by numerical integration to

ensure monotonicity.

The TC-Flow maps are optimal as well since they are known to approximate

the Kantorovich potential. TC-Flow also shares an analogous modeling scheme to

normalizing flows [10] from the machine learning community. To learn the maps,

we use the same maximum likelihood estimation (MLE) scheme as normalizing flows
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by expressing the target density using the inverse maps and the reference density

through change of variable.

One crucial feature that arises from the strict triangular and block triangular map

structure is that the training objective function can be separated by map components.

This way, TC-Flow can construct the transport map in parallel, which significantly

accelerates the training process for high-dimensional distributions.

1.1 Contributions and Outline

In this thesis, we present TC-Flow: a novel monotone parameterization of the tri-

angular and block triangular transport maps using ICNNs. Our parameterization

guarantees uniqueness and invertibility without the needs of partial integration or

soft penalties. The proposed model improves upon the state-of-the-art Adaptive

Transport Maps model [2] in terms of accuracy and scalability.

This thesis will include the theoretical and modeling backgrounds in Chapter 2,

an elaborate explanation of TC-Flow and relevant optimization problems in Chapter

3, results from numerical experiments in chapter 4, discussion on future directions in

chapter 5, and finally the conclusion in Chapter 6.
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Chapter 2

Theoretical and Modeling

Background

In this chapter, we will discuss the relevant theoretical and modeling background of

TC-Flow. We will first present an intuitive understanding of the optimal transport

problem and extend to Brenier’s theorem. Then, we analyze how the theorem moti-

vates the TC-Flow modeling framework. We then introduce the details of maximum

likelihood estimation for training. Finally, we will discuss the details of the Adaptive

Transport Maps algorithm, which would be the model we compare TC-Flow against.

2.1 Optimal Transport Maps

The general Monge-Kantorovich optimal transport (OT) problem can be formulated

as follows [8]:

min
g

∫
Rn

c
(
z, g(z)

)
dη(z). (2.1)

Function c : Rn×Rn → R encodes the cost of transporting particle z ∼ η to g(z) ∼ π,

and map g is known as the transport plan bewteen distributions η and π in the OT
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context.

While there are infinitely many choices of g, we wish to identify the OT plan that

is the unique minimizer of the objective in (2.1). Under this framework, Yann Brenier

has proven a tremendously useful theorem for our discussion. Brenier’s theorem [4]

states that if the map g is the gradient of a convex potential C, then it is the unique

solution of (2.1) when c(z, g(z)) = ∥z− g(z)∥2. In another word, g = ∇C is the OT

plan under the L2 cost. One important thing is that this theorem assumes some weak

restrictions on η and π such as they are atomless. Therefore, we will assume from

now that η and π are absolutely continuous.

2.2 Monotone Triangular Transport Maps

The generic monotone triangular transport map g : Rn → Rn, proposed in [8] between

the reference distribution η and the target distribution π can be formulated as follows

for z ∼ η and x ∼ π:

g(z) =



g1(z1)

g2(z2; x1)

g3(z3; x1, x2)

...

gn(zn; x1, . . . , xn−1)


=



x1

x2

x3
...

xn


. (2.2)

By convention, the reference η is always chosen to be the standard Gaussian distri-

bution. Therefore, we will assume that η = N(0, I) for the rest of the thesis. Each

map component in (2.2) is monotone in its last input argument, i.e.,

⟨gi(zi)− gi(z
′
i), zi − z′i⟩ > 0 ∀ zi, z′i ∈ R.
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In this setting, each component of g takes the outputs of the previous components

as inputs. To be specific, gi(zi|x<i) pushes forward the ith marginal of the standard

Gaussian ηi to the target conditional distribution π(xi|x<i). Here, the notation x<i

represents input vector [x1, . . . , xi−1]
⊤. Each map component therefore characterizes

a marginal conditional of the target joint distribution decomposed by chain rule:

π(x) = π(x1)π(x2|x1)π(x3|x1, x2) · · · π(xn|x<n).

Then, to sample from the kth conditional assuming k > 1, we can provide arbitrary

inputs x∗<k to the corresponding map component. Triangular maps of this form are

also known as the Knothe-Rosenblatt rearrangement [8].

For TC-Flow, we combine the Knothe-Rosenblatt rearrangement and Brenier’s

Theorem to design the map components as the gradients of strictly convex functions

Φi : Ri → R such that ∇2
iΦi ≻ 0. Then, the map described in (2.2) becomes

g(z) =



∇z1Φ1(z1)

∇z2Φ2(z2; x1)

∇z3Φ3(z3; x1, x2)

...

∇znΦn(zn; x1, . . . , xn−1)


. (2.3)

This map formulation is then guaranteed to be component-wise optimal under

Brenier’s theorem as well as invertible.

2.3 Maximum Likelihood Estimation

The notion of constructing invertible maps between a reference and a target dis-

tribution resembles the normalizing flows approach [10, 5] in the machine learning
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community. Generator gΘ in this context is represented by neural networks with

weights Θ. To learn the optimal Θ, normalizing flows utilize maximum likelihood es-

timation (MLE). The essence of MLE training is to express the approximated target

log-likelihood log ρΘ(x) with the inverse generator g−1
Θ and the reference log-likelihood

ρ1 using change of variable:

log ρ0(x) ≈ log ρΘ(x) = log ρ1
(
g−1
Θ (x)

)
+ log

∣∣det∇g−1
Θ (x)

∣∣ .
The training objective is then to maximize Ex∼π

[
log ρΘ(x)

]
, which is equivalent

to minimizing Ex∼π

[
− log ρΘ(x)

]
given training samples x[i] from the target. This

minimization problem can also be interpreted as minimizing the Kullback-Leibler

divergence (KL divergence) between the approximated target density ρΘ and the true

target density ρ0. We can write the KL divergence as

DKL

[
ρ0 ∥ ρΘ

]
:=

∫
Rn

ρ0(x) log

(
ρ0(x)

ρΘ(x)

)
dx = Ex∼π

[
log

(
ρ0(x)

ρΘ(x)

)]
.

Since ρ0(x) is independent of Θ and is unknown to our model, we will drop this term

and only minimize Ex∼π

[
− log ρΘ(x)

]
instead, which is exactly the objective of MLE.

Due to the similarity in the modeling scheme, we will adopt the same maximum

likelihood training scheme to learn our triangular transport maps parameterized by

ICNN weights Θ. The optimization problem associated with training is then

argmin
Θ

Ex∼π

[
− log ρ1

(
g−1
Θ (x)

)
− log

∣∣det∇g−1
Θ (x)

∣∣] . (2.4)

We can then use algorithms like stochastic approximation (SA) or sample average

approximation (SAA) algorithms to solve the problem.
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2.4 Adaptive Transport Map Model

Extensive work has been done on representing and learning the triangular transport

maps [2, 8, 9]. The current state-of-the-art approach is the Adaptive Transport Map

(ATM) method proposed in [2]. The ATMmodel first learns the inverse transport map

g−1(x), then inverts it to obtain the direct map. Instead of enforcing monotinicity

through utilizing gradient of convex functions, the ATM method incorporates the

rectifier operator Rk on a smooth non-monotone function fk : Rk → R:

Rk(fk)(x≤k) = fk(x<k, 0) +

∫ xk

0

g
(
∂k fk(x<k, t)

)
dt.

The notation x≤k represents input vector [x1, . . . , xk]
⊤ and function g : R → R+ is a

positive function. This way, the gradient with respect to xk is

∂kRk(fk)(x≤k) = g
(
∂kfk(x≤k)

)
> 0.

Given i.i.d. training samples from the target, the ATM algorithm searches for

fk in the function space Vk, which can be expressed as the tensor product of the

Lebesgue spaces and the Hilbert space:

Vk = L2
η1
⊗ L2

η2
⊗ · · · ⊗H1

ηk
.

The Hilbert space H1 introduces enough regularity for the triangular maps’ last map

components. Using multi-index notation, the ATM algorithm learns the optimal

multi-index set Λ = {α1, ...,αm} where αi = {α1, ..., αk}. This way, the function fk

can be constructed as

fk(x≤k) =
m∑
i=1

ciαi

k∏
j=1

ψj
αj
(xj)

 .
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Here ciαi
∈ R, and {ψj

αj
}α∈N0 is chosen to be basis of L2

ηj
if j < k and of H1

ηk
if

j = k. Certainly, identifying the appropriate basis is pivotal for the ATM algorithm.

The current canonical choice of basis is the Probabilists’ Hermite polynomials with

linearization outside of an empirical interval [0.01, 0.99].

The ATM algorithm initializes Λ0 = ∅ and adaptively add new optimal α∗ into

the set:

Λt+1 = Λt ∪ {α∗
t} such that α∗

t /∈ Λt.

One interesting fact is that the algorithm searches for both the optimal cardinality

of the multi-index set Λ as well as the optimal multi-indices values in the reduced

margin set:

ΛRM
t = {α /∈ Λt | α− ei ∈ Λt ∀i ∈ [1, k] with αi ̸= 0}.

This way, the size of the search space for new multi-indices does not grow too fast as

dimension increases.
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Chapter 3

Formulation and Analysis of

Triangular Convex Flows

In this chapter, we will explain the details of the model architecture and the associated

optimization problems of our TC-Flow model. We start off by introducing the ICNNs

parameterized triangular maps and the block triangular maps. Then we will discuss

the non-linear and convex optimization problems we solve respectively for training

and inverting TC-Flow.

3.1 Input Convex Neural Networks

To represent the convex potentials Φi in (2.3), we will use the FICNN Fµ and PICNN

Pθ proposed in [1]. A m-layer FICNN can be expressed mathematically as the se-

quence

zk+1 = σk

(
L

(z)+
k zk + L

(y)
k y + bk

)
, for k = 0, . . . ,m− 1

Fµ(y) = zm, z0 = y.
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Here zk denotes the intermediate layer outputs, σk denotes the activation function,

and µ = {L(z)
0:m−1,L

(y)
0:m−1,b0:m−1} are the parameters. For the fist network layer,

L
(y)
0 = 0. Superscripts (z) and (y) denote the “path” with which the weights are

associated with. To ensure convexity in input y, the weights L
(z)
k are constrained to

be non-negative, denoted by the ”+” sign, and the activation functions σk are chosen

to be convex and non-decreasing. The resulting convexity can be easily proved based

on the operations preserving convexity described in [3].

Now, a m-layer the PICNN can be expressed in a similar fashion:

uk+1 = σ
(u)
k

(
L

(u)
k uk + b

(u)
k

)
,

zk+1 = σ
(z)
k

(
L

(z)+
k

(
zk ◦ [L

(zu)
k uk + b

(zu)
k ]+

)
+

L
(y)
k

(
y ◦ [L

(yu)
k uk + b

(yu)
k ]

)
+ L

(uz)
k uk + bk

)
,

for k = 0, . . . ,m− 1

u0 = x, z0 = y, Pθ(x,y) = zm.

Here θ are the parameters, and L
(y)
0 ,L

(yu)
0 ,b

(yu)
0 = 0. The PICNN is convex in y but

not necessarily in x, and uk are the layer activations of input x. The The symbol ◦

denotes the Hadamard product, or element-wise product, between matrices. Similar

to FICNN, to guarantee convexity, the weights L
(z)
k and the term L

(zu)
k uk + b

(zu)
k

are constrained to be non-negative, and activation functions σ
(z)
k are convex non-

decreasing.

3.2 ICNN Triangular Maps

With the FICNN and PICNN, we can parameterize the convex potentials Φi. How-

ever, since the training problem (2.4) only involves the inverse map and its gradient,

we will use the ICNNs to represent the inverse convex potentials Φ−1
i whose gradients
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are the inverse map components. This way

g−1
µ,θ (x) =



∇x1Fµ(x1)

∇x2Pθ2(x1, x2)

...

∇xnPθn(x1, . . . , xn)


, (3.1)

and each ICNN is only convex in the last argument. With this formulation, the direct

transport map in (2.3) becomes

gµ,θ (z) =



∇z1F
−1
µ (z1)

∇z2P
−1
θ2

(z2;x1)

...

∇znP
−1
θn

(zn;x1, . . . , xn−1)


. (3.2)

The ith map component in (3.2) is automatically monotone in zi due to the ICNN con-

vexity. Worth noting is that conditional sampling using (3.2) only requires the PICNN

parameterized components. In this sense, we can replace the Fµ in (3.1) with the iden-

tity mapping and learn only the other components. Then, for example, to sample from

the conditional π(x4|x3, x2, x1), we can provide arbitrary inputs x∗1, x
∗
2 and compute

∇z4P
−1
θ4

(z4;x
∗
1, x

∗
2, x3). Note that we obtain input x3 from ∇z3P

−1
θ3

(z3;x
∗
1, x

∗
2).

3.3 ICNN Block Triangular Maps

To highlight the concept of conditional distribution, we now denote the joint target

distribution as π(x,y) and the reference distribution as η(zx, zy) where y is the

conditional input. As discussed in [7], the lower-triangular maps has one disadvantage:

sensitive to variable ordering. One trivial example in R2 is that learning the following
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maps,

g =

 g1(zx)

g2(zy;x)

 and g =

 g1(zy)

g2(zx; y)

 ,
poses drastically different challenges for some problem. To address this, [7] proposed

the block triangular maps. For TC-Flow, the direct block triangular maps can be

written as follows:

gµ,θ(zx, zy) =

 gµ(zy)

gθ (zx;y)

 =

 ∇zyF
−1
µ (zy)

∇zxP
−1
θ (zx;y)

 (3.3)

In this formulation, F−1
µ is convex in all inputs and P−1

θ is only convex in zx. Com-

ponents gθ is the couplings between the reference marginals and the target marginal

conditionals. Such block triangular maps are more scalable compared to strict tri-

angular maps in that it only involves two ICNNs and are less sensitive to variable

ordering.

The block triangular maps in (3.3) are also well-suited for conditional sampling

and density estimation, which can be achieved by setting Fµ to be the identity map

and only learn the PICNN map. Considering these benefits, we will only adopt such

block-triangular maps when learning high-dimensional target distributions. Finally,

to ensure the convex potentials are strongly convex, we will add a trainable quadratic

term to Fµ and Pθ like did in [6]. To illustrate, we will use the block triangular maps

and the associated inverse potentials are:

Φ−1
µ = g(w1) · g(Fµ (y)) + (ReLU(w2) + g(w3)) ·

1

2
∥y∥22

Φ−1
θ = g(w1) · g(Pθ (y,x)) + (ReLU(w2) + g(w3)) ·

1

2
∥x∥22

The scalars w1, w2, w3 are the trainable weights for the network outputs and the
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quadratic terms, respectively. Function g is chosen to be the softplus function g(x) =

log(1 + exp(x)).

3.4 Training Problem

There are two crucial optimization problems associated with our model: the non-

linear training problem and the convex inversion problem. First, I want to discuss

the training problem for the strict triangular case of (2.2) then extend to the block

triangular maps. With the ICNN parameterization, the minimization problem in

(2.4) for strict triangular maps becomes:

argmin
µ,θ

Ex∼π

[
− log ρ1

(
g−1
µ,θ (x)

)
− log det∇g−1

µ,θ (x)

]
. (3.4)

The notation θ represents all the n-1 sets of PICNN weights. Here, the absolute

value around the determinant is omitted since by construction the determinant will

be positive.

During training, we will use SA to approximate the expectation in (3.4) of mini

batch samples x[i], i = 1, . . . ,M :

Jµ,θ = − 1

M

M∑
i=1

[
log ρ1

(
g−1
µ,θ (x

[i])
)

+ log det∇g−1
µ,θ (x

[i])

]
. (3.5)

Following [8], since the multivariate Gaussian can be expressed as the product of

the marginals, we can separate Jµ,θ into independent optimization problems for each

of map component. For the sake of illustration, I will only write out the training

objective for the kth map component such that k > 1:

Jθk = − 1

M

M∑
i=1

[
log ρ

[k]
1

(
g−1
θk

[k]
(
x
[i]
≤k

))
+ log ∇xk

(
g−1
θk

[k]
(
x
[i]
≤k

))]
.



15

The superscript [k] represent the kth component. This way, we can train the ICNN

maps in parallel to learn the optimal ICNN parameters.

Now for the block triangular case, the objective function is also separable. For the

block triangular maps, the gradient of the inverse map has the following lower block

triangular structure:

∇g−1
µ,θ (x,y) =

 ∇2
yFµ(y) 0

∇y∇xPθ(y,x) ∇2
xPθ(y,x)


Assuming that (x,y) ∈ Rp × Rq, we can write out the training objective function as

Jµ, θ = − 1

M

M∑
i=1

[
log ρ1

(
g−1
µ,θ (x,y)

)
+ log (detHF detHP )

]

Here HF = ∇2
yFµ(y) ∈ Rq×q and HP = ∇2

xPθ(y,x) ∈ Rp×p are the block diago-

nal components of the gradient. This way, we have two independent optimization

objectives for the FICNN and PICNN respectively:

Jµ = − 1

M

M∑
i=1

[
log ρ1

(
∇yFµ(y

[i])
)

+ log det∇2
yFµ(y

[i])

]

Jθ = − 1

M

M∑
i=1

[
log ρ1

(
∇xPθ(y

[i],x[i])
)

+ log det∇2
xPθ(y

[i],x[i])

]

Finally, to solve the training problems, we will use the Adam stochastic optimization

algorithm. During training, after each weight update using Adam, we project the

ICNN weights under non-negative constraint into the non-negative orthant using

Rectified Linear Units (ReLU): ReLU(x) = max(x, 0).
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3.5 Inversion Problem

The ultimate goal of our model is to learn the direct transport maps. Therefore, we

need to invert the learnt inverse maps obtained from training via MLE. This can be

readily done by solving convex optimization problems as proposed in [6]. To invert

the FICNN parameterized block triangular map, we solve

argmin
v

Fµ(v) − z⊤yv.

The objective function in this problem is clearly convex in v. Here zy ∼ N(0, I)

where I ∈ Rq×q, and the minimizer v∗ = ∇zyF
−1
µ (zy) are the direct map outputs, or

generated samples, y.

Now for the PICNN parameterized block triangular map component, we solve

argmin
v

Pθ (y, v) − z⊤xv.

Here zx ∼ N(0, I) where I ∈ Rp×p and the minimizer v∗ = ∇zxP
−1
θ (zx; y) are the

generated samples x. To sample conditionally, we simply need to provide arbitrary

input y∗ to Pθ.

To solve the inversion problems, we will use the Limited-memory BFGS algorithm

with strong Wolfe line search. Other alternatives such as Newton’s method with

backtracking line search are also feasible.
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Chapter 4

Numerical Experiments

We will demonstrate TC-Flow’s performance on generative sampling and density es-

timation through numerical experiments. We first illustrate the efficacy of TC-Flow

using two-dimensional synthetic datasets. Then, we compare TC-Flow’s performance

against ATM on high-dimensional benchmark problems. All experiments are con-

ducted on one Quadro RTX 8000 GPU with 48 GB of RAM. Code to reproduce all

experiments is available in https://github.com/OliverWang7/TC-Flow.

4.1 Two Dimensional Synthetic Data

To demonstrate TC-Flow’s effectiveness in characterizing the complex target distri-

butions, we will train the model on 2-D synthetic datasets distributed according to

non-Gaussian and disjoint distributions. To set up the experiment, we prepare 30000

samples from the target as training data.

https://github.com/OliverWang7/TC-Flow
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Moons
x ∼ π g−1

µ,θ

z ∼ η gµ,θ

Pinwheels
x ∼ π g−1

µ,θ

z ∼ η gµ,θ

8 Gaussians
x ∼ π g−1

µ,θ

z ∼ η gµ,θ

Checkerboard
x ∼ π g−1

µ,θ

z ∼ η gµ,θ

Figure 4.1: 2-D toy dataset generative sampling. Top Left: samples from the target
distribution. Top Right: distribution of the inverse map outputs. Bottom Left: samples
from the reference distribution. Bottom Right: generated samples.
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We then use the PyTorch Adam optimizer with batch size of 64 and learning

rate of 0.005 to optimize the ICNNs’ weights. Based on the 2-D histogram plots in

Figure 4.1, we see a good match between the actual target samples and the generated

samples.

4.2 Tabular Dataset

We then compare TC-Flow’s performance on theWine Quality and Parkinsons datasets

from the UCI machine learning repository to ATM’s. To pre-process the datasets, we

remove discrete valued data features and normalize each feature by subtracting the

empirical mean then dividing by the empirical standard deviation. Then, we remove

one variable of every pair with a Pearson correlation coefficient greater than 0.98.

For evaluation metric, we adopt the mean negative log-likelihood, which is ex-

actly the training loss. To construct the maps, we partition the sample features into

two halves then learn the joint distribution of the first half using a FICNN and the

conditional distribution of the second half using a PICNN, which results in a block

triangular map.

The scalar-valued FICNN and PICNN both have layer width of 256 and depth

of 3 hidden layers. We use the PyTorch Adam optimizer for the training problem

with learning rate=0.005, β = (0.9, 0.999), ϵ = 1e − 08, and weight decay of 0. We

initialize both weights for the quadratic term to 0.1, and for the ICNN output to 0.

We use a 8/1/1 split over the datasets and use 1 fold for validation and 1 fold for

testing. For the Wine Quality dataset (Red Wine and White Wine), we use a batch

size of 32 and 64 for Parkinsons. We evaluate our model using the validation set

every 20 training steps and save the best model based on validation loss. Finally, we

test the TC-Flow maps on the hold-out test dataset. The following TC-Flow results

are obtained from 10 runs on GPU and the ATM results are reported in the paper [2].
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Datasets (d, nex) ATM TC-Flow

Red (11, 1599) 9.8± 0.4 8.98± 0.16

White (11, 4898) 11.0± 0.2 11.01± 0.12

Parkinson’s (15, 5875) 2.8± 0.4 2.71± 0.08

Table 4.1: Test mean negative log likelihood (lower the better)
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To visualize TC-Flow’s performance on the high-dimensional datasets, we project

the results onto two dimensions and obtain 2-d histograms:

g−1
µ,θ x ∼ π gµ,θ

P
ar
k
in
so
n

W
h
it
e

R
ed

Figure 4.2: Tabular dataset generative sampling. Left: distribution of the inverse maps
outputs. Middle: samples from the target distributions. Right: generated samples.



22

Chapter 5

Discussions and Future Directions

We presented a scalable and expressive monotone triangular and block triangular

map parameterization using TC-Flow. The numerical results suggest that TC-Flows

performs better in terms of mean negative log-likelihood than the ATM model on the

Red Wine dataset and comparable for the other two datasets. The primary reason

behind such improvements is that the ATM model does not capture sharp boundaries

in the target distributions well. For example, our model learns the two-dimensional

projected distribution for Red Wine dataset in Figure 4.2 that exhibits a vertical

boundary, while the ATM model do not capture such boundary.

One property of strict triangular maps (2.2) is that they preserve sparsity [2]. Ac-

cording to [11], the sparsity pattern JT of triangular maps for the kth map component

is defined as

JT =
{
(j, k) : j < k, ∂j∇kΦk = 0

}
, (5.1)

if the kth variable is independent of the jth variable. As shown in [2], the ATM model

learns triangular maps that inherit the intrinsic sparsity pattern to the dataset. The

metric to measure sparsity pattern is through
∫
|∂j∂kΦ(x)|2π(x)dx from test samples.

Based on our evaluations using this metric, the TC-Flow block triangular maps do



23

not preserve sparsity. However, the strict triangular maps learned by TC-Flow do

exhibit sparsity. Therefore, one interesting future experiment could be to study the

sparsity-efficiency trade-off between the triangular maps versus block triangular maps.

Furthermore, if we have knowledge of the sparsity pattern a priori, we can construct

the strict or block triangular maps such that (5.1) automatically holds for variables

with conditional independence.
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Chapter 6

Concluding Remarks

We presented TC-Flow, an ICNN based approach for conditional sampling using

monotone triangular transport maps. The method characterizes complex conditional

distributions with transport maps that are guaranteed to be optimal and invertible by

theory. Numerical experiments demonstrate the effectiveness of TC-Flow in density

estimation and generative sampling on benchmark problems. Future efforts could

exploit conditional independence for map representation and learning, analyze other

optimization algorithms, and explore better ICNN architectures.
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