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Abstract

Dynamic Network Anomaly Modeling of Cell-Phone
Call Detail Records for Infectious Disease Surveillance

By Hongwen Song

Global monitoring of novel diseases and outbreaks is crucial for pandemic prevention.
To this end, movement data from cell-phones is already used to augment epidemio-
logical models. Recent work has posed individual cell-phone metadata as a universal
data source for syndromic surveillance for two key reasons: (1) these records are
already collected for billing purposes in virtually every country and (2) they could
allow deviations from people’s routine behaviors, both in terms of mobility and so-
cial interactions such as during illness, to be detected. In this paper, we develop
the necessary models to conduct population-level infectious disease surveillance by
using cell-phone metadata individually linked with health outcomes. Specifically, we
propose GraphDNA—a model that builds Graph neural networks (GNNs) into
Dynamic Network Anomaly detection. Using cell-phone call records (CDR) linked
with diagnostic information from Iceland during the H1N1v influenza outbreak, we
show that GraphDNA outperforms state-of-the-art baselines on individual Date-
of-Disease (DoD) prediction, while tracking the epidemic signal in the overall pop-
ulation. Our results suggest that proper modeling of the universal CDR data could
inform public health officials and bolster epidemic preparedness measures.



Dynamic Network Anomaly Modeling of Cell-Phone
Call Detail Records for Infectious Disease Surveillance

By

Hongwen Song

Carl Yang, Ph.D.
Advisor

A thesis submitted to the Faculty of the Emory College of Arts and Sciences
of Emory University in partial fulfillment

of the requirements for the degree of
Bachelor of Science with Honors

Quantitative Theory and Methods

2021



Acknowledgments

I have been extremely fortunate to have had the support of the department family

and friends near and far. I would like to thank Dr. Carl Yang and Dr. Ymir Vigfusson

for their consistent support since the start of the honors program and their countless

hours dedicated to this thesis. I would also like to thank Dr. Weihua An for being in

my honors committee and teaching me wonderful course materials. What’s more, I

am grateful for the constant love and support of my family and my boyfriend, Ziwei

Dong. Without their support, this work would not be possible.



i

Contents

1 Introduction 1

2 Background and Related Work 5

2.1 Syndromic Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dynamic Network Anomaly Modeling . . . . . . . . . . . . . . . . . . 6

3 The GraphDNA Framework 8

3.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.2 Node features . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.3 Link features . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.4 Diagnostic features . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.5 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Dynamic Social Behavior Prediction Module . . . . . . . . . . . . . . 14

3.4.1 Social behavior modeling . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Dynamic social behavior modeling . . . . . . . . . . . . . . . . 15

3.5 Anomaly-based Disease Prediction Module . . . . . . . . . . . . . . . 17



3.5.1 Deep learning model . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Statistical model . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5.3 Hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Training Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6.1 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . 20

4 Experiments 22

4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.5 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 DoD Prediction Comparison (RQ1) . . . . . . . . . . . . . . . . . . . 25

4.3 Anomaly Curve during Epidemic (RQ2) . . . . . . . . . . . . . . . . 26

4.4 In-depth Model Analysis (RQ3-5) . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Ablation analysis (RQ3) . . . . . . . . . . . . . . . . . . . . . 27

4.4.2 Hyper-parameter analysis (RQ4) . . . . . . . . . . . . . . . . 28

4.4.3 Efficiency analysis (RQ5) . . . . . . . . . . . . . . . . . . . . . 28

5 Applications 30

5.1 Continuous forecasting models . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Web-based dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Broader connection with the web . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 32

Appendix A Ethical & Privacy Considerations 34

Appendix B Time Complexity Experiments 36



Bibliography 38



iv

List of Figures

3.1 Node and link feature analysis: Spearman’s CC between social behav-

iors and days from diagnosis. We set an empirical threshold (dashed

line) to choose relevant node features for inclusion. Unweighted links—

links without additional features—were found to be the most useful. . 11

3.2 Dynamic social behaviors of diagnosed people vs. days from DoD:

We observe clear deviations of social behaviors around the DoD. The

shaded interval marks the period between days -1 to +3 days from

DoD when the largest deviations are observed. . . . . . . . . . . . . . 12

3.3 An overview of our Dynamic Network Anomaly modeling (GraphDNA). 14

4.1 Average disease scores (ADS) of diagnosed group and whole popula-

tion vs. daily diagnosed number (DDN) in the period of 2009 H1N1v

outbreak in Iceland. Thin lines denote the medians/values of the

ADS/DDN, thick lines indicate the smoothed medians/values, and

shading delineates the 1st–3rd quantiles of the ADS. . . . . . . . . . . 26

4.2 Performance of GraphDNA with varying hyper-parameters. The

dashed lines denote the performance of the best baseline (OCGNN). . 26

B.1 Running times of algorithms compared. . . . . . . . . . . . . . . . . . 37



v

List of Tables

4.1 Anomaly detection performance comparison. . . . . . . . . . . . . . . 23



vi

List of Algorithms

1 Dynamic Social Behavior Prediction . . . . . . . . . . . . . . . . . . . 20

2 Anomaly-based Disease Prediction (Hybrid) . . . . . . . . . . . . . . . 21



1

Chapter 1

Introduction

The COVID-19 pandemic underscores the need for early outbreak detection and in-

fectious disease surveillance. In normal times, public health officials continuously

monitor emerging pathogens and smaller epidemics to mitigate the chances for any

of these turning into a global pandemic. Without a crystal ball to know exactly how

many people are infected at each moment, these efforts include syndromic surveil-

lance where multiple data sources, such as hospital records, cross-sectional surveys,

or even search-engine queries are searched for clusters of symptoms that warrant fur-

ther scrutiny. For diseases where symptoms coincide with the infectious period, such

as most influenza variants, such symptomatic surveillance can further track the pro-

gression of an epidemic and provide direct feedback for mitigation strategies, such as

quarantines, lock-downs, or vaccination campaigns.

Recent efforts have advanced cell-phone metadata, such as the call-detail records

(CDR), as a potential universal data source to augment symptomatic surveillance [32,

8, 51], for four key reasons. First, CDR data include the (anonymized) caller and re-

cipient numbers, a timestamp of the call or text, and the GPS-coordinates of the

cellular tower through which the call was routed; the cellular tower and timestamp

of data access is also recorded. They thus provide time-series for individual mobility
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and social interactions—behaviors that may differ when the person is ill. Second, in

contrast with aggregated mobility models [14], CDR data may be linked with health

data at the individual level while accommodating privacy concerns [51], allowing de-

viations from individual routines—such as staying home when ill—to be detected.

Such localized signals can provide crucial information early in an epidemic. Third,

CDR data are already recorded by virtually every mobile-network provider for billing

purposes within an established regulatory and privacy framework. Deploying dis-

ease monitoring on top of an existing data source, such as CDR logs, is easier and

cheaper than alternatives, while also allowing important ethical and privacy concerns

to be addressed (cf. Appendix A). Finally, cell-phone use is ubiquitous (105 mobile

subscriptions per 100 inhabitants; 97% of the world population covered by a mobile

network) whereas Internet access is less pervasive (57% of the world population) and

heavily skewed towards affluent regions (19% of individuals in the least developed

countries (LDC) have Internet access), according to 2020 estimates [29]. Many lower

and middle-income countries lack resources for public health measures and monitor-

ing, and thus would stand to benefit the most from inexpensive disease monitors.

In 2010, a research has been made on monitoring disease infection in social net-

work by simply monitoring the friends of randomly selected individuals [16], but

this method did not consider the global network structure and requires additional

efforts in friendship nomination. In 2016, another study proposed a pandemic mod-

eling method using network data, specifically, monitoring and controlling influenza

A (H1N1) using social network analysis and cloud computing [45], yet the proposed

architecture fails to capture individual routines and is hard to be generalized to CDR

data.

Key technical challenges must be resolved, however, to make individual CDR

models practical for epidemiological surveillance. Using linked health and CDR data

from the H1N1v epidemic in Iceland in 2009, Vigfusson et al. [51] showed that indi-
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vidual mobility is reduced around the day of influenza-like illness diagnosis. While

it is interesting that infection produces behavioral changes that are measurable from

very sparse CDR data, the all-important question for the epidemiologist is whether

measured behavioral changes imply infection, which would allow her to estimate how

many people are taken ill at the given moment (prevalence) and tune forecasting

model parameters. This direction is hard for several reasons, including networked

signals (involving individuals’ behaviors regarding both themselves and their social

contacts), temporal routines (requiring the capture of dynamic behavioral patterns),

and weak supervision (because disease labels are sparse and only weakly correlated

with the behavioral anomalies).

In this paper, we work towards the vision of estimating population-level disease

prevalence. Confronting the problem as an individual disease prediction task, we

augment the existing individual-level features [51] with a social context to capture

regular contacts and group interactions to better distill routine social interaction

patterns. Central to our approach are graph neural networks (GNNs) [46, 31, 25] that

have recently been adapted to model dynamic and temporal networks. We found that

existing research into dynamic GNNs has predominantly been focused on modeling

network formation and evolution in contexts such as link prediction [40, 55, 41, 15],

but such GNNs are not yet suited to tracking dynamic social behaviors of individuals

and their routines. On the other hand, several traditional (non-GNN-based) dynamic

and temporal network models have been designed to capture emergent patterns during

network evolution, and to identify abnormal individuals or subgraphs [3, 52, 39]. Yet

these approaches were also unsuitable, since they cannot incorporate node features

or be trained for specific tasks, such as disease prediction.

In this paper, we propose a novel integrated GNN for Dynamic Network Anomaly

modeling (GraphDNA) to meet the goal of detecting deviations from an individual’s

routine social behaviors for predicting disease onset. Broadly, GraphDNA combines
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two key modules concerning dynamic social behavior prediction and anomaly-based

disease prediction. The former module employs a graph convolutional neural net-

work (GCN) model [31] to capture individuals’ social behaviors and builds it into

a long-short term memory (LSTM) model [27] to record the dynamic patterns of

such behaviors. The latter module then combines a data-driven learnable logistic

regression (LR) model [28] and a temporal-pattern-oriented statistical Gaussian tail

probability (GTP) model [1] to predict disease diagnosis from anomalies in the social

behavior dynamics.

In our experiments on the same labeled dataset from the H1N1v epidemic in Ice-

land [51], we evaluateGraphDNA by comparison to the most relevant baselines from

state-of-the-art including dynamic GNNs and other temporal or networked anomaly

detection models. With a focus on estimating the Date-of-Diagnosis (DoD) of diag-

nosed individuals, we demonstrate the advantages of our GraphDNA method on the

generic task of supervised dynamic network anomaly detection. We also apply the

individual inference of GraphDNA to the larger population, tracking the epidemic

curve within the diagnosed population and, further, finding an illness-associated be-

havioral change signal in the whole population. Finally, we analyze key design deci-

sions, hyper-parameter settings, and provide an efficiency study of GraphDNA.
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Chapter 2

Background and Related Work

2.1 Syndromic Surveillance

Keeping with technological developments and new data sources, syndromic surveil-

lance systems emerged in the 2000s to “seek to use existing health data in real time

to provide immediate analysis and feedback to those charged with investigation and

follow-up of potential outbreaks” [26]. In 2009, Google Flu ushered in the era of big

data syndromic surveillance through passively collected data sources by using aggre-

gated search engine queries for flu-like symptoms to estimate regional influenza levels

with a lag of only one day [22]. Google Flu’s approach, however, was later found

to have been fundamentally flawed, missing non-seasonal influenza outbreaks and

frequently overestimating disease burden, and was shut down in 2015. Prominent re-

searchers characterized the project’s indifference to supplementing the existing body

of science and instead seeking to replace it with black-box models as an example of

“big data hubris” [35]. A flurry of research into other data sources for use in syn-

dromic surveillance, such as social media, have followed [42, 44], usually built around

technologies used primarily in high-income countries.

Aggregated CDR data, such as rates of population movement between cell-phone
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towers [32], have informed epidemiological models for cholera [6], dengue fever [54],

malaria [53, 9], Ebola [33], influenza [50], and recently SARS-CoV-2—the pathogen

that causes COVID-19 [14]. Because these models lack linkage at the individual level,

they rely on correlations between the aggregated data and other datasets, thereby

limiting their statistical power and generality [19]. Individual CDR data were used

during COVID-19 to infer likely contacts of infection in Israel, with staunch privacy

objections [24] (cf. Appendix A). The aforementioned dataset from Iceland is the

first large-scale study where individual CDR-data were linked to health outcomes,

specifically influenza-like illness (ILI) diagnosis.

2.2 Dynamic Network Anomaly Modeling

Anomaly detection refers to the data mining process that measures the deviations

of objects of interest from the majority group [12, 2]. One of the most common

scenarios of anomaly detection is on sequential data (e.g., time-series), where the

algorithm is often composed by a sequence modeling part and a deviation scoring

part [13]. For instance, [38, 1, 18] employ sequential neural networks such as LSTM

and HTM (hierarchical temporal memory) to model sequential records and then access

the likelihood of anomalies based on the models’ predictions. Recent studies for many

emerging real-world applications concern the more complicated problem of anomaly

detection on graph data [36]. For example, [3, 52, 39] detect abnormal nodes in

graphs based on their deviations from normal node clusters without supervision.

[52] combines one-class classification with GNNs for graph anomaly detection in a

supervised manner. However, these methods are designed only for static graphs.

Real-world networks can be modeled as dynamic graphs to represent the evolv-

ing objects and relationships among them [36, 7]. Attempts in modeling dynamic

networks have been made in statistics, where the stochastic actor-oriented model
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(SAOM) [48] is commonly used to model dynamic networks. Yet SAOM is based on

Markov evolution and its decision making is based on full information of the network,

so it is not suitable for modeling long-term dependent dynamics on sparse dataset.

Aside from SAOM, the temporal exponential random graph models (TERGMs) [23]

proposed a more flexible method in modeling dynamic network, yet it suffers from

network size limitation and degeneracy. The computational intensiveness limits its

practical data size within tens or a few hundreds of nodes, and the degeneracy means

that for certain combinations of parameters the Markov chain Monte Carlo estima-

tion rarely or never converges. On the other hand, extensive research has been done

into dynamic network modeling in deep learning field, including tasks such as tem-

poral link prediction [40, 55, 41, 15] and efficient graph streaming [5, 21, 17]—none

of which encompass anomaly detection. AddGraph [58] and NetWalk [56] are two

methods that are closest to our setting of dynamic network anomaly modeling. Add-

Graph employs temporal GCN to detect anomalous edges but cannot trivially detect

anomalous nodes, whereas NetWalk leverages a DeepWalk-based framework to detect

both anomalous nodes and edges, but cannot readily incorporate node attributes or

task-specific supervision.
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Chapter 3

The GraphDNA Framework

3.1 Data Analysis

3.1.1 Description

The data set from Iceland contains CDR data for 93,409 people (about a quarter

of the Icelandic population) over a 3-year period beginning in February 2009, with

87,773 individuals making calls during the 1-year period beginning in February 2009

when the H1N1v epidemic occurred. The CDR records are linked with influenza-like

illness (ILI) diagnosis data for 1,434 individuals who provide a spatially representative

sample (r > 0.86) of the homogeneous Icelandic population [51] (we focus only on

an individual’s first ILI diagnosis). Each record contains the encrypted source and

destination numbers for a call placed over a cell-phone tower, the GPS coordinates

of the cell-phone tower, a timestamp, and the duration of call; similar metadata for

text messages (SMS) are also included in the CDR data. No content of calls or text

messages are included. The linked health dataset includes the encrypted number and

the Date of Diagnosis (DoD) of ILI by any health provider in Iceland for the owner

of that number.

The CDR data reveals rich movement and social patterns. Common contacts
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and their own interactions give a proxy for daily communication networks. The

GPS location of a call gives a proxy for a person’s location; a series of such locations

provides a proxy for movement; and a series of movements can act as proxy for routine

patterns, such as weekday commute to and from work. Existing studies identified

that the movement patterns were different on the day before the DoD and up to

three days after were significantly different from regular days, specifically that 1.1–

1.4 fewer unique tower locations were visited on average [51]. They also found that

significantly fewer calls were placed but that calls were longer on the day following

diagnosis. Prior work did not consider more advanced movement, social features, or

dynamics.

3.1.2 Node features

We conducted principled analysis of the many node features that can be constructed

from the CDR data, including location num (number of unique tower recorded),

avg len (average call length), tot len (total call length), call cnt (call count), de-

gree (number of contacts), clus coeff (cluster coefficient), abg lon (average longitude),

avg lat (average latitude), all of which are varying by day. Intuitively, multiple fea-

tures may potentially indicate disease onset or diagnosis. We studied feature corre-

lations based on the days from DoD to quantify such potential. Specifically, since

these predominantly ordinal attributes usually did not follow normal distributions,

we correlated features using the Spearman’s Correlation Coefficient (SCC) [49].

3.1.3 Link features

To account for people’s connections in the phone call network, we conduct the node

feature analysis jointly with the network links. Specifically, we consider the social

behaviors of every individual, that includes their own behaviors (node features) to-

gether with those of their neighbors in the phone call network. For simplicity, we
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simplify social behaviors here as the features of a node together with the aggregate of

the node features in its direct neighbors. In addition to binary indicators of whether

two people were in contact during a day, the CDR data further allow us to extract

various link features, such as call counts and (total) call durations. Before designing

more complicated models beyond elementary GCN [31], we extend our data analysis

over the correlations with days from DoD to study the potential impact of such link

features in disease prediction.

3.1.4 Diagnostic features

Figure 3.1 demonstrates the results of our node and link feature analysis based on

their correlations with days from diagnosis based on the training data. Even though

the exact values on y-axis are hidden for credential reasons, all of the correlations are

statistically significant at the 0.01 significance level. Based on the correlation scores,

we set an empirical threshold to select the top five node features as a trade-off between

model capacity and simplicity. For the link features, we found that unweighted links

already encompass the strongest signal towards the DoD, obviating the need for more

complicated GCN designs to model link features.

Combining nodes and links, in Figure 3.2, we visualize the dynamic social be-

haviors of individuals via three prominent node features aggregated through the

(weighted/unweighted) links in the direct neighborhoods, where deviations are clearly

observed around the DoD. Such observations motivate our goal of predicting disease

infections based on dynamic network anomalies in the CDR data.

3.1.5 Other features

While we rely on real data analysis, both to identify the node and link features and to

justify the design of our models, we underscore the “greedy” nature of such analysis

and the potential over-simplification of the problem. However, the focus of our work
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figures/spearman.png

Figure 3.1: Node and link feature analysis: Spearman’s CC between social be-
haviors and days from diagnosis. We set an empirical threshold (dashed line) to
choose relevant node features for inclusion. Unweighted links—links without addi-
tional features—were found to be the most useful.

is to provide the first fundamental framework of disease prediction based on dynamic

network anomalies in CDR data, and thus we believe model simplicity is crucial. We

thus defer more advanced analysis and complex models to follow-up work.

3.2 Problem Formulation

3.2.1 Input

From the CDR data, we construct daily snapshots of the cell-phone call network as

graphs G = {G(t) = (V,E(t), F (t))}Tt=1. Here, V is the set of all vertices (individuals)

who have at least one call record in the entire dataset, E(t) is the set of unweighted

directed links at timestamp (day) t, i.e., e
(t)
ij = 1 if there is at least one call from vi to

vj on day t, and 0 otherwise, and F (t) denotes the behavioral features at timestamp

t, i.e., f
(t)
i ∈ RD denotes the individual behavioral features of vi on day t. We model

a full year of data between 02/01/2009 to 02/01/2010 to capture the entire Fall 2009

H1N1v outbreak in Iceland, and use t ∈ {0, 1, . . . , T = 364} to denote the relative
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figures/nDay_from_DoD.png

Figure 3.2: Dynamic social behaviors of diagnosed people vs. days from DoD: We
observe clear deviations of social behaviors around the DoD. The shaded interval
marks the period between days -1 to +3 days from DoD when the largest deviations
are observed.

days within that time frame.

Within V , we pay special attention to the subset V ′ ⊂ V who had a record for

an influenza-like illness (ILI) diagnosis during the one year period. Y ∈ R|V ′|×|T |

stores the day of ILI diagnosis (DoD) labels of people in V ′ (y
(t)
i = 1 if vi has a

positive diagnosis on day t, and 0 otherwise). Recovery from an influenza illness

may take several days and anomalous behavior is often observed in the several days

surrounding the DoD [51]. We thus follow common practice [10] and prior work to

define the extended DoD labels Ỹ , where ỹ
(t)
i = 1 if y

(t′)
i = 1 and t ∈ [t′ − 1, t′ + 3],

and 0 otherwise.
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3.2.2 Output

The primary goal of our work is to predict the DoD of vi ∈ V ′, through modeling the

connection between people’s dynamic social behaviors and disease diagnoses based

on the phone call graphs G given above. Beyond V ′, the model should also generalize

to the larger population V , where much of the diagnosis labels are unavailable, and

yet provide disease prediction—whether and when an individual gets infected. Public

health officials could use such estimates to monitor the effective disease burden of a

population during an epidemic, and even segment estimates by groups, age, region,

sub-populations, or others as needed [51].

3.3 Model Overview

The main aim of our work is to thoroughly model people’s behaviors in G from

the CDR data, and measure deviations from their behavior routines to facilitate

disease surveillance. To meet this goal, we design a two-stage framework: (1) dynamic

network behavior prediction, and (2) anomaly-based disease prediction, which can be

further integrated through iterative training.

We present an overview of our proposed GraphDNA framework in Figure 3.3.

In the first stage, a sequential graph representation learning module is designed to

capture people’s daily behaviors in the phone call graphs G and then make consecutive

predictions on their next-day behaviors. In the second stage, an anomaly detection

module is designed to compare the predicted behaviors with the true behaviors on

each day and make predictions about whether a person might have fallen ill with

H1N1v on that day.

We use a subset of people with diagnosis labels V 1
train ⊆ V ′ and the entire set of

non-diagnosed people V −V ′ to train the dynamic social behavior prediction module

in stage one. We then use a disjoint subset of people with diagnosis labels V 2
train ⊆ V ′
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figures/model-overview.png

Figure 3.3: An overview of our Dynamic Network Anomaly modeling
(GraphDNA).

to train the anomaly-based disease prediction module in stage two. Another disjoint

set Vval ⊆ V ′ is used to iteratively validate and improve the model design as well as

tune the model hyper-parameters, and the final disjoint set Vtest ⊆ V ′ is held out

until the final testing and reporting of the results.

3.4 Dynamic Social Behavior Prediction Module

To model people’s routine behavior over time in the cell-phone call graphs, we design a

dynamic graph model to predict people’s behaviors at each day (i.e., f
(t)
i ,∀vi ∈ V, t ∈

{1, 2, . . . , T}) based on their own past behaviors (i.e., {f (t′)
i | t′ = 0, . . . , t − 1}) and

the past behaviors of their neighbors (i.e., {f (t′)
j | t′ = 0, . . . , t− 1; vj ∈ N (vi, t

′, K)},

whereN (vi, t
′, K) denotes theK-hop neighborhood of vi in graph G(t′)). To efficiently

encode such dynamic social behaviors, we design an integrated model of GCN [31]

and LSTM [43] that we train on the node set V̄ = V 1
train ∪ V − V ′.



15

3.4.1 Social behavior modeling

Motivated by recent advances in GCNs for node representation learning in content-

rich networks [31], we employ GCN for the modeling of the static social behaviors

of individuals based on the neighborhood of each node on each day in the cell-phone

call graphs (i.e.,
{
f
(t)
i , f

(t)
j | j ∈ N (vi, t,K)

}
,∀vi ∈ V̄ , t ∈ {0, 1, . . . , T}). We encode

this information into the representation vectors h
(t)(K)
i through the following recursive

operations

H(t)(k) = ϕ
(
A(t)H(t)(k−1)W (k) + b(k)

)
, (3.1)

where A(t) is the normalized adjacency matrix with self-loop on day t, W (k) and b(k)

are the learnable parameters of the GCN model, ϕ is a non-linear activation function

such as LeakyReLU, and k ∈ {1, 2, . . . , K}. H(t)(0) = F (t) is the feature matrix on day

t. Based on our data analysis in Section 3.1, we used the binary directed adjacency

matrix A(t) ∈ {0, 1}N×N and real-valued feature matrix F (t) ∈ RN×D of selected node

features. The number of GCN layers K (also denoted as L1) is a tunable hyper-

parameter. To capture common patterns, we share and train the same GCN model

across all nodes vi ∈ V̄ and all days t ∈ {0, 1, . . . , T}.

3.4.2 Dynamic social behavior modeling

To integrate the history of past behaviors and model the dynamics of social behaviors,

we further employ an LSTM model [43] based on the outputs of the GCN model.

Specifically, given the sequence of representation vectors as the outputs of the GCN

model (i.e., {h(t)
i | t = 0, . . . , T − 1},∀vi ∈ V̄ ), the LSTM model seeks to predict the

node features of the next days (i.e., {f (t)
i |t = 1, . . . , T},∀vi ∈ V̄ ), which is computed
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through the following recursive operations

q(t) = σ
(
Wqhh

(t)
i +Wqrr

(t−1) +Wqcr
(t−1) + bq

)
,

e(t) = σ
(
Wehh

(t)
i +Werr

(t−1) +Wecc
(t−1) + be

)
,

c(t) = e(t) ⊙ c(t−1) + q(t) ⊙ tanh
(
Wchh

(t)
i +Wcrr

(t−1) + bc

)
,

o(t) = σ
(
Wohh

(t)
i +Worr

(t−1) +Wocc
(t) + bo

)
,

r(t) = o(t) ⊙ tanh(c(t)),

f̂
(t+1)
i = ϕ

(
Wfrr

(t) + bf
)
,

(3.2)

where r(−1) and c(−1) are initialized as all-zero vectors, h
(t)
i is the sequential input

to LSTM, W ’s and b’s denote the learnable parameters of different LSTM cells, i.e.,

the input gate q, forget gate e, output gate o, and activation vectors c. All cells are

of the same size as the output activation vector r, and ⊙ is the Hadamard product.

Eq. (3.2) represents a single-layer LSTM model. In a multi-layer LSTM unit model,

the input of the first layer is h(t), and the input of the l-th layer (l ≥ 2) is the output

activation vector of the previous layer, i.e., r(t)(l−1). The number of LSTM layers L2

is a tunable hyper-parameter. Given an input behavior representation of a node vi

on day t (i.e., h
(t)
i ), the final output of the LSTM model is the predicted behavior

(node feature) of vi on day t+ 1 (i.e., f
(t+1)
i ).

To capture the common patterns, we share and train the same LSTM model

across the representation and feature sequences of all nodes vi ∈ V̄ , which we do in

an end-to-end fashion jointly with the GCN model through the following objective

function:

min
Θ1,Θ2

∑
vi∈V

T∑
t=1

L1

(
f
(t)
i , f̂

(t)
i

)
, (3.3)

where Θ1 and Θ2 denote the parameters of the GCN model and LSTM model, re-

spectively. Here, L1 is a loss function such as MSE. We detail the training process in
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Algorithm 1.

3.5 Anomaly-based Disease Prediction Module

We focus on the task of DoD prediction not only because we only have positive labels

of diagnosed people in the dataset but also due to the crucial impact of accurate

detection of patient DoD on disease transmission control. Following past studies [51]

and our data analysis in Section 3.1, our central hypothesis is that the DoD labels may

be predicted to an extent based on people’s deviations from their routine behaviors

(i.e., anomalies) as captured in the cell-phone call graphs.

To detect anomalies, we first compute the deviation scores between the predicted

behaviors and real behaviors for all people in another training set V 2
train that is disjoint

from V̄

s
(t)
i = f̂

(t)
i − f

(t)
i ,∀vi ∈ V 2

train, t ∈ {1, 2, . . . , T}. (3.4)

Every individual vi ∈ V 2
train is associated with a sequence of T − 1 D-dimensional

vectors {s(t)i |t = 1, 2, . . . , T}, from which we will seek to predict the extended DoD

labels {ỹ(t)i |t = 1, 2, . . . , T}.

We design and experiment with three representative types of anomaly detection

models based on the output of our dynamic social behavior prediction stage: (1)

a deep learning model based on logistic regression (LR) [28], (2) a statistical model

based on Gaussian tail probabilities (GTP) [1], and (3) a hybrid model that integrates

the first two.

3.5.1 Deep learning model

Since the DoD labels Ỹ are binary, we devise a LR model for binary classification [28].

To mitigate noise and asynchronous anomalies across different features, we smooth
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the input sequences over a rolling window. We have

y
(t)
i = σ(MLP (s̃

(t)
i )),∀vi ∈ V 2

train, t ∈ {1, 2, . . . , T}, (3.5)

where s̃
(t)
i = mean(. . . , s

(t−1)
i , s

(t)
i , s

(t+1)
i , . . .). We pad both ends of the sequence with

zeroes. Here, the window size Ω0 is a tunable hyper-parameter, σ is the sigmoid

function, MLP is the multilayer perceptron with LeakyReLU activation, and the

number of layers L3 is another tunable hyper-parameter.

The LR model is trained with the following objective function

min
Θ3

∑
vi∈V 2

train

T∑
t=1

L2

(
ỹ
(t)
i , ŷ

(t)
i

)
, (3.6)

where L2 is a loss function such as cross-entropy. Given the propensity of LR to

simply predict the majority class when the class labels are imbalanced, we employ a

top-k selection mechanism during testing where we predict the top k ŷti ’s as 1 (illness)

for each vi ∈ Vval ∪ Vtest, and simply set k to 5 since the largest interval of concern

around the DoD is 5 days ([t-1, t+3]). We pre-specified the diagnosis window to be

[-1, +3] both because this is the average asymptotic range for H1N1v patients [57],

and because we observed the most significant change in individual behaviors in this

range. Future study is warranted to experiment with more variations of diagnosis

windows.

3.5.2 Statistical model

While LR provides an effective way of searching the feature space and finding the

inductive bias with the help of training data, it ignores dynamic contexts and is not

designed to capture temporal anomalies. On the other hand, anomaly detection has

been explored in temporal settings through statistical models such as the Gaussian
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Tail Probability (GTP) model [1]. Following their design, to effectively detect tem-

poral anomalies from the D-dimensional time-series data of the deviation scores of

each individual vi (i.e., {s(t)i | t = 1, 2, . . . , T}), we first apply two rolling windows

W1 and W2 of sizes Ω1 and Ω2 as follows

W1 = [max(0, t− Ω1/2),max(0, t− Ω1/2) + Ω1 − 1]

W2 = [max(0, t− Ω2/2),max(0, t− Ω2/2) + Ω2 − 1],

(3.7)

where Ω1 > Ω2 are two tunable hyper-parameters. We then model the values in W1 as

normal distributions, and use values in W2 to compute the recent short-term average.

An anomaly likelihood of s
(t)
i based on the GTP is computed as

p
(t)
i = 1−Q

mean
(
s
(t)
i | t ∈ W2

)
−mean

(
s
(t)
i | t ∈ W1

)
std

(
s
(t)
i | t ∈ W1

)
 , (3.8)

where Q represents the Gaussian tail probability approximation function [30]. The

total anomaly probability of vi on day t is computed as p̂
(t)
i =

∏D
d=1 p

(t)(d)
i , which is

directly used for the prediction of ỹi with the same top-k selection mechanism.

3.5.3 Hybrid model

The GTP model adds temporal context to the deviation scores and are thus more

suitable for anomaly detection in the dynamic social behavior data. However, the

multi-dimensional behavioral features are not parameterized for the task of disease

(DoD) prediction. To this end, we propose a novel hybrid model that combines the

power of both worlds—by simply replacing the s̃
(t)
i in Eq. (3.5) with p

(t)
i in Eq. (3.8).

The sequence smoothing with Ω0 is no longer needed due to the sliding windows W1

and W2.
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3.6 Training Algorithms

The detailed training algorithms of the two modules are outlined in Algorithms 1

and 2. We note that our GraphDNA framework does not rely on more hyper-

parameters than the basic ones for classic GCN, LSTM, LR, and GTP models. In

this work, we train the two stages separately and achieve promising results for disease

prediction in the end. Potentially, the two stages can also be trained jointly (iterative

or end-to-end), which we leave as an interesting direction for future work.

Algorithm 1: Dynamic Social Behavior Prediction

Input: {G(t) | t = 0, . . . , T}, V̄ = V 1
train ∪ V − V ′, # GCN layers L1, #

LSTM layers L2, hidden layer sizes H
Output: f

(t)
i , ∀vi ∈ V, t ∈ {1, 2, . . . , T}

1 while not converged do
2 for t← 0 to (T − 1) do
3 H(t) ← GCN(G(t); L1, H)
4 end
5 for vi ∈ V̄ do
6 for t← 0 to (T − 1) do

7 f̂
(t+1)
i ← LSTM(h(t); L2, H)

8 loss ← L1({f (t)
i }, {f̂

(t)
i })

9 Update the GCN and LSTM model parameters Θ1 and Θ2

according to the loss

10 end

11 end

12 end

3.6.1 Complexity analysis

The training of the GCN model in stage one takes O(N2
1TL1DH) time; the training

of the LSTM model takes O(N1TL2DH) time in each epoch, where N1 = |V̄ | ≪

N = |V |. In stage two, O(N2T (Ω1 + Ω2)) time is taken to calculate the GTP,

and O(N2L3H
2) time is taken to train the LR model, where N2 = |V 2

train| ≪ N =

|V |. T, L1, L2, L3, D,H,Ω1,Ω2 are all constant numbers—T is 364, and all others are
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Algorithm 2: Anomaly-based Disease Prediction (Hybrid)

Input: {G(t)|t = 0, . . . , T}, {f̂ (t)
i |vi ∈ V, t = 1, 2, . . . , T}, V 2

train, # LR layers
L3, hidden layer sizes H, GTP window sizes Ω1 and Ω2

Output: {ŷ(t)i ,∀vi ∈ V, t ∈ {1, 2, . . . , T}
1 while not converged do
2 for vi ∈ V 2

train do
3 for t← 0 to (T − 1) do

4 p
(t)
i ← GTP

(
s
(t)
i ; Ω1,Ω2

)
5 ŷi ← LR

(
p
(t)
i ;L3

)
6 loss ← L2

(
ỹ
(t)
i , ŷ

(t)
i

)
7 Update the LR model parameters Θ3 according to the loss

8 end

9 end

10 end

smaller than 100.
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Chapter 4

Experiments

In this section, we evaluate GraphDNA by conducting extensive experiments on the

CDR dataset, with a focus on the following research questions (RQs).

• RQ1: How does GraphDNA perform compared to closest baselines from state-

of-the-art on DoD prediction?

• RQ2: DoesGraphDNA have the potential to be generalized for disease prediction

in the larger population?

• RQ3: How does each major component of GraphDNA contribute to the overall

performance?

• RQ4: What are the effects of different tunable model hyper-parameters onGraphDNA?

• RQ5: Is the running time of GraphDNA practical?

4.1 Experimental Settings

4.1.1 Dataset

The Iceland CDR dataset has a total of 87,773 distinct nodes, and an average of

54,867 nodes and 30,451 links across the 365 graph snapshots. The nodes comprise
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Table 4.1: Anomaly detection performance comparison.

Metrics
Model

Micro Precision Micro Recall Micro AUC Micro F1 Macro Accuracy
NetWalk 0.0529 ± 0.0019 0.1599 ± 0.0028 0.5025 ± 0.0005 0.0773 ± 0.0004 0.1672 ± 0.0007
LSTM-AD 0.0386 ± 0.0035 0.2836 ± 0.0047 0.4995 ± 0.0003 0.0667 ± 0.0003 0.3016 ± 0.0014
OddBall 0.0362 ± 0.0001 0.3530 ± 0.0001 0.4988 ± 0.0001 0.0648 ± 0.0001 0.3578 ± 0.0001
OCGNN 0.1754 ± 0.0009 0.5491 ± 0.0073 0.5043 ± 0.0033 0.2586 ± 0.0043 0.5749 ± 0.0046
GraphDNA-w/o-GCN 0.0490 ± 0.0018 0.1356 ± 0.0006 0.0694 ± 0.0005 0.0693 ± 0.0006 0.1441 ± 0.0013
GraphDNA-w/o-LSTM 0.2326 ± 0.0063 0.6792 ± 0.0034 0.5855 ± 0.0040 0.3333 ± 0.0017 0.6871 ± 0.0061
GraphDNA-w/o-LR 0.2138 ± 0.0036 0.4652 ± 0.0063 0.5728 ± 0.0037 0.2807 ± 0.0012 0.4723 ± 0.0029
GraphDNA-w/o-GTP 0.0871 ± 0.0005 0.2356 ± 0.0016 0.5167 ± 0.0022 0.1222 ± 0.0015 0.2372 ± 0.0018
GraphDNA 0.2344 ± 0.0106 0.6986 ± 0.0054 0.5895 ± 0.0019 0.3384 ± 0.0019 0.7005 ± 0.0087

two types: the 1,414 diagnosed nodes V ′ and the remaining non-diagnosed nodes

V − V ′. There are DoD labels for diagnosed nodes, but we do not know if any

individuals in the non-diagnosed set were infected or not. We divide the diagnosed

nodes V ′ into V 1
train, V

2
train, Vval, and Vtest as discussed in Section 3.3 with a ratio of

3:3:2:2. We use V 1
train and V 2

train to train the two stages of our model, respectively. We

use Vval to improve the model design and tune the hyper-parameters, and only use

Vtest to report the experimental results.

4.1.2 Baselines

We adapted the following state-of-the-art algorithms for our task of DoD prediction

based on the dynamic cell-phone call graphs constructed from the CDR dataset.

• NetWalk[56]: an anomalous node detection method that is closest to our dynamic

network setting. It learns and dynamically updates the representations of non-

attributed networks as they evolve in an unsupervised manner.

• LSTM-AD[38]: an algorithm using stacked LSTM networks for anomaly detection

in multi-variate time-series data. Since it cannot model network data, we provide

it only with dynamic node features.

• OddBall[3]: an unsupervised method to detect abnormal nodes in static networks.

Since it cannot handle dynamic networks, we compute a separate model of it for

every timestamp.
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• OCGNN[52]: a one-class classification framework that combines GNN with the one-

class objective for attributed network anomaly detection in a supervised manner.

Since it cannot handle dynamic networks, we compute a separate model for every

timestamp.

For the supervised baselines, the same V 1
train ∪V 2

train ∪V −V ′ is used for training, Vval

is used for hyper-parameter tuning, and Vtest is used for performance reporting. The

unsupervised baselines are run on the whole V and tested on Vtest. When making

predictions on Vtest, the same top-k selection mechanism is used to predict k positive

DoDs for each individual.

4.1.3 Ablations

We performed a comprehensive ablation study, removing each component fromGraphDNA

one at a time, to evaluate the effectiveness of the main components in GraphDNA.

4.1.4 Evaluation metrics

Based on the predicted DoD labels Ŷ and extended true DoD labels Ỹ , we compute

the following metrics adopted from the standard evaluation of group classifications.

• Micro Precision, Micro Recall, Micro AUC, and Micro F1, which represent the

Precision, Recall, AUC and F1 scores averaged across all the testing individuals in

Vtest.

• Macro Accuracy, which is the percentage of testing individuals in Vtest who have at

least one correct DoD prediction.

The suite of metrics compares the prediction results with ground-truth from differ-

ent perspectives, thus comprehensively comparing the performance of the evaluated

algorithms.
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4.1.5 Parameter settings

We tune and set the hyper-parameters of GraphDNA as the following default values:

we set the number of GCN layers L1 to 2, LSTM layers L2 to 1, and LR layers L3 to

2; we set the embedding size H of all layers in all models to 16; the sizes of rolling

windows in GTP are set to Ω1 = 100 and Ω2 = 3. To ensure fair comparison, we use

the same hyper-parameters for all of our model ablations. For the baselines, we also

optimize their hyper-parameters on Vval.

We implemented GraphDNA with PyTorch 1.7.1. All code will be released

upon the acceptance of this work; the derived dataset will be released after further

sanitization.

4.2 DoD Prediction Comparison (RQ1)

Table 4.1 shows that GraphDNA achieves the best performance across all metrics

in the scenario of CDR-based DoD prediction. We highlight the following detailed

observations.

• While not being fully consistent across the baselines, the multiple metrics we

use demonstrate the same significant improvements of GraphDNA. Specifically,

GraphDNA achieves 16.9%-33.6% relative gains over the strongest baseline across

all metrics, indicating its superiority in the task of CDR-based DoD prediction.

• Although we have included the most relevant algorithms as baselines, none of them

can properly integrate all important signals in our scenario, thus leading to unsat-

isfactory results across all metrics.

• Compared with LSTM-AD and OddBall, NetWalk focuses on structural anomalies

and make cautious predictions, thus achieving better precision but worse recall.
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figures/AS_wth_DoD_0813_shaded.png

Figure 4.1: Average disease scores (ADS) of diagnosed group and whole population
vs. daily diagnosed number (DDN) in the period of 2009 H1N1v outbreak in Ice-
land. Thin lines denote the medians/values of the ADS/DDN, thick lines indicate the
smoothed medians/values, and shading delineates the 1st–3rd quantiles of the ADS.
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(a) Hidden Layer Sizes H

figures/hyperpara2.png

(b) # LSTM Layers L2

figures/hyperpara3.png

(c) # LR Layers L3

figures/parameter_legend.png

Figure 4.2: Performance of GraphDNA with varying hyper-parameters. The
dashed lines denote the performance of the best baseline (OCGNN).

• OCGNN is the strongest baseline, likely due to its proper leverage of imbalanced

task supervision, which indicates the importance of available DoD labels from the

CDR data.

4.3 Anomaly Curve during Epidemic (RQ2)

Beyond predicting the DoD of diagnosed people, we examine the potential of GraphDNA

to estimate wider disease infection among the entire population. In Figure 4.1, we
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visualize the average disease score (ADS) in the diagnosed group (Vtest) and the whole

population (V ) predicted by GraphDNA, versus the diagnosed number (DDN) in

the ground-truth of V ′. The main peak of the GraphDNA ADS estimate among the

diagnosed group coincides with the ground-truth peak of H1N1v outbreak in Iceland

around October 2009, suggesting that the ADS model captures behavioral anomalies

associated with illness. The model also picks up anomalies during the winter holidays

in December 2009. Interestingly, a small but significant anomaly signal also arises

in the whole population during the epidemic (green curve). Notably, the model was

not picking up time-of-year related artifacts, as evidenced by the baseline (orange

curve)—showing ADS inference by the same model trained on a control group in

which we matched an undiagnosed person with each diagnosed person 1:1 at random

and assigned them the latter’s DoD. We thus believe the model is discerning illness-

specific anomalies in the whole population—a promising data source. We caution,

however, that further research is warranted for predictive epidemic estimation (since

the ADS scores in our model are based on training data from the entire 1-year period)

and analyzing the disease transition among patients across the timeline.

4.4 In-depth Model Analysis (RQ3-5)

4.4.1 Ablation analysis (RQ3)

Table 4.1 also shows that each constituent part of GraphDNA contributes signifi-

cantly to its overall performance. We further summarize several key observations as

follows.

• Removing the GCN model causes the most significant performance drop, demon-

strating the importance of modeling the neighborhood behaviors for DoD prediction—

the key difference from our work to previous studies on the same CDR dataset [51].
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• Surprisingly, removing the LSTM model actually does not significantly degrade

performance—consistent with the reasonable performance of OCGNN. Perhaps evo-

lutionary patterns are not be a key factor for DoD prediction, or perhaps LSTM is

not the best model to capture such network evolution.

• Both the LR and GTP models are indispensable to GraphDNA, supporting our

design principle of integrating the effective data-driven learning ability of LR with

the anomaly-based feature engineering of GTP.

4.4.2 Hyper-parameter analysis (RQ4)

We varied important model hyper-parameters in Figure 4.2 to understand their effects.

• The hyper-parameters we tested have minimal impact on the performance of GraphDNA,

maintaining significant margins from the best baseline across a vast range of values.

• Larger embedding sizes, fewer LSTM layers, and fewer LR layers generally improve

results due to different trade-offs between model capacity and overfitting.

• The standard deviations across different settings remain in an acceptable range,

indicating that GraphDNA’s hyper-parameter are robust.

Due to the difficulty in implementing and running deep GCNs, we have not studied

the performance of GraphDNA with the number of GCN layers L1 greater than

2. While having significantly larger training and testing times, we have observed the

performance of GCN with L1 = 2 to be only slightly better than that with L1 = 1,

and thus lack compelling need to grow L1 beyond 2 at the moment.

4.4.3 Efficiency analysis (RQ5)

We observe the computational cost of GraphDNA to be similar to those of OCGNN,

which is slightly larger than those of LSTM-AD and NetWalk, yet within the same
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order of magnitude (detailed results and analysis in Appendix B).
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Chapter 5

Applications

The GraphDNA model estimates population-level disease prevalence based on devi-

ations from behavioral patterns. After overcoming the data and technical challenges

we tackled in the main text of the paper, the next question is how the model could

be applied in practice.

5.1 Continuous forecasting models

Epidemiological models forecast the spread of a novel disease in or across societies

to evaluate the impact of different public health policy options. While the most im-

portant driver for such models is the transmission of disease between people, disease

transmission is also the most difficult component of the model to observe empiri-

cally, particularly at scale. The opaqueness of transmission causes models to instead

rely on lagged or biased proxy measures, such as on-the-ground diagnoses or deaths.

Instead, our GraphDNA model relays transmission dynamics by identifying be-

havioral changes consistent with disease symptoms of the entire population. The

epidemiologist could thus employ the GraphDNA data source as a live stream of

aggregate behavioral indicators to parameterize and improve their higher-layer fore-

casting models of the infectious disease dynamics, allowing for faster evaluation of
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potential public-health measures and interventions during policy-making.

5.2 Web-based dashboard

The GraphDNA data source can inform population-level predictions for an epi-

demic, but it needs not treat the entire population as a monolith. Instead, we envision

a web dashboard where the public health officials can break down the aggregates from

the model by spatial (county-level) or demographic (race, sex, age) characteristics to

understand how the disease is affecting different groups. The dashboard features

should be designed with differential privacy in mind to protect the privacy of smaller

groups [20, 51].

5.3 Broader connection with the web

Our approach for infectious disease surveillance, when deployed, is emblematic of the

range of applications enabled by and emerging from the Web of Things: with the

web acting as the narrow-waist protocol for information interchange, the collection of

mobile phone data, the processing and parameterization of models, and interaction

with the public health officials and epidemiologists all take place within the expanse

of the World Wide Web protocols.
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Chapter 6

Conclusion

Disease outbreak detection is difficult: population surveys are slow and skewed, and

traditional syndromic surveillance requires the integration of a health-care data col-

lection system with a responsive public health body to function adequately. However,

monitoring behavioral anomalies through cell-phone metadata, as discussed here, offer

a passive and universal approach to surveil an epidemic. Using real-world linked cell-

phone and health data from the H1N1v pandemic in Iceland in 2009, we showed how

GraphDNA identified individual behaviors indicative of disease and found evidence

of illness-related anomalies the entire population that could potentially be used to

assess the epidemic disease burden. Such estimates could inform both models and pol-

icy choices (e.g., targeted lockdowns, quarantines, or vaccination campaigns) towards

epidemic prevention—an important tool in the arsenal of public health defenders in

our era of extreme connectedness.

We are aware of the limitations of the study, including the need of interpreta-

tion of disease-related signal captured in GraphDNA and the obstacle in retrieving

phone-call data linked with health data in future applications. In this case, fur-

ther study is warranted to distill the disease-related signal in the CDR-data picked

up on by GraphDNA to provide a better understanding of the utility, generality,
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and limitations of the proposed framework towards informing decision making in

infectious disease surveillance—bolstering an active subject discussed by epidemiol-

ogists and policy makers [32, 8]. A parallel follow-up direction is to study how well

GraphDNA generalizes to other datasets and tasks whose underlying challenges

require appropriate dynamic network anomaly modeling.
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Appendix A

Ethical & Privacy Considerations

While the COVID-19 pandemic has underscored the importance of disease surveil-

lance to inform policy choices and prevent further transmission, it has also spurred

important conversations about the interplay between individual privacy and the so-

cietal need for detailed information about infection and disease progression to curb

an outbreak. For example, in response to the highly-contagious airborne nature of

SARS-CoV-2, Google and Apple implemented mechanisms for allowing users of their

mobile devices to opt-in to automatic and pseudononymous contact tracing of other

Bluetooth devices lingering in their immediate vicinity to facilitate contact tracing—

the discovery of potentially infectious transmission when the owner of any such device

is known to have been contagious [47]. Large multi-country surveys across Western

nations found strong public support for such contact tracing apps to fight COVID-19,

with main reservations surrounding security, privacy, and the trust in government [4],

only to then find lukewarm reception when the technology finally rolled out [11], ul-

timately limiting its significance for making public health strategy [37]. In lieu of an

opt-in strategy, some nations took instead to scrutinizing CDR data, like we analyze

here, to perform contact tracing. Such efforts, particularly in Israel, were panned

in Western media due to their coercive nature and opaque enforcement [24] that is
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misaligned with the ethical principles of effective contact tracing [34].

The approach for CDR data taken here, in contrast, concerns constructing aggre-

gates to inform epidemiological policy rather than subjecting individuals to scrutiny

by officials. We believe the use of aggregate CDR data sidesteps the false dilemma

between health and privacy, offering an intriguing compromise to meet the ethical,

privacy, and public health rigor needed to swiftly counter tomorrow’s epidemics with-

out sacrificing individual liberties in the process. To this end, we adopt the privacy-

preserving framework of Vigfusson et al. [51] for gathering, managing, and consuming

the sensitive data without placing undue trust on any stakeholder. Specifically, a

neutral third-party organization receives deidentified CDR data from mobile-network

operators, as well as deidentified health data from public health officials that uses

the same anonymous individual identifier, and trains and uses the proposed models

to produce aggregate information about the progression of the epidemic. The public

health officials and epidemiologists consume the model predictions through an inter-

face provided by the neutral third party (cf. chapter 5). The data sharing protocol

ensures that the third party does not learn the original identities of the individuals

in the data, that the mobile-network providers does not learn about health issues for

their customers, and that the public health officials do not learn about individual mo-

bile behavior or contacts. This distribution of trust through minimal privilege reduces

further concentration of power within the already powerful corporate (mobile network

operator) and government (disease control) entities through the disease monitoring

technology, reducing chances for abuse of the technology so long as public trust in

the neutral third-party and the ensuing policy actions by officials can be maintained.

The privacy-preserving approach taken by Vigfusson et al., and which was used

to generate the dataset we analyzed here, was vetted by the appropriate IRB board,

specifically the national Icelandic Bioethics Commission, under approval #VSNb2010050012.

The specific data analysis protocols we used in this paper were also IRB approved.
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Appendix B

Time Complexity Experiments

Wemeasure the running time of all compared algorithms on three dedicated GNU/Linux

servers with 24 2.3GHz Intel Xeon E5-2670v3 processors and 512GiB of DRAM.

Figure B.1 demonstrates the running times of baseline models, the ablations of

GraphDNA, and the full GraphDNA. Since Oddball is fully unsupervised and

disregards network evolution, its running time is significantly shorter than the other

methods. All supervised baseline methods incur comparable running times with

GraphDNA. Dropping the GCN or LSTM modules decreases the running time

more than dropping LR or GTP modules in GraphDNA, which implies that the

first stage of GraphDNA is more computationally intensive than its second stage—

but the usage of GNNs, even for each timestamp, does not produce excessive execution

times. This is mainly because despite the whole graphs being large, the training of

GraphDNA is mostly done on the smaller set of diagnosed people, whereas the in-

ference on the larger populations is only done when necessary, allowing for further

parallelism. The biggest scalability bottleneck is the number of GCN layers L1, which

we observe to yield satisfactory results with small numbers (e.g., 1, 2).
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figures/runtime.png

Figure B.1: Running times of algorithms compared.
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and Vittoria Colizza. On the use of human mobility proxies for modeling epi-

demics. PLoS Comput Biol, 10(7):e1003716, 2014.

[51] Ymir Vigfusson, Thorgeir A Karlsson, Derek Onken, Congzheng Song, Atli F

Einarsson, Nishant Kishore, Rebecca M Mitchell, Ellen Brooks-Pollock, Gudrun

Sigmundsdottir, et al. Cell-phone traces reveal infection-associated behavioral

change. PNAS, 118(6), 2021.



44

[52] Xuhong Wang, Baihong Jin, Ying Du, Ping Cui, Yingshui Tan, and Yupu Yang.

One-class graph neural networks for anomaly detection in attributed networks.

Neural. Comput. Appl., pages 1–13, 2021.

[53] Amy Wesolowski, Nathan Eagle, Andrew J Tatem, David L Smith, Abdisalan M

Noor, Robert W Snow, and Caroline O Buckee. Quantifying the impact of human

mobility on malaria. Science, 338(6104):267–270, 2012.

[54] Amy Wesolowski, Taimur Qureshi, Maciej F Boni, P̊al Roe Sundsøy, Michael A

Johansson, Syed Basit Rasheed, Kenth Engø-Monsen, and Caroline O Buckee.

Impact of human mobility on the emergence of dengue epidemics in pakistan.

PNAS, 112(38):11887–11892, 2015.

[55] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan

Achan. Inductive representation learning on temporal graphs. arXiv preprint

arXiv:2002.07962, 2020.

[56] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and

Wei Wang. Netwalk: A flexible deep embedding approach for anomaly detection

in dynamic networks. In SIGKDD, 2018.

[57] Jin Zhang and Yanni Xiao. Modeling strategies for controlling h1n1 outbreaks

in china. International Journal of Biomathematics, 5(04):1250017, 2012.

[58] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly

detection in dynamic graph using attention-based temporal gcn. In IJCAI, 2019.


