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Abstract 

 

Alzheimer’s disease (AD) is one of the chronic neurodegenerative disorders that 

causing great social burden. Hoping to identify novel biological signals in AD, we 

conduct in-depth analyses of brain DNA methylation data from ROS/MAP cohort, with 

consideration of cellular heterogeneity in brain tissues. We apply a reference-based 

method EpiDISH to estimate cell-type proportions, and a new method TOAST to detect 

cell-specific differential DNA methylation (csDM). The estimated portions show 

modest correlations with a number of clinical outcomes, including Braak stage, 

CERAD score, sex, overall amyloid level, age of death, and cognitive values. The 

csDM analysis does not find any cell-type specific differentially methylated loci with 

statistical significance after multiple testing correction. However, a more powerful joint 

test procedure identifies 1454 significant loci from the joint signals of glia and neuron. 

We systematically investigate the biological implication of the loci. From gene 

ontology (GO) enrichment analysis, we find that the transplanting mesenchymal stem 

cell (MSC) can be seen as potential way to stop AD, because these cells can express 

feature of the neural cell and have similarity with ependymal cells. It is inspiring 

because intracerebral transplantation of MSCs has been identified improvement in AD 

mice. This project provides a unique view to AD epigenetic research from cell-type 

specific analysis. Future studies could address the transplantation of MSCs method in 

AD area to validate new treatment and understand biological progress associated with 

AD, and to discover diagnostic biomarkers and therapeutic targets.  
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Introduction 

Alzheimer’s disease (AD) is one of the most prevalent chronic neurodegenerative 

disorders. It begins slowly with mild memory loss, and then worsens over time. The 

incidence of AD increases exponentially with age, and doubles every 5 years after the 

age of 65 (Kukull et al. 2002). During last several decades, AD has increasingly become 

a major global burden. Around the world, there are about 50 million people suffering 

from dementia (World Health Organization 2017), where AD consists of 60%-80% of 

the dementia (Alzheimer’s association 2019; Deepali J. Mane 2018). The number of 

AD patients are estimated to be 75 million by mid 21st century, twice as many as the 

current number, assuming no effective treatment for AD (D. Selkoe, Mandelkow, and 

Holtzman 2012). Currently, the estimated average life expectancy after diagnosis is 

three to nine years (Deepali J. Mane 2018). AD treatments can temporarily slow down 

the dementia process, but no treatment can stop or cure AD. The cause of AD is still 

unclear, where the possible causes include genetic mutation, head injuries, depression, 

hypertension, obesity, mental exercise time, physical fitness level, and lifestyle 

(Deepali J. Mane 2018). For example, existing studies showed some AD cases are 
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associated with mutations on amyloid precursor protein (APP), PSEN1 and PSEN2 

genes (Gasparoni et al. 2018). However, these only contribute a small proportion of 

AD, where the major causes are still unknown (Gasparoni et al. 2018; Yokoyama, 

Rutledge, and Medici 2017). Worldwide efforts have been made to look for diagnostic 

biomarkers and therapeutic targets in order to design better treatment, delay the AD 

onset, and prevent AD from the start (Kukull et al. 2002).  

Tremendous efforts have been spent to look for molecular mechanisms of AD. Large-

scale population level studies have been conducted in genome-wide association studies 

(GWAS) and epigenome-wide association studies (EWAS) (Allen et al. 2012; 

Barrachina and Ferrer 2009; Gasparoni et al. 2018). Genome-wide association studies 

(GWAS) detects associations between phenotypes of interest (such as human diseases) 

and genetic variations (Paul and Beck 2014). Similar to GWAS, epigenome-wide 

association studies (EWAS) can identify association between phenotype and 

epigenome changes at specific loci (Verma 2016; Zou et al. 2014).  

In aging research, DNA methylation has gained intense interests because epigenome 

variations of DNA are heritable and can induce stable modifications in regulating gene 
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expression (Barrachina and Ferrer 2009; Paul and Beck 2014). In eukaryotes, DNA 

methylation mainly occurs at cytosine’s that are followed by guanines (referred to as 

CpG site) (Feinberg et al. 2014). DNA methylation is closely related to many biological 

processes and human diseases. For example, aberrant DNA methylation is a hallmark 

of cancer (Barrachina and Ferrer 2009; Esteller 2002; Nelson 2007; Teschendorff et al. 

2017). Therefore, people often look for in DNA methylation that are associated with 

disease, with hope to identify epigenetic biomarkers and therapeutic targets (Liu et al. 

2013). In addition, recent findings have reported that aging and AD are associated with 

abnormal DNA methylation (Chouliaras et al. 2013; Gasparoni et al. 2018; Li et al. 

2018).  

There have been interests to identify modifications of DNA methylation in brain 

regions of AD cases (Yokoyama, Rutledge, and Medici 2017). An effective way for 

such task is the differential methylation (DM) analysis, where one conducts statistical 

tests on all CpG sites and identify the ones associated with outcome of interest, such as 

AD (Li et al. 2018). However, brain is a complex organ with many cell types, where 

different type of brain cells present highly heterogeneous functions and variable 



 

 

4 

genomic profiles (Zou et al. 2014). Traditional DM analysis and EWAS ignores the cell 

type mixture problem, which would lead to spurious associations (Li et al. 2018; Zou 

et al. 2014). The main goal of this work is to conduct in-depth re-analyses of existing 

DNA methylation data from AD brains, using several newly developed statistical 

methods to account for the cellular heterogeneity in brain tissues. With such 

consideration in the data analyses, we hope to identify novel biological signals.  

Accounting for cellular heterogeneity in DM and EWAS has gain much interests lately, 

and several deconvolution methods dealing with cell-type specific proportions in 

complex tissues have been proposed. The deconvolution methods can be mainly 

divided into two categories: reference-based methods, which use DNA methylation 

reference profiles to conduct deconvolution based on regression models; and reference-

free methods, which don’t require the reference profiles and rely on some type of factor 

analysis to estimate proportions. Reference-based method are considered to be more 

accurate and stable than reference-free method, thus it is the safest option given 

reference DNA methylation profiles (Teschendorff et al. 2017). In this work, we will 

use a recently developed reference-based method EpiDISH (Epigenetic Dissection of 
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Intra-Sample-Heterogeneity). EpiDISH use robust partial correlations (RPC) method 

to estimate cell-type specific proportion. This method was reported to outperform 

competing reference-based methods in simulation and real data analyses. The R 

package is available on GitHub (https://github.com/sjczheng/EpiDISH) (Teschendorff 

et al. 2017).  

After having estimated cell-type specific proportions, cell-type specific differential 

methylation (csDM) test then can be applied. We conduct csDM analysis using a newly 

developed statistical method, called TOAST (TOols for the Analysis of heterogeneouS 

Tissues) (Li et al. 2018). TOAST characterizes the data from mixed sample by a 

rigorous statistical framework and provide functionalities for flexible cell type specific 

test based on linear model framework. The R package is available on GitHub 

(https://github.com/ziyili20/TOAST).   

In this project, we will focus on csDM analyses for AD on two types of brain cells: 

neuron and glia. Even though there are many cell types in brain, we are only able to 

find high quality reference methylomes for these two cell types. So we will focus on 

the results on these two cell types. We obtain data from GEO database with accession 

https://github.com/sjczheng/EpiDISH
https://github.com/ziyili20/TOAST)
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number GES41826 as reference methylomes. Then EpiDISH package is applied to infer 

cell-type specific proportions of every subject of AD patients and controls. We then use 

TOAST package to conduct csDM test between AD patients and controls and compare 

the results with the ones from existing studies. We further conduct a number of analyses 

to interpret the biological meanings of the results.  

Method 

Description of ROS/MAP data 

The DNA methylation data of AD patients and controls were generated on the samples 

collected from two prospective cohort studies at Rush University Medical Center: the 

Religious Orders Study (ROS) and the Memory and Aging Project (MAP) (De Jager et 

al. 2014). The ROS began in 1994 and ended in 2011, including 1168 persons who are 

above 53 years old (David A Bennett et al. 2012). The MAP started in 1997 and 

completed in 2011, including 1556 retire people who are above 53 years old (D.A. 

Bennett et al. 2012). All participants of the two studies were free from dementia when 

enrolled. The dataset used in this project is obtained from De Jager et al. (2014), who 

selected a random subset of older populations with 734 subjects. After extracting DNA 
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from the frozen dorsolateral prefrontal cortex of each subject, the methylation profiles 

were measured at 339,162 CpG sites using Illumina HumanMethylation450 beadset 

(De Jager et al. 2014). The DNA methylation data are transformed into beta values, 

ranging from 0 to 1. Thus, the input data is a beta value matrix with 339,162 rows (for 

CpG sites) and 734 columns (for subjects).  

Since there’s no diagnosis results for these patients, we choose to determine the AD 

status for all subjects based on their Braak stages. The Braak stage is a semi-quantitative 

measure of neurofibrillary tangles which have biological relation with tau protein (D. 

J. Selkoe 2012). The tau protein is abnormal in AD (Kolarova et al. 2012), and therefore, 

Braak stage can be an indicator of AD (Braak and Braak 1991). In our analysis, subjects 

with Braak stage of 0-3 are deemed as normal controls, and Braak stage of 4-6 are 

deemed AD patients. By these criteria, we have 368 normal control and 366 AD patients.  

Reference DNA methylation data 

The DNA methylation reference is constructed from the GEO dataset with accession 

number GES41826 (Kaminsky, Guintivano, and Aryee 2013). This study measures 

DNA methylation profiles of post mortem frontal cortex tissues from 58 subjects, half 



 

 

8 

of whom are major depression patients and the other half are matched controls, using 

Illumina 450k microarrays. We only use the data of cell-sorted neuron and glia from 

29 controls. The data from these people are averaged to obtain the reference 

methylomes for neuron and glia.  

Solving for proportions using EpiDISH 

Given DNA methylation profiles of ROS/MAP, and brain reference methylomes for 

neuron and glia, we applied Bioconductor package EpiDISH to solve for cell-type 

specific (glia and neuron) proportions (Teschendorff et al. 2017). EpiDISH models a 

given DNA methylation profile as a linear combination of a known set of DNA 

methylation reference profiles: 

𝑌 = ∑ 𝑋𝑘
𝑇𝑊𝑘

𝐾

𝑘=1

+ 𝜖 

In the model, Y denote the DNA methylation profile from mixed tissue, which is the 

ROS/MAP data; K is the number of cell types, i.e. two in this application;  𝑋𝑘 denotes 

the reference DNA methylation profiles of two cell types, which is constructed from 

cell-sorted glia and neuron data. The only unknown parameter in this model is 𝑊𝐾, 

which is the mixture proportions of two cell types. For each subject i, assuming 
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 ∑ 𝑊𝑖𝑘
𝐾
𝑘=1 = 1, EpiDISH uses robust partial correlation to estimate 𝑊𝐾 (Teschendorff 

et al. 2017). After obtaining the initial estimate of 𝑊𝐾 , EpiDISH normalize the 

proportion estimates by setting negative weights to zero and scaling all non-zero 

weights to make each row sums up to 1 (Houseman et al. 2012). We then obtain the 

mixing proportions of glia and neuron for each subject from ROS/MAP cohort.  

We explore correlations between neuron proportions and other covariates, and perform 

statistical tests to evaluate the significance of the correlations. For categorical variables, 

we perform ANOVA analysis on the null hypothesis that neuron proportions have no 

significant differences across Braak stages, CERAD scores and sex group. For 

continuous variables, we fit linear regression model between neuron proportions and 

each continuous variable to test their correlation. 

Cell-type specific DM (csDM) test using TOAST 

With estimated mixture proportions of AD patients and controls, we detect neuron and 

glia specific DM signals using TOAST package. TOAST assumes personalized cell-

type specific profile Π𝑖𝑘 for sample 𝑖 and cell type 𝑘 by model it as:  

E[Π𝑖𝑘] = 𝜇𝑘 + 𝑍𝑖
𝑇𝛽𝑘 
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where 𝜇𝑘 is the baseline DNA methylation profile of cell type k, 𝑍𝑖 is a scaler or 

vector representing the subject’s covariates (such as disease status, age, gender, etc.), 

and 𝛽𝑘  is corresponding covariate effect(s). Following the previous notation, we 

denote the estimated mixture proportions by 𝑊𝑖𝑘 . Although the cell-type specific pure 

profile Π𝑖𝑘 is not directly observed, we can observe mixed signal 𝑌𝑖 for subject i and 

build connections between Y𝑖  and Π𝑖𝑘 through a linear model: 

E[Y𝑖 ;𝑊𝑖] = ∑𝑊𝑖𝑘

𝑘

E[Π𝑖𝑘] = ∑(𝑊𝑖𝑘

𝑘

𝜇𝑘 + 𝑊𝑖𝑘𝑍𝑖
𝑇𝛽𝑘). 

In this model, Y𝑖 , 𝑊𝑖𝑘  and Z𝑖  are observed (or estimated), and 𝜇𝑘  and 𝛽𝑘  are 

unknown parameters to be solved for. We can reformat this linear model to matrix form 

by denoting the observed data as Y = (𝑌1, 𝑌2 … 𝑌𝑁)T, the design matrix 𝑉  and the 

covariate vector 𝛽 as 

V = 

[
 
 
 
𝑊11 𝑊12 … 𝑊1𝐾 𝑊11 ∙ 𝑍1

𝑇 𝑊12 ∙ 𝑍1
𝑇 … 𝑊1𝐾 ∙ 𝑍1

𝑇

𝑊21 𝑊22 … 𝑊2𝐾 𝑊21 ∙ 𝑍2
𝑇 𝑊22 ∙ 𝑍2

𝑇 … 𝑊2𝐾 ∙ 𝑍2
𝑇

⋮ ⋮  ⋮ ⋮ ⋮  ⋮
𝑊𝑁1 𝑊𝑁1 … 𝑊𝑁𝐾 𝑊𝑁1 ∙ 𝑍𝑁

𝑇 𝑊𝑁1 ∙ 𝑍𝑁
𝑇 … 𝑊𝑁𝐾 ∙ 𝑍𝑁

𝑇 ]
 
 
 
 

β =

[
 
 
 
 
 
 
 
𝜇1

𝜇2

⋮
𝜇𝐾

𝛽1

𝛽2

⋮
𝛽𝐾]
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With estimated parameters, TOAST detects cell-type specific differential signals 

through testing linear combinations of the regression coefficients. Here we use the 

ROS/MAP DNA methylation data and the solved mixture proportion as inputs for 

TOAST to detect neuron- and glia-specific DM sites between AD patients and controls. 

Specifically, we test three null hypotheses: 𝛽1 = 0 for glia-specific signals, 𝛽2 = 0 

for neuron-specific signals, and 𝛽1 =  𝛽2 = 0  for the joint signals from glia and 

neuron. Statistical results are corrected for multiple-testing by Benjamini-Hochberg 

False Discovery Rate (FDR). CpG sites with FDR less than 0.05 are deemed as cell-

type specific DM. Then each differentially methylated CpG (DMC) is matched with 

associated gene using Illumina Infinium methylation 450k methylation microarrays of 

human genome version 19 (hg19) using R/Cran package 

IlluminaHumanMethylation450kanno.ilmn12.hg19.  

Pathway and Gene Ontologies Analysis  

We use all identified DMCs to conduct pathway analysis and gene ontology (GO) 

analyses using genes enrichment analysis tool EnrichR (McDermott et al. 2016) web 

server (http://amp.pharm.mssm.edu/Enrichr/). We set maximum entry as 1000 genes 

http://amp.pharm.mssm.edu/Enrichr/
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and use hg19 as reference gene sets libraries. The outputs consist of three enrichment 

scores to represent the significance of overlapping input DMCs list and gene sets 

libraries. The first one is p-value of Fisher Exact test, a proportion test based on the 

assumption that each gene of DMC is binomially distributed, and the probability is 

independent for each gene within gene sets. The second one is a z-score using standard 

deviation from expected ranking in each gene set library. The third is a combined score, 

which integrates log p-values from Exact Fisher test and z-score of the deviation from 

expected rank. We choose combined score to represent overlapping because this score 

has the properties of both method and has best results compared with other score 

schemes (Meirelles et al. 2013). We use Kyoto Encyclopedia of Genes and Genomes 

(KEGG) cell signaling pathway database in 2016 to conduct pathway analysis and we 

use GO Biological ontological database in 2018 to conduct GO analysis (McDermott 

et al. 2016).  
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Results  

Data Description 

The reference DNA methylation data contains 480,492 CpGs with glia and neuron 

profiles from 29 subjects. DNA methylation data of ROS/MAP include 340,516 CpGs 

for 734 subjects. The overlaps between the two data are 339,162 CpGs. We summarized 

phenotype variables for 734 subjects in Table 1. Three categorical variables list in Table 

1: Braak stage, CERAD score, and sex. Braak stage from 0 to 6, with number of subjects 

of 9, 63, 78, 218, 201, 158, and 7, respectively. CERAD score is a semi-quantitative 

measure based on neuritic plaque density for determining AD: value 1 means no AD, 

2 means possible AD, 3 means probable AD, 4 means definite from the 

recommendation of Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) (Morris et al. 1988). Sex also makes difference with respect to risk of AD 

(Letenneur et al. 1999, 2012). Number of subjects for each CERAD score and both sex 

(female and male) for AD controls and patients are also shown. We also summarize six 

continuous variables for AD controls and patients: Global burden of AD pathology 

(gpath), overall amyloid level (amyloid), tangle density of neuronal neurofibrillary 
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(tangles), the age of death, education levels, and cognitive values. Global burden of AD 

pathology (gpath) is a quantitative summary value of AD pathologies (David A Bennett 

et al. 2018). Overall amyloid level(amyloid) can be a hallmark of AD when the amyloid 

level is abnormal (D. J. Selkoe 2012). Tangle density of neuronal neurofibrillary 

(tangles) is associated with aggression and depression in Alzheimer's patients (Lai et al. 

2010). AD increases exponentially with age, and doubles every 5 years after 65 (Kukull 

et al. 2002). The status of AD also have association with education level (Letenneur et 

al. 1999, 2012). Cognitive test is an universal and effective way to show the 

neuropsychological memory disorders in clinical trials (Watson et al. 2014). 

AD Status Controls Patients 

Number of subjects 366 368 

Braak Stage 
0 = 9 / 1 = 63  

2 = 78 / 3= 218 

4 = 201/ 5 = 158 

 6 = 7 

CERAD score 
1 = 44 / 2 = 99  

3 = 54 /4 = 61 

1 = 179 / 2 = 145  

3 = 13 / 4 = 29 

Sex F = 211 / M = 157 F = 255 / M = 111 

Age (years) Mean ± SD (range) 
86.02 ± 7.09 

(65.99,106.50) 

89.94 ± 5.60 (72.40 

108.28) 

Gpath Mean ± SD (range) 0.32 ± 0.35 (0.00, 1.65) 1.09 ± 0.60 (0.02, 3.18) 

Amyloid Mean ± SD (range) 1.73 ±2.42 (0.00, 13.76) 5.24 ±3.92 (0.00, 19.11) 

Tangles Mean ± SD (range) 2.09 ±2.18 (0.00, 14.82) 10.76 ±9.43 (0.02, 78.52) 

Education (levels) Mean ± SD 

(range) 
16.62 ±3.65 (7.00, 28.00) 16.17 ±3.53 (3.00, 25.00) 
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Cognitive value Mean ± SD (range) 0.00± 0.09 (-0.47, 0.14) 0.06 ±0.11 (-0.50, 0.18) 

Table 1. Summary statistics for AD patients and controls from the ROS/MAP data. 

Estimated cell Proportions 

We select 1000 CpGs based on the most significant coefficient of variation as an index 

for marker genes among 339162 CpGs. After applied RPC method in EpiDISH using 

these index CpGs, we get the cell-type specific (glia and neuron) proportions. Figure 1 

shows the portions of glia and neuron among AD and controls groups. 

 

Figure 1. Proportions of glia and neuron for AD patient group and controls group 
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Cell type 
AD Patients 

(SD) 

Controls 

(SD) 
Difference  p-value 

Glia Proportion 0.549(0.0483) 0.552 (0.046) 

0.003 0.378 

Neuron Proportion 0.451(0.0483) 0.448 (0.046) 

Table. 2 Average proportions of glia and neuron among AD patient and control groups, with p-value 

under null hypothesis of no difference between two group. 

The average proportions of glia and neuron among AD patient group are 0.549 

(SD=0.0483) and 0.451 (SD=0.0483) respectively. The average proportions of glia and 

neuron among controls group are 0.552 (SD=0.046) and 0.448 (SD=0.046). Existing 

studies on the same brain regions (dorsolateral prefrontal cortex) show that the neuron 

cell number is 76.0-92.2 million, and non-neuron (glia) cell number is 74.8-94.4 million 

(von Bartheld, Bahney, and Herculano-Houzel 2016; Suzana 2014). Our estimated 

proportions match those numbers reasonably well. We apply two-sample t-test to 

compare the proportions of glia and neuron among AD patient and control groups. The 

result shows a non-significant difference (p=0.378), indicating that there’s no obvious 

cell proportion changes between AD and control. To explore the correlation between 

neuron proportion and covariates in the data description section, we show the boxplot 
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for categorical variables and scatterplot with fitted LOESS curve for the continuous 

variable in Figure 2. 

 

Figure 2. Proportion of neuron with Braak score, CREAD score, sex, gpath, amyloid, tangle, age of 

death, education, and cognitive values 
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From Figure 2, the proportions of neuron seem to have positive correlation with Braak 

stage, amyloid level, and age of death visually. Therefore, we perform ANOVA test 

under null hypothesis that neuron proportions have no significant differences across 

Braak stages, CERAD scores and sex group; and we conduct a linear regression 

analysis between neuron proportions and each continuous variable. The results show 

that there are indeed significant differences across the Braak stages (p = 0.00361), 

across the CERAD scores (p = 0.00155), and between females and males (p = 0.00203). 

The regression model suggest that neuron proportion have significant association with 

amyloid (coefficient = 0.0016, p = 0.00044), age of death (coefficient = 0.00099, p = 

9.4e-05), and cognitive value (coefficient = -0.059, p = 0.00028). In addition, the test 

results for other variables are: gpath (coefficient = 0.0049, p=0.0679), tangles 

(coefficient = 0.00040, p=0.0575), education level (coefficient = -0.00084, p=0.0774). 

These associations are weak, but still marginally significance. There have been some 

reports on the neuron proportion change with covariates, for example, the neuron 

proportion in brain have a positive association with age (Soreq et al. 2017). Our findings 
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suggest that the neuron proportions have weak, but statistically significant correlation 

with many AD-related covariates.  

DMCs of glia, neuron, and joint analysis 

For 339,162 input CpGs, we apply TOAST to look for glia- and neuron-specific DM 

between AD and control. The results are disappointing that none of the CpG show cell 

type specific significant changes after multiple testing correction. However, when we 

apply a joint test (𝛽1 = 𝛽2 = 0 for testing either glia or neuron has difference between 

AD and control), we find 1454 significant DMCs. We also conduct DM calling without 

consideration of cell mixtures and found 1453 DMCs. Compare these two lists, we find 

that there are 1232 overlapping DMCs. We show the top 10 DMCs defined at lowest 

10 FDR for joint-DMCs in Table 3.  

CpGs Chromosome Position Gene P value FDR 

cg05066959 chr8 41519308 ANK1; MIR486 9.13E-17 3.10E-11 

cg03169557 chr16 89598950 SPG7 2.54E-15 4.31E-10 

cg11823178 chr8 41519399 ANK1; MIR486 6.90E-15 6.16E-10 

cg26102082 chr17 47590272 NGFR 8.04E-15 6.16E-10 

cg25018458 chr17 980014 ABR 1.01E-14 6.16E-10 

cg13076843 chr17 74475294 RHBDF2 1.09E-14 6.16E-10 

cg05810363 chr17 74475270 RHBDF2 1.60E-14 7.73E-10 

cg22883290 chr2 127800646  2.80E-14 1.19E-09 

cg16588649 chr19 3463241 NFIC 2.06E-13 7.78E-09 
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cg05066959 chr17 74475355 RHBDF2 2.88E-13 9.77E-09 

Table. 3 Top 10 DMCs of joint signal defined at lowest 10 FDR. 

Pathway Analysis and Go Analysis 

Using EnrichR, we conduct KEGG pathway analysis for DMCs of the joint signal. 

However, there is no significant association between AD pathway and DMCs of joint 

signal (rank=113, p=combined scores=-0.48). We then conduct an enriched GO 

analysis. Five enriched GO terms for top 2 enriched GO progress with three amyloid-

beta Go progress for the joint signal are summarized in Table 4.  

Rank Description GO number P-value 
Adjusted 

p-value 

Combined 

score 

1 

Positive regulation of 

mesenchymal cell 

proliferation 

GO:0002053 0.00001053 0.03221 30.20 

2 

Regulation of 

mesenchymal cell 

proliferation 

GO:0010464 0.0002751 0.1402 21.68 

15 
Negative regulation of 

amyloid-beta formation 
GO:1902430 0.01126 0.5867 13.74 

307 
Regulation of amyloid-

beta formation 
GO:1902003 0.06534 0.7165 4.53 

819 
Positive regulation of 

amyloid-beta clearance 
GO:1900223 0.2999 0.8644 1.94 

Table 4. Top 2 and 3 Amyloid-beta enriched GO terms for joint signal.  
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Comparison with existing results  

We compare results with those from a published paper on ROS/MAP DNA 

methylation data (De Jager et al. 2014). For De Jager et al. study, the paper reported 

71 associated CpGs from 415,848 input CpGs from ROS/MAP of 708 subjects. Out 

of their 71 identified DMCs, 64 are included in our input data, and among them, 46 

DMCs can match our results. We compare the ranking differences in Table 5, and 

find reasonably good correspondence.  

Original  

Ranking 

Ranking in  

Joint Signal 
CpG chr Position(bp) Gene 

1 110 cg11724984 chr12 121890864 KDM2B 

2 13 cg23968456 chr10 73521631 CDH23 

3 30 cg15821544 chr1 43473840  

4 127 cg16733298 chr16 19127132 ITPRIPL2 

5 24 cg22962123 chr7 27153605 HOXA3 

6 6 cg13076843 chr17 74475294 RHBDF2 

7 34 cg25594100 chr7 4786943 FOXK1 

8 11 cg19803550 chr17 1637391 WDR81 

9 2 cg03169557 chr16 89598950 SPG7; SPG7 

10 1 cg05066959 chr8 41519308 ANK1; MIR486 

11 7 cg05810363 chr17 74475270 RHBDF2 

12 29 cg07012687 chr17 80195180 SLC16A3 

13 732 cg21207436 chr14 74815316 C14orf115 

14 38 cg21806242 chr11 72532891 ATG16L2 

15 3 cg11823178 chr8 41519399 ANK1; MIR486 

16 10 cg12163800 chr17 74475355 RHBDF2 

17 113 cg17474422 chr1 36039866 TFAP2E 
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19 92 cg22904711 chr19 44278628 KCNN4 

21 525 cg18556455 chr2 45178474  

22 279 cg05731218 chr2 216769199  

23 17 cg17693222 chr8 42033472 PLAT 

24 185 cg12307200 chr3 188664632  

25 846 cg19007269 chr10 105420501 SH3PXD2A 

26 148 cg15645660 chr1 55247356 TTC22 

27 8 cg22883290 chr2 127800646  

28 253 cg14074251 chr2 220299116 SPEG 

30 445 cg09448088 chr13 113635690 MCF2L 

31 224 cg02308560 chr19 1071176 HMHA1 

32 1264 cg20733077 chr13 50700845 DLEU2 

33 853 cg13639901 chr7 155556590 RBM33 

34 22 cg20618448 chr19 49962324 ALDH16A1 

36 67 cg07883124 chr13 113634042 MCF2L 

37 372 cg24231804 chr15 67316861  

38 1271 cg12877335 chr12 94539319  

39 151 cg22941668 chr5 148810180 MIR145; LOC728264 

41 818 cg14430943 chr7 155556652 RBM33 

42 370 cg24676346 chr6 41377288  

44 89 cg11652496 chr15 77324526 PSTPIP1 

45 575 cg08737189 chr7 131223417 PODXL 

50 415 cg15348679 chr21 45626491  

52 45 cg04157161 chr17 7906847 GUCY2D 

55 489 cg22385702 chr2 45175881  

56 233 cg27443779 chr11 14664793 PDE3B; PSMA1 

58 719 cg06742628 chr5 16886424 MYO10 

60 1365 cg05322931 chr17 840950 NXN 

62 1165 cg06753513 chr17 3977385 ZZEF1 

Table 5. Ranking comparisons with paper (De Jager et al. 2014). 
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This difference may cause by different study methods and different thresholds. The 

detection is divided into three stages in De Jager et al. study. After detecting AD-

associated DMCs, they replicated those DMCs in other sets of subjects to produce 

mRNA and then validated DMCs based on the mRNA. Also, they use Bonferroni 

correction under P<0.05 to detect significance, while we use FDR which has more 

power than Bonferroni correction. Therefore, we get more CpGs than the results of 

studies for our one stage design and FDR to represent Type I error. 

Discussion 

There are certain limitations for our study on the Illumina platform, such as the array’s 

inability to distinguish DNA methylation and DNA hydromethylation. The cell 

proportions of AD patients and controls also have no significant difference. However, 

our result shows that neuron proportion and age of death have a significant positive 

linear association with a coefficient of 0.00099. Glia proportions decrease with age can 

correspond to the hypothesis that neurodegenerative disorders are caused by 

malfunctions of glia in the brain (Kaminsky, 2016). The brain has been identified as 

having neural stem cells, called ependymal cells (Johansson et al. 1999). Due to the 

limitation of the cell type for our reference data, we would speculate that if these glial 
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cells were ependymal stem cells and if the proportion change is mainly due to 

malfunctioning or other biological progress, ependymal cells would be an exciting topic 

concerning AD. Further study could separate cells into more cell types to detect the 

ependymal cells changes for AD. 

We did not find any glia- or neuron- specific DMC, but we find 1454 joint-DMCs and 

shows a good match for another method and a similar study (Feinberg et al. 2014; De 

Jager et al. 2014). From joint-DMCs, the gene ANK1, RHBDF2 have been identified 

having an association in AD pathway (De Jager et al. 2014). These two genes have 

essential functions in modulating the initiation of microglia and infiltrating 

macrophages (De Jager et al. 2014; Mastroeni et al. 2017). From ontology process, GO 

term ranked top which derived from five genes TBX1, SHH, CHRD, LRP5, PDGFA, 

VEGFA, is a process of activating mesenchymal cell proliferation. Mesenchymal stem 

cells (MSCs) are bone marrow-derived stem cell in adult, and MSCs can self-renewal 

and maintain their multipotency. Undifferentiated mesenchymal cells have been shown 

to express neural feature (Petersen et al. 2005), but the doubt exist of whether the 

neurons derived from MSC will be functional. The relation of MSCs and AD have been 
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identified in mice, and it shows significant improvement in AD mice for reducing 

amyloid depositions and increasing memory deficits with intracerebral transplantation 

of MSCs (Bae et al. 2009). We speculate that transplanted MSCs may show some 

similarity with ependymal cells under brain condition and in this way, MSCs can 

improve memory deficits in AD mice. Future studies can validate this method in mice 

and evaluate the method of intracerebral transplantation of MSCs, which could be a 

potential way to stop AD for human in the future.  

Conclusion 

This project provides a new view to study the epigenetic modification in AD, through 

cell type specific DM analysis. This cell-type specific idea in the differential analysis 

could provide insights for diagnostic biomarkers and therapeutic targets. Future studies 

could address cell-type specific idea in AD area to validate new treatment and discover 

more biological progress associated with AD.  
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