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Abstract

Statistical analyses of functional data have drawn increased attention in recent
years, yet handling missing data remains a notable obstacle in functional data anal-
ysis. This work is motivated by a renal study on detection of kidney obstruction,
where up to two imaging scans, namely, baseline scan and the scan after furosemide
treatment, are available for each kidney, resulting in two curves. In some cases, the
kidney is judged to be non-obstructed and the patient does not receive furosemide,
resulting in missing data for the second scan.

First, our objective is to develop a method that can impute the second curve based
on the first curve, assuming that the first curve is informative about the missing second
curve (Chapter 2). We model the curves for each individual using a set of potential
basis functions and posit a sparse latent factor model for the basis coefficients, in
which a shrinkage prior is assigned to the loadings to induce basis selection. We
employ a Bayesian data augmentation algorithm to simultaneously estimate the model
parameters and impute the missing curves. Our method is evaluated and compared
to existing methods through a simulation study. We illustrate our method using a
renal study, in which we impute the second curve for a kidney with a missing second
curve, which can be useful in the interpretation of kidney obstruction.

In the same data situation with missing second curve, we consider an analysis
of relationship between functional covariates and a binary outcome. We employ a
Bayesian hierarchical model for jointly modeling the curves that are measured with
error and the association between noise-free curves and the binary outcome in the
presence of missing data. We consider two approaches of selecting basis functions for
modeling the curves and for parameterizing functional coefficients in the functional
generalized linear model used to model the association. In the first approach (Chapter
3), we use cubic B-spline basis functions and use deviance information criterion to
select number of basis functions.

To overcome the difficulty in selecting basis functions, alternatively, we utilize
functional principal component analysis (FPCA) to derive a more parsimonious model
within the same framework, based on selecting functional principal components that
explain large percent of variation in the curves (Chapter 4). We conduct simulation
studies to assess the performance of the proposed methods in the presence of missing
functional data. We illustrate our methods with the application to renal study.
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Chapter 1

Introduction
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1.1 Background

In recent years, statistical analyses of functional data have drawn increased attention.

Functional data are often encountered in biomedical studies and methods are available

to include functional data both as a response and a predictor (Cai and Hall, 2006;

Fan and Zhang, 2000; Ferraty and Vieu, 2003; Hyndman and Ullah, 2007; James and

Hastie, 2001; James et al., 2000; Ramsay and Silverman, 2002; Yao et al., 2005a,b). A

notable obstacle in the functional data analysis of biomedical data is how to handle

missing data. The objective of this dissertation is to develop statistical methods

for handling missing data for certain situations in the analysis of functional data.

This work is motivated by a study, conducted in the Division of Nuclear Medicine

at Emory University, aimed at improving renal image interpretations by radiologists

and nuclear medicine physicians. Although our proposed methods are motivated by

renal imaging study, they are general enough to have more broad applicability to

many other settings. We describe the renal imaging study below.

1.2 Motivating Data

Radionuclide renal scans play an important role in the determination of kidney ob-

struction. When a kidney is obstructed, urine is unable to drain normally into the

bladder; unless the obstruction is relieved and relieved in a timely manner, the kid-

ney will lose its function and this loss of function become irreversible. Moreover,

obstruction of a single kidney may be asymptomatic. Consequently, to preserve renal

function, it is important to test for obstruction when there is a clinical suspicion.

Radionuclide renal scans provide a non-invasive option and is usually the procedure

of choice for evaluating suspected kidney obstruction. In academic institutions, nu-

clear scans are often interpreted by full time nuclear medicine physicians who had

36 months of training in their residencies. Unfortunately, a large percentage of the
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radionuclide renal scans performed in the United States are interpreted at sites that

perform fewer than 3 studies per week and are interpreted by private practice radiolo-

gists who have less than 4 months of training in all of nuclear medicine (IMV, 2003).

Lack of training and limited experience coupled with the demands of interpreting a

large variety of complex imaging studies at ever faster rates increases the error rate

of the diagnosis (Taylor et al., 2008a).

In the Emory study, renal scans are acquired using a scintillation camera. Patients

who are hydrated with 10 ounces of water are imaged in a supine position. Approx-

imately 370 MBq (10 mCi) of Technetium-99m-mercaptoacetyltriglycine (MAG3), a

gamma emitting tracer, is injected intravenously to the patient. Post injection, a

scintillation camera, placed under the imaging table, is used to capture the photons

emitted by the MAG3 as it is extracted from bloodstream by the kidneys, is trans-

ported into the kidney tubules and then travels down the ureters to the bladder.

Multiple frames of data obtained during 24 minutes of image acquisition are recorded

on a dedicated computer for subsequent processing. Regions of interest (ROI) are

assigned over each kidney. The numbers of photons detected in each ROI in each

frame are used to generate a time activity curve, called renogram or renal curve.

The process described above represents the baseline study for a patient. The

baseline study for each patient resulting in a renogram is reviewed on site to determine

if obstruction can be excluded. If obstruction can not be excluded in both kidneys,

then a potent diuretic furosemide (Lasix) is injected intravenously and an additional

set of images is acquired for 20 minutes. The average time between the injections of

Tc-99m MAG3 and furosemide is greater than 30 minutes. The standard administered

dose of furosemide is 40 mg but that can be increased if the patient is known to

have elevated creatinine concentration or if the baseline study shows reduced MAG3

clearance (Bao et al., 2011; Taylor et al., 2008b). The post-furosemide component

of the study resulting in another renogram is processed similarly to the baseline
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Figure 1.1: An Example of renal curves for a Normal Kidney (top panel) versus an
Obstructed Kidney (bottom panel), with the Obstruction Status Determined by a
Consensus Rating among 3 Experts

component study.

In summary, renal scan data consist of a baseline renal curve for each kidney. Some

patients have received furosemide and there is a second post-furosemide acquisition.

When the baseline scans of patients are interpreted by clinicians as being normal,

no furosemide acquisition is obtained and post-furosemide data for these kidneys are

missing. Figure 1.1 presents two renal curves from a patient when furosemide is given

after the baseline scans. renal curve for a normal kidney (non-obstructed) is exempli-
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fied by a steep increase in counts in the kidney ROI immediately after the injection

of Tc-99m MAG3, followed by a sharp, then steady decrease in counts of the baseline

renal curve (top-left figure in Figure 1.1). This declining trend of counts continues in

the furosemide renal curve, although the rate of the decline, which signifies Tc-99m

MAG3 clearance, decreases (top-right figure in Figure 1.1). Generally, the shape of

the curve depends on the rate of uptake of MAG3 from the blood (clearance), the

transport across the renal tubular cell, secretion of MAG3 into the renal tubule and

drainage from the kidney into the bladder. An obstructed kidney has an abnormal

baseline renal curve with ever-increasing photon counts (as exemplified by bottom-left

figure of Figure 1.1). Following the injection of furosemide, the photon counts in an

obstructed kidney (bottom-right Figure 1.1) has finally starting to decrease, but at

this point, the photon count is already considerably higher than that of the normal

kidney or even the peak of its own baseline component.

To assist radiologists in limiting their errors and making correct interpretation of

MAG3 renal scans in their diagnoses, a study was conducted at Emory, with a goal

to develop methodologies for decision support tools. This study consists of data from

a large number of patients who were referred to the nuclear medicine clinic by with

suspected kidney obstruction. Three experts defined as nuclear medicine physicians

who each had more than 20 years of experience in full-time academic nuclear medicine,

multiple publications in the area of renal nuclear medicine, and who had presented

renal nuclear medicine educational sessions at national radiology and nuclear medicine

meetings, were recruited to the study.

In this retrospective study, each expert independently scored each kidney for the

presence of obstruction on a 5-point scale: 1, not obstructed; 2, probably not ob-

structed; 3, equivocal; 4, probably obstructed; and 5, obstructed. As a retrospective

study, some patients did not receive furosemide because the baseline scan was judged

to be normal by the practicing clinicians. In all, there were renogram data and expert
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score data for 164 kidneys. The 164 sets of renal curves came from 76 patients and

81 distinct study dates. Ten kidneys lacked the post-furosemide renogram data.

1.3 Notations

To fix ideas, we let Y(m×n) =

(
Y1 · · · Yn

)
be the renal curve data, consisting of

m time points for n individuals, where Yi(i = 1, · · · , n) is the ith individual’s renal

curve data taken at m specific time points. Furthermore, in the context of the renal

study we define ∆i as an indicator function, with ∆i = 1 when Y
(2)
i was observed

and ∆i = 0 when Y
(2)
i was missing, where Y

(1)
i(m1×1) represents baseline portion of

Yi and Y
(2)
i((m2)×1) represent the post-furosemide portion (m1 + m2 = m). We write

Yi =

Y
(1)
i

Y
(2)
i

 =

(
Y

(1)
i1 · · · Y

(1)
im1

Y
(2)
i1 · · · Y

(2)
im2

)T
. ∆ =


∆1

...

∆n

 as the vector of

indicators for whether Y
(2)
i was observed for each kidney. Finally, we let Yobs be the

observed renal curve data, and Ymis = {Y(2)
i : ∆i = 0} be the unobserved renal curve

data.

1.4 Literature Review

1.4.1 Functional Data Analysis

Statistical analysis of data consisting of functions or surfaces is referred to as func-

tional data analysis Ramsay and Dalzell (1991). The renal curves presented in Section

1.2 is an example of functional data. Functional data also include samples of hazard

functions (Chiou and Müller, 2009) and density functions (Kneip and Utikal, 2001)

and have wide-reaching areas of application, such as econometrics, education, ge-

netics, evolutionary biology, chemometrics, medicine, and many others (Ramsay and
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Silverman, 2002). Instead of trying to exhaustively define functional data analysis

(FDA) by a set of methods and techniques, Ramsay and Silverman (2002) instead

presented four aspects common to functional data, all of which can be seen in the

renal curve data.

� First, functional data are continuously defined. This certainly applies to the

renal curve data. While Tc-99m MAG3 counts were only measured at discrete

time points, kidneys of patients who underwent the renal scan procedure never

stopped filtering Tc-99m MAG3 from the bloodstream, nor did urine stop drain-

ing from the kidney via the ureters into the bladder. Consequently, the level

of Tc-99m MAG3 in the kidneys is constantly changing, and at a steady pace,

this means that the underlying renal curves are indeed continuously defined.

� Second, the individual datum is the whole function, rather than its value at

any particular point. While we can safely assume that renal curves from dif-

ferent patients, or even from different kidneys, are independent of one another,

different values within the same renal curve are certainly correlated to each

other.

� Third, sometimes data are functions of time, but there is nothing special about

time as a variable. The renal curves are indeed functions of time because they

are measured at time intervals. Since the purpose of renal scans is to help

physicians diagnose renal obstruction by monitoring how fast tracer transits

the kidneys, it is sensible to consider the curves as functions of time.

� Finally, the data do not have to be smooth, but the analysis will often rely on

smoothness of the data or other regularity (Ramsay and Silverman, 2002).

We can consider functional data as paths of a stochastic process. Suppose the

continuous-time process Y = {Y (t), t ∈ [0, T ]} is defined on the space (Ω,A, P ).
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Let Z be a random variable such as outcome. Assuming E
[∫ T

0
Y 2(t)dt

]
< ∞, one

simple linear functional regression model for relating Z to Y (t) is

Z =

∫ T

0

ψ(t)Y (t)dt+ ε (1.1)

where ψ(t) is a square integrable function defined on [0, T ] and ε is a random variable

with E(ε) = 0, E(ε2) = σ2 and ε ⊥⊥ Y .

In the context of renal studies, we can think of Z as a continuously observed

response of interest, Y (t) as the observed renal curve, and ψ(t) as the function asso-

ciating the observed curve with the latent renal obstruction status, and ε as the part

of latent renal obstruction status due to chance. Many important research papers

in the field of functional data are devoted to the estimation of (1.1) for predicting

Z from Y (t). In practice, the integral in equation (1.1) is often approximated by∑d
j=1 Y (tj)a(tj), where the curve Y is discretized at points t1, · · · , td. Such direct

estimation of the regression coefficient function using least square criterion leads to

the ill-conditioned regression problem of having many predictors with high degree of

collinearity (Cardot et al., 2003). One solution proposed by Aguilera et al. (1997)

and Cardot et al. (1999), known as principal component regression (PCR), utilizes

elements derived from principal component analysis (PCA) of Y . PCR, however,

does not come without issues of its own: when choosing principal components, one

must choose between performance of the model and robustness of the model. An al-

ternative to functional PCR is an extension of partial least squares (PLS) regression

to incorporate a functional predictor, as proposed by Preda and Saporta (Preda and

Saporta, 2005; Preda et al., 2010). Frank and Friedman (1993) explored PLS and

PCR and gave an unifying approach of both and of ridge regression (RR) since all

three constrain the coefficient vector in a linear regression model to some subspace.

Cardot et al. (2003) argued these methods did not really take into consideration the
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functional nature of the data.

Several other authors (Müller, 2005; Müller and Stadtmüller, 2005; James, 2002)

have extended equation (1.1) to accomodate various types of outcomes including

binary, counts, etc. via generalized functional linear model (GFLM). In GLM, random

response variable Z (in the renal study, Z may be consensus of obstruction) with

distribution

p(z; η, φ) = exp

(
zη − b(η)

a(φ)
− c(z, φ)

)
with predictor Y of finite dimensions and relationship

g(µ) = υ0 + υυυT1 Y (1.2)

where µ = E(Z; η, φ) = b′(η) and g(.) is the link function (McCullagh and Nelder,

1989). Examples of link functions include identity link for Gaussian response and

logistic link for binomial response.

Just as GLM provides a flexible framework for relating response and predictor

variables of finite dimensions (McCullagh and Nelder, 1989; James, 2002), it can be

extended to handle functional predictors, which may contain different numbers of

observations for each individual and be measured at different time points. This class

of models can be referred to as generalized functional linear models.

When the predictor Y (t), t ∈ C is a random curve and corresponds to a square

integrable stochastic process on some compact set C in R, equation (1.2) cannot be

applied directly. However, by replacing the summation over finite dimensional space

with an integral over infinite dimensional space, we can generalize the mean model:

g(µ) = υ0 +

∫
C
Y (t)u(t)dω(t) (1.3)

where u(.) is square integrable on C, and dω is a real measure on C, and υ0 is fixed.
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Unfortunately, Y (t) is never observed at an infinite set of times in practice. Simi-

lar to the case with equation (1.1), simply replacing the integral with a summation

over the observed time points may necessitate fitting an extremely high dimensional

vector of coefficients, which can result in very large, potentially infinite, variance

terms. This method also cannot handle individuals with different numbers of obser-

vations or individuals with observations taken from different sets of time pointsJames

(2002). Instead, James (2002) proposed to use natural cubic splines (Silverman, 1985;

Green and Silverman, 1993) to model the predictor with the assumption that Y (t)

can be modeled as a smooth curve from a given functional family, although Fourier

transforms, orthogonal polynomial bases or any other finite dimensional basis can be

substituted. Using s(t) to represent the q-dimensional spline basis at time t, with

q − 2 knots when representing a q-dimensional natural cubic spline basis. Y (t) can

be reparameterized as

Y (t) = s(t)Tγγγ,where γγγ ∼ N (µµµγ,Γ) (1.4)

where γγγ is the q-dimensional spline coefficients for the predictor with mean and vari-

ance being µµµγ and Γ respectively (James, 2002). Combining equations (1.3) and (1.4)

results in a mean model

g(µi) = υ0 +

∫
C
u(t)s(t)Tγγγidω(t) = υ0 + υυυT1 γγγi

where υυυ1 =
∫
C u(t)s(t)dω(t). With the further assumption that at each time t, we

observe y(t) instead of Y (t) where, y(t) = Y (t) + ε(t), where ε(t) is modeled as a

zero-mean stationary Gaussian process and represents measurement error or other

factors that would cause the observations to deviate from the spline fit. Let vectors

of observations and measurement errors for individual i at times ti1, · · · , tini
be rep-

resented by yi and εεεi and let Si = (s(ti1), · · · , s(tini
))T be the spline basis matrix
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corresponding to yi, then the FGLM can be written as

p(zi; ηi, φ) = exp

(
ziηi − b(ηi)

a(φ)
− c(zi, φ)

)
,

g(µi) = υ0 + υυυT1 γγγi,where γγγi ∼ N (µµµγ,Γ),

yi = Siγγγi + εεεi,where εεεi ∼ N (0, σ2I), i = 1, · · · , N

where N represents the number of response and predictor pairs that are observed-

James (2002).

James (2002) used an Estimation-Maximization (EM) algorithm (Dempster et al.,

1977; Laird and Ware, 1982) to fit the FGLM. Depending on the distributions of zi,

there might not be a closed form equation for calculating the expected values and

variance of the γγγi’s given yi and current estimates of other parameters. Therefore,

James proposed to use Monte Carlo approach for calculating the expected values and

variances (James, 2002).

While there is extensive literature regarding FDA, not much work has been done

when missing data is present. Therefore one focus of this dissertation is to develop

methods for handling missing data in FDA. We provide a brief summary of missing

data below.

1.4.2 Missing Data

Researchers in public health and clinical research are often faced with datasets with

incomplete data. There are many possible causes that may contribute to missing

data. The subject may refuse to disclose certain sensitive information such as income

or drug usage. The respondent may feel that none of the choices apply to him or her.

The cause may also be purely accidental: the equipment used to measure and record

the data may have suffered mechanical failure during data collection and suddenly

stopped working.
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Depending on the mechanism that led to the missing data, different methods can

be applied to analyze the data. The missing-data mechanism is characterized by

the conditional distribution of ∆ given Y . In the context of renal studies, ∆ is the

vector of missing-data indicators, and Y is the renal curve data, with the observed

components of Y defined as Yobs and the missing components as Ymis. We denote

the parameters of interest as θ and other unknown parameters as φ. If missingness

depends on the missing values in the data Y , then the mechanism is called “missing

not at random” (MNAR). If missingness depends only on the observed components

of Y and not on the missing components of Y ,

f(∆|Y, φ) = f(∆|Yobs, φ) for all Ymis, φ

then the missing-data mechanism is “missing at random” (MAR). MAR assumption

is less restrictive than “missing completely at random” (MCAR), which is

f(∆|Y, φ) = f(∆|φ) for all Y, φ,

when the missingness is assumed to not depend on any components of Y (Little and

Rubin, 2002).

For maximum likelihood inference, the missing-data mechanism is ignorable if the

data are MAR and the parameters θ and φ are distinct, that is, the joint parameter

space of (θ, φ), Ωθ,φ, is the product of the parameter space of θ, Ωθ, and the parameter

space of φ, Ωφ. Little and Rubin (2002) stated that MAR is typically viewed as the

more important condition because if the data are MAR but does not have distinct

parameters θ and φ, then inferences based on ignorable likelihood are still valid but

not fully efficient. Similarly for Bayes inference,

p(θ, φ|Yobs,∆) ∝ p(θ, φ)f(Yobs,∆|θ, φ)
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when the data are MAR and parameters θ and φ are a priori independent, that is

p(θ, φ) = p(θ)p(φ), then

p(θ, φ|Yobs,∆) ∝ [p(θ)L(Yobs|θ)][p(φ)L(∆|Yobs, φ)]

∝ p(Yobs|θ)p(∆|Yobs, φ)

the missing-data mechanism is ignorable in Bayesian inference and inferences about

θ can be based on p(θ|Yobs). This is a stronger definition of ignorable than the one for

ML inference because for θ and φ to have independent priors requires their parameter

spaces to be distinct (Little and Rubin, 2002).

Complications can arise from the process that created missing data (Little and

Rubin, 2002), but if the missing-data mechanism is ignorable, then valid inferences

can still be made based on the data. For example, let f(Y |θ) ≡ f(Yobs, Ymis|θ) denote

the density of the joint distribution of Yobs and Ymis, then

f(Yobs|θ) =

∫
f(Yobs, Ymis|θ)dYmis

is the marginal density of Yobs obtained by integrating out Ymis. Let Lign(θ|Yobs) be

any function of θ based on Yobs such that

Lign(θ|Yobs) ∝ f(Yobs|θ) (1.5)

inferences about θ based on Lign(θ|Yobs) are valid as long as the mechanism leading

to incomplete data are ignorable. Bayes inferences for θ with prior p(θ) can be then

based on the posterior distribution

p(θ|Yobs) ∝ p(θ)Lign(θ|Yobs)
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while maximum likelihood (ML) estimates can be obtained by maximizing (1.5) with

respect to θ.

More generally, if we include the the distribution of the missing-data indicator ∆

in our model, then the density of the joint distribution of ∆ and Y can be expressed

as

f(Y,∆|θ, φ) = f(Y |θ)f(∆|Y, φ)

that is, the product of the density of Y and the conditional distribution of ∆ given

Y . The actual observed data (Yobs,∆) will therefore have the density

f(Yobs,∆|θ, φ) =

∫
f(Yobs, Ymis|θ)f(∆|Yobs, Ymis, φ)dYmis

under MAR, this reduces to

f(Yobs,∆|θ, φ) = f(∆|Yobs, φ)

∫
f(Yobs, Ymis|θ)dYmis

= f(∆|Yobs, φ)f(Yobs|θ)

Little and Rubin (2002) grouped methods for analyzing partially missing data

into four non-mutually exclusive categories:

Procedures based on completely recorded units, which is the easiest of the

four and simply involves discarding the incomplete units and analyze only units

with complete data. These methods are usually not very efficient and only

appropriate when the data is MCAR, otherwise they will lead to biases.

Weighting procedures, which weight sampled units by their design weights ad-

justed for nonresponse, which are inversely proportional to the product of their

probability of selection and an estimate of their probability of response.

Imputation-based procedures involves filling in the missing data followed by stan-
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dard complete data analyzing methods. Common imputation methods include

hot deck imputation, mean imputation, and regression imputation (Little and

Rubin, 2002). Hot deck imputation replaces missing values with values from

observed units in the sample. Mean imputation uses the average of observed

values from a variable in the sample to replace missing values of that variable.

Regression imputation replaces missing value for a variable of a unit by the

predicted value based on a regression on the known variables for that unit.

Model-based procedures, which are characterized by having a model for the ob-

served data as the basis for parameter estimations and inferences. Model-based

procedures are flexible, not ad hoc, and incorporate uncertainty from incom-

pleteness of the data.

Multiple imputation (MI), which is both imputation-based and model-based, was

originally designed for complex surveys used to create public-use datasets, but has

been proven to be useful in other settings as well (Harel and Zhou, 2007; Little and

Rubin, 2002). Single imputation methods enable the user to use complete-data proce-

dures on the imputed dataset, but the procedures often do not yield statistically valid

results because of the underlying assumption of single imputation that the imputed

value is the true value (Harel and Zhou, 2007). This limitation of single imputa-

tion methods led to underestimation of the variance, which in turn affects confidence

intervals and statistical tests (Harel and Zhou, 2007).

MI consists of three stages: the imputation stage where missing data are imputed;

the analysis stage where complete-case methods are used to analyze each complete

dataset separately; finally, the combining stage where results from all datasets are

combined to produce one set of result with adjustments for uncertainty from observed

and missing data. Since quality of imputation is crucial, the imputation model should

be as general and objective as possible and should always be at least as rich as the

analysis model (Harel and Zhou, 2007; Schafer, 2003; Collins et al., 2001), otherwise,
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the analysis results may be biased Meng (1994).

The MI procedures (Rubin, 1987) begins with M imputed independent versions

of the missing data from the posterior predictive distribution p(Ymis|Yobs,∆) under

the joint model for Y and ∆. Under the ignorable assumption, this simplifies to

p(Ymis|Yobs). Under Bayesian framework, let p(Y |θ) denote the model for the com-

plete data with unknown parameter of interest θ and prior p(θ), then the posterior

distribution of θ is

p(θ|Yobs) ∝ p(θ)

∫
p(Yobs, Ymis|θ)dYmis (1.6)

and the posterior predictive distribution for Ymis is

p(Ymis|Yobs) =

∫
p(Ymis|Yobs, θ)p(θ|Yobs)dθ

For the imputation step, we simply repeat m = 1, · · · ,M times where we first draw

θ(m) from p(θ|Yobs) then draw Y
(m)
mis from p(Ymis|Yobs, θ(m)). By redrawing θ(m) each

time, we ensure that our imputation of Y
(m)
mis is proper. Markov Chain Monte Carlo

technique may be needed if (1.6) is complex (Schafer, 1997).

Following standard complete-data methods, we obtain estimates (θ̂(1), · · · , θ̂(M))

and squared standard errors (U (1), · · · , U (M)). We can now combine them following

Rubin’s rules (Rubin, 1987) where the overall estimate of θ

θ̄ = M−1
∑

θ̂(m)

and the estimated total variance of θ

T = (1 +M−1)B + Ū

where Ū = M−1
∑
U (m) is the within-imputation variance andB = (M−1)−1

∑
(θ̂(m) − θ̄)2

is the between-imputation variance. Confidence intervals and tests are based on the
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Student’s t approximation (θ̄− θ)/
√
T ∼ tv where v = (M − 1)[T/1 +M−1)B]2 is the

degrees of freedom.

As described earlier, complete renal studies consist of two functional data sets,

one of which is sometimes missing. Since the reason for patients who are missing the

post-furosemide renal curves was due to their baseline renal scan results, the missing-

data mechanism is MAR. The renal study consist of measurements taken at 99 time

points per kidney. MI methods (and other missing data procedures) that treat each

time point as a separate variable will either have to choose between working with

large dimensions of variance-covariance matrices or poor performance by discarding

information that can be gained from time points that are further apart. Such methods

also cannot handle cases where subjects do not have measurements taken at the same

time points as others. However, none of these methods account for the functional

nature of the data.

1.4.3 Missing Data in Functional Data Analysis

There has been limited work dealing with missing data for functional variables. Preda

et al. (2010) used the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm

to impute missing data by their estimates derived from the approximated principal

components and principal factors. However, this method has some limitations. Since

NIPALS algorithm is based on PCA, their imputation method does not fully take

advantage of the functional nature of the data. The performance of their method

also depends on the number of principal components being chosen. They also did

not account for the uncertainty associated with imputed data. The authors also

stated that their algorithm’s performance in the presence of missing data under MAR

depends on the distribution of the functional data, the degree of linear dependence

between elements of the functional data, as well as the sample size relative to the

number of points per curve (Preda et al., 2010). Our goal in this dissertation is
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to develop methods that overcome some of the above limitations in functional data

analysis.

1.5 Statistical Problems

As we have previously stressed, only limited work has been done in handling missing

data in functional data analysis. Within the context of renal studies, baseline renal

curves are available, but post-furosemide renal curves may or may not be available.

If the post-furosemide renal curves are available, then the radiologist would have a

more complete set of tools to diagnose the patient’s renal obstruction status. In a

nuclear medicine department, time and equipment use are expensive. Two sets of

renal scans cost the imaging center almost twice as much as one set. Consequently, if

the second set can be reliably imputed from the first set, then the second set can be

omitted and the cost to the imaging center for the second set (use of the equipment,

cost of furosemide, and extra technologist time) can be avoided. This leads to greater

efficiency and substantial cost savings. We intend to develop a method that can

impute the missing post-furosemide renal curves based on available renal curve data.

The advantages of our method are that it is not ad hoc, it is simple to implement,

it incorporates the uncertainty associated with imputation, and it imputes the entire

curve, which allows the radiologist to extract post-furosemide renal curve data at any

given time point or to calculate any summary measures based on post-furosemide

renal curve alone or based on both curves. We will describe this method in full detail

in Chapter 2.

Another problem of interest in renal studies is to determine the association be-

tween renograms and renal obstruction. Towards this goal, we intend to develop an-

other method which simultaneously imputes the missing post-furosemide renal curves

and use the available curve data and the imputed curves as predictors and the con-
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sensus ratings for renal obstruction as response to build a model. This model can

help radiologists identify the nature of association between the renograms and renal

obstruction. We will describe this method in further detail in Chapter 3.

In Chapter 3, we fit joint models with different numbers of cubic B-spline basis

functions and use deviance information criteria to select the optimal number of basis

functions. The selection is computationally intensive because multiple joint models

are fitted. It is very challenging to adaptively choose the knot locations for defining

the cubic B-spline basis functions. To address these limitations, we investigate basis

function selection via functional principal component analysis in Chapter 4. We then

compare the performance of the joint model fit with cubic B-spline basis against the

joint model fit with alternative basis.

In Chapter 5, we provide directions for some future work.
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Chapter 2

Multiple imputation of functional

data with application to renal

studies
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2.1 Introduction

Statistical analyses of functional data have received increased attention in recent

years. Functional data consists of curves or surfaces, hazard functions (Chiou and

Müller, 2009) and density functions (Kneip and Utikal, 2001), and have wide-reaching

areas of application, such as econometrics, education, genetics, evolutionary biology,

chemometrics, medicine, and many others (Ramsay and Silverman, 2002). Functional

data are often encountered in biomedical studies. They are either collected at specific

time points separated by fixed intervals or at convenient time points within a time

frame.

We can consider functional data as paths of a stochastic process. Suppose the

continuous-time process Y = {Y (t), t ∈ [0, T ]} is defined on the space (Ω,A, P ). Let

Z be a random variable such as outcome. Assuming E
[∫ T

0
Y 2(t)dt

]
<∞, one simple

linear functional regression model for relating Z to Y (t) is

Z =

∫ T

0

ψ(t)Y (t)dt+ ε (2.1)

where ψ(t) is a square integrable function defined on [0, T ] and ε is a random variable

with E(ε) = 0, E(ε2) = σ2 and ε ⊥⊥ Y .

In practice, the integral in equation (2.1) is often approximated by
∑d

j=1 Y (tj)a(tj),

where the curve Y is discretized at points t1, · · · , td. Such direct estimation of the

regression coefficient function using least square criterion leads to the ill-conditioned

regression problem of having many predictors with high degree of collinearity (Car-

dot et al., 2003). One solution proposed by Aguilera et al. (1997) and Cardot et al.

(1999), known as principal component regression (PCR), utilizes elements derived

from principal component analysis (PCA) of Y . PCR, however, does not come with-

out issues of its own: when choosing principal components, one must choose between

performance of the model and robustness of the model.
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Several other authors(Müller, 2005; Müller and Stadtmüller, 2005; James, 2002)

extended equation (2.1) to accomodate various types of outcomes including binary,

counts, etc. via generalized functional linear model (GFLM). Just as GLM provides

a flexible framework for relating response and predictor variables of finite dimensions

(McCullagh and Nelder, 1989; James, 2002), it can be extended to handle functional

predictors, which may contain different numbers of observations for each individual

and be measured at different time points.

The works mentioned above are limited to complete observations and missing

data are not considered. How to handle missing data poses a notable obstacle in the

functional data analysis of biomedical data. Prevalent treatment of missing data is

to discard subjects with missing data before analysis, this is undesirable as valuable

information contained in the discarded data are lost, which can potentially bias the

results.

One example of functional data with missing data can be found in a renal studay,

which motivates this work. Renal scans play an important role in determining renal

obstruction, a condition that if not treated in a timely manner, will lead to irreversible

loss of function of the kidney. Consequently, to preserve renal function, it is impor-

tant to test for obstruction when there is a clinical suspicion. When a patient known

or suspected to have renal obstruction is referred to a nuclear medicine clinic, renal

scans are performed to help the radiologist diagnose obstruction in the patient’s kid-

neys. The patient receives an injection of Technetium-99m-mercaptoacetyltriglycine

(MAG3), a radioactive tracer. A scintillation camera was used to capture the photons

emitted by the MAG3 as it travels from the bloodstream through the kidneys and

eventually to the bladder. Multiple frames of data obtained during 24 minutes of

image acquisition were recorded on a dedicated computer for subsequent processing.

The numbers of photons detected in each kidney in each frame were used to generate

a time activity curve or renogram curve. The baseline study for each patient was re-



23

●
●
●●●

●●
●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

0
10

00
0

30
00

0

Baseline curve

time (sec.)

M
A

G
3 

co
un

t

0 500 1000 1500

●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●
●●●

●

0
10

00
0

30
00

0

Post−furosemide curve

time (s)

M
A

G
3 

co
un

t

0 400 800 1200

●

●

●
●

●

●

●
●

●●

●●●
●

●●●
●●

●
●
●
●
●
●
●

●
●
●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

50
00

15
00

0
25

00
0

35
00

0

Baseline curve

time (sec.)

M
A

G
3 

co
un

t

0 500 1000 1500

50
00

15
00

0
25

00
0

35
00

0

Post−furosemide curve

time (s)

M
A

G
3 

co
un

t

0 400 800 1200

Figure 2.1: Examples of renogram curves for a kidney with both curves and a kidney
with only baseline curve

viewed on site to determine if obstruction could be excluded. If obstruction could not

be excluded in both kidneys, then a potent diuretic furosemide (Lasix) was injected

intravenously and an additional set of images was acquired for 20 minutes. The aver-

age time between the injections of Tc-99m MAG3 and furosemide was greater than 30

minutes (Taylor et al., 2008b). The furosemide component of the study was processed

similarly to the baseline component to form the furosemide renogram. This creates a

situation where some patients have kidneys with baseline (first) and post-furosemide

(second) curves while others only have kidneys with the first curve (Fig. 2.1).

In this Chapter, we propose two multiple imputation methods that utilize func-
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tional linear models (FLMs) for the first and second curves, and use the Bayesian

data augmentation algorithm for their implementation. Our first proposed method

requires a priori specification of the number of basis functions. In our second pro-

posed method, we use a latent factor model for the basis coefficients of the FLM and

apply a shrinkage prior (Bhattacharya and Dunson, 2011) on the basis coefficients so

that a priori selection of number of basis functions in the FLM is not required, as

the need for specifying the number of factors a priori must balance between miss-

ing important factors and wasting computation on overly conservative estimation of

number of factors. Both methods account for the functional nature of the renal curve

data. Our methods do not require any additional information about the outcome, so

the imputed curves are not biased towards a particular outcome. Our methods allow

all subjects to be analyzed, which is a huge advantage over complete case analysis.

The uncertainty associated with imputed data can be accounted for by applying Ru-

bin’s rules post analysis. In the next section we introduce the data structure and

describe our imputation methods in detail. In Section 2.3 we assess our methods by

two simulation studies. In Section 2.4 we present an application to data from a renal

study. A few concluding remarks are given in Section 2.5.

2.2 Methodology

Let Yi(mi×n) =

(
Y1 · · · Ymi

)
be, in the context of renal study, measurements taken

at mi time points for subject i. Let Y
(1)
i(mi1×1) be the first curve and Y

(2)
i((mi2)×1) be the

second curve, (mi1+mi2 = mi). We write Yi =

Y
(1)
i

Y
(2)
i

 =

(
Y

(1)
i1 · · · Y

(1)
imi1

Y
(2)
i1 · · · Y

(2)
imi2

)T
.

Let ∆ =


∆1

...

∆n

 be the vector of indicator functions with ∆i = 1 if Y
(2)
i is observed.
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Finally, we let Yobs represent the observed curve data, and Ymis = {Y(2)
i : ∆i = 0}

represent the unobserved curve data.

Given we sample an individual curve with error over distinct time points ti1, · · · , timi

(James and Hastie, 2001), we use the following model for the curve:

Y
(s)
ij = θ

(s)
i (tij) + ε

(s)
ij , i = 1, · · · , n, j = 1, · · · ,mis, s = 1, 2 (2.2)

where Y
(s)
ij is the observed value of the sth curve for kidney i at time point tij,

εεεi =

εεε(1)
i

εεε
(2)
i

 =

(
ε

(1)
i1 · · · ε

(1)
imi1

ε
(2)
i1 · · · ε

(2)
imi2

)T
represents measurement errors,

θ
(s)
i (tij) represents the true value of the renal curve for kidney i at time point tij. We

model θ
(s)
i (tij) as

θ
(s)
i (tij) =

ks∑
l=1

β
(s)
il b

(s)
l (tij) (2.3)

where {bl(tij), l = 1, · · · , ks} are the cubic spline basis functions (k1 + k2 = k). The

number of knots used in the cubic spline basis functions is ks − 3. We employ the

cubic spline model for the true curve for the following reasons. First, the coefficients

which define the polynomial form of the cubic spline model can be found by solving

a system of equations for which stable and fast numerical algorithms already exist

(Silverman, 1985). Second, in a cubic spline model, observation at tij only has a fast-

decreasing influence on nearby parts, which makes it favorable to other curve-fitting

methods such as polynomial regression (Silverman, 1985). Third, the dependence of

the local bandwidth on the density of observed time points in the cubic spline model

is intermediate between fixed kernal smoothing and smoothing based on neighbor-

ing values, which is desirable because moving from fixed kernel to nearest neighbor

methods resulted in overfitting (Silverman, 1984, 1985).

We let Bi(mi×k) be the block diagonal matrix that consists of the cubic spline
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basis functions of first and second curve for kidney i, specifically, Bi =

B
(1)
i 0

0 B
(2)
i


where B

(1)
i corresponds to the first curve and B

(2)
i corresponds to the second curve,

and

B
(s)
i =


b

(s)
1 (ti1) · · · b

(s)
ks

(ti1)

...
. . .

...

b
(s)
1 (timis

) · · · b
(s)
ks

(timis
)

 , s = 1, 2

We write the corresponding coefficients for Bi as βββi =

βββ(1)
i

βββ
(2)
i

 =

(
β

(1)
i1 · · · β

(1)
ik1

β
(2)
i1 · · · β

(2)
ik2

)T
.

Using Bi and βββi defined above, we can rewrite (2.2) and (2.3) as

Yi = Biβββi + εεεi (2.4)

2.2.1 Fixed number of knots multiple imputation method

(FK)

In our first proposed method, the fixed number of knots multiple imputation method

(FK), we assume the optimal number of basis functions used to model the curves is

known. We assume the coefficients for these basis functions βββi follow a multivariate

normal distribution

βββi ∼ Nk(βββ0,ΣΣΣβ) (2.5)

based on some hyperparameters βββ0 =

βββ(1)
0

βββ
(2)
0

 and ΣΣΣβ =

ΣΣΣ11
β ΣΣΣ12

β

ΣΣΣ21
β ΣΣΣ22

β

.

We also assume the following model for the measurement error,

εεεi ∼ Nm(0, σ2Im) (2.6)

with σ2 as its variance, which we assume to be constant across all subjects, and
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that βββi ⊥⊥ εεεi since true curves does not impact measurement errors. We assume the

hyperparameters βββ0 and σ2 to have non-informative and improper priors

π(βββ0, σ
2) ∝ 1

and the hyperparameter Σβ to have an Inverse-Wishart prior

ΣΣΣβ ∼ W−1 (Ik, k)

where W−1(ΨΨΨ, ν) has scale matrix ΨΨΨ and degrees of freedom ν. These assumptions

about the prior specifications of the hyperparameters help facilitate our imputation

procedure.

When Y is completely observed, the posterior distribution is

P
(
βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ

2|Y,B
)

∝ σ−nm|ΣΣΣβ|−
n+2k+1

2 exp

[
−1

2

{
1

σ2

n∑
i=1

(Yi −Bβββi)
T (Yi −Bβββi)

+
n∑
i=1

(βββi − βββ0)TΣΣΣ−1
β (βββi − βββ0) + Tr

(
ΣΣΣ−1
β

)}]
(2.7)

However, for some individuals, only Y
(1)
i is observed, Y

(2)
i is missing, under ignorable

missing data mechanism, the posterior distribution is

P
(
βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ

2|Y,B,∆∆∆
)

= P (βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2|Yobs,B,∆∆∆)

∝ π(βββ0, σ
2)π(ΣΣΣβ)

n∏
i=1

{
P (Yi|βββi, σ2,B)π(βββi|βββ0,ΣΣΣβ)I(∆i = 1)

+P (Y
(1)
i |βββ

(1)
i , σ2)π(βββ

(1)
i |βββ

(1)
0 ,ΣΣΣ11

β )I(∆i = 0)
}
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where I(.) is the indicator function.

A common approach for multiple imputation is by using the Bayesian data aug-

mentation method (Tanner and Wong, 1987), which is an iterative approach similar

to EM algorithm but where the estimation and maximization steps are replaced by

imputation (I) and posterior (P) steps. The algorithm we use is described below.

I step we draw Ymis from its posterior predictive distribution (PPD)

P (Ymis|Yobs,B,βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2(t)). By (2.4) and (2.6),

Y
(1)
i

Y
(2)
i

 |βββi,B, σ2 ∼ Nm


B(1) 0

0 B(2)


βββ(1)

i

βββ
(2)
i

 , σ2

Im1 0

0 Im2


 (2.8)

from (2.8) we can see that given B(2),βββ
(2)
i , and σ2,Y

(2)
i does not depdend on

Y
(1)
i ,B(1),βββ

(1)
i , then the posterior predictive distributions for drawing each Y

(2)
i

where ∆i = 0 is

Y
(2)
i |B(2),βββ

(2)
i , σ2 ∼ Nm2

(
B(2)βββ

(2)
i , σ2Im2

)
(2.9)

P step we treat (Yobs,Ymis) as Y in (2.7), and because of our assumptions about

the prior specifications, we can draw βββ1, · · · ,βββn, βββ0, ΣΣΣβ, and σ2 from their

respective full conditional distributions,

βββi|. ∼ Nk

({
BTB

σ2
+ ΣΣΣ−1

β

}−1{
BTYi

σ2
+ ΣΣΣ−1

β βββ0

}
,

{
BTB

σ2
+ ΣΣΣ−1

β

}−1
)

(2.10)

βββ0|. ∼ Nk

(
1

n

n∑
i=1

βββi,
ΣΣΣβ

n

)
(2.11)

ΣΣΣβ|. ∼ W−1

(
n∑
i=1

(βββi − βββ0)(βββi − βββ0)T + Ik, n+ k

)
(2.12)
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σ2|. ∼ Inverse-Gamma

(
nm

2
− 1,

1

2

n∑
i=1

(Yi −Bβββi)
T (Yi −Bβββi)

)
(2.13)

where . represents conditioning on data and current estimates of all other

unknown parameters.

We repeat this iterative procedure until the algorithm converges. After conver-

gence, this iterative procedure yields draws from the joint posterior distribution given

Yobs,B1, · · · ,Bn,∆∆∆. Any draws of Ymis after the convergence of the algorithm can

be combined with Yobs to form an imputed dataset.

2.2.2 Sparse latent factor multiple imputation method (SLF)

In practice, we do not know the optimal number of basis functions for fitting the true

curves. One strategy is to over-specify the number of basis functions to maximize

fit, normally, this is computationally intensive and inefficient. To overcome these

deficiencies, we use a sparse latent factor model (Montagna et al., 2012) for the

subject-specific basis coefficients βββi,

βββi = ΛΛΛηηηi + ζζζ i (2.14)

where ΛΛΛ is a k×p factor loading matrix, ηηηi is a vector of continuous latent variables for

subject i, and ζζζ i is a residual vector uncorrelated with other variables in the model.

We assume ζζζ i follows a Gaussian distribution with mean 0 and covariance matrix

ΣΣΣ = diag
(
σ2
ζ1, σ

2
ζ2, · · · , σ2

ζk

)
. The latent variables ηηηi is related to covariates in the

following manner

ηηηi = κκκTxi + δδδi, δδδi ∼ Np(0, I) (2.15)

where xi is a r× 1 vector of predictors for subject i such as age and sex, κκκ is a r× p

matrix of coefficients and δδδi is a normally distributed residual vector. We assume the

same model for the measurement errors as (2.6).
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For the hyperparameters, we assume σ2 and σ2
ζ1, · · · , σ2

ζk to have priors

σ−2 ∼ Gamma (aσ, bσ) (2.16)

σ−2
ζj ∼ Gamma (aζj, bζj) , j = 1, · · · , k (2.17)

The prior for ΛΛΛ is a multiplicative gamma process shrinkage prior, with

λjh|ψjh, τh ∼ N
(
0, ψ−1

jh τ
−1
h

)
, ψjh ∼ Gamma

(ν
2
,
ν

2

)
, τh =

h∏
l=1

ρl, j = 1, · · · , k, h = 1, · · · , p

ρ1 ∼ Gamma(a1, 1), ρl ∼ Gamma(a2, 1), l ≥ 2 (2.18)

For the coefficents κκκ, we assume a Gaussian prior such that for the jth column of κκκ

denoted as κκκj,

κκκj ∼ N (0,ΣΣΣκ) , j = 1, · · · , p (2.19)

where ΣΣΣκ = diag(ω−1
1j , · · · , ω−1

rj ) and

ωlj ∼ Gamma(1/2, 1/2) (2.20)

The posterior distribution for when Y is completely observed becomes

P
(
βββ1, · · · ,βββn,ΛΛΛ, ηηη1, · · · , ηηηn,κκκ,ΣΣΣ, σ2|Y1, · · · ,Yn,B1, · · · ,Bn,x1, · · · ,xn

)
∝ π(σ2)π(ΣΣΣ)π(ΛΛΛ)π(κκκ)

n∏
i=1

P (ηηηi|κκκ,xi)P (βββi|ΛΛΛ, ηηηi,ΣΣΣ)P
(
Yi|Bi,βββi, σ

2
)

(2.21)
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and under ignorable missing data mechanism, the posterior distribution becomes

P
(
βββ1, · · · ,βββn,ΛΛΛ, ηηη1, · · · , ηηηn,κκκ,ΣΣΣ, σ2|Y1, · · · ,Yn,B1, · · · ,Bn,x1, · · · ,xn,∆∆∆

)
= P

(
βββ1, · · · ,βββn,ΛΛΛ, ηηη1, · · · , ηηηn,κκκ,ΣΣΣ, σ2|Yobs,B1, · · · ,Bn,x1, · · · ,xn,∆∆∆

)
∝ π(σ2)π(ΣΣΣ)π(ΛΛΛ)π(κκκ)

n∏
i=1

{
P (ηηηi|κκκ,xi)P (βββi|ΛΛΛ, ηηηi,ΣΣΣ)P

(
Yi|Bi,βββi, σ

2
)
I(∆i = 1)

+P (ηηηi|κκκ,xi)P
(
βββ

(1)
i |ΛΛΛ(1), ηηηi,ΣΣΣ

(1)
)
P
(
Y

(1)
i |B

(1)
i ,βββ

(1)
i , σ2

)
I(∆i = 0)

}

where I(.) is the indicator function, ΛΛΛ(1) is the upper k1 × p portion of ΛΛΛ and ΣΣΣ(1) =

diag
(
σ2
ζ1, · · · , σ2

ζk1

)
.

The data augmentation procedure for our second proposed method, which we

henceforth refer to as sparse latent factor multiple imputation method (SLF), is as

follows:

I step we draw Ymis from its posterior predictive distribution (PPD)

P (Ymis|Yobs,B1, · · · ,Bn,x1, · · · ,xn,βββ1, · · · ,βββn,ΛΛΛ, ηηη1, · · · , ηηηn,κκκ,ΣΣΣ, σ2). By (2.4), (2.3)

and (2.6),

Y
(1)
i

Y
(2)
i

 |βββi,Bi, σ
2 ∼ Nmi


B

(1)
i 0

0 B
(2)
i


βββ(1)

i

βββ
(2)
i

 , σ2

Imi1
0

0 Imi2


 (2.22)

from (2.22) we can see that given B
(2)
i ,βββ

(2)
i , and σ2,Y

(2)
i does not depdend on

Y
(1)
i ,B

(1)
i ,βββ

(1)
i , then the posterior predictive distributions for drawing each Y

(2)
i

where ∆i = 0 is

Y
(2)
i |B

(2)
i ,βββ

(2)
i , σ2 ∼ Nmi2

(
B

(2)
i βββ

(2)
i , σ2Imi2

)
(2.23)

The I step remains the same as in our first proposed method.

P step we treat (Yobs,Ymis) as Y in (2.21), and first draw βββi from its full conditional
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posterior distribution

βββi|. ∼ Nk

({
BT
i Bi

σ2
+ ΣΣΣ−1

}−1{
BT
i yi
σ2

+ ΣΣΣ−1ΛΛΛηηηi

}
,

{
BT
i Bi

σ2
+ ΣΣΣ−1

}−1
)
(2.24)

To ensure numerical stability, we marginalize out βββi,

yi =BiΛΛΛηηηi + Biζζζ i + εεεi, ζζζ i ∼ N(0,ΣΣΣ), εεεi ∼ N(0, σ2Imi
)

=BiΛΛΛηηηi +ααα∗i ,ααα
∗
i ∼ N(0, σ2Imi

+ BiΣΣΣBT
i )

and draw ηηηi directly from

ηηηi|. ∼ Np∗

(
ΣΣΣ−1
ηi

{
κκκTxi + ΛΛΛTBT

i

(
σ2Imi

+ BiΣΣΣBT
i

)−1
yi

}
,ΣΣΣ−1

ηi

)
(2.25)

where ΣΣΣηi = ΛΛΛTBT
i

(
σ2Imi

+ BiΣΣΣBT
i

)−1
BiΛΛΛ + Ip∗ .

Next, we update ΛΛΛ by drawing λjh, ρh, ψjh, j = 1, · · · , k, h = 1, · · · , p∗ from

their respective full conditional distributions. We let λλλj be the jth row of ΛΛΛ,

then

λλλj|. ∼ Np∗

{D−1
j +

ηηηTηηη

σ2
ζj

}−1
ηηηTβββ.j
σ2
ζj

,

{
D−1
j +

ηηηTηηη

σ2
ζj

}−1
 (2.26)

where D−1
j = diag(ψj1τ1, · · · , ψjpτp), ηTηTηT = [ηηη1, · · · , ηηηn] and βββ.j = (β1j, · · · , βnj),

for j = 1, · · · , k. Then we draw ψjh from

ψjh|. ∼ Gamma

(
ν + 1

2
,
ν

2
+
τhλ

2
jh

2

)
(2.27)

draw ρ1 from

ρ1|. ∼ Gamma

(
a1 +

p∗k

2
, 1 +

1

2

p∗∑
h=1

τh,−1

k∑
j=1

ψjhλ
2
jh

)
(2.28)
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and ρl from

ρl|. ∼ Gamma

(
a2 +

(p∗ − l + 1)k

2
, 1 +

1

2

p∗∑
h=l

τh,−l

k∑
j=1

ψjhλ
2
jh

)
(2.29)

for l ≥ 2, where τh,−l =
∏h

t=1,t6=l ρt for l = 1, · · · , p∗.

We draw σ−2 from

σ−2|. ∼ Gamma

(
aσ +

1

2

n∑
i=1

mi, bσ +
1

2

n∑
i=1

(Yi −Biβββ0 −Biβββi)
T (Yi −Biβββ0 −Biβββi)

)
(2.30)

and draw ΣΣΣ−1 by drawing its diagonal elements σ−2
ζj , j = 1, · · · , k from

σ−2
ζj |. ∼ Gamma

(
aζj +

n

2
, bζj +

1

2

n∑
i=1

(βij − λλλjηηηi)2

)
(2.31)

Finally, we update κκκ by first drawing ωlj, l = 1, · · · , r, j = 1, · · · , p∗ from

ωlj|. ∼ Gamma

(
1,

1

2
(1 + κ2

lj)

)
(2.32)

where κlj is the ljth element of κκκ, then we draw κκκj, j = 1, · · · , p∗ from

κκκj|. ∼ N
({

XTX + A−1
j

}−1
XTηηη.j,

{
XTX + A−1

j

}−1
)

(2.33)

where X is the matrix of predictors with each row i of X corresponding to

the vector of predictors for subject i, xTi = (xi1, · · · , xir), i = 1, · · · , n, Aj is a

diagonal matrix with its diagonal consisting of the vector (ω−1
1j , · · · , ω−1

rj ), and

ηηη.j is the jth column of ηηη, j = 1, · · · , p∗. where . represents conditioning on

data and current estimates of all other unknown parameters.

The number of important factors in our model, p∗, is assumed to be much less than

the number of basis functions, k. We can adaptively select the appropriate number
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of important factors, p∗, such that the model does not miss any important factors

and is not computationally intensive (Bhattacharya and Dunson, 2011). Starting

with a very conservative guess p̃ for p∗, we denote the posterior samples of ΛΛΛ as ΛΛΛp̃.

Let q(t) be the number of columns in ΛΛΛp̃ having all elements in a small, pre-specified

neighborhood of zero at the tth iteration. We define the number of important factors

at tth iteration to be p∗(t) = p̃ − q(t). Ideally, we would like to reduce p̃ to p∗ by

discarding the redundant factors or factors corresponding to a column in the loadings

having all elements in a small, pre-specified neighborhood of zero.

To accomplish this aim, at the tth iteration, we calculate a probability P (t) =

exp (ξ0 + ξ1t) and draw ut from standard uniform distribution. We choose ξ0 and ξ1

so p∗(t) changes about once every 10 iterations at the beginning of the chain but this

frequency decreases exponentially fast (Bhattacharya and Dunson, 2011). If ut ≤

P (t), we check the columns of the loadings, ΛΛΛ
(t)
p∗ , to see if any columns are redundant.

We discard all redundant columns, but if none of the columns are redundant, we add

a column to the loadings and sample parameters from prior distributions to fill in

the additional column. If ut > P (t), we do not make any changes to the number of

important factors for the tth iteration.

2.3 Simulation Studies

In order to assess the finite-sample properties of the methods proposed in Section 2.2,

we conduct two simulation studies.

We first investigate the performance of our proposed methods under different

sample sizes and missing proportions. We choose six combinations of sample sizes

n and missing proportions d, namely the (n, d) combinations (150,10%), (150,30%),

(200,10%), (200,30%), (500,10%) and (500,30%). For each combination, we consider

500 Monte Carlo simulated datasets. We begin by simulating curves from the model
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given in (2.4). We set the number of cubic B-spline basis functions to be 10, and

compute the 10 basis functions at 99 time points, which we use as the 99× 10 design

matrix B in (2.4) for all subjects. To simulate B’s corresponding coefficients βββi from

the model given in (2.5), we let βββ0 =

(
1 1 · · · 1

)
and ΣΣΣβ be autoregressive with

the (i, j)th element = 4∗0.5|i−j|. We simulate measurement errors εεεi from model given

in (2.6) with σ2 = 0.1. We then simulate Yi, i = 1, · · · , n from the model given in

(2.4).

To generate the missingness indicator ∆i such that Y
(2)
i is missing at random

(MAR), we use a simple model we describe below:

log

(
P (∆i = 1)

1− P (∆i = 1)

)
= γ0 + γγγTY

(1)
i (2.34)

where γ0 = 2.4 or 0.5 and γγγ =

(
0 0 · · · 0 1

)
so the proportion of Y

(2)
i being

missing is around 10% or 30%, respectively.

To impute the missing functional data by SLF, we fit each simulated dataset to

SLF as we describe in Section 2.2.2, assuming the missing data mechanism to be ignor-

able. We over-specify the number of basis to be 20 and initialize βββ
(0)
1 , · · · ,βββ(0)

n , ηηη
(0)
1 , · · · ,

ηηη
(0)
n ,ΛΛΛ(0),ΣΣΣ(0), σ2(0) from an approximation to their respective posterior distributions,

then apply DA algorithm described in Section 2.2.2, with a chain length of 25000

iterations, a burn-in of 5000 and thinning by only collecting every 5th sample. Each

sample we collect contains a set of imputed curves from SLF, resulting in up to 4000

sets of imputed curves. We combine observed curves with a set of imputed curves to

form an imputed dataset, which can be analyzed as if no curves are missing.

The purpose of imputation is to facilitate further statistical analyses in the pres-

ence of missing data. To evaluate our method, we consider the estimation of the sum

of points over time in the second curve. The average is calculated for the imputed

datasets and the variance of the estimator by applying Rubin’s rules. We also obtain
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an estimated 95% credible interval of the estimator following Barnard and Rubin

(1999). Once we analyze data from each of the 500 MC datasets, we obtain rela-

tive bias, root mean square error (RMSE), Monte Carlo standard deviation (MCSD),

estimated standard error (estimated SE), and coverage probability (CP).

To compare the performance of SLF to FK, we repeat the analysis following

imputation procedures described in section 2.2.1. In order to allow FK to achieve

its best performance, we set the number of basis as the true value, which is 10. We

apply the same chain length, burn-in and thinning for the DA algorithm, and same

combining rules and credible interval estimation strategy for FK as for SLF.

We also compare our proposed methods to three other methods. The first method

analyzes the complete data, where all curves are observed. It serves as a bench mark

that produces the best results any imputation-based method can possibly achieve.

The second method (CC) is a common approach in practice when missing data is

present. CC analyzes only the complete cases, where subjects missing second curve

are excluded from the analysis. The third method we consider (naive MI) analyzes

imputed datasets from a multiple imputation method that does not take into con-

sideration the functional nature of the data. In naive MI, we impute the missing

data using a “naive” multiple imputation method where we treat measurement at

each time point as a separate variable, and apply a multivariate normal distribution

to model Yi, then impute the missing Y
(2)
i using Y

(1)
i . We summarize results from

simulations of sample size 150, 200, and 500, with Y(2) missing proportions of 10%

and 30% in Table 2.1.

As expected, bench mark has the smallest relative bias, as well as RMSE, MCSD,

and estimated SE. Its coverage probability achieves the nominal level of 95% but

deviates slightly as the sample size increases. Analysis of complete cases (CC) has

the largest relative bias out of the five methods being compared, and its relative

bias increases as missing proportion increases. CC also has largest RMSE and poor
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Table 2.1: Simulation results based on 100 MC datasets of sample size 150, 200, or
500, with 10% or 30% missing Y(2). The true parameter value is 1.

n Missing Method Rel. Bias RMSE MCSD Est. SE CP
150 10% bench mark -0.006 0.112 0.112 0.113 0.95

CC 0.046 0.125 0.116 0.119 0.96
naive MI -0.006 0.133 0.134 0.127 0.94

FK -0.009 0.120 0.120 0.119 0.95
SLF -0.002 0.126 0.127 0.118 0.94

150 30% bench mark -0.006 0.112 0.112 0.113 0.95
CC 0.136 0.182 0.121 0.132 0.83

naive MI 0.011 0.149 0.150 0.155 0.911

FK 0.008 0.142 0.142 0.136 0.94
SLF 0.024 0.137 0.135 0.131 0.95

200 10% bench mark -0.008 0.093 0.093 0.098 0.97
CC 0.048 0.107 0.096 0.103 0.93

naive MI -0.005 0.110 0.110 0.108 0.91
FK -0.004 0.103 0.104 0.104 0.95

SLF -0.003 0.106 0.106 0.103 0.94
200 30% bench mark -0.008 0.093 0.093 0.098 0.97

CC 0.118 0.155 0.101 0.115 0.90
naive MI 0.002 0.129 0.129 0.126 0.96

FK -0.013 0.121 0.120 0.118 0.94
SLF -0.002 0.131 0.132 0.116 0.91

500 10% bench mark -0.011 0.060 0.059 0.062 0.98
CC 0.040 0.072 0.060 0.065 0.95

naive MI -0.010 0.063 0.063 0.066 0.97
FK -0.012 0.064 0.063 0.065 0.97

SLF -0.011 0.065 0.065 0.065 0.97
500 30% bench mark -0.011 0.060 0.059 0.062 0.98

CC 0.115 0.129 0.060 0.073 0.64
naive MI -0.013 0.066 0.065 0.074 0.97

FK -0.012 0.072 0.072 0.075 0.96
SLF -0.004 0.068 0.068 0.073 0.98

1Results for naive MI were based on 96 MC datasets, as naive MI algorithm failed to converge in 4
MC datasets. Only 91 of the MC datasets had 95% CI that contained the truth.

coverage probability when missing proportion is high, regardless of sample size. The

large relative bias and large RMSE indicate that CC is not an appropriate analysis

when missing data is present, especially when the missing proportion is high (30%).

SLF and FK have comparable relative biases which are close to relative bias from

the “benchmark”. RMSE and MCSD from SLF are slightly larger than FK for small
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samples because the model in SLF is more complex. Although RMSE, MCSD, and

estimated SE of SLF and FK are larger than those of “benchmark”, their differences

decrease as sample size increases and missing proportion decreases. Naive MI has

comparable relative bias to SLF and FK, but larger variability when the sample size

is small. In fact, naive MI is numerical unstable when the sample size is small and

missing proportion is large, because it requires larger effective sample size than SLF

and FK to fit its imputation model.

The simulation studies demonstrate that when sample size was small and missing

proportion large, FK and SLF perform better than naive MI. We do not discern large

differences in performance between FK and SLF in this set of simulations, possibly

because we specify the true number of basis in FK. In the next set of simulations,

we compare performances of FK and SLF when the number of basis functions is

misspecified by FK.

We begin by simulating 500 Monte Carlo datasets. Within each dataset, we simu-

late 200 sets of curves from the model given in (2.4) with k = 16. We simulate βββi from

the model given in (2.5), where we let βββ0 =

(
.5 2.0 1.5 2.5 2.0 2.3 1.8 1.5 1.5 1.3 1.0 1.3 .8 1.0 .5 .3

)
,

and ΣΣΣβ was autoregressive with the (i, j)th element = 4 ∗ 0.5|i−j|. We evaluate the 16

basis functions at 99 time points, which we use as the 99 × 16 design matrix B in

(2.4) for all subjects. We simulate measurement errors εεεi from model given in (2.6)

with σ2 = 0.1. We then simulate Yi, i = 1, · · · , n from the model given in (2.4). For

the missingness indicator, we use (2.34) where γ0 = −0.1 and γγγ =

(
0 0 · · · 0 1

)
so the missing proportion of Y

(2)
i is around 30%.

We analyze the data after we apply FK to impute the missing curves, where

we restrict k = 10, so the number of basis functions in FK is misspecified. As

comparison, we also analyze data imputed by SLF, CC, and bench mark, following

the same procedures in our previous set of simulations. We present the results in

Table 2.2.
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Table 2.2: Simulation results from 500 Monte Carlo datasets of sample size 200 with
30% missing Y(2)

Method Rel. Bias RMSE MCSD Est. SE CP
bench mark -0.007 3.555 3.549 3.424 0.93

CC 0.063 4.880 4.238 4.079 0.89
FK 0.004 4.621 4.623 4.305 0.92

SLF 0.010 4.696 4.685 4.044 0.91

In Table 2.2, the performance of the bench mark and of CC are as expected based

on what we observe in our previous set of simulations. Bench mark has the smallest

relative bias and variability. CC has the largest relative bias and RMSE, as well as

the poorest coverage probability. Overall, FK and SLF are similar. These results do

not reveal any deficiency in misspecification of number of basis in FK compared to

SLF.

To summarize the differences between imputed curves and true curves, we compute

two additional statistics based on observations at each time point from the same set

of simulations. The point-wise root mean squared error (RMSE2) is obtained by

taking the square root of the mean difference squared between truth and observed or

imputed values averaged across time points and across subjects. The mean absolute

error (MAE) is obtained by taking the mean absolute difference between truth and

observed or imputed values averaged across time points and across subjects. We

present the results in Table 2.3. Bench mark has the smallest RMSE2 and MAE as

we expect. FK and SLF have lower RMSE2 and MAE than naive MI, suggesting that

curves imputed via FK and SLF are closer to the true curves than curves imputed via

naive MI. FK and SLF have lower RMSE2 and MAE than CC, likely due CC having

a smaller sample size. Contrary to what we expect, even though the number of basis

functions are under-specified in FK, FK has smaller RMSE2 and MAE than SLF.

Our simulation studies demonstrate analysis using datasets obtained via multiple

imputation methods that took advantage of the functional nature of the data are

superior to analysis using only complete cases or imputed datasets that does not take
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Table 2.3: Additional simulation results based on 500 MC datasets of sample size
200, with 30% missing Y(2)

RMSE2 MAE
benchmark 0.113 0.097

CC 0.173 0.143
naive MI 0.184 0.157

FK 0.146 0.126
SLF 0.157 0.134

advantage of the functional nature of the data. We also demonstrate that when the

number of basis functions is misspecified, FK still has comparable performance to

SLF, which is designed to adaptively select the number of basis functions. However,

the simulated true curves are smooth so under-specification of the number of basis

functions is not severely penalized.

2.4 Renal Study

Our work is motivated by a renal study conducted in the Division of Nuclear Medicine

at Emory University, aimed at improving renal image interpretations by radiologists.

The renal study data consists of renal curves from 116 patients totaling 229 kidneys,

20 of which (8.7%) only had the first curve. Renal curves from kidneys of the same

patient are considered to be independent of each other. The observations were taken

at the same 59 time points for the first curve and the same 40 time points for the

second curve, with 15 to 30 second intervals between the time points, across the

subjects. The observations range from 0 to 197,295, which means covariance matrix

calculations based on the data would be computationally expensive. To lower com-

putational cost and ensure numerical stability, we transform the data by taking the

logarithm of the observations.

It is of interest to impute the missing second curves to facilitate analyses of renal

study data using all subjects. We impute the missing curves using FK, specifying the
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number of basis functions k = 10, and SLF, specifying the number of basis functions

k = 20 then adaptively select the number of latent factors. We impute missing curves

via naive MI to investigate whether incorporation of functional nature of the data

is pertinent for the imputation of the missing curves. To compare the performance

of FK, SLF, and naive MI, we construct a simple summary measure statistic of the

second curve by taking the average of the 40 observations for each subject. We

also compare the analysis results using the imputed datasets against CC to examine

whether imputation is necessary.

Table 2.4: Estimate and SD of average of observations from second renal curve.
Estimate SE

CC 8.945 0.097
naive MI 8.838 0.099

FK 8.866 0.096
SLF 8.873 0.095

Table 2.4 shows estimates from FK and SLF are closest to each other. FK and

SLF also have smaller SE than naive MI and CC, suggesting the incorporation of

smoothness of functional data increases efficiency of the imputation methods. CC

estimate is farthest away from all other estimates, demonstrating that CC can be

inappropriate for functional data with ignorable missing data mechanism, even when

the missing proportion is around 10%.

2.5 Discussion

We have proposed two multiple imputation methods for imputing missing functional

data. Both methods incorporated the functional nature of the data, and both per-

formed better than naive MI method that did not take the smoothness in the func-

tional data into consideration. In contrast, CC had the largest relative biases and

variability therefore was not advised when the missing data mechanism is ignorable.
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Of the two proposed methods, FK was simpler to implement and less computa-

tionally intensive than SLF but required a priori specification of the number of basis

functions. SLF, on the other hand, performed well as long as the number of basis

functions specified in SLF was sufficiently large, as SLF adaptively selects the number

of latent factors associated with the basis coefficients, effectively shrinks the number

of basis functions for each subject to lighten the burden on its computational cost.

We expect FK to perform poorly in scenarios where the true curves are more rugged

or wavy, which more severely penalize underestimation of the optimal number of basis

functions.

We assumed renal curves of kidneys from the same patient to be independent for

simplicity, but this assumption may not be accurate. Kidneys from the same patient

share the same covariates, such as age and sex of the patient. If patients sought help

and received treatment adequately and promptly, obstruction in both kidneys should

be rare. Further investigation into models that combine renal curves from kidneys of

the same patient is warranted. Such models would be further complicated by the fact

that some patients have had one of their kidneys removed.

Our imputation models ignored the renal obstruction status, as we assumed this

did not provide any additional information to the curves. This means the imputed

curves are not biased toward a specific renal obstruction outcome and can be used

to assist radiologists in determining renal obstruction of new patients. However, if

the imputed renal curves are used in analyses that seek associations between renal

curves and renal obstruction, then renal obstruction status need to be included in the

imputation model to avoid uncongeniality between imputation model and analysis

model.
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Chapter 3

Handling missing data in

generalized functional linear

models with application to renal

studies
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3.1 Introduction

Functional data are often encountered in biomedical studies, and are either collected

at specific time points separated by fixed intervals or at convenient time points within

a time frame. A notable obstacle in the functional data analysis of biomedical data

is how to handle missing data. One particular example is renal study data, which

consist of measurements taken at fixed timed points within a twenty-four minutes

time frame, sometimes supplemented by additional measurements, also taken at fixed

time points, within a twenty minute time frame with an approximate thirty minute

gap. The resulting renal curve data is used by radiologists in their diagnosis of

renal obstruction. The necessity for the additional measurements is determined by a

clinician based on the first set of measurements.

Consider the problem of estimating the association between functional data and a

binary outcome in the presence of missing functional data. Some existing approaches

already incorporate curves, or functional data, as predictors. When the outcome is

continuous, Cardot et al. (1999, 2003) used a functional principal component regres-

sion approach and a penalized B-spline approach to model the outcome, but failed

to accommodate for missing data in their models. When the outcome is categorical

or binary, Ferraty and Vieu (2003) proposed a nonparametric curves discrimination

model using kernel estimator but did not accommodate for missing data. James

(2002) proposed a FGLM model with a logit link and used EM algorithm to fit his

model. James’s approach required the number of basis functions to be specified a

priori and results in a trade-off between accuracy and efficiency of estimation of

regression coefficients.

In this Chapter, we propose a functional generalized linear model approach to

model the association between functional predictors and a binary outcome. The

functional predictors are modeled by cubic B-splines. To fit our model, we use the

Bayesian data augmentation (Tanner and Wong, 1987) algorithm. Our approach uses
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all available data, not just data from complete cases or from summary measures, in

building the model, and is easy to implement. We provide details of our approach

in the next section. In Section 3.3 we report results from simulation studies we

conducted to assess our approach. In Section 3.4 we present an application to data

from renal studies. A few concluding remarks are given in Section 3.5.

3.2 Methodology

3.2.1 Data Structure

Let Y(m×n) =

(
Y1 · · · Yn

)
be the measurements taken at m time points for n

individuals. Let Yi be the element of Y and Yi denote the vector of measurement

of the ith subject. Let Y
(1)
i(m1×1) be the first curve and Y

(2)
i((m2)×1) be the second curve,

(m1 + m2 = m). We write Yi =

Y
(1)
i

Y
(2)
i

 =

(
Y

(1)
i1 · · · Y

(1)
im1

Y
(2)
i1 · · · Y

(2)
im2

)T
.

Let ∆ =

(
∆1 · · · ∆n

)T
be the vector of indicator functions with ∆i = 1 if Y

(2)
i

was observed. We let Yobs represent the observed curve data, and Ymis = {Y(2)
i :

∆i = 0} represent the unobserved curve data. Finally, we let Wi be the observed

renal obstruction status, the binary response, for individual i.

3.2.2 Model

Given we sample an individual curve with error over distinct time points ti1, · · · , timi

(James and Hastie, 2001), we use the following model to represent the curve data:

Y
(s)
ij = θ

(s)
i (tj) + ε

(s)
ij , i = 1, · · · , n, j = 1, · · · ,ms, s = 1, 2, (3.1)
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where Y
(s)
ij is the observed value of the sth curve for kidney i at time point tj, εεεi =εεε(1)

i

εεε
(2)
i

 =

(
ε

(1)
i1 · · · ε

(1)
im1

ε
(2)
i1 · · · ε

(2)
im2

)T
represents measurement errors, θ

(s)
i (tj)

represents the true value at time point tj. We model θ
(s)
i (tj) as

θ
(s)
i (tj) =

k/2∑
l=1

β
(s)
il b

(s)
l (tj) = b(s)T (tj)βββ

(s)
i , (3.2)

where b(s)(tj) =
(
b
(s)
1 (tj) ··· b(s)

k/2
(tj)
)T
, s = {1, 2} are the cubic spline basis functions.

We choose k
2

basis functions for each curve, for cubic spline basis with intercept, k
2
−4

is the number of knots. We employ the cubic spline model for the true curve for the

following reasons. First, the coefficients which define the polynomial form of the cubic

spline model can be found by solving a system of equations for which stable and fast

numerical algorithms already exist (Silverman, 1985). Second, in a cubic spline model,

observation at tj only has a fast-decreasing influence on nearby parts, which makes

it favorable to other curve-fitting methods such as polynomial regression (Silverman,

1985). Finally, the dependence of the local bandwidth on the density of observed time

points in the cubic spline model is intermediate between fixed kernal smoothing and

smoothing based on neighboring values, which is desirable because moving from fixed

kernel to nearest neighbor methods resulted in overfitting (Silverman, 1984, 1985).

We let B(m×k) be the block diagonal matrix that consists of the cubic spline basis

functions of first and second curve for a kidney, specifically, B =

B(1) 0

0 B(2)

 where

B(1) corresponds to the first curve and B(2) corresponds to the second curve, and

B(s) =


b

(s)
1 (t1) · · · b

(s)
k/2(t1)

...
. . .

...

b
(s)
1 (tms) · · · b

(s)
k/2(tms)

 , s = 1, 2. (3.3)
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We denote by βββi =

βββ(1)
i

βββ
(2)
i

 =

(
β

(1)
i1 · · · β

(1)

i k
2

β
(2)
i1 · · · β

(2)

i k
2

)T
the corresponding

vector of spline coefficients for B. We assume the true curve for the ith kidney to

follow a multivariate normal distribution

βββi ∼ Nk(βββ0,ΣΣΣβ) (3.4)

based on some hyperparameters βββ0 =

βββ(1)
0

βββ
(2)
0

 and ΣΣΣβ =

ΣΣΣ11
β ΣΣΣ12

β

ΣΣΣ21
β ΣΣΣ22

β

.

We also assume the following model for the measurement error,

εεεi ∼ Nm(0, σ2Im) (3.5)

with σ2 as its variance, which we assume to be constant across all kidneys, and that

βββi ⊥⊥ εεεi since true curves should not impact measurement errors. We assume the

hyperparameters βββ0 and σ2 to have non-informative and improper priors π(βββ0, σ
2) ∝ 1

and the hyperparameter Σβ to have an Inverse-Wishart prior ΣΣΣβ ∼ W−1 (Ik, k) where

W−1(ΨΨΨ, ν) has scale matrix ΨΨΨ and degrees of freedom ν. These assumptions about the

prior specifications of the hyperparameters help facilitate our imputation procedure.

We let Zi(i = 1, · · · , n) be a latent variable associated with true renal obstruction

status for individual i and let Z(n×1) =

(
Z1 · · · Zn

)
be the vector of latent variable

Zi for all n subjects. In lieu of the unknown true renal obstruction, we use consensus

ratings of three expert readers as our outcome, with Wi = 1 for obstruction and

Wi = 0 for non-obstruction. We assume a probit model for Wi given Zi such that

Wi =

1 if Zi > 0

0 if Zi ≤ 0
, (3.6)

with Zi following Gaussian distribution Zi ∼ N (µi, 1) where the mean µi of Zi is
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modeled by the functional model

µi = α0 +

∫
a(1)(t)θ

(1)
i (t)dt+

∫
a(2)(t)θ

(2)
i (t)dt (3.7)

and where
∫
a(s)T (t)θ

(s)
i (t)dt represent coefficient of association integrated over the

first (s = 1) or second (s = 2) curve. We use orthonormal cubic spline basis functions

b(s)(t) we used in (3.2) to model the coefficient a(s)(t) as a(s)(t) = ααα(s)Tb(s)(t), where

ααα(s) are the coefficients corresponding to b(s)(t). Since b(s)(t) are orthonormal,

∫
a(s)(t)θ

(s)
i (t)dt =

∫
ααα(s)Tb(s)(t)b(s)T (t)βββ

(s)
i dt = ααα(s)T

(∫
b(s)(t)b(s)T (t)dt

)
βββ

(s)
i = ααα(s)Tβββ

(s)
i ,

then from (3.7) we have

µi = α0 +ααα(1)Tβββ
(1)
i +ααα(2)Tβββ

(2)
i = α0 +αααTβββi, (3.8)

where ααα is a column vector of length k and αααT =

(
ααα(1)T ααα(2)T

)
.

3.2.3 Likelihood

When Y is completely observed, the posterior distribution is

P (βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2, α0,ααα,Z|Y,W,X)

∝ π(βββ0, σ
2)π(ΣΣΣβ)

n∏
i=1

{
P (Yi|βββi, σ2,X)π(βββi|βββ0,ΣΣΣβ)P (Zi|α0,ααα,βββi)P (Wi|Zi)

}
∝ σ−nm|ΣΣΣβ|−

2n+2k+1
2

n∏
i=1


(

1−
∫ α0+αααTβββi

0

e−
t2

2 dt

)−1

I(Wi = 1) +

(∫ α0+αααTβββi

0

e−
t2

2 dt

)−1

I(Wi = 0)


× exp

[
−1

2

{
n∑
i=1

(Zi − α0 −αααTβββi)2 +
1

σ2

n∑
i=1

(Yi −Xβββi)
T (Yi −Xβββi)

+
n∑
i=1

(βββi − βββ0)TΣΣΣ−1
β (βββi − βββ0) + Tr

(
ΣΣΣ−1
β

)}]
(3.9)
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where I(.) is the indicator function.

When for some individuals (∆i = 0), only Y
(1)
i was observed, Y

(2)
i was missing.

Under ignorable missing data mechanism, the posterior distribution is

P (βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2, α0,ααα,Z|Y,W,X,∆∆∆)

= P (βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2|Yobs,X,∆∆∆)

∝ π(βββ0, σ
2)π(ΣΣΣβ)

n∏
i=1

[{
P (Yi|βββi, σ2,X)π(βββi|βββ0,ΣΣΣβ)P (Zi|α0,ααα,βββi)P (Wi|Zi)

}∆i

×
{
P (Y

(1)
i |βββ

(1)
i , σ2)π(βββ

(1)
i |βββ

(1)
0 ,ΣΣΣ11

β )P (Zi|α0,ααα,βββi)P (Wi|Zi)
}1−∆i

]
∝ σ−nm1−m2

∑n
i=1 ∆i |ΣΣΣβ|−

∑n
i=1 ∆i+n+2k+1

2 |ΣΣΣ11
β |−

∑n
i=1 1−∆i

2

×
n∏
i=1


(

1−
∫ α0+αααTβββi

0

e−
t2

2 dt

)−1

I(Wi = 1) +

(∫ α0+αααTβββi

0

e−
t2

2 dt

)−1

I(Wi = 0)


× exp

[
−1

2

{
n∑
i=1

(Zi − α0 −αααTβββi)2 +
1

σ2

n∑
i=1

∆i(Yi −Xβββi)
T (Yi −Xβββi)

+
1

σ2

n∑
i=1

(1−∆i)
(
Y

(1)
i −X(1)βββ

(1)
i

)T (
Y

(1)
i −X(1)βββ

(1)
i

)
+

n∑
i=1

∆i(βββi − βββ0)TΣΣΣ−1
β (βββi − βββ0)

+
n∑
i=1

(1−∆i)
(
βββ

(1)
i − βββ

(1)
0

)T
ΣΣΣ11−1
β

(
βββ

(1)
i − βββ

(1)
0

)
+ Tr

(
ΣΣΣ−1
β

)}]
. (3.10)

3.2.4 Markov Chain Monte Carlo

Posterior distribution of Σβ based on (3.10) does not have a closed form. However,

if Ymis are observed, then the observed data likelihood no longer involve a mixture

of distributions, instead, (3.9) can be used. Therefore, we adopt a Bayesian data

augmentation (DA) algorithm (Tanner and Wong, 1987) to simulate posterior dis-

tributions in expression (3.10). First, we initialize α
(0)
0 ,ααα(0),βββ

(0)
1 , · · · ,βββ(0)

n ,βββ
(0)
0 ,ΣΣΣ

(0)
β ,

and σ2(0) from an approximation to their respective posterior distributions. Then, we

use an iterative approach where each iteration consists of an imputation (I) and a

posterior (P) step described below:
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I step we draw Ymis from the density

P (Ymis|Yobs,W,X,Z, α0,ααα,βββ1, · · · ,βββn,βββ0,ΣΣΣβ, σ
2). By (3.1), (3.2) and (3.5),

Y
(1)
i

Y
(2)
i

 |βββi,X, σ2 ∼ Nm


X(1) 0

0 X(2)


βββ(1)

i

βββ
(2)
i

 , σ2

Im1 0

0 Im2


 (3.11)

given X(2),βββ
(2)
i , and σ2,Y

(2)
i does not depend on Y

(1)
i ,X(1),βββ

(1)
i by (3.11), then

the posterior predictive distributions of Y
(2)
i where ∆i = 0 is

Y
(2)
i |X(2),βββ

(2)
i , σ2 ∼ Nm2

(
X(2)βββ

(2)
i , σ2Im2

)
. (3.12)

Since Yi ⊥⊥ Yj|βββi,βββj∀i 6= j, for each i where ∆i = 0, we can use (3.12) to draw

Y
(2)
i , then Ymis = {Y(2)

i : ∆i = 0}.

P step we draw Z, α0,ααα,βββ1, · · · ,βββn,βββ0,ΣΣΣβ, and σ2 from the density their respective

full-conditional densities given data and current estimates of all other unknown

parameters. By treating (Yobs,Ymis) as Y in (3.9), the full conditional like-

lihood for the parameters α0, ααα, and βββi are as follows: Let ααα∗ =

α0

ααα

 and

βββ∗i =

 1

βββi

, then

ααα∗|. ∼ Nk+1

{ n∑
i=1

βββ∗iβββ
∗T
i

}−1 n∑
i=1

βββ∗iZi,

{
n∑
i=1

βββ∗iβββ
∗T
i

}−1
 (3.13)

Sβ =

{
XTX

σ2
+ααααααT + ΣΣΣ−1

β

}−1

βββi|. ∼ Nk
(
Sβ

{
XTYi

σ2
+ααα(Zi − α0) + ΣΣΣ−1

β βββ0

}
,Sβ

)
(3.14)

where . represents all other parameters and data. Full conditional likelihood for
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the latent variable Z and other parameters and hyperparameters can be found

in the Appendix.

We repeat this iterative procedure until the algorithm converges. After conver-

gence, algorithm yields draws from the joint posterior distribution of (Ymis,Z, α0,ααα,

βββ1, · · · ,βββn,βββ0, ΣΣΣβ, σ
2) given Yobs. Any draws of Ymis after the convergence of the

algorithm can be combined with Yobs to form an imputed dataset.

3.2.5 Model Selection

Often the optimal basis functions that best approximate functional predictors are

unknown. One approach is to set the basis functions a priori then fit the joint model.

This approach requires the analyst to have prior knowledge on the characteristics

and distributions of the functional predictors. An alternative approach is to fit joint

models with different basis functions and apply selection criteria to choose the fitted

joint model with the best basis functions. One selection criterion, the deviance in-

formation criterion (DIC), is proposed by Spiegelhalter et al. (2002) as a measure of

model assessment and comparison. Celeux et al. (2006) then extend DIC to Bayesian

hierarchical models with missing data. In the case of basis function selection, we fit

joint models with varying number of cubic B-spline basis functions, then estimate

their DIC via the following formula,

DIC = −4Ez [log f (y, z|θ) |y] + 2Ez [log f (y, z|Eθ [θ|y, z]) |y] ,

where log f (y, z|θ) is the log-likelihood given observed data y, missing data z,

and parameters θ. We consider latent variables Z1, · · · , Zn as missing data for the

purpose of DIC calculations. Once we have DIC estimates from the fitted models,

the model with the minimum DIC is chosen as the best model.
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3.3 Simulation Study

We conduct simulation studies in order to assess the finite-sample properties of the

method we proposed in Section 3.2. We demonstrate the viability of using DIC as a

criterion for selecting the number of basis functions in the first set of simulations.

We begin data generation by simulating the underlying true curves for 500 sub-

jects using the model given in (3.2). In order to allow for under-specification and

over-specification of the number of basis functions in candidate models, we use cu-

bic B-spline basis functions with intercept and 2 interior knot for the first and sec-

ond curve, resulting in a total number of basis functions of 12. We evaluate the

basis functions at 40 time points (m1 = m2 = 20), which we use as the 40 × 12

design matrix B in (3.1) for all subjects. To simulate the coefficients βββi correspond-

ing to the basis functions from the model given in (3.4), we let βββ0 be the vector

( 0.70 3.41 1.25 2.02 1.40 1.62 2.43 1.93 1.45 1.34 1.78 1.01 ), and let ΣΣΣβ be a 12 × 12 compound-

symmetric matrix with the diagonal elements = 5.49 and off-diagonal elements = 2.3.

We simulate the noise εεεi from the model given in (3.5) with σ2 = 0.16. Then we

simulate the curves Y from the model given in (3.1) using B, βββi and εεεi. To simulate

Wi(i = 1, · · · , n) from the model given in (3.6), we first simulate Zi using the model

given in (3.8), where α0 = −0.87 andααα = ( .14 −.18 −.39 .38 .31 −.28 .16 .12 .14 −.16 −.08 −.42 ).

One simple model to simulate the missingness indicator ∆i such that Y
(2)
i is

missing at random (MAR) is

log

(
P (∆i = 1)

1− P (∆i = 1)

)
= γ0 + γγγTY

(1)
i (3.15)

where γ0 and γγγ are fixed, and in the case where γγγ = 0, Y
(2)
i is missing completely at

random (MCAR). We let

(
0 · · · 0 1

)
be the true value for γγγ, and let γ0 = −0.6

so the proportion of ∆i = 0 is around 30%. We set Y
(2)
i to be missing whenever

∆i = 0.
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To study the impact of misspecifying the number of basis functions on the esti-

mation of deviance information criterion (DIC), we consider seven models. In the

first model, we set the number of basis as the true value, which is 12. In the second

and third models, we under-specify the number of basis as 8 or 10. In the remain-

ing models, we over-specify the number of basis as 14, 16, 18, or 20. We use the

joint-modeling approach described in Section 3.2 to fit the data to each of the seven

models, assuming the missing data mechanism to be ignorable. In the DA algorithm

of our joint-modeling approach, we run each MCMC chain for 15000 iterations and

keep every 5th sample after 10000 iterations to ensure convergence of the parameters

and minimize autocorrelation between consecutive samples.

We present mean DIC estimates from 110 MC datasets in Table 3.1. Misspecifica-

tions of the number of basis functions result in increases in mean DIC. The increase

in mean DIC occurs both when the number of basis functions is under-specified and

when it is over-specified. In each of the MC dataset, the minimum DIC estimate

originates from the model with the true number of basis functions, which is 12. Ba-

sis function selection via minimum DIC results in the model with 12 basis functions

being correctly selected as the optimal model in every MC dataset. This indicates

minimum DIC is a good selection criterion for choosing the number of basis functions

in our proposed method.

Table 3.1: Mean DIC from 110 MC datasets of sample size 500, with 30% of Y(2)

missing on average. The true number of basis functions is 12.

Number of Basis Functions

8 10 12 14 16 18 20

DIC -34596.81 -37787.27 -52545.34 -36888.70 -30941.17 -21523.13 -12369.496

The true number of basis functions is selected by minimum DIC in each MC dataset.

We conduct additional simulation studies in order to assess the finite-sample prop-

erties of the method proposed in Section 3.2 for samples of size 500 or 1000, with

approximately 30% of second curves missing.
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We begin data generation by simulating the underlying true curves for 500 subjects

using the model given in (3.2). We use cubic B-spline basis functions with intercept

and 0 interior knot for the first and second curve, resulting in a total number of basis

functions of 8. We evaluate the basis functions at 40 time points (m1 = m2 = 20),

which we use as the 40× 8 design matrix B in (3.1) for all subjects. To simulate the

coefficients βββi corresponding to the basis functions from the model given in (3.4), we

let βββ0 be the vector ( 0.70 3.41 1.25 2.02 2.43 1.93 1.45 1.34 ), and let ΣΣΣβ be a 8× 8 compound-

symmetric matrix with the diagonal elements = 5.49 and off-diagonal elements = 2.3.

We simulate the noise εεεi from the model given in (3.5) with σ2 = 0.16. Then we

simulate the curves Y from the model given in (3.1) using B, βββi and εεεi. To simulate

Wi(i = 1, · · · , n) from the model given in (3.6), we first simulate Zi using the model

given in (3.8), where α0 = −0.87 and ααα = ( 0.14 −0.18 −0.39 0.38 0.16 0.12 0.14 −0.16 ). We

simulate the missingness indicator ∆i from the model given in (3.15), where γ0 =

−0.74 and γγγ =

(
0 · · · 0 1

)
so the proportion of ∆i = 0 was around 30%. We set

Y
(2)
i to be missing whenever ∆i = 0.

To assess the performance of estimation via our joint-modeling approach (JM)

described in Section 3.2, we fit the joint model assuming the missing data mechanism

to be ignorable. Due to the heavy computation involved in basis function selection, we

assume the true number of basis functions is selected. The DA algorithm of our joint-

modeling approach converged after 2000 iterations, therefore we run each MCMC

chain for 5000 iterations and keep every 3rd posterior sample after 2000 iterations to

minimize correlation between consecutive posterior samples.

To evaluate the performance of our proposed method, we compare our results

against results from two other methods. The first method (JMCC) applies our joint-

modeling approach only to subjects with both curves completely observed and ex-

cludes subjects with missing curve, then estimates βββi, α0, ααα and Z though an iterative

process involving only the P step of the DA algorithm. We include JMCC in this sim-
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ulation because it is more convenient for practitioners than JM. The second method

(TSM) is less computationally intensive than JM because it analyzes the data in two

separate stages. In the first stage, missing curves are imputed by the fixed number of

knots multiple imputation method (FK) described in Chapter 2. In the second stage,

each imputed dataset is analyzed in an identical manner to JMCC. The parameter es-

timates from TSM are obtained by applying Rubin’s rules to the parameter estimates

of the analyses from the second stage.

We present the parameter estimates and their variance estimates from 500 Monte

Carlo (MC) datasets, with sample size 500 and missing proportion around 30%, for

the three methods described above in Table 3.2. JM has the smallest relative bias for

most of the parameters. MCSD and estimated SE from JM are also smaller than or

comparable to JMCC and TSM for all the parameters in the table. Relative biases

of ααα in JMCC are comparable to JM, despite the exclusion of 30% of the sample.

However, MCSD and estimated SE are larger for ααα(1) =

(
α1 α2 α3 α4

)
in JMCC

compared to JM. Relative biases of βββ0 are much larger in JMCC compared to both

JM and TSM because of the smaller sample size of JMCC and its βββ
(1)
0 estimates are

biased because the second curves are MAR. The coverage probability for βββ0 in JMCC

is also very poor. The large positive relative bias and poor coverage probability we

observe in JMCC for βββ0 are expected because of the exclusion of 30% of the sample

from JMCC. Due to our simulation settings, βββi from excluded subjects are generally

below βββi from subjects included in JMCC, which results in a positive bias in βββ0

estimates from JMCC. The relative biases for ααα(2) =

(
α5 α6 α7 α8

)
in TSM are

more than twice as large as in JM and JMCC, this can be contributed to the fact the

model used to impute the missing curves in TSM is uncongenial (Meng, 1994) to the

model used for the analysis in TSM.

To evaluate the performance of estimation via JM, JMCC, and TSM under a

large sample size, we repeat the simulation with a sample size of 1000. We present
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Figure 3.1: True and estimated functional coefficients of the first and second curves.

the parameter estimates and their variance estimates from 500 Monte Carlo (MC)

datasets, with sample size 1000 and missing proportion around 30%, for JM, JMCC,

and TSM in Table 3.3. The performance of JM and of JMCC are as expected based

on what we observe in Table 3.2. The relative biases of α0 and ααα from JM and from

JMCC are smaller compared to those found in Table 3.2 as a result of increasing

sample size, but the relative biases for ααα(2) in TSM are larger. The relative biases of

ααα(2) in TSM also remains larger than those of JM and JMCC. This may be indication

that the effect of uncongeniality between imputation model and analysis model we

observe in TSM cannot be compensated by larger sample size.

We can easily obtain regression coefficients a(s)(t) on the association between

the curves and the binary outcome from our simulations using ααα obtained from JM,

JMCC, and TSM. We present the a(s)(t) estimates in Figure 3.1. The true coefficients

are also plotted in the figure. The figure shows functional coefficient estimates be-

tween JM and JMCC are close to each other and to the truth. Functional coefficient

estimates for TSM are further from the truth, especially for the second curve.

To quantify the deviance of the a(s)(t) estimates from the true a(s)(t), we obtain

mean integrated squared errors (MISE) of a(s)(t) from JM, JMCC, and TSM, from
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Table 3.4: Mean integrated squared errors from 500 MC datasets of sample size 500
and 1000, with 30% of Y(2) missing on average.

n = 500 n = 1000

Function JM JMCC TSM JM JMCC TSM

a(1)(t) 0.00233 0.00207 0.00047 0.00042 0.00048 0.00094
a(2)(t) 0.00059 0.00067 0.00461 0.00013 0.00012 0.00605
θ(1)(t) 0.00001 1.52971 0.00001 0.00004 1.53319 0.00004
θ(2)(t) 0.00505 0.68787 0.00009 0.00832 0.69717 0.00003

the same set of simulations, and present them in Table 3.4. The MISE for θ(s)(t) are

also presented in Table 3.4 to show the deviance of the θ(s)(t) estimates from JM,

JMCC, and TSM. TSM has the largest MISE for a(2)(t). Furthermore, increasing the

sample size only makes TSM’s MISE of a(s)(t) larger. This trend is a reverse of what

is observed in MISE of a(s)(t) from JM and JMCC, which decreases as the effective

sample size increases. Uncongeniality between the imputation model and the analysis

model in TSM is the likely reason behind TSM’s large MISE of a(2)(t), suggesting

TSM is inappropriate for the analysis. MISE of a(s)(t) from JMCC is comparable

to MISE of a(s)(t) from JM, but MISE of θ(s)(t) from JMCC is larger than MISE of

θ(s)(t) from JM and does not seem to decrease as sample size increases. This suggests

exclusion of 30% of the sample in JMCC leads to biased estimates of θ(s)(t). But for

this simulation setting, the estimates of a(s)(t) from JMCC do not seem to be affected

by exclusion of 30% of the sample.

To assess the performance of our proposed method under simulation settings that

mimic what we observe in the motivating data, we conduct another set of simulations.

We begin data generation by simulating the underlying true curves for 500 subjects

using the model given in (3.2). We set the number of cubic B-spline basis functions

for the simulated datasets to be 10. We evaluate the basis functions at 40 time points

(m1 = m2 = 20), which we use as the 40×10 design matrix B in (3.1) for all subjects.

To simulate the coefficients βββi corresponding to the basis functions from the model
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given in (3.4), we let βββ0 be the vector ( 6 13 9 7 4 10 10 7 5 3 ), and let ΣΣΣβ be a 10 × 10

autoregressive covariance matrix with the diagonal elements ( 16 81 49 25 9 100 144 81 36 9 )

and ρ = 0.8. We simulate the noise εεεi from the model given in (3.5) with σ2 = 2.

Then we simulate the curves Y from the model given in (3.1) using B, βββi and εεεi. To

simulate Wi(i = 1, · · · , n) from the model given in (3.6), we first simulate Zi using the

model given in (3.8), where α0 = −2.22 and ααα = ( −.09 −.12 .01 .01 .01 .05 .05 .04 .03 .02 ).

To assess the performance of estimation via our joint-modeling approach (JM)

described in Section 3.2, we fit 4 models, each with different number of basis functions,

and use minimum DIC to select the best model. In the first model, we set the

number of basis as the true value, which is 10. In the second model, we under-

specify the number of basis as 8. In the remaining two models, we over-specify the

number of basis as 12 or 14. We fit the data to each of the four models, assuming

the missing data mechanism to be ignorable. In the DA algorithm of our joint-

modeling approach, we run each MCMC chain for 15000 iterations and keep every 5th

sample after 10000 iterations to ensure convergence of the parameters and minimize

autocorrelation between consecutive samples.

To evaluate the performance of our proposed method, we compare our results

against results from JMCC and TSM, which are introduced and described in our

previous simulations. We fit 4 models each for JMCC and TSM, varying the number

of basis functions from 8, 10, 12, and 14, and use minimum DIC to select the number

of basis for each method separately. As another comparison method, we apply the

data to the method proposed by Ferrarty and Vieu (2006) implemented by Febrero-

Bande and Oviedo de la Fuente (2012) in the R package ‘fda.usc’, which only uses

complete cases. We present selection of the number of basis functions in JM, JMCC,

and TSM from our simulation in Table 3.5.

For our proposed method, minimum DIC chooses 10 basis in 472 (94.4%) MC

datasets, 12 basis in 13 (2.6%) MC datasets, and 14 basis in 15 (3.0%) MC datasets.
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Table 3.5: Proportion of time each number of basis functions is selected by minimum
DIC in JM, JMCC, and TSM. The true number of basis functions is 10.

Number of Basis Functions

8 10 12 14

JM 0.0% 94.4% 2.6% 3.0%
JMCC 100.0% 0.0% 0.0% 0.0%
TSM1 100.0% 0.0% 0.0% 0.0%
1DIC for TSM is based on its analysis model.

For JMCC, minimum DIC chooses 8 basis in all 500 MC datasets. This demonstrates

that in the presence of missing data, minimum DIC is a reasonable method for select-

ing the number of cubic B-spline basis functions in our joint-modeling approach. The

fact that minimum DIC consistently select the model that under-specify the number

of basis functions in JMCC may be indication that some features of the curves are

not captured by JMCC when 30% of the data are excluded.

As a main focus of the analysis, we want to visualize and compare the regression

coefficients a(s)(t) on the association between the curves and the binary outcome from

our simulations. We obtain a(s)(t) usingααα obtained from JM, JMCC, and TSM. When

the number of basis deviate from the true value, it provides outlying estimates for

a(s)(t), the regression coefficient between curves and the outcome. The mean a(s)(t)

estimates are biased due to the outlying curves. To obtain a(s)(t) estimates more

representative of the true a(s)(t), we used the median a(s)(t) estimates from the 500

MC datasets. We present the a(s)(t) estimates in Figure 3.2. The true coefficients are

also plotted in the figure.

As expected, the estimates for JM are close to the true a(s)(t). However, the

exclusion of 30% of the sample and under-specifying the number of basis functions by

2 in JMCC does not seem to increase bias of a(s)(t) estimates from JMCC compared to

JM. Under-specifying the number of basis functions by 2 in TSM also does not seem

to increase bias of its a(s)(t) estimates. Estimates from Ferraty and Vieu’s method,
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Figure 3.2: True and estimated functional coefficients of the first and second curves
from our proposed joint-modeling approach (JM), joint-modeling approach on com-
plete cases (JMCC), two-stage modeling approach (TSM), and Ferraty and Vieu’s
method (FDAGM).

which also excludes 30% of the sample, are further away from the true coefficients

compared to estimates from JM and JMCC.

Table 3.6: Median integrated squared errors from 500 MC datasets of sample size
500, with 30% of Y(2) missing on average

Function JM JMCC TSM FDAGM

a(1)(t) 0.46 0.27 0.20 0.71
a(2)(t) 0.28 0.12 0.06 0.39
θ(1)(t) 4.51 24.67 14.05 -
θ(2)(t) 9.50 12.78 10.63 -

To quantify the deviance of the a(s)(t) estimates from the true a(s)(t), we obtain

median integrated squared errors of a(s)(t) from JM, JMCC, TSM, and FDAGM,

from the simulation results, and present them in Table 3.6. We also present median

integrated squared errors of θ(s)(t) from JM, JMCC, and TSM in Table 3.6 to quantify

the deviance of the estimation of the true curves. Estimates on θ(s)(t) from FDAGM

cannot be obtained. Median integrated squared errors of a(s)(t) is smaller in JM than
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FDAGM, indicating JM to have better performance compared to FDAGM. JMCC

and TSM have smaller median integrated squared errors of a(s)(t) compared to JM.

However, both JMCC and TSM have larger median integrated squared errors of θ(s)(t)

than JM, suggesting JM’s estimation of the true curves is more accurate.

3.4 Renal Study

Our work is motivated by a renal study conducted in the Division of Nuclear Medicine

at Emory University, aimed at improving renal image interpretations by radiologists.

The renal study data consists of renal curves and renal obstruction diagnosis of 163

kidneys from 77 patients. Renal curves from kidneys of the same patient are consid-

ered to be independent of each other. The observations were taken at the same 59

time points for the first curve and the same 40 time points for the second curve, with

15 to 30 second intervals between the time points, across the subjects. Two kidneys

with extreme curves are excluded from our study. Eight of the kidneys (4.9%) are

missing the second curve. The observations range from 0 to 197,295, which means

covariance matrix calculations based on the data is computationally expensive. To

lower computational cost and ensure numerical stability, we transform the data by

dividing the observations by 1000.

Our interest is to find the association between renal curves and renal obstruction

status. The outcome of renal obstruction diagnosis is binary, with 0 being non-

obstructed and 1 being obstructed. Thus our parameters of interest are the intercept

α0, and the functional coefficients a(1)(t) and a(2)(t), which are associated with the

first and second renal curves, respectively.

To estimate the parameters of interest, we apply our joint-modeling method (JM)

to the renal study data, and utilize DIC to select the number of basis functions for

the renal curves. As shown in Figure 3.3, DICs indicate k = 8 to be the appropriate
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Figure 3.3: Deviance information criteria (DIC) of joint models with different number
of cubic B-spline basis functions for renal study data, where the number of basis
functions for first and second curve are equal.

number of basis functions for the renal curves. We then apply joint-modeling method

to only the complete cases (JMCC), and two-stage modeling method (TSM) to renal

study data for comparison, assuming the same 8 basis functions as we do in our joint-

model selected by DIC. Table 3.7 show parameter estimates of α0, as well as estimates

of ααα, βββ0, and σ2, along with their standard deviations, from the analysis. Compared

to JMCC and TSM, JM has the smallest standard deviations of each parameter of

interest. The parameter estimates for α0, ααα and σ2 for JMCC and TSM are closer

to each other than estimates from JM, suggesting the two methods have similar

performance. When we examine the parameter estimates for βββ0, which are coefficients

corresponding to the basis functions from centered curves, we notice that for JM,

the βββ0 estimates are all close to zero as we expected. However, βββ0 estimates from

JMCC are larger, maybe due to excluding incomplete cases from the analysis which

may bias the results. βββ0 estimates associated with the second curve from TSM are

larger than estimates from JM and JMCC, which may be attributed to uncongeniality

between imputation model and analysis model in TSM. These observations regarding

βββ0 estimates have led us to believe that parameter estimates of ααα, which are used to
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compute a(1)(t) and a(2)(t), and of α0 may be biased in JMCC and TSM.
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Figure 3.4: Functional coefficients and 95% credible intervals of the coefficients of the
association between renal curves and kidney obstruction from joint modeling approach
(JM).

As a main focus of the analysis, we want to visualize the functional coefficients

a(1)(t) and a(2)(t) from JM. We present the a(1)(t) and a(2)(t) estimates in Figure

3.4. Here the dashed lines are the 95% credible intervals of the estimates. The figure

shows that the coefficients are cubic in shape and have larger magnitude for the first

curve and smaller magnitude for the second curve but are not significant.

We also want to compare the functional coefficients a(1)(t) and a(2)(t) from JM

to those from JMCC and TSM. As an additional comparison method, we apply the

renal studies data to the method proposed by Ferrarty and Vieu (2006) implemented

by Febrero-Bande and Oviedo de la Fuente (2012) in the R package ‘fda.usc’. The

estimated functional coefficients using JM, JMCC, TSM, and Ferrarty and Vieu’s

method (FDAGM) are shown in Figure 3.5. Functional coefficients of the four meth-

ods presented are all similar in pattern and magnitude, suggesting they had reason-

able results. The functional coefficients estimated by JMCC and TSM are close in
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Figure 3.5: Functional coefficients of the association between renal curves and kidney
obstruction from joint modeling approach (JM), joint modeling approach on complete
cases only (JMCC), two-stage modeling approach (TSM), and a FGLM method by
Ferrarty and Vieu (FDAGM).

both first curve and second curve, however, these estimates may be biased because

estimates of ααα may be biased. Functional coefficients estimated by JM are closer to

FDAGM for both curves, indicating the two methods have similar performances.

3.5 Discussion

A notable obstacle in the functional data analysis of biomedical data is how to handle

missing data. In this Chapter, we provided a joint-modeling approach that estimates

the association between functional predictors and a binary outcome while incorpo-

rating information from all available data. We conducted simulation studies that

compared our proposed method to a two-stage alternative and another alternative

where only data from complete cases were considered. In the first simulation study,

we fit our method using different number of basis functions and assuming the knots

were equally spaced, then evaluated deviance information criteria (DIC) from the fit

models. We correctly chose the model with true basis functions when we selected

the model with the minimum DIC. In the second simulation study, we assumed the
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true number of basis functions and location of knots have been selected and applied

joint-modeling approach, two-stage approach, and analysis using only complete cases

with the true number of basis functions. In the third simulation study, we evalu-

ated the performance of our proposed method against two-stage approach, and two

methods using only complete cases under simulation setting that mimicked the renal

study data. This simulation demonstrated with missing data selection of basis based

on minimum DIC had some issues. It chose the correct value 94.4% of the time, but

other times it was away from that value. The simulation results showed our method

had smaller relative biases and mean integrated squared errors than the methods in

comparison. The performance of our method improved as we increased the effective

sample size. We also applied our method and the comparison methods to the mo-

tivating renal study data as an application. In our simulation studies, we included

the basis functions we used to simulate the data as a candidate, thus we were able to

accurately select the optimal basis functions most of the time. In reality, basis func-

tion selection is much more complex. Minimum DIC may be a reasonable method for

basis selection in our joint-modeling approach in the presence of missing data, but

the sensitivity of results to the choice of basis functions need further investigation in

a data analysis. We will explore an alternative approach of basis function selection

in the next Chapter.
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4.1 Introduction

Functional data analysis has become popular in recent years with the accumulation

of large data sets from rapid growth of technology. The nature of the functional

data analysis is quite complex and poses unique challenges (Wang et al., 2015). In

the Chapter 3, we proposed a joint-modeling approach capable of handling missing

data in functional regression, where the response is binary and the predictors are

two functional curves, and in some cases one is missing. We employ a Bayesian

hierarchical model for jointly modeling the functional curves that are measured with

error and the binary outcome, in which the association between the noise-free curves

and the outcome is of interest. We model functional curves using cubic B-spline basis

functions and use deviance information criterion (DIC) to select number of basis

functions. Many authors have used spline basis functions in analyzing functional

data (Ramsay and Silverman, 2002). For example, James (2002) used a generalized

linear model for linking the outcome and functional covariate which is expressed in

terms of a known number of cubic splines. In these aforementioned methods, a critical

challenge is to appropriately determine the number of basis function and locations of

the knots. This problem remains an open question.

When too many basis functions are selected, the model may overfit the data and

the computational cost maybe expensive. Yet when few basis functions are selected,

they may not represent the functional data well (Bhattacharya and Dunson, 2011).

The functional predictors in the model have infinite dimensions intrinsically, and the

optimal combinations of basis functions are unknown. The possible combinations

of basis functions that can represent the functional predictors are infinite, so an

exhaustive search is not practical. Although splines have been widely applied to

model functional data in functional data analysis, there is no guarantee that the cubic

splines or equidistant knots are optimal in every type of functional data, so natural

basis or B-spline basis of different degrees or unequal spacing between its knots may



71

be more appropriate in other cases (Yao and Lee, 2008). This places a burden on the

analyst to choose the appropriate basis functions for the data. Another challenge lies

in how to compare between models with different basis functions and what criteria

to facilitate our model selection. Spiegelhalter et al. (2002) proposed the deviance

information criterion (DIC), a measure of model assessment and comparison which

can be extended to Bayesian hierarchical models with missing data (Celeux et al.,

2006). Our experience with our data as well as others (Gelman et al., 2014) suggest

that these data driven methods may provide some guidance but they do not always

perform well.

Alternatively, many authors have used functional principal component analysis

(FPCA) for functional data analysis to explain major source of variation in a sample

of random curves (Shang, 2011). FPCA is a popular tool for dimension reduction in

functional data and the top few FPCS are usually chosen to explain the variation in

functional data. FPCA’s popularity is partly attributed to its ability to facilitate con-

version of the inherently infinite-dimensional functional data to a finite-dimensional

score vector (Wang et al., 2015). In FPCA, the functional data are viewed as re-

alizations of a L2 stochastic process θ(·) defined on an interval (0, T ) with mean

µθ(t) = E(θ(t)) and covariance cov(θ(t1), θ(t2)). A countable sequence of uncorre-

lated random variables known as functional principal component scores, or simply

scores, can be used to express the underlying stochastic process with mild assump-

tions. In practical applications, the scores are often truncated to a finite vector, which

can then be used in multivariate data analysis.

There are many methods for constructing FPCs in functional data analysis (Wang

et al., 2015), some of which are conveniently implemented by an R package (Goldsmith

et al., 2016). Yao et al. (2005a) first smooth the covariance function of the functional

data, then perform eigendecomposition of the smoothed covariance function. Xiao

et al. (2013, 2016) achieve covariance smoothing via a sandwich smoother, which is a
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fast penalized spline bivariate smoother. Di et al. (2009) and Goldsmith et al. (2013)

use a different method for covariance smoothing, by penalized splines via a mixed

model. Huang et al. (2008) approximates the functional data matrix using penalized

rank one approximation, then apply singular value decomposition on the rank one

matrix to obtain the right singular vectors. These methods and the availability of

software provide convenient tools for data practitioners to perform FPCA. In addition,

FPCA can be considered as a data-driven method for estimation of basis functions,

which we investigate through simulation and a renal study.

Specifically, we apply FPCA as a means for choosing the basis to represent the

subject-specific variability among the curves. Each curve is approximated by a linear

combination of the top few functional principal components (FPCs), the subject-

invariant functions to express functional curves, that explain most of the variation in

functional curves (say 95%). We employ the FPCs to address the association between

noise-free curves and the binary outcome via a functional generalized linear model

(FGLM). This allows the simultaneous estimation of association between the true

curve and the binary outcome with the allowance made for the accommodation for

missing data in the second curve. Compared to the FGLM that uses cubic B-spline

basis functions in Chapter 3, this approach chooses a very small number of FPCs that

represents the variability in the functional predictors. It eliminates the need to select

basis functions through fitting multiple models, significantly reducing the computa-

tional cost of our joint-modeling approach. One additional advantage of this method

is that the analysis may also provide insight to the pattern of functional covariates

which can be interpreted via FPCs. In Section 4.2 we introduce the FPCAs and our

modeling framework. In Section 4.3 we present a simulation study for comparing the

choice of cubic B-spline basis to FPCs in our joint-modeling approach. In Section

4.4, we provide a comprehensive analysis of our motivated data set, renal study, using

FPCAs and compare the results to Chapter 3 method. Finally, we conclude with a
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discussion in Section 4.5.

4.2 Methodology

4.2.1 Data Structure and Model

Let Y(m×n) =

(
Y1 · · · Yn

)
be the measurements taken at m time points for n

individuals. Let Yi be the element of Y and Yi denote the vector of measurement of

the ith subject. Let Y
(1)
i(m1×1) be the first curve and Y

(2)
i((m2)×1) be the second curve after,

(m1 + m2 = m). We write Yi =

Y
(1)
i

Y
(2)
i

 =

(
Y

(1)
i1 · · · Y

(1)
im1

Y
(2)
i1 · · · Y

(2)
im2

)T
.

Let ∆ =

(
∆1 · · · ∆n

)T
be the vector of indicator functions with ∆i = 1 if Y

(2)
i

was observed. We let Yobs represent the observed curves, and Ymis = {Y(2)
i : ∆i = 0}

represent the unobserved curve data. Finally, we let Wi be the binary outcome for

individual i, and W(n×1) =

(
W1 · · · Wn

)
.

Given we sample an individual curve with error over distinct time points ti1, · · · , timi

(James and Hastie, 2001), we use the following model to represent the curve data:

Y
(s)
ij = θ

(s)
i (tj) + ε

(s)
ij , i = 1, · · · , n, j = 1, · · · ,ms, s = 1, 2, (4.1)

where Y
(s)
ij is the observed value of the sth curve for subject i at time point tj,

εεεi =

εεε(1)
i

εεε
(2)
i

 =

(
ε

(1)
i1 · · · ε

(1)
im1

ε
(2)
i1 · · · ε

(2)
im2

)T
represents measurement errors,

θ
(s)
i (tj) represents the true value of curve for subject i at time point tj. A common

approach models θ
(s)
i (tj) as

θ
(s)
i (tj) =

ks∑
l=1

β
(s)
il b

(s)
l (tj) = b(s)T (tj)βββ

(s)
i , (4.2)
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where b(s)(tj) = ( b(s)
1 (tj) ··· b(s)

ks
(tj) )

T
are the ks cubic spline basis functions with equally-

spaced knots, s = {1, 2}. The choice of the number of basis functions and the locations

of the knots are critical components of this method.

To overcome the difficulties in deciding the basis functions for θ
(s)
i (tj), we employ

functional principal component analysis (FPCA) to select a small number of FPCs

that can explain sufficient variability in the curves. We consider θ
(s)
i (tj) as realizations

of a L2 stochastic process θ(·) defined on an interval (0, T ) with mean µθ(t) = E(θ(t))

and covariance cov(θ(t1), θ(t2)). We let µ
(s)
θ (tj) be the mean curve at time point tj,

by Karhunen-Loeve Theorem, we can express the centered curve θ
(s)
i (tj)− µ(s)

θ (tj) in

terms of FPCs, θ
(s)
i (tj) = µ

(s)
θ (tj) +

∑∞
l=1 ξ

(s)
il φ

(s)
l (tj), where ξ

(s)
il is the lth score for

subject i and φ
(s)
l (tj) is the lth FPC evaluated at time tj, s = {1, 2}.

When
∑∞

l=k∗s+1 ξ
(s)
il φ

(s)
l (tj) explain a negligible amount of variability in the curves,

we can approximate θ
(s)
i (tj) by θ

(s)
i,k∗s

(tj), which is expressed using only the first k∗s

FPCs:

θ
(s)
i (tj) ≈ θ

(s)
i,k∗s

(tj) = µ
(s)
θ (tj) +

k∗s∑
l=1

ξ
(s)
il φ

(s)
l (tj) = µ

(s)
θ (tj) + φφφ

(s)T
k∗s

(tj)ξξξ
(s)
i , (4.3)

where φφφ
(s)T
k∗s

(tj) =
(
φ

(s)
1 (tj) ··· φ(s)

k∗s
(tj)
)T

are the first k∗s FPCs, and ξξξ
(s)
i is the vector of

corresponding scores for subject i, s = {1, 2}.

When Y
(s)
ij is already centered, that is, µ

(s)
θ (tj) = 0, then (4.3) can be seen as a

variation of (4.2), with a different set of basis functions, where each basis function is a

linear combination of spline basis functions. We can employ existing FPCA methods

to obtain top few FPCs, φφφ
(1)
k∗1

(t) and φφφ
(2)
k∗2

(t), that explains 95% of the variability

in the curves. Three methods from the R package “refund” can be applied to our

motivating data with ease. The first method (FACE) smooths the covariance function

in the functional data via a sandwich smoother then estimates the FPCs and scores by

eigendecomposition (Xiao et al., 2013, 2016). The second method (SC) smooths the
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covariance function by penalized splines via a mixed model before eigendecomposition

(Di et al., 2009; Goldsmith et al., 2013). The third method (SSVD) approximates the

functional data matrix using penalized rank one approximation, then apply singular

value decomposition on the rank one matrix to obtain the right singular vectors,

which are its FPCs (Huang et al., 2008).

We let ΦΦΦ(m×k) be the block diagonal matrix that consists of the FPCs of first and

second curve for a kidney, specifically, ΦΦΦ =

ΦΦΦ(1) 0

0 ΦΦΦ(2)

 where ΦΦΦ(1) corresponds to

the first curve and ΦΦΦ(2) corresponds to the second curve, and

ΦΦΦ(s) =


φ

(s)
1 (t1) · · · φ

(s)
k∗s

(t1)

...
. . .

...

φ
(s)
1 (tms) · · · φ

(s)
k∗s

(tms)

 , s = 1, 2.

We denote by ξξξi =

ξξξ(1)
i

ξξξ
(2)
i

 =

(
ξ

(1)
i1 · · · ξ

(1)
ik∗1

ξ
(2)
i1 · · · ξ

(2)
ik∗2

)T
the corresponding

vector of scores for ΦΦΦ. We assumed the true curve for the ith kidney to follow a

multivariate normal distribution

ξξξi ∼ Nk(ξξξ0,ΣΣΣξ)

based on some hyperparameters ξξξ0 =

ξξξ(1)
0

ξξξ
(2)
0

 and ΣΣΣξ =

ΣΣΣ11
ξ ΣΣΣ12

ξ

ΣΣΣ21
ξ ΣΣΣ22

ξ

.

We also assumed the following model for the measurement error,

εεεi ∼ Nm(0, σ2Im)

with σ2 as its variance, which we assumed to be constant across all kidneys, and that

ξξξi ⊥⊥ εεεi since true curves should not impact measurement errors. We assumed the
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hyperparameters ξξξ0 and σ2 to have non-informative and improper priors π(ξξξ0, σ
2) ∝ 1

and the hyperparameter Σξ to have an Inverse-Wishart prior ΣΣΣξ ∼ W−1 (Ik, k) where

W−1(ΨΨΨ, ν) has scale matrix ΨΨΨ and degrees of freedom ν. These assumptions about

the prior specifications of the hyperparameters helped facilitate our model-fitting

procedure.

In lieu of the unknown true renal obstruction, we use consensus ratings of three

expert readers as our outcome, with Wi = 1 for obstruction and Wi = 0 for non-

obstruction. We assumed a probit model for Wi and modeled Wi using latent variable

Zi(i = 1, · · · , n), which is associated with true renal obstruction status for individual

i, by

Wi =

1 if Zi > 0

0 if Zi ≤ 0
, (4.4)

with Zi following Gaussian distribution Zi ∼ N (µi, 1) where the mean µi of Zi is

modeled by the functional model

µi = α0 +

∫
a(1)(t)θ

(1)
i (t)dt+

∫
a(2)(t)θ

(2)
i (t)dt (4.5)

and where
∫
a(s)T (t)θ

(s)
i (t)dt represent coefficient of association integrated over the

first (s = 1) or second (s = 2) curve. We use orthonormal cubic spline basis functions

φφφ
(s)
k∗s

(t) we used in (4.2) to model the coefficient a(s)(t) as a(s)(t) = ααα(s)Tφφφ
(s)
k∗s

(t), where

ααα(s) are the coefficients corresponding to φφφ
(s)
k∗s

(t). Since φφφ
(s)
k∗s

(t) are orthonormal,

∫
a(s)(t)θ

(s)
i (t)dt =

∫
ααα(s)Tφφφ

(s)
k∗s

(t)φφφ
(s)T
k∗s

(t)ξξξ
(s)
i dt = ααα(s)T

(∫
φφφ

(s)
k∗s

(t)φφφ
(s)T
k∗s

(t)dt

)
ξξξ

(s)
i = ααα(s)Tξξξ

(s)
i ,

then from (4.5) we have

µi = α0 +ααα(1)Tξξξ
(1)
i +ααα(2)Tξξξ

(2)
i = α0 +αααTξξξi, (4.6)
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where ααα is a column vector of length k and αααT =

(
ααα(1)T ααα(2)T

)
.

The missing data present in the curves adds complication to the model-fitting.

Conventional methods ignore subjects with missing curves, resulting in loss of infor-

mation and potentially biased estimates. To incorporate kidneys with missing curves,

we follow the Bayesian data augmentation (DA) algorithm (Tanner and Wong, 1987)

that we adopted to fit our model in Chapter 3. The posterior samples of ααα can be

combined to form our estimates of ααα, which can be interpreted directly in terms of

the FPCs, or used in estimating the coefficient functions a(1)(t) and a(2)(t).

4.3 Simulation Study

In this section, we assess the performance of our proposed joint-modeling approach

with different choice of basis functions including by FPCA via a simulation study. We

first study the impact of misspecifying the number of basis functions when using cubic

B-spline basis functions. We then compare results to the case where basis functions

are selected by each of three FPCA methods described in Section 4.2.

We begin data generation by simulating the underlying true curves for 500 subjects

using the model given in (4.2). We use cubic B-spline basis functions with intercept

and 0 interior knot for the first and second curve, resulting in a total number of basis

functions of 8. We simulate the curves using the same models from (4.1) and (4.2)

given parameters mentioned in Simulaion Studies in Chapter 3. Next, we simulate

the outcome Wi(i = 1, · · · , n) by generating Zi from N (µi, 1) using the model given

in (4.6) and (4.4). We consider 100 Monte Carlo simulations.

To study the impact of misspecifying the number of basis functions on the estima-

tion of the parameter of interest (a(s)(t) in (4.5)), we consider three cases. In the first

case (CBS8), we set the number of basis as the true value, which is 8. In the second

case (CBS10), we misspecify the number of basis as 10. In the third case (CBS12),
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we highly over-specify the number of basis as 12. We use the posterior samples from

the three models to obtain our a(s)(t) estimates. These three a(s)(t) estimates, along

with the true curves, are plotted in Figure 4.1.
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Figure 4.1: True and estimated functional coefficients of the first and second curves
by CBS8, CBS10, and CBS12.

Figure 4.1 shows that when the basis functions are fixed at true values, the true

and estimated curves are very close, indicating unbiased results. When the basis

functions are misspecified, there is a bias, which gets much higher when the specified

number of basis functions deviates from the true value. These results emphasize the

need for selecting correct number of basis functions for unbiased estimation.

In order to assess the performance of the estimation via FPC basis, we use the

same simulation setting. After selecting FPCs that explain at least 95% of variance

in functional data, and treating the FPCs as basis functions, we fit the joint model.

Three methods (FACE, SC, and SSVD) are used for selecting the FPCs. For FACE

and SC, covariance-matrix smoothing is achieved by using 10 spline basis. To display

the impact of estimation of a(s)(t), the functional coefficients, we plot the estimated

functional coefficients by three methods for FPCA (Figure 4.2) along with the true

curve. Biases in a(s)(t) estimates are small when FPCs are used as basis, close to
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the case when the true number of basis is specified for cubic B-spline basis. This

demonstrates that applying FPCA to select basis functions in our joint-modeling

approach is a valid approach with reasonable results.
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Figure 4.2: True and estimated functional coefficients of the first and second curves.
The dashed curves are the 95% credible intervals of the estimated functional coeffi-
cients.

4.4 Renal Study

Renal scans play an important role in the determination of kidney obstruction. With-

out adequate monitoring, patients with known or susceptible obstruction in one or

both kidneys could potentially lose the affected kidneys and become reliant on kidney

dialysis to maintain their livelihood, putting a high strain on themselves and their

loved ones, both physically and financially. When a patient known or suspected to

have renal obstruction is referred to a nuclear medicine clinic, renal scans are per-

formed to help the radiologist evaluate possible obstruction in the patients kidneys.

Unfortunately, a large percentage of the renal scans performed in the United States

are interpreted at sites that perform fewer than 3 studies per week and are inter-
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preted by radiologists who have less than 4 months of training in nuclear medicine

(IMV, 2003). Lack of training and limited experience coupled with the demands of

interpreting a large variety of complex imaging studies at ever faster rates increases

the error rate of the diagnosis (Taylor et al., 2008a).

With the aim of improving renal image interpretations by radiologists, the Division

of Nuclear Medicine at Emory University conducted a renal study. The renal study

data consists of renal curves and renal obstruction diagnosis of 163 kidneys from 77

patients. The observations from the renal curves were counts of a tracer measured

at 59 time points for the first curve and 40 time points for the second curve. The

time points at which the observations were taken are identical across subjects and

are separated by 15 to 30 second intervals. Renal curves from kidneys of the same

patient are considered to be independent of each other. Eight of the kidneys (4.9%)

are missing the second curve. The observations range from 0 to 197,295, which means

covariance matrix calculations based on the data is computationally expensive. To

lower computational cost and ensure numerical stability, we apply transformation on

the data by dividing the observations by 1000. The outcome of renal obstruction

diagnosis is binary, with 0 being non-obstructed and 1 being obstructed. Out of 163

kidneys, 32 (19.6%) are obstructed. Since FPCA is not robust against outliers (Wang

et al., 2015), two kidneys with extreme curves are excluded from our study.

The first and second curves for each kidney are shown in Figure 4.3. The first

curves are convex in shape and are either strictly increasing or peaks at some time

point before 1000 seconds. The second curves are either decreasing or flat. The mean

first and second curves for obstructed kidneys and non-obstructed kidneys are shown

in Figure 4.4. The figure shows mean first curves are close between non-obstructed

kidneys and obstructed kidneys. The figure shows a larger difference in the mean

second curves, where the mean curves are decreasing and are separated.

As a descriptive analysis, we first investigate the pattern of relationship between
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Figure 4.3: First and second renal curves.

the outcome, kidney obstruction, and the functional covariate by a crude analysis.

We group the functional covariate data according to time intervals of 20 groups.

The average counts are regressed on kidney obstruction in a generalized linear model

with Probit link. We then obtain estimated regression coefficients on the average

counts and 95% confidence intervals of the estimated regression coefficients, which

are presented in Figure 4.5. Coefficient estimates from the regression seem to suggest

an oscillating pattern around zero for both curves.

In order to estimate the association between renal curves and kidney obstruction

using FPCA-based approach, we first select FPCs that explain at least 95% of the

variability in the functional data. For the covariance-matrix smoothing in FACE and

SC, we use a large number of basis, 35 to be exact. After enforcing orthonormality on

the FPCs, the three methods become equivalent in their choice of FPCs. Therefore,

we only use one set of FPCs (from SC) in subsequent analyses.

The functional part of each principal component is illustrated in Figure 4.6, by

adding or subtracting a suitable multiple of the lth FPC φ
(s)
l (t) to the mean sth curve

µ
(s)
θ (t), which are defined in equation (4.3) and are estimated from the data. The
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Figure 4.4: Mean first and second curves.
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Figure 4.5: Estimated coefficients from a GLM with Probit link and 20 covariates.

FPCs are included in Appendix B. Now we consider Figure 4.6 in detail. The solid

lines denote µ
(s)
θ (t), the dashed lines correspond to adding φ

(s)
l (t) to µ

(s)
θ (t), and the

fine dotted lines correspond to subtracting φ
(s)
l (t) from µ

(s)
θ (t). The first principal

component for the first curve accounts for 85% of the variability in the observed

first curves and is strictly positive. The variability associated with this component

increases as the mean curve increases, then plateaus after the mean curve reaches
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Figure 4.6: The mean first and second renal curves and the effects of adding and
subtracting a multiple of each functional principal component from SC. The top
panel is for the first curve and the bottom panel is for the second curve. The solid
lines denote mean curves, the dashed lines correspond to adding a multiple of a
functional principal component the mean curve, and the fine dotted lines correspond
to subtracting a multiple of a functional principal component from the mean curve.

its peak. Positive scores on this component is associated with higher than average

curve values (counts) in first curve over time. The second component for the first

curve accounts for 14% of the variability in the observed first. The second component

seems to depict differences between mean curve of first curves for obstructed kidneys
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and mean curve of first curves for non-obstructed kidneys. Positive score in this

component is associated with lower than average counts until approximately time

700 seconds and higher than average counts after approximately time 700 seconds.

The first component for the second curve accounts for 97% of the variability in the

observed second curves and is strictly positive and decreasing. Positive score in this

component is associated with higher than average counts in second curve over time.

To obtain regression coefficients on the association between the renal curves and

kidney obstruction, we fit the data from the renal study using φφφ
(1)
2 (t) and φ

(2)
1 (t)

obtained above. We present the a(s)(t) estimates in Figure 4.7. The estimated func-

tional coefficients when using FPC basis show a negative association between the first

1400 seconds of the first curve and kidney obstruction. The association between the

first curve and kidney obstruction is not significant except between time points 500

seconds and 800 seconds where the difference between mean curves of first curves for

obstructed and non-obstructed kidneys are small. The figure also shows a significant,

constant and positive association between the second curve and kidney obstruction.

This indicates that given similar first curves, an obstructed kidney is more likely to

have a higher second curve than a non-obstructed kidney. These findings are consis-

tent with the clinical expectation of nuclear medicine experts at Emory.

For comparison, we also apply cubic B-spline basis to fit our data. We use the

same number of basis functions we selected via deviance information criteria (DIC)

in Chapter 3. As another comparison to our methods, we apply the functional data

analysis by generalized model (FDAGM) method (Febrero-Bande and Oviedo de la

Fuente, 2012) to our data. The a(s)(t) estimates from model with FPC basis and

from the two comparison models are presented in Figure 4.8. Estimated coefficient

functions for cubic B-spline basis model and FDAGM are larger in magnitude com-

pared to model with FPC basis, and are cubic (or quartic) in shape. The patterns

we observe in the two comparison models are likely attributed to the small number
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Figure 4.7: Estimated coefficient functions and their 95% credible intervals from joint
models using FPC basis from SC.

of cubic B-spline basis functions we use to fit the model.
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Figure 4.8: Estimated coefficient functions from joint models using cubic B-spline
basis, FPC basis, and from FDAGM.

The estimated coefficient functions from our joint models are different in shape

and magnitude depending on whether we use cubic B-spline basis or FPC basis to

model the curves, raising the question whether cubic B-spline basis and FPC basis
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fit the data well. As an assessment for the models, we can plot the predicted vs.

observed probabilities for joint models using FPC basis and using cubic B-spline

basis to compare the goodness-of-fit of each model. We start by generating the

predicted probability of obstruction for each kidney by each of these 2 models. Next,

we order the kidneys by their predicted probability and group them into 16 groups

of size 10 or more. For each group, the predicted probability is the mean predicted

probability of the kidneys in that group, and the observed probability is the proportion

of obstruction observed from kidneys in that group.

We display the differences between observed probability of each group and the

predicted probability from each of the two models visually in Figure 4.9. We also

assess the goodness-of-fit of FDAGM as a comparison. The figure shows that all

three models fit the data reasonably well. The predicted probability of obstruction

from the model using FPC basis is slightly closer to the observed probability than

predicted probabilities of obstruction from model using cubic B-spline basis and from

FDAGM. Figure 4.9 suggests that FPC basis fit the data just as well as cubic B-spline

basis. The goodness-of-fit assessment indicates functional principal components can

be used as alternatives to cubic B-splines for fitting renal curves when estimating the

association between the renal curves and kidney obstruction.

4.5 Discussion

A critical challenge in functional data analysis is to appropriately determine the

number of basis functions and locations of the knots when modeling functional data

in the presence missing data. Functional data have infinite dimensions intrinsically,

and splines have been widely applied to model functional data in functional data

analysis. The optimal combinations of spline basis functions required to model the

functional data are unknown, and when too many basis functions are selected, the
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Figure 4.9: Observed vs. predicted probabilities of renal obstruction when using cubic
B-spline basis, FPC basis, and by FDAGM.

model may overfit the data and the computational cost maybe expensive. Yet when

too few basis functions are selected, they may not represent the functional data well

(Bhattacharya and Dunson, 2011). This places a burden on the analyst to choose the

appropriate basis functions for the data set he or she works with or may lead to bias

in the analysis results. How to compare between models with different basis functions

and what criteria to facilitate the model selection also poses a challenge. Although

Spiegelhalter et al. (2002) proposed the deviance information criterion (DIC), to assess

and compare models, which Celeux et al. (2006) extended to work with Bayesian

hierarchical models with missing data, our experience with our data as well as others

(Gelman et al., 2014) suggest that these data driven methods may provide some

guidance but they do not always perform well. Alternatively, many authors have

used functional principal component analysis (FPCA) for functional data analysis to

explain major source of variation in a sample of random curves.

In this Chapter, we applied FPCA to select the functional principal components

used as basis in our joint modeling approach developed in Chapter 3. Compared to

conventional FGLM that uses cubic B-spline basis functions, this approach chooses a
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very small number of functional principal components that represents the variability

in the functional predictors. It eliminates the need to select basis functions through

fitting multiple models, significantly reducing the computational cost of our joint-

modeling approach. Our simulation study showed FPCA to be a valid approach for

basis selection. Joint models with functional principal component basis produced

results comparable to results estimated from fitting the true model. In our data anal-

ysis, model with functional principal component basis and model with cubic B-spline

basis showed difference in the patterns of their estimated coefficient functions. Our

joint model methods based on FPC basis model and cubic B-spline basis model both

incorporate subjects with missing functional data, which make them more appro-

priate for the analysis than the method by Febrero-Bande and Oviedo de la Fuente

(2012). However, goodness-of-fit assessment indicated both models to have fit the

data reasonably. As was noted in Wang et al. (2015), FPCA is not robust against

outliers. Perhaps the presence of undetected outliers in our data contributed to the

differences we observed in estimated coefficient functions in our data analysis. There-

fore, further investigation of potential outliers in our data is necessary. In general,

caution must be used when substituting functional principal components in our joint

model approach when outliers are present in the data.
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Chapter 5

Future work
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In this Chapter, we discuss potential extensions of this dissertation and some

directions for future research.

Motivated by a renal study, the methods proposed in Chapters 2, 3, and 4 are

only applicable to a special situation, namely informative missing of a second curve.

These methods can be extended to multiple curves. The issues such as the order of

curves and computational feasibility need to be considered in such modeling.

In this dissertation, we assume the functional data are MAR. As a direction for

future research, it would be interesting to incorporate covariate information from

the renal study data that were not used in this dissertation, such as age and sex

of the patient, for imputing the missing functional data. The inclusion of covariate

information in our models may relax the MAR assumption. The relaxation of the

MAR assumption allows our proposed methods applicable to situations with general

missing-data mechanism.

In Chapter 3 and Chapter 4, we assume probit link between the functional pre-

dictors and a binary outcome. We can extend our joint model with other links to

accommodate different types of outcomes, such as survival outcome or ordinal categor-

ical data. Extension to ordinal categorical data is straightforward with a cumulative

logit link but handling survival data may need further modeling with proportional

hazard assumption.

Results in Chapter 2 may be used to impute the second curves, hence facilitating

the FPC selection in the presence of missing data. Accommodation of missing data in

FPC selection may improve the joint modeling approach for estimating the association

between functional predictors and the outcome.
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Appendix A

Appendix for Chapter 3

Full conditional likelihoods for additional parameters and hyperparameters:

Zi|Wi = 1, α0,ααα,βββi ∼ N
(
α0 +αααTβββi, 1

)
truncated to (0,∞)

Zi|Wi = 0, α0,ααα,βββi ∼ N
(
α0 +αααTβββi, 1

)
truncated to (−∞, 0]

βββ0|. ∼ Nk

(
1

n

n∑
i=1

βββi,
ΣΣΣβ

n

)

ΣΣΣβ|. ∼ W−1

(
n∑
i=1

(βββi − βββ0)(βββi − βββ0)T + Ik, n+ k

)

σ2|. ∼ Inverse-Gamma

(
nm

2
− 1,

1

2

n∑
i=1

(Yi −Xβββi)
T (Yi −Xβββi)

)
where . represents all other parameters and data.
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Appendix B

Appendix for Chapter 4
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Figure B.1: Functional principal components for first and second curves.
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