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Abstract  

By Zirui (Ray) Chen 

 

Humans are incredibly good at discriminating places, or “scenes”, (e.g., to recognize an 

image as a beach and not a kitchen). But are th precise stimulus features that humans use to 

discriminate one scene from another. In this study, I hypothesized that the global color of a scene 

is a stimulus feature that humans use for differentiating visual scenes, but not objects, and 

predicted that 1) behaviorally, participants will show a more different dissimilarity judgement 

pattern for color versus grayscale scenes than for color versus grayscale objects (Experiment 1), 

and 2) neurally, color versus grayscale scenes will be represented more differently than color 

versus grayscale objects. To test my hypothesis, I asked the participants to behaviorally judge the 

dissimilarity among a set of scene and object images that are highly variable in global color (e.g., 

a forest full of red versus green leaves) and the grayscale version of the exact same images 

(Experiment 1). Consistent with my hypothesis, I found a greater difference between the 

participants’ behavioral dissimilarity judgment for color versus grayscale scenes than color 

versus grayscale objects. Next, I showed participants the same set of images in the functional 

magnetic resonance imagining (fMRI) scanner and examined the neural response of the cortical 

scene and object processing system (Experiment 2). Consistent with my hypothesis, I found that 

human brains were more sensitive to the differences between color versus grayscale scenes than 

color versus grayscale objects, providing neural evidence that global color is used for human 

visual scene processing. Collectively, these findings suggested that global color is a stimulus 

feature used for human visual scene discrimination. 
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Introduction 

 

Humans are incredibly good at discriminating scenes (e.g., recognizing an image as a 

beach but not a kitchen) – we can recognize a scene in as little as 19 milliseconds of display time 

(Greene & Oliva 2009). How are we able to achieve such a remarkable feat? In the past two 

decades, cognitive neuroscientists have found a dedicated cortical area in human visual cortex – 

the Parahippocampal Place Area (PPA; Epstein & Kanwisher, 1998) – that is selectively 

involved in visual scene recognition. PPA is considered “scene-selective” as it responds two to 

four times more to scene over non-scene images, such as common objects (e.g., an apple) or 

faces. Moreover, PPA has also been suggested to be involved in scene discrimination as it shows 

distinct response patterns for different kinds of scenes (e.g., a beach versus a kitchen; Walther et 

al., 2009). However, one fundamental question remains – how exactly do humans discriminate 

scenes?  

In the existing literature, one prominent theory posited that scene discrimination may be 

achieved by processing the co-occurring objects within an environment (e.g., recognizing a 

kitchen by seeing a sink and a refrigerator; MacEvoy & Epstein, 2011). While object information 

can certainly be used for visual scene discrimination, a growing body of behavioral evidence 

suggests that visual scene discrimination can occur independently of object recognition. For 

example, humans can recognize a scene as fast as recognizing an object, indicating that objects 

do not need to be processed prior to scenes (Hagmann & Potter, 2016). Furthermore, humans can 

also recognize a scene image even when the object details within are blurred out (Oliva & 

Torralba, 2006). For instance, when presented with the image in Figure 1A, participants 
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predominantly recognize the image is a street scene, even though the central orange blobs were 

in fact kitchen cabinets overlayed on the original scene image (Figure 1B). Such a response 

pattern demonstrated that with missing or even “wrong” objects, humans can nevertheless use 

some coarse information in the visual scene stimuli for visual scene discrimination. These studies 

collectively suggest that objects are not necessary for visual scene discrimination, and raise the 

question that if not through the objects, then what exactly do we rely on for scene 

discrimination?  

 Some existing studies have hinted at the role of color for visual scene discrimination. In 

one behavioral study (Oliva & Schyns, 2000), the participants were asked to determine whether a 

presented image matched with a word that was presented right before (e.g., an image of forest 

and the word “forest”). They found that participants were able to perform the task much faster 

with normally colored scenes (Figure 1B) than abnormally colored scenes (Figure 1C), 

suggesting that humans may rely on the global colors for visual scene discrimination. 

Furthermore, neuropsychological evidence also highlighted the role of color for visual scene 

processing. Steeves et al. (2004) reported that patient D.F. (Steeves et al., 2004) had profound 

visual form agnosia – impaired processing of objects and shapes but spared information of color. 

Intriguingly, while impaired at recognizing grayscale scenes, D.F. could surprisingly classify 

Figure 1. A & B. The buildings in a street were replaced with kitchen furniture and blurred out yet 
participants nevertheless consistently judged the image as a street (Oliva & Torralba, 2006).  C. An 
example of normally colored scenes in Oliva & Schyns, 2000. D. An example of abnormally colored 
scenes twisted from Figure 1C (Oliva & Schyns, 2000).  
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color scenes as well as neurotypical adults, highlighting the relevance of color to visual scene 

discrimination.  

Building upon these findings, I aimed to directly test the role of global color of a scene 

for visual scene discrimination. I hypothesized that if the global color of visual stimuli is a 

feature that humans use for visual scene discrimination, then 1) behaviorally, participants will 

show a more different dissimilarity judgement pattern for color versus grayscale scenes than for 

color versus grayscale objects (Experiment 1), and 2) neurally, color versus grayscale scenes will 

be represented more differently than color versus grayscale objects (Experiment 2). I tested the 

predictions using both behavior in Experiment 1 and fMRI in Experiment 2. 
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Experiment 1 (Behavioral) 

Methods 

Participants 

Two hundred participants with normal or corrected-to-normal vision were recruited on 

Amazon Mechanical Turk. All participants gave informed consent in accordance with the Emory 

Institutional Review Board. 

Stimuli 

   There were four color conditions of stimuli: color scenes, grayscale scenes, color 

objects, and grayscale objects. Within each of the conditions, I collected 24 naturalistic images, 

including two color variations for each of the 12 categories (e.g., a red church image versus a 

blue church image, or a red apple versus a green apple) (Figure 2A). The color images were then 

converted into grayscale images for the stimuli in the grayscale conditions. Note that, among the 

Figure 2. A. Examples from the four stimuli conditions: color scenes, grayscale scenes, color objects, 
and grayscale objects. B. A sample of two trials in Experiment 1. C. Demonstration of how a 
representational dissimilarity matrix (RDM) is created to summarize a participant’s dissimilarity 
judgment pattern on a set of stimuli. 
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24 scene images, I matched the proportion of natural versus man-made and indoor versus 

outdoor scenes to prevent any biases that may occur on a particular type of category 

(Supplementary Table 1); I also matched the proportion of natural versus man-made categories 

for the object stimuli. 

Procedures 

To test the effect of global color in behavioral scene discrimination, participants were 

asked to judge the dissimilarity between two scene images. The experiment started with an 

instruction, in which the participants were only told to decide how similar or different the two 

images are without any explicit criteria, so that they wouldn’t be biased towards using color, 

semantic meaning, or any other criterion for their judgement. Within each trial, the participant 

fixated at a plus sign at the center of the computer monitor for 800ms (Figure 2B), followed by a 

pair of images displayed horizontally for 200ms. Afterwards, participants had unlimited time to 

rate the dissimilarity of the images with a continuous slider scale, ranging from “completely 

different” to “completely identical”, which was recorded on the backend as a dissimilarity rating 

ranging from 1 to 0. The whole experiment consisted of eight practice trials and 276 

experimental trials, which consisted of all possible pairwise combination of the 24 stimuli within 

one stimuli condition. Both trial order and the left-right position of each pair of displayed images 

were randomized across participants. I used a between-subject design (i.e., each participant only 

saw the stimuli within one stimuli condition) to ensure that the participants could maintain their 

attention within the time span of an experiment (around 30-40 minutes). 

Data Analysis 

I first checked whether the participants were paying attention during the experiment by 

examining participants’ dissimilarity judgement ratings on trials in which they were presented 
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with two identical images. In these trials, if a participant showed an average dissimilarity ratings 

higher than 0.2, which indicated that one did not consider two identical images as very similar, I 

excluded them from the analysis. A total of 31 out of 200 participants were excluded.  

Next, I summarized each participant’s behavioral dissimilarity judgement for each 

stimulus within a stimuli condition by organizing the participants’ dissimilarity judgement scores 

into representational dissimilarity matrices (RDMs; Figure 2C). In these behavioral RDMs, the 

value of each cell indicated a participant’s dissimilarity judgement score between the image 

represented by its row position and the image represented by its column position.  I then 

averaged across the behavioral RDMs of the participants within a condition to examine the group 

response pattern. 

Finally, to test my prediction, I correlated the group behavioral RDMs of color and 

grayscale scenes, as well as color and grayscale objects (Figure 3A), seperately. Since I used a 

between-subjects design, I could not compute a pairwise correlation between the color versus 

grayscale RDMs at the subject level. Thus, instead, to compare the behavioral RDMs color 

versus grayscale scenes and color versus grayscale objects – I transformed the groupwise 

Pearson correlation coefficients (𝑟) between color and grayscale scenes, as well as color and 

grayscale objects, into Fisher’s 𝑧’s (Equation 1) and assessed the differences by calculating 

𝑧!"#$%&$' (Equation 2). 

𝑧 =
ln &1 + 𝑟1 − 𝑟*

2  

𝑧!"#$%&$' =
𝑧( − 𝑧)

, 1
𝑁( − 3

+ 1
𝑁) − 3

 

 

 

Equation 1 

Equation 2 
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Results 

  If the global color of visual stimuli is a feature that humans use for visual scene 

discrimination, then the participants will show a more different dissimilarity judgement pattern 

for color versus grayscale scenes than for color versus grayscale objects. Consistent with my 

prediction, I observed a numerically lower correlation between RDMs of color and grayscale 

scenes (𝑟 = .81, 𝑝 < .0001, 𝐹𝑖𝑠ℎ𝑒𝑟*𝑠	𝑧 = 1.13; Figure 3B) than between RDMs of color and 

grayscale objects (𝑟 = .96, 𝑝 < .0001, 𝐹𝑖𝑠ℎ𝑒𝑟*𝑠	𝑧 = 2.00), indicating that the dissimilarity 

judgement patterns for color versus grayscale scenes is more different than that for color versus 

grayscale objects.  

Figure 3. A. The group behavioral RDMs for the four stimuli conditions, which capture the behavioral 
pattern of the participants’ dissimilarity judgement. Dissimilarity = The participants’ averaged 
dissimilarity judgment score. B. Fisher’s z value between the participants’ behavioral dissimilarity 
judgment. The correlation between color and grayscale scenes is lower than that between color and 
grayscale objects,	suggesting that the participants’ behavioral dissimilarity judgment of color scenes 
versus grayscale are significantly more different than color versus grayscale objects. 
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Next, to directly compare the two correlations, I transformed the Pearson correlation 

coefficients (𝑟) into Fisher’s 𝑧’s and assessed the difference. Consistently, I found a significant 

difference between the two correlations (𝑧!"#$%&$' = −10.25, 𝑝 < .001), indicating that the 

participants’ behavioral dissimilarity judgment for color versus grayscale scenes are indeed 

significantly more different than that of color versus grayscale objects. 

 Finally, I also further examined whether the difference between participants’ behavioral 

dissimilarity judgment for color versus grayscale scenes were truly driven by color – not by such 

potential confounds as luminance or semantic information, and I found that color was indeed the 

driving feature. See Supplementary Analysis for details.  
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Experiment 2 (fMRI) 

Methods 

Participants 

 Four participants (two female) with normal or corrected to normal vision were recruited 

from the Emory University. All participants gave informed consent in accordance with the 

Emory Institutional Review Board. 

Stimuli 

 I used the same stimuli as those in Experiment 1 (Figure 2A). 

Procedures 

 I used a region of interest (ROI) approach in which I localized the cortical ROIs with the 

Localizer runs, and then used an independent set of Experimental runs to investigate the neural 

responses to the visual stimuli in these ROIs. The ROIs included the scene-selective PPA and the 

Lateral Occipital Cortex (LO; Grill-Spector et al., 2001) as a control region, which is known to 

be “object selective” as it responds two to four times more to object over scrambled-object 

images. For the Localizer runs, participants saw images of faces, objects, scenes, and scrambled 

objects in a block, during which they were asked to perform a one-back repetition detection task 

to maintain attention (i.e., to press a button whenever an image is continuously repeated twice). 

For the Experimental runs, I used a fast event-related paradigm (Figure 4). Each run consisted of 

six fixation blocks (four to six seconds each) and three repetitions of the 24 images within the 

same stimuli condition. Each image was presented for one second, followed by a fixation screen 

for a pseudo-randomly jittered inter-stimulus interval ranging from three to five seconds. To 
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maintain attention, the participants were asked to press one of two buttons to indicate whether 

they liked or disliked the image following the presentation of each image. The order of the 

images in each run was randomized. Each participant completed two Experimental runs per 

stimuli condition. To prevent the participants’ knowledge of the images’ color from biasing their 

neural response to the grayscale stimuli, participants completed the Experimental runs for the 

grayscale conditions before the color conditions. The entire session for each participant lasted for 

approximately 90 minutes. 

The fMRI scanning sessions were completed on a 3T Siemens Trio scanner at the Facility 

for Education and Research in Neuroscience at Emory University. Functional images were 

acquired with a 32-channel head matrix coil and a gradient echo single-shot planar imaging 

sequence (28 slices, repetition time = 2s, echo time = 30ms, voxel size = 1.5 x 1.5 x 2.5 mm, 

0.2mm interslice gap). Slices were oriented approximately parallel to the calcarine sulcus in 

Figure 4. A sample of two trials in Experiment 2. The inter-stimulus-interval was pseudo-randomly 
jittered, ranging from three to five seconds. Participants were asked to press a button to indicate 
whether they like or dislike an image following the presentation of each image 
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order to fully cover the occipital and temporal lobes and most of the parietal and frontal lobes. 

The whole-brain, high-resolution anatomical images were also acquired for each participant. 

Data Preprocessing 

 I analyzed the fMRI data using the FSL software (Smith et al., 2004) and custom 

MATLAB code. Preprocessing included skull-stripping (Smith, 2002), linear trend removal, 

three-dimensional motion correction, and temporal smoothing with FSL’s MCFLIRT tool. After 

preprocessing, I fit the preprocessed data with a double-gamma function to estimate the 

hemodynamic response function to each of the stimulus conditions.  

To define the ROIs, I first estimated the location of PPA and LO within each individual 

using a probabilistic parcel of these ROIs (Julian et al., 2012). Next, among the voxels within 

these probabilistic parcels of each ROI, I selected the top 100 voxels that showed the strongest   

scenes > objects response from the independent Localizer runs and defined them as PPA, and the 

top 100 voxels that showed the strongest object > scrambled objects response from the 

independent Localizer runs and defined them as LO. 

Data Analysis 

To examine the neural response of an ROI, I extracted the multi-voxel activity pattern of 

the ROIs to each stimuli condition in the Experimental runs. Next, I conducted the 

representational dissimilarity analysis on the multi-voxel activity pattern of each ROI. 

Specifically, within each condition (e.g., color scenes), I correlated the multi-voxel activity 

pattern of an ROI to one image with that to another image for all possible pair-wise combinations 

of the stimuli. Then, I subtracted the Pearson correlation coefficients from one to obtain a 

measure of pairwise dissimilarity, which was then organized into the neural RDMs (Figure 6A). 

As such, in these neural RDMs, the value of each cell was the dissimilarity between the ROI’s 
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multi-voxel response to the image represented by its row position and that to the image 

represented by its column position. Finally, I averaged the RDMs of each ROI across both 

hemisphere and across the two Experimental runs of the same stimuli conditions, such that for 

each subject, I acquired a group RDM for each ROI (i.e., PPA and LO), and for each of the four 

stimuli conditions.  

Results 

  I first validated the data from the Experimental runs by examining whether the scene and 

object selective ROIs demonstrated the known scene selectivity (i.e., scenes > objects) or object 

selectivity (i.e., objects > scenes in addition to objects > scrambled objects), respectively. To do 

so, I examined whether PPA shows a greater response to the scene condition, and LO shows a 

greater response to the object condition. Consistent with the previously known scene and object 

selectivity of these regions, I found that PPA’s response to the color and grayscale scenes was 

Figure 5. Neural response of PPA and LO to the different stimuli conditions (𝑁 = 4). PPA’s response 
to color and grayscale scenes was higher than that to the color and grayscale objects; LO’s response to 
the color and grayscale object was higher than that for color and grayscale scenes. I also observed 
PPAs’ responses to color scenes to be higher than those to grayscale ones 
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higher than that to the color and grayscale objects (𝑡(9) = 6.43, 𝑝 < .0001, 𝑟 = .91; Figure 5), 

and LO’s response to the color and grayscale object was higher than that for color and grayscale 

scenes (𝑡(9) = −3.22, 𝑝 < 0.01, 𝑟 = .73). Having validated the data, interestingly, I also 

observed that PPAs’ response to color scenes was marginally higher than that to grayscale ones 

(𝑡(9) = 1.79, 𝑝 = .10, 𝑟 = .51). By contrast, there was no difference between color versus 

grayscale objects in LO (𝑡(9) = .75, 𝑝 = .47, 𝑟 = .24). These evidence already suggested that 

PPA is more sensitive to the difference between color and grayscale stimuli than LO. 

 Given the univariate results, I next directly tested my prediction by comparing the neural 

RDMs for color versus grayscale scenes and objects, respectively (Figure 6B). If the global color 

of visual stimuli is a feature that humans use for visual scene discrimination, then the neural 

Figure 6. A. The averaged neural RDMs of PPA and LO to Color versus Grayscale Scenes and Objects, 
distinctively. Dissimilarity = 1 – Pearson correlation coefficient. B. Fisher’s z values between the 
participants’ PPA RDMs of color and grayscale scenes and that between their LO RDMs of color and 
grayscale objects. No significant difference was found, presumably due to lack of participants. 
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representation of color versus grayscale scenes in PPA should be more different than that of 

color versus grayscale objects in LO.  Thus, I correlated the RDMs of PPA for color and 

grayscale scenes, and those of LO for color and grayscale objects. However, I did not observe 

significant difference between correlations between the PPA RDMs of color and grayscale 

scenes (Fisher’s z: 𝑀 = .016, 𝑆𝐸 = .043	, 𝑁 = 4; Figure 6B) than those between LO RDMs of 

color and grayscale objects (Fisher’s z: 𝑀 = .025, 𝑆𝐸 = .021	, 𝑁 = 4), even though the average 

value for scenes was lower than that for objects. 
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Discussion 

 

 In this study, I investigated whether the global color of visual stimuli is a feature that 

humans use for visual scene discrimination. In Experiment 1, I found that the participants’ 

behavioral dissimilarity judgment for color versus grayscale scenes were more different than for 

color versus grayscale objects. In Experiment 2, I found that the neural representation of color 

versus grayscale scenes in the scene-selective PPA were more different than that of color versus 

grayscale objects in the object selective LO. Together, these results support my hypothesis that 

the global color of visual stimuli is used for humans’ visual scene discrimination. 

My findings that color is relevant for visual scene behavioral discrimination in 

Experiment 1 is consistent with previous findings for a potential role of global color in scene 

discrimination (Oliva & Schyns, 2000). Moreover, while Oliva & Schyns (2000) suggested that 

colors only mediate recognition of certain “color-diagnostic” scene categories – namely natural, 

outdoor scenes with prevalent color schemes (e.g., ocean is usually blue) – our study suggest that 

the effect of global color for human visual scene discrimination is general across natural and 

manmade, and indoor and outdoor scenes. One possible explanation for the difference between 

our findings is that Oliva & Schyns’ (2000) manipulation of color (i.e., flip the red and blue of 

the images) for the manmade and indoor scenes might not be as drastic as that for natural and 

outdoor scenes, making the color-manipulated scenes to seem relatively similar to the original 

image, thus resulting in the null effect in manmade and indoor scenes. Furthermore, while Oliva 

& Schyns (2000) measured scene discrimination indirectly based upon the participants’ accuracy 

in matching between images and names, I directly measured the participants’ dissimilarity 
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judgment pattern among the scenes. Hence, my study is likely more sensitive to detect the effect 

of global color in visual discrimination than was previously undetected.  

 In addition, our findings that color versus grayscale scenes were represented differently 

in PPA in Experiment 2 also shed light onto global color as a property that differentiates neural 

representations of visual scenes, providing insights for a recent attempt in understanding what 

underlies the representational dissimilarity of visual scenes in the human visual cortex (Groen et 

al., 2018).  Furthermore, our findings for a greater response to color versus grayscale scene is 

also consistent with previous neuropsychological evidence from D.F. (Steeves et al., 2004) – 

who had a similar level of PPA response to color scenes as neurotypical adults but less PPA 

response to grayscale scenes – thus providing complementary evidence that color is also used for 

cortical scene processing in neurotypical populations. However, given our small sample size 

(N=4) in Experiment 2 due to difficulties in recruiting participants for in-person experiment 

during COVID, more data is necessary to verify the effects observed in Experiment 2.  

 Beyond our main findings that color matters for scene discrimination, one might be 

surprised by our findings that color does not play a crucial role in object recognition. Moreover, 

our findings may also seem to be at odds with some previous evidence for colors affecting object 

recognition (Biederman & Ju, 1988; Davidoff & Ostergaard, 1988). Upon further examination, 

however, these previous studies revealed a discrepancy in the effect of color for object 

recognition: colors mediate people’s performance in the objects naming tasks, during which the 

participants were given an image and asked to name the objects, but colors had no effect on their 

performance in the object verification tasks, during which they verified if the given object image 

matched with the given name of an object category. Such a discrepancy may result from two 

potentially distinct cognitive process – “recognition” of individual object versus 
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“discrimination”. In both the dissimilarity judgement task tested in Experiment 1 and the object 

verification task reported in the previous, it is plausible that only the “discrimination” process is 

involved, which may explain why these two tasks produced consistent evidence that color is not 

used for object discrimination. Thus, our current findings does not contradict with the existing 

literature concerning the role of color for object recognition. 

 The current study is limited in two ways. Firstly, the lack of participants in Experiment 2 

limited the conclusion we could draw from the study. To test more rigidly whether PPA’s 

response to color versus grayscale scenes is significantly more different than that of LO for color 

versus grayscale objects, I will continue to collect data from more participants in the following 

months. Before then, it is too early to draw any conclusions based on the multi-voxel pattern 

activity due to the highly-noisy nature of fMRI data. Nevertheless, the univariate findings that 

PPA is more sensitive to the difference between color and grayscale stimuli than LO, provides 

promising neural evidence that color is used for scene discrimination. Secondly, the scene and 

object stimuli are not matched in their visual complexity, which may interact with the effect of 

color for visual scene discrimination. Thus, one fruitful future direction is to match the 

distribution of spatial frequency – which is a measure of image complexity – and other possible 

image statistics between the naturalistic scene and object stimuli. 

 If data from more participants for Experiment 2 indeed supports that color is represented 

in PPA and is thus used for scene discrimination, future works may look into the other two scene 

selective regions in human cortex – the Retrosplenial Complex (RSC; Maguire, 2001) and the 

Occipital Place Area (OPA; Dilks et al., 2013). Unlike PPA, RSC and OPA are suggested to be 

involved in scene navigation rather than scene discrimination (Dilks et al., 2022). Intuitively, 

global color may not be necessary for the scene navigation systems; thus, these two cortical 
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regions might not represent global color. Investigation into these two regions will provide 

insights into how the differential functions of these scene selective regions are built upon the 

differential information extracted from the same stimuli. 
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Conclusion 

 

This study investigated whether the global color of visual stimuli is a feature that humans 

use for visual scene discrimination. In Experiment 1, I found that global color is used for 

behavioral discrimination of scenes but not objects. In Experiment 2, despite limited number of 

participants, I found preliminary neural evidence that global color is relevant to human visual 

scene discrimination, as PPA is more sensitive to the difference between color and grayscale 

stimuli than LO. Collectively, these findings suggest that global color is a stimulus feature used 

for human visual scene discrimination. This study then sheds light on the relevance for global 

color for visual scene discrimination and provides further insight into how humans achieve the 

remarkable cognitive ability of visual scene discrimination. 
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Supplement Analysis 

 

In Experiment 1, I further tested if the participants based their behavioral dissimilarity 

judgements on the global color of the scene stimuli. To do so, I created the RDM prediction 

models that quantified the color dissimilarity between the stimuli and examined the similarity 

between the behavioral RDM and the predictions models. Specifically, I first converted each 

image into the CIELAB color space (Figure S1A; International Commission on Illumination, 

1976), in which the two color dimensions of interest are the red-green opponency and the 

yellow-blue opponency. I selected this color space as it was suggested to capture how humans 

naturally perceive color and lightness in early visual processing. In addition, the two color 

dimensions are independent of the third dimension, perceived lightness, which enabled me to 

control for the confound of general lightness to the global colors’ relevance to human scene 

discrimination. For each image, I averaged the values in these two dimensions across all pixels to 

obtain the global values for both red-green opponency and yellow-opponency. Then, I compared 

the values between each image pair and organized them into the color prediction models (Figure 

S1B), in which the value of each cell indicated the Euclidean distance between the averaged 

value of the particular dimension across all pixels in the image represented by its row position 

and that by its column position. Finally, I correlated these color prediction models with the 

participants’ averaged behavioral RDMs to observe how similar they are, or how much variance 

of the behavioral RDMs can be explained by the color differences that the prediction models 

summarized. 
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 If the global color of visual stimuli is a feature that humans use for behavioral scene 

discrimination, then in addition to the main findings of Experiment 1, the participants’ 

behavioral pattern should also be predictable by the color differences among the scene images. 

That is, the color prediction models should correlate with the behavioral RDM for color scenes 

but not the other stimuli conditions. Hence, I correlated the two color prediction models with the 

behavioral RDMs of each participant who saw color scenes. For both color dimensions, the 

Fisher’s z’s were significantly higher than zero (red-green opponency: 𝑡(38) = 7.60, 𝑝 < .0001; 

yellow-blue opponency: ; 𝑡(38) = 9.64, 𝑝 < .0001; Figure S2), indicating that the differences in 

red-green opponency and yellow-blue opponency among the color scenes are significantly 

correlated with the participants’ behavioral dissimilarity judgement of these scenes.  

But might the correlations be driven by some confounding features (i.e., lightness or 

semantic categories) that the color prediction models captured by chance? If so, then I should 

observe a similar degree of correlation between the color prediction models and the behavioral 

RDMs for grayscale scenes. Contrary to this alternative hypothesis, however, for both color 

dimension, the Fisher’s z’s were not significantly above zero (red-green opponency: 𝑡(35) =

−1.22, 𝑝 = .11; yellow-blue opponency: 	𝑡(35) = −2.10, 𝑝 < .05. Thus, the correlations 

Figure S1. A. Demonstration of converting an image into the color dimensions of interest: red-green 
opponency and yellow-blue opponency. B. The color prediction models that capture the 24 color scene 
images’ similarity relationship in terms of the image statistics of interest, respectively. Dissimilarity = 
Euclidean distance of the corresponding averaged image statistic among the stimuli. 
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between the color prediction models and color scene RDM is unlikely to be driven by these 

confounding features that the grayscale scenes share with the color ones. 

Finally, to test whether color is specifically relevant for visual scene discrimination and 

not just any kinds of visual discrimination tasks, I directly compare the Fisher’s z correlation 

between the two color models and the behavioral RDM of color scenes and objects. I found the 

correlation between the two color models and the behavioral RDM of color scenes to be 

significantly higher than that of color objects (red-green opponency: 𝑡(83) = 10.03, 𝑝 <

.0001, 𝑟 = .74; yellow-blue opponency: 𝑡(83) = 4.74, 𝑝 < .0001, 𝑟 = .46), indicating that the 

global color of visual stimuli is used for human behavioral discrimination of visual scenes. 

 

 

 

 

Figure S2. Fisher’s z value between the prediction models and participants’ dissimilarity judgments 
(i.e., the behavioral RDM) on color scenes and the predictions models. There is a positive and 
significant correlation between participants behavioral RDM and the two color prediction models, 
suggesting that the global color of visual stimuli is used for human behavioral discrimination of visual 
scenes. As the control, all four correlations between the behavioral RDM of grayscale scenes and color 
objects and the two color prediction RDMs were significantly lower than those for color scenes, 
suggesting that the found effect of color was not confounded by other features, and that the effect is 
specific for scene discrimination rather than any visual discrimination task. 
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Scenes Objects 
Amusement Park (N, O) Apple (N) 

Bedroom (M, I) Basketball (M) 
Campsite (N, O) Bonsai (N) 

Cavern (N, I) Cabbage (N) 
Church Interior (M, I) Cooler (M) 

Field (N, O) Donut (M) 
House (M, O) Globe (M) 

Industrial Area (M, O) Ice Cream (M) 
Kitchen (M, I) Jeans (M) 
Street (N, O) Leaf (N) 

Swimming Pool (M, O) Pepper (N) 
Woods (N, O) Pumpkin (N) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 1. The selected 24 stimuli categories of scenes and objects. N – natural, M – 
man-made; I – indoor, O – outdoor. 
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