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Abstract

Latent Class Methods for Complex Chronic Disease Data

By Teng Fei

Latent class analysis (LCA) is a powerful but intuitive data-driven tool to characterize the
heterogeneity of chronic disease phenotypes. Motivated by the different research questions
on neurodegenerative disease, we develop novel latent class methods in this dissertation,
aiming to overcome various limitations of existing methods, such as estimation bias, restric-
tive parametric model assumptions, and expensive computation. We apply our methods to
analyze the Uniform Data Set (UDS) for a cohort with mild cognitive impairment (MCI).

In the first topic, we propose a novel structural time-dependent competing risks model,
which is sensibly formulated to assess the association between latent classes of baseline cog-
nitive performance in MCI patients and their subsequent neuropathological features. We
develop a two-step estimation procedure which circumvents latent class membership assign-
ment and is rigorously justified in terms of accounting for the uncertainty in classifying
latent classes. The new method also properly addresses the complications for competing
risks outcomes, such as censoring and missing failure types. Our application on UDS un-
covers a detailed picture of the neuropathological relevance of the baseline MCI subgroups.

Next, we develop a semi-parametric LCA framework with proportional hazards submodel
to investigate the heterogeneity of baseline patient characteristics and its implications for
survival. We novelly utilize non-parametric maximum likelihood estimator (NPMLE) to
derive estimation procedure and asymptotic theories, which addresses considerable compli-
cations due to the presence of infinite-dimensional baseline hazard component in the finite
mixture framework. The framework also flexibly considers class-specific covariate effects on
both class membership and hazard. We apply the method on the UDS data, which reveals
MCI subgroups with distinctive baseline factors on class-specific survival, and further helps
to improve the prediction of survival based on baseline covariates.

In the third topic, we study a finite mixture framework for joint longitudinal and survival
data, which effectively incorporates semi-parametric generalized estimating equation (GEE)
and proportional hazards submodels. Critically, we account for the within-class correlation
between longitudinal trajectories and time-to-event by treating longitudinal outcomes as
time-dependent internal covariates for the survival submodel. We derive unbiased esti-
mator which properly addresses challenging data characteristics, including time-dependent
internal covariates and informative censoring of longitudinal observations due to a terminal
event. Our application on the UDS data recognizes multiple latent MCI subgroups with
distinguishable neurodegeneration trajectories and survival probability curves.
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Chapter 1

Introduction

1.1 Overview

Latent class analysis (LCA) is a powerful statistical method to reveal the structure of het-

erogeneous disease syndromes. Typically, LCA fits likelihood-based models for the observed

clinically-relevant variables, which are believed to be a manifestation of underlying classes,

to provide inferences that guide the clustering of patients into latent classes or subgroups.

Latent class analysis facilitates better understanding of disease heterogeneity in multiple

perspectives. First, the flexibility of LCA framework allows utilizing various formats of

observed variables from complex chronic disease data, including cross-sectional covariates,

longitudinal biomarkers, and time-to-event data. Consequently, researchers are able to

compare data-driven latent classes by class-specific distributions or trajectories, which fur-

ther helps interpret clinical relevance. In addition, the clinical interpretation contributes

to justifying established or revealing new disease subpopulations. The disease subgroups

determined by an established LCA model, moreover, can be further featured in structural

downstream analysis that investigates whether and how the subgroups are related to other

phenotypes that are not used for the classification. Studying the association of established

subgroups and phenotypes as new evidences can provide justification or new insight with

regard to the previously established LCA model.
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1.2 Motivating example

The understanding of disease heterogeneity is evolving as the disease data collection becomes

more extensive and complicated. For instance, when the term mild cognitive impairment

(MCI) was introduced in the 1990s, it was defined by homogeneous memory-related crite-

ria including memory complaint, objective evidence of abnormal memory for age, normal

general cognitive function, and normal activities of daily living (Petersen et al., 1999). As

more data were collected, high heterogeneity was discovered in the clinical presentations

of MCI. Accordingly, a new four-subtype classification system for MCI became well rec-

ognized: Amnestic MCI, Multidomain MCI-Amnestic, Multidomain MCI-Non-Amnestic,

or Single Non-Memory MCI (Winblad et al., 2004). This popular four-class system was

established on the number of affected cognitive domains and whether the affected cogni-

tive domains are memory-related, thus the classification mainly relied on patients’ cognitive

characteristics. Later on, with other clinically-relevant characteristics being collected, such

as neuropsychiatric features and functional assessments on activities of daily living, to-

gether with cognitive features, it became unstraightforward to naively rely on one or two

variables for classification. Instead, LCA was conducted to define data-driven subgroups of

MCI (Hanfelt et al., 2011). In more recent investigation on MCI heterogeneity, longitudinal

biomarkers and competing risks were considered to assist justifying the characteristics of

different data-driven MCI subgroups (Hanfelt et al., 2018).

The Uniform Data Set (UDS), collected by 39 past and present NIH-funded Alzheimer’s

disease centers (ADCs) which are coordinated by National Alzheimer’s Coordinating Center

(NACC), provides an ideal platform for the investigation. The dataset consists of informa-

tion for thousands of participants with a baseline diagnosis of MCI, including longitudinal

cognitive, functional and neuropsychiatric characteristics measured at each visit, time to

event outcomes such as time to the diagnosis of dementia or time to death. In addition,

the associated neuropathology data set further provides brain autopsy data for a subset of

UDS participants.

Specifically, cognitive tests were conducted based on the UDS Neuropsychological Battery
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version 2.0, including mini-mental state exam (Folstein et al., 1975, MMSE), trail-making

test (Reitan, 1958), Boston naming test (Williams et al., 1989), category fluency (Cooper

et al., 2004), digit span (Heinly et al., 2005), digit symbol, logical memory and story A

(Wechsler, 1945); functional abilities were evaluated by quantifying the performance on in-

strumental activities of daily living (Pfeffer et al., 1982, IADLs) over the past four weeks;

neuropsychiatric information was assessed by the Geriatric Depression Scale (Sheikh and

Yesavage, 1986, GDS); neuropathological phenotypes determined by brain autopsies in-

cluded the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) scores

(Welsh et al., 1991), which measures the density of neocortical neuritic plaques. A more

detailed summary can be found in Table 1.1 for the manifest variables available from UDS.

Thanks to its richness and complexity of data types for numerous clinically-relevant char-

acteristics of MCI patients, the UDS data enables in-depth investigations on MCI hetero-

geneity.

Challenges from the perspective of data, however, also prevail when analyzing UDS. For

example, the neuropathological features, such as the density of neuritic plaques, were pro-

gressive but only observable from brain autopsies after death. This indicates that the neu-

ropathological features are inseparable from the survival outcomes of MCI patients, thus

requires careful coding to maintain both autopsy and time-to-event information. As another

example, the longitudinal observations are observed at the baseline visit and follow-up vis-

its. The frequency of visits, however, might be correlated with the progression of dementia.

Moreover, the longitudinal observations are also censored by either drop-out or death, where

the failure process is also likely to be correlated with disease progression. Therefore, it is

important to account for informative visit, drop-out, or censoring by terminal event when

conducting estimation using the longitudinal data. Data challenges will be discussed in

detail for each topic of this dissertation.
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1.3 Outline

In this dissertation work, we propose novel latent class methods with following aims. First,

the methods should better address the specific research questions motivated by the UDS

data. In addition, complex data characteristics, as described in Section 1.2, need to be

accounted for. Furthermore, the proposed methods should be carefully designed to address

the computational challenges.

In Chapter 2, we are interested in investigating how the latent classes defined by baseline

patient characteristics are related to the phenotypes extracted from brain autopsy. To ad-

dress this research interest, we propose and study a time-dependent structural model to

evaluate the association between latent classes and competing risk outcomes that are sub-

ject to missing failure types. We develop a two-step estimation procedure which circumvents

latent class membership assignment and is rigorously justified in terms of accounting for the

uncertainty in classifying latent classes. The new method also properly addresses the real-

istic complications for competing risks outcomes, including random censoring and missing

failure types. The asymptotic properties of the resulting estimator are established. Given

that the standard bootstrapping inference is not feasible in the current problem setting,

we develop analytical inference procedures, which are easy to implement. Our simulation

studies demonstrate the advantages of the proposed method over benchmark approaches.

We present an application to the MCI data from UDS, which uncovers a detailed picture

of the neuropathological relevance of the baseline MCI subgroups.

In Chapter 3, we aim to investigate the heterogeneity of baseline patient characteristics

and its implications for disease progression reflected by time to diagnosis of dementia.

Correspondingly, we develop a semi-parametric LCA framework for time-to-event data.

In the proposed framework, we adapt infinite-dimensional baseline hazard function, and

class-specific covariate effects for both class membership and survival, to enable higher

flexibility in capturing heterogeneous data patterns. We novelly utilize non-parametric

maximum likelihood estimator (NPMLE) technique to address the challenges caused by the

entanglement of finite and infinite dimensional parameters in our model, and derive a stable
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expectation-maximization (EM) algorithm that is robust to different initialization schemes.

We also establish rigorous asymptotic theories for the proposed estimator. We apply the

method on the UDS data, which reveals MCI subgroups with distinctive risk factors.

Chapter 4 is motivated by the research plan of a joint analysis of longitudinal and survival

information from the UDS. Accordingly, we extend existing semi-parametric LCA frame-

works to jointly handle longitudinal and survival data by generalized estimating equation

(GEE) and proportional hazard model. The proposed approach regards longitudinal out-

comes as time-dependent covariates of the class-specific survival model, which naturally

accounts for the within-class correlation of longitudinal and survival outcomes. We also

address the informative censoring of longitudinal observation caused by a terminal event

such as death, by inverse probability weighting technique. We derive unbiased estimating

equations and the corresponding iterative algorithms. Our numerical experience indicates

reliable performance of the algorithm under non-informative initialization. Our application

on UDS recognizes four MCI latent subgroups with clinically interpretable differences in

cognitive trajectories and time-to-death distributions.
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Chapter 2

A Time-Dependent Structural

Model Between Latent Classes and

Competing Risks Outcomes

2.1 Introduction

In chronic disease studies, data on multiple phenotypes are often collected to provide a

comprehensive view of disease manifestation and progression. Investigation across different

disease phenotypes can shed valuable insight of disease heterogeneity, which further im-

proves disease diagnosis and management. For example, the Uniform Data Set (UDS) has

collected various baseline cognitive characteristics for a cohort of mild cognitive impairment

(MCI) patients. Upon occurrences of death, neuropathological findings, such as the density

of neuritic plaques, were recorded when brain autopsies were available. It is of interest

how the heterogeneity of MCI presented at baseline is associated with the progression of

neuropathological features that reflect the brain etiology of the Alzheimer disease.

To address such an interest, we require a workflow which first explains the heterogeneous

structure of baseline MCI phenotypes, then captures the association between baseline het-

erogeneity and autopsy data. Latent class analysis (LCA) is a powerful tool, for the first
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step of the workflow, to reveal the structure of heterogeneous disease syndromes. Assuming

the observed phenotypes are a manifestation of latent classes or subgroups, LCA can pro-

vide inferences to guide the clustering of subjects into subgroups. Traditionally, the MCI

subtypes were defined based on the number and type of affected cognitive domains (Winblad

et al., 2004). More recently, data-driven subgroups of MCI by LCA were developed based

on the multi-phenotype data collected from MCI patients in UDS (Hanfelt et al., 2011).

For the second step of workflow, an intuitive and classic approach is to use the results

from LCA to assign a latent class membership to each subject, and then regress the neu-

ropathological phenotype of interest over the assigned latent class membership. This type

of approach was referred to as “three-step” methods (Clogg, 1995; Bolck et al., 2004). An

apparent issue with the three-step methods is that the assigned latent class memberships

may not be the true ones defined by LCA and this can lead to biased estimation in the subse-

quent regression analysis. Various techniques have been proposed to mitigate the bias from

the three-step methods (Bandeen-Roche et al., 1997; Bolck et al., 2004; Wang et al., 2005;

Vermunt, 2010; Bakk and Vermunt, 2016; Dias and Vermunt, 2008; Bakk et al., 2013, for ex-

ample), but most maintained the assignment step and few considered directly incorporating

the variability of the LCA parameter estimates into downstream analysis. Alternatively, one

may consider joint modeling, which includes both models used to define latent classes and

to regress over the latent classes, leading to the so-called “one-step” methods (Proust-Lima

et al., 2009; Rowley et al., 2017; Elliott et al., 2020; Hart et al., 2020, for example). Due to

the nature of joint modeling, however, the resulting latent classes depend on both baseline

and distal information, thus cannot be interpreted as revealing baseline heterogeneity. To

ensure that the obtained latent classes reflect baseline heterogeneity but also to account for

the misclassification issue, researchers have investigated “two-step” approaches. Instead of

estimating all parameters in the joint models simultaneously, the two-step methods fit a la-

tent class model as step 1, then estimate the regression model that evaluates the effect of the

unobservable latent classes on the phenotype of interest as step 2, while accounting for the

variability of the step 1 results. As commented in Bakk and Kuha (2018), two-step methods,

though less efficient than one-step methods, can greatly relieve the computational burden
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and avoid the ambiguous latent class interpretation involved in the one-step methods.

In practice, investigating the association of latent classes with a separate phenotype faces

further complexities originated from data collection. In the UDS example, the progressive

neuropathological features were measured from brain autopsies that were only available in

deceased subjects, meaning they are inseparable from the survival outcomes of MCI patients.

Each feature is presented as one of mutually exclusive forms, such as different levels of

neuritic plaque density, while sharing the same survival component. Therefore, one natural

way to utilize all useful information is to formulate observed neuropathological features as

competing risk outcomes, for example, time to death with none or sparse, moderate, or

frequent neuritic plaque. Moreover, only a proportion of study participants agreed brain

donation after death. As a result, the autopsy data are missing in the deceased subjects

without donation agreement. Under the competing risks formulation, this causes the so-

called missing failure type problem. Strategies have been proposed to address the missing

failure type issue, such as inverse probability weighting (IPW) technique (Ma et al., 2018,

for example) and imputation of missing event type (Schaubel and Cai, 2006, for example).

Despite the availability of a wide range of methods, to the best of our knowledge, very

limited attention was paid to the real data issues exemplified above. To more effectively

investigate the association between the baseline cognitive heterogeneity of MCI patients

and time-to-death with types of progressive neuropathological features (levels of neuritic

plaques, for example) in the presence of missing failure type issue, we study a structural

model between latent classes and competing risks outcomes. This model mimics the semi-

parametric direct binomial regression model for competing risks (Scheike et al., 2008). By

allowing for time-dependent latent class effects, it provides a flexible platform to explore

the interested association. Our estimation procedure shares some similarity with two-step

approaches. Specifically, our method skips the membership assignment and accounts for

the variability of LCA parameter estimates in the estimation of the effects of latent classes.

Furthermore, the proposed method addresses random right censoring to the competing risks

outcome and properly handles the missing failure type issue with the technique of IPW.
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2.2 Data, notation and models

Let T and ε ∈ {1, 2, ...,K} respectively denote time to failure (e.g. death) and the associated

failure type (e.g. form of a neuropathological feature). Let C denote time to independent

censoring of T . Let R indicate the potential availability of the failure type ε. In the UDS

example, R = 1 if the study participant is willing to donate his/her brain after death, and

0 otherwise. Note that ε is observed only if T ≤ C and R = 1. Let Y denote a p× 1 vector

of baseline covariates. Define X = T ∧ C, D = εR · I(T ≤ C), and Dc = I(T ≤ C), where

∧ is the minimum operator and I(·) is the indicator function. The observed data consist of

n iid replicates of (X,D,Dc,Y ), denoted by {(Xi, Di, Dc,i,Y i), i = 1, ..., n}.

The type-d cumulative incidence function conditioning on a random vector V is defined as

Fd(t|V ) = Pr(T ≤ t, ε = d|V ), d = 1, ...,K, which represents, for example, the probability

of death with a neuropathological feature presented in type d form, given V . The latent

classes of interest (e.g. MCI subgroups defined by baseline cognitive performance) are

represented by a set of binary indicators, {δl, l = 1, ..., L}, where L is the number of latent

classes, and δl = 1 if belonging to class l, and 0 otherwise. Define ∆ = (I(δ1 = 1), I(δ2 =

1), ..., I(δL = 1))T .

We assume (A1) C is independent of (T, ε) given Y ; and (A2) R is independent of (ε, C)

given Y , T . The assumption (A1) assumes conditional independent censoring given the

baseline covariates. The assumption (A2) implies that the failure type ε is missing at

random; the missing mechanism is specified later by formula (2.3.2).

2.2.1 Latent class model

For the problem considered in this work, the latent classes of interest are defined based

on the observed baseline covariates Y . Specifically, we assume ∆ follows a multinomial

distribution, Multinomial{1, (p1, p2, ..., pL)T }, where pl > 0 and
∑L

l=1 pl = 1. Given being

in class l, Y is assumed to follow a distribution with the density, f(Y ; ξl), where ξl is an
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unknown vector of parameters (l = 1, . . . , L). The density of Y then takes the form,

f(Y ;θ0) =

L∑
l=1

plf(Y ; ξl) (2.2.1)

with the h×1 vector θ0 = (p1, . . . , pL, ξ
T
1 , . . . , ξ

T
L)T . In a real application, one may determine

the value of L by employing domain knowledge alone, or in combination with an evaluation

of the model fitting based on information criteria, statistical tests, entropy, replicability, or

other criteria. We illustrate such a procedure via the UDS example presented in Section

2.5.

2.2.2 Structural competing risks model

To capture how the latent classes defined on the baseline covariates are associated with the

progression of the competing risks outcome, we adopt a structural competing risks model,

which formulates the effects of latent classes on the cumulative incidence function of the

competing risks. Specifically, we assume that

Fd(t|∆,Y ) = g{λ0,d(t)
T∆∗ + β0,d(t)

T Ȳ }, (2.2.2)

where g(·) is a known monotone and differentiable link function, λ0,d(t) and β0,d(t) are

vectors of unknown functional coefficients without parametric forms of lengths L and q,

respectively, ∆∗ = {1, I(δ2 = 1), . . . , I(δL = 1)}T , and Ȳ is a q × 1 subvector of Y or Y

itself (q ≤ p). Note that ∆∗ has a one-to-one correspondence with ∆. The key interest

under model (2.2.2) is λ0,d(t). The lth component of λ0,d(t) represents the difference in the

g−1 transformed type-d cumulative incidence rate at time t between latent class l and the

reference latent class 1 (l = 2, 3, ..., L). Including the term, β0,d(t)
T Ȳ , allows us to capture

any remaining effects of baseline covariates on the type-d cumulative incidence function

after adjusting for the effects of latent classes. It is important to note that the structural

competing risks model (2.2.2) is defined and interpreted conditionally on ∆, which assumes

a pre-specified number of classes L. This model set-up serves to evaluate the effects of
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pre-formulated baseline latent classes on a competing risks outcome of interest, which is the

main motivation of this work.

Model (2.2.2) takes the same form as the direct binomial regression proposed by Scheike

et al. (2008) but includes the unobservable latent class label as a covariate. When g(x) =

1−exp{− exp(x)} and all non-intercept components of λ0,d(t) and β0,d(t) are constant over

t, model (2.2.2) has the same form as Fine and Gray (1999)’s proportional subdistribution

hazards model. Compared to Fine and Gray’s model, model (2.2.2) provides extra flexi-

bility by allowing time-dependent latent class effects on the progression of competing risks

outcomes, which, in the UDS example, capture the neuropathological development in MCI

patients. For notation simplicity, in the sequel, we shall omit the subscript “d” in λ0,d(t)

and β0,d(t) whenever a confusion does not arise.

2.2.3 Missing failure type model

To account for missing failure type, we utilize a logistic regression model to characterize

the distribution of the indicator R given Ỹ = (1,Y , T )T . Specifically, the model assumes

π(Ỹ ;γ0)
.
= Pr(R = 1|Ỹ ) =

eγ
T
0 Ỹ

1 + eγ
T
0 Ỹ

, (2.2.3)

where γ0 = (γ00, γ10, ..., γp0, γ(p+1)0)T is a (p + 2) × 1 vector of unknown regression coeffi-

cients. The odds of observing ε (i.e. R = 1) is increased by eγj0 with a unit increase in the

j-th component of Y (j = 1, 2, . . . , p) and by eγ(p+1)0 with a unit increase in T .
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2.3 Estimation and inference

2.3.1 Estimation for the latent class model

Under the assumptions for the latent class model (2.2.1), the likelihood function for θ0

based on observations {Y i, i = 1, ..., n} is given by

L(θ) =
n∏
i=1

f(Yi;θ).

In practice, the maximum likelihood estimate θ̂, which is the solution to ∂
∂θ logL(θ) = 0,

often does not have a closed form. Alternatively, θ̂ may be numerically solved by standard

EM algorithm. Consider a common example where Y given δl = 1 follows the p-variate

Normal distribution, i.e. f(Y ; ξl) = (2π)−p/2|Vl|−1/2exp{−1
2(Y −µl)′V−1

l (Y −µl)}, with

ξl = {µl,V l}. In this special case, θ̂ can be obtained by the EM algorithm developed for the

finite Gaussian mixture model (McLachlan and Peel, 2000, p.48), which is implemented by

the R package, mclust (Fraley and Raftery, 2006). The corresponding asymptotic results

(Boldea and Magnus, 2009) can be used to assess the variability of θ̂.

By the Bayes Rule, the posterior membership probability of subject i belonging to class l

is given by

δ̃l(Yi;θ0)
.
= Pr(δl = 1|Yi) =

plf(Yi;µl,V l)∑
j pjf(Yi;µj ,V j)

=
plf(Yi;µl,V l)

f(Yi;θ0)
. (2.3.1)

This posterior membership probability can be estimated by δ̃l(Y i; θ̂), which is obtained by

plugging in the maximum likelihood estimate θ̂ into (2.3.1).

An entropy index is defined as 1 −
∑n

i=1

∑L
l=1 δ̃l(Yi; θ̂)[− log{δ̃l(Yi; θ̂)}]/n logL, which is

often calculated to evaluate the extent of separation of latent classes established by a latent

class model (Muthén et al., 2002). The underlying rationale is that if the latent classes are

well separated, the posterior membership probabilities are close to either zero or one and

consequently the entropy index is expected to be close to one.
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2.3.2 Estimation for the model for missing failure types

To estimate model (2.2.3), it is important to note that T and thus Ỹ is not always observ-

able. However, as shown in Appendix section 2.7.2, model (2.2.3), coupled with assumption

(A2), implies

Pr(R = 1|Ỹ ) = Pr(R = 1|Dc = 1,Y ∗) =
eγ

T
0 Y

∗

1 + eγ
T
0 Y

∗ , (2.3.2)

where Y ∗ = (1,Y , X)T . By this result, one can obtain a valid estimate for γ0 by performing

standard logistic regression of responsesRi’s over the covariates (1,Y i, Xi)’s in subjects with

uncensored Ti (i.e. Dc,i = 1). Denote the resulting maximum likelihood estimate for γ0 by

γ̂. The asymptotic properties of γ̂ follows the theory for the logistic regression (Agresti,

2003).

2.3.3 Estimation for the structural competing risks model

Estimating the λ0(t) in the structural competing risks model (2.2.2) is the key interest of

this work. It is important to note that since ∆ (or ∆∗) is not observable, the existing

methods for the direct binomial regression (Scheike et al., 2008) cannot be directly applied.

A critical step to tackle this difficulty is to note that

Fd(t|Y ) = E{Fd(t|∆,Y )|Y } =
L∑
l=1

g{λ0(t)Tκl + β0(t)T Ȳ }Pr(δl = 1|Y ), (2.3.3)

where κl is a L × 1 vector with the first and the lth elements equal to 1 and the rest

of elements equal to 0 (l = 1, ..., L). To deal with the random censoring to T and missing

failure types, by employing the technique of IPW and inverse probability censoring weighting

(IPCW), we can show that under assumptions (A1) and (A2),

E

{
I(X ≤ t,D = d)

G(X|Y )π(Ỹ ;γ0)

∣∣∣∣Y } = Fd(t|Y ), (2.3.4)

where G(x|Y ) = Pr(C ≥ x|Y ); please see Appendix section 2.7.3 for more detailed justifi-

cations. In practice, we require a model and an estimator, Ĝ(x|Y ), for G(x|Y ). For illustra-
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tive purpose, we consider Kaplan-Meier estimator in subsequent derivations and numerical

analysis, which is consistent under unconditionally independent censoring assumption.

Motivated by the facts (2.3.3) and (2.3.4), writing α(t) = (λ(t)T , β(t)T )T , we propose the

following estimating equation for α0(t)
.
= (λ0(t)T , β0(t)T )T :

Un{α(t), θ̂, t} = 0, (2.3.5)

where Un{α(t),θ, t} equals

n−1/2
n∑
i=1

(
L∑
l=1

g′{α(t)TW l,i}W l,iδ̃il(θ)

)[
I(Xi ≤ t,Di = d)

Ĝ(Xi)π̂i
−

L∑
l=1

g{α(t)TW l,i}δ̃il(θ)

]
.

Here g′(·) denotes the derivative function of g(·), W l,i = (κTl , Ȳ
T
i )T , Ĝ(·) is the Kaplan-

Meier estimator of the survival function of C, π̂i = π(Ỹi; γ̂), and δ̃il(θ) = δ̃l(Yi;θ).

To solve the estimating equation (2.3.5), we find the solution by minimizing the following

objective function Sn{α(t), t}, the derivative of which with respect to α(t) is Un{α(t), θ̂, t}:

Sn{α(t), t} =
n∑
i=1

(
L∑
l=1

g{α(t)TW l,i}δ̃il(θ̂)

)[
I(Xi ≤ t,Di = d)

Ĝ(Xi)π̂i

−1

2

L∑
l=1

g{α(t)TW l,i}δ̃il(θ̂)

]
.

Note that Sn{α(t), t} is a nonconvex function of α(t) given t. The standard Newton-

Raphson algorithm, therefore, may require multiple initializations to find the global min-

imum. To meet this need, we solve equation (2.3.5) by utilizing the differential evolution

algorithm (Ardia et al., 2011; Mullen et al., 2011) implemented by R package DEoptim,

which searches global optimum in a prespecified range of α(t) with automatically generated

multiple initial values.

In practice, it is often of interest to predict the cumulative incidence of each failure type

for a new patient. Given the new patient’s baseline covariates Y , we can first use for-



16

mula (2.3.1) to calculate the posterior latent class membership probabilities, δ̃l(Y ; θ̂) =

p̂lf(Y ;µ̂l,V̂ l)∑
j p̂jf(Y ;µ̂j ,V̂ j)

, l = 1, . . . , L. Then, by formula (2.3.3), we can obtain the predicted cumu-

lative incidence functions for the new patient as

F̂d(t|Y ) =

L∑
l=1

g{λ̂(t)Tκl + β̂(t)T Ȳ }δ̃l(Y ; θ̂), d = 1, . . . ,K.

2.3.4 Asymptotic properties of the proposed estimator

In this section, we establish the uniform consistency and weak convergence of the proposed

estimator α̂(t) for t ∈ [l, u]. Define Ψi(α(t),θ, t) =
∑L

l=1 g{α(t)TW l,i}δ̃il(θ) and J(t) =

limn→∞
1
n

∑n
i=1

{
∂

∂α(t)Ψi(α0(t),θ0, t)
}⊗2

, where a⊗2 = aaT . Let ιi(·) denote the influence

function of γ0. Further define the following quantities:

H(t) = lim
n→∞

1

n

n∑
i=1

[
∂

∂α(t)
Ψi(α0(t),θ0, t)

][
∂

∂θ
Ψi(α0(t),θ0, t)

T

]
,

NG
i (t) = I(Xi ≤ t,Di = 0), Υi(t) = I(Xi ≥ t), υ(t) = Pr(X ≥ t),

wG(α,θ, t) = E
[∂αΨi(α(t),θ, t)I(Xi ≤ t,Di = d)Υ(s)

G(X)πi

]
,

λG(t) = lim
∆→0

Pr(X ∈ (t, t+ ∆)|X ≥ t)/∆,

ΛG(t) =

∫ t

0
λG(s)ds, MG

i (t) = NG
i (t)−

∫ ∞
0

Υi(s)dΛG(s),

Ξ1i(t) =

∫ ∞
0
wG(α0(t),θ0, t)υ(s)−1dMG

i (s),

wπ(α, θ, t) = E
[∂αΨi(α(t),θ, t)I(Xi ≤ t,Di = d,Ri = 1){ ∂∂γπi}

T

G(X)π2
i

]
,

Ξ2i(t) = wπ(α0(t),θ0, t)ιi(γ0),

AGπ
i (α(t),θ, t) =

(
L∑
l=1

g′{α(t)TW l,i}W l,iδ̃il(θ)

)[
I(Xi ≤ t,Di = d)

G(Xi)πi

−
L∑
l=1

g{α(t)TW l,i}δ̃il(θ)

]
.

We assume the following regularity conditions:
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(C1) There exists ν > 0 such that Pr(C = ν) > 0 and Pr(C > ν) = 0.

(C2) α0(t) is Lipschitz continuous for t ∈ [l, u], supt∈[l,u]||α0(t)|| <∞, ||θ0|| <∞. In addi-

tion, Y i is bounded with probability one for all i.

(C3) Ψi(u(t),v, t) and all components of ∂Ψi(u(t),v,t)
∂(u(t),v) are Lipschitz continuous.

(C4) inft∈[l,u]eigminJ(t) > 0, where eigmin(·) denotes the smallest eigenvalue of a matrix.

(C5) All components of ∂2Ψi(u(t),v,t)
∂(u(t),v)∂(u(t),v)T

are Lipschitz continuous.

The regularity conditions are reasonable in practical applications. Condition (C1) is often

met in scenarios with administrative censoring, and it can facilitate proving the uniform

consistency of Ĝ(t), 0 < t < ν. Condition (C2) assumes the smoothness of coefficient process

α0(t) as well as the boundedness of α0(t), θ0, and baseline covariates Y i’s. Conditions

(C3) and (C5) impose mild smoothness assumptions for Ψi(u(t),v, t). Condition (C4) is

a technical assumption that plays a role to ensure the identifiability of α0(t). In addition,

it is also assumed that θ̂ is uniformly consistent and
√
n{θ̂ − θ0} has an asymptotic i.i.d.

sum representation. These assumptions are often satisfied for MLE estimators under mild

regularity conditions.

The uniform consistency and weak convergence results are stated in the following theorems.

Proofs are correspondingly provided in Appendix sections 2.7.4 and 2.7.5.

Theorem 2.3.1. Suppose conditions C1 - 4 hold and θ̂ is a consistent estimator of θ0.

Then for n large enough, there exists a uniformly bounded solution of Un{α(t), θ̂, t} = 0,

α̂(t), such that supt∈[l,u]||α̂(t)−α0(t)|| → 0 in probability.

Theorem 2.3.2. Suppose conditions of Theorem 1 and condition C5 hold, and there exist

iid random functions {φi(θ0)}∞i=1 such that

||
√
n{θ̂ − θ0} − n−1/2

n∑
i=1

φi(θ0)|| p→ 0

and supi|φi(θ0)| < ∞. Then
√
n[α̂(t) − α0(t)] converges weakly to a zero-mean Gaussian
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process for t ∈ [l, u] with covariance function Σ(s, t) = E{Q1(s)Q1(t)T }, where

Qi(t) = J(t)−1[AGπ
i (α0(t),θ0, t)−Ξ1i(t)−Ξ2i(t)−H(t)φi(θ0)], i = 1, ..., n.

2.3.5 Inference procedures

Inferences about α0(t) are important for assessing the association between latent classes

and the competing risks outcome. It is worth noting that conducting bootstrapping in

LCA is often subject to the label switching issue. More specifically, the latent classes

identified in different runs of resampling may not have clear correspondences. To circumvent

this challenge, we develop an analytical approach to deriving the estimator of Σ(s, t), the

asymptotic covariance of the consistent estimate α̂(t), which is established in Theorem

2.3.2. Define

Ai(α(t),θ, t) =

(
L∑
l=1

g′{α(t)TW l,i}W l,iδ̃il(θ)

)[
I(Xi ≤ t,Di = d)

Ĝ(Xi)π̂i

−
L∑
l=1

g{α(t)TW l,i}δ̃il(θ)

]
.

Suppose there exists statistics φ̂i(θ̂) satisfying supi||φ̂i(θ̂)− φi(θ0)|| p→ 0. Let

Q̂i(t) = Ĵ(t)−1[Ai(α̂(t), θ̂, t)− Ξ̂1i(t)− Ξ̂2i(t)− Ĥ(t)φ̂i(θ̂)],

Σ̂(s, t) = n−1
n∑
i

Q̂i(s)Q̂i(t)
T ,

where

Ĵ(t) =
1

n

n∑
i=1

∂αΨi(α̂(t), θ̂, t)⊗2,

Ĥ(t) =
1

n

n∑
i=1

∂αΨi(α̂(t), θ̂, t)∂θΨi(α̂(t), θ̂, t)T ,
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Ξ̂1i(t) = I(Di = 0)

∑n
j=1 I(Xj ≥ Xi)∂αΨj(α̂(t), θ̂, t)I(Xj ≤ t,Dj = d){Ĝ(Xj)}−1π̂−1

i∑n
j=1 I(Xj ≥ Xi)

,

Ξ̂2i(t) =
1

n

n∑
j=1

∂αΨj(α̂(t), θ̂, t)I(Xj ≤ t,Dj = d){ ∂∂γ π̂i}
T

Ĝ(Xj)π̂2
i

ιi(γ̂).

We show in Appendix section 2.7.5 that sups,t∈[l,u]||Σ̂(s, t)−Σ(s, t)|| p→ 0. The time-specific

95% confidence intervals can be constructed based on Σ̂(s, t) with normal approximations.

To conduct inference about α̂(·) on a time range [tl, tu], we further construct simultaneous

confidence bands using similar resampling strategy as Yin and Cai (2004) did. First, we

generate nB samples, indexed by k, of
√
nα̌k(t) ≡ n−1/2

∑n
i=1 Q̂i(t)Zk,i for all t ∈ [tl, tu].

Second, for the lth element of α̂(·), α̂l(·), we find constant ql,0.05 which satisfies

Pr

{
sup

k,t∈[tl,tu]

∣∣∣∣α̂l(t)√nα̌l,k(t)Σ̂l,l(t, t)

∣∣∣∣ > ql,0.05

}
= 0.05,

where α̌l,k(·) is the lth element of α̌k(·) and Σ̂l,l(·, ·) is the (l, l) entry of Σ̂(·, ·). Then the

confidence band for α̂l(t) is constructed as α̂l(t)∓ ql,0.05σ̂l,l(t, t)/
√
nα̂l(t).

2.4 Simulations

2.4.1 Data generation and analysis procedures

Simulation studies were conducted to evaluate the finite-sample performance of the proposed

method. For sample size N = 2000, 1000 simulated datasets were generated and analyzed

following the same procedures for scenarios with different choices of model parameters.

With L = 3, we first generated latent class membership vector ∆ = (δ1, δ2, δ3)T from

a multinomial distribution with relative frequency (p1, p2, p3)T . Given δl = 1, baseline

covariates Y ∈ R2 was generated from a bivariate normal distribution specified for class l.

Given the true latent class membership ∆, we further generated competing risks outcome

with two failure types, following a simulation scheme similar to that in Scheike et al. (2008).

Specifically, we specified F1(t|∆,Y ) = 1−{1− 0.66(1− e−t)}exp(ζ(t)T ∆∗) and F2(t|∆,Y ) =

1−0.34exp(ζ(t)T ∆∗){1−e−t exp(ζ(t)T ∆∗)}, where ζ(t) = {ζ1, ζ2, ζ3(t)}T . Here ζ1 = 0.5, ζ2 = 0.5
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and ζ3(t) = log{ log{(1−pc)e
−1−0.38[1−pc(1−e−t)]0.38}

log{1−pc(1−e−t)} }. Then the proposed competing risks model

(2.2.2) was satisfied with F1(t|∆,Y ) = g{λ0(t)T∆∗}, where g(x) = 1− exp{− exp(x)} and

λ0(t) = {ζ1 + log[− log{1 − pc(1 − e−t)}], ζ2, ζ3(t)}T . Based on the specified Fd(t|∆,Y ),

we first generated failure type ε based on the facts that ε follows Multinomial(1, {Pr(ε =

1|∆), 1 − Pr(ε = 1|∆)}T ), where Pr(ε = 1|∆) = limt→∞ F1(t|∆,Y ). Given failure type ε,

T was generated from Pr(T ≤ t|ε = d) = Fd(t|∆,Y )
Pr(ε=d|∆) . Furthermore, censoring time C was

independently generated from Uniform(0.19, 1.09). The resulting proportion of censoring

was around 50%. To simulate missing failure types, we generated the indicator of observing

failure types, R, from Bernoulli{Pr(R = 1|Y , T )}, where Pr(R = 1|Y , T ) = exp(γTY −T )
1+exp(γTY −T )

.

Three strategies were applied to analyze the simulated datasets: (i) the proposed method;

(ii) a modal assignment method replacing δ̃il(θ̂) by I{l = arg max1≤j≤L δ̃ij(θ̂)} in the esti-

mating equation (2.3.5); (iii) Scheike et al. (2008)’s direct binomial regression implemented

by R package timereg (Scheike and Zhang, 2011), without adjustment for missing failure

types but using true latent class labels as covariates. Compared to the proposed method,

the modal assignment method ignored the uncertainty of the estimated class membership

but accounted for missing failure types, while the direct binomial regression overlooked the

missing failure types but used the correct class memberships as covariates. By comparing

the three methods, it is straightforward to examine the sources of biases. When applying

methods to fit the competing risks data, we set the competing outcome of interest as ε = 1

and assumed that the number of latent classes L was already known as 3. Further discussion

and simulation results about selecting L can be found in Appendix section 2.7.6.

2.4.2 Simulation scenarios

As shown in Table 2.1, we designed several simulation settings resulting in different data

characteristics. By adjusting the relative frequency, p = (p1, p2, p3), of latent classes, the

data were simulated with balanced or imbalanced latent class proportions. To create dif-

ferent extents of overlapping of Y among latent classes, we also specified several choices of

class-specific mean, µl, l = 1, 2, 3, of Y . In addition, different γ parameters were used to
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simulate moderate (around 25%) to heavy (around 50%) rate of missing failure types given

failure.

Table 2.1: Different simulation settings and the corresponding interpretations.

Settings p = (p1, p2, p3) Class proportions

(1a) (0.3,0.35,0.35) balanced
(1b) (0.2,0.35,0.45) moderately imbalanced
(1c) (0.15,0.35,0.5) severely imbalanced

Settings∗ µ2 µ3 Overlapping (entropy)

(2a) (3,3) (5,5) mild (∼† 0.9)
(2b) (2.5,2.5) (4,4) moderate (∼ 0.8)
(2c) (2.25,2.25) (3.5,3.5) moderately severe (∼ 0.7)
(2d) (2,2) (3,3) severe (∼ 0.6)

Settings γ Missing failure type (missing rate)

(3a) (0.25,0.5) moderate (∼† 25%)
(3b) (-0.35,0.5) heavy (∼ 50%)

∗ µ1 is fixed as (1,1).
† Approximated levels observed from simulations.

Based on the settings in Table 2.1, we evaluated the performance of the three methods

comprehensively, as detailed in Table 2.2. Controlling other factors as fixed, we conducted

simulations under (A) different overlapping levels of Y ; (B) different class proportions;

(C) moderate or heavy rates of missing failure types. In addition, we investigated (D)

how nuisance or noisy baseline covariates affected the analysis and (E) how our method

performed under a setting similar to the UDS data. Performance under different choices of

sample size was also assessed in (F). For (E), Y ∈ R10 was generated from a multivariate

normal distribution with the mean vector and covariance matrix equal to the estimates from

fitting a 3-class finite Gaussian mixture model for the UDS data.

2.4.3 Convergence of algorithm

Under challenging simulation scenarios, we typically observed a small portion of outlying

estimates which may not converge to the global optimum. We empirically defined the
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Table 2.2: Sets of investigations and the corresponding simulation scenarios.

Investigations Scenarios simulated†

(A) overlapping

(1b) + (2a) + (3a)
(1b) + (2b) + (3a)
(1b) + (2c) + (3a)
(1b) + (2d) + (3a)

(B) class proportion
(1a) + (2b) + (3a)
(1b) + (2b) + (3a)
(1c) + (2b) + (3a)

(C) missing failure type
(1b) + (2b) + (3a)
(1b) + (2b) + (3b)

(D) nuisance covariates (1a) + (2b) + (3a) + Y ∗3 + Y ∗4

(E) real data scenario Same distribution of Y as in UDS

(F) Sample size
(1b) + (2c) + (3a)
N ∈ {500, 1000, 2000}

† Refer to Table 2.1
∗ Adding two independent nuisance covariates in Y .

outlying estimates, whose distances to the median of the total 1000 estimates were larger

than four times median absolute deviation (MAD), as non-convergent results. As shown

in Table 2.3, non-convergence became more frequent for more overlapped or imbalanced

scenarios, and smaller sample size. In addition, the non-convergent results tended to be

associated with large standard error estimates throughout the time period (Figure 2.1). In

practice, therefore, we should be careful about interpreting results with large standard error

estimates, which may be caused by the non-convergence of the algorithm.

2.4.4 Simulation results

Figure 2.2 displays the simulation results for the comparisons (A)-(F), including the em-

pirical biases (based on mean) and the empirical coverage rates of 95% confidence intervals

for t ∈ [0.1, 1.0], after excluding outlying estimates. The empirical coverage rates of 95%

confidence bands for t ∈ [0.1, 1.0] and detailed standard error estimation results can be

found in Tables 2.6-2.11 in Appendix section 2.7.7. Overall, the proposed approach not

only achieved the smallest empirical biases, but also obtained reasonable empirical coverage
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Table 2.3: The percentage of excluded estimates, defined as the outlying estimates whose
distances to the median of the total 1000 estimates were larger than four times median
absolute deviation, for different simulation scenarios.

Comparisons Scenarios Excluded estimates (%)

(A)

(1b)+(2a)+(3a) 0
(1b)+(2b)+(3a) 0.7
(1b)+(2c)+(3a) 2.5
(1b)+(2d)+(3a) 6.8

(B)
(1a)+(2b)+(3a) 0.8
(1b)+(2b)+(3a) 0.7
(1c)+(2b)+(3a) 8

(C)
(1b)+(2c)+(3a) 2.5
(1b)+(2c)+(3b) 2.9

(D) Nuisance parameters 2.1

(E) UDS scenario 2.3

(F)
N=500 6.1
N=1000 4.1

(1b)+(2c)+(3a) N=2000 2.5

rates for both confidence interval and confidence band. Compared to the proposed method,

the modal assignment method suffered from moderate biases caused by misclassification of

latent classes, and the timereg method obtained more severe biases by ignoring missing

failure types in uncensored subjects.

Figure 2.2(A) and 2.2(B) show the results under the trend of increasingly fuzzier latent

class pattern, either due to more severe overlapping of Y or more imbalanced latent class

proportion. The proposed method maintained low biases and standard coverage rates even

under the severe overlapping (entropy lower than 0.6) and the severely imbalanced scenarios.

In contrast, the modal assignment method obtained increasingly larger biases as the latent

class pattern became fuzzier, which was caused by the misclassification of modally assigned

class labels. The timereg method, on the other hand, used true class membership as

covariates, thus showing constant biases in (A) and (B), where the missing failure type

probability was unchanged and the biases were solely caused by ignoring the missing failure

type problem. The larger bias of the timereg method also suggested that the missing

failure type was a stronger source of bias than latent class misclassification in our simulation

settings.
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Comparison (C) assesses the performance under moderate (25%) or heavy (50%) missing

failure type proportion among the uncensored events. Displayed in Figure 2.2(C), the

proposed method achieved similar results under both moderate and heavy missingness of

failure types with the smallest biases among the three methods. The modified method

accounted for missing failure type issue, thus also showing similar performances under the

two scenarios where the latent class pattern was unchanged. The timereg approach, on

the other hand, ignored missing causes of failure and obtained much larger bias for λ̂1(t)

as the missingness became more severe. From Figure 2.2(D) and 2.2(E), we observed that

the proposed method had good performance even in the presence of nuisance variables and

under a scenario based on real world data. This endorses our application of the proposed

method to the MCI data from UDS. Moreover, Figure 2.2(F) shows promising finite sample

performances at sample size 500 and 1000 under a challenging scenario where the entropy

index was around 0.7. As sample size grew, the proposed method achieved smaller biases,

better coverage rates and a higher convergence rate.

2.5 An application to the MCI data from UDS

We applied the proposed approach to analyze the Uniform Data Set (Beekly et al., 2007;

Weintraub et al., 2009, UDS). As of June 2015, ten different cognitive test scores at the first

visit and the follow-up survival information were available for 6034 MCI patients. There

were 818 deaths during the follow-up, including 411 individuals with autopsy data.

In our analysis, we investigated the association between baseline cognitive MCI subtypes

and the levels of density of neocortical neuritic plaques. The levels of plaque density, namely

none or sparse, moderate, and frequent, were recorded as the Consortium to Establish a

Registry for Alzheimer’s Disease (CERAD) scores (Welsh et al., 1991). Existing knowl-

edge has linked amnestic MCI population, with damaged brain domain related to memory

functions, to frequent density of neuritic plaques (Dugger et al., 2015).

To enable our analysis, we formulated the neuropathological endpoint of interest as time

from first visit to death (T ) with none or sparse (ε = 1), moderate (ε = 2), and frequent (ε =
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3) levels of neocortical neuritic plaques, determined by CERAD scores. Since one subject

can die only with one given level of CERAD score, such defined endpoint forms a competing

risk outcome. Moreover, for individuals who died but did not agree to donate brain, their

competing risks failure types, which correspond to the CERAD features at death, were

missing. For subjects who survived at the end of the follow-up, their survival times were

right-censored at the last follow-up visit. Here, We assumed independent censoring and

used Kaplan-Meier estimator for IPCW. We discuss our choice of censoring assumption in

detail in Appendix section 2.7.9.

2.5.1 Latent class model and missing failure type model

As the first step, we conducted a LCA based on ten standardized baseline cognitive test

scores adjusted for age, education and gender. The ten scores evaluated different perspec-

tives of patients’ cognitive performance, which were described in details in the Section 2.2.1

of Hanfelt et al. (2018). Figure 2.3 shows the histograms and kernel density estimates for

the ten cognitive test scores.

The latent classes of baseline cognitive performance were defined based on a 3-class finite

Gaussian mixture model with flexible covariance structure that captured the dependency

between cognitive test scores. The number of latent classes, L = 3, was determined by

comparing the integrated classification likelihood-BIC (ICL-BIC) for LCA models with 1

to 9 latent classes. We chose ICL-BIC over simpler BIC because ICL-BIC penalizes models

with excessive fuzziness; thus the selected model would have a better balance between model

fitting and class membership certainty. While the results, shown in Figure 2.4, preferred a 2-

class model, existing knowledge about MCI (as confirmed by our collaborators in neurology)

suggested at least three subgroups to capture the clinical heterogeneity of MCI patients.

Considering that a 3-class model corresponded to the second highest ICL-BIC, we adopted

L = 3 to account for both latent class model fitting and clinical plausibility.

Table 2.4 summarizes the cognitive characteristics of the three subgroups derived by the

3-class LCA model and applying modal class assignment rule. Class 1 was interpreted
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as mildly impaired, with test scores showing the best overall cognition; class 2 was non-

amnestic, with impairments in attention and executive function domains; class 3 was amnes-

tic, identified by the heavier impairment in delayed memory. The overall entropy index for

the fitted 3-class model was 0.70, corresponding to the moderately severe overlapping sce-

nario in our simulation.

One can further examine the fuzziness of latent class classification with respect to a given

class c, by the class-specific entropy index for class c,

1−
∑n

i=1

∑L
l=1 I(i ∈ M̂c)δ̃l(Yi; θ̂)[− log{δ̃l(Yi; θ̂)}]∑n

i=1 I(i ∈ M̂c) logL

, where M̂c denotes the set of subjects that are classified as belonging to class c by modal

assignment. Based on the modally assigned class memberships, the class-specific entropy

indices were 0.62, 0.87, and 0.62 respectively for classes 1-3. These suggested that the class

2 was more easily separable from class 1 and 3, while the patterns of the cognitive test

scores might be more overlapped between class 1 and 3.

In order to account for missing neuropathological phenotypes in deceased subjects, we fit a

logistic regression model of R using the ten baseline test scores and survival times. After

variable selection based on Akaike information criterion (Akaike, 1974), we obtained the

final model Logit{Pr(R = 1)} = −0.39 + 0.06 ·MMSE − 0.17 · Category Fluency − 0.07 ·

Trails A+0.11 ·Boston Naming+0.13 ·T . Based on this model, we calculated the estimated

inverse probability weight π̂i for each deceased subject. Hosmer–Lemeshow’s goodness-of-fit

test (p = 0.90) indicated a good fitting of the logistic regression model (Hosmer Jr et al.,

2013).

2.5.2 Structural competing risks model

Next, we fit the proposed structural competing risks model (2.2.2). For each CERAD level

ε = d (d = 1, 2, 3), we used link function g(x) = 1 − exp{− exp(x)} and obtained the

point estimates for the true coefficient functions λl,d(t), denoted by λ̂l,d(t), for t ∈ [0.25, 8],

where t denotes years since first visit, and l = 1, 2, 3 denotes the three baseline MCI latent
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Table 2.4: Summary of the ten baseline standardized cognitive test scores for the three
latent classes.

Mean Values
Standardized scores Class 1 Class 2 Class 3

mildly impaired non-amnestic amnestic

Mini-Mental State Examination (MMSE) -0.45 -2.24 -2.12
Logical Memory: Immediate -0.94 -1.34 -1.30
Logical Memory: Delayed -0.94 -1.38 -1.55
Semantic Memory: Category Fluency -0.64 -1.12 -0.96
Attention: Trails A 0.16 1.72 0.01
Attention: Digit Span Forward -0.21 -0.49 -0.17
Language: Boston Naming 0.00 -1.95 -1.15
Executive: Trails B 0.40 3.08 0.20
Executive: Digit Span Backward -0.33 -0.72 -0.36
Visuo-Motor: Digit Symbol -0.58 -1.28 -0.51

Note: The class memberships were assigned by modal assignment scheme.
For the trails A and trails B scores, a higher score indicates greater impairment.
For the other scores, a lower score indicates greater impairment.

subtypes. Here, λ̂1,d(t) represents the estimated g−1 transformed cumulative incidence at

time t for latent class 1, and λ̂l,d(t) (l = 2, 3) represents the estimated difference in the

g−1 transformed cumulative incidence at time t between latent class l and class 1. The

corresponding 95% confidence intervals were also computed based on estimated covariance

function Σ̂l,d(t, t) for class l at time t. To compare the proposed method with alternative

strategies, the point estimates were also obtained by the modal assignment method used in

the simulation studies and a naive method using modal assignment and excluding subjects

with missing failure type.

Figure 2.5 displays λ̂l,d(t) and the corresponding 95% confidence intervals versus time for the

three CERAD competing phenotypes (d = 1, 2, 3). Similarly, Figure 2.6 shows the estimated

g−1 cumulative incidences. As observed in Figure 2.5, both the modal assignment and naive

approaches may tend to underestimate the cumulative incidence differences between latent

class 2 versus latent class 1 and those between latent class 3 versus latent class 1, captured

by λ2,d(t) and λ3,d(t), d = 1, 2, 3. Compared to the modal assignment method that ignored

latent class uncertainty, the naive approach further overlooked missing CERAD phenotypes

thus yielding more biases.
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To better display the separation in neuropathological features by the baseline MCI sub-

groups, we present in Figure 2.7 the predicted cumulative incidence functions based on

the proposed method and the empirical cumulative incidence functions. According to the

results from the proposed method, the amnestic group (class 3, red solid line) were more

likely to develop frequent neuritic plaques, as compared to non-amnestic (class 2, blue solid

line) and mildly impaired (class 1, green solid line) groups in the 8-year follow-up period.

In contrast, non-amnestic and mildly impaired MCI patients were more likely to develop

sparse or moderate neuritic plaques than the amnestic patients. These findings are consis-

tent with existing knowledge of amnestic MCI’s high susceptibility of Alzheimer’s Disease

(Adler et al., 2010; Guillozet et al., 2003). Moreover, the cumulative incidence estimates

by the proposed method demonstrated different trends from the naive empirical cumulative

incidence estimates that overlooked missing phenotypes and latent class uncertainty.

Combining Figures 2.5 and 2.7, we also noticed time-varying differences between latent

classes in developing different phenotypes of neuritic plaques. For deaths with none or

sparse neuritic plaques, the cumulative incidence in the non-amnestic MCI group was sig-

nificantly higher than mildly impaired group between 3 and 6 years after first visit, while

mildly impaired group’s cumulative incidence rapidly caught up between 6 and 8 years af-

ter enrollment. For deaths with frequent neuritic plaques, the cumulative incidence in the

amnestic MCI group was lower than that in the non-amnestic MCI group until 6 years after

first visit and rapidly increased between 6 and 8 years. These time-varying differences in

cumulative incidences may provide a more detailed picture about the progression of the

neuropathological phenotypes in terms of neuritic plaques.

We present in Figure 2.8 the predicted cumulative incidence functions for a “new” patient

whose baseline cognitive test scores are equal to the median test scores observed in the

MCI data. It is observed that the predicted cumulative incidence functions for this new

patient are similar to the cumulative incidence functions estimated for the mildly impaired

latent class. This is reasonable because the estimated posterior membership probabilities

for this new patient are 0.79, 0.20, 0.01 respectively for the mildly impaired, amnestic, and

non-amnestic latent classes, suggesting a high likelihood of belonging to the mildly impaired
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MCI latent class. Comparing the predicted cumulative incidence functions across different

CERAD pheotypes in Figure 2.8, this new patient is more likely to show none or sparse

neocortical neuritic plague than the other two CERAD phenotypes at death.

In summary, the application of the proposed method provides useful insight about the neu-

ropathological relevance of the baseline MCI subgroups. Our results successfully link the

amnestic MCI group to higher risk of frequent neuritic plaques, which is consistent with ex-

isting knowledge about Alzheimer’s Disease. In addition, the flexibility in accommodating

time-varying latent class effects entails more robust and more in-depth investigations. Sim-

ilar analysis can also be easily conducted on other neuropathological features of interests.

2.6 Discussion

In this article, we propose a flexible approach to investigating the association between la-

tent classes and competing risks outcomes. Through involving separate steps for LCA and

fitting the structural competing risks model, the proposed method properly integrates the

results from these two steps without being plagued by the estimation bias from directly

plugging in latent class membership assignment. Our method also properly handles real-

istic complications for competing risks outcome such as missing failure types. Compared

to the popular one-step methods, our method has more proper interpretability of baseline

heterogeneity and is computationally more economic. We also derive analytical forms for

consistent variance and covariance estimates. Such inferences otherwise are not straightfor-

ward and computationally intensive with bootstrapping.

As guided by simulation results, for sample size 2000, our method still works well when the

entropy index is around 0.6. In addition, the method is robust under imbalanced latent

class proportion, severe missing failure type problems, and signal interference of nuisance

covariates. When latent class pattern is overly fuzzy, such as severe overlapping plus severely

imbalanced class proportion, the proposed method will have relatively high non-convergence

rate and unstable estimation with sample size less than 2000 (Figure 2.9 in Appendix section

2.7.8). However, our method can still perform well with sufficiently large sample size, which
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is also the case of the UDS data. To check non-convergence in practice, we recommend

checking the standard error estimates and be cautious when encountering unusually large

standard error estimates across the time range.

Theoretically, one may choose any latent class framework to define disease heterogeneity

given baseline covariates. Once the posterior membership probabilities are computed, the

point estimation of the proposed structural competing risks model can be obtained by solv-

ing the estimating equation (2.3.5). The influence function of the LCA model parameters

θ0, however, is required for variance estimation and inference. Therefore, we recommend us-

ing LCA methods with developed asymptotic results, such that the variability of the LCA

parameter estimates can be accounted for in the estimating procedure of the structural

competing risks model.

In our real data application, the IPW method accounting for missing failure type issue

may be less efficient if the missing failure type problem is severe among the uncensored

observations. Advanced strategies, such as augmented methods (Gao and Tsiatis, 2005),

pseudo-likelihood (Bakoyannis et al., 2020), or multiple imputation (Lu and Tsiatis, 2001)

can be considered to improve the potential efficiency loss.

Worth further mention, when there is only one cause of failure (ε ∈ {1}), the proposed

model (2.2.2) is equivalent to the proportional hazard model, if specified with constant

non-intercept terms in {λ(t)T0,1,β(t)T0,1}T , and a proper choice of link function g, such as

g(x) = 1 − exp{− exp(x)}. Thus, our approach is also applicable to analyzing data with

single time-to-event outcome. Since the missing failure type issue is not present for the

single time-to-event situation, the missing failure type model (2.2.3), and the corresponding

components will be removed from the estimation (2.3.5) and inference procedures.
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2.7 Appendices

2.7.1 Notations

Define following quantities:

∂αΨi(α(t),θ, t) =
∂Ψi(α(t),θ, t)

∂α(t)
=

L∑
l=1

g′{α(t)Tκl}κlδ̃il(θ),

∂θΨi(α(t),θ, t) =
∂Ψi(α(t),θ, t)

∂θ
=

C∑
l=1

g′{α(t)Tκl}
∂δ̃il(θ)

∂θ
,

∂2
αΨi(α(t),θ, t) =

∂∂αΨi(α(t),θ, t)

∂{α(t) θ}T
,

UGπ
n (α(t),θ, t) = n−1/2

n∑
i=1

∂αΨi(α(t),θ, t)

[
I(Xi ≤ t,Di = d)

G(Xi)πi
−Ψi(α(t),θ, t)

]
,

Ki(τ (t),η,α(t),θ, t) = ∂αΨi(τ (t),η, t)

[
I(Xi ≤ t,Di = d)

Ĝ(Xi)π̂i
−Ψi(α(t),θ, t)

]
,

KGπ
i (τ (t),η,α(t),θ, t) = ∂αΨi(τ (t),η, t)

[
I(Xi ≤ t,Di = d)

G(Xi)πi
−Ψi(α(t),θ, t)

]
,

Li(τ (t),η,α(t),θ, t) =
[
∂αΨi(τ (t),η, t)

][
∂αΨi(α(t),θ, t)

]T
,

L(τ (t),η,α(t),θ, t) = E[L1(τ (t),η,α(t),θ, t)],

Bi(τ (t),η,α(t),θ, t) =
[
∂αΨi(τ (t),η, t)

][
∂θΨi(α(t),θ, t)

]T
.

2.7.2 Proof of Equation (2.3.2)

Assumptions (A1) and (A2) jointly imply that C,R and ε have mutually conditional inde-

pendence given Y , T . Thus,

Pr(R = 1|Ỹ ) = Pr(R = 1|Y , T )

=
Pr(R = 1|Y , T )Pr(C ≥ T |Y , T )

Pr(C ≥ T |Y , T )
=

Pr(R = 1, C ≥ T |Y , T )

Pr(C ≥ T |Y , T )

= Pr(R = 1|C ≥ T,Y , T ) = Pr(R = 1|Dc = 1,Y , X)

= Pr(R = 1|Dc = 1,Y ∗)

which completes the proof.
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2.7.3 Proof of Equation (2.3.4)

Assumption (A1) implies

f(c|t, ε,y) = f(c|y). (2.7.1)

Assumptions (A1) and (A2) jointly imply that C,R and ε have mutually conditional inde-

pendence given Y , T , which further implies

f(r|t, ε,y) = f(r|t,y). (2.7.2)

In addition by (A1) and Bayes Theorem

f(c, ε|t,y) =
f(c, t, ε,y)

f(t,y)
=
f(c|y)f(t, ε|y)f(y)

f(t,y)
= f(c|y)f(ε|t,y). (2.7.3)

Thus we can show the conditional independence of C and R given (T, ε,Y ) by

f(r, c|t, ε,y) =
f(r, c, ε|t,y)

f(ε|t,y)

(A2)
=

f(r|t,y)f(c, ε|t,y)

f(ε|t,y)

(2.7.3)
= f(r|t,y)

f(c|y)f(ε|t,y)

f(ε|t,y)

= f(r|t,y)f(c|y)
(2.7.1)(2.7.2)

= f(r|t, ε,y)f(c|t, ε,y).

Therefore the weighted response can be justified by

E

{
I(X ≤ t,D = d)

G(X|Y )π(Ỹ ;γ0)

∣∣∣∣Y } = E

[
E

{
I(T ≤ t, ε = d,C ≥ T,R = 1)

G(T |Y )π(Ỹ ;γ0)

∣∣∣∣T, ε,Y }∣∣∣∣Y ]
= E

[
I(T ≤ t, ε = d)G(T |Y )π(Ỹ ;γ0)

G(T |Y )π(Ỹ ;γ0)

∣∣∣∣Y ]
= Pr(T ≥ t, ε = d|Y ) = Fd(t|Y ).

2.7.4 Proof of Theorem 2.3.1

Lemma 2.7.1. The inverse probability weight π̂i = π(Yi; γ̂) satisfies supi|π̂i − πi| = op(1).

Proof. Before getting into direct proof of the lemma, we first establish the asymptotic

properties for γ̂, which is also useful in later proofs. As introduced in Section 2.2, a

logistic regression model is proposed for the completeness R that satisfies equation 2.3.2.
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Specifically, the log-likelihood of the model is

l(γ0) =
n∑
i=1

Dci[Ri(γ
T
0 Ỹi)− log{1 + exp(γT0 Ỹi)],

with the corresponding score function

S(γ0) =
n∑
i=1

DciSi(γ0) =
n∑
i=1

Dci

{
Ri −

exp(γT0 Ỹi)

1 + exp(γT0 Ỹi)

}
Ỹi

and information matrix

I(γ0) =
n∑
i=1

DciIi(γ0) =

n∑
i=1

Dci
exp(γT0 Ỹi)

{1 + exp(γT0 Ỹi)}2
ỸiỸi

T
.

The maximum likelihood estimate γ̂ can be obtained by Newton-Raphson method (Agresti,

2003, p.194). By Wald (1943), γ̂ satisfies |γ̂ − γ0| = op(1) and
√
nD(γ̂ − γ0)

d−→ N(0,Σγ),

where nD =
∑n

i=1Dci and Σγ = E[{E[I1(γ0)]−1S1(γ0)}⊗2]. Assuming that n
nD
→ q. Then

we also have the influence function

ιi(γ0) = qDciE[I1(γ0)]−1Si(γ0)

satisfying ||
√
n{γ̂ − γ0} − 1√

n

∑n
i=1 ιi(γ0)|| p−→ 0 and supi|ιi(γ0)| < ∞. ιi(γ0) can be

estimated by ιi(γ̂).

In order to prove the lemma, we notice that π(Ỹ ;γ) defined in equation (2) is a continuous

function of γ. By Taylor’s expansion, we have for any i

π(Ỹi; γ̂)− π(Ỹi;γ0) =
∂

∂γ
π(Ỹi;γ0)(γ̂ − γ0) + op(1).

Since ∂
∂γπ(Ỹi;γ) = πi(Ỹi;γ){1− πi(Ỹi;γ)}Ỹi is bounded under regularity conditions (C1)

and (C2), we have | ∂∂γπ(Ỹi;γ)| ≤M , where M is constant and M > 0. Thus for any i

|π̂i − πi| = |π(Ỹi; γ̂)− π(Ỹi;γ0)| ≤M · op(1) + op(1) = op(1),
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and supi|π̂i − πi| = op(1).

Proof of Theorem 2.3.1

Note that the estimating function Un(α(t),θ, t) = n−1/2
∑n

i=1Ki(α(t),θ,α(t),θ, t). First,

by condition (C1), for every r > 0, we have supt<ν |Ĝ(t)−G(t)| = op(n
−1/2+r). Moreover,

by Lemma 1, supi|π̂i − πi| = op(1). These, combined with (C2) and (C3), implies that

supi,t,α||Ki(τ (t),η,α(t),θ, t)−KGπ
i (τ (t),η,α(t),θ, t)|| = op(1). (2.7.4)

Define G =
{
KGπ

i (τ (t),η,α(t),θ, t) : τ (t),α(t) ∈ {`∞c ([l, u])}L+q,η,θ ∈ Rh, t ∈ [l, u]
}
.

The class G is Donsker since indicator function is Donsker; since Lipschitz transformation

maintains Donsker class’ property. Consequently G is Glivenko-Cantelli since a Donsker

class is a Glivenko-Cantelli class in probability (van der Vaart and Wellner, 1996). It then

follows from Glivenko-Cantelli Theorem (van der Vaart and Wellner, 1996) that for any

τ (t) and η,

supt∈[l,u]||n−1
n∑
i=1

KGπ
i (τ (t),η,α0(t),θ0, t)||

p−→ E{KGπ
1 (τ (t),η,α0(t),θ0, t)} = 0.

(2.7.5)

Then (2.7.4) and (2.7.5) implies for any τ (t) and η.

supt∈[l,u]||n−1
n∑
i=1

Ki(τ (t),η,α0(t),θ0, t)||
p−→ 0. (2.7.6)
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For any α̃(t) ∈ {`∞c ([l, u])}L+q, by some algebra

n−1/2Un(α̃(t), θ̂, t) =
1

n

n∑
i=1

(
Ki(α̃(t), θ̂,α0(t),θ0, t)

− ∂αΨi(α̃(t), θ̂, t)
[
Ψi(α̃(t), θ̂, t)−Ψi(α0(t),θ0, t)

])
=

1

n

n∑
i=1

(
Ki(α̃(t), θ̂,α0(t),θ0, t)

− ∂αΨi(α̃(t), θ̂, t)

[
∂αΨi(α̌(t), θ̌, t)T [α̃(t)−α0(t)] + ∂θΨi(α̌(t), θ̌, t)T [θ̂ − θ0]

])
=

1

n

n∑
i=1

(
Ki(α̃(t),θ0,α0(t),θ0, t)

− ∂αΨi(α̃(t),θ0, t)

[
∂αΨi(α̌(t),θ0, t)

T [α̃(t)−α0(t)]

])
+ εn(t),

(2.7.7)

where {α̌(t)T , θ̌
T }T is between {α̃(t)T , θ̂

T }T and {α0(t)T ,θ0
T }T . Since θ̂ is a consistent

estimator of θ0, supt∈[l,u]||εn(t)|| p−→ 0 follows from boundedness of α0(t),θ0 by (C2) and

the Lipschitz continuity of ∂αΨi and ∂θΨi indicated by (C3).

By similar arguments with respect to G, we can establish the Glivenko-Cantelli and Donsker

properties for

G∗ =
{
Li(τ (t),η,α(t),θ, t), τ (t),α(t) ∈ {`∞c ([l, u])}L+q,η,θ ∈ Rh, t ∈ [l, u]

}
and

G∗∗ =
{
Bi(τ (t),η,α(t),θ, t), τ (t),α(t) ∈ {`∞c ([l, u])}L+q,η,θ ∈ Rh, t ∈ [l, u]

}
.

Then for τ (t),α(t) ∈ {`∞c ([l, u])}L+q,η,θ ∈ Rh, n−1
∑n

i=1Li(τ (t),η,α(t),θ, t) converges

to L(τ (t),η, α(t),θ, t) uniformly in t ∈ [l, u]. Together with (2.7.6) and (2.7.7), we have

n−1/2Un(α̃(t), θ̂, t) = −L(α̃(t),θ0, α̌(t),θ0, t)[α̃(t)−α0(t)] + ε∗n(t)
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with supt∈[l,u]||ε∗n(t)|| p−→ 0.

By condition (C4) and continuity of ∂αΨi∂αΨT
i , there exists a small neighborhood of

(α0,θ0,α0,θ0) in [{`∞c ([l, u])}L+q × Rh
]2

, where

inft∈[l,u]eigminL(τ (t),η,α(t),θ, t)

is bounded below by a positive constant k. Therefore, there exists a uniformly bounded

root α̂(t) of Un for n large enough, and the uniform consistency follows from

op(1) = ||n−1/2Un(α̂(t), θ̂, t)|| ≥ k||α̂(t)−α0(t)||+ ε∗n(t).

2.7.5 Proof of Theorem 2.3.2

First, the estimating equation can be decomposed as following:

0 =Un(α̂(t), θ̂, t)

=UGπ
n (α0(t),θ0, t)

+ [Un(α̂(t), θ̂, t)−UGπ
n (α̂(t), θ̂, t)]

+ [UGπ
n (α̂(t), θ̂, t)−UGπ

n (α0(t),θ0, t)]

(2.7.8)

Then we can analyze each component in Equation (2.7.8). First, decompose UGπ
n (α̂(t), θ̂, t)

−UGπ
n (α0(t),θ0, t) as following:

UGπ
n (α̂(t), θ̂, t)−UGπ

n (α0(t),θ0, t)

= n−1/2
n∑
i=1

(
∂αΨi(α̂(t), θ̂, t)− ∂αΨi(α0(t),θ0, t)

)[
I(Xi ≤ t,Di = d)

G(Xi)πi

−Ψi(α0(t),θ0, t)

]
− n−1/2

n∑
i=1

∂αΨi(α̂(t), θ̂, t)[Ψi(α̂(t), θ̂, t)−Ψi(α0(t),θ0, t)].

(2.7.9)
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Let

U [1]
n (t) = n−1/2

n∑
i=1

(
∂αΨi(α̂(t), θ̂, t)− ∂αΨi(α0(t),θ0, t)

)[I(Xi ≤ t,Di = d)

G(Xi)πi

−Ψi(α0(t),θ0, t)

]
.

Then by Taylor expansion of ∂αΨi(α̂(t), θ̂, t) at (α0(t),θ0)T

U [1]
n (t) =

1

n

n∑
i=1

(
∂2
αΨi(α0(t),θ0, t)

)[
I(Xi ≤ t,Di = d)

G(Xi)πi

−Ψi(α0(t),θ0, t)

]√
n

α̂(t)−α0(t)

θ̂ − θ0

+ νn(t),

where supt∈[l,u]νn(t)
p−→ 0 by uniform consistency of α̂(t) and consistency of θ̂. Since condi-

tions (C2) and (C5) imply that ∂2
αΨi(α0(t),θ0, t) is uniformly bounded and E[ I(X1≤t,D1=d)

G(X1)π1
−

Ψ1(α0(t),θ0, t)|Y 1] = 0, U
[1]
n (t) can be written as

U [1]
n (t) = ν̃n(t)

√
n

α̂(t)−α0(t)

θ̂ − θ0

 , (2.7.10)

where supt∈[l,u]ν̃n(t)
p−→ 0.

Also let U
[2]
n (t) = −n−1/2

∑n
i=1 ∂αΨi(α̂(t), θ̂, t)[Ψi(α̂(t), θ̂, t)−Ψi(α0(t),θ0, t)]. By Taylor

expansion of Ψi(α̂(t), θ̂, t) at (α0(t),θ0)T ,

U [2]
n (t) =

1

n

n∑
i=1

∂αΨi(α̂(t), θ̂, t)

[
∂αΨi(α0(t),θ0, t)

T√n(α̂(t)−α0(t)) + ν∗n(t)

+ ∂θΨi(α0(t),θ0, t)
T√n(θ̂ − θ0) + ν∗∗n (t)

]
,

where ν∗n(t) and ν∗∗n (t) uniformly converge to 0 in probability for t ∈ [l, u], implied by

uniform consistency of α̂(t) and consistency of θ̂. Again by consistency properties of α̂(t)

and θ̂, we have ∂αΨi(α̂(t), θ̂, t) = ∂αΨi(α0(t),θ0, t) + ν∗∗∗n (t) where supt∈[l,u]ν
∗∗∗
n (t)

p−→ 0.

Then since G∗ and G∗∗ are Glivenko-Cantelli, by Glivenko-Cantelli Theorem (van der Vaart
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and Wellner, 1996) and the existence of influence function φi for θ̂,

U [2]
n (t) = {J(t) + ε∗n(t)}

√
n(α̂(t)−α0(t)) + {H(t) + ε∗∗n (t)}

√
n(θ̂ − θ0),

= J(t)
√
n(α̂(t)−α0(t)) +H(t)n−1/2

n∑
i=1

φi(θ0) + ε̃(t)
(2.7.11)

where ε∗n(t), ε∗∗n (t) and ε̃(t) uniformly converge to 0 in probability for t ∈ [l, u].

Next, we assess another component in Equation (2.7.8), Un(α̂(t), θ̂, t)−UGπ
n (α̂(t), θ̂, t). As

observed in Equation (2.7.12), this component also has two parts, one related to Ĝ(Xi) −

G(Xi) (denoted by U
[3]
n (t)) and the other related to π̂i − πi (denoted by U

[4]
n (t)).

Un(α̂(t), θ̂, t)−UGπ
n (α̂(t), θ̂, t)

= −n−1/2
n∑
i=1

∂αΨi(α̂(t), θ̂, t)
I(Xi ≤ t,Di = d)[Ĝ(Xi)π̂i −G(Xi)πi]

Ĝ(Xi)π̂iG(Xi)πi

= −n−1/2
n∑
i=1

∂αΨi(α̂(t), θ̂, t)I(Xi ≤ t,Di = d)

[
Ĝ(Xi)−G(Xi)

Ĝ(Xi)G(Xi)πi
+

π̂i − πi
Ĝ(Xi)π̂iπi

]
.

= U [3]
n (t) +U [4]

n (t)

(2.7.12)

From (C1) and Pepe (1991),

supt∈[0,ν]||n1/2{Ĝ(t)−G(t)} − n−1/2
n∑
i

G(t)

∫ t

0
υ(s)−1dMG

i (s)|| → 0.

Also by standard empirical process argument, we can show that

n−1
n∑
i=1

∂αΨi(α(t),θ, t)I(Xi ≤ t,Di = d)Υ(s)G(X)−1π−1
i

converges to wG(α(t),θ, t) uniformly. Together with the consistency properties of α̂(t) and
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θ̂, we have

U [3]
n (t) = −n−1/2

n∑
i=1

∂αΨi(α̂(t), θ̂, t)I(Xi ≤ t,Di = d)
Ĝ(Xi)−G(Xi)

Ĝ(Xi)G(Xi)πi

≈ −n−1
n∑
i=1

∂αΨi(α̂(t), θ̂, t)
n−1/2

∑n
j=1 I(Xi ≤ t,Di = d)

∫∞
0 Υi(s)υ

−1(s)dMG
j (s)

G(Xi)πi

= −n−1/2
n∑
j=1

∫ ∞
0

1

n

( n∑
i=1

∂αΨi(α̂(t), θ̂, t)
I(Xi ≤ t,Di = d)Υi(s)

G(Xi)πi

)
dMG

j (s)

υ(s)

≈ −n−1/2
n∑
j=1

∫ ∞
0
wG(α0(t),θ0, t)

dMG
j (s)

υ(s)

= −n−1/2
n∑
i=1

Ξ1i(t),

(2.7.13)

where ≈ represents asymptotic equivalence uniformly in t ∈ [l, u]. For U
[4]
n (t), in the proof

of Lemma 1 we have derived the influence function ιi for the logistic regression estimates

γ̂. Moreover, by empirical process arguments we can show

1

n

n∑
j=1

∂αΨj(α(t),θ, t)I(Xj ≤ t,Dj = d){ ∂∂γπi}
T

G(Xj)π2
i

converges to wπ(α(t),θ, t) uniformly. Taking Taylor expansion of π̂i at γ0 and by the

consistency properties of α̂ and θ̂ we have

U [4]
n (t) = −n−1/2

n∑
i=1

∂αΨi(α̂(t), θ̂, t)I(Xi ≤ t,Di = d)
π̂i − πi

Ĝ(Xi)π̂iπi

≈ −n−1
n∑
i=1

∂αΨi(α̂(t), θ̂, t)I(Xi ≤ t,Di = d)

G(Xi)π2
i

( ∂
∂γ

πi
)T√

n(γ̂ − γ0)

≈ −n−1
n∑
i=1

∂αΨi(α̂(t), θ̂, t)I(Xi ≤ t,Di = d){ ∂∂γπi}
T

G(Xi)π2
i

n−1/2
n∑
j=1

ιj(γ0)

= −n−1/2
n∑
i=1

[
1

n

n∑
j=1

∂αΨj(α̂(t), θ̂, t)I(Xj ≤ t,Dj = d){ ∂∂γπj}
T

G(Xj)π2
j

]
ιi(γ0)

≈ −n−1/2
n∑
i=1

wπ(α0(t),θ0, t)ιi(γ0)

= −n−1/2
n∑
i=1

Ξ2i(t).

(2.7.14)
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We claim that G∗∗∗ = {Ξ1i(t), t ∈ [l, u]} and G∗∗∗∗ = {Ξ2i(t), t ∈ [l, u]} are Donsker. It can

be shown that
∫∞

0 wG(α0(t),θ0, t)
dMG

j (s)

y(s) and wπ(α0(t),θ0, t)ιi(γ0) are Lipschitz in t, thus

Donsker property follows under Lipschitz transformations.

Therefore, combining formulas (2.7.8), (2.7.10), (2.7.11), (2.7.13) and (2.7.14)

0 =Un(α̂(t), θ̂, t)

=UGπ
n (α0(t),θ0, t) + [Un(α̂(t), θ̂, t)−UGπ

n (α̂(t), θ̂, t)]

+ [UGπ
n (α̂(t), θ̂, t)−UGπ

n (α0(t),θ0, t)]

=UGπ
n (α0(t),θ0, t) +U [1]

n (t)−U [2]
n (t) +U [3]

n (t) +U [4]
n (t).

≈UGπ
n (α0(t),θ0, t)− J(t)

√
n{α̂(t)−α0(t)} −H(t)n−1/2

n∑
i=1

φi(θ0)

− n−1/2
n∑
i=1

Ξ1i(t)− n−1/2
n∑
i=1

Ξ2i(t).

(2.7.15)

Note that UGπ
n (α(t),θ, t) = n−1/2

∑n
i=1A

Gπ
i (α(t),θ, t). Thus,

√
n(α̂(t)−α0(t))

= J(t)−1

{
UGπ
n (α0(t),θ0, t)

+ n−1/2
n∑
i=1

[
−H(t)φi(θ0)−Ξ1i(t)−Ξ2i(t)

]}
+ τn(t)

= J(t)−1

{
n−1/2

n∑
i=1

[
AGπ
i (α0(t),θ0, t)

−H(t)φi(θ0)−Ξ1i(t)−Ξ2i(t)
]}

+ τn(t),

(2.7.16)

where supt∈[l,u]τn(t)
p−→ 0. Weak convergence follows since Ai,Ξ1i and Ξ2i has been shown

as Donsker and φi is assumed to be Donsker (van der Vaart and Wellner, 1996).

Uniform consistency of Ĵ(t) and Ĥ(t) follows from Glivenko-Cantelli property of G∗ and

G∗∗ and uniform consistency of α̂(t) and θ̂. Since

{AGπ
i (α(t), θ, t), t ∈ [l, u]}, {Ξ1i(t), t ∈ [l, u]}, {Ξ2i(t), t ∈ [l, u]}
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are Glivenko-Cantelli and {φi}, J(t)−1, H(t) is bounded for t ∈ [l, u], {Qi(t), t ∈ [l, u]}

is also Glivenko-Cantelli. By Slutsky’s theorem and uniform law of large numbers, Σ̂(s, t)

converges to Σ(s, t) uniformly.

2.7.6 Further simulation about selecting the number of latent classes

We conduct further simulation studies to investigate how well the ICL-BIC information

criterion selects the number of latent classes. Specifically, we generated 5000 datasets for

each configuration used in the comparison (A) in our main simulation study for sample size

N ∈ {500, 1000, 2000}. Then we fitted finite Gaussian mixture models with number of latent

classes L ∈ {1, . . . , 9}. Then we used integrated classification likelihood-BIC (ICL-BIC) to

select the best L for each simulated dataset.

As shown in Table 2.5, the ICL-BIC criterion worked best when the sample size was large

and the baseline covariates were mildly or moderately overlapped. When the latent class

pattern was severely overlapped (entropy index smaller than 0.7), however, the information

criterion may not be able to detect the true number of latent classes. This is consistent with

our real application results, where ICL-BIC preferred a two-class model while our domain

knowledge perferred at least three classes. Therefore, we recommend using information

criteria together with domain knowledge in choosing the number of latent classes.
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Table 2.5: Percentage of selected number L of latent classes, by ICL-BIC, under different
choices of simulation scenario and sample size N from 5000 simulations.

Percentage selected (%)
Scenarios N L = 1 L = 2 L = 3 L = 4

(1b)+(2a)+(3a) 500 0 0.88 99.08 0.04
mild overlapping 1000 0 0.06 99.94 0
entropy around 0.9 2000 0 0 100 0

(1b)+(2b)+(3a) 500 2.64 53.54 43.74 0.08
moderate overlapping 1000 0.06 39.84 60.08 0.02
entropy around 0.8 2000 0 21.72 78.28 0

(1b)+(2c)+(3a) 500 30.68 60.82 8.50 0
moderately severe ovarlapping 1000 12.36 78.58 9.06 0
entropy around 0.7 2000 2.72 90.14 7.14 0

(1b)+(2d)+(3a) 500 76.76 22.78 0.46 0
severe ovarlapping 1000 73.94 25.82 0.24 0
entropy around 0.6 2000 70.12 29.88 0 0
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Figure 2.1: Standard error (SE) estimation of λ̂(t) = {λ̂1(t), λ̂2(t), λ̂3(t)} under the four
scenarios of overlapping in comparison (A), namely mild, moderate, moderately severe, and
severe. Green line denotes the empirical standard deviation of the estimates. Light gray
dotted lines represent SE estimates of non-outliers. Dark gray lines display SE estimates of
outliers.
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Figure 2.2: Simulation results for investigation purposes (A)-(F). Quantities associated with
the three regression coefficients in λ0(t) are represented by solid, dashed and dotted lines.
The proposed, modal assignment, and timereg strategies are respectively shown in black,
red and blue lines.
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Figure 2.3: Histogram and kernel density estimation for the ten cognitive test scores.
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Figure 2.5: Point estimates λ̂
(i)
l (t), l = 1, 2, 3, i = 1, 2, 3, t ∈ [0.25, 8], for the l-th regression

coefficient for the i-th competing risk outcome. Each column shows the three regression
coefficients for the corresponding competing risk. Point estimates obtained by the proposed,
modal and naive approaches are respectively represented by black, red and blue solid lines.
Black dashed lines represent the 95% confidence intervals for the proposed estimator.
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Figure 2.6: Estimated g−1 transformed cumulative incidence for class l, l = 1, 2, 3 for com-
peting risk i, i = 1, 2, 3 at t ∈ [0.25, 8]. Each column shows the three quantities for the
corresponding competing risk. Estimates obtained by the proposed, modal and naive ap-
proaches are respectively represented by black, red and blue solid lines. Black dashed lines
represent the 95% confidence intervals for the proposed estimator.
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Figure 2.7: Cumulative incidence curves of death with the three CERAD phenotypes. Solid
lines represent the predicted cumulative incidence by the proposed method. Dashed lines
represent the empirical cumulative incidence curves. Mildly impaired, non-amnestic MCI
and amnestic MCI groups are represented in green, blue and red, respectively.
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Figure 2.8: Predicted cumulative incidence functions corresponding to different CERAD
phenotypes for a new patient with baseline cognitive test scores equal to median values in
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2.7.7 Additional tables for simulation results

Table 2.6: The empirical coverage rates of the 95% confidence band on t ∈ [0.1, 1.0] for
λ(t), for different simulation scenarios, after excluding outlying estimates.

Coverage rate∗

Comparisons Scenarios λ̂1(t) λ̂2(t) λ̂3(t)

(A)

(1b)+(2a)+(3a) 0.968 0.966 0.975
(1b)+(2b)+(3a) 0.968 0.966 0.975
(1b)+(2c)+(3a) 0.961 0.961 0.977
(1b)+(2d)+(3a) 0.951 0.968 0.979

(B)
(1a)+(2b)+(3a) 0.970 0.966 0.964
(1b)+(2b)+(3a) 0.961 0.961 0.977
(1c)+(2b)+(3a) 0.961 0.960 0.961

(C)
(1b)+(2c)+(3a) 0.951 0.968 0.979
(1b)+(2c)+(3b) 0.962 0.958 0.984

(D) Nuisance parameters 0.960 0.978 0.970

(E) UDS scenario 0.961 0.975 0.975

(F)
N=500 0.953 0.902 0.989
N=1000 0.972 0.957 0.982

(1b)+(2c)+(3a) N=2000 0.951 0.968 0.979
∗ Confidence band was constructed on t ∈ [0.1, 1.0].
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Table 2.7: Standard deviation (SE), average standard error estimate (SEE), and coverage
probability (CP) of λ̂(·) at different choices of t, for the four scenarios of overlapping, after
excluding outlying estimates.

(1b)+(2a)+(3a) (1b)+(2b)+(3a) (1b)+(2c)+(3a) (1b)+(2d)+(3a)
Mild Moderate Moderately severe Severe

SE SEE CP SE SEE CP SE SEE CP SE SEE CP

λ̂1(0.1) 0.212 0.213 0.956 0.225 0.229 0.962 0.251 0.266 0.957 0.253 0.279 0.965

λ̂1(0.2) 0.145 0.155 0.970 0.166 0.169 0.960 0.175 0.194 0.955 0.185 0.210 0.967

λ̂1(0.3) 0.126 0.133 0.962 0.140 0.146 0.959 0.152 0.168 0.954 0.166 0.184 0.954

λ̂1(0.4) 0.120 0.125 0.958 0.128 0.136 0.959 0.143 0.158 0.958 0.152 0.172 0.954

λ̂1(0.5) 0.117 0.122 0.955 0.125 0.133 0.966 0.135 0.153 0.956 0.148 0.168 0.965

λ̂1(0.6) 0.119 0.123 0.959 0.128 0.134 0.955 0.135 0.154 0.960 0.152 0.168 0.957

λ̂1(0.7) 0.123 0.127 0.954 0.130 0.138 0.959 0.135 0.158 0.967 0.157 0.172 0.964

λ̂1(0.8) 0.129 0.134 0.961 0.139 0.145 0.968 0.147 0.166 0.964 0.168 0.179 0.959

λ̂1(0.9) 0.136 0.146 0.958 0.150 0.157 0.973 0.158 0.179 0.968 0.183 0.192 0.965

λ̂1(1) 0.158 0.168 0.960 0.172 0.180 0.960 0.184 0.203 0.966 0.211 0.220 0.966

λ̂2(0.1) 0.248 0.249 0.953 0.279 0.281 0.958 0.313 0.337 0.961 0.346 0.375 0.969

λ̂2(0.2) 0.175 0.184 0.965 0.206 0.212 0.966 0.226 0.259 0.965 0.271 0.293 0.961

λ̂2(0.3) 0.151 0.160 0.964 0.175 0.187 0.963 0.201 0.234 0.969 0.248 0.268 0.952

λ̂2(0.4) 0.144 0.151 0.957 0.164 0.178 0.967 0.190 0.228 0.964 0.236 0.262 0.948

λ̂2(0.5) 0.144 0.149 0.960 0.161 0.178 0.968 0.184 0.229 0.974 0.232 0.265 0.964

λ̂2(0.6) 0.150 0.151 0.949 0.169 0.182 0.961 0.188 0.237 0.972 0.247 0.275 0.959

λ̂2(0.7) 0.157 0.158 0.945 0.177 0.191 0.958 0.195 0.251 0.981 0.262 0.292 0.954

λ̂2(0.8) 0.167 0.170 0.962 0.192 0.206 0.969 0.219 0.271 0.971 0.282 0.318 0.955

λ̂2(0.9) 0.179 0.187 0.960 0.213 0.227 0.975 0.243 0.298 0.969 0.313 0.363 0.961

λ̂2(1) 0.211 0.218 0.958 0.248 0.263 0.976 0.282 0.344 0.974 0.395 0.398 0.970

λ̂3(0.1) 0.371 0.363 0.960 0.459 0.468 0.942 0.623 0.733 0.916 0.845 1.335 0.909

λ̂3(0.2) 0.206 0.219 0.966 0.252 0.250 0.954 0.298 0.318 0.927 0.352 0.381 0.945

λ̂3(0.3) 0.170 0.180 0.965 0.203 0.202 0.946 0.236 0.256 0.931 0.278 0.297 0.940

λ̂3(0.4) 0.157 0.163 0.962 0.182 0.181 0.944 0.211 0.223 0.931 0.241 0.256 0.941

λ̂3(0.5) 0.152 0.155 0.952 0.170 0.171 0.949 0.190 0.205 0.949 0.227 0.234 0.937

λ̂3(0.6) 0.150 0.153 0.955 0.167 0.167 0.944 0.185 0.196 0.944 0.218 0.220 0.936

λ̂3(0.7) 0.152 0.156 0.957 0.166 0.167 0.948 0.176 0.191 0.953 0.215 0.214 0.935

λ̂3(0.8) 0.155 0.162 0.960 0.168 0.173 0.951 0.184 0.194 0.946 0.222 0.215 0.931

λ̂3(0.9) 0.164 0.174 0.960 0.176 0.185 0.961 0.192 0.204 0.953 0.231 0.223 0.932

λ̂3(1) 0.186 0.198 0.954 0.197 0.208 0.960 0.219 0.225 0.943 0.256 0.249 0.928
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Table 2.8: Standard deviation (SE), average standard error estimate (SEE), and coverage
probability (CP) of λ̂(·) at different choices of t, for the three scenarios for latent class
proportion, after excluding outlying estimates.

(1a)+(2b)+(3a) (1b)+(2b)+(3a) (1c)+(2b)+(3a)
Balanced Moderately imbalanced Severely imbalanced

SE SEE CP SE SEE CP SE SEE CP

λ̂1(0.1) 0.173 0.183 0.969 0.225 0.229 0.962 0.295 0.278 0.951

λ̂1(0.2) 0.129 0.134 0.969 0.166 0.169 0.960 0.196 0.202 0.961

λ̂1(0.3) 0.111 0.115 0.956 0.140 0.146 0.959 0.162 0.175 0.967

λ̂1(0.4) 0.099 0.108 0.965 0.128 0.136 0.959 0.157 0.163 0.948

λ̂1(0.5) 0.097 0.105 0.969 0.125 0.133 0.966 0.152 0.159 0.949

λ̂1(0.6) 0.096 0.105 0.966 0.128 0.134 0.955 0.153 0.160 0.953

λ̂1(0.7) 0.102 0.108 0.976 0.130 0.138 0.959 0.156 0.165 0.963

λ̂1(0.8) 0.104 0.114 0.974 0.139 0.145 0.968 0.169 0.175 0.965

λ̂1(0.9) 0.111 0.124 0.974 0.150 0.157 0.973 0.186 0.189 0.962

λ̂1(1) 0.131 0.143 0.973 0.172 0.180 0.960 0.215 0.215 0.950

λ̂2(0.1) 0.237 0.241 0.965 0.279 0.281 0.958 0.329 0.326 0.963

λ̂2(0.2) 0.174 0.182 0.970 0.206 0.212 0.966 0.230 0.243 0.978

λ̂2(0.3) 0.153 0.161 0.962 0.175 0.187 0.963 0.197 0.214 0.974

λ̂2(0.4) 0.141 0.154 0.967 0.164 0.178 0.967 0.193 0.204 0.960

λ̂2(0.5) 0.138 0.154 0.971 0.161 0.178 0.968 0.189 0.202 0.949

λ̂2(0.6) 0.143 0.158 0.969 0.169 0.182 0.961 0.194 0.207 0.954

λ̂2(0.7) 0.154 0.167 0.970 0.177 0.191 0.958 0.200 0.217 0.971

λ̂2(0.8) 0.163 0.180 0.972 0.192 0.206 0.969 0.219 0.233 0.962

λ̂2(0.9) 0.180 0.199 0.977 0.213 0.227 0.975 0.248 0.256 0.954

λ̂2(1) 0.211 0.233 0.981 0.248 0.263 0.976 0.289 0.295 0.958

λ̂3(0.1) 0.529 0.557 0.909 0.459 0.468 0.942 0.536 0.523 0.960

λ̂3(0.2) 0.256 0.254 0.931 0.252 0.250 0.954 0.269 0.274 0.959

λ̂3(0.3) 0.200 0.201 0.933 0.203 0.202 0.946 0.210 0.223 0.973

λ̂3(0.4) 0.180 0.178 0.930 0.182 0.181 0.944 0.195 0.201 0.957

λ̂3(0.5) 0.167 0.165 0.936 0.170 0.171 0.949 0.185 0.190 0.954

λ̂3(0.6) 0.160 0.159 0.946 0.167 0.167 0.944 0.186 0.186 0.943

λ̂3(0.7) 0.160 0.157 0.942 0.166 0.167 0.948 0.189 0.188 0.948

λ̂3(0.8) 0.161 0.161 0.949 0.168 0.173 0.951 0.200 0.196 0.949

λ̂3(0.9) 0.173 0.170 0.938 0.176 0.185 0.961 0.215 0.209 0.945

λ̂3(1) 0.190 0.190 0.933 0.197 0.208 0.960 0.242 0.236 0.940
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Table 2.9: Standard deviation (SE), average standard error estimate (SEE), and coverage
probability (CP) of λ̂(·) at different choices of t, for the two scenarios for missing failure
type, after excluding outlying estimates.

(1b)+(2c)+(3a) (1b)+(2c)+(3b)
25% missing 50% missing

SE SEE CP SE SEE CP

λ̂1(0.1) 0.251 0.266 0.957 0.275 0.275 0.952

λ̂1(0.2) 0.175 0.194 0.955 0.200 0.204 0.955

λ̂1(0.3) 0.152 0.168 0.954 0.174 0.178 0.951

λ̂1(0.4) 0.143 0.158 0.958 0.156 0.167 0.963

λ̂1(0.5) 0.135 0.153 0.956 0.151 0.164 0.966

λ̂1(0.6) 0.135 0.154 0.960 0.148 0.165 0.972

λ̂1(0.7) 0.135 0.158 0.967 0.151 0.171 0.976

λ̂1(0.8) 0.147 0.166 0.964 0.166 0.181 0.972

λ̂1(0.9) 0.158 0.179 0.968 0.182 0.197 0.971

λ̂1(1) 0.184 0.203 0.966 0.218 0.226 0.964

λ̂2(0.1) 0.313 0.337 0.961 0.360 0.362 0.959

λ̂2(0.2) 0.226 0.259 0.965 0.270 0.279 0.966

λ̂2(0.3) 0.201 0.234 0.969 0.244 0.252 0.954

λ̂2(0.4) 0.190 0.228 0.964 0.232 0.246 0.962

λ̂2(0.5) 0.184 0.229 0.974 0.233 0.249 0.969

λ̂2(0.6) 0.188 0.237 0.972 0.240 0.259 0.967

λ̂2(0.7) 0.195 0.251 0.981 0.255 0.276 0.972

λ̂2(0.8) 0.219 0.271 0.971 0.283 0.301 0.975

λ̂2(0.9) 0.243 0.298 0.969 0.316 0.337 0.975

λ̂2(1) 0.282 0.344 0.974 0.494 0.397 0.972

λ̂3(0.1) 0.623 0.733 0.916 0.720 0.859 0.920

λ̂3(0.2) 0.298 0.318 0.927 0.332 0.329 0.930

λ̂3(0.3) 0.236 0.256 0.931 0.261 0.262 0.925

λ̂3(0.4) 0.211 0.223 0.931 0.237 0.232 0.944

λ̂3(0.5) 0.190 0.205 0.949 0.218 0.217 0.941

λ̂3(0.6) 0.185 0.196 0.944 0.202 0.210 0.959

λ̂3(0.7) 0.176 0.191 0.953 0.197 0.210 0.957

λ̂3(0.8) 0.184 0.194 0.946 0.209 0.218 0.955

λ̂3(0.9) 0.192 0.204 0.953 0.225 0.234 0.949

λ̂3(1) 0.219 0.225 0.943 0.259 0.267 0.947
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Table 2.10: Standard deviation (SE), average standard error estimate (SEE), and coverage
probability (CP) of λ̂(·) at different choices of t, for simulation (D) and (E), after excluding
outlying estimates.

(D) Nuisance parameters (E) UDS scenario
N=2000 N=2000

SE SEE CP SE SEE CP

λ̂1(0.1) 0.181 0.197 0.957 0.149 0.146 0.954

λ̂1(0.2) 0.135 0.149 0.954 0.106 0.110 0.956

λ̂1(0.3) 0.113 0.130 0.960 0.090 0.097 0.970

λ̂1(0.4) 0.101 0.121 0.969 0.084 0.092 0.969

λ̂1(0.5) 0.099 0.118 0.970 0.080 0.090 0.972

λ̂1(0.6) 0.098 0.118 0.973 0.081 0.091 0.982

λ̂1(0.7) 0.102 0.121 0.974 0.084 0.094 0.972

λ̂1(0.8) 0.107 0.126 0.968 0.089 0.100 0.967

λ̂1(0.9) 0.118 0.136 0.972 0.097 0.107 0.966

λ̂1(1) 0.134 0.154 0.969 0.110 0.120 0.964

λ̂2(0.1) 0.240 0.265 0.962 0.237 0.230 0.943

λ̂2(0.2) 0.183 0.208 0.956 0.176 0.177 0.957

λ̂2(0.3) 0.156 0.189 0.977 0.154 0.160 0.958

λ̂2(0.4) 0.142 0.184 0.974 0.149 0.157 0.955

λ̂2(0.5) 0.145 0.186 0.968 0.148 0.160 0.956

λ̂2(0.6) 0.146 0.193 0.972 0.154 0.168 0.960

λ̂2(0.7) 0.156 0.203 0.971 0.167 0.180 0.957

λ̂2(0.8) 0.168 0.218 0.964 0.184 0.197 0.955

λ̂2(0.9) 0.186 0.239 0.977 0.206 0.224 0.963

λ̂2(1) 0.214 0.274 0.972 0.301 0.269 0.952

λ̂3(0.1) 0.689 1.043 0.960 1.027 1.778 0.907

λ̂3(0.2) 0.294 0.388 0.969 0.434 0.417 0.929

λ̂3(0.3) 0.227 0.298 0.965 0.299 0.303 0.938

λ̂3(0.4) 0.197 0.250 0.964 0.274 0.266 0.936

λ̂3(0.5) 0.178 0.224 0.968 0.251 0.246 0.938

λ̂3(0.6) 0.171 0.207 0.957 0.243 0.237 0.944

λ̂3(0.7) 0.171 0.198 0.950 0.235 0.235 0.950

λ̂3(0.8) 0.175 0.194 0.953 0.235 0.239 0.951

λ̂3(0.9) 0.182 0.198 0.961 0.245 0.250 0.960

λ̂3(1) 0.202 0.214 0.958 0.273 0.272 0.967
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Table 2.11: Standard deviation (SE), average standard error estimate (SEE), and coverage
probability (CP) of λ̂(·) at different choices of t, for the three scenarios with different sample
size, after excluding outlying estimates.

(1b)+(2c)+(3a) (1b)+(2c)+(3a) (1b)+(2c)+(3a)
N=500 N=1000 N=2000

SE SEE CP SE SEE CP SE SEE CP

λ̂1(0.1) 0.596 0.718 0.957 0.379 0.373 0.958 0.251 0.266 0.957

λ̂1(0.2) 0.365 0.532 0.954 0.244 0.269 0.972 0.175 0.194 0.955

λ̂1(0.3) 0.300 0.453 0.955 0.203 0.231 0.964 0.152 0.168 0.954

λ̂1(0.4) 0.276 0.414 0.950 0.192 0.216 0.967 0.143 0.158 0.958

λ̂1(0.5) 0.270 0.409 0.957 0.191 0.210 0.960 0.135 0.153 0.956

λ̂1(0.6) 0.275 0.404 0.960 0.191 0.211 0.958 0.135 0.154 0.960

λ̂1(0.7) 0.283 0.393 0.968 0.192 0.216 0.970 0.135 0.158 0.967

λ̂1(0.8) 0.301 0.401 0.962 0.206 0.228 0.964 0.147 0.166 0.964

λ̂1(0.9) 0.330 0.419 0.969 0.224 0.247 0.977 0.158 0.179 0.968

λ̂1(1) 0.449 0.465 0.965 0.294 0.283 0.970 0.184 0.203 0.966

λ̂2(0.1) 0.762 0.971 0.956 0.469 0.472 0.967 0.313 0.337 0.961

λ̂2(0.2) 0.516 0.777 0.951 0.327 0.355 0.970 0.226 0.259 0.965

λ̂2(0.3) 0.453 0.731 0.941 0.283 0.317 0.961 0.201 0.234 0.969

λ̂2(0.4) 0.425 0.708 0.938 0.269 0.306 0.960 0.190 0.228 0.964

λ̂2(0.5) 0.430 0.732 0.934 0.270 0.307 0.965 0.184 0.229 0.974

λ̂2(0.6) 0.445 0.753 0.939 0.277 0.317 0.967 0.188 0.237 0.972

λ̂2(0.7) 0.467 0.791 0.945 0.284 0.334 0.968 0.195 0.251 0.981

λ̂2(0.8) 0.502 0.891 0.936 0.313 0.361 0.971 0.219 0.271 0.971

λ̂2(0.9) 0.547 0.968 0.945 0.347 0.400 0.979 0.243 0.298 0.969

λ̂2(1) 0.745 1.073 0.939 0.492 0.488 0.984 0.282 0.344 0.974

λ̂3(0.1) 1.297 7.304 0.966 0.910 1.502 0.941 0.623 0.733 0.916

λ̂3(0.2) 0.708 1.384 0.974 0.435 0.449 0.954 0.298 0.318 0.927

λ̂3(0.3) 0.483 0.839 0.968 0.319 0.341 0.964 0.236 0.256 0.931

λ̂3(0.4) 0.409 0.744 0.965 0.280 0.300 0.955 0.211 0.223 0.931

λ̂3(0.5) 0.385 0.660 0.966 0.268 0.279 0.946 0.190 0.205 0.949

λ̂3(0.6) 0.368 0.597 0.962 0.258 0.268 0.947 0.185 0.196 0.944

λ̂3(0.7) 0.371 0.562 0.967 0.255 0.266 0.956 0.176 0.191 0.953

λ̂3(0.8) 0.381 0.517 0.958 0.266 0.272 0.953 0.184 0.194 0.946

λ̂3(0.9) 0.395 0.522 0.963 0.282 0.289 0.950 0.192 0.204 0.953

λ̂3(1) 0.509 0.564 0.946 0.338 0.326 0.941 0.219 0.225 0.943
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2.7.8 Simulation under severe overlapping plus severely imbalanced class

proportion

To evaluate the performance of the proposed method under extremely challenging condi-

tions, we conducted simulation under scenario (1c)+(2d)+(3a) as defined in Table 2.1, with

sample size N = 500, 1000, 2000 and 4000. We also excluded the outlying estimates using

the same procedure as described in the main article.
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Figure 2.9: Simulation results for the scenario described by Section 2.7.8. Quantities asso-
ciated with the three regression coefficients in λ0(t) are represented by solid, dashed and
dotted lines. The proposed, modal assignment, and timereg strategies are respectively
shown in black, red and blue lines.

As shown in Figure 2.9, the estimation was unstable when the sample size is small (N = 500

and 1000), which was expected. Specifically, the estimation for the coefficient associated

with the third class (dotted line) was the most stable with smaller sample size, because

the third class has the largest population. In contrast, the estimation for the coefficient

associated with class one (solid line) and class two (dashed line) were relatively more biased

under smaller sample size. The bias associated with the parameter for class two was larger

because the class two has overlapping with both classes one and three, while classes one and

three do not overlap with each other, which means heavier misclassification for subjects in

class two.

As sample size increased to 2000 and 4000, the proposed method achieved much smaller

biases, together with more standard coverage probabilities. This shows that our method

can handle data with highly overlapped and highly imbalanced latent class pattern when
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the sample size is sufficiently large.

2.7.9 Discussions about the independent censoring assumption

As discussed in the section 2.3, our model framework is flexible to be generalized to in-

corporate the conditional independence assumption for censoring and the corresponding

model-based inverse probability censoring weighting (IPCW) terms. In terms of point es-

timation, one can directly use the model-based Ĝ(Xi|Y i) = Pr(Ci ≥ Xi|Y i) in place of

Ĝ(Xi) in the estimating equation (8). For variance estimation, we also provided a flexible

template for inference with model-based IPCW. That is, instead of considering the variabil-

ity of Kaplan-Meier estimator, as denoted by Ξ̂1i in the manuscript, one can replace Ξ̂1i by

its counterpart from Cox regression to conduct inference with model-based IPCW.

In our real data application, we assumed unconditionally independence of censoring in

the UDS data. This assumption creates easier implementation of the inverse probability

censoring weighting and the inference procedure for the structural competing risks model,

by directly incorporating results from a Kaplan-Meier estimator. As pointed out by a

referee, the above assumption may not satisfy in the UDS data and in more general cases.

Instead, a conditional independence assumption of censoring given covariates may be more

appropriate.

We investigated the association between censoring time and four covariates (baseline overall

cognition MMSE, age at baseline, gender, and race) by fitting a Cox proportional hazard

model. Although the covariate effects were statistically significant (Table 2.12) for all co-

variates, the effect sizes were fairly small. We further compared the estimation results of the

structural competing risks model with IPCW based on (i) independent censoring assump-

tion (Kaplan-Meier estimator of censoring) and (ii) conditionally independent censoring

assumption (Cox model of censoring). As Figure 2.10 shows, the point estimates based

on the two assumptions were close to each other for the UDS data, indicating that the

assumption about censoring mechanism does not dramatically affect the point estimation.
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Table 2.12: Hazard ratios and p-values for the covariates of the Cox proportional hazard
model for the censoring time.

Covariates Hazard ratio P value

Baseline MMSE 0.97 < 0.001
Baseline age 0.88 < 0.001
gender (female vs male) 1.11 < 0.001
race (white vs others) 0.83 < 0.001
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Figure 2.10: Point estimates of the structural competing risks model with inverse probabil-
ity censoring weighting based on Kaplan-Meier estimator (solid black) and Cox regression
(dashed green).
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Chapter 3

Latent Class Analysis for

Time-to-event Data Based on

Semi-parametric Proportional

Hazards Submodel

3.1 Introduction

The nature of heterogeneity has been recognized in a number of diseases, such as mild

cognitive impairment (MCI) and prostate cancer. Usually, the clinicians classify the patients

into certain disease subtypes, such as the amnestic and the non-amnestic subtypes of MCI

(Winblad et al., 2004), where each subtype represents a particular etiology with potentially

unique pattern of disease progression. It is of critical clinical interest to understand the

heterogeneity of disease population and its implications for the onset of clinical events,

which will contribute to better prediction of time-to-event, such as predicting the time to

dementia for MCI patients based on baseline patient characteristics.

Common practice to address this interest is regression analysis, such as fitting a Cox propor-
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tion hazard model (Cox, 1972). Typically, traditional survival models attempt to explain

the survival distribution for the whole population by a single model with unified covariate

effects, such that different values or levels of covariates indicate earlier or later onset of

disease. For a heterogeneous population, however, traditional survival models are oversim-

plified. This is because the heterogeneity of disease population indicates different underlying

etiologies, which means the disease progression and the importance of associated risk fac-

tors can vary among disease subtypes. In statistical modeling, this implies varied baseline

hazard functions and covariate effects for different disease subtypes.

Latent class analysis (LCA) is a useful tool to address the above challenges in analyzing sur-

vival data of heterogeneous populations. Extended from finite mixture models (McLachlan

and Peel, 2000), the LCA framework is able to incorporate class-specific survival submodels

to capture heterogeneous patterns in disease progression, and a class membership probabil-

ity submodel which addresses the uncertainty of belonging to certain latent subtypes given

patient characteristics. In addition, the latent classes (or subtypes) defined by LCA are

jointly determined by the membership probability submodel and the class-specific survival

submodels, which means the obtained latent classes are data-driven with high relevance to

the survival outcome of interest.

Various mixture models have been proposed in the past few decades for the clustering

analysis of survival data. The two-component mixture cure models (Kuk and Chen, 1992;

McLachlan and McGiffin, 1994; Lambert et al., 2010, for example) were studied to inves-

tigate differences in survival between cured and uncured population. However, mixture

cure models assume only two classes in the population, which is not applicable if there are

more than two classes. In addition, mixture Weibull models (Bučar et al., 2004; Mair and

Hudec, 2009, for example) and mixture exponential models (Hilton et al., 2018, for example)

were proposed to investigate heterogeneous lifetime distribution for two or more underly-

ing classes. Nevertheless, these methods are less flexible due to the imposed parametric

assumption of survival distribution.

In recent development of mixture modeling for biomedical data, large efforts were made in

the development of joint latent class models of survival data and other phenotypes, such
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as longitudinal data (Lin et al., 2002; Proust-Lima et al., 2009, 2017, for example) and

responses to a questionnaire (Larsen, 2004). Typically, these models assume conditional

independence between phenotypes and survival data given the class membership, which

ignores within-class correlation between survival time and other phenotypes. Under this as-

sumption, these methods may obtain redundant latent classes which are largely attributed

to the heterogeneity of phenotypes, instead of the time-to-event of interest. Hypothetically,

some phenotypes can have high heterogeneity in disease population but little correlation

with time-to-event. Under such hypothetical setting, the joint models will still recognize the

latent classes with respect to the phenotypes, which can hardly contribute to our research

question of interest in understanding the heterogeneity in survival. In terms of survival sub-

models, the majority of existing joint latent class models use class-specific Cox proportional

hazard model. Proust-Lima et al. (2017) utilized Weibull distribution, piecewise constant

with limited number of jumps, and cubic M-splines to formulate baseline hazard functions,

which creates challenges in model specification. In contrast, Lin et al. (2002) and Larsen

(2004) incorporated unspecified baseline hazard functions which imposes weaker assump-

tions. However, both methods assumed common covariate effects on survival for different

latent classes, which is less flexible in capturing the heterogeneity of covariate effects. In

addition, little attention was paid to deriving asymptotic theories of the estimators for the

semi-parametric latent class models.

Motivated by the limitations of the existing methods, we provide a semi-parametric frame-

work for the latent class analysis of survival data, to investigate the heterogeneity of disease

population and its implications for disease progression. We impose weaker assumptions

of unspecified baseline cumulative hazard function, which improves flexibility compared to

the existing methods with parametric assumptions. We also enables class-specific covariate

effects in both latent class probability submodel and survival submodel, such that the het-

erogeneity can be better detected and interpreted. In addition, our framework focuses on

the heterogeneity in time-to-event distribution, such that the resulting latent class patterns

are not interfered by other phenotypes with limited contribution to understanding survival

heterogeneity.
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Technically, we utilize non-parametric maximum likelihood estimator (Zeng and Lin, 2007,

NPMLE) approach to incorporate the the infinite-dimensional component of baseline cu-

mulative hazard function. Due to the finite mixture structure of latent class problems,

the finite-dimensional and infinite-dimensional components are entangled in the likelihood

function, which creates further challenges of establishing asymptotic properties and con-

ducting variance estimation. We address this difficulty using an approach similar to that

used by Mao and Lin (2017). To handle unobservable latent class labels, we derive a sta-

ble expectation-maximization (EM) algorithm which can be easily assembled by existing

software or algorithm. According to our numerical experience, the algorithm is robust to

initialization and achieves impressive results with non-informative initial values. Moreover,

asymptotic theories are rigorously established by empirical process arguments (van der

Vaart and Wellner, 1996) and semi-parametric efficiency results (Bickel et al., 1993). We

also provide alternative strategies for inference, based on either information matrix, or pro-

file likelihood (Murphy and van der Vaart, 2000). Furthermore, we give recommendations

in model selection criteria in selecting the most appropriate number of latent classes.

3.2 Data, notation and models

3.2.1 Data and notations

Let T and C respectively denote time to event of interest and time to independent censoring

of T . Let x denote a p× 1 vector of baseline covariates. Define T̃ = T ∧C and ∆ = I(T ≤

C). The observed data consist of n independent and identically distributed replicates of

O = (T̃ ,∆,x), denoted by {Oi = (T̃i,∆i,xi), i = 1, . . . , n}. The latent classes are denoted

by an unobservable L×1 vector of binary indicators, ξ = (ξ1, . . . , ξL), where L is the number

of latent classes, and ξl = 1 if belonging to the lth class and 0 otherwise.
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3.2.2 The assumed models

In this work we assume that the marginal density of time-to-event observation (T̃ ,∆) can

be captured by a finite mixture model (McLachlan and Peel, 2000) with L components

f(T̃ ,∆) =

L∑
l=1

plfl(T̃ ,∆),

where pl is the probability of belonging to class l and fl(T̃ ,∆) is the class-specific density of

(T̃ ,∆) for class l. Our modeling strategy involves a class membership probability submodel

for pl and a class-specific survival submodel for fl(T̃ ,∆).

For the class membership probability submodel, we utilize a standard latent polytomous

logistic regression model (Bandeen-Roche et al., 1997) to account for the effect of baseline

covariates on the relative frequency of latent classes:

Pr(ξl = 1|x) = pl(x;α) =
exp(x̃Tαl)∑L
d=1 exp(x̃Tαd)

, l = 1, . . . , L, (3.2.1)

where x̃ = (1,xT )T , α1 = 0 for identifiability consideration, and α = (α2, . . . ,αL)T is the

vector of unknown parameters with length (p+ 1)× (L− 1).

For the class-specific survival submodel, we propose a semi-parametric class-specific propor-

tional hazards model. Without loss of generality, we let the first class be the reference class

with hazard function λ(t|ξ1 = 1) = λ0(t) exp(x̄T ζ1), where λ0(t) is the unspecified baseline

hazard function for the reference class, x̄ is a q× 1 subvector of x with q ≤ p, and ζ1 is the

q × 1 unknown covariate effect in the reference class model. For other classes l = 2, . . . , L

that is not the first class, we assume λ(t|ξl = 1) = λ0(t) exp{al+x̄T (ζ1 +ζl)}, where exp(al)

is a constant ratio between the baseline hazard functions of class l and class 1, and ζl is the

q×1 difference of covariate effects between class l and class 1. Let zl = (x̄T ,0T(q+1)×(L−1))
T ·

I(l = 1) + (x̄T , (el−1 ⊗ x̃)T )T · I(l > 1) and γ = (ζT1 , a2, ζ
T
2 , a3, ζ

T
3 , . . . , aL, ζ

T
L)T , where 0d

represents a d−vector of zeros, el−1 represents a (L − 1)−vector whose (l − 1)th element

is 1 and other elements are zero, x̃ = (1, x̄T )T , and ⊗ denotes Kronecker product operator.

Then it follows a universal expression of the class-specific hazard functions for class 1 to
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class L

λ(t|ξl = 1) = λ0(t) exp(zTl γ), l = 1, . . . , L, (3.2.2)

where γ is the vector of unknown parameters with length q × L + (L − 1). The according

class-specific density of (T̃ ,∆) satisfies

fl(T̃ ,∆|x;θ) = {λ0(T̃ ) exp(zTl γ)}∆ exp{−Λ0(T̃ ) exp(zTl γ)},

where Λ0(t) =
∫ t

0 λ0(s)ds and θ = {γT ,Λ(·)}T . Then the finite mixture framework implies

that the conditional density of (T̃ ,∆) given x satisfies

f(T̃ ,∆|x;α,θ) =

L∑
l=1

pl(x,α)fl(T̃ ,∆|x;θ). (3.2.3)

3.3 Estimation and inference

Based on the assumed models in Section 3.2, in this section we derive the likelihood function

and the associated estimation and inference procedures. Due to the complications caused

by the missingness of latent class memberships ξ, and the non-parametric assumption of

the baseline cumulative hazard function Λ0(·), it is not straightforward to maximize the

likelihood function for the observed data. As a natural solution, we utilize non-parametric

maximum likelihood estimators (NPMLE) technique to account for the unobservable ξ

by an Expectation-Maximization (EM) algorithm, and to facilitate inference for the non-

parametric estimator Λ̂(·) of Λ0(·).

3.3.1 Observed data likelihood

Under the assumed finite mixture model (3.2.3), and submodels (3.2.1) and (3.2.2) we obtain

the observed data likelihood

L(α,γ,Λ;O) =
n∏
i=1

{ L∑
l=1

pl(xi;α){λ(T̃i) exp(zTilγ)}∆i exp{−Λ(T̃i) exp(zTilγ)}
}
fX(xi),

(3.3.1)
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where fX(·) is the density function of x. Note that fX(xi) is a constant with respect to

unknown parameters α,γ and Λ, thus is omitted in further derivations.

3.3.2 EM algorithm for point estimation

Assuming ξ are observed, the complete data likelihood corresponding to the observed data

likelihood (3.3.1) satisfies

Lc(α,γ,Λ; ξ,O) =
n∏
i=1

L∏
l=1

{
pl(xi;α){λ(T̃i) exp(zTilγ)}∆i exp{−Λ(T̃i) exp(zTilγ)}

}I(ξil=1)

.

We further treat Λ(·) as piecewise constant between observed event times. That is, Λ(t) =∑
j:tj≤t Λ{tj} with Λ{tj} = dj , where t1 < t2 < . . . < tm are distinct uncensored event times.

Denote the cumulative hazard function Λ(tj), at tj , j = 1, . . . ,m, as Λj . Then the corre-

sponding log complete data likelihood satisfies

`c(α,γ,Λ; ξ,O) =

m∑
j=1

L∑
l=1

ξ(j)l

{
log Λ{tj}+ zT(j)lγ − e

zT
(j)l
γ
Λj

}

−
m∑
j=1

∑
k:tj≤T̃k<tj+1

I(∆k = 0)
L∑
l=1

ξkle
zTklγΛj

+

n∑
i=1

L∑
l=1

ξil log pl(xi;α),

(3.3.2)

where ξ(j)l and z(j)l represents the membership indicator ξl and covariate vector zl for the

observation with uncensored failure time tj , j = 1, . . . ,m.

In the E-step, we calculate the expectation, E{`c(α,γ,Λ; ξ,O)|O,α(j),γ(j),Λ(j)}, of the

log complete data likelihood (3.3.2), conditioned on observable data O and the current

estimates of unknown parameters α(j),γ(j),Λ(j) at the arbitrary jth iteration. Because of

the simplicity of (3.3.2) with respect to ξ, it is straightforward to see

E{`c(α,γ,Λ; ξ,O)|O,α(j),γ(j),Λ(j)} = `c{α,γ,Λ; Ê(ξ),O},

where Ê(ξil) ≡ E(ξil|Oi;α
(j),γ(j),Λ(j)). Note E(ξil|Oi;α,γ,Λ) = Pr(ξil = 1|Oi;α,γ,Λ)
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is the posterior membership probability which can be derived by Bayes’ Rule Pr(ξil =

1|Oi;α,γ,Λ) = Pr(ξil = 1, T̃i,∆i|xi;α,γ,Λ)/ Pr(T̃i,∆i|xi;α,γ,Λ). That is,

Ê(ξil) = Pr(ξil = 1|Oi;α
(h),γ(h),Λ(h)) =

pl(xi;α
(h))fl(T̃i,∆i|xi;γ(h),Λ(h))∑L

d=1 pd(xi;α
(h))fd(T̃i,∆i|xi;γ(h),Λ(h))

.

(3.3.3)

The resulting conditional expectation `c{α,γ,Λ; Ê(ξ),O}, denoted by Q(α,γ,Λ), serves

as the target function to be maximized in the subsequent M-step.

In the M-step, we adopt a profile likelihood strategy to maximize Q(α,γ,Λ) by profiling out

Λ, where Λ is treated as an m-dimensional unknown parameter Λ{tk} = dk, k = 1, . . . ,m.

First, with fixed α and γ, we find Λ̂(t;γ) = arg maxΛQ(α,γ,Λ) by solving

∂

∂dk
Q(α,γ,Λ) =

1

dk
−
∑

i:T̃i≥tk

L∑
l=1

Ê(ξil)e
zTilγ = 0, k = 1, . . . ,m.

That is, d̂k(γ) = {
∑

i:T̃i≥tk
∑L

l=1 Ê(ξil)e
zTilγ}−1, k = 1, . . . ,m and

Λ̂(t;γ) =
∑
k:tk≤t

d̂k(γ) =

∫ t

0

∑n
i=1 dNi(s)∑n

i=1

∑L
l=1 Ê(ξil)Yi(s)e

zTilγ
, (3.3.4)

where N(t) = I(T̃ ≤ t,∆ = 1) and Y (t) = I(T̃ ≥ t). Then by plugging in Λ̂(t;γ), we obtain

the profile complete data log likelihood Qp(α,γ) ≡ Q{α,γ, Λ̂(t;γ)}:

Qp(α,γ) =

n∑
i=1

L∑
l=1

∫ t∗

0
Ê(ξil)

{
log

1∑n
i=1

∑L
l=1 Ê(ξil)Yi(s)e

zTilγ
+ zTilγ

}
dNi(s)

+

n∑
i=1

L∑
l=1

Ê(ξil) log pl(xi;α),

(3.3.5)

where t∗ is a finite constant satisfying t∗ > tm. Then it is straightforward to find α̂ =

arg maxαQp(α,γ) and γ̂ = arg maxγ Qp(α,γ) by solving

∂

∂α
Qp(α,γ) =

n∑
i=1

L∑
l=1

Ê(ξil)
∂

∂α
log pl(xi;α) = 0
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and

∂

∂γ
Qp(α,γ) =

n∑
i=1

L∑
l=1

∫ t∗

0
Ê(ξil)

(
zil−

∑n
j=1

∑L
k=1 Ê(ξjk)Yj(u)zjk exp(zTjkγ)∑n

j=1

∑L
k=1 Ê(ξjk)Yj(u) exp(zTjkγ)

)
dNi(u) = 0

It is straightforward to show that solving ∂
∂αQp(α,γ) = 0 reduces to fitting a weighted

multinomial logistic regression with weights Ê(ξ), which can be easily implemented by R

package VGAM (Yee et al., 2010). In addition, equation ∂
∂γQp(α,γ) = 0 is equivalent to a

weighted partial score equation for the proportional hazard model with weights Ê(ξ). We

choose not to use existing Cox regression software to solve ∂
∂γQp(α,γ) = 0, which would

automatically account for the pseudo ties caused by repeatedly counting each observed event

(indexed by i) for multiple latent classes (indexed by l), making the resulting estimates not

accurately based on the estimating equation ∂
∂γQp(α,γ) = 0. Instead, we implement an

efficient Newton-Raphson algorithm under Rcpp environment (Eddelbuettel et al., 2011) to

ensure that the estimator is a rigorous solution of ∂
∂γQp(α,γ) = 0.

We initialize the EM algorithm with an initial guess of Ê(ξ), which can be obtained from

random guess or informative ways such as K-means clustering of T̃ . Then we repeat the

M-step and E-step until the stopping criterion is satisfied. We propose to use an Aitken

acceleration-based stopping criterion as described in McLachlan and Peel (2000, page 52).

Denote l(k) as the logarithm of the observed-data likelihood (3.3.1) evaluated using the

parameter estimation at the kth iteration. Define a(k) = (l(k+1) − l(k))/(l(k) − l(k−1)) and

l
(k+1)
A = l(k) + (l(k+1) − l(k))/(1− a(k)). The algorithm is stopped when |l(k+1)

A − l(k)
A | < tol,

where tol is the tolerance parameter. In practice, we let tol = 10−7 to ensure convergence

to a local optimum.

3.3.3 Asymptotic properties and variance estimation

In this section, We establish the consistency and asymptotic normality using NPMLE ar-

guments similar to those used in Zeng and Lin (2006) and Mao and Lin (2017). First we

give the following regularity conditions:

(C1) There exists t∗ > 0 such that Pr(C = t∗) > 0 and Pr(C > t∗) = 0;
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(C2) For l = 1, . . . , L, Pr(ξl = 1|x;α) ∈ (0, 1).

(C3) ||α0|| < ∞; ||γ0|| < ∞; ||zl|| < ∞ for l = 1, . . . , L; Λ0 is continuously differentiable

with Λ′(t) > 0 on [0, t∗], where || · || denotes the Euclidean norm.

Conditions (C1)-(C3) are reasonable in practical applications. Condition (C1) is commonly

satisfied by administrative censoring, which also helps prove the uniform consistency of Λ(·)

on [0, t∗]. Condition (C2) ensures that the latent class membership probabilities pl(x;α)

is greater than zero, which further guarantees that log pl(x;α) has a finite lower bound.

Condition (C3) assumes the smoothness of Λ(·) and the boundedness of α0, γ0 and baseline

covariates x. Proofs of the following two theorems are provided in Appendix sections 3.7.1

and 3.7.2.

Theorem 3.3.1. Under regularity conditions (C1)-(C3), α̂, γ̂ and Λ̂ are strongly consis-

tent. That is, ||α̂−α0||+ ||γ̂ − γ0||+ supt∈[0,t∗] |Λ̂(t)− Λ0(t)| → 0 almost surely.

Theorem 3.3.2. Under regularity conditions (C1)-(C3),
√
n(α̂−α0) and

√
n(γ̂−γ0) con-

verges to multivariate zero-mean Gaussian distributions;
√
n{Λ̂(t) − Λ0(t)} converges to a

univariate zero-mean Gaussian process on t ∈ [0, t∗]. In addition, α̂ and γ̂ are semipara-

metric efficient as defined in Bickel et al. (1993).

Variance estimation can be conducted based on the information matrix of the observed-data

profile log-likelihood (Murphy and van der Vaart, 2000), defined by

pl(α,γ) ≡ `{α,γ, Λ̂(α,γ);O},

where Λ̂(α,γ) = argmaxΛ`(α,γ,Λ;O). Given the point estimates (α̂T , γ̂T )T , we obtain

Λ̂(α̂, γ̂) by running the aforementioned EM algorithm with α̂ and γ̂ fixed, and only updating

Λ̂(·) by formula (3.3.4) and Ê by formula (3.3.3) until convergence. Then it follows an

estimation of the profile log-likelihood p̂l(α̂, γ̂) = `{α̂, γ̂, Λ̂(α̂, γ̂);O}. Let p̂lj(α̂, γ̂) be the

subject j’s contribution to p̂l(α̂, γ̂). The covariance matrix of θ̂ = (α̂T , γ̂T )T ∈ Rr, where
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r = (p+ 1)× (L− 1) + q × L+ L− 1, can be estimated by the inverse of

n∑
j=1


p̂lj(θ̂+hnε1)−p̂lj(θ̂−hnε1)

2hn
...

p̂lj(θ̂+hnεr)−p̂lj(θ̂−hnεr)

2hn


⊗2

,

where εk is the kth canonical vector in Rr, d⊗2 = ddT , and hn is a constant of order

n−1/2. In the numerical studies, we used hn = 5n−1/2 as used by Gao and Chan (2019).

Unlike the numerical approximation of Hessian matrix as used in Murphy and van der

Vaart (2000), we utilize the outer product of the first order numerical differences, which

is computationally more affordable and guarantees that the resulting covariance matrix

estimator is positive definite. Alternatively, an analytical consistent variance estimator can

be constructed based on similar arguments as in Zeng and Lin (2006), which allows inference

for Λ̂(t) in addition to α̂ and γ̂. Details about the analytical variance estimator are provided

in Appendix Section 3.7.3. Compared to the numerical variance estimator based on profile

likelihood, the analytical variance estimator typically requires inverse matrix computation

for a covariance matrix with much higher dimension due to the inclusion of cumulative

hazard function, which might cause less stable numerical performance. Thus, we report

inference for α̂ and γ̂ based on the profile likelihood approach in our simulation and real

application analysis. In contrast, inference for Λ̂(t) is based on the analytical approach.

3.3.4 Selecting the number of latent classes

In practice, it is usually of interest to determine the number of latent classes, L, using data-

driven criteria. Standard model selection criteria for likelihood-based latent class meth-

ods include the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). It is also common to use entropy-based criteria, such as integrated complete-data

likelihood (Biernacki et al., 2000, ICL-BIC) and classification entropy extended BIC (Hart

et al., 2020, CE-BIC). A standardized entropy index (Muthén et al., 2002), defined as

1−
∑n

i=1

∑L
l=1 Ê(ξil|Oi; α̂, γ̂, Λ̂){− log Ê(ξil|Oi; α̂, γ̂, Λ̂)}

n logL
,
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is another commonly used metric to assess the level of uncertainty of latent classes in a fitted

model. When the latent classes are well separated, the estimated posterior class membership

probability Ê(ξil|Oi; α̂, γ̂, Λ̂) is close to either one or zero, such that the corresponding

standardized entropy index is close to one. According to our simulation analysis detailed in

Section 3.4.2, BIC is the most effective criterion to determine L for the proposed method.

3.3.5 Assessing the prediction performance

Define S(t|x, ξl = 1) = Pr(T ≥ t|x, ξl = 1), l = 1, . . . , L as the class-specific survival

function, and G(u) = Pr(C ≥ u) as the survival function of the censoring at time u. We

evaluate the prediction performance of the proposed latent class model by the Brier Score,

defined as E[{I(T ≥ t)− Ŝ(t|x)}2], where

Ŝ(t|x) =

L∑
l=1

P̂r(ξl = 1|x)Ŝ(t|x, ξl = 1) =

L∑
l=1

pl(x; α̂) exp{−Λ̂(t) exp(zTl γ̂)} (3.3.6)

is the predicted survival probability at time t given baseline covariates x. Here the predicted

survival probability Ŝ(t|x) can be interpreted as a weighted summation of predicted class-

specific survival probabilities Ŝ(t|x, ξl = 1) = exp{−Λ̂(t) exp(zTl γ̂)}, with estimated class

membership probabilities P̂r(ξl = 1|x) = pl(x; α̂) as weights. In practice, we observe

Y (t) = I(T̃ ≥ t) instead of I(T ≥ t). To account for the censoring status of T̃ , we adapt the

two types of estimators of the Brier Score as defined by formulae 12 and 13 in Proust-Lima

et al. (2014), namely data-based Brier Score

B̂S1(t) =
1

n

n∑
i=1

{
I(T̃i > t)

Ĝ(t)
{1− Ŝ(t|xi)}2 +

∆iI(T̃i ≤ t)
Ĝ(T̃i)

{0− Ŝ(t|xi)}2
}

and model-based Brier Score

B̂S2(t) =
1

n

n∑
i=1

[
I(T̃i > t){1− Ŝ(t|xi)}2 + ∆iI(T̃i ≤ t){0− Ŝ(t|xi)}2

+ (1−∆i)I(T̃i ≤ t)
{
{1− Ŝ(t|xi)}2

Ŝ(t|xi)
Ŝ(T̃i|xi)

+ {0− Ŝ(t|xi)}2
(

1− Ŝ(t|xi)
Ŝ(T̃i|xi)

)}]
.
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Here an estimate Ĝ(·) of the survival function for censoring can be obtained by either

Kaplan-Meier or regression models.

In numerical analysis, we conduct 5-fold cross validation, fit models on the training set,

and estimate the Brier Score B̂S
(f)
j (t), j = 1, 2, f = 1, . . . , 5 for the testing set of the fth

cross-validation fold for a given range of t. Then we report the average Brier score B̂Sj(t) =

1
5

∑5
f=1 B̂S

(f)
j (t) among folds to assess the prediction performances. We use Kaplan-Meier

estimator to estimate Ĝ(·) in our estimation of Brier Scores.

3.4 Simulation study

We conducted simulation studies to evaluate the finite-sample performance of the proposed

method in terms of parameter estimation, and selecting the number of classes L. In addition,

we compared the proposed method and the standard proportional hazard model in terms of

goodness-of-fit and prediction. With L = 2 or 3, we generated a two-dimensional baseline

covariate vector x = (x1, x2), where x1 is a binary Bernoulli(0.5) random variable and

x2 is a continuous Uniform(0, 1) random variable. Then the latent class label vector

ξ was generated from a Multinomial(1, {p1(x;α), . . . , pL(x;α)}T ) distribution following

model (3.2.1). Given latent classes, the time-to-event T was generated from class-specific

distribution function FT (t|ξl = 1) = 1 − exp{0.1(1 − et) exp(zTl γ)}, l = 1, . . . , L derived

from model (3.2.2) with λ0(t) = 0.1(et−1). Then we generated independent censoring time

C as the minimum of an Exponential(r) variable and a Uniform(5, 6) variable.

Table 3.1: Choices of parameters in the five simulation scenarios.

Censoring Parameters in
parameter model (3.2.1) α Parameters in model (3.2.2) γ

Simulation scenarios r α2 α3 ζ1 a2 ζ2 a3 ζ3,1

L = 2

scenario (I) 0.1 (log(2),0,0)

NA

(-2,0) 2 (2,2)

NA NA
scenario (II) 0.1 (log(2),0,0) (-2,0) 0 (2,2)
scenario (III) 0.6 (log(2),0,0) (-2,0) 2 (2,2)
scenario (IV) 0.1 (2,-4,0) (0,-3) 0.5 (0,6)

L = 3 scenario (V) 0.1 (0,-0.5,0) (0,0,0.5) (-2,-2) 2 (2,2) 4 (4,4)
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Table 3.1 summarizes the choice of r, α and γ in five simulation scenarios. For scenarios

with L = 2 (I,II,III,IV), scenario (I) served as a benchmark with relatively light censoring

rate (r = 0.1) and less overlapped survival distributions (a2 = 2) among the two classes. In

contrast, scenario (II) created more overlapped survival distributions (a2 = 0) while scenario

(III) created heavy censoring (r = 0.6). Scenario (IV) considered a special situation where

covariate x1 had a large effect size (α2,1 = −4) on class probability pl(x;α) but no covariate

effect (ζ1,1 = ζ2,1 = 0) in survival submodel, while x2 had zero covariate effect (α2,2 = 0)

on class probability but a large effect size (ζ1,2 = −3, ζ2,2 = 6) in survival submodel. In our

description later, the scenario (IV) is refer to as the scenario with “separation of covariate

effects in submodels”. Compared to scenario (I), scenario (IV) had slightly heavier censoring

with similar overlapped level of survival distributions among the two classes. With three

latent classes, scenario (V) was comparable to scenario (I) in terms of censoring and the

overlapping among class-specific survival distributions. Empirical metrics of censoring and

overlapping among classes for the five scenarios can be found in Table 3.2.

Table 3.2: Convergence rate, median standardized entropy index and median censoring rate
out of 10000 simulations for the five simulation scenarios with non-informative initialization.

Simulation scenarios Sample size Convergence Median entropy Median censoring

L = 2

scenario (I) 1000 97.66% 0.7667 11%
scenario (II) 1000 97.38% 0.4348 17%
scenario (III) 1000 96.06% 0.6228 38%
scenario (IV) 1000 97.20% 0.7766 19%

1000 97.68% 0.7585 15%
L = 3 scenario (V) 2000 98.14% 0.7660 15%

3000 95.29% 0.7717 15%

3.4.1 Estimation of parameters

To evaluate parameter estimation, we conducted 10000 simulations, with sample size n =

1000 for scenarios (I)-(IV) and sample sizes n = 1000, 2000 and 3000 for scenario (V).To

initialize the algorithm, we used a perturbed Ê(ξ) from the true latent class labels ξ. In

addition, the variance estimation for {α̂T , γ̂T }T was conducted using the profile likelihood

approach, while the variance estimation for Λ̂(·) was conducted using the observed-data log-
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likelihood approach. We seldom observed non-convergent estimates defined as the outlying

point estimates whose L2 norms
√
|α̂−α0|2 + |γ̂ − γ0|2 were greater than the median

L2 norm out of 10000 results plus 5 times median absolute deviation (MAD). Table 3.2

displays convergence rate, median standardized entropy index, and median censoring rate for

different simulation scenarios out of 10000 simulations. Table 3.2 indicates that compared

to the benchmark scenario (I), more mixed survival distributions (II), heavier censoring

(III), or larger number of L (V) would result in more non-convergent results. In addition,

heavier censoring (III) would also result in a lower standardized entropy index, suggesting

that censoring intensified the fuzziness of the mixtures. Moreover, scenario (IV) displays

similar level of mixture as scenario (I), with a slightly higher censoring rate.

The simulation results for four representative parameters, α2,2, ζ1,1, a2 and Λ(3), are shown

in Table 3.3. Full results for all unknown parameters are available in Tables 3.6 and 3.7 in

Appendix section 3.7.4. As observed, under scenario (I) and (IV) the proposed estimator

achieved very small median biases and accurately estimated standard errors. The coverage

probabilities of the 95% confidence intervals are close to 0.95 for both regression coefficient

α̂, γ̂ and infinite-dimensional Λ̂(t). Compared to scenario (I) and (IV), fuzzier mixture

pattern in scenario (II) and heavier censoring in scenario (III) result in larger median

biases for most parameters. In addition, a slight underestimation of the standard errors

is observed for scenario (II) and scenario (III), such that the coverage probabilities are

slightly lower than 0.95, in particular for â2. For simulation (V) with three latent classes,

the estimation tends to be unstable with smaller sample size 1000, showing higher biases

in the proportionality parameters â2 and â3 and regression parameters ζ̂21 and ζ̂22. This

is probably due to insufficient sample size, which in particular damages estimation for the

parameters corresponding to the second class which overlaps with both class 1 and class

3. As sample size grows to 2000 and 3000, an improvement in median biases and coverage

probabilities is observed. However, compared to scenarios (I)-(IV) with two classes, the

proposed method requires a larger average sample size from each class to detect the mixture

pattern of time-to-event distribution.
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Table 3.3: Median bias (M.Bias), standard deviation (SE), median standard error estimate
(SEE), and coverage probability (CP) of parameters α̂2,2, ζ̂1,1, â2 and Λ̂(3) out of 10000
simulations with non-informative initialization..

n Scenarios α̂2,2 ζ̂1,1

M.Bias SE SEE CP Bias SE SEE CP
1000 (I) -0.015 0.304 0.296 0.949 -0.023 0.197 0.201 0.957
1000 (II) 0.005 0.517 0.500 0.945 -0.045 0.319 0.313 0.956
1000 (III) -0.035 0.417 0.380 0.936 -0.069 0.429 0.404 0.963
1000 (IV) -0.011 0.668 0.695 0.962 -0.013 0.204 0.206 0.951
1000 (V) 0.013 0.606 0.532 0.908 -0.063 0.256 0.229 0.941
2000 (V) 0.012 0.397 0.381 0.936 -0.036 0.157 0.152 0.947
3000 (V) 0.020 0.314 0.312 0.944 -0.024 0.122 0.120 0.952

â2 Λ̂(3)

M.Bias SE SEE CP Bias SE SEE CP
1000 (I) 0.011 0.446 0.412 0.941 -0.008 0.352 0.344 0.951
1000 (II) 0.023 0.441 0.406 0.930 0.010 0.540 0.503 0.952
1000 (III) 0.010 0.729 0.616 0.918 0.000 0.772 0.675 0.940
1000 (IV) 0.003 0.311 0.309 0.952 0.018 0.488 0.450 0.941
1000 (V) -0.868 1.229 0.783 0.675 0.196 0.643 0.566 0.904
2000 (V) -0.515 0.884 0.653 0.789 0.060 0.414 0.410 0.935
3000 (V) -0.346 0.679 0.562 0.863 0.019 0.322 0.328 0.946

3.4.2 Determining the number of latent classes

We further conducted 1000 simulations for each of the five simulation scenarios with sample

size n = 1000. In each simulation, we fitted the proposed latent class model for L ∈

{2, 3, 4, 5} with algorithms initialized by K-means clustering. Then we compared model

selection criteria for the models with different choices of L.

As shown in Figure 3.1, BIC correctly selected L in all 1000 simulations when the two

latent classes are well separated (I), even if heavily censored (III). BIC also performed well

under heavy mixture (II), with separated covariate effects in submodels (IV), and three-class

(V) scenarios. Compared to BIC, AIC tended to select a larger number of latent classes,

particularly for the heavy mixture scenario (II). In terms of entropy-based criteria, we found

that the standardized entropy index tended to select incorrect L, which also explained that

the classification entropy extended BIC (CE-BIC) performed worse than the standalone

BIC. Similar results were also observed when there were three latent classes in scenario (V).
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Figure 3.1: Percentage of latent classes selected by different model selection criteria out of
1000 simulations under simulation scenarios (I)-(V).

The superiority of BIC over entropy-based criteria can be explained by the fact that the

proposed method is a likelihood-based method. According to the performance in the five

scenarios, BIC is the most effective criterion in selecting L. We also utilized BIC to select

L in our real data application in Section 2.5.

3.4.3 Goodness-of-fit and prediction

For each of the five simulation scenarios, we further simulated 1000 datasets with sample

size 1000. For each simulated dataset, we conducted five-fold cross-validation as described

in Section 3.3.5 to obtain the averaged estimates B̂S1(t) and B̂S2(t) of the Brier Score for a

standard Cox regression model and the proposed latent class model. We set the upper bound

of time interval t∗ = 5 for scenarios (I) - (IV) and t∗ = 5.75 for scenarios (V) to cover the

support of time-to-event. Note that the Cox regression model is a special case of the latent

class model with L = 1. Therefore, under the Cox regression model we have Pr(ξ1 = 1|x) =

1 and the predicted survival function Ŝ(t|x) = Ŝ(t|x, ξl = 1) = exp{−Λ̂(t) exp(xT ζ̂1)} is

solely based on the single class (or class 1) considered in the model.

Figure 3.2, and Figures 3.5-3.8 in Appendix section 3.7.4, shows the obtained time-dependent

Brier Score estimates for scenarios (IV), (I), (II), (III) and (V), respectively. Overall, the

proposed latent class model achieved consistently lower median average corss-validated Brier

Score estimates than those obtained by the Cox model in all simulation scenarios. As shown
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Figure 3.2: Boxplots for average cross-validated Brier Score B̂S1(t) and B̂S2(t), t ∈ (0, 5],
from 1000 simulations under scenario (IV) with sample size 1000, for the Cox model and
the proposed latent class model with L = 2.

in Figures 3.5-3.8, however, only minor improvements can be recognized for scenarios (I),

(II), (III) and (V), where baseline covariate effects are present in both class probability sub-

model and class-specific survival submodel. In contrast, the improvement is obvious under

scenario (IV), where we have separation of covariate effects in submodels. Under this situa-

tion, covariates have different effects towards class membership probability and class-specific

survival, which is difficult to be captured by a single-class standard Cox model.

3.5 Real data example

We applied our method to investigate the heterogeneity of mild cognitive impairment (MCI)

using time-to-dementia data collected for 5348 patients in the Uniform Data Set between

September 2005 and June 2015 by the U.S. National Alzheimer’s Coordinating Center. 1501

patients developed dementia during the follow up, showing a high censoring rate of 72%.

We incorporated patients’ baseline cognitive characteristics as covariates, including overall

cognition (Mini-mental state examination, MMSE), executive functions (Trail making test

B , TB, and Digit symbol, DS), memory (logical memory delayed, LMD, and category
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fluency, CF), language (Boston naming, BN), and attention (Trail making test A, TA, and

digit span forward, DSF). In addition, patients’ baseline number of impaired instrumental

activities of daily living (IADLs), number of neuropsychiatric symptoms (NPI-Q), binary

measure of depression (GDS), indicator of cerebrovascular disease (EH), and baseline age

(AGE) were also included as baseline covariates. Detailed descriptions about the dataset

and covariates were reported in Hanfelt et al. (2018).

High heterogeneity of the MCI population indicates that there exist MCI subgroups associ-

ated with a specific cognitive domain or domains. Thus, it is expected that the progression

to dementia for different MCI subgroups are driven by their corresponding domain factors.

We applied the proposed latent class model to investigate such heterogeneity in terms of

the importance and effect sizes of baseline covariates.

We first decided the best number of classes L. Specifically, we fitted the proposed models

with L classes with random initialization for multiple times, then selected the model with the

smallest BIC as the best L-class model. We conducted the above procedure for L ∈ {2, 3, 4}.

The 2-class model obtains the smallest BIC (24481) compared to the 3-class model (24625)

and the 4-class model (24797), where the BIC shows an increasing trend as L increases from

2 to 4. Thus, we regard the 2-class model as the best latent class model.

3.5.1 Summary statistics of the obtained two latent classes

According to the fitted latent class model with two latent classes, we assign patients to

the two classes by modal assignment. That is, we assign each patient to the class with the

highest posterior membership probability Ê(ξ). As Table 3.4 shows, 69% of the patients

are assigned to class 1, while 31% of the patients are assigned to class 2. Comparing the

two classes, the first class had significantly smaller MMSE compared to the second class,

showing better overall cognitive status. Moreover, class 1 was generally better than class 2

in most of the domain-specific scores, apart from the Boston Naming test associated with

the language domain. In addition, patients in class 2 were older than those in class 1. In

terms of time-to-event, patients in class 1 generally took longer than patients in class 2 to
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Table 3.4: Summary statistics of the baseline covariates for the two latent classes, based on
modal assignment of class identity.

Covariates Class 1, N = 37141 Class 2, N = 16341 p-value2

T̃ 1.83 (0.00, 3.42) 1.08 (0.00, 2.08) <0.001
∆3 683 (18%) 818 (50%) <0.001
MMSE -0.99 (-2.20, 0.00) -2.09 (-3.78, -0.85) <0.001
TB4 0.42 (-0.22, 1.42) 1.71 (0.52, 4.02) <0.001
DS -0.52 (-1.19, 0.11) -1.38 (-2.01, -0.80) <0.001
LMD -1.23 (-2.05, -0.41) -1.52 (-2.34, -0.65) <0.001
CF -0.75 (-1.35, -0.12) -1.31 (-1.90, -0.73) <0.001
BN -0.61 (-1.88, 0.22) -0.47 (-1.55, 0.29) <0.001
TA4 0.12 (-0.44, 0.90) 0.70 (-0.07, 1.73) <0.001
DSF -0.29 (-0.88, 0.49) -0.44 (-0.98, 0.39) <0.001
EH 224 (6.0%) 104 (6.4%) 0.6
IADLs 1 (0, 2) 4 (2, 6) <0.001
NPI-Q 1 (0, 2) 2 (1, 4) <0.001
GDS 694 (19%) 279 (17%) 0.2
AGE -0.20 (-0.81, 0.41) 0.22 (-0.38, 0.77) <0.001

1 Median (IQR); n (%)
2 Wilcoxon rank sum test; Pearson’s Chi-squared test
3 Number of patients diagnosed with dementia
4 Larger Trails B and Trails A scores indicate worse conditions.

reach dementia during the follow-up, where only 18% of patients developed dementia in

class 1 but half of patients developed dementia in class 2.

3.5.2 Parameter estimation and interpretation

In order to demonstrate the utility of the proposed method in investigating the heterogene-

ity in covariate importance and effect sizes, we compare the point estimation, confidence

interval and interpretations of the standard single-class Cox model and the proposed la-

tent class model with L = 2 by Table 3.5. From the Cox model (ζ̂ in Table 3.5), it is

clear that patients with worse baseline conditions in different cognitive domains (executive

function, memory, language and attention), functional abilities, behavioral scales and aging

tended to have increased hazard, or earlier onset, of dementia. However, this overall picture

revealed by the Cox regression model cannot conduct more detailed investigations on the
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correspondence between the MCI subtypes and the associated domain factors.

In contrast, our proposed latent class model were able to capture the heterogeneous associ-

ations between baseline characteristics and dementia, with sensible clinical interpretations.

According to the point estimates for the class membership probability submodel (α̂ in Ta-

ble 3.5), younger MCI patients with more severe problems in language domain (BN) were

more likely to belong to the first latent class, while older MCI patients with worse executive

functions (TB and DS) and impaired functional abilities (IADLs) were more likely to belong

to the second class.

The class-specific survival submodel revealed further heterogeneity of covariate effects (ζ̂1

and ζ̂2 in Table 3.5) on survival. First of all, we found for both classes worse baseline

overall cognition (MMSE) had statistically significant effect in increasing the hazard of

dementia. In addition, memory loss (LMD) had significant effect for both classes but with

fairly different effect sizes. In contrast, the effects of worse executive functions (TB and DS)

were statistically significant only for the second class, while problems in language domain

(BN), functional abilities (IADLs), behaviors (NPI-Q) and age (AGE) had significant effect

only for the first class.

Combining our class probability submodel and class-specific survival submodel, we were

able to correspond the two data-driven classes to meaningful clinical MCI subgroups. The

first class were younger multi-domain amnestic MCI patients with early onset of language

problem, which might be relevant to primary progressive aphasia occurring before memory

related symptoms (Rogalski et al., 2016). In contrast, the second class were older multi-

domain amnestic MCI patients with impaired executive functions, which appeared to be

have more typical symptoms of Alzheimer’s Disease.

3.5.3 Assessment of goodness-of-fit and prediction performances

We assessed the goodness-of-fit of our latent class model by comparing the Kaplan-Meier

curve of time-to-dementia for the MCI population, and the estimated survival probability

curve from the model, calculated by averaging the predicted survival probability (3.3.6) for
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Figure 3.3: Blue dashed and dotted lines (Class 1 and Class 2): Predicted class-specific
survival probabilities by the latent class model. Blue solid line (Overall): Predicted overall
survival probability by the latent class model. K-M: Estimated Kaplan-Meier curve for
overall survival probability.

all patients at each uncensored event time. As shown in Figure 3.3, the Kaplan-Meier curve

(referred to as “K-M”) is very close to the survival curve based on the proposed model

(referred to as “Overall”), indicating reasonable goodness-of-fit. In Figure 3.3, we also plot

the average class-specific survival probabilities for all patients at each observed event time.

As observed, the survival curve for class 1 is higher than the curve for class 2, indicating

that patients in class 1 had slower progression towards dementia.

As we did in simulation, we compared the proposed method and the Cox regression model

in prediction by cross-validated average Brier Scores B̂S1(t) and B̂S2(t) for t ∈ (0, 8]. As

shown in Figure 3.4, our proposed method achieved lower Brier Scores in five-fold cross

validation, which is consistent with our observation in the simulation study. Similar to

simulation scenario (IV), in real application we also observe separation of covariate effects

(Table 3.5) in submodels for covariates MMSE, LMD, and NPI-Q, which explains the big
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Figure 3.4: Average of 5-fold cross-validated Brier Scores, B̂Sj(t), j = 1, 2, obtained by the
Cox model and the proposed latent class model with L = 2, for the UDS data application.

improvement in Brier Scores made by the latent class model. These further demonstrated

that the prediction of the survival outcome can be improved by capturing the mixture

structure of a heterogeneous population.

3.6 Discussion

In this article, we propose a semi-parametric approach to jointly modeling the latent class

structure and the time-to-event outcome. By utilizing non-parametric maximum likelihood

estimator (NPMLE) technique, the proposed method facilitates valid inference for both

covariate effects and hazard functions following rigorous asymptotic theory, and is expected

to be more robust than fully parametric methods. Our method also flexibly captures class-

specific covariate effects in both latent class membership probabilities and class-specific

hazard functions.

Instead of including both longitudinal and time-to-event information in the joint frame-

work, we only consider time-to-event outcome in our method. Our treatment circumvents

the popular but unreliable conditional independence assumption. Based on a similar finite

mixture structure as used in the proposed method, further extensions can be studied to
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account correlated structure of longitudinal data and survival data, while keeping the ro-

bust semi-parametric submodels developed in this method and for longitudinal observations

(Hart et al., 2020, for example).

Computationally, we develop a stable EM algorithm which ensures increasing observed data

likelihood in each iteration. The algorithm is efficiently implemented in Rcpp (Eddelbuettel

and Sanderson, 2014) format and is publicly available as an R package.

3.7 Appendices

3.7.1 Proof of Theorem 3.3.1

Let α̂, γ̂ and Λ̂ be the maximum likelihood estimator corresponding to the observed data

log-likelihood. Now define N(t) = I(T̃ ≤ t,∆ = 1), Ñ(t) = I(T̃ ≤ t,∆ = 0) and let Pn, P

denote the empirical measure and probability measure, respectively. Then the log-likelihood

` satisfies n−1`(α,γ,Λ;O) ≡ `n(α,γ,Λ), where

`n(α,γ,Λ) =Pn

∫ t∗

0

[
log

{ L∑
l=1

pl(x;α)ez
T
l γ exp

(
−
∫ t

0
ez

T
l γdΛ(s)

)}
+ log Λ{t}

]
dN(t)

+Pn

∫ t∗

0
log

{ L∑
l=1

pl(x;α) exp

(
−
∫ t

0
ez

T
l γdΛ(s)

)}
dÑ(t).

Let W denote the space of functions on [0, t∗] that are uniformly bounded by 1 and with

total variation bounded by 1. Define U = {u ∈ R(p+1)×(L−1) : ||u|| ≤ 1} and V =

{v ∈ Rq×L+L−1 : ||v|| ≤ 1}. Let u ∈ U , v ∈ V, and h ∈ W. Then (α,γ,Λ) can be

identified as elements in the space of bounded functions on U × V ×W, `∞(U × V ×W),

by uTα + vTγ +
∫ t∗

0 hdΛ. Similarly,
√
n(α̂ − α0, γ̂ − γ0, Λ̂ − Λ0) can also be identified in

`∞(U × V ×W) by

√
n(α̂−α0, γ̂ − γ0, Λ̂− Λ0)[u,v, h] =

√
n{uT (α̂−α0) + vT (γ̂ − γ0) +

∫ t∗

0
hd(Λ̂− Λ0)}.

Proof. Step 1. We show by contradiction that Λ̂(t∗) < ∞. Condition (C1) indicates that
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for large n, there exists an observation with probability one such that T̃ = t∗ and ∆ = 0.

If Λ̂(t∗) =∞, then

Pn

∫ t∗

0
log

{ L∑
l=1

pl(x;α) exp

(
−
∫ t

0
ez

T
l γdΛ(s)

)}
dÑ(t) = −∞

and thus `n(α,γ,Λ) = −∞. Therefore, it must satisfy Λ̂(t∗) <∞ to maximize `n.

Step 2. We show that lim supn Λ̂(t∗) < ∞ by contradiction. By conditions (C2) and (C3)

there exists a constant M such that |zTl γ| ≤ M for any γ and zl, and pl(x;α) ∈ (0, 1) for

any x and α. Define Λ̄(t) = [Λ̂(t) ∧ M̃ ] ∨ M̃/2, where M̃ = e−M{log(ε0)}−1 for a chosen

ε0 ∈ (0, 1).

By definition of MLE `n(α̂, γ̂, Λ̂) ≥ `n(α̂, γ̂, Λ̄). Assuming that lim supn Λ̂(t∗) = ∞, then

by the following inequality

log(
L∑
l=1

al) ≤
L∑
l=1

log al + logL,

we have

`n(α̂, γ̂, Λ̂) ≤Pn
L∑
l=1

∫ t∗

0

{
log pl(x; α̂)−

∫ t

0
ez

T
l γ̂dΛ̂(s)

}
d{N(t) + Ñ(t)}

+Pn

L∑
l=1

zTl γ̂dN(t∗) +Pn

L∑
l=1

∫ t∗

0
log Λ̂{t}dN(t) + logLPn{N(t∗) + Ñ(t∗)}

≤ −Pn
L∑
l=1

∫ t∗

0

∫ t

0
ez

T
l γ̂dΛ̂(s)d{N(t) + Ñ(t)}+ LMPndN(t∗)

+Pn

L∑
l=1

∫ t∗

0
log Λ̂{t}dN(t) + logLPn{N(t∗) + Ñ(t∗)} → −∞.

On the other hand, by the following inequality

log(

L∑
l=1

al) ≥
1

L

L∑
l=1

log al
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we have

`n(α̂, γ̂, Λ̄) ≥ 1

L

[
Pn

L∑
l=1

∫ t∗

0

{
log pl(x; α̂)−

∫ t

0
ez

T
l γ̂dΛ̄(s)

}
d{N(t) + Ñ(t)}

+Pn

L∑
l=1

zTl γ̂dN(t∗) +Pn

L∑
l=1

∫ t∗

0
log Λ̄{t}dN(t)

]

≥ 1

L

[
Pn

L∑
l=1

{
log pl(x; α̂)− M̃eM

}
d{N(t∗) + Ñ(t∗)}

+Pn

L∑
l=1

zTl γ̂dN(t∗) +
L∑
l=1

log
M̃

2
PndN(t∗)

]

=
1

L

[
Pn

L∑
l=1

{
log pl(x; α̂) + {log(ε0)}−1

}
d{N(t∗) + Ñ(t∗)}

+Pn

L∑
l=1

zTl γ̂dN(t∗) +
L∑
l=1

{−M − log(− log(ε0))− log 2}PndN(t∗)

]
> −∞.

The above contradiction shows that lim supn Λ̂(t∗) <∞. By Helly’s selection theorem there

exists a converging subsequence such that α̂→ α∗, γ̂ → γ∗ and Λ̂→ Λ∗.

Step 3. We show that the limit of the subsequence mentioned in the end of step 2 are

α0,γ0 and Λ0. Define Λε(t) =
∫ t

0{1 + εh(s)}dΛ(s), where h(t) ∈ W, the space of functions

on [0, t∗] that are uniformly bounded by 1 and with total variation bounded by 1. Then

we obtain the derivative of log-likelihood `n(α,γ,Λε) with respect to ε at 0, denoted by

˙̀
n,Λ(α,γ,Λ)[h]:

˙̀
n,Λ(α,γ,Λ)[h] =Pn

∫ t∗

0

[ L∑
l=1

τl(t;O,α,γ,Λ)

{
−
∫ t

0
h(s)ez

T
l γdΛ(s)

}
+ h(t)

]
dN(t)

+Pn

∫ t∗

0

[ L∑
l=1

τ̃l(t;O,α,γ,Λ)

{
−
∫ t

0
h(s)ez

T
l γdΛ(s)

}]
dÑ(t),

(3.7.1)

where

τil(t;Oi,α,γ,Λ) =
pl(xi;α)fl(T̃i = t,∆i = 1|xi;γ,Λ)∑L
d=1 pd(xi;α)fd(T̃i = t,∆i = 1|xi;γ,Λ)

=
pl(xi;α) exp(zTilγ) exp{−

∫ t
0 e
zTilγdΛ(s)}∑L

d=1 pd(x;α) exp(zTidγ) exp{−
∫ t

0 e
zTilγdΛ(s)}
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and

τ̃il(t;Oi,α,γ,Λ) =
pl(xi;α)fl(T̃i = t,∆i = 0|xi;γ,Λ)∑L
d=1 pd(xi;α)fd(T̃i = t,∆i = 0|xi;γ,Λ)

=
pl(xi;α) exp{−

∫ t
0 e
zTilγdΛ(s)}∑L

d=1 pd(x;α) exp{−
∫ t

0 e
zTilγdΛ(s)}

.

By changing the order of integration we have

˙̀
n,Λ(α,γ,Λ)[h] =Pn

∫ t∗

0
h(s)dN(s)−Pn

L∑
l=1

∫ t∗

0
h(s)ez

T
l γ

∫ t∗

s
τl(t;O,α,γ,Λ)dN(t)dΛ(s)

−Pn
L∑
l=1

∫ t∗

0
h(s)ez

T
l γ

∫ t∗

s
τ̃l(t;O,α,γ,Λ)dÑ(t)dΛ(s).

By definition of the NPMLE, ˙̀
n,Λ(α̂, γ̂, Λ̂)[h] = 0 for all h ∈ W. By taking h(·) = I(· ≤ t),

we have

Λ̂(t) =

∫ t

0

PndN(s)

φn(s; α̂, γ̂, Λ̂)
,

where

φn(t;α,γ,Λ) = Pn

L∑
l=1

ez
T
l γ

{∫ t∗

t
τl(s;O,α,γ,Λ)dN(s) +

∫ t∗

t
τ̃l(s;O,α,γ,Λ)dÑ(s)

}
.

By definition and regularity conditions (C1) - (C3), τ(·) ∈ (0, 1) and τ̃(·) ∈ (0, 1) for all

t ∈ [0, t∗], thus both τ(·) and τ̃(·) are uniformly bounded away from zero. Then we can

find neighborhoods A of α∗, Γ of γ∗, B of Λ∗, such that {τl(t;O,α,γ,Λ) : t ∈ [0, t∗], l =

1, . . . , L,α ∈ A,γ ∈ Γ,Λ ∈ B} and {τ̃l(t;O,α,γ,Λ) : t ∈ [0, t∗], l = 1, . . . , L,α ∈ A,γ ∈

Γ,Λ ∈ B} are Donsker thus Glivenko-Cantelli. Then by Glivenko-Cantelli theorem

sup
t∈[0,t∗],α∈A,γ∈Γ,Λ∈B

|φn(t;α,γ,Λ)− φ∗(t;α,γ,Λ)| → 0,

where

φ∗(t;α,γ,Λ) = P
L∑
l=1

ez
T
l γ

{∫ t∗

t
τl(s;O,α,γ,Λ)dN(s) +

∫ t∗

t
τ̃l(s;O,α,γ,Λ)dÑ(s)

}
.
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Then by step 2 and the continuity of φn in α, γ and Λ, we have

sup
t∈[0,t∗]

|φn(t; α̂, γ̂, Λ̂)− φ∗(t;α∗,γ∗,Λ∗)|

≤ sup
t∈[0,t∗]

|φn(t; α̂, γ̂, Λ̂)− φn(t;α∗,γ∗,Λ∗)|

+ sup
t∈[0,t∗]

|φn(t;α∗,γ∗,Λ∗)− φ∗(t;α∗,γ∗,Λ∗)| → 0.

In addition, we also have supt∈[0,t∗] |PndN(t)− PdN(t)| → 0. Then we define

Λ̃(t) =

∫ t

0

PndN(s)

φn(s;α0,γ0,Λ0)
.

Then by previous derivations,

Λ̃(t)→
∫ t

0

PdN(s)

φ∗(s;α0,γ0,Λ0)
= Λ0(t)

uniformly. Now define

`(α,γ,Λ) =P

∫ t∗

0

[
log

{ L∑
l=1

pl(x;α)ez
T
l γ exp

(
−
∫ t

0
ez

T
l γdΛ(s)

)}
+ log Λ{t}

]
dN(t)

+ P

∫ t∗

0
log

{ L∑
l=1

pl(x;α) exp

(
−
∫ t

0
ez

T
l γdΛ(s)

)}
dÑ(t).

Then by definition of NPMLE, `n(α̂, γ̂, Λ̂) − `n(α0,γ0, Λ̃) ≥ 0, thus limn{`n(α̂, γ̂, Λ̂) −

`n(α0,γ0, Λ̃)} ≥ 0. However, we can also show that

lim
n
{`n(α̂, γ̂, Λ̂)− `n(α0,γ0, Λ̃)} = `(α∗,γ∗,Λ∗)− `(α0,γ0,Λ0) ≤ 0.

Therefore, `(α∗,γ∗,Λ∗) = `(α0,γ0,Λ0) and by regularity conditions (C1)-(C3), α∗ = α0,

γ∗ = γ0 and Λ∗(t) = Λ0(t). Thus the consistency follows.
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3.7.2 Proof of Theorem 3.3.2

Proof. We use Theorem 19.26 from Van der Vaart (2000) to conduct the proof. In addition

to the score function ˙̀
n,Λ for Λ derived in (3.7.1), we also derive the score functions for α

and γ as following

˙̀
n,α(α,γ,Λ) =Pn

∫ t∗

0

L∑
l=1

τl(t;O,α,γ,Λ)
∂

∂α
log pl(x;α)dN(t)

+Pn

∫ t∗

0

L∑
l=1

τ̃l(t;O,α,γ,Λ)
∂

∂α
log pl(x;α)dÑ(t);

˙̀
n,γ(α,γ,Λ) =Pn

∫ t∗

0

L∑
l=1

τl(t;O,α,γ,Λ)

{
zl −

∫ t

0
zle

zTl γdΛ(s)

}
dN(t)

−Pn
∫ t∗

0

L∑
l=1

τ̃l(t;O,α,γ,Λ)

∫ t

0
zle

zTl γdΛ(s)dÑ(t).

Let

˙̀
α(α,γ,Λ) =

∫ t∗

0

L∑
l=1

τl(t;O,α,γ,Λ)
∂

∂α
log pl(x;α)dN(t)

+

∫ t∗

0

L∑
l=1

τ̃l(t;O,α,γ,Λ)
∂

∂α
log pl(x;α)dÑ(t);

˙̀
γ(α,γ,Λ) =

∫ t∗

0

L∑
l=1

τl(t;O,α,γ,Λ)

{
zl −

∫ t

0
zle

zTl γdΛ(s)

}
dN(t)

−
∫ t∗

0

L∑
l=1

τ̃l(t;O,α,γ,Λ)

∫ t

0
zle

zTl γdΛ(s)dÑ(t);

˙̀
Λ(α,γ,Λ)[h] =

∫ t∗

0

[ L∑
l=1

τl(t;O,α,γ,Λ)

{
−
∫ t

0
h(s)ez

T
l γdΛ(s)

}
+ h(t)

]
dN(t)

+

∫ t∗

0

[ L∑
l=1

τ̃l(t;O,α,γ,Λ)

{
−
∫ t

0
h(s)ez

T
l γdΛ(s)

}]
dÑ(t).

Then there exists δ > 0 such that the class of functions{
˙̀
α(α,γ,Λ), ˙̀γ(α,γ,Λ), ˙̀

Λ(α,γ,Λ)[h] :

||α−α0||+ ||γ − γ0||+ sup
t∈[0,t∗]

|Λ(t)− Λ0(t)| < δ, h ∈ W
}
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is Donsker. Define Gn =
√
n(Pn − P ). Then by consistency of (α̂, γ̂, Λ̂), the continuity of

the score functions and the dominated convergence theorem,

sup
u,v,h

∣∣∣∣Gn{uT ˙̀
α(α̂, γ̂, Λ̂) + vT ˙̀

γ(α̂, γ̂, Λ̂) + ˙̀
Λ(α̂, γ̂, Λ̂)[h]}

−Gn{uT ˙̀
α(α0,γ0,Λ0) + vT ˙̀

γ(α0,γ0,Λ0) + ˙̀
Λ(α0,γ0,Λ0)[h]}

∣∣∣∣→ 0.

The next step is to show that the map W : `∞(U ,V,W)→ `∞(U ,V,W) defined by

W (α,γ,Λ)[u,v, h] = P{uT ˙̀
α(α,γ,Λ) + vT ˙̀

γ(α,γ,Λ) + ˙̀
Λ(α,γ,Λ)[h]}

is Fréchet-differentiable at (α0,γ0,Λ0) with a derivative V (u,v, h) that has a continuous

inverse. By direct calculation, we can show that

∂

∂ε

∣∣∣∣
ε=0

W (α0 + εũ,γ0 + εṽ,Λ0 + ε

∫
h̃dΛ0)[u,v, h]

= ũTBα[u,v, h] + ṽTBγ [u,v, h] +

∫ t∗

0
BΛ[u,v, h]h̃(s)dΛ0(s),

where the operator B[u,v, h] ≡ (Bα,Bγ , BΛ)[u,v, h] can be rewritten as

−


u

v

φ∗(t;α0,γ0,Λ0)h(t)



+


uTϕ1(α0,γ0,Λ0) + vTϑ1(α0,γ0,Λ0) +

∫
ν1(α0,γ0,Λ0)h(t)dΛ0(t) + u

uTϕ2(α0,γ0,Λ0) + vTϑ2(α0,γ0,Λ0) +
∫
ν2(α0,γ0,Λ0)h(t)dΛ0(t) + v

uTϕ3(α0,γ0,Λ0) + vTϑ3(α0,γ0,Λ0) +
∫
ν3(α0,γ0,Λ0)h(t)dΛ0(t)

 .

(3.7.2)

Detailed calculations for Bα,Bγ and BΛ can be found in the next subsection. We need to

show that the operator B is invertible on its range.

By definition of φ∗(t;α,γ,Λ), it is clear that φ∗(t;α,γ,Λ) > 0 for any choice of (α,γ,Λ).

Thus, the first term in (3.7.2) is an invertible operator. In addition, by conditions (C2)

and (C3) the second term is a compact operator. Then we can show B is invertible by

showing B is one-to-one. That is, if B(u,v, h) = 0 then (u,v, h) = 0. Now assuming that
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B(u,v, h) = 0 for some (u,v, h) ∈ U × V ×W, it follows that

∂

∂ε

∣∣∣∣
ε=0

W (α0 + εũ,γ0 + εṽ,Λ0 + ε

∫
h̃dΛ0)[u,v, h] = 0,

which further indicates that the score function across the path (α0 + εũ,γ0 + εṽ,Λ0 +

ε
∫
h̃dΛ0) is zero. That is, with probability one

uT ˙̀
α(α0,γ0,Λ0) + vT ˙̀

γ(α0,γ0,Λ0) + ˙̀
Λ(α0,γ0,Λ0)[h] = 0.

By setting dN(t) = 1, we have for arbitrary t

L∑
l=1

τl(t;O,α0,γ0,Λ0)

{
uT

∂

∂α
log pl(x;α0) + {vTzl + h(t)}

−
(∫ t

0
{vTzl + h(t)}ezTl γ0dΛ0(s)

)}
= 0.

The above equation holds only when u = 0 and vTzl + h(t) = 0. Since vTzl is a constant

and h(·) is an arbitrary function in W, the only solution which satisfies vTzl + h(t) = 0

for arbitrary t is v = 0 and h(·) = 0. Thus, B is one-to-one and consequently invertible,

such that the derivative of W is also invertible. Now let (ũ, ṽ, h̃) = B−1(u,v, h) for some

(u,v, h) ∈ U × V ×W, then it follows by Theorem 19.26 from Van der Vaart (2000) that

uniformly in (u,v, h),

√
n{uT (α̂−α0) + vT (γ̂ − γ0) +

∫ t∗

0
hd(Λ̂− Λ0)}

= −Gn{ũT ˙̀
α(α0,γ0,Λ0) + ṽT ˙̀

γ(α0,γ0,Λ0) + ˙̀
Λ(α0,γ0,Λ0)[h̃]}+ op(1).

Thus,
√
n{α̂−α0, γ̂ − γ0, Λ̂− Λ0} is asymptotically Gaussian. By similar semiparametric

efficiency arguments (Bickel et al., 1993) as also used in (Zeng and Lin, 2006) and (Mao

and Lin, 2017), the estimators (α̂T , γ̂T )T for the parametric component of the model are

asymptotically semiparametric efficient.
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3.7.3 Analytical variance estimator

By similar arguments as in Zeng and Lin (2006), a consistent variance estimator for
√
n{uT (α̂−

α0) + vT (γ̂ − γ0) +
∫ t∗

0 hd(Λ̂− Λ0)} can be constructed as

V̂ = (uT ,vT ,HT )Î−1
n


u

v

H

 ,

where nÎn is the empirical information matrix of the observed-data log-likelihood `(α,γ,Λ;O),

which treats Λ(·) as a piecewise constant function, and H is a vector of length m with jth

component equal to h(tj). Then it is straightforward to obtain variance estimations for

(α̂T , γ̂T )T and Λ̂(·) with appropriate choices of u, v and h. Since Λ(t) is positive, the 95%

confidence interval is constructed by log-transformation

(
Λ̂(t) exp

{
−1.96ŜE{Λ̂(t)}

Λ̂(t)

}
, Λ̂(t) exp

{
1.96ŜE{Λ̂(t)}

Λ̂(t)

})
,

where ŜE{Λ̂(t)} is the estimated standard error of Λ̂(t).

Calculation related to the proof of Theorem 3.3.2

By direct calculation, we can show that

∂

∂ε

∣∣∣∣
ε=0

W (α0 + εũ,γ0 + εṽ,Λ0 + ε

∫
h̃dΛ0)[u,v, h]

= ũTBα[u,v, h] + ṽTBγ [u,v, h] +

∫ s

0
BΛ[u,v, h]h̃(s)dΛ0(s),
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where the operator B[u,v, h] = (Bα,Bγ , BΛ)[u,v, h] satisfies

Bα[u,v, h] =P

[ ∫ t∗

0

{ L∑
l=1

τl0(t)
∂2

∂α2
log pl(x;α0)u

+Bα,l(t)

(
∂

∂α
log pl(x;α0)Tu+ zTl v −

∫ t

0
zTl e

zTl γ0dΛ0(s)v

)}
dN(t)

+

∫ t∗

0

{ L∑
l=1

τ̃l0(t)
∂2

∂α2
log pl(x;α0)u

+ B̃α,l(t)

(
∂

∂α
log pl(x;α0)Tu−

∫ t

0
zTl e

zTl γ0dΛ0(s)v

)}
dÑ(t)

+
L∑
l=1

∫ t∗

0
ez

T
l γ0

(
−
∫ t∗

s
Bα,l(t)dN(t)−

∫ t∗

s
B̃α,l(t)dÑ(t)

)
h(s)dΛ0(s)

]
;

Bγ [u,v, h] =P

[ ∫ t∗

0

{ L∑
l=1

τl0(t)

(
−
∫ t

0
z⊗2
l ez

T
l γ0dΛ0(s)

)
v

+Bγ,l(t)

(
∂

∂α
log pl(x;α0)Tu+ zTl v −

∫ t

0
zTl e

zTl γ0dΛ0(s)v

)}
dN(t)

+

∫ t∗

0

{ L∑
l=1

τ̃l0(t)

(
−
∫ t

0
z⊗2
l ez

T
l γ0dΛ0(s)

)
v

+ B̃γ,l(t)

(
∂

∂α
log pl(x;α0)Tu−

∫ t

0
zTl e

zTl γ0dΛ0(s)v

)}
dÑ(t)

−
L∑
l=1

∫ t∗

0
ez

T
l γ0

(∫ t∗

s
{zlτl0(t) +Bγ,l(t)}dN(t)

+

∫ t∗

s
{zlτ̃l0(t) + B̃γ,l(t)}dÑ(t)

)
h(s)dΛ0(s)

]
;

BΛ[u,v, h] =P

[ L∑
l=1

∫ t∗

0

{
{BΛ,l(s, 1) + B̃Λ,l(s, 1)} ∂

∂α
log pl(x;α0)Tu

+BΛ,l{s, zTl v −
∫ t

0
zTl ve

zTl γ0dΛ0(ṫ)}+ B̃Λ,l{s,−
∫ t

0
zTl ve

zTl γ0dΛ0(ṫ)}

+BΛ,l{s,−
∫ t

0
h(ṫ)ez

T
l γ0dΛ0(ṫ)}+ B̃Λ,l{s,−

∫ t

0
h(ṫ)ez

T
l γ0dΛ0(ṫ)}

+ h(s)ez
T
l γ0

(∫ t∗

s
τl0(t)dN(t) + τ̃l0(t)dÑ(t)

)}
h̃(s)dΛ0(s)

]
,
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where τl0(t) = τl(t;O,α0,γ0,Λ0), τ̃l0(t) = τ̃l(t;O,α0,γ0,Λ0) and

Bα,l(t) = τl0(t)
∂

∂α
log pl(x;α0)− τl0(t)

L∑
d=1

τd0(t)
∂

∂α
log pd(x;α0);

B̃α,l(t) = τ̃l0(t)
∂

∂α
log pl(x;α0)− τ̃l0(t)

L∑
d=1

τ̃d0(t)
∂

∂α
log pd(x;α0);

Bγ,l(t) = τl0(t)

{
zl −

∫ t

0
zle

zTl γ0dΛ0(s)

}
− τl0(t)

L∑
d=1

τd0(t)

{
zd −

∫ t

0
zde

zTd γ0dΛ0(s)

}
;

B̃γ,l(t) = τ̃l0(t)

{
−
∫ t

0
zle

zTl γ0dΛ0(s)

}
− τ̃l0(t)

L∑
d=1

τ̃d0(t)

{
−
∫ t

0
zde

zTd γ0dΛ0(s)

}
;

BΛ,l(s, g(ṫ)) = ez
T
l γ0

{∫ t∗

s
g(ṫ)τl0(ṫ)dN(ṫ)−

L∑
d=1

∫ t∗

s
g(ṫ)τl0(ṫ)τd0(ṫ)dN(ṫ)

}
;

B̃Λ,l(s, g(ṫ)) = ez
T
l γ0

{∫ t∗

s
g(ṫ)τ̃l0(ṫ)dN(ṫ)−

L∑
d=1

∫ t∗

s
g(ṫ)τ̃l0(ṫ)τ̃d0(ṫ)dN(ṫ)

}
.

Variance estimator components

B̂αα =

n∑
i=1

L∑
l=1

[
Ê(ξil)

{
∂2

∂α2
log pl(xi; α̂) +

(
∂

∂α
log pl(xi; α̂)

)⊗2

−
L∑
d=1

Ê(ξid)
∂

∂α
log pl(xi; α̂)

∂

∂α
log pd(xi; α̂)T

}]
;

B̂αγ =
n∑
i=1

L∑
l=1

[
Ê(ξil)

{
∂

∂α
log pl(xi; α̂)

(
zTil∆i − zTilez

T
il γ̂Λ̂(T̃i)

)

−
L∑
d=1

Ê(ξid)
∂

∂α
log pl(xi; α̂)

(
zTid∆i − zTidez

T
idγ̂Λ̂(T̃i)

)}]
;

B̂αΛ = [B̂αΛ1 , B̂αΛ2 , . . . , B̂αΛm ], where

B̂αΛj =
∑

i:T̃i≥tj

L∑
l=1

[
Ê(ξil)

{
∂

∂α
log pl(xi; α̂)

{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}

−
L∑
d=1

Ê(ξid)
∂

∂α
log pl(xi; α̂)

{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}}]
, j = 1, . . . ,m;
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B̂γγ =
n∑
i=1

L∑
l=1

[
Ê(ξil)

{
− z⊗2

il e
zTil γ̂Λ̂(T̃i) +

(
zil∆i − zilez

T
il γ̂Λ̂(T̃i)

)⊗2

−
L∑
d=1

Ê(ξid)

(
zil∆i − zilez

T
il γ̂Λ̂(T̃i)

)(
zTid∆i − zTidez

T
idγ̂Λ̂(T̃i)

)}]
;

B̂γΛ = [B̂γΛ1 , B̂γΛ2 , . . . , B̂γΛm ], where

B̂γΛj =
∑

i:T̃i≥tj

L∑
l=1

[
Ê(ξil)

{
− zilez

T
il γ̂

+

(
zil∆i − zilez

T
il γ̂Λ̂(T̃i)

){I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}
−

L∑
d=1

Ê(ξid)

(
zil∆i − zilez

T
il γ̂Λ̂(T̃i)

){I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}}]
, j = 1, . . . ,m;

B̂ΛΛ is a m×m matrix with diagonal entries

B̂ΛjΛj = − 1

d2
j

+
∑

i:T̃i≥tj

L∑
l=1

[
Ê(ξil)

{{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}2

−
L∑
d=1

Ê(ξid)
{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}{I(T̃i = tj ,∆i = 1)

di
− ezTidγ̂

}}]
, j = 1, . . . ,m

and off-diagonal entries

B̂ΛjΛk
=

∑
i:T̃i≥max{tj ,tk}

L∑
l=1

[
Ê(ξil)

{{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}2

−
L∑
d=1

Ê(ξid)
{I(T̃i = tj ,∆i = 1)

di
− ezTil γ̂

}{I(T̃i = tj ,∆i = 1)

di
− ezTidγ̂

}}]
, j = 1, . . . ,m.
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3.7.4 Additional tables and figures for simulation results

Table 3.6: Simulation results for the simulation scenarios (I) - (IV) out of 10000 simulations
with sample size n = 1000 and non-informative initialization. M.Bias: Median bias; SE:
standard deviation; SEE: median standard error estimate; CP: coverage probability.

Scenario (I) Scenario (II)

M.Bias SE SEE CP M.Bias SE SEE CP
α̂2,0 0.014 0.267 0.255 0.941 0.003 0.580 0.560 0.947
α̂2,1 0.007 0.201 0.192 0.943 0.000 0.503 0.477 0.945
α̂2,2 -0.015 0.304 0.296 0.949 0.005 0.517 0.500 0.945
â2 0.011 0.446 0.412 0.941 0.023 0.441 0.406 0.930

ζ̂11 -0.023 0.197 0.201 0.957 -0.045 0.319 0.313 0.956

ζ̂12 0.009 0.256 0.258 0.953 -0.004 0.347 0.340 0.943

ζ̂21 0.018 0.214 0.218 0.959 0.032 0.313 0.308 0.960

ζ̂22 0.003 0.296 0.302 0.958 0.019 0.399 0.402 0.953

Λ̂(2) -0.004 0.163 0.165 0.956 -0.004 0.212 0.197 0.940

Λ̂(3) -0.008 0.352 0.344 0.951 0.010 0.540 0.503 0.952

Λ̂(4) 0.034 1.146 1.051 0.944 0.151 1.606 1.345 0.950

Scenario (III) Scenario (IV)

M.Bias SE SEE CP M.Bias SE SEE CP
α̂2,0 0.018 0.381 0.340 0.924 0.018 0.488 0.504 0.960
α̂2,1 0.021 0.258 0.234 0.936 -0.015 0.308 0.303 0.953
α̂2,2 -0.035 0.417 0.380 0.936 -0.011 0.668 0.695 0.962
â2 0.010 0.729 0.618 0.918 0.003 0.311 0.309 0.952

ζ̂11 -0.069 0.429 0.404 0.963 -0.013 0.204 0.206 0.951

ζ̂12 0.010 0.542 0.534 0.950 -0.023 0.249 0.251 0.953

ζ̂21 0.061 0.431 0.409 0.960 0.012 0.357 0.344 0.939

ζ̂22 0.022 0.547 0.545 0.949 0.038 0.332 0.336 0.955

Λ̂(2) 0.006 0.302 0.282 0.935 0.003 0.190 0.179 0.946

Λ̂(3) 0.000 0.772 0.675 0.940 0.018 0.488 0.450 0.941

Λ̂(4) 0.089 3.440 2.291 0.941 0.096 1.351 1.217 0.939
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Figure 3.5: Boxplots for average cross-validated Brier Score B̂S1(t) and B̂S2(t), t ∈ (0, 5],
from 1000 simulations under scenario (I) with sample size 1000, for the Cox model and the
proposed latent class model with L = 2.
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Figure 3.6: Boxplots for average cross-validated Brier Score B̂S1(t) and B̂S2(t), t ∈ (0, 5],
from 1000 simulations under scenario (II) with sample size 1000, for the Cox model and the
proposed latent class model with L = 2.
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Figure 3.7: Boxplots for average cross-validated Brier Score B̂S1(t) and B̂S2(t), t ∈ (0, 5],
from 1000 simulations under scenario (III) with sample size 1000, for the Cox model and
the proposed latent class model with L = 2.

0.0

0.1

0.2

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5 2

2
.2

5

2
.5

2
.7

5 3

3
.2

5

3
.5

3
.7

5 4

4
.2

5

4
.5

4
.7

5 5

5
.2

5

5
.5

5
.7

5

Time

B
S^

1
(t

):
 5

−
fo

ld
 c

ro
s
s
−

va
lid

a
te

d
 d

a
ta

−
b
a
s
e
d
 B

ri
e
r 

S
c
o
re

Scenario (V)

0.0

0.1

0.2

0
.2

5

0
.5

0
.7

5 1

1
.2

5

1
.5

1
.7

5 2

2
.2

5

2
.5

2
.7

5 3

3
.2

5

3
.5

3
.7

5 4

4
.2

5

4
.5

4
.7

5 5

5
.2

5

5
.5

5
.7

5

Time

B
S^

2
(t

):
 5

−
fo

ld
 c

ro
s
s
−

va
lid

a
te

d
 m

o
d
e
l−

b
a
s
e
d
 B

ri
e
r 

S
c
o
re

Scenario (V)

Methods Cox Model Latent Class Model

Figure 3.8: Boxplots for average cross-validated Brier Score B̂S1(t) and B̂S2(t), t ∈ (0, 5],
from 1000 simulations under scenario (V) with sample size 1000, for the Cox model and the
proposed latent class model with L = 3.
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Chapter 4

Semi-parametric Latent Class

Analysis for Joint Longitudinal and

Survival Data

4.1 Introduction

For diseases with heterogeneous subpopulations, such as mild cognitive impairment (MCI),

it is of critical clinical interest to investigate disease subtypes underlying patients’ longitudi-

nal trajectories and time-to-event, such that the etiologies and phenotypes associated with

different subtypes can be better understood and utilized for diagnosis and prediction. Data

from large scale longitudinal studies create an ideal platform for the subtype investigation.

Since 2005, the National Alzheimer’s Coordinating Center (NACC) has been conducting

annual neurological examinations for study participants with MCI (Weintraub et al., 2009;

Beekly et al., 2007), and recording milestone events such as death and drop-out. Up to

June 2015, the corresponding Uniform Data Set (UDS) of NACC has collected longitudinal

and time-to-event information for more than 5000 participants, which contains rich infor-

mation for a cohort of MCI patients. In particular, the UDS records patients’ progressive

history in multiple cognitive, functional and behavioral domains, which is highly relevant
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to the etiologies of neurodegeneration and the corresponding subtypes. In addition, the

observed time-to-death can be regarded as a consequence of disease progression reflected

by the patients’ longitudinal history, which may also provide valuable information about

the disease heterogeneity. Therefore, it is appealing to jointly model the longitudinal and

survival data, such that available information can be maximally utilized in the investigation

of disease subtypes.

One common approach to conduct jointly modeling of longitudinal and survival data, while

considering the heterogeneity of disease population, is the so-called shared random-effect

model (Henderson et al., 2000; Xu and Zeger, 2001, for example). This model framework

consists of a submodel for time-to-event and a submodel for longitudinal data, where the

two submodels are linked by a shared random effect, which introduces a latent structure to

capture the dependency structure between longitudinal and survival outcomes. One special

case is that the longitudinal trajectories are regarded as time-dependent covariates of the

survival submodel, such that different trajectory history will contribute to different survival

probability curves. While the shared random-effect model accounts for the heterogeneity

via a latent structure, it does not clearly define clinically interpretable disease subtypes. In

addition, the effect size of covariates is assumed to be constant across the whole population,

which may not fully capture the heterogeneity in terms of different effect sizes for different

subpopulations. As mentioned in Proust-Lima et al. (2014), moreover, fitting the shared

random-effect model can be computationally challenging due to the involvement of random

effect terms and the implementation of numerical integration.

Alternatively, finite mixture structure (McLachlan and Peel, 2000) has been studied to con-

struct latent class models of longitudinal and survival data (Lin et al., 2002; Larsen, 2004;

Proust-Lima et al., 2017, for example). Different from the shared random-effect model,

latent class models define a finite number of homogeneous classes, and assume that the lon-

gitudinal trajectories and time-to-event are independent of each other within a given class.

Such conditional independence assumption usually leads to separate estimation procedure

for the survival and longitudinal submodels in the M-step of expectation-maximization

(EM) algorithm, which largely reduces the computational burden. Coincidentally, this as-
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sumption has been widely adapted in the vast majority of existing latent class methods

(Lin et al., 2002; Larsen, 2004; Proust-Lima et al., 2017, for example). While the condi-

tional independence assumption brings computational convenience and becomes popular

in the existing methods, the assumption seems less appropriate for the realistic setting of

UDS. First, the longitudinal features collected in the UDS data are direct indicators of the

participants’ disease progression, which is likely to be correlated with time-to-death even

within a homogeneous latent class. Furthermore, the longitudinal features can be censored

by the terminal event of death. Given that the features and time-to-death are correlated,

it is necessary to account for the informative censoring of longitudinal features by a like-

lihood structure similar to the shared random-effect model, or using inverse probability

weighting (IPW) technique (Lin et al., 2004, for example) for the estimating equation of

the longitudinal submodel.

In terms of distribution assumptions, both shared random-effect models and joint latent

class models largely rely on parametric modeling and require specifying the distributions

for longitudinal trajectories and time-to-event outcome. Although parametric modeling en-

ables explicit forms of likelihood function, it also brings risks of model misspecification as

the underlying true distribution is usually unknown in real applications. Research has been

conducted to partially extend parametric modeling to semi-parametric modeling, aiming to

relax restrictive assumptions. For example, Larsen (2004) proposed semi-parametric Cox

model for the survival submodel of the finite mixture framework, while Hart et al. (2020)

introduced semi-parametric generalized estimating equation (GEE) for the longitudinal sub-

model. However, it is still a challenging task to utilize semi-parametric modeling for both

longitudinal and survival components in a concurrent manner.

To better identify MCI subtypes in the sense of longitudinal trajectories and associated

distribution of time-to-death, we study a novel semi-parametric latent class framework

for joint longitudinal and survival data. Our method absorbs the nice features of shared

random-effect models and latent class models to enhance the estimating procedure with

careful considerations of real world challenges reflected by the UDS data. Critically, the

within-class dependency of longitudinal and survival outcomes is naturally considered by
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incorporating longitudinal outcomes as time-dependent covariates in the survival submodel.

In addition, we utilize IPW technique to account for the informative censoring of longitudi-

nal observations due to death. Furthermore, the proposed method utilizes GEE submodel

for longitudinal trajectory and semi-parametric proportional hazards submodel for time-

to-event, which is highly flexible in handling non-Gaussian trajectory patterns and various

survival distributions.

One major challenge for the proposed method is to appropriately handle the longitudinal

outcomes as time-dependent covariates for the survival submodel. Since the observation

of a patient’s neurological examination scores implies that patient’s survival beyond time

of observation, the time-dependent covariates are “internal” as defined by Kalbfleisch and

Prentice (2011). We apply sequential ignorability assumption similar to that used in Lin

et al. (2004) to guarantee the interpretability of conditional survival probability at time of

longitudinal observation with the presence of internal covariates. With our careful model

specification, the class-specific proprotional hazards submodel with internal time-dependent

covariates is still easy to fit using standard software. For the estimation of class-specific GEE

model, in addition, sensible IPW terms can be obtained, based on the survival submodel,

to account for the informative censoring of longitudinal observations.

4.2 Data, notation and models

Let T and C respectively denote the time to failure and censoring. Define T̃ = min{T,C}

and ∆ = I(T ≤ C). Let Y (t) = {Y1(t), . . . , YJ(t)} denote a J × 1 vector of longitudinal

observations observed at time t for 0 ≤ t < T̃ . Let N(t) = I(T̃ ≤ t,∆ = 1), NC(t) = I(T̃ ≤

t,∆ = 0) and NV (t) =
∑∞

k=1 I(Vk ≤ t) be counting processes for failure, censoring and

number of observed visits by time t. Let R(t) = I(T̃ ≥ t) denote a left continuous at-risk

process. The observed visit times are V1 < . . . < VK < T̃ , where V1 = 0 and K is the

random number of visits before failure, or censoring such as loss of follow-up. Let X denote

a p × 1 vector of the baseline covariates which are time-independent. Then the observed
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longitudinal information from a participant up to time t can be represented by

Ȳ
obs

(t) = {Y (s) : 0 ≤ s ≤ t, dNV (s) = 1, N(s) = 0, NC(s) = 0}.

That is, we observe longitudinal outcomes Y (·) at each visit before failure or censoring oc-

curs (i.e. dNV (s) = 1, N(s) = 0, NC(s) = 0). We assume that the visit process NV (·) and

censoring time C are independent of Y (·) given baseline covariates X and class membership

ξ. We also assume that dN(t), dNC(t) and dNV (t) are mutually independent given infor-

mation {Ȳ obs
(t−),X, ξ}, prior to time t. In the whole dataset, we observe n independent

and identically distributed replicates of {T̃ ,∆, Ȳ obs
(VK),X}, denoted by

O = [Oi = {T̃i,∆i, Ȳ
obs
i (Vi,Ki),Xi}, i = 1, . . . , n].

We assume that there are L latent classes in the population. The unobserved latent class

labels are denoted by a L×1 vector ξ = (ξ1, . . . , ξL)T , where ξl equals one if the observation

belongs to the lth latent class and zero otherwise.

4.2.1 Latent class probability submodel

Under the setting of clinical research, patients with different characteristics may have varied

probabilities of belonging to certain latent disease subgroups, or latent classes. In addition,

different disease subgroups may have varied relative frequencies given the same patient

characteristics. To capture the above relationships between patient characteristics and

latent class membership probabilities, we utilize the latent polytomous logistic regression

model (Bandeen-Roche et al., 1997)

Pr(ξl = 1|X) = pl(X;α) =
exp(X̃

T
αl)∑L

d=1 exp(X̃
T
αd)

, l = 1, . . . , L, (4.2.1)

where X̃ = (1,XT )T and α = (αT1 , . . . ,α
T
L)T are unknown regression coefficients which

represents class-specific baseline covariate effects on the relative frequency of latent classes.
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For identifiability consideration, we set the first class as the reference class, where α1 = 0.

4.2.2 Class-specific generalized estimating equation submodel

In the UDS data, longitudinal patient characteristics are collected as different data types,

including continuous, count, and binary variables. The variety of data types motivates

us to use class-specific generalized estimating equation (GEE) to model the longitudinal

trajectories. Specifically, for class l = 1, . . . , L we have the marginal model

E{Yj(t)|X, ξl = 1} = µj,l(t,X;βj,l) = hj(X
T
t βj,l), j = 1, . . . , J (4.2.2)

for the first moment of Yj(t). Here h(·) is a prespecified link function corresponding to

the types of variable Yj(t), the covariates Xt = (1, t,XT )T consist of an intercept, a linear

term of time t, and baseline covariates X, and βj,l is the unknown class-specific regression

parameter. To capture non-linear changes in the h−1
j -transformed trajectory, it is straight-

forward to include a higher-order polynomial of t in the covariates Xt. Correspondingly to

the mean model, the second moment of Yj(t) is formulated as

σ2
j,l(t,X;φj,l,βj,l) = φj,lVj{µj,l(t,X;βj,l)}, j = 1, . . . , J, (4.2.3)

where Vj(·) is a data type-specific link function and φj,l is a class-specific scale parameter

accounting for dispersion. To capture the dependency of Yj(·) at different visit times, we

further propose to use autoregressive correlation structure for the covariance model with

class-specific correlation parameter ρj,l

Cov{Yj(s), Yj(t)|X, ξl = 1} = ηj,l(s, t,X; ρj,l, φj,l,βj,l)

= ρ
|t−s|
j,l φj,lV

1/2
j {µj,l(s,X;βj,l)}V

1/2
j {µj,l(t,X;βj,l)}, j = 1, . . . , J.

(4.2.4)

The key parameter of interest is the regression parameter for the mean model (4.2.2),

β = {βj,l, j = 1, . . . , J, l = 1, . . . , L}, which reflects the increasing or decreasing trend of
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class-specific trajectories and the potential covariate effects. We denote θ = {β,φ,ρ} =

{(βj,l, φj,l, ρj,l), j = 1, . . . , J, l = 1, . . . , L} as the collection of all unknown parameters

For the observed data for the jth longitudinal variable Ȳ
obs
j (VK) with visit times 0 =

V1 < V2 < . . . < VK < T̃ , we denote the class-specific mean vector across visit times

as µj,l(β) = {µj(V1, X̃,βj,l), . . . , µj(VK , X̃,βj,l)} and the class-specific k × k variance-

covariance matrix as Σj,l(θ), where the (v, v) entry of Σj,l(θ) is σ2
j (v, X̃;φj,l,βj,l) and

the (u, v) entry is ηj(u, v, X̃; ρj,l, φj,l,βj,l). For all longitudinal observations across J out-

comes, Ȳ
obs

(VK) = {Ȳ obs
1 (VK)T , . . . , Ȳ

obs
J (VK)T }T , the class specific mean vector and the

variance-covariance matrix are denoted as µl(β) = {µ1,l(β)T , . . . ,µJ,l(β)T }T and Σl(θ) =

blkdiag{Σ1,l(θ), . . . ,ΣJ,l(θ)}, where blkdiag refers to block diagonal matrix.

4.2.3 Class-specific Cox regression submodel

We assume a proportional hazards survival submodel with longitudinal history Ȳ
obs

(t)

as time-dependent covariates, which naturally accounts for the dependency between the

longitudinal variables and time-to-event information. Let Z(t) = {XT ,Y (t)T }T . We adapt

the sequential ignorability assumption similar to that used in Lin et al. (2004),

Pr{dN(t) = 1|Z̄obs
(t), ξl = 1} = Pr{dN(t) = 1|Z̄obs

(t−), ξl = 1}

= R(t)λl{t, Z̄
obs

(t−)}dt, l = 1, . . . , L,

(4.2.5)

where λl{t, Z̄
obs

(t−)} is the class-specific hazard of failure at time t based on the past

history Z̄
obs

(t−) prior to t. The above assumption indicates that the hazard at time t is

independent of the longitudinal observation Y (t) at time t given Z̄
obs

(t−). Emprically, this

assumption implies that the hazard of failure for a participant on time interval t ∈ (Vj , Vj+1]

only depends on the history of longitudinal observations Ȳ obs(Vj) up to time Vj . Even at

t = Vj+1, the hazard at the next infinitesimal interval is still independent of Y (Vj+1). Based

on the sequential ignorability assumption, we formulate our class-specific Cox regression

submodel as

λl{t, Z̄
obs

(t−)} = λ0l(t) exp{H(t)Tγl} (4.2.6)
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with unspecified infinite-dimensional class-specific baseline hazard λ0l(·), and class-specific

unknown regression parameters γl. Here, H(t) is a vector of prespecified function of t and

Z̄
obs

(t−). For example, one special case of H(t) is the set of baseline covariates and most

recent observation of Y (·) prior to t, H(t) = Z(t−). Note that the time-dependent covari-

ates H(t) in model (4.2.6) are internal covariates as defined by (Kalbfleisch and Prentice,

2011). By sequential ignorability assumption and the definition of H(t), however, it is

important to note that covariate for the hazard at time t, H(t), only implies observation of

Y (·) prior to time t. Empirically, this means the covariate H(Vj) for hazard at the jth visit

time Vj only implies patient’s survival beyond Vj−1, which is the time of the previous visit.

While the internal covariates and sequential ignorability assumption introduce some com-

plications as described above, the corresponding density function of (T̃ ,∆) is not different

from a standard formulation of time-to-event density

fl{T̃ ,∆|Z̄
obs

(VK); ζ} = [λ0l(T̃ ) exp{H(T̃ )Tγl}]∆ exp

{
−
∫ T̃

0
λ0l(t) exp{H(t)Tγl}dt

}
,

where ζ = [{γTl ,Λ0l(·)}T , l = 1, . . . , L] is the vector of unknown parameters with Λ0l(t) =∫ t
0 λ0l(s)ds. Due to the presence of internal covariates H(·), the exponentiated term

exp[−
∫ T̃

0 λ0l(t) exp{H(t)Tγl}dt] can no longer be interpreted as the survival probability.

Instead, it can be interpreted as a product integral of 1− λl{t, Z̄
obs

(t−)} on t ∈ [0, T̃ ].

4.3 Estimation

In this section, we derive estimating equations and the corresponding estimating procedures

for the unknown parameters, ψ = (αT ,θT , ζT )T , from the three submodels introduced in

Section 4.2. Since we do not have an explicit form of density function for the longitudinal

observation Ȳ
obs

(VK), it is not straightforward to derive an estimation procedure for θ from

an approach based on likelihood.
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4.3.1 Latent class probability submodel

Let τil{ψ;Oi} = Pr{ξil = 1|Oi;ψ} denote the posterior class membership probability

conditioned on all observed data Oi for subject i. In the subsequent illustration, we denote

τil(ψ;Oi) in short by τil. Then the estimating equation for the unknown parameter α from

the class probability submodel (4.2.1) can be constructed as

S1(α) =

n∑
i=1

L∑
l=1

τil
∂ log pl(Xi;α)

∂α
=

n∑
i=1

(τ i − pi)⊗ X̃ = 0, (4.3.1)

where τ i = (τi1, . . . , τiL)T , pi = (pi1, . . . , piL)T and ⊗ denotes the Kronecker product

operator. It is easy to see

E{S1(α)} =

n∑
i=1

E

{
E

(
(ξi − pi)⊗ X̃

∣∣∣∣Oi;ψ

)}
=

n∑
i=1

E

{
E

(
(ξi − pi)⊗ X̃

∣∣∣∣Xi;ψ

)}
= 0,

which indicates S(α) is an unbiased estimating equation. Given τ fixed, equation (4.3.1)

can be solved by standard solver for weighted multinomial logistic regression, such as VGAM

(Yee et al., 2010).

4.3.2 Class-specific Cox regression submodel

It directly follows from (4.2.5) and (4.2.6) that

E

{
dNi(u)−Ri(u)λ0l(u) exp{H i(u)Tγl}du

∣∣∣∣Z̄obs
(u−), ξil = 1

}
= 0, l = 1, . . . , L, (4.3.2)

which further implies

0 = E

{
ξil

(
dNi(u)−Ri(u)λ0l(u) exp{H i(u)Tγl}du

)∣∣∣∣Z̄obs
(u−)

}
= E

[
E

{
ξil

(
dNi(u)−Ri(u)λ0l(u) exp{H i(u)Tγl}du

)∣∣∣∣Oi

}∣∣∣∣Z̄obs
(u−)

]
= E

{
τil

(
dNi(u)−Ri(u)λ0l(u) exp{H i(u)Tγl}du

)∣∣∣∣Z̄obs
(u−)

}
, l = 1, . . . , L.

(4.3.3)
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Then for γ = (γT1 , . . . ,γ
T
L)T and Λ0(·) = {Λ01(·), . . . ,Λ0L(·)}, we can construct unbiased

estimating equations

S2(γ) =
L∑
l=1

n∑
i=1

∫ t∗

0
τilH i(u)

{
dNi(u)−Ri(u)λ0l(u) exp{H i(u)Tγl}du

}
= 0;

S3{dΛ(u)} =

L∑
l=1

n∑
i=1

τil

{
dNi(u)−Ri(u) exp{H i(u)Tγl}dΛl(u)

}
= 0.

(4.3.4)

Here t∗ is a finite constant that is larger than the maximum value of observed T̃ . With γ

and τ fixed, solving S3{dΛ(u)} = 0 at uncensored event times obtains a weighted Breslow’s

estimator of Λ(·)

Λ̂l(t; τ ,γ) =

∫ t

0

∑n
i=1 τildNi(s)∑n

i=1 τilRi(s) exp{H i(s)Tγl}
, l = 1, . . . , L. (4.3.5)

Then by plugging in dΛ̂(·) to S2(γ) we obtain a weighted partial score for γ

S2{γ; Λ̂l(t; τ ,γ)} =
L∑
l=1

n∑
i=1

∫ t∗

0
τil

(
H i(u)−

∑n
j=1 τjlRj(u)Hj(u) exp{Hj(u)Tγl}∑n

j=1 τjlRj(u) exp{Hj(u)Tγl}

)
dNi(u).

(4.3.6)

Given τ , it is straightforward to use standard Cox regression solver, such as coxph (Th-

erneau and Lumley, 2014), to solve (4.3.4) which reduce to (4.3.5) and (4.3.6).

4.3.3 Class-specific GEE submodel

Let NV
obs(t) =

∑∞
k=1 I(Vk ≤ t, T̃ ≥ Vk) denote the observed visiting process. To estimate

the parameters θ = (βT ,φT ,ρT )T from model (4.2.2), (4.2.3), it is critical to recognize that

longitudinal observations Y (·) is not independent of NV
obs(·) given X and ξ, although Y (·)

is independent of C and NV (·) according to our assumptions. We use inverse probability

weighting (IPW) technique to account for the dependency between Y (·) and NV
obs(·) con-

ditioned on X and ξ, such that the estimation for β in the mean model is unbiased. With

unbiased estimation for β, the scale parameter φ and the correlation structure parameter

ρ can also be estimated subsequently without bias.
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By the mean model in (4.2.2), it is clear that E{Y (t) − µl(t,X;β)|X, ξl = 1} = 0, where

Y (t) = {Y1(t), . . . , YJ(t)}T and µl(t,X;β) = {µ1,l(t,X;β), . . . , µJ,l(t,X;β)}T . Then the

key equation which leads to the unbiased estimating function of β is

E

{∫ t∗

0

Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

dNV
obs,i(t)

∣∣∣∣Xi, ξil = 1

}
= 0, (4.3.7)

where the IPW term

Sl{t, Z̄
obs

(t−)} = Pr(T ≥ t|Z̄obs
(t−), ξl = 1)

is the class-specific survival probability beyond time t conditioned on the past history,

Z̄
obs

(t−), prior to time t, at the subsequent visits. It is obvious that Sl{0, Z̄
obs

(0−)} = 1.

The proof of (4.3.7) can be found in the Appendix section 4.8.1. Denote vi,1, . . . , vi,Ki the

observed visit times for the ith subject. We assume Z̄
obs

(t) is a piecewise constant function

which only jumps at vi,k(k = 1, . . . ,Ki). Thus, Z̄
obs

(vi,k−) = Z̄
obs

(vi,k−1) for k ≥ 2.

Therefore, by (4.2.5), (4.2.6), and the property of internal covariates, we can derive that

Sl{t, Z̄
obs

(t−)} = Pr(Ti ≥ vi,k|Z̄
obs
i (vi,k−), ξil = 1)

= Pr(Ti ≥ vi,k|Z̄
obs
i (vi,k−1), Ti > vi,k−1, ξil = 1)

(Observation at vi,k−1 indicates Ti > vi,k−1)

= exp

{
−
∫ vi,k

vi,k−1

λ0l(s) exp{H i(vi,k−1)Tγl}ds
}

= exp

{
− {Λ0l(vi,k)− Λ0l(vi,k−1)} exp{H i(vi,k−1)Tγl}

}
.

Using similar steps in (4.3.3), we also show that equation (4.3.7) implies

E

{
τil

∫ t∗

0

Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

c(t,Xi;θ)dNV
obs,i(t)

∣∣∣∣Xi

}
= 0,

where c(t,Xi;θ) is a function for t,X and β. With a proper choice of function c(t,Xi;θ),
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we can construct a weighted GEE for β

S4(β) =

L∑
l=1

n∑
i=1

τil

(
∂µi,l(β)

∂β

)T
Σ−1
i,l (Xi;θ)W i{Ȳ

obs
i (Vi,Ki)− µi,l(β)} = 0, (4.3.8)

where Σi,l(Xi;β) is the variance-covariance matrix of Y i based on model (4.2.3) and (4.2.4),

and W i is a KiJ ×KiJ diagonal weight matrix with (k × j)th diagonal element equal to

Sl{vi,k, Z̄
obs
i (vi,k−)}, k = 1, . . . ,Ki, j = 1, . . . , J , corresponding to the kth visit and the

jth longitudinal outcome. The parameters φ and ρ associated with the second moment of

longitudinal outcomes can be estimated using standard procedures by solving the following

estimating equations:

S5(φ) =
L∑
l=1

n∑
i=1

τil

(
∂σi,l(β,φ)2

∂φ

)T
{s2

i,l − σi,l(β,φ)2} = 0;

S6(ρ) =

L∑
l=1

n∑
i=1

τil

(
∂ηi,l(β,φ,ρ)

∂ρ

)T
{ri,l − ηi,l(β,φ,ρ)} = 0,

(4.3.9)

where

s2
i,l = {{[Yj(Vk)− µj,l(Vk,Xi;βj,l)]

2}Ki
k=1}

J
j=1;

σ2
i,l(β,φ) = E(s2

i,l|ξil = 1) = {{σ2
j (Vk,Xi;φj,l,βj,l)}

Ki
k=1}

J
j=1;

ri,l = {{[Yj(Vp)− µj,l(Vp,Xi;βj,l)][Yj(Vq)− µj,l(Vq,Xi;βj,l)]}
Ki
p<q}Jj=1;

ηi,l(β,φ,ρ) = E(ri,l|ξil = 1) = {{ηj(p, q,X; ρj,l, φj,l,βj,l)}
Ki
p<q}Jj=1.

The estimating functions in (4.3.9) can be shown as unbiased following similar steps as in

(4.3.3).

4.3.4 Posterior class membership probability

As we derive the estimating equations in the previous subsections, we assume that the

posterior membership probability τil is well defined. In fact, due to the lack of explicit

density function for the longitudinal observation, it is challenging to derive τil from a finite

mixture likelihood. In this section we propose a formulation of τil under the semi-parametric
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framework.

Let gl{Ȳ
obs

(VK)|X;ϑ} denote the underlying true class-specific density of longitudinal

data Ȳ
obs

(VK), for class l with parameters ϑ. Then it is straightforward to obtain the

finite mixture density of observed data O as

f{Oi|Xi} =

L∑
l=1

pl(Xi;α)gl{Ȳ
obs
i (Vi,Ki)|X;ϑ}fl{T̃i,∆i|Z̄

obs
i (Vi,Ki); ζ}.

By Bayes rule, the posterior membership probability Pr(ξil = 1|Oi) can be derived as

Pr(ξil = 1|Oi) =
pl(Xi;α) exp[wl{Ȳ

obs
i (Vi,Ki)|Xi;ϑ}]fl{T̃i,∆i|Z̄

obs
i (Vi,Ki)}∑L

d=1 pd(Xi;α) exp[wd{Ȳ
obs
i (Vi,Ki)|Xi;ϑ}]fd{T̃i,∆i|Z̄

obs
i (Vi,Ki)}

.

Here, wl{Ȳ
obs
i (Vi,Ki)|Xi;ϑ} = log[gl{Ȳ

obs
i (Vi,Ki)|X;ϑ}/g1{Ȳ

obs
i (Vi,Ki)|X;ϑ}] is the log

likelihood ratio of the density of Ȳ
obs
i (Vi,Ki) between class l and class 1. In our GEE

submodel, nevertheless, we only specify the first moment (4.2.2) and second moment (4.2.3),

(4.2.4) of Ȳ
obs
i (Vi,Ki), which means gl{Ȳ

obs
i (Vi,Ki)|X;ϑ} is not well defined in our model.

In order to utilize information from GEE submodel into the construction of posterior mem-

bership probability, we calculate the following linear projection (Li, 1993) of the log likeli-

hood ratio

w̃il{Ȳ
obs
i (Vi,Ki)|Xi;θ} =

1

2
{µi,l(β)− µi,1(β)}

{
Σ−1
i,l (Xi;θ)(Ȳ

obs
i (Vi,Ki)− µi,l(β))

+ Σ−1
i,1 (Xi;θ)(Ȳ

obs
i (Vi,Ki)− µi,1(β))

}

as an approximation of wil{Ȳ
obs
i (Vi,Ki)|Xi;θ}. In a special case, w̃il{Ȳ

obs
i (Vi,Ki)|Xi;θ} is

the exact log likelihood ratio when Ȳ
obs
i (Vi,Ki) follows Gaussian distribution with identical

variance-covariance matrix Σi,l for all latent classes. Then the posterior class probability

based on proposed submodels can be approximated by

τ̃il =
pl(Xi;α) exp[w̃l{Ȳ

obs
i (Vi,Ki)|Xi;θ}]fl{T̃i,∆i|Z̄

obs
i (Vi,Ki)}∑L

d=1 pd(Xi;α) exp[w̃d{Ȳ
obs
i (Vi,Ki)|Xi;θ}]fd{T̃i,∆i|Z̄

obs
i (Vi,Ki)}

. (4.3.10)
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4.3.5 Algorithm

We propose an iterative expectation-solution algorithm to jointly solve the estimating equa-

tions (4.3.1), (4.3.4) and (4.3.8). The algorithm is inspired by the EM algorithm that is

commonly applied in fully parametric modeling. Below the detailed steps are illustrated.

1. (Initialization) Initialize τ̂
(0)
il = 1/L for all i and l. Set the number of iterations i = 1.

2. (Solution step, class probability submodel) Given τ̂ (i−1), solve (4.3.1) directly by

weighted multinomial logistic regression solver to obtain α̂(i).

3. (Solution step, class-specific Cox submodel) Given τ̂ (i−1), first solve the weighted

partial score equation (4.3.6) for γ̂(i), then obtain the Breslow’s estimator Λ̂
(i)

(·) by

plugging in τ̂ (i−1) and γ̂(i) in (4.3.5).

4. (Solution step, class-specific GEE submodel) Given τ̂ (i−1), γ̂(i) and Λ̂
(i)

(·), solve

(4.3.8) and (4.3.9) for θ̂
(i)

.

5. (Expectation step) Given ψ̂
(i)

= {α̂(i)T , γ̂(i)T , Λ̂
(i)

(·), θ̂(i)T }, update τ̂ (i) by (4.3.10).

Set i = i+ 1.

6. (Convergence criterion) Repeat steps 2-5 until
∑n

i ||τ̂
(i) − τ̂ (i−1)||22 < 0.001.

Compared to the existing methods, the proposed algorithm does not require random guess

or prior knowledge about the initial values. Instead, the initial posterior probabilities τ̂ (0)

are equal for all classes. The convergence criterion based on τ̂ (i) ensures that the algorithm

stops when the class membership probabilities remain stable enough between iterations.

4.4 Selecting the number of latent classes

To select the number of latent classes, L, it is common to use information criteria such as

Akaike information criterion or Bayesian information criterion. For the proposed frame-

work, however, the GEE submodel only defines the first two moments of the longitudinal
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observations, such that the density for the longitudinal observations is not explicitly as-

sumed. To account for the goodness-of-fit for the longitudinal submodel, we propose the

following quasi-likelihood formulations

QL(p̂) = −2

n∑
i=1

log

{ L∑
l=1

pl(Xi; α̂) exp[Q+
l {Ȳ

obs
i (Vi,Ki)|Xi; θ̂}]

fl{T̃i,∆i|Z̄
obs
i (Vi,Ki),Xi; γ̂, Λ̂}

}
,

QL(τ̂) = −2
n∑
i=1

log

{ L∑
l=1

τ̂il exp[Q+
l {Ȳ i(T̃i)|Xi; θ̂}]fl{T̃i,∆i|Z̄

obs
i (Vi,Ki),Xi; γ̂, Λ̂}

}
,

where Q+
l {Ȳ

obs
i (Vi,Ki)|Xi; θ̂} the class-specific extended log quasi-likelihood for the lon-

gitudinal submodel. For the observation of a specific longitudinal feature j at time t,

Yj(t), the corresponding class-specific extended log quasi-likelihood is Q+
l {Yj(t)|X; θ̂} =

Ql{Yj(t)|X; θ̂} − 1
2 log φ̂j,lVj{µj,l(t,X, β̂)}, where Ql{Yj(t)|X; θ̂} is the class-specific log

quasi-likelihood and 1
2 log φ̂j,lVj{µj,l(t,X, β̂)} is the extended component containing infor-

mation of variance functions. Therefore, we have

Q+
l {Ȳ

obs
i (Vi,Ki)|Xi; θ̂} =

J∑
j=1

Ki∑
k=1

Q+
l {Yi,j(Vi,k)|Xi; θ̂}.

The difference between QL(p̂) and QL(τ̂) is whether using baseline membership probability

pl(X; α̂) or posterior membership probability τ̂l in the finite mixture structure. Compared

to QL(p̂), QL(τ̂) is able to assess the goodness-of-fit with posterior knowledge about the

class membership. With the defined quasi-likelihood QL, we further define the following

candidates of information criteria

QAIC(·) = QL(·) + 2p,

QBIC(·) = QL(·) + p log n,

CE-QBIC(·) = QL(·) + p log n− 2
∑
i=1

n

n∑
l=1

τ̂il log τ̂il,

(4.4.1)

where p is the number of unknown parameters, and QL(·) can be either QL(p̂) or QL(τ̂).

In addition to the criteria defined in (4.4.1), we also consider standardized entropy index
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defined by

ENT = 1−
∑n

i=1

∑L
l=1 τ̂il log τ̂il

n logL
,

which is a commonly used criterion to evaluate the fuzziness of posterior classification.

4.5 Simulation study

4.5.1 Data generation procedure

Simulations were conducted to investigate the performance of the proposed LCA framework

for joint longitudinal and survival data with two latent classes (L = 2). First, we generate

a bivariate vector of baseline covariates X = (X1, X2)T , where X1 follows Bernoulli(0.5)

distribution and X2 follows Uniform(0, 1) distribution. Then we generate the class mem-

bership probability p = (p1, p2)T by model (4.2.1) with α1 = 0 and α2 = (0.5, 0, 0)T . Then

the latent class membership ξ = (ξ1, ξ2)T is generated from Multinomial{1, (p1, p2)T } dis-

tribution. Given ξ, we further generate longitudinal trajectories and time-to-event data.

Table 4.1: An overview of longitudinal features considered in simulation studies, including
data types of features, link functions, and the associated regression coefficients for marginal
model (βj,l,0, βj,l,1) and proportional hazards (γ).

Class (l)
Class 1 Class 2

Yj(t) Distribution hj(x) βj,1,0 βj,1,1 γj,1 βj,2,0 βj,2,1 γj,2

Y1(t) Poisson exp(x) 0 0.5 0.1 0 0 0
Y2(t) Poisson exp(x) 1 0 0 1 -0.5 0.05

Y3(t) Binary exp(x)
1+exp(x) -0.5 1 0.05 -0.5 0 0

Y4(t) Binary exp(x)
1+exp(x) 0.5 0 0 0.5 -1 0.1

Y5(t) Normal x 0 0 0 0 1 0.5
Y6(t) Normal x 0 1 0.25 0 0 0

We assume that the longitudinal outcome at time t, Y (t) = {Y1(t), . . . , Y6(t)}, is a vector

with six independent elements, where Y1(t) and Y2(t) are count data, Y3(t) and Y4(t) are

binary, and Y5(t) and Y6(t) are continuous. We consider the GEE model E{Yj(t)|ξl =

1} = µj,l(t;βj,l) = hj(βj,l,0 + rββj,l,1t), j = 1, . . . , J, which is a simplified version of the
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marginal model in (4.2.2). Here rβ is used to adjust the slope of trajectories for all features,

where larger slopes will generate heavier differences in trajectories among classes. Table

4.1 lists the corresponding link functions and parameters (βj,l,0, βj,l,1)T for each feature in

each class. Auto-regressive process AR(1) is assumed for the correlation structure for each

longitudinal feature with ρj,l = 0.3 for all j and l. For all l, the scale parameter φj,l is

also set to be 1 for j = 1, . . . , 4, and φ for j = 5, 6, where φ is used to adjust the variation

from trajectory mean for the two continuous features. A larger φ can cause more severe

overlapping of the trajectories among classes. With selected rβ1 and φ, we generate Y (t)

for t = 0, 1, 2, . . . , 20. We utilize techniques developed by Qaqish (2003) and Dalthorp and

Madsen (2007) to generate correlated binary and count features, respectively. Correlated

continuous features are generated from multivariate normal distribution.

With generated longitudinal outcomes, we have the time-varying covariates for the class-

specific proportional hazards submodel of the terminal event (4.2.6). We let H(t) =

{XT ,Y (Vt)
T }T , where Vt = max{Vk : Vk < t} is the latest visit time prior to t. The

corresponding regression coefficient is zero for X and rγγj,l for Y (Vt), where rγ adjust the

effect size and γj,l is shown in Table 4.1. Baseline hazard function is set to be λl(t) = 1
ηl(1+t)

where η2 = 6 and η1 adjusts the shape of the function for the first class. We choose this form

of hazard function to ensure that multiple longitudinal features can be observed before the

terminal event occurs. Piecewise exponential distribution technique (Hendry, 2014) is used

to generate the terminal event time T with time-varying covariates H(t) at t = 0, 1, . . . , 20.

Independent censoring C is generated as the minimum of a Uniform(5, 6) random variable

and a Exponential(0.1) random variable.

With the generated quantities as described above, we construct the dataset for our sim-

ulation with baseline covariate X, time-to-event (T̃ ,∆) where T̃ = min{T,C} and ∆ =

I(T ≤ C), and longitudinal features Ȳ
obs

(VK) = {Y (t) : t ∈ (0, 1, . . . , 20), t < T̃}, where

VK = max{t : t ∈ (0, 1, . . . , 20), t < T̃} is the largest visit time prior to T̃ .
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4.5.2 Simulation scenarios

We consider a number of settings regarding rβ, φ, rγ and η2 mentioned in Section 4.5.1,

displayed in Table 4.2, to generate datasets with different characteristics. We expect that

the algorithm works better when the two latent classes are more separated from each other.

Table 4.2: Simulation settings and the corresponding interpretations.

Settings rβ trajectory slope

(1a) 1 steep
(1b) 0.5 moderately steep
(1c) 0.25 gentle

Settings φ trajectory variation

(2a) 1 mild
(2b) 4 moderate
(2c) 9 heavy

Settings rγ trajectory effect size

(3a) 1 moderate
(3b) 2 strong

Settings η2 Shape of Λ02(t)

(4a) 8 gentle
(4b) 4 steep

Based on above settings, we identify four sets of investigations listed in Table 4.3. For

each scenario, we generate 1000 datasets, collected data characteristics in terms of fuzziness

(entropy) and censoring rate, and run the proposed algorithm to obtain point estimation for

all unknown parameters. As observed in Table 4.3, the fuzziness of the latent class pattern

is severely affected by different trajectory slopes in investigation (A), where the pattern

is much more fuzzy with gentle slope (1c, median entropy=0.66) compared to steep slope

(1a, median entropy=0.87). In contrast, heavier trajectory variation (2c) in investigation

(B) does not dramatically affect median entropy but causes larger differences in the class-

specific range of time-to-event and lower censoring rates. A lower censoring rate indirectly

implies less visits observed for the population, such that less information is available for the

trajectory. In investigation (C), larger effect size of longitudinal trajectory on survival in

(3b) accelerates the failure process, which also causes lower censoring rate, fewer longitudinal

observations per subject, and larger difference in the support of time-to-event for the two

latent classes. In investigation (D), the difference in the shape of baseline hazard function

(4b) causes apparent differences in the class-specific support for the two classes.
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Table 4.3: Sets of investigations, the corresponding simulation scenarios, and empirical data
characteristics from simulated datasets. ∆{Median(T̃ )} represents the difference between
the class-specific median time-to-event.

Investigations Scenarios† Entropy‡ Censoring (%)‡ ∆{Median(T̃ )}‡

(A) trajectory slope
(1a) 0.87 57 0.001

(2a)+(3a)+(4a)
(1b) 0.81 65 -0.005
(1c) 0.66 63 -0.006

(B) trajectory variation
(2a) 0.87 57 0.001

(1a)+(3a)+(4a)
(2b) 0.85 52 0.324
(2c) 0.85 45 0.591

(C) trajectory effect size (3a) 0.87 57 0.001
(1a)+(2a)+(4a) (3b) 0.88 25 0.305

(D) shape of Λ02(t) (4a) 0.87 57 0.001
(1a)+(2a)+(3a) (4b) 0.88 44 1.072

† Refer to Table 4.2.
‡ Median from 1000 simulations

4.5.3 Point estimation

Table 4.4 shows the average empirical bias and mean square error (MSE) for point estimates

α̂, γ̂ and β̂ across 1000 simulations for each scenario. Under investigation (A), it is clear

that gentle trajectory slope (1c) causes heavier fuzziness of latent class patterns compared

to steep trajectory slope (1a), resulting in larger bias and MSE of α̂ for the latent class

probability model. In contrast, estimation for the class-specific time-to-event submodel (γ̂)

and GEE submodel (β̂) is not heavily affected, showing solid robustness of the method. In

contrast, point estimation under investigations (B), (C) and (D) appears more stable due

to less fuzziness associated with higher entropy index, which also implies the method’s high

robustness under different data characteristics.

4.5.4 Selecting the number of latent classes

We fit the model for the 1000 simulated datasets for each scenario with L ∈ {2, 3, 4} and

apply model selection criteria introduced in Section 4.4 to check how different model selec-

tion criteria perform under different scenarios. Figure 4.1 shows the percentages of selected
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Table 4.4: Average bias (mean square error) for point estimates in the class membership
probability submodel (α̂), time-to-event submodel γ̂, and longitudinal submodel (intercept
β̂0 and slope β̂1) for all simulation scenarios.

Investigation Scenario α̂ γ̂ β̂0 β̂1

(A)
(1a) -0.023 (0.040) -0.002 (0.049) -0.002 (0.007) -0.001 (0.001)

trajectory slope
(1b) -0.123 (0.148) -0.012 (0.107) -0.003 (0.010) -0.001 (0.057)
(1c) -0.185 (0.195) -0.007 (0.180) -0.001 (0.015) -0.008 (0.024)

(B)
(2a) -0.023 (0.040) -0.002 (0.049) -0.002 (0.007) -0.001 (0.001)

trajectory variation
(2b) -0.053 (0.041) -0.013 (0.028) -0.002 (0.010) -0.008 (0.003)
(2c) -0.067 (0.042) -0.010 (0.019) -0.001 (0.018) -0.009 (0.006)

(C) (3a) -0.023 (0.040) -0.002 (0.049) -0.002 (0.007) -0.001 (0.001)
trajectory effect size (3b) -0.036 (0.033) -0.001 (0.016) -0.001 (0.007) 0.000 (0.003)

(D) (4a) -0.023 (0.040) -0.002 (0.049) -0.002 (0.007) -0.001 (0.001)
shape of Λ02(t) (4b) -0.072 (0.084) -0.015 (0.056) -0.005 (0.012) 0.000 (0.002)

number L of latent classes for all scenarios studied in Table 4.3 by seven different criteria.

It can be seen that the entropy index (ENT) works well for most scenarios apart from the

two scenarios with smaller trajectory slopes and consequently high fuzziness. Compared

to ENT, both CE-QBIC(p) and CE-QBIC(τ) performs well under high fuzziness setting,

where CE-QBIC(τ) obtains better performances over CE-QBIC(p) for most cases. In con-

trast, QAICs and QBICs did not account for the entropy in their formulation and perform

poorer. Our practical recommendation, therefore, is to use CE-QBIC(τ) which robustly

selects correct number of latent classes under all simulation scenarios.

4.6 Real data application

We applied the proposed method to analyze the UDS data to investigate the MCI subtypes

indicated by both longitudinal patient characteristics and the distribution of time-to-death.

The data consists of follow-up information for 5348 patients between September 2005 and

June 2015, including baseline covariates such as smoking status and history of cerebrovas-

cular disease, longitudinal scores on patients’ cognitive, neuropsychiatric, and functional

characteristics, and time-to-death since the first visit. Out of the 5348 patients, 667 died

during the follow-up period, showing a high censoring rate of observing death. More than
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Figure 4.1: Percentage of latent classes selected by different model selection criteria listed
in Section 4.4 out of 1000 simulations under simulation scenarios listed in Table 4.3. Greek
letter τ is denoted by “tau” in the plot. Entropy index is denoted by “ENT”.

1000 patients had at least five clinical visits, providing rich information about the longitu-

dinal trajectory of MCI patients.

In our analysis, we let the decades of smoking and elevated Hachinski score (an indicator

of cerebrovascular disease) as baseline covariates X. The longitudinal features Ȳ (VK) are

the same as used in the analysis conducted by Hart et al. (2020), including one binary mea-

sure of depression, two count variables of patients’ functional abilities and neuropsychiatric

symptoms, and ten continuous cognitive scores. We assume that the longitudinal features

follows the “last-value-carried-forward” (LCVF) principle, which is essentially piecewise

constant. The terminal event death is jointly modeled with the longitudinal features, where

the longitudinal features serve as time-dependent covariates of the time-to-event submodel.

We fitted the proposed joint model for L ∈ {2, 3, 4, 5} with non-informative initialization of

the expectation-solution algorithm. The 4-class model obtained the smallest CE-QBIC(τ),

288776, compared to the 2-class model (305649), 3-class model (300454) and 5-class model

(292896).

As shown in Figure 4.2, the resulting classes form distinct class-specific trajectories and

survival probability curves. According to the estimated trajectory, class 3 (25% of study
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population) is the benign non-amnestic MCI class with the mildest impairment at baseline

and almost no progression of dementia in the follow-up. Class 2 (33% of study population)

is the benign multi-domain anmestic MCI class with slight impairment at baseline in mul-

tiple cognitive domains but no obvious progression over years. In contrast, class 1 (mildly

progressive amnestic multi-domain, 20% of study population) shows clear memory impair-

ment at baseline but develops impairment in other domains such as the executive functions

(Trails B score) during follow-up. As the amnestic class with the most rapid progression

of dementia, class 4 (22% of study population) shows multi-domain impairment at baseline

and rapidly deteriorating longitudinal trajectories.

The class-specific Kaplan-Meier curves by modal assignment (Figure 4.2) agree with our

interpretation for the trajectories. The rapidly progressive amnestic multi-domain class

(class 4) has the lowest survival probability in the eight years of follow-up, while the mildly

progressive amnestic multi-domain class (class 1) has the second lowest survival probability

curve. On the other hand, the benign classes (class 2 and class 3) have similarly higher

survival probability curves. The concordance of longitudinal trajectories and survival curves

indicates that the longitudinal features and time-to-death have high dependency in the

UDS data, which further justifies our considerations on accounting for the within-class

dependency of longitudinal and survival outcomes.

4.7 Discussion

In this project we propose a semi-parametric finite mixture latent class analysis frame-

work for joint longitudinal and survival data. Our approach is flexible to define latent

subtypes but still account for within-class dependency between longitudinal trajectories

and time-to-event. The proposed algorithm effectively utilizes existing popular software for

conduct iterative updates in a similar style as EM-algorithm. Our simulation shows that

the algorithm can achieve good performance with non-informative initial values, which is

critically important for real applications where prior knowledge may be unavailable about

the underlying true latent class patterns.



120

We adapted semi-parametric submodels for the survival and longitudinal data to flexibly

circumvent restrictive parametric assumptions imposed by fully parametric models. Our

estimating procedure is carefully designed to address informative censoring of longitudinal

observations by a terminal event. The estimating equation for the GEE marginal model

(4.3.8) can be easily extended to account for informative censoring of trajectories caused

by drop-out and visit time by introducing extra submodels for the drop-out process and

visiting process.

There are several important aspects which require further investigation in the future. First,

we are studying the asymptotic properties and inference procedures for the proposed esti-

mators, which can crucially improve the practical utility in real applications. Second, we

plan to develop approaches to conducting dynamic prediction of patient survival based on

the proposed latent class framework, which may be an improvement over the existing meth-

ods due to our ability to account for the within-class correlation of longitudinal and survival

information. We are hopeful that the above investigations can contribute significantly to

the MCI research.
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4.8 Appendices

4.8.1 Proof of Equation (4.3.7)

E

{∫ t∗

0

Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

dNV
obs,i(t)

∣∣∣∣Xi, ξil = 1

}
=E

{
E

{∫ t∗

0

Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

I(T̃i ≥ t)dNV
i (t)

∣∣∣∣Z̄obs
i (t−), ξil = 1

}∣∣∣∣Xi, ξil = 1

}
=E

{
E

{∫ t∗

0

Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

I(Ti ≥ t, Ci ≥ t)dNV
i (t)

∣∣∣∣Z̄obs
i (t−), ξil = 1

}∣∣∣∣Xi, ξil = 1

}
=

∫ t∗

0
E

{
E

{
Y i(t)− µl(t,Xi;β)

Sl{t, Z̄
obs
i (t−)}

I(Ti ≥ t)
∣∣∣∣Z̄obs

i (t−), ξil = 1

}
Pr(Ci ≥ t|Z̄

obs
i (t−), ξil = 1)E{dNV

i (t)|Z̄obs
i (t−), ξil = 1}

∣∣∣∣Xi, ξil = 1

}
(N(t) ⊥ NC(t) ⊥ NV (t)|Z̄obs

i (t−), ξ)

=

∫ t∗

0
E

{
E{Y i(t)− µl(t,Xi;β)|Z̄obs

i (t−), ξil = 1}
Sl{t, Z̄

obs
i (t−)}

Pr(Ti ≥ t|Z̄
obs
i (t−), ξil = 1}

Pr{Ci ≥ t|Z̄
obs
i (t−), ξil = 1}E{dNV

i (t)|Z̄obs
i (t−), ξil = 1}

∣∣∣∣Xi, ξil = 1

}
(Sequential ignorability assumption)

=

∫ t∗

0
E

{
E

{
{Y i(t)− µl(t,Xi;β)}I(Ci ≥ t)dNV

i (t)

∣∣∣∣Z̄obs
i (t−), ξil = 1

}∣∣∣∣Xi, ξil = 1

}
=

∫ t∗

0
E

{
{Y i(t)− µl(t,Xi;β)}I(Ci ≥ t)dNV

i (t)

∣∣∣∣Xi, ξil = 1

}
=

∫ t∗

0
E

{
Y i(t)− µl(t,Xi;β)

∣∣∣∣Xi, ξil = 1

}
Pr(Ci ≥ t|Xi, ξil = 1)Al(t;Xi)dt = 0

(Al(t;Xi)dt = E{dNV
i (t)|Xi, ξil = 1})
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