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Abstract

Matrix Computations and Optimization for Spectral Computed Tomography

By Yunyi Hu

In the area of image science, the emergence of spectral computed tomography (CT)

detectors highlights the concept of quantitative imaging, in which not only recon-

structed images are offered, but also weights of different materials that compose

the object are provided. In this thesis, we focus on optimization, preconditioning

and model development of spectral CT. For simple energy discriminating detectors,

a nonlinear optimization framework is built on a Poisson likelihood estimator and

bound constraints. A nonlinear interior-point trust region method is implemented to

compute the solution. For energy-windowed spectral CT, a nonlinear least squares

approach is proposed to describe the problem and under bound constraints, a two-step

method using the projected line search and the trust region approach, incorporated

with an adaptive preconditioner, is used to solve the problem. In addition, a weighted

least squares formulation is derived from the Gaussian noise assumption and another

preconditioner that is based on rank-1 approximation is introduced to obtain robust

reconstruction. The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), along

with a projection step, is used to calculate the solution iteratively. Compared with

a direct solver, a two-step model is developed using an auxiliary variable. With this

two-step model, a row-wise computational method is proposed, which further reduces

memory requirements and improves solution accuracy. Numerous numerical experi-

ments are conducted to indicate the strength of methods and real-life examples are

presented to show possible applications.
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Chapter 1

Introduction

An active area of interest in tomographic imaging is quantitative imaging, where in

addition to producing an image, information about the material composition of the

object is recovered. In order to obtain the information of material composition, it is

necessary to better model of the image formation (i.e., forward) problem and/or to

collect additional independent measurements. In x-ray computed tomography (CT),

better modeling of the physics can be done by using the more accurate polyenergetic

representation of source x-ray beams. In addition, recent advances in engineering

have produced detectors that are made up of several energy windows and each energy

window is assumed to detect a specific range of energy spectra. With this technique,

a nonlinear matrix equation is formulated to represent the discretized process of

attenuation of x-ray intensity

Y = exp
(
−AWCT

)
S + E , (1.1)

where Y is a matrix that gathers the projected data of each energy window in the

corresponding column and the exponential operator is applied element-wise (i.e., it is

not a matrix function). A is a matrix that is related to the quantitative information

of ray trace and C is a matrix that contains linear attenuation coefficients for par-
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ticular (known) materials at specified energies. S is the matrix that accumulates the

spectrum energies for each energy window in the corresponding column. We assume

that these data are known and the target is to solve the unknown weight matrix W .

W real and is of size Nv by Nm, where Nv is the number of voxels (pixels if 2D)

for each material map and Nm is the number of materials. The derivation of this

equation is not straightforward and we will go into details later.

1.1 Contributions of Work

For different noise distributions, model (1.1) can be transformed into various formats

and the methods used to compute solutions are diversified. If we assume that we only

have one energy window, then the matrix equation (1.1) is reduced to a nonlinear

system of the form

y = exp
(
−AWCT

)
s+ η, (1.2)

where y is the vector of projected data, s collects the information of energy spectrum

and η represents the noise vector. For this problem, we transform it into a nonlinear

optimization problem that involves both equality and inequality constraints. In order

to keep the second order derivative positive semi-definite, we propose a modified

Hessian. In addition to the modified Hessian, a problem-specific nonlinear interior-

point trust region method is implemented to solve this problem. Moreover, total

variation regularization is applied to stabilize the solutions. Both for full CT and

limited angle cases, we can obtain images of high quality with this method.

If we take the assumption of multiple energy windows and each energy window

can only detect a specific range of energy, then the basic model is the same as (1.1).

Under the constraint of nonnegative weights, we can build a nonlinear optimization
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problem as

min
w

1

2

∥∥y − (ST ⊗ I) exp {− (C ⊗A)w}
∥∥2
2

subject to w > 0.

(1.3)

In (1.3), ⊗ represents the Kronecker product and the exponential operator is applied

point-wise. w > 0 indicates that each entry in w should be bounded blow by zero.

Moreover, y and w are vectorization of Y and W , respectively. For problem (1.3),

we formulate it as a nonlinear least squares problem, which is solved by a Gauss-

Newton scheme. We show that if the object contains a mixture of materials with one

known to be sparsely represented, then a combination of generalized Tikhonov and

`1 regularization can be very effective in producing high quality quantitative recon-

structions. Because the approximate Hessian system in the Gauss-Newton scheme

is very ill-conditioned, we propose a preconditioner that effectively clusters eigenval-

ues and, therefore, accelerates convergence when the conjugate gradient method is

used to solve the linear subsystems. To implement the preconditioner, a two-step

method is used to guarantee faster convergence and to provide further stabilization.

In particular, in the first step we compute the approximate Cauchy point, and then

in the second step we set up and solve a quadratic programming problem. Numerical

experiments illustrate the convergence, effectiveness, and significance of the proposed

method.

To avoid solving a nonlinear optimization problem, we might consider taking ad-

vantage of the Gaussian noise assumption and transform it into a weighted least

squares problem. In this case, it is necessary to assume that S is square and in-

vertible. Moreover, for the noise term E , we assume that Eil ∼ N (0, yil) for each

component Eil in E and yil in Y . A linearization technique is used to transform the

nonlinear equation (1.1) into an optimization problem that is based on a weighted
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least squares term and a nonnegative bound constraint of the form

min
w̃

1

2
‖Aw̃ − b‖2Σ−1

subject to (M ⊗ I) w̃ > 0,

(1.4)

where W̃ = WM−T , w̃ = vec(W̃ ), C̃ = CM , A = C̃ ⊗A, ỹ =
(
S−T ⊗ I

)
y and

b = − log (ỹ). The matrixM represents the corresponding preconditioner and ‖·‖2Σ−1

is a weighted least squares term such that ‖Aw̃−b‖2Σ−1 = (Aw̃ − b)T Σ−1 (Aw̃ − b) .

To solve this optimization problem, we want to use a first order method to obtain

fast and robust reconstruction. However, because of the ill-posedness, direct imple-

mentation of optimization methods does not offer us satisfactory results. Therefore,

we propose a new Hessian preconditioner in order to significantly reduce the con-

dition number, and with this preconditioner, we implement a highly efficient first

order method, Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), to achieve

substantial improvements on convergence speed and image quality. We also use a

combination of generalized Tikhonov regularization and `1 regularization to stabilize

the solution. With the introduction of new preconditioner, a linear inequality con-

straint is also added. In each iteration, we decompose this constraint into small-sized

problems that can be solved with fast optimization solvers. Furthermore, we conduct

numerical experiments to indicate strengths of the proposed method and potential

improvements.

Rather than solving W directly in one step, we can use an auxiliary variable,

X = AW , and construct a two-step framework as

Y = exp
(
−XCT

)
S +E,

X = AW .

(1.5)

For the first step, we can reuse the Gaussian assumption of noise and build a row-wise
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moldel as

(xi)ml = argmin
xi

{∥∥∥Cxi − b̂i∥∥∥2
Σ−1

b̂i

}
, (1.6)

where Σb̂i
is the noise covariance matrix related to b̂i and (xi)ml is the maximum

likelihood estimator to the i-th row of X. Even though this model is based on

the maximum likelihood estimator, we can compute the solution corresponding to

each row slice one at a time, and sum when they all are computed. Each small-

sized problem does not depend on others, so these can also be solved in parallel.

For the second step, we need to quantify the noise propagation and solve a least

squares optimization problem under bound constraints. To solve the corresponding

optimization problem, we use FISTA with projections onto the boundary to obtain

faster convergence and higher accuracy. Instead of using the two-step method, we can

build a coupled optimization problem based on (1.5) and solveW directly. Numerical

experiments show that the expense is lower and reconstructed images are of higher

quality using the two-step framework compared with the coupled method.

1.2 Outline of Thesis

To reconstruct spectral CT images, we are required to solve a complicated nonlinear

equation. Distinct assumptions might provide us with different models and various

solutions. This thesis mainly focuses on how to build efficient models and find superior

solutions.

The thesis is organized as follows. In Chapter 2, we first review the physical

background and basics of computed tomography (CT) and present three classical

methods to compute solutions. Since the traditional CT does not take energy spectra

into consideration, we introduce the spectral CT model in Chapter 3. We also build

a nonlinear optimization problem and implement a nonlinear interior-point trust re-

gion method to solve it. In Chapter 4, we switch to the energy-windowed spectral CT
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model and build a nonlinear least squares problem based on it. An adaptive precondi-

tioner based on the Gauss-Newton Hessian approximation is also included in Chapter

5. In Chapter 6, we use the assumption that noise is normally distributed to trans-

form the energy-windowed spectral CT model into a weighted least squares problem.

Another efficient preconditioner inspired by the interlacing of Kronecker products and

diagonal matrices is also presented in Chapter 5. In Chapter 6, we move further to

consider a two-step model as well as introduce a solution that is based on row slicing

and weighted least squares optimization. As a comparison, the coupled method is also

included in Chapter 6. Numerical experiments are conducted to show the strengths

of proposed methods and conclusions and comparisons are drawn in the end of each

chapter.



7

Chapter 2

X-ray Computed Tomography

In 1971 Godfrey Hounsfield [4] opened a new window for the world with his invention

of the computed tomography (CT) machine. CT machines project x-ray beams from

a known source through an object, which are then received by detectors. The energy

of the source x-ray beams are known, and the detectors measure the energy after they

pass through the object. The energy difference between the source and the detector

depends on the attenuation properties of the object, and is modeled by the Beer’s

law [34]. If enough measurements are obtained, then by solving an inverse problem

arising from the Beer’s law, the inner structure of an object can be reconstructed.

Because the Beer’s law results in a very challenging nonlinear inverse problem, most

image reconstruction algorithms are based on linear approximations. The linear ap-

proximations allow for very fast algorithms, and images they produce are often quite

good. Thus CT immediately gained popularity for medical diagnostics, but the tech-

nique is also used widely in industry to, for example, inspect inanimate objects for

defects, or in security to look for weapons and other dangerous materials.

Current CT machines mostly use single-energy tubes to conduct scanning. For

single-energy CT, we assume that the x-ray tube only emits a uniform energy and

this energy is used to estimate the attenuation properties of the object. Using the



8

Radon transform [14], a linear system is constructed to represent an approximation

to this physical process. Under certain conditions, an image obtained from solving

the corresponding linear system is clear enough to identify necessary information.

However, the assumption of single uniform energy is only a simplification of the

underlying physics. In actuality, the x-ray beams consist of a spectrum of energies,

rather than a single energy. Because of this simplification, precise estimation of the

attenuation properties of the object is very challenging, and often leads to appearance

of so-called beam-hardening artifacts [45].

In 2006, the invention of dual-source CT machines refreshed this field [19]. Using

two x-ray tubes with different voltages, two sets of projected data corresponding

to two energy spectra are obtained to conduct image reconstruction. Basically, the

attenuation properties of the object can be represented as a function of two variables,

position and energy. With an extra energy, we can obtain more information about

the object. On the one hand, the beam-hardening artifacts generated by single-

energy CT can be dramatically reduced using dual-source CT, which offers images of

higher quality. On the other hand, not only the inner structure but also the material

separation of an object can be acquired, which provides the fundamental basics of

quantitative spectral CT methods. Even if the idea of basis-material decomposition

(BMD) was proposed by Alvarez and Macovski in 1976 [1], it is suddenly in the

spotlight after the emergence of dual-source CT machines. If the contrast of different

materials is small, it is hard to differentiate them by investigating the gray images

generated by single-energy CT. For example, in breast imaging the object consists

mainly of glandular and adipose tissues, which have similar densities and therefore

are difficult to separate by traditional techniques. With spectral CT methods, it is

likely that we can reconstruct the image of these two materials using different linear

attenuation coefficients corresponding to distinct energies.

Nowadays, spectral CT still evolves both in theory and practice. If we assume
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that the detector of CT machines has multiple energy windows and further assume

each energy window can detect only a specific range of energy, then it is an energy-

windowed spectral CT model. This model is more complicated, but on the other

side, it can provide us with more flexibility on mathematical theories as well as more

quantitative information of images. In practice, one step forward from dual-source CT

machines, there are multi-energy CT machines that explore improvements over more

than two sources. However, the real-life application of multi-energy CT is limited by

the overlap of various energy spectra and this limitation might be overcame by photon

counting detectors. On the one hand, we can obtain the material decomposition of

an object and higher quality images with spectral CT. On the other hand, we want

to lower the radiation dose to reduce risks of causing other health issues. To reach

these goals, spectral CT is still an active research area and more promising results

might show up in the near future.

2.1 Physical Background

In computed tomography, x-ray beams are emitted (usually in a cone) from a source

at known energies and are directed to pass through an object under investigation,

after which the remaining energy of the x-ray beams are measured at a detector.

See Figure 2.1 for a 2D illustration. The amount of energy lost as the x-ray beams

pass through the object is referred to as attenuation. The amount of attenuation

depends on the energy of the x-ray beams, and on the material through which it

penetrates; low dose energies are more easily attenuated, and denser materials have

higher attenuation properties. The detector is typically partitioned into a grid of

bins; in a full 3D model, these are often loosely referred to as detector pixels. If the

3D object is discretized into a grid of small volume elements (called voxels), then

each voxel can be associated with a particular attenuation value, referred to as an
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Detector

Object

Source

Detector

Object

Source

Source
Source

Source

Source

Figure 2.1: Illustration of a 2D CT imaging setup. The left illustrates how x-ray
beams are emitted from the source in a cone, pass through an object of interest, and
are then measured at the detector. The right illustrates how the source might be
rotated around the object to collect additional data. In this illustration we assume
the detector remains stationary, which is often the case in limited angle tomography
applications such as tomosynthesis, but it should be obvious how the illustration
would be modified if the detector rotates with the source.

attenuation coefficient. The problem of CT image reconstruction is to determine

these attenuation coefficients from a sequence of measured projection data, which is

obtained by rotating the source (at least partially) around the object; again, we refer

to Figure 2.1 for a 2D illustration of the data collection process.

2.2 The Beer-Lambert’s Law

As shown in Figure (2.1), the change of intensity before and after illumination can

be described by the Beer’s law or the Beer-Lambert’s law [5,38]:

d I

dx
= −µ(x)I, (2.1)

where I represents the intensity and µ(x) is the linear attenuation coefficient at x. It

shows that the change of intensity at a specific location equals to the product of the

intensity at that location and the corresponding linear attenuation coefficient. The



11

physical meaning explained by Equation (2.1) is shown in Figure (2.2). In Figure

(2.2), an object is located in the center and a x-ray beam with intensity I0 penetrates

it and the detector captures this x-ray beam with intensity I1. I1 < I0 and the

attenuation characteristic of the object causes the reduction of intensity and this

change is also captured by Equation (2.1). For non-homogeneous material µ(x), the

Object

Figure 2.2: Explanation of the Beer-Lambert’s law. The blue brick represents the
object. There is a x-ray beam illuminating the object with the itensity I0 and it is
received by the detector with itensity I1.

ordinary differential equation (2.1) has an analytical solution

I = I0 exp

{
−
∫
l

µ(x) dx

}
. (2.2)

As long as we know I0 and I1, we can try to compute µ(x) using mathematical

techniques. Basically, we have three mainstream methods to solve it: the analytical

reconstruction using the Radon transform and the filtered back-projection, Algebraic

Reconstruction Technique (ART) and statistical reconstruction methods.
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Basically, Equation (2.1) has two underlying assumptions:

• x-ray beams pass through an object and they are not bent or diffracted by this

object. They travel along a straight line.

• x-ray beams are monochromatic, which means they are of only one single energy.

The first assumption is realistic because x-rays are of high energy and thus of short

wavelength. In most cases, the diffraction effect can be ignored and it is a reasonable

approximation. However, the second assumption is not realistic, because in reality

x-rays are made up of a spectrum of energies rather than a single energy. A more

comprehensive equation might be written as

I =

∫
E

S(e) exp

{
−
∫
l

µ(x) dx

}
d e, (2.3)

where S(e) is the energy intensity at energy level e and E is the energy spectrum.

Compared with Equation (2.2), Equation (2.3) has two integrals and the nonlinearity

might cause more difficulties to compute the solution. In this chapter, we will focus

on Equation (2.2) in most cases and discuss the classical methods to find solutions.

2.3 Classical Reconstruction Methods

2.3.1 The Radon Transform and the Inverse Radon Trans-

form

The Radon transform was introduced by Johann Radon [50] in 1971. If we assume θ

is expressed as θ = (cos θ, sin θ)T , then the Radon transform is an integral transform

such that

Rµ(s, θ) =

∫
ls,θ

µ(x) dx, (2.4)
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where ls,θ is a signed line represented by the signed orthogonal distance s and the

angle θ. ls,θ can be represented as an equation

ls,θ = {(x, y)|x cos θ + y sin θ = s} . (2.5)

The Radon transform is illustrated in Figure 2.3, where ls,θ is drawn perpendicular

Figure 2.3: Explanation of the Radon transform. The line ls,θ is perpendicular to the
ray passing through the origin. The distance between these two lines is s.

to the original line.

Recall that from the Beer’s law, the intensity I can be represented on behalf of s

and θ, Is,θ. Then Equation (2.2) is equivalent to

Is,θ = I0 exp

{
−
∫
ls,θ

µ(x) dx

}
. (2.6)

If we move all intensities in Equation (2.6) into one side and take a logarithm, then

we can obtain the Radon transform. So the connection between the Beer-Lambert’s
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law and the Radon transform is

Rµ(s, θ) =

∫
ls,θ

µ(x) d l = − log

(
Is,θ
I0

)
. (2.7)

Moreover, the Radon and Fourier transforms have a strong connection as

R̃µ(r, θ) =

∫ ∞
−∞
Rµ(s, θ)e−irsds = µ̂(rθ). (2.8)

If we represent x in a polar coordinate form as x = ρnφ, where |ρ| is the distance be-

tween the current point and the origin, then the inverse Radon transform is expressed

as

µ(x) =
1

(2π)2

∫ π

0

∫ ∞
−∞
R̃µ(r, θ)|r|eir<x,θ> d r d θ, (2.9)

if µ(x) and R̃u(r, θ) are both absolutely integrable. The variable |r| in Equation

(2.9) can amplify the noise and the reconstructed images might not be satisfactory.

This phenomenon also matches a slow decay of singular values of the Radon transform

operator. Small singular values can exaggerate the influence of high-frequency noise so

as to corrupt the reconstructed images. Compared with the inverse Radon transform,

a more useful technique is called filtered back-projection (FBP) [12]. As the name

indicates, it adds a filter to the inverse transform formula (2.9). In FBP, the radial

integral is regarded as a filter used in the Radon transform

GR(t, θ) =
1

2π

∫ ∞
−∞
R̃µ(r, θ)|r|eirt d r. (2.10)

On the other hand, the angular integral is explained as a back-projection of the

previous transform

µ(x) =
1

2

∫ π

0

GR(< x, θ >, θ) d θ. (2.11)

In contrast to the inverse Radon Transform, the filter of FBP can amplify high-
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frequency components while suppressing low-frequency components so the process is

more robust and reconstructed images are of higher quality and less noisy. Basically,

it takes four steps to reconstruct images using FBP:

• For each angle θ, we collect measured data as (2.7).

• Compute the filter as a radial integral in (2.10).

• Calculate the back-projection as (2.11).

• Collect the reconstructions of all directions and synthesize the results.

2.3.2 Algebraic Reconstruction Technique

Rather than computing the linear attenuation coefficient µ analytically, we can also

solve µ using iterative methods. If we use polar coordinates and discretize Equation

(2.2) with respect to the j-th projection and the i-th detector pixel, we can obtain

Ii = I0 exp

{
−
∫
t∈li,j

µ (~r (t)) d t

}
. (2.12)

To be convenient, we let bi = − log Ii
I0

and can obtain that

bi =

∫
t∈li,j

µ (~r (t)) d t. (2.13)

If we further decompose µ (~r (t)) into an expansion

µ (~r (t)) =
∑
j

µjφj (~r (t)) , (2.14)

where φj (~r (t)) is a basis function of the image representation. The line integral of

the basis function, ai,j, is the length of the x-ray beam through the j-th pixel of

the target image, incident onto the i-th element of detector pixels. So ai,j can be
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expressed as

ai,j =

∫
t∈li,j

φj (~r (t)) dt. (2.15)

The geometric meaning of ai,j is shown in Figure 2.4. In Figure 2.4, a x-ray intersects

Pixel

Figure 2.4: Explanation of the line integral over the j-th image basis function. The
thick line inside the j-th pixel represents the distance ai,j.

the j-th pixel of the target image and the line integral over the j-th basis function,

ai,j, corresponds to the distance of the x-ray inside the j-th pixel (the thick line).

With the previous expansion, Equation (2.13) can be expressed as

bi =
∑
j

µj

∫
t∈li,j

φj (~r (t)) d t =
∑
j

ai,jµj. (2.16)

If we collect ai,j, bi,j and µj with respect to their sub-indexes, we can obtain a linear

system

b = Au. (2.17)

Therefore, given the vector b and the matrix A, our goal is to compute the unknown

variable u in a robust and efficient way. Since the matrix A captures the geometry

of CT machines, it is not square most of time. Moreover, it can be rank-deficient if
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the data we obtained are based on limited angle projections. Rather than calculate

it directly, we need to find alternative methods to handle these issues.

Even if the matrix A might be rectangular, we can still build a least squares

problem of the form

min
u

‖Au− b‖22. (2.18)

Many methods have been proposed to solve Equation (2.18) under different scenarios.

For CT problems, one of the most famous methods is called Algebraic Reconstruction

Technique (ART) [25], which is also a rediscovery of the Kaczmarz method [36]. We

let ai represent the i-th row of A, then the ART method is an iteration framework

given by

uk+1 = uk + λk
bi − aTi uk
‖ai‖2

aTi , (2.19)

where λk is a step size parameter in the k-th iteration. Compared with other methods,

ART does not require to save the full entries of the matrix A and it only needs each

row slice in the current iteration. Moreover, it has been observed for tomography

problems that the initial convergence speed is often fast.

Mathematically speaking, it converges to the pseudoinverse solution, A†b. If A

has full column rank, then A† can be expressed as

A† =
(
ATA

)−1
AT . (2.20)

If A is rank-deficient and has full column rank, Problem (2.18) has infinitely many

solutions. Among these infinitely many solutions, AA†b is the orthogonal projection

of b onto the column space of A. The orthogonal projection offers the “shortest”

distance so the solution obtained by ART might be the “best” among all possible

solutions. This is also a reason why ART is popular for limited angle CT reconstruc-

tion.

In addition to the previous iterative method, we can also build a regularized least
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squares problem

min
u

‖Au− b‖22 + αR(u), (2.21)

where α is the regularization parameter and R(u) is the selected regularization

term. To smooth the edges, we can take `2 regularization, where R(u) = ‖u‖22.

To strengthen the edges, we can take `1 regularization, where R(u) = ‖u‖1. In the

case of `2 regularization we can build an augmented system,

∥∥∥∥∥∥∥
 A√

α

u−
b

0


∥∥∥∥∥∥∥
2

2

, (2.22)

which can then be solved by ART. The regularization parameter can be chosen using

methods such as L-curve [31], the discrepancy principle [17] and generalized cross-

validation [23].

2.3.3 Statistical Reconstruction Methods

We know that x-ray beams are made of x-ray photons, and rather than computing

the deterministic solution directly from an equation, we can explore the randomness

of x-ray photons. If we assume that the detector is a photon-counting detector, then

we can use statistical tools to build the model.

In Equation (2.3), if we discretize the equation with respect to the j-th projection

and the i-th detector pixel, then we can obtain

yi =

∫
E

S(e) exp

{
−
∫
t∈li,j

µ (~r (t)) d t

}
d e, (2.23)

where yi represents the number of photons measured at the i-th pixel of detector. If

we further discretize the equation over the energy spectrum, then it can be expressed
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as

yi =
∑
k

sk exp

{
−
∫
t∈li,j

µ (~r (t)) d t

}
. (2.24)

Repeating the same steps as (2.12), (2.13) and (2.14), we can obtain

yi = s̄i exp {− [Au]i} , (2.25)

where s̄i is the average photon density of the j-th projection. If we both consider the

errors introduced in the photon diffusion and counting, we can add a noise term

yi = s̄i exp {− [Au]i}+ ηi. (2.26)

One realistic assumption is that the projected data are Poisson distributed as

yi ∼ Poisson(s̄i exp {− [Au]i}). (2.27)

With this assumption, we can build a maximum likelihood function

fy (y;u) =
∏
i

s̄yii exp {−yi [Au]i} exp (−s̄i exp {− [Au]i})
yi!

. (2.28)

If we ignore the constant terms, the corresponding likelihood function is

L (u;y) =
∏
i

exp {−yi [Au]i} exp (−s̄i exp {− [Au]i}) . (2.29)

The log-likelihood function can be expressed as

l (u;y) =
∑
i

(−yi [Au]i − s̄i exp {− [Au]i}) . (2.30)

To maximize the log-likelihood function, it is equivalent to minimizing the negative
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log-likelihood function. So the objective function is

l (u;y) =
∑
i

(yi [Au]i + s̄i exp {− [Au]i}) . (2.31)

With this objective function, we can build an optimization problem as

argmin
u

l (u;y)

subject to u > 0.

(2.32)

This optimization problem consists of a nonlinear objective function and bound con-

straints. Therefore, we cannot regard it as a linear system and compute the solution

directly. Even if the nonlinearity provides more challenges for us, it also indicates

numerous possibilities. To obtain the maximum likelihood estimators, nonlinear op-

timization skills are used to find the optimal solutions.

2.4 Ill-posed Inverse Problems

Using Hadamard’s [28] definition, an inverse problem is well-posed as long as it sat-

isfies three conditions:

• Existence: there should be at least one solution.

• Uniqueness: the solution should be unique.

• Stability: with initial conditions, the solution should depend continuously on

the change.

Problems that fail to meet any of these three criteria are classified as ill-posed prob-

lems. For numerical analysis, it has corresponding explanations:

• The forward operator is compact, so it does not have a continuous inverse in

the infinite-dimensional space, and the discrete problem inherits this property of



21

ill-posedness. Therefore, computing an accurate approximation is a challenging

problem.

• The forward operator or linear system has small singular values. When we solve

inverse problems, the inversion of small singular values will amplify the noise

so the solution might be far away from the truth.

In our cases, the computed tomography problem is an ill-posed inverse problem since

the forward operator has a decay of small singular values and the rank-deficient system

has multiple solutions. To mitigate the effects, three classical methods use different

techniques:

• The filtered back-projection uses a filter to emphasize the high-frequency com-

ponents and reduce the influence of noise.

• Algebraic Reconstruction Technique takes orthogonal projections and regular-

izations to obtain a better solution. If the regularization operator R(u) is

omitted, the early termination of the iteration can be used to avoid noise ap-

plification in the solution.

• Statistical reconstruction methods apply randomness of photons and compute

the maximum likelihood estimator as evidence.

The solutions obtained using these classical methods are of higher quality. However,

these results are based on the assumption of either a monochromatic x-ray source

or an approximation of average of photon flux density. Furthermore, we cannot tell

the composition of the target object we obtain as well as the percentages of different

materials. In the following sections, we will focus on the spectral CT models, the

material decomposition and optimization frameworks used to compute robust and

efficient solutions.
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Chapter 3

Nonlinear Optimization for the

Energy Integrating Detector Model

In this chapter we focus on spectral computed tomography with a single energy dis-

criminating detector. To reconstruct material maps of each composition, we need to

find solutions to an inverse problem of the form

y = exp
(
−AWCT

)
s+ η, (3.1)

where y is a vector of projection data, s is a vector containing spectral information

of the corresponding energies of the source x-ray, and η is the noise term. The

exponentiation is done element-wise. A is a matrix that is related to the quantitative

information of ray trace, C is a matrix of (known) material specific attenuation

coefficients, andW is a matrix of unknowns, whose columns correspond to the weights

of each of known materials of the object being imaged.

To solve this problem, Elbakri and Fessler [15] and Chung et al. [11] suggest that

we could use a 2-material model with a polyenergetic assumption on the source x-

ray. Moreover, Mejia-Bustamante et al. [7] extended this idea, and provided a GPU

implementation [6]. We remark that the problem can be reformulated in terms of mass
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attenuation coefficients (see, e.g., [15]), which encodes density information into the

mathematical model. This can be important in cases when materials have the same

chemical composition but different densities. However, it does not fundamentally

change our proposed optimization approach, so in the remainder of the chapter we

use the model based on linear attenuation coefficients. To solve the nonlinear inverse

problem in [6, 7], a maximum likelihood function was used to represent the evidence

with respect to parameters W . The gradient descent method is used to solve the

resulting optimization problem, with an implicit enforcement of the constraint that

in each voxel, the weights across all materials should sum to one.

In this chapter, we build an optimization problem with Poisson maximum likeli-

hood function and use a problem-specific nonlinear interior point trust region method

to solve it. Moreover, we provide a modified Hessian that is close to the true Hessian

and is also positive semi-definite. The interior point method has proven to be efficient

and stable for solving nonlinear optimization problems, and with the implementation

of our modified Hessian, we can simultaneously obtain an accurate approximation of

the true Hessian and avoid negative curvature. Numerical experiments have shown

very promising results for this method.

In Section 3.1, we present the general polyenergetic model for spectral computed

tomography and derive the specific mixed attenuation model from the general model.

The discretization of this model is included in Section 3.1 as well. In Section 3.2,

we revise this model to one that is more amenable to numerical implementation and

formulate an optimization problem that is based on Poisson likelihood function. The

standard form of this optimization problem and the method to solve it are discussed

in Section 3.3. Moreover, numerical experiments for both full CT and limited angle

reconstruction are presented in Section 3.4. In Section 3.5, we conclude with merits

and limitations about the model and the optimization method.



24

3.1 The Energy Integrating Detector Model

The computed tomography (CT) process mainly consists of three parts: x-ray beams

are emitted from a source with specific energies, an object is illuminated by x-ray

beams and attenuated x-ray beams are received by a detector. In this process, the

intensities of x-ray beams are reduced and using Beer’s law [18], the energy integrating

detector model can be written as

yi =

∫
E

S(e) exp

(
−
∫
t∈`
µ (~r (t) , e) d t

)
d e+ ηi, i = 1, 2, · · · , Nd ×Np, (3.2)

where

• yi is the x-ray intensity of the i-th pixel in the detector.

• E is the photon flux density. Figure 3.1 shows a curve of E versus photon

energy with relative low potential (26 keV).

• Nd is the number of detector pixels. For a material map of size n by n, we

assume Nd = n and the number of projection rays for each angle is equivalent

to b
√

2Ndc.

• Np is the number of projections. For cone/fan beam CT, projections are dis-

tributed equally from 0 to 360 degrees.

• S(e) represents the system spectral response, which is a product of x-ray energy

with the number of incident photons at that energy.

• The outer integral is over all x-ray energies emitted from the source, and the

inner integral is along lines that follow the x-ray beam paths through the object.

• µ (~r (t) , e) denotes the attenuation coefficient, which is related to the position

function ~r (t) and the energy level e.
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• ηi represents unknown errors in the measurements, which can include x-ray

scatter and electronic noise.

The traditional methods to solve this inverse problem are mostly based on filtered

back-projection (FBP) [49]. If we assume the source to be monoenergetic and the

source energy is se, then we can build a linear inverse problem by dividing se on

both sides and by applying the natural logarithm function to the data and to the

model. Other approaches can be used to solve this linear inverse problem, such

as incorporating different regularization schemes. These usually involve applying

appropriate iterative optimization methods, such as the conjugate gradient method

[45]. However, the images obtained from traditional methods on the simplified linear

model might lead to significant beam hardening artifacts when the object is made up

of several very distinct materials, such as bone and soft tissue. In addition, the linear

models cannot be used to recognize the the actual types of materials from the results,

nor can they separate different materials when they are mixed [33]. Moreover, the

traditional methods are unstable when it comes to the limited angle cases. For these

reasons, we consider the full nonlinear polyenergetic model.

In Model (3.2), the unknown linear attenuation coefficient µ (~r (t) , e) is dependent

on the position function r (t) and energy levels e. If the object is assumed to be

composed of several different materials, then a material expansion is introduced to

further decompose the function µ (~r (t) , e) [33]:

µ (~r (t) , e) =
Nm∑
m=1

um,ewm (~r) , (3.3)

where

• Nm is the number of materials that form the object.

• um,e is the linear attenuation coefficient for the m-th material at the energy

level e.
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• wm (~r) is the unknown weight of the m-th material at the position ~r.

With this decomposition, the unknown variable has been shifted from µ (~r (t) , e) to

weight fraction wm (~r). If we further assume that wm (~r) can be represented as a sum

of product of the weight wj,m and the basis function φj (~r), then another expansion

can be expressed as

wm (~r) =
Nv∑
j=1

wj,mφj (~r) , (3.4)

where

• Nv is the number of voxels (pixels if 2D) of images that compose the object.

• wj,m is the weight fraction of the m-th material in the j-th voxel (pixels if 2D).

• φj (~r) is the basis function of image representation. The line integral of the

basis function, ai,j, is the length of the x-ray beam through the j-th voxel (pixel

if 2D), incident onto the i-th element of the product of the detector pixels Nd

and the number of projections Np:

ai,j =

∫
t∈l
φj (~r (t)) d t. (3.5)

By assumption, the attenuation coefficient for the m-th material and the energy level

e, um,e, is already known and the only unknown variable is the weight wj,m. Using

this expression, we have transformed the goal of solving µj,e to the target of solving

for wj,m, which is dependent on the number of voxels and the number of materials.

Usually, the number of materials is 2 or 3 and it is significantly fewer than the number

of energies. To simplify the problem, we also assume that the sum of weights inside

each voxel is equivalent to 1. That is to say,

Nm∑
m=1

wj,m = 1. (3.6)
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In this chapter, we limit the discussion to 2 to 3 materials, but note that for energy

discriminating detectors, separating more materials is feasible. With (3.3), (3.4) and

(3.5), the line integral in Model (3.2) is expressed by

∫
t∈l
µ (~r (t) , e) d t =

Nm∑
m=1

Nv∑
j=1

um,ewj,m

∫
t∈l
φj (~r (t)) d t =

Nv∑
j=1

Nm∑
m=1

ai,jwj,mum,e. (3.7)

If we also discretize the integral over energy E and ignore quadrature errors, then the

discrete model of Equation (3.2) can be written as:

yi =
Ne∑
e=1

se exp

(
−

Nv∑
j=1

Nm∑
m=1

ai,jwj,mum,e

)
+ ηi, (3.8)

where Ne is the number of discrete energies. If we collect ai,j, wi,j and um,e in matrix

form and concatenate yi, se, ηi into vectors, then the corresponding equation can be

represented as

y = exp
(
−AWCT

)
s+ η, (3.9)

where

• y is a vector of the size Nd ·Np that gathers x-ray photons.

• A is a matrix of the size (Nd · Np) × Nv that collects the fan-beam geometry

and each element corresponds to ai,j.

• C is a matrix of the size Ne×Nm that accumulates linear attenuation coefficients

and each entry corresponds to ue,m, the linear attenuation coefficient of the e-th

energy and the m-th material.

• s is a vector of the size Ne and collects the spectrum energy of a specific range.

• η is the noise vector that is of the size Nd ·Np.

In Equation (3.9), the exponential function is point-wise exponential rather than
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matrix function. In addition to Equation (3.9), we also require that weight fractions

should be nonnegative and this can be illustrated by the constraint W > 0. We have

so far obtained the standard form of the polyenergetic multi-material model. Based

on Equation (3.9), the goal is to solve for the unknown weight matrix W such that

W ∈ P , where P = {W |W1Nm = 1Nv , 0 6W 6 1}. 1Nm and 1Nv are vectors of

ones of the lengths Nm and Nv, respectively.

3.2 Poisson Log-likelihood Function

With different energy levels, the forward model is nonlinear and it is not possible

to transform it into an equivalent linear model. Mejia-Bustamante et al. [7] use the

assumption that each entry in y follows a Poisson distribution,

y ∼ Poisson
(
exp

(
−AWCT

)
s
)
. (3.10)

With this assumption, one can formulate a maximum likelihood estimator (MLE)

based on Poisson distribution. Before we show the expressions of objective function,

gradient and Hessian, we first note that if the weights (unknowns) are stored as a

matrix, then differentiation results in tensors, requiring tedious bookkeeping in the

computations. In this work we instead rewrite the function to put the unknowns

in vector form, and differentiate the objective function with respect to this vector.

Notice that

vec(AWCT ) = (C ⊗A) vec (W ) , (3.11)

where vec(·) reshapes a given matrix into a vector by stacking the columns on top of

each other. Therefore, we can rewrite Equation (3.9) as

y = (sT ⊗ I) exp [− (C ⊗A) vec (W )] + η. (3.12)



29

If we let

w = vec (W ) and K (w) = exp {− (C ⊗A)w} , (3.13)

then Equation (3.12) is equivalent to

y = (sT ⊗ I)K (w) + η. (3.14)

In this problem, we assume that each element of measured data, yi, follows a Poisson

distribution with mean
[(
sT ⊗ I

)
K(w)

]
i
. That is to say,

yi ∼ Poisson
([(
sT ⊗ I

)
K(w)

]
i

)
. (3.15)

Based on this assumption, the corresponding probability density function can be

expressed as

fy (y;w) =

Nd×Np∏
i=1

[(sT ⊗ I)K(w)]yii exp
(
[−
(
sT ⊗ I

)
K(w)]i

)
yi!

. (3.16)

If we ignore the constant terms, the corresponding likelihood function is

L (w;y) =

Nd×Np∏
i=1

[(sT ⊗ I)K(w)]yii exp
(
[−
(
sT ⊗ I

)
K(w)]i

)
. (3.17)

Taking the logarithm, the log-likelihood function is expressed by

l (w;y) =

Nd×Np∑
i=1

{
yi log[(sT ⊗ I)K(w)]i − [

(
sT ⊗ I

)
K(w)]i

}
. (3.18)
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To maximize the log-likelihood function, it is equivalent to minimizing the negative

log-likelihood function. So the objective function is

l (w;y) =

Nd×Np∑
i=1

{
[
(
sT ⊗ I

)
K(w)]i − yi log[(sT ⊗ I)K(w)]i

}
.

=1TNp×Nθ(s
T ⊗ I)K(w)− yT log

[
(sT ⊗ I)K(w)

]
,

(3.19)

where 1Nd×Np is a vector of all ones of the length Nd × Np. The gradient to the

objective function can be expressed as

∇l(w) = −
(
CT ⊗AT

)
diag {K(w)} (s⊗ I)

{
1Np×Nθ − y �

[
(sT ⊗ I)K(w)

]}
.

(3.20)

Differentiating the gradient with respect to w, the Hessian can be represented as a

summation of two parts:

∇2l(w) = H1 (w) +H2 (w) , (3.21)

where

H1(w) =(CT ⊗AT )diag {K(w)}diag
{

(s⊗ I)
(
1Np×Nθ − y �

[
(sT ⊗ I)K(w)

])}
(C ⊗A)

H2(w) =(CT ⊗AT )diag {K(w)} (s⊗ I)diag
{
y � [(ST ⊗ I)K(w)].2

}
(sT ⊗ I)diag {K(w)} (C ⊗A).

(3.22)

From the previous expressions, we can see that H2 (w) is the Gauss-Newton ap-

proximation to the true Hessian and it is always positive semi-definite. Even if H1 (w)

is indefinite, we can transform it into a positive semi-definite matrix by setting a
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threshold. Specifically, let T (w) be defined as

T (w) = max
[
0, (s⊗ I)

(
1Np×Nθ − y �

[
(sT ⊗ I)K(w)

])]
. (3.23)

Then the new Ĥ1 (w) can be represented as

Ĥ1 (w) =
(
CT ⊗AT

)
diag {K (w)} diag {T (w)} (C ⊗A) . (3.24)

Moreover, we define the modified Hessian as

Ĥ (w) = Ĥ1 (w) +H2 (w) . (3.25)

With the modified Hessian, we can include most information about the true Hessian

as well as keep it positive semi-definite. Furthermore, both the bound constraint

and the constraint (3.6) should be included. The bound constraint is equivalent to

0 6 w 6 1 and we can rewrite the constraint (3.6) in a matrix-vector form as

Aeqw = 1Nv , (3.26)

where Aeq is a matrix of the form

Aeq = 1TNm ⊗ INv . (3.27)

1Nm is a vector of ones of the length Nm. INv is an identity matrix of the size Nv×Nv.

In the following sections, we use I to represent the identity matrix if the size of this

matrix is clear to identify.

With the objective function (3.19), we can construct an optimization problem by
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combining the regularization term and the constraints:

min
06w61

f (w) + αR (w)

subject to Aeqw = 1Nv .

(3.28)

In Problem (3.28), f (w) = l (w;y) and R (w) represents the regularization term,

which is used to penalize the variable w. α is the corresponding regularization pa-

rameter. For this problem, we choose the total variation regularization to preserve

edges. Using the previous notations, we can express the bound constraint and the

equality constraint as Q = {w | Aeqw = 1Nv , 0 6 w 6 1}. So the notation of Prob-

lem (3.28) can be simplified as

min
w∈Q

f (w) + αR (w) . (3.29)

We let wk be the k-th column in the matrix W and Wk be the corresponding re-

shaped image of wk. The total variation regularization for the k-th material can be

represented as [30]:

R(Wk) =
n∑
i=1

n∑
j=1

((
WkD

T
)2
ij

+ (DWk)
2
ij

)1/2
, (3.30)

where D is either a forward, backward or central first order finite difference matrix

and n is the dimension of the corresponding material map. For all m materials, the

regularization term can be expressed as

R (W ) =
m∑
k=1

R (Wk) . (3.31)

Other forms of regularization, such as the discrete Laplacian, can also be used with

this framework. For simplicity, we use zero boundary conditions and assume that the

regularization parameters for different materials are equal to α. With the regulariza-
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tion terms, we can reduce the influence of noise and stabilize the solution.

With the modified Hessian and regularizations, we want to use a second order

method to solve the optimization problem (3.28). However, direct implementation of

the Newton’s method is not effective. To guarantee the feasibility of each step, we

need to project the current step onto the boundaries. The projected solution might

be far away from the desired solution and hard to improve later. Furthermore, it is

difficult to maintain the equality constraint in each step without changing the original

model.

3.3 Implementation of Nonlinear Interior Point Trust

Region Method

Recall that the optimization problem can be expressed as

min
06w61

f (w) + αR (w)

subject to Aeqw = 1,

(3.32)

where f (w) = l (w;y) and R (w) is the regularization term.

To solve this constrained optimization problem, we use a nonlinear interior point

trust region method, which combines sequential quadratic programming (SQP), a

trust region dogleg method, and a projected conjugate gradient algorithm [8,48]. To

apply this method, we firstly establish a barrier problem based on (3.32):

min
w,z

f (w) + αR (w)− β
2Nv∑
i=1

ln (zi)

subject to Aeqw − 1 = 0,

Aieqw + yieq + z = 0,

(3.33)
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where

Aieq =

 −I
I

 and yieq =

 −1

0

 . (3.34)

β is the barrier parameter that should decrease to 0 and z is the vector of slack

variables that ensure all entries remain positive. The permuted KKT condition cor-

responding to (3.33) can be written as

∇f (w) + α∇R (w) +AT
eqλeq +AT

ieqλieq = 0,

Zλieq − β1 = 0,

Aeqw − 1 = 0,

Aieqw + yieq + z = 0,

(3.35)

where λeq and λieq are the Lagrange multipliers corresponding to the equality and

the inequality constraints, respectively. Furthermore, we should keep λieq nonnega-

tive. Z is a diagonal matrix and Z = diag {z1, z2, · · · , z2Ne}. Compared with the

original KKT system, this permuted KKT system is preferred because the matrix Z

is bounded when the entries of z approach 0. We can construct an error function

based on this system:

E (w, z,λeq,λieq; β) = max {‖f (w) + α∇R (w)

+AT
eqλeq +AT

ieqλieq
∥∥
∞ ,

‖Zλieq − β‖∞ , ‖Aeqw − 1‖∞ ,

‖Aieqw + yieq + z‖∞
}
.

(3.36)

If the error function is less than a tolerance, for example, 10−8, then we assume that

we have solved this system accurately. The Newton system corresponding to the
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permuted KKT system can be written as

D (w)p = −g (w) , (3.37)

where

D (w) =



Ĥ (w) + α∇2R (w) 0 AT
eq AT

ieq

0 Λieq 0 Z

Aeq 0 0 0

Aieq I 0 0


,

g (w) =



∇f (w) + α∇R (w) +AT
eqλeq +AT

ieqλieq

Zλieq − β1

Aeqw − 1

Aieqw + yieq + z


,

p =



px

pz

∆λeq

∆λieq


.

(3.38)

In the matrix D (w), Λieq is a diagonal matrix with λieq in the diagonal: Λieq =

diag { λieq}. However, both direct and iterative methods to solve this system are

computationally expensive, especially for large-scale problems. We therefore follow

the strategy of Byrd et al. [9] by transforming the original problem into a sequential

quadratic programming problem and solve by separating it into two subproblems.

The first subproblem is called the normal subproblem, which is solved by trust-region

dogleg method, while the second subproblem, the tangential subproblem, can be

solved by the projected conjugate gradient method. By applying the idea of sequential
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quadratic programming, we can construct an optimization problem as

min
px,pz

∇ [f (w) + αR (w)]T px +
1

2
pTx

[
Ĥ (w) + α∇2R (w)

]
px

− β1TZ−1pz +
1

2
pTz Σpz

subject to Aeqpx +Aeqw − 1 = req,

Aieqpx + pz +Aieqw + yieq + z = rieq,

‖
[
pTx pTzZ

−1]‖2 6 ∆,

pz > −τz,

(3.39)

where Σ = Z−1Λieq. For this primal-dual system, we regard Σ = Z−1Λieq as an

approximation to the second order derivative βZ−2. req and rieq are auxiliary vari-

ables to the linearized constraints. Moreover, the trust region constraint is used to

guarantee a sufficient reduction in each step and stop the loop after a fixed number

of iterations. The scale term Z−1 in the trust region constraint is used to keep slack

variables away from zero without enough iterations. Meanwhile, the bound constraint

is applied to guarantee the positivity of the slack variable z. That is to say, if the

step is accepted, then we should have

z + pz > z − τz = (1− τ) z > 0. (3.40)

τ is a constant that is close to 1, for example, τ = 0.98. If we let p̃z = Z−1pz, then
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we can rewrite (3.39) as

min
px,p̃z

∇ [f (w) + αR (w)]T px +
1

2
pTx

[
Ĥ (w) + α∇2R (w)

]
px

− β1T p̃z +
1

2
p̃TzZΣZp̃z

subject to Aeqpx +Aeqw − 1 = req,

Aieqpx +Zp̃z +Aieqw + yieq + z = rieq,

‖
[
pTx p̃Tz

]
‖2 6 ∆,

p̃z > −τ.

(3.41)

With the help of auxiliary variables, we can separate (3.41) into two subproblems,

the normal subproblem and the tangential subproblem. The normal subproblem can

be expressed as

min
vx,vz

‖Aeqvx +Aeqw − 1‖22 + ‖Aieqvx +Zvz +Aieqw + yieq + z‖22

subject to ‖
[
vTx vTz

]
‖2 6 ζ∆,

vz > −
τ

2
,

(3.42)

where ζ is a constant and 0 < ζ < 1, for example, ζ = 0.8. Without the bound

constraint, the normal subproblem is a standard form of trust region problem, which

can be solved by the trust region dogleg method. So we solve it first by ignoring the

bound constraint and test if the solution satisfies this constraint later. If not, we con-

duct backtracking to maintain feasibility [54]. After solving the normal subproblem

approximately, we obtain the residuals as

req = Aeqvx +Aeqw − 1,

rieq = Aieqvx +Zvz +Aieqw + yieq + z.

(3.43)

By substituting the residuals for the same terms in (3.41), the original optimization
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problem can be represented as

min
px,p̃z

∇ [f (w) + αR (w)]T px +
1

2
pTx

[
Ĥ (w) + α∇2R (w)

]
px

− β1T p̃z +
1

2
p̃TzZΣZp̃z

subject to Aeq (px − vx) = 0,

Aieq (px − vx) +Z (p̃z − vz) = 0,

‖
[
pTx p̃Tz

]
‖2 6 ∆,

p̃z > −τ.

(3.44)

If we ignore the last two constraints, this optimization problem is a standard form

of quadratic programming problem under linear equality constraints, which can be

solved by the projected conjugate gradient method. In this case, we ignore the bound

constraint at first and stop the iteration when the desired tolerance is attained or the

current step crosses the trust region boundary. If the solution does not satisfy the

bound constraint, we backtrack and choose the last feasible step as the solution.

After we have obtained px and pz, we need to decide if we should accept them and

update the current step as well as the size of the trust region. To realize this idea, we

can construct a merit function based on the objective function and constraints from

the original barrier problem to decide the actual reduction. For example, a merit

function can be expressed as

φν (w, z) =f (w) + αR (w)− β
2Nv∑
i=1

ln (zi) + ν‖Aeqw − 1‖2 + ν‖Aieqw + yieq + z‖2,

(3.45)

where ν > 0 is a penalty parameter. The actual reduction can be represented as

ared (p) = φν (w, z)− φν (w + px, z + pz) . (3.46)
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The predicted reduction can be constructed in many ways, most of which are based

on the SQP problem and its constraints. For example, we can set up a function as

qν (p) =∇ [f (w) + αR (w)]T px +
1

2
pTx

[
Ĥ (w) + αR (w)

]
px − β1TZ−1pz

+
1

2
pTz Σpz +

∥∥∥∥∥∥∥
 Aeqpx +Aeqw − 1

Aieqpx + pz +Aieqw + yieq + z


∥∥∥∥∥∥∥
2

.
(3.47)

For qν (p), the predicted reduction is the difference between not taking any step and

taking the obtained step p, which can be indicated as

pred (p) = qν (0)− qν (p) , (3.48)

where the variable p is a concatenation of px and pz. For a tiny constant η = 10−8, if

ared(p) > η pred(p), we accept p and update the current step. We will also update

the trust region with a standard criterion based on the ratio ared (p) /pred (p).

In conclusion, we implement this problem-specific nonlinear interior point trust

region method to solve the corresponding optimization problem (3.33). Problem

(3.33) is a nonlinear optimization problem under linear and bound constraints. The

objective function contains a nonlinear log-likelihood term and a regularization term.

For the log-likelihood term, we calculate the gradient and the modified Hessian as

(3.20) and (3.25). For the regularization term, the total variation regularization is

chosen to stabilize the solution. The modified Hessian is close to the true Hessian and

it is positive semidefinite so solutions to the augmented Newton system are robust.

Furthermore, the problem is prone to large-scale application since it is unnecessary

to save the modified Hessian. We only need the Hessian-vector multiplication when

we implement the Newton-CG method to solve the augmented Newton system. The

cost of memory in each conjugate gradient iteration is close to an iteration of gradient

descent.
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3.4 Numerical Experiments

To test the method, we generate a 2D image of the size 128 by 128 and assume that

the object is made up of three simulated materials that arise in polyenergetic image

reconstruction – adipose, air and bones. For bones, we use the main component, cal-

cium, to represent it. One application of polyenergetic image reconstruction is breast

imaging, which requires low dose radiation for patients. To realize this application, we

generate an energy spectrum with potential 26 keV with the help of function “spek-

trSpectrum” [53]. We also select a low radiation dose of 1e5 total photons for the

x-ray energy spectrum. The corresponding spectrum is shown in Figure 3.1. From

Figure 3.1, we can find that the photon flux density is above zero when the energy

is between 3 kev and 28 kev. Based on this observation, the discrete energies for the

simulated source x-ray beam are chosen from 3 keV to 28 keV, with an interval of 1

keV.
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Figure 3.1: Photon flux density versus photon energy.



41

The plots of linear attenuation coefficients to materials adipose, air and calcium

are shown in Figure 3.2. In Figure 3.2, the red, blue and black curves represent

0 10 20 30 40 50 60 70 80

Photon energy (keV)

10
0

10
5

L
in

e
a

r 
a

tt
e

n
u

a
ti
o

n
 c

o
e

ff
ic

ie
n

t
Adipose

Air

Calcium

Figure 3.2: The linear attenuation curves for adipose (red), air (blue) and calcium
(black).

adipose tissue, air and calcium, respectively, and the gray patch corresponds to the

area of energy flux that is not equivalent to zero. From Figure 3.2, we can see that the

curvatures of air and adipose are similar, while the curve of calcium has a K-edge [52].

The similarity of curvatures between adipose and air might cause the collinearity of

linear attenuation coefficient matrix C and so as the ill-conditioning of Hessian, while

the K-edge might result in difficulty for reconstruction.

The simulations of the true object, shown in Figure 3.3, contain four distinct

regions: 100% adipose, 0% air, 0% calcium; 0% adipose, 100% air, 0% calcium; 0%

adipose, 0% air, 100% calcium; 50% adipose, 50% air, 0% calcium1. In Figure 3.3, the

1We actually tested many different combinations of mixed materials, for example, 20% adipose,
60% air and 20% calcium. The results are are very similar to the one case considered in this
experiment, thus to conserve space, we omit the results.
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yellow color represents regions that contain 100% of the corresponding material, the

turquoise color indicates regions that contain 50% of the adipose and air materials,

the blue color indicates that the corresponding material does not exist in this area.

Since we only have three materials, the weights corresponding to these three plots in

Figure 3.3 should add to one. Moreover, since we use a 2-dimensional object for the
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Figure 3.3: The true images for air (upper left), adipose (upper right) and calcium
(middle). The turquoise colored regions are those areas in the object with a mixture
of 50% glandular and 50% adipose tissue.

simulation, we use fan-beam (instead of cone beam) tomography model to generate

a projection matrix A using the AIR Tools software [32]. The distance between the

source and the detector is 70 cm, with 2.5 cm air gap between the object and the

detector. In order to keep the gauge of projection matrix the same under different

size of images, we scale the projection matrix by the grid size and the dimension of

images. For example, we choose the grid size as 2 cm and the dimension as 128 pixels

so the scaling results in a pixel size of 2/128 cm/pixel.
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To avoid the inverse crime, we use spectral energies discretized on a finer grid and

images with higher resolution to build the forward problem, but then use a coarser grid

and lower resolution when solving the inverse problem. In particular, we collect the

photon flux density corresponding to energies from 3 keV to 28 keV, with an interval

of 0.5 keV for the forward problem, but then use an interval of 1 keV when we solve

the inverse problem. Moreover, the resolution of object is initially 256×256 when we

build the forward problem, and for the inverse problem, we solve (using a function

included in the package IR Tools [22]) on a 128×128 grid. The number of x-rays used

in building the ray trace matrix A is scaled to match the projected data generated

with higher resolution images. Both full CT and limited angle reconstructions are

presented in the following sections.

3.4.1 Full Angle Reconstruction

First, we only consider the full CT case, where the range of projection angle is from 0

to 179 degrees in one degree increment. We use Poisson distribution to generate the

measurements as (3.10). The initial guess is a random vector whose entries are be-

tween 0 and 1 and it is not required to satisfy the equality constraint. Moreover, a to-

tal variation regularization is introduced to preserve the edges; specifically, we use the

forward difference operator and zero boundary conditions for this regularization term.

The regularization parameter is chosen among the set {10−1, 10−2, 10−3, 10−4, 10−5}

and the most effective parameter is used to compute the result. With our (un-

optimized) MATLAB implementation on a laptop computer, we need around 20 min-

utes to finish 30 Newton iterations where the stationary point is achieved. For the full

CT case, the reconstructed images are presented in Figure 3.4. From Figure 3.4, we

can see that the reconstructed images are of high quality in general. It successfully

separates the areas corresponding to adipose, air and calcium as well as mixture of

adipose and air. Edges of the reconstructed images are clear, which might be con-
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Figure 3.4: The reconstructed images for air (upper left), adipose (upper right) and
calcium (middle) for the full CT reconstruction.

tributed from the total variation regularization. On the other hand, we can also find

several artifacts that appear as blurred spots concentrating in the upper right corner,

as well as other small artifacts scattered around the image. This results from mea-

sured data that are generated by Poisson distribution. With lower radiation dose, the

relative noise level is higher compared with higher dose. Moreover, we can illustrate

the convergence behavior by investigating the curves of relative errors. This plot is

shown in Figure 3.5.

From Figure 3.5, we can find that the relative errors of materials air and adipose

decrease in a similar way while the relative error of material calcium drops much

faster. It is likely that calcium is only composed of a small part of the area and it

can achieve faster convergence and higher accuracy. We also observe that the relative

errors of three materials decrease to a particular level and then stagnate. The relative

error between the last step and the true solution is about 19% for each material. Note
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Figure 3.5: The plot of relative errors of air (magenta), adipose (blue) and calcium
(red) for the full CT simulation.
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Figure 3.6: The plot of decrease of the objective function value.
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that this stagnation occurs because of the regularization – without regularization, the

relative errors may actually increase as the iterations proceed, which is a well-known

behavior of ill-posed inverse problems, referred to as semi-convergence. We observe

that when the relative errors stagnate, the current step approaches the first order

optimality condition, which is an approximate solution to the KKT system.

To further validate convergence behavior of the proposed algorithm, we plot the

curve of function value in Figure 3.6. From Figure 3.6, we can clearly identify that

the function value drops fast in the beginning and then it stops for two iterations.

After that, it starts to drop again and then stagnate. It cannot achieve lower value

when reaching a specific level.

3.4.2 Limited Angle Reconstruction

In addition to the full CT case, it is important to also consider the case of limited

angle reconstructions. Specifically, in the area of digital tomography, the limited

angle reconstruction known as tomosynthesis has become an important diagnostic

tool in breast imaging. The motivations for limited angle reconstruction are to reduce

radiation dose to patients as well as to reduce the cost of this procedure. The limited

angle reconstruction provides significantly more challenges to image reconstruction

because the mathematical problems is much more ill-posed than the full CT case.

This also means that the reconstruction quality is much more sensitive to the noise.

In addition, the original objective function might have more stationary points and

several of them are likely to satisfy the KKT condition. Under this situation, when the

problem is effectively underdetermined, a poor initial guess may lead to an undesirable

local minimum.

To test the limited angle reconstruction, the same test problem is used but with

fewer projection angles. We shrink the projection angles from 180 degrees to 90

degrees, which ranges from 0 to 90 degrees. Furthermore, Poisson distribution is
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used to generate the projection data. After implementing the previous algorithm, the

reconstructed images are presented in Figure 3.7.
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Figure 3.7: The reconstructed images for air (upper left), adipose (upper right) and
calcium (middle) with 90 degrees projection.

From Figure 3.7, we can clearly see that the reconstructed images obtained from

the limited angle case are more blurred than the images from the full CT case. As

expected, with fewer projection angles, the images are of poorer quality. For the 90

degrees case, we can basically identify the distributions of materials roughly, while the

details are more difficult to recognize. Only the material map of calcium is nearly fully

separated from other materials. Moreover, we can see that the boundaries of different

materials are not as clear as the boundaries in the full CT case. In several areas, the

pixels are surrounded by shadows, which means that the materials are not completely

separated. In the area of mixture, several pixels are colorful and the results depart

slightly from the true solution. However, it is well known that due to the limited

angle data, there are fundamental limitations when computing reconstructions [20].
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Figure 3.8: The plot of relative errors of air (magenta), adipose (blue) and calcium
(red) for the 90 degrees limited angle simulation.

The plot of relative errors for 90 degrees case is presented in Figure 3.8. From

Figure 3.8, we can find that the relative error curves corresponding to air and adi-

pose decrease slowly and then stagnate. On the other hand, the relative error curve

corresponding to calcium drops fast and converges to a lower level. This observation

matches the phenomenon we conclude for the reconstructed images. Compared with

the plot of full CT, the relative errors stagnate at higher levels. Moreover, we can

find that the speed of convergence is not as rapid as the full CT case. However, we do

observe that even if the regularization cannot completely compensate for the limited

angle limitations, it does help to stabilize the solution.

3.5 Conclusions and Remarks

By taking multiple materials into consideration, the reconstructed images can reveal

the weights of materials that compose the object, providing substantially more useful
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information for the clinicians. Furthermore, the objective function and the gradient

are uncomplicated to implement and the modified Hessian is a sufficient and stable

estimate to the true Hessian. In addition, the merits of using a nonlinear interior point

method are easy to identify. It is a globally convergent method with superlinear rate

of convergence. It is also a stable and robust algorithm that can handle large-scale

problems. Furthermore, there is substantial flexibility in choosing the initial guess

because it does not need to satisfy the constraints.

Although this method has advantages such as faster convergence, robust compu-

tation and flexibility, it still has a few limitations. For example, implementation of

nonlinear interior point method is not straightforward for large-scale problems. It re-

quires solving a normal subproblem as well as a tangential subproblem. Furthermore,

we need to decide the size of trust region in each iteration. Meanwhile, this method

involves many parameters that we need to choose manually. So far, we have only

tested 2D images rather than 3D images. For 3D images, the evaluation of each part

might be more complicated, which is likely to increase the expense for solving this

problem. For further research, we might consider the gradient-based methods such

as the scaled gradient descent method or splitting methods such as the alternating

direction method of multipliers (ADMM) [21].
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Chapter 4

Nonlinear Optimization for

Energy-windowed Spectral

Computed Tomography

The development of new energy-windowed spectral computed tomography (CT) ma-

chines have received a great deal of interest in recent years; see, e.g. [2, 57]. These

detectors assume that x-rays emitted by the x-ray source are composed of a spectrum

of different energies, and in each energy window, the detector can detect a specific

range of energy. Moreover, it assumes that the detector can perform photon count-

ing and the data collected by the detector are nonnegative integers. Compared with

traditional CT machines, we can avoid introducing beam-hardening artifacts [45] and

improve quality of reconstructed images. To reconstruct the material maps of an

object, we need to solve a nonlinear equation of the form

Y = exp
(
−AWCT

)
S + E , (4.1)

where Y is a matrix that gathers the projected data of each energy window in the

corresponding column and the exponential operator is applied element-wise (i.e., it is
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not a matrix function). A is a matrix that is related to the quantitative information

of ray trace and C is a matrix that contains linear attenuation coefficients for par-

ticular (known) materials at specified energies. S is the matrix that accumulates the

spectrum energies for each energy window in the corresponding column. Moreover, E

represents the noise term and we assume that yil ∼ Poisson
([

exp
(
−AWCT

)
S
]
il

)
for each component yil in Y and the corresponding entry in the exponential term.

We also assume that these data are known and the target is to solve the unknown

weight matrix W . W is of size Nv by Nm, where Nv is the number of voxels (pixels

if 2D) for each material map and Nm is the number of materials. Since the weight

matrix W represents the material maps of different materials, it must be nonnegative

and we need to add a lower bound constraint W > 0.

To obtain the quantitative information about the material composition, we need

to solve a nonlinear inverse problem. This nonlinear inverse problem is extremely

ill-posed and direct implementation of regular methods is not effective. In this case,

Barber et al. [2] suggests a preconditioner that is based on the eigenvalue decom-

position of the matrix of linear attenuation coefficients, CTC. With this precondi-

tioner, they use the Chambolle-Pock (CP) primal-dual algorithm [10] to solve the

inverse problem with Poisson log-likelihood loss function. However, they construct

the preconditioner with only linear attenuation coefficients and do not include energy

information. Moreover, the Poisson log-likelihood function contains multiple expo-

nential terms and it is hard to handle. Because of these problems, we propose a new

preconditioner that both involves linear attenuation coefficients and energy spectrum

information based on a rank-1 approximation. To implement this preconditioner, we

use a two-step method that includes finding an approximate Cauchy point in the first

step and solving a quadratic programming problem in the second step.

This chapter is organized as follows. We review the energy-windowed spectral

CT model in Section 4.1. Because of the challenges raised by this model, a new
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preconditioning framework is introduced in Section 4.2. In order to implement this

preconditioner, we suggest in Section 4.3 an optimization algorithm based on the

projected line search and the trust region method. In Section 4.4 we illustrate the

strength of the new preconditioner and the algorithm using numerical experiments.

Finally, comments, limitations and future work are provided in Section 4.5.

4.1 The Energy-windowed Spectral CT Model

In computed tomography (CT), source x-ray beams are composed of a spectrum of

different energies [7]. Recent technological developments have resulted in the design

of new photon counting detectors that can discriminate the measured data into spe-

cific energy windows. Image reconstruction algorithms that exploit this information

can avoid introducing beam-hardening artifacts, obtain material decomposition and

improve the quality of reconstructed images. The mathematical model of energy-

windowed spectral CT is expressed by

y
(k)
i =

∫
E

S(k)(e) exp

(
−
∫
t∈l
µ (~r (t) , e) d t

)
d e+ η

(k)
i ,

 i = 1, 2, · · · , Nd ×Np,

k = 1, 2, · · · , Nb,

(4.2)

where

• y(k)i is the x-ray intensity of the i-th pixel in the k-th detector bin.

• E is the photon flux density. Figure 4.4 shows a curve of E versus photon

energy with relative high potential (120 keV).

• Nd is the number of detector pixels. For a material map of the size n by n,

we assume Nd = n and the number of projection rays for each angle is also

equivalent to Nd.
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• Np is the number of projections. For cone/fan beam CT, projections are dis-

tributed equally from 0 to 360 degrees.

• Nb is the number of detector bins (windows). For an energy-windowed CT

machine, we usually assume that it has 5 to 6 energy bins.

• S(k)(e) represents the photon flux density for the k-th detector bin, which is the

number of incident photons at the energy level e in the k-th energy window.

• µ (~r (t) , e) denotes the linear attenuation coefficient that is related to the posi-

tion function ~r (t) and energy level e.

• η(k)i is the error term for the i-th element in k-th energy bin and it is assumed

to be Gaussian for this model.

With the introduction of energy window, we need to use Beer’s law k times to express

the corresponding equation. Compared with Equation (3.2) in Chapter 3, this discrete

model has multiple columns corresponding to the projected data of specified detector

bins so it can be expressed in a form of matrix equation. However, we can still

expand the unknown linear attenuation coefficient µ (~r (t) , e) into a summation of

multiplication of um,e, the linear attenuation coefficient for the m-th material at the

energy level e, and wm (~r), the unknown weight of the m-th material at the position

~r:

µ (~r (t) , e) =
Nm∑
m=1

um,ewm (~r) , (4.3)

where

• Nm is the number of materials that form the object.

Again, we can shrink the size of unknown variable with Expansion (4.3). The

size of the unknown variable is made up of two dimensions and one dimension, the

resolution of material map, remain the same but the other dimension, the number of
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discrete energies, has been reduced to the number of materials. Usually, the number

of discrete energies can be hundreds but the number of materials are 2 or 3 so the

dimension of new solution space is significantly decreased. As we have seen in Chapter

3, the weight fraction, wm (~r), can be represented as a summation of product of the

weight wj,m and the basis function φj (~r)

wm (~r) =
Nv∑
j=1

wj,mφj (~r) , (4.4)

where

• Nv is the number of voxels (pixels if 2D) of images that compose the object.

• wj,m is the weight fraction of the m-th material in the j-th voxel (pixels if 2D).

• φj (~r) is the basis function of image representation. The line integral of the

basis function, ai,j, is the length of the x-ray beam through the j-th voxel (pixel

if 2D), incident onto the i-th element of the product of detector pixels Nd and

number of projections Np:

ai,j =

∫
t∈l
φj (~r (t)) d t. (4.5)

With (4.4) and (4.5), the unknown linear attenuation coefficients can be represented

as

∫
t∈l
µ (~r (t) , e) d t =

Nm∑
m=1

Nv∑
j=1

um,ewj,m

∫
t∈l
φj (~r (t)) d t =

Nv∑
j=1

Nm∑
m=1

ai,jwj,mum,e. (4.6)

By ignoring quadrature errors and discretizing the integral with respect to the energy

E, the discretization of the basic model (4.2) can be written as:

y
(k)
i =

Ne∑
e=1

s(k)e exp

(
−

Nv∑
j=1

Nm∑
m=1

ai,jwj,mum,e

)
+ η

(k)
i , (4.7)
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where Ne is the number of discrete energies. If we collect ai,j, wi,j and um,e in matrix

form and concatenate y
(k)
i , s

(k)
e , η

(k)
i with respect to the specified energy windows,

then the corresponding matrix equation can be represented as:

Y = exp
(
−AWCT

)
S + E , (4.8)

where

• Y is a matrix of the size (Nd · Np) × Nb that gathers x-ray photons of each

energy window in the corresponding column.

• A is a matrix of the size (Nd · Np) × Nv that collects the fan-beam geometry

and each element corresponds to ai,j.

• C is a matrix of the size Ne×Nm that accumulates linear attenuation coefficients

and each entry corresponds to ue,m, the linear attenuation coefficient of the m-

th material at the energy level e. For similar materials, we expect their linear

attenuation coefficients to be similar so it might introduce the collinearity of

the matrix C.

• S is a matrix of the size Ne×Nb and each column collects the spectrum energy

of a specific range.

• E is the noise matrix that is of the size (Nd · Np) × Nb. The assumption for

noise is that yil ∼ Poisson
([

exp
(
−AWCT

)
S
]
il

)
for yil in Y .

In Equation (4.8), the exponential function is point-wise rather than matrix function.

In addition to Equation (4.8), we also require that weight fractions should be non-

negative and this can be illustrated by the constraint W > 0. Recall that in Chapter

3, we also require that the weight fractions in each voxel should add to 1. That is to

say,
Nm∑
m=1

wj,m = 1 for j = 1, 2, · · · , Nv. For the energy-windowed spectral CT model,
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we drop this normalization requirement and allow unnormalized weights. So the only

constraint is W > 0.

Even if the constraints are simplified, we still do not want to handle the ma-

trix form of this equation directly since the second order derivative of the objective

function will introduce tensors. To avoid introducing tensors, we need to vectorize

Equation (4.8) on both sides. By taking vectorization and using the properties of

Kronecker product, we can transform Equation (4.8) into

vec (Y ) =
(
ST ⊗ I

)
exp {− (C ⊗A) vec (W )}+ vec (E) , (4.9)

where I is the identity matrix of the size Nd ·Np by Nd ·Np. To simplify the notations,

we let y = vec (Y ), w = vec (W ) and η = vec (E). Then Equation (4.9) can be

rewritten as

y =
(
ST ⊗ I

)
exp {− (C ⊗A)w}+ η. (4.10)

In addition to Equation (4.10), we also require that the weight fractions should be

bounded blow by zero. So we introduce the constraint w > 0.

4.2 Problem Set-up and Preconditioning

4.2.1 The Constrained Least Squares Problem

Based on Equation (4.10) and the nonnegative constraint w > 0, we can formulate a

constrained nonlinear least squares problem:

min
w

1

2

∥∥y − (ST ⊗ I) exp {− (C ⊗A)w}
∥∥2
2

subject to w > 0.

(4.11)
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With the least squares loss function, we want to use the Gauss-Newton method to

solve this problem. If we assume the residual is r (w), then r (w) can be represented

as:

r (w) = y −
(
ST ⊗ I

)
exp {− (C ⊗A)w} . (4.12)

So the Jacobian can be calculated as

J (w) = ∇r (w)T =
(
ST ⊗ I

)
diag (exp {− (C ⊗A)w}) (C ⊗A) . (4.13)

With the Jacobian and residual, we can represent the gradient in terms of these two

terms:

∇f (w) = J (w)T r (w) . (4.14)

The Gauss-Newton approximation of Hessian can be expressed in terms of J (w):

H (w) = J (w)T J (w) =
(
CT ⊗AT

)
D
(
SST ⊗ I

)
D (C ⊗A) , (4.15)

where D = diag (exp {− (C ⊗A)w}). In the k-th iteration, we need to solve a

Gauss-Newton system for the step pk:

H (wk)pk = −∇f (wk) . (4.16)

The naive way to solve this problem is based on two steps. At first, we solve the

Gauss-Newton system to obtain step pk in each iteration. Then we update the cur-

rent step and project this step onto boundary w > 0. However, this Gauss-Newton

method with simple projections does not guarantee convergence [37]. Furthermore,

the sparsity of the matrix A and the possible collinearity of the matrix C might con-

tribute to the ill-conditioning of the matrix H (w). Therefore, direct implementation

of Gauss-Newton method is ineffective and does not produce satisfactory results in
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reality. Because of these problems, we think about using preconditioners and try to

apply another optimization framework to solve this problem. For this new optimiza-

tion framework, we will solve the same constrained least squares problem and use the

same Gauss-Newton approximation.

4.2.2 Preconditioning of the Hessian

Since the Hessian H (w) is extremely ill-conditioned, the corresponding constrained

least squares problem is hard to solve. To overcome this difficulty, we want to add

preconditioners to the Hessian matrix H (w). It is easy to see that the Hessian

matrix H (w) is a product of several matrices, and among these matrices, it is hard

to modify either C ⊗A or SST ⊗ I. On the other hand, D is a diagonal matrix so

it might be convenient to construct preconditioners based on this matrix. If we can

decompose the matrix D into a Kronecker product of two matrices, then we can use

the properties of Kronecker product to combine the left and right terms. With this

idea, we try to decompose the matrix D into a Kronecker product of two diagonal

matrices, D1 and D2, where D1 is of the size Ne by Ne and D2 is of the size Nd ·Np

by Nd ·Np:

D ≈D1 ⊗D2. (4.17)

Moreover, D1 ⊗ D2 is chosen to minimize the distance to D with respect to the

Frobenius norm:

min
D1,D2

‖D −D1 ⊗D2‖F (4.18)

This is a nearest Kronecker product (NKP) problem [55] and the solution has already

been studied extensively. Since we require that D, D1 and D2 are diagonal matrices,

it is equivalent to minimizing the distance on behalf of their diagonal entries. In this

case, we let D = diag {d}, D1 = diag {d1} and D2 = diag {d2}, where d, d1 and d2

are diagonal entries of the matrices D, D1 and D2, respectively. So Problem (4.18)
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is equivalent to a least squares problem that is based on their diagonal elements with

respect to the 2-norm:

min
d1,d2

‖d− d1 ⊗ d2‖2 (4.19)

It is easy to see that d, d1 and d2 are vectors, which are also rank-1 matrices. In this

case, the goal of this problem is to find two rank-1 matrices that will minimize the

distance with respect to the 2-norm. The result is given by the largest singular value

and its corresponding singular vectors. By using the singular value decomposition

(SVD), one solution to this NKP problem is d1 =
√
σ1v1 and d2 =

√
σ1u1, where

σ1 is the largest singular value and u1 and v1 are the first left and right singular

vectors of the SVD of the matrix D̃ = reshape (d, Nd ·Np, Ne). In practice, we use an

efficient MATLAB package, “PROPACK” [39], to compute the largest singular value

and the corresponding singular vectors.

After we have obtained D1 and D2, we can estimate H (w) using the properties

of Kronecker product:

H (w) ≈
(
CT ⊗AT

)
(D1 ⊗D2)

(
SST ⊗ I

)
(D1 ⊗D2) (C ⊗A)

=
(
CTD1SS

TD1C
)
⊗
(
ATD2D2A

)
.

(4.20)

The size of the matrix C is Ne by Nm and Nm is the number of materials. In practice,

we usually consider only 2 or 3 materials as the composition of the object. Therefore,

the size of the matrix product, CTD1SS
TD1C, is usually 2 by 2 or 3 by 3. Using this

approximation, we can use the preconditioners to transform this term into identity so

the new matrix should not depend on this part and thus be better-conditioned. To

be specific, we let M1 be the preconditioner of the size Nd · Np by Nd · Np and M2

be the preconditioner of the size Ne by Ne. Then the preconditioned Hessian can be
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represented as:

H̃ (w) =
(
MT

2 ⊗MT
1

)
H (w) (M2 ⊗M1)

≈
(
MT

2 ⊗MT
1

) ((
CTD1SS

TD1C
)
⊗
(
ATD2D2A

))
(M2 ⊗M1)

=
(
MT

2 C
TD1SS

TD1CM2

)
⊗
(
MT

1 A
TD2D2AM1

)
.

(4.21)

Since we can choose D1 to guarantee CTD1SS
TD1C to be symmetric positive def-

inite, then we can calculate the Cholesky decomposition to this matrix as

CTD1SS
TD1C = GTG, (4.22)

where G is an upper triangular matrix with positive diagonal entries. In this case,

we can choose M2 = G−1 and the first part in H̃ (w) has become identity. On

the other hand, ATD2D2A is still large-scale because of the dimension of A. It is

challenging to find a preconditioner M1 that best fits all conditions. In this situation,

we might choose M1 to be a diagonal matrix such that each column of the matrix

MT
1 A

TD2D2AM1 is scaled to 1 with respect to either 1-norm or 2-norm. Or we can

even choose it to be identity so that we do not add any preconditioners to this part.

Using the SVD, we can analyze the condition number before and after precondi-

tioning. Before preconditioning, the matrixH (w) depends on two parts,CTD1SS
TD1C

and ATD2D2A. If we assume that the singular value decompositions of these two

matrices are CTD1SS
TD1C = U1Σ1V

T
1 and ATD2D2A = U2Σ2V

T
2 , then the con-

dition number of H (w) is closely related to the diagonal entries of Σ1 and Σ2. Let

the largest and smallest diagonal elements of Σ1 be σ1max and σ1min. In addition,

let the largest and smallest diagonal elements of Σ2 be σ2max and σ2min, then the

condition number of H (w) can be estimated as

κ (H (w)) ≈ σ1maxσ2max

σ1minσ2min

, (4.23)
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where κ is the condition number. In contrast, the condition number of H̃ (w) is

mostly dependent onATD2D2A after preconditioning, which is related to the largest

and smallest diagonal entries of Σ2:

κ
(
H̃ (w)

)
≈ σ2max

σ2min

. (4.24)

In most cases, σ1max/σ1min is not close to 1 and M1 = I, then we can conclude that

κ(H̃ (w))� κ (H (w)) . (4.25)

In practice, the reduction of condition number can be at least two orders of magnitude.

In addition to the condition number, we can check if the eigenvalues are more clustered

after preconditioning. With more clustered eigenvalues, optimization methods such as

conjugate gradient (CG) or generalized minimal residual method (GMRES) [51] will

converge with faster speed. To check the eigenvalues before and after preconditioning,

we construct an object of two materials and the material map corresponding to each

material is of the size 16 by 16. Therefore, the resulting Hessian matrices, H (w)

and H̃ (w), are of the size 512 by 512. The plot of eigenvalues of these two matrices

is presented in Figure 4.1. In Figure 4.1, we take the logarithm of eigenvalues to

compare the clusters. From this plot, we can easily see that the eigenvalues of the

original Hessian H (w) are scattered in a larger span, while the eigenvalues of the

preconditioned Hessian H̃ (w) are clustered within a smaller range. Usually, the

clustered eigenvalues provide favorable convergence speed. Since the preconditioned

Hessian, H̃ (w), relies on w, we need to compute the preconditioners, M1 andM2, in

each iteration. However, we only need the largest singular value and the corresponding

singular vectors, which is very cheap.

Even if we have obtained the new preconditioners, it is still not straightforward

about how to implement it for the optimization problem. If we follow the steps in
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Figure 4.1: The comparison of eigenvalues before and after preconditioning (with
scaling).

Section 4.2 directly, we need to solve a preconditioned system:

(
MT

2 ⊗MT
1

)
H (wk) (M2 ⊗M1)

(
M−1

2 ⊗M−1
1

)
pk = −

(
MT

2 ⊗MT
1

)
∇f (wk) .

(4.26)

If we let p̃k =
(
M−1

2 ⊗M−1
1

)
pk and ∇f̃ (wk) =

(
MT

2 ⊗MT
1

)
∇f (wk), then this

system can be rewritten as

H̃ (wk) p̃k = −∇f̃ (wk) . (4.27)

After solving this system, we need to retrieve the step pk from p̃k and tailor the step

to meet the nonnegative constraint w > 0. In practice, if we update the current

step and project the new step onto the boundary, it is not efficient and unable to

guarantee convergence. Therefore, how to implement preconditioners efficiently under

the constraint is worth considering.
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4.3 Optimization and Regularization

4.3.1 Optimization with the Proposed Preconditioner

With the proposed preconditioners, we can implement them directly into Equation

(4.16) and project the new step onto the boundary. However, numerical experiments

are not in favor of this method. Without constraints, it is likely that the step obtained

by this method can offer sufficient reduction. After we project the new step onto the

boundary, it might not be a feasible choice anymore. Furthermore, we cannot guar-

antee convergence even if we add a line search scheme. To improve convergence speed

and further stabilize solution, we apply the preconditioners into a two-step method.

In the first step, we use the projected line search method to find the approximate

Cauchy point. In the second step, we fix the elements of this Cauchy point that are

active on the boundary and minimize the objective function with points that are in-

active. In both steps, we include trust regions in terms of the infinite norm to further

restrict the step size. The idea is that the step obtained using this method should be

at least better than the approximate Cauchy point.

In the first step, we use a projected line search method to find the approximate

Cauchy point. The basic idea is to find the point that will both satisfy the Wolfe

condition [56] and the trust region constraint:

f (wk (α)) 6 f (wk) + c1α∇fTk (wk (α)−wk) ,

‖wk (α)−wk‖∞ 6 c2∆k,

(4.28)

where wk (α) = P (wk − α∇fk) and P is the operator that is used to project w onto

the boundary. ∆k is the size of trust region for the k-th step. c1, c2 are constants

and c1, c2 ∈ (0, 1). c2 is chosen to be close to 1 to guarantee the trust region in the

first step is smaller, but also close, to the trust region in the second step. Details are

presented in Algorithm 1.
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Algorithm 1 Projected Line Search

1: Initialization:
2: c1 = 0.1; c2 = 0.8; α = β = 0.5;
3: Set up the maximum number of iterations: maxIter.
4: while LS 6 maxIter do
5: wk (α) = P (wk − α∇fk);
6: if f (wk (α)) 6 f (wk) + c1α∇fTk (wk (α)−wk) and ‖wk (α)−wk‖∞ 6 c2∆k

then
7: Return wk (α);
8: Break;

9: α = α ∗ β;
10: LS = LS + 1;

11: if LS > maxIter then
12: Line search failed;
13: Break;

If we assume that the approximate Cauchy point found in the first step is wc and

the active set corresponding to this point is A (wc), then we can construct a quadratic

programming problem that is based on the current step wk:

min
w

f(wk) +∇f (wk)
T (w −wk) +

1

2
(w −wk)

T H (wk) (w −wk)

subject to w > 0, i 6∈ A (wc) ,

wi = wc
i , i ∈ A (wc) ,

‖w −wk‖∞ 6 ∆k.

(4.29)

Moreover, we should notice that f(wk) is a constant and we can ignore this term.

If we let d = w −wk, then we can simplify the objective function as ∇f (wk)
T d +

1
2
dTH (wk)d. The inequality constraintw > 0 is equivalent tow−wk > −wk, which

is d > −wk using our notations. The third inequality constraint, ‖w −wk‖∞ 6

∆k, can be rewritten as ‖d‖∞ 6 ∆k. This inequality constraint is equivalent to

−∆k 6 d 6 ∆k. By combining the previous two constraints, we can obtain that

max {−∆k,−wk} 6 d 6 ∆k. For the elements in the active set, we have w −wk =

wc −wk, which is d = wc −wk. So the previous optimization problem is equivalent
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to

min
d

∇f (wk)
T d+

1

2
dTH (wk)d

subject to max {−∆k,−wk} 6 d 6 ∆k,

Pd = wc −wk.

(4.30)

where P is the projection matrix that keeps di invariant for i ∈ A (wc). We can

construct the matrix P by assigning the i-th element in the i-th column to be 1 and

otherwise 0, where the size of P is the number of active elements by Nv · Nm. It is

obvious that this problem is a quadratic programming problem with both bound and

equality constraints. However, for the large-scale cases, solving this problem exactly is

likely to be as expensive as solving the original problem [48]. Since we have obtained

the approximate Cauchy point in the first step, we only want the solution to be at

least better than the approximate Cauchy point, which means that we do not require

an exact solution for the second step. So we can either stop the iteration when the

current step crosses the boundaries or ignore the bound constraints, project the step

back to the boundaries after it meets the stopping criteria and compare it with the

approximate Cauchy point. In this chapter, we will ignore the bound constraints at

first and then project the step back to the boundaries because the step can cross

the boundaries within only 1 or 2 iterations, and in this case, it does not give us a

sufficient reduction.

So far, we have not added any preconditioners to this problem. As we can see, the

preconditioners proposed in the last section are used to precondition the Hessian, so

it is not necessary to apply the preconditioners in the first step. In the second step,

we substitute the Hessian of Gauss-Newton approximation for the true Hessian so we

can try to use the preconditioners in this step. If we ignore the bound constraints,
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we can formulate a quadratic programming problem with the preconditioners:

min
d̃

∇f̃ (wk)
T d̃+

1

2
d̃TH̃ (wk) d̃

subject to P̃ d̃ = wc −wk,

(4.31)

where ∇f̃ (wk) =
(
MT

2 ⊗MT
1

)
∇f (wk), d̃ =

(
M−1

2 ⊗M−1
1

)
d, P̃ = P (M2 ⊗M1)

and H̃ (w) =
(
MT

2 ⊗MT
1

)
H (w) (M2 ⊗M1). We use the projected conjugated

gradient (PCG) method to solve d̃ directly and retrieve d using d = (M2 ⊗M1) d̃.

The details are shown in Algorithm 2. In Algorithm 2, we need to use the approxi-

Algorithm 2 Projected Conjugate Gradient

1: Initialization:
2: d = wc −wk;
3: d̃ =

(
M−1

2 ⊗M−1
1

)
d;

4: r = H̃ (wk) d̃+∇f̃ (wk);

5: g = r − P T
(
PP T

)−1
Pr;

6: p = −g;
7: Set up the stopping criterion: tol, and the maximum number of iterations: max-

Iter;
8: while i 6 maxIter do
9: α = rTg/pTH̃ (wk)p;

10: d̃ = d̃+ αp;
11: r+ = r + αH̃ (wk)p;

12: g+ = r+ − P T
(
PP T

)−1
Pr+;

13: if g+
T
r+ < tol then

14: Return d̃;
15: Break;

16: β = r+
T
g+/rTg;

17: p = −g+ + βp;
18: g = g+;
19: r = r+;
20: i = i+ 1;

mate Cauchy point obtained in Algorithm 1 as the initial guess. Otherwise, we cannot

guarantee the elements that are active will be fixed on the boundaries. Moreover, we

can see that we need
(
PP T

)−1
in each iteration, where PP T is large-scale, sparse

and symmetric positive semi-definite. So we can use the Cholesky factorization to
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find an upper triangular matrix R such that PP T = RTR. Compared with inverting

PP T directly, it is more efficient to invert RTR because R is upper triangular and

we only need to calculate the factorization once in Algorithm 2.

After we have obtained the new direction d, we can compute the new step as

wk+1 = wk + d. To decide if we should accept the new step and the size of trust

regions, we need to compute the actual reduction and the predicted reduction. The

actual reduction is the difference between function values of the previous step and

the new step:

ared = f(wk)− f(wk+1). (4.32)

The predicted reduction is based on the quadratic expansion of the previous step:

pred = −∇f (wk)
T d− 1

2
dTH (wk)d. (4.33)

If ared < 0, then we accept the new step and update the trust region with respect to

the ratio ared/pred. In this chapter, we use the standard way to update trust regions.

After updating the current step, we should check if we should stop the iteration. If

the current step meets the stopping criteria for local minimum, then we stop the

iteration and report the results. Otherwise, we keep iterating until we find a local

minimizer. By combining Algorithm 1 and Algorithm 2, we can express the main

framework in Algorithm 3.

From the description, we can see that Algorithm 3 includes the strengths of both

the projected line search method and the trust region method. With the projected line

search method, we can guarantee a descent direction with proper reduction. With the

trust region method, we are likely to obtain a better step and thus further reduction.

However, this problem is a nonlinear least squares problem and the objective function

might have multiple local minimizers. In addition, we truncate each step with respect

to the lower bounds and it is hard to analyze the convergence properties. It is possible
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Algorithm 3 Main Framework

1: Initialization:
2: Set up the test problem, the initial guess w0 and the stopping criteria.
3: while the stopping criteria do not satisfy do
4: Use Algorithm 1 to compute the approximate Cauchy point wc;
5: Find the active set of wc;
6: Construct the project matrix P based on the active set;
7: Calculate the new boundaries based on the original boundaries and the current

trust region;
8: Generate the preconditioners based on the current step wi;
9: Use Algorithm 2 to compute the new step wnew;

10: Project the new step wnew onto the new boundaries to obtain wi+1;
11: Calculate pred and ared using wi and wi+1;
12: Decide if we should accept wi+1 and update the trust region;

that the new step might not offer sufficient reduction but it is closer to the global

minimizer. For example, we can think about an 1D problem of climbing the hill. On

the other side of the hill, it might have another point that has even lower altitude.

During the process of climbing, we might need to increase the altitude to a certain

degree in order to achieve better results later. Therefore, it is not possible to decide

specific criteria that fit all conditions. For example, we can even accept the new

step every time and only decide the size of trust region with respect to the ratio

ared/pred. In practice, this method still gives us a fast convergence and high-quality

image reconstruction.

4.3.2 Regularization and Scaling

In this chapter, we assume that the measured data obtained from the detector follow

a Poisson distribution. To remove the noise and stabilize the solution, we need to

introduce regularization terms. As the weights of each material correspond to an

image, we can construct the regularization term with respect to the specified material.

If we assume w is concatenated by w1, w2, · · · , wm where wi is the vectorization
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of the i-th material map, then we can build the regularization term as

R (w) =
Nm∑
i=1

αiR (wi) , (4.34)

where R (wi) represents the regularization term for the i-th material and αi is the

corresponding regularization parameter. Using this method, it gives us more freedom

to choose the regularization term with respect to the material. In practice, we can

usually find that one or several specified materials dominate the object and it is likely

that the reconstructed material maps will contain many edges. So we select general-

ized Tikhonov regularization for these materials to smooth the edges. The forward

difference operator and zero boundary conditions are used to build the discrete dif-

ferential operator. On the other hand, other materials might only occupy a small

area so we think about restrict the sum of weights for these materials. To realize

this idea, we introduce `1 regularization to penalize the sum of weights. With the

generalized Tikhonov regularization and the `1 regularization, we need to select the

corresponding regularization parameters. It is not obvious how we can use regular

methods, such as L-curve and generalized cross-validation, to find proper parameters.

In this case, we generate a log space for each regularization and use the grid search

method to find the “best” regularization parameters.

Another challenge associated with the regularization parameter is how to scale

the problem. The point such that the objective function is zero might not be feasible

and the residual corresponding to the global minimizer might still be a large number.

In this case, choosing a proper regularization parameter is hard if the magnitude is

large. In addition to selecting the regularization parameter, the infeasible step might

result in the difficulty of meeting stopping criteria and thus increase the number of

CG iterations. For this problem, we want to scale the objective function, gradient

and Hessian with the spectrum radius of the Hessian based on the 2-norm. However,
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it is not necessary to compute the largest singular value of the Hessian. It is easy

to see that H (w) is a nonnegative and symmetric matrix, so we can use the Shur’s

test [40] to find an upper bound for this value with the initial step w0:

‖H(w0)‖2 6
√
‖H(w0)‖1‖H(w0)‖∞. (4.35)

With the nonnegativity of H(w0), we can calculate the right hand side of Inequality

(4.35) Using matrix-vector multiplication rather than form the Hessian explicitly.

Using the symmetry of the Hessian, we can obtain that ‖H(w0)‖1 = ‖H(w0)‖∞.

Then Inequality (4.35) can be simplified as

‖H(w0)‖2 6 ‖H(w0)‖∞. (4.36)

So we can use ‖H(w0)‖∞ as the scaling parameter for the objective function, the

gradient and the Hessian. With this scaling parameter, we can choose regularization

parameters with less effort.

4.4 Numerical Experiments

To test the preconditioners and the optimization method, we generate a 2D image of

the size 128 by 128 as the object. We also assume that this object is made up of two

materials, plexiglass and polyvinyl chloride (PVC). Thus we can obtain 2 material

maps corresponding to the weights of these two materials. The original material

maps are shown in Figure 4.2. In Figure 4.2, the yellow color represents that it has

the corresponding material in this area, while the blue color shows that it does not

have the corresponding material in this area. Therefore, we can see that the object

is a circle and both materials are distributed inside this circle. Inside this circle,

plexiglass dominates most areas except three dots occupied by PVC. We can also
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Figure 4.2: The original images for plexiglass (left) and PVC (right).

see that the images corresponding to these two materials compensate each other and

they are completely separable. The goal of this numerical experiment is to reconstruct

these two images such that different material maps present the corresponding material

compositions.

Moreover, we present the plot of the linear attenuation coefficients for these two

materials in Figure 4.3. In Figure 4.3, we can see that the slopes of these two curves
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Figure 4.3: The linear attenuation coefficients for plexiglass and PVC.

are close to each other so it might indicate the collinearity of linear attenuation
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coefficients and thus the linear correlation of columns of the matrix C. It might also

introduce small singular values and strengthen the ill-posedness.

In addition to the previous images, the geometry parameters of the CT machine

are set as Table 4.1. With these parameters, we generate a distance matrix, A,

to represent the fan-beam geometry for flat detector using the MATLAB function

fanbeamtomolinear [35]. Moreover, we choose 180 projections and they are dis-

Items Parameters (cm)
Width of Domain 2.0
Distance from Source to Rotation Center 3.0
Distance from Source to Detector 5.0
Detector Width 4.0

Table 4.1: Geometry parameters of the CT machine.
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Figure 4.4: Detector bins and photon flux density.

tributed equally from 0 to 360 degrees. The voltage of the x-ray source is assumed to

be 120 keV and the corresponding spectrum is generated using the MATLAB function

spektrSpectrum [53]. We also assume that we have 5 detector bins and each of them

can detect the specific range of photon energy: 10 to 34 keV, 35 to 49 keV, 50 to 64
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keV, 65 to 79 keV and 80 to 120 keV. The detector is assumed to be photon counting

detector and the data obtained from the detector are positive integers. Both the

x-ray spectrum and the detector bins are presented in Figure 4.4. In Figure 4.4, the

small black dots represent the values of mean energy in each bin. When we construct

the forward problem, we use the full spectrum and all linear attenuation coefficients.

However, we only use the mean energy and the corresponding linear attenuation co-

efficients to compute reconstruction. In this way, we can avoid inverse crime but the

grid for reconstruction is coarser. With all these parameters, the goal is to reconstruct

two material maps with the proposed methods.

With previous preparations, we set up random numbers between 0 and 1 as the

initial guess and run the main algorithm. It only takes us around 116 seconds to

converge even if we do not use the optimal implementation. The reconstructed images

are presented in Figure 4.5. In Figure 4.5, we can see that we have successfully
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Figure 4.5: The reconstructed images for plexiglass (Left) and PVC (Right).

separated these two materials and it is hard to find many overlaps betwen these two

material maps. Moreover, we can see that the shapes of these two material maps

are exactly the same as the original images. In addition, the boundaries of large

circle and three small dots are clear to identify, which shows the strength of results.

By comparing Figure 4.5 with Figure 4.2, we can see that the reconstructed images

have more shades than the original ones. For the first material map, most weights
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are yellow but several of them are not exact 1. These light yellow weights represent

the values that are not 1 but significantly close to 1. It might result from the noise

contained in the data. In the center of this material map, we can see several dots

of high frequency, which depart from the true solution to a certain degree. On the

other hand, the reconstruction of the second material map is of higher quality and it

is hard to tell the difference between the original image and the reconstructed one. It

is possible that the weights corresponding to the second material map are much less

than the weights of the first material map so that they contain less noise.

To check the convergence, we can also plot the relative errors for these two ma-

terials. The plot of relative errors is shown in Figure 4.6. In Figure 4.6, we can see

that the curves of both materials drop and stagnate, which indicates the convergence.

Moreover, the blue curve decreases faster than the red one. It shows that the conver-

gence rate for the second material is faster than the first one. We can also see that
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Figure 4.6: The Relative Errors for Plexiglass (red) and PVC (blue dash).

the blue curve reaches a lower level than the red one when they stagnate. It reflects

the observation that the reconstruction of the second material map has better quality

than the first one. Generally speaking, the ultimate relative errors for both materials
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are around 10% and the overall reconstruction is satisfactory.

To further confirm the convergence, we can plot the decay of norm of the gradient.

This plot is shown in Figure 4.7. In Figure 4.7, we can see that most of times, the
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Figure 4.7: The decay of norm of the gradient.

curve drops as expected. However, there are two “spikes” that dissatisfied the trend

of decrease. I think this might result from the projections onto the boundary or

the irregular updating scheme of trust region. Furthermore, the best reconstructed

images might not match the optimal solutions to the optmization problem.

To see the significance of the preconditioner, we can compare the number of CG

iterations with and without preconditioners before the relative errors reach a specified

level. We keep other parameters identical but shrink the size of images to 64 by 64

and the number of projections to 96. Moreover, we set the maximum number of CG

iterations to 5000. After 5 Newton iterations, the methods with and without precon-

ditioner both reach relative errors around 23%. The results are shown in Table 4.2.

From Table 4.2, we can find that the number of CG iterations in each Newton step

is significantly reduced after preconditioning. With the proposed method, the New-



76

No Precond. Precond.
# Rel. Err. Num. CG Time (s) Rel. Err. Num. CG Time (s)
1 1.25 2625 87.8 0.84 9 0.3
2 1.67 318 11.5 0.46 6 0.3
3 1.26 111 3.8 0.30 13 0.5
4 0.27 4051 132.3 0.27 8 0.3
5 0.23 1347 44.2 0.22 12 0.5

Table 4.2: The comparison of CG iterations.

ton system is sufficiently better-conditioned or the eigenvalues are remarkably more

clustered.

4.5 Conclusions and Remarks

With the energy-windowed spectral CT model, we set up a nonlinear least squares

problem under bound constraints. To solve this optimization problem, we propose

a new preconditioner and then implement it into a two-step method. The new pre-

conditioner can transform the eigenvalues of the original Gauss-Newton system into

more clustered ones, which will lead to faster convergence and higher accuracy. With

the introduction of the two-step method, we can guarantee that the obtained step is

at least better than the approximate Cauchy point. By solving the Gauss-Newton

system in the second step, we expect further reduction from the solution. Therefore,

the convergence rate should be better than linearity. Moreover, we further restrict

the size of each step with the help of trust regions. In addition, we can remove

parts of noise and speed up the convergence rate with the scaling parameter and the

regularization terms.

On the other hand, it still has several limitations. Because of the nonlinearity

of the objective function, it is hard to decide if we should accept the new step or

not under certain circumstances. Furthermore, with multiple materials, we cannot

use regular methods to choose regularization parameters. In each iteration, we need
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to solve a NKP problem to obtain the preconditioner. Even if the computational

cost is cheap, it might be better if we can find a preconditioner that is feasible for

all steps. We might also think about how to implement the preconditioner into first

order methods such as FISTA [3].
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Chapter 5

Preconditioning and Optimization

for Energy-windowed Spectral

Computed Tomography

In Chapter 4, we discussed the energy-windowed spectral CT model and presented

a preconditioning framework and a nonlinear optimization approach to compute the

solution. In this chapter, we still focus on the energy-windowed spectral CT model

Y = exp
(
−AWCT

)
S + E , (5.1)

where Y is a matrix that gathers the projected data of each energy window in the

corresponding column and the exponential operator is applied element-wise (i.e., it is

not a matrix function). A is a matrix that is related to the quantitative information

of ray trace and C is a matrix that contains linear attenuation coefficients for par-

ticular (known) materials at specified energies. S is the matrix that accumulates the

spectrum energies for each energy window in the corresponding column. We assume

that S is square and invertible. Moreover, E represents the noise term and we assume

that Eil ∼ N (0, yil) for each component Eil in E and yil in Y . We assume that these
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data are known and the target is to solve the unknown weight matrix W . W is of

size Nv by Nm, where Nv is the number of voxels (pixels if 2D) for each material

map and Nm is the number of materials. Since the weight matrix W represents the

material maps of different materials, then it must be nonnegative and we need to add

a lower bound constraint W > 0.

To solve Equation (5.1), we follow the instruction in Chapter 4 and take a vec-

torization at first. Rather than building a nonlinear optimization problem, we use

the Taylor expansion to remove the point-wise exponential function and obtain an

approximate linearized equation. Under the Gaussian assumption, as we show in Sec-

tion 5.1, we can transform this equation into a weighted least squares problem under

bound constraints:

min
w

1

2
‖Aw − b‖2Σ−1

subject to w > 0,

(5.2)

where A = C ⊗ A, b = − log (y), y = vec (Y ) and w = vec (W ). Σ−1, which

combines information of S and y, is the inverse covariance matrix generated by the

Gaussian noise and the log transformation. ‖·‖2Σ−1 represents a weighted 2-norm and

‖Aw − b‖2Σ−1 = (Aw − b)T Σ−1 (Aw − b) . C is of the size Ne by Nm, where Ne

is the number of energy and Nm is the number of materials. Since each column of

C collects the corresponding linear attenuation coefficients and two materials, such

as adipose and glandular, might be similar to each other, the matrix C is likely to

be ill-conditioned. On the other hand, the problem (5.2) is similar to a quadratic

programming problem under bound constraints. However, direct implementation of

optimization solvers does not provide high-quality reconstruction because the ray

trace matrix A is large and ill-conditioned, and the columns of the linear attenuation

coefficient matrix C might be nearly collinear.

To handle these problems, we propose a new preconditioner that is based on rank-
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1 approximation of the matrix Y . With this rank-1 approximation, we can estimate

the Hessian of the objective function in (5.2) using a Kronecker product of two parts.

The first part of this Kronecker product is of the size Nm × Nm, where Nm denotes

the number of materials; usually this is quite small, e.g. Nm = 2 or 3. This matrix

product is also symmetric and positive definite so we can construct a preconditioner

from its inverse Cholesky factorization, and thus transform it into identity in the

preconditioned system. Because the conditioning of the Hessian is closely related to

these two matrices and one of them has been transformed into the identity matrix,

we have reduced the condition number significantly. Moreover, it is an economical

preconditioner since we only need to compute the preconditioner once and can reuse

it in the future iterations. In [2], Barber et al. propose an alternative preconditioner

that is based on the eigenvalue decomposition of CTC, where C is the matrix of

linear attenuation coefficients. Compared with this, the preconditioner proposed in

this chapter involves not only C, but also includes information of the energy spectrum

S and parts of the photon counting data, Y , and thus provides a more physically

meaningful approximation of the Hessian.

In addition, with the weighted least squares objective function, it is much easier to

analyze the condition number before and after preconditioning. Since the performance

of a first order method is closely related to the condition number of the Hessian, it

is intuitive to implement a first order method if we can reduce the condition number

significantly. Based on this idea, Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) [3, 46, 47] comes into view. FISTA is a first order method that has an

“optimal” function convergence rate, O (1/k2), where k is the number of iterations.

Furthermore, this method is suitable for solving problems that have the form f (x) +

g (x), where both f (x) and g (x) are convex but g (x) is possibly nonsmooth. This

f (x) can be the weighted least squares term in problem (5.2) and g (x) can represent

a nonsmooth regularization such as `1 regularization or nonnegative constraints. Even
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if we can achieve fast convergence, the introduction of a preconditioner complicates

the bound constraints. The previous bound constraints have become linear inequality

constraints because of the preconditioner. However, we can construct a projection

problem that can find the closest solutions to satisfy these constraints. Moreover, this

projection problem is separable and we can apply highly efficient solvers to compute

the solutions to these decomposed small-sized problems. Generally speaking, the

implementations of our preconditioner, FISTA and projection problem complement

each other and exhibit high-quality reconstructed images and fast convergence results.

This chapter is organized as follows. In Section 5.1, we review the continuous

energy-windowed spectral CT model and the corresponding discretized nonlinear ma-

trix equation. The key idea of this chapter, preconditioning, is introduced in Sec-

tion 5.2. In this section, both the derivation of our preconditioner and an analysis

of the reduction of the condition number are presented. The choice of regularization

will be exhibited in this section as well. In Section 5.3, we study FISTA and how we

construct and solve the projection problems. Moreover, numerical experiments are

presented in Section 5.4 and concluding remarks are given in Section 5.5.

5.1 The Weighted Least Squares Problem

In Chapter 4, we have discussed energy-windowed spectral CT model and introduced

a new preconditioner based on the corresponding nonlinear least squares problem and

the Gauss-Newton approximation of the Hessian. A two-step optimization method

that includes projected line search and trust region method is implemented to solve

this problem. However, there are two main concerns related to the preconditioner

and optimization. At first, the preconditioner requires the information of the current

iteration and even if it is cheap to compute, we still need to repeat the computational

process in each Newton iteration. Secondly, since the nonlinear optimization is based
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on the Gauss-Newton approximation of the Hessian, it raises a question if we can

come up with a new preconditioner and use a first order method to solve it. In this

chapter, we still focus on the energy-windowed spectral CT model and we present

a linearization technique to transform the nonlinear equation into an optimization

problem that is based on a weighted least squares term and a bound constraint.

Recall that the basic energy-windowed spectral CT model is expressed by

y
(k)
i =

∫
E

S(k)(e) exp

(
−
∫
t∈l
µ (~r (t) , e) d t

)
d e+ η

(k)
i .

 i = 1, 2, · · · , Nd ×Np,

k = 1, 2, · · · , Nb,

(5.3)

Using the material decomposition, µ (~r (t) , e) =
Nm∑
m=1

um,ewm (~r), discretizing Equation

(5.3) over energy E, and concatenating corresponding variables with respect to energy

windows, we can obtain a matrix equation

Y = exp
(
−AWCT

)
S + E , (5.4)

where

• Y is a matrix of the size (Nd · Np) × Nb that gathers x-ray photons of each

energy window in the corresponding column.

• A is a matrix of the size (Nd · Np) × Nv that collects the fan-beam geometry

and each element corresponds to ai,j.

• C is a matrix of the size Ne×Nm that accumulates linear attenuation coefficients

and each entry corresponds to ue,m, the linear attenuation coefficient of the m-

th material at the energy level e. For similar materials such as adipose and

glandular, the collinearity might cause the ill-conditioning of C.

• S is a matrix of the size Ne×Nb and each column collects the spectrum energy

of a specific range. We assume that S is square and invertible.
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• E is the noise matrix that is of size (Nd ·Np)×Nb. The assumption for noise is

that Eil ∼ N (0, yil) for each element Eil in E and yil in Y .

In Figure 4.4, we present a plot of spectrum energy. The y-axis represents photon

flux density while the x-axis indicates photon energy. The red curve in Figure 4.4

shows the relationship between photon flux density and energy under 120 keV voltage.

The gray boxes represents the energy bins and as we can identify, there are five energy

bins. The black dot in each energy bin illustrates the average photon density in the

corresponding bin. If we use average energies rather than full spectrum when solving

the inverse problem, the matrix S is diagonal and it gives us more flexibility on

manipulating the equation.

Moreover, the current assumption for the noise matrix E is that each entry fol-

lows a normal distribution with mean 0 and variance yil (the corresponding en-

try in Y ). That is to say, Eil ∼ N (0, yil). In the last chapter, we assume that

yil ∼ Poisson
([

exp
(
−AWCT

)
S
]
il

)
and Poisson distribution is the most fundamen-

tal assumption because of randomness of x-ray photon motion and errors of photon

counting. However, a Poisson distribution is accurately approximated by a Gaussian

distribution if the mean of this Poisson distribution is large enough. For spectral

CT problems, this mean corresponds to the number of photons and this number is

often hundreds of thousands. With this large number as the mean, the Gaussian

assumption is valid.

In several cases, the composition of materials can be similar. For example, glan-

dular and adipose have similar attenuation coefficients at the same energy levels and

this feature can cause the collinearity. After discretization, the columns of C can be

nearly dependent. Moreover, A is large-scale and sparse and it is highly likely to have

small singular values. As we will see later, the Hessian system involves the Kronecker

product C ⊗A and these small singular values can cause the ill-posedness. Since it

is challenging to solve this equation directly, it is important to consider approaches
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to facilitate the process. First, we can introduce a preconditioning matrix M into

Equation (5.4):

Y = exp
(
−AWM−TMTCT

)
S + E . (5.5)

If we let W̃ = WM−T and C̃ = CM , then Equation (5.5) is equivalent to

Y = exp
(
−AW̃C̃T

)
S + E . (5.6)

So far, we have not introduced how to choose the preconditioner M . The choice of

M depends on linearization and approximation. In Section (5.2.1), we will state the

process in detail, and in the new coordinate system defined by M , the corresponding

Hessian will be better-conditioned. With the help of the preconditioning matrix M ,

we have transformed the original system of solving W into the new system of solving

W̃ . Since each entry of W̃ is a linear combination of all entries in the corresponding

row of W , we can try to find a matrix M such that the new system is better-

conditioned than the original one.

On the other hand, we do not want to solve the nonlinear matrix equation (5.6)

directly because it might introduce tensors when we compute second order derivatives.

In this case, we want to vectorize Equation (5.6) on both sides and linearize it to

construct a weighted least squares optimization problem. In the forward problem,

we use the full spectrum and the matrix S is usually rectangular. When we solve

the inverse problem, we choose the average in each energy window to represent the

corresponding energy spectrum. In this case, Ne = Nb and the matrix S in the inverse

problem is a nonsingular diagonal matrix. So we can multiply S−1 on both sides of

Equation (5.6):

Y S−1 = exp
(
−AW̃C̃T

)
+ ES−1. (5.7)
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Vectorizing both sides of (5.7), and using properties of Kronecker products, we obtain

(
S−T ⊗ I

)
y = exp

{
−
(
C̃ ⊗A

)
w̃
}

+
(
S−T ⊗ I

)
e, (5.8)

where y = vec(Y ), w̃ = vec(W̃ ) and e = vec (E). If we let ỹ =
(
S−T ⊗ I

)
y and

ẽ =
(
S−T ⊗ I

)
e, then we can subtract ẽ on both sides of (5.8) and obtain

ỹ − ẽ = exp
{
−
(
C̃ ⊗A

)
w̃
}
. (5.9)

By taking the logarithm on both sides of Equation (5.9), we can obtain an equation:

log (ỹ − ẽ) = −
(
C̃ ⊗A

)
w̃. (5.10)

However, the left-hand side of Equation (5.10) contains the transformed error term

ẽ so we cannot solve this equation directly. In this case, we can separate the error

term ẽ from ỹ using a first order Taylor expansion of the logarithm at ỹ:

log (ỹ − ẽ) = log (ỹ)− diag (ỹ)−1 ẽ+O
(
‖ẽ‖22

)
. (5.11)

If we use the first two terms on the right-hand side of Equation (5.11) to estimate

the term log (ỹ − ẽ), then Equation (5.10) can be rewritten as a linear equation with

the error term diag (ỹ)−1 ẽ. Let b = − log (ỹ), then Equation (5.10) is equivalent to

b ≈
(
C̃ ⊗A

)
w̃ − diag (ỹ)−1 ẽ. (5.12)

With this equation and the Gaussian assumption of noise, e ∼ N (0, diag (y)), we

have

b|w̃ ∼ N
((
C̃ ⊗A

)
w̃, Σ

)
, (5.13)
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where the noise covariance matrix Σ is expressed as

Σ = diag (ỹ)−1
(
S−T ⊗ I

)
diag (y)

(
S−1 ⊗ I

)
diag (ỹ)−1 , (5.14)

and the inverse noise covariance matrix is given by

Σ−1 = diag (ỹ) (S ⊗ I) diag (y)−1
(
ST ⊗ I

)
diag (ỹ) . (5.15)

Since y = vec(Y ) and Y is a matrix that collects the number of photons of each energy

window in the corresponding column, each entry of Y is a positive integer whose value

can be on the order of hundreds of thousands. Moreover, ỹ =
(
S−T ⊗ I

)
y and as

long as the noise does not dominate the projected data, we expect the entries of ỹ

to be larger than zero. From the expression (5.15), we can see that the structure of

Σ−1 depends on the structure of matrix S. If S is diagonal, then Σ is also diagonal.

Otherwise, Σ−1 is a block diagonal matrix. If we let A = C̃⊗A and ignore constants,

the corresponding probability density function is given by

f (b; w̃) = exp

{
−1

2
(Aw̃ − b)T Σ−1 (Aw̃ − b)

}
. (5.16)

So the log-likelihood function is given by

l (w̃; b) = −1

2
(Aw̃ − b)T Σ−1 (Aw̃ − b) . (5.17)

We try to maximize the log-likelihood function l (w̃; b,Σ), which is equivalent to

minimizing the negative log-likelihood function −l (w̃; b,Σ). In addition, we require

that W > 0, and with the preconditioner, these constraints are transformed into

(M ⊗ I) w̃ > 0. Therefore, we can formulate a weighted least squares problem
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under bound constraints

min
w̃

1

2
‖Aw̃ − b‖2Σ−1

subject to (M ⊗ I) w̃ > 0.

(5.18)

In Equation (5.18), the norm ‖·‖2Σ−1 corresponds to the negative log-likelihood func-

tion−l (w̃; b,Σ). From this expression, we know that the objective function is convex.

Moreover, the inverse covariance matrix Σ−1 is diagonal as long as S is diagonal and

this optimization problem has linear inequality constraints. Based on these observa-

tions, we can identify four challenges involved in solving this optimization problem.

At first, we need to choose an appropriate preconditioning matrix to reduce the ill-

conditioning of the Hessian. Secondly, we want to choose suitable regularizations for

the corresponding materials. Thirdly, we have to find an efficient method to solve the

weighted least squares problem. These three challenges are related to each other and

an appropriate preconditioner with feasible regularizations will be beneficial for the

solver efficiency. Finally, we should handle linear inequality constraints in an efficient

way. We address these four challenges in the following sections.

5.2 Preconditioning and Regularization

5.2.1 Preconditioning

The choice of the preconditiong matrix M is crucial for solving the optimization

problem (5.18). If we do not have a preconditioner or we choose the preconditioner

M as identity, the original Hessian for the weighted least squares problem is expressed

as

H = (CT ⊗AT )Σ−1 (C ⊗A) . (5.19)
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An appropriate preconditioner can transform the original ill-posed system into a

better-conditioned system and thus bring faster convergence speed as well as higher

quality of reconstructed images. In general, the preconditioned Hessian H̃ can be

represented as

H̃ = ATΣ−1A =
(
C̃T ⊗AT

)
Σ−1

(
C̃ ⊗A

)
, (5.20)

where C̃ = CM . From this expression, it is still not obvious how to construct the

preconditioner. However, if we can decompose the noise covariance matrix Σ−1 into a

Kronecker product of two terms, then we can merge several terms using the properties

of Kronecker product and transform parts of the products into identity. To realize

this idea, we review the expression of Σ−1 in Equation (5.15), where we can see that it

contains the Kronecker products S⊗I and ST ⊗I and it is not necessary to separate

these two terms. So we focus on the other terms that include diag {ỹ} and diag {y}−1.

By definition, these two terms are related to each other by ỹ =
(
S−T ⊗ I

)
y. In this

case, if we can express diag {y} into a Kronecker product of two terms, then we will

reach the goal.

Recall that y = vec (Y ). Therefore, if we can find two rank-1 matrices, u and v,

such that Y ≈ uvT , then

diag {y} ≈ diag
{

vec
(
uvT

)}
= diag {v} ⊗ diag {u} . (5.21)

These two rank-1 matrices can be obtained by solving a nearest Kronecker product

(NKP) problem, which is equivalent to the rank-1 approximation of Y in terms of

the Frobenius norm.

min
u, v

‖Y − uvT‖F . (5.22)

The solution to this problem is similar to the one in Chapter 4, but it has several

variations. Using the singular value decomposition (SVD), one solution to Problem

(5.22) can be expressed by u =
√
σ1u1 and v =

√
σ1v1, where u1 and v1 are the
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first left and right singular vectors and σ1 is the corresponding largest singular value.

Since we only need these terms rather than a full SVD, we can use MATLAB’s svds

function, or other efficient approaches, such as “PROPACK” [39], to compute only

σ1, u1 and v1.

After we have obtained u and v, we can estimate the matrix diag {y} as a Kro-

necker product of two terms as Equation (5.21). In addition, the term diag {ỹ} can

be represented as

diag {ỹ} = diag
{(
S−T ⊗ I

)
vec (Y )

}
≈ diag

{(
S−T ⊗ I

)
vec
(
uvT

)}
= diag

{
vec
(
uvTS−1

)}
= diag

{
S−Tv

}
⊗ diag {u} .

(5.23)

If we substitute the terms in (5.21) and (5.23) for the same terms in (5.15), then we

can obtain that

Σ−1 ≈
(
diag

{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

})
⊗ diag {u} . (5.24)

So the preconditioned Hessian matrix is given by

H̃ =
(
C̃T ⊗AT

)
Σ−1

(
C̃ ⊗A

)
≈
(
C̃T ⊗AT

) (
diag

{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

}
⊗ diag {u}

) (
C̃ ⊗A

)
=
(
C̃Tdiag

{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

}
C̃
)
⊗
(
ATdiag {u}A

)
.

(5.25)

Since the size of C̃ isNe×Nm, then the first part of the Kronecker product in (5.25) is a

square matrix of the size Nm. In other words, this part only depends on the number of

materials that compose the object. Usually, we only consider 2 or 3 materials to form
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the object so that the size of this part is usually either 2×2 or 3×3. Moreover, the ma-

trix Y gathers the number of photons of each energy window in the corresponding col-

umn so all of its entries are positive integers. In this case, we can choose u and v to be

positive such that the matrix product, CTdiag
{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

}
C,

is a symmetric positive definite (SPD) matrix. Therefore, we can calculate M using the

Cholesky decomposition:

CTdiag
{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

}
C = GTG, (5.26)

where G is an upper triangular matrix with positive diagonal entries. Since C̃ = CM ,

we can choose M = G−1 to transform this part into identity. From Expression (5.25), we

see that the preconditioned Hessian matrix H̃ is dependent on a Kronecker product of two

parts and the first part has been transformed into an identity matrix. In particular, since

the condition number of this part is typically significantly greater than 1, the condition

number of the preconditioned Hessian H̃ is significantly smaller than the original Hessian

H.

After we have obtained the matrix M , we can analyze the effect of preconditioning

using the SVD. Without preconditioning, the Hessian matrix H depends on two parts,

CTdiag
{
S−Tv

}
Sdiag {v}−1 STdiag

{
S−Tv

}
C and ATdiag {u}A. If we assume that the

singular value decomposition for these two matrices are U1Σ1V
T
1 and U2Σ2V

T
2 , then the

condition number of the original Hessian H is closely related to Σ1 and Σ2. Let the largest

and smallest singular values of Σ1 and Σ2 be σ1max, σ1min, σ2max and σ2min, respectively,

then the condition number of the original Hessian, κ (H), can be estimated as

κ (H) ≈ σ1maxσ2max
σ1minσ2min

. (5.27)

On the other hand, the condition number of the preconditioned Hessian can be approxi-

mated as

κ
(
H̃
)
≈ σ2max
σ2min

. (5.28)
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Since the fraction σ1max/σ1min is most likely to be significantly greater than 1, then the

condition number of H̃ is likely to be much smaller than H. Furthermore, we can build

a numerical example to validate this phenomenon. For an object that is composed of

two materials and each material map is of the size 16 × 16, we can construct the original

Hessian H and the preconditioned Hessian H̃ explicitly and compute the estimations of

condition numbers for these two Hessian matrices. The result is presented in Table 5.1.

From Table 5.1, we can see that the difference of condition number for H and H̃ is around

Matrix Types Condition Numbers
Original Hessian 2.0042e+06
Preconditioned Hessian 2.5874e+04

Table 5.1: The comparison of condition numbers.

two orders of magnitude, which indicates the significance of this preconditioner. For a

linear system that involves the preconditioned Hessian H̃, the convergence rate is highly

dependent on the condition number. So we can solve the preconditioned system in a more

efficient way. Moreover, we will validate the strength of this preconditioner by solving the

preconditioned system versus the original system. More details are presented in section 5.4.

5.2.2 Regularization

With the help of our preconditioner, we can speed up an optimization algorithm and achieve

higher accuracy. To further alleviate noise amplification, it is important to add regulariza-

tion terms to the objective function. In total, we have m materials and the weights of these

m materials are not equal. Rather than adding a single regularization to all weights, we

instead add a specific regularization to each material. In addition, for different materials, we

can choose distinct regularizations to match their properties. For the dominant material,

we select generalized Tikhonov regularization to smooth the edges. For other materials,

we choose `1 regularizations to penalize the sum of weights. Based on this idea, we can
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represent the regularization term as a sum of m parts:

R (w) =
m∑
i=1

αi
2
Ri (wi) , (5.29)

where wi is the i-th column of the weight matrix W , Ri (wi) is the corresponding regular-

ization term and αi is the regularization parameter.

The choice of what type of regularization to use is problem-specific, and a priori knowl-

edge of the object being imaged could inform this decision. For example, if it is known

that the object contains two material maps with relatively equal distributions, we might

select two generalized Tikhonov regularizations. For example, in breast imaging the object

is dominated by glandular and adipose tissue, and so if the aim is to determine the weights

of these two materials, it might make sense to use a generalized Tikhonov regularization

for each of them. On the other hand, it could be the case that the object is dominated

by one material (or one set of materials), with a relatively sparse distribution of another

material. For example, in the breast imaging situation, the object may contain small micro-

calcifications or areas highlighted by an iodine tracer. In this case, one can use generalized

Tikhonov regularization for the dominating materials (e.g., glandular and adipose tissue)

and a `1 regularization for the sparse material. We illustrate this with two materials, one

that dominates, and one that is sparse:

R (w) =
α1

2
‖Lw1‖22 +

α2

2
‖w2‖1, (5.30)

where L is the specified discrete differential operator. If we add these regularization terms

to the objective function in Equation (5.18), we can rewrite it as an augmented system:

min
w̃

∥∥∥∥∥∥∥

√
2
2 Σ−

1
2

(
C̃ ⊗A

)
√

α1
2 L̃

 w̃ −
Σ−

1
2b

0


∥∥∥∥∥∥∥
2

2

+
α2

2

[
0 1

]
(M ⊗ I) w̃

subject to (M ⊗ I) w̃ > 0,

(5.31)

where L̃ =

[
L 0

]
(M ⊗ I). As we can see, the objective function in this problem consists
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of two parts: one is smooth and convex and the other one is possibly nonsmooth. Because

of these properties, we can think about using FISTA [3] to solve this problem. It not only

fits the features of the objective function but also provides an optimal convergence rate. In

addition, we are concerned about the linear inequality constraints, and in each step, we can

maintain these constraints by solving a projection problem that is based on the 2-norm.

5.3 FISTA and Projections

In this section, we first present the main algorithm FISTA briefly. To implement FISTA to

solve the target optimization problem, we need to decide the step size and handle the non-

negative constraints. For the step size, we introduce how to compute the Lipschitz constant

numerically then we choose a constant step size based on the calculated Lipschitz constant.

For the nonnegative constraints, we build another quadratic programming problem and

solve it with delicate decomposition and efficient algorithms.

5.3.1 FISTA

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a first order method that be-

longs to the family of Iterative Shrinkage-Thresholding Algorithm (ISTA) [13]. This method

is proposed by Beck et al., and compared with the O (1/k) rate of convergence of ISTA, it

has a best function value convergence rate O
(
1/k2

)
, where k is the number of iterations. In

most situations, FISTA is considered to be the “optimal” first order method with respect

to convergence speed. Moreover, it best fits the problems in imaging science because it is

usually used to solve the nonsmooth convex problem

min
x

f (x) + g (x) , (5.32)

where f (x) and g (x) are both convex functions and g (x) might not be smooth. In imaging

sciences, f (x) is likely to be a least squares loss function to test the goodness of fit and

g (x) can be a regularization term such as `1 penalty or total variation regularization.
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For Problem (5.31), we construct an augmented loss function that merges the generalized

Tikhonov regularization term, which corresponds to f (x) in (5.32). For the regularization

term, `1 regularization is nonsmooth but convex and this matches g (x) in (5.32).

The details of this algorithm are shown in Algorithm 4. For the main algorithm, we

need to calculate the smallest Lipschitz constant K at first. Then we can update the current

step using FISTA. Because of the linear inequality constraints, we need to project the new

step onto boundaries to keep the solution feasible. We would like to implement FISTA with

a constant step size to solve the optimization problem (5.31). To implement this method,

we need several preparations.

Algorithm 4 FISTA and Projections [3]

1: Initialization:
2: Calculate the smallest Lipschitz constant K in (5.34) by the power method.
3: Set up initial guess W̃0; Let y0 = vec(W̃0), xold = y0 and t1 = 1;
4: for k = 1, 2, · · · do
5: Calculate the gradients, ∇f (yk) and ∇g (yk), of f (yk) and g (yk) in (5.33);
6: xk = yk − 1

L(f)
[∇f (yk) +∇g (yk)];

7: Reshape xk into a matrix and use CVXGEN to solve the projection problems
to obtain xnew as (5.37);

8: tk+1 =
1+
√

1+4t2k
2

;

9: yk+1 = xnew +
(
tk−1
tk+1

)
(xnew − xold);

10: xold = xnew.

5.3.2 Lipschitz Constant

The first step is to calculate the smallest Lipschitz constant. If we let

f (w̃) =

∥∥∥∥∥∥∥

√
2
2 Σ−

1
2

(
C̃ ⊗A

)
√

α1
2 L̃

 w̃ −
Σ−

1
2b

0


∥∥∥∥∥∥∥
2

2

,

g (w̃) = α2
2

[
0 1

]
(M ⊗ I) w̃,

(5.33)
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then we need the smallest Lipschitz constant K for ∇f (w̃), which is the largest eigenvalue

for ∇2f (w̃). That is to say,

K = λmax

[(
C̃T ⊗AT

)
Σ−1

(
C̃ ⊗A

)
+ α1L̃

T L̃
]
. (5.34)

Since we only need the largest eigenvalue, it is not necessary for us to construct these

matrices explicitly; instead we can use an iterative method, such as the power method [24].

Note that we only need to compute K once for all FISTA iterations. The details of the

power method are shown in Algorithm 5.

Algorithm 5 Power Method [24]

1: Initialization:
2: Generate a random vector q0 and normalize q0;
3: for i = 1, 2, · · · do

4: zi =
[(
C̃T ⊗AT

)
Σ−1

(
C̃ ⊗A

)
+ α1L̃

T L̃
]
qi−1;

5: qi = zi/ ‖zi‖2;
6: λi = qTi

[(
C̃T ⊗AT

)
Σ−1

(
C̃ ⊗A

)
+ α1L̃

T L̃
]
qi;

5.3.3 Projections

In addition to the Lipschitz constant, we also need to handle the linear inequality con-

straints (M ⊗ I) w̃ > 0. Generally speaking, we can regard Problem (5.31) as a quadratic

programming problem under these specific constraints. To impose the linear inequality

constraints, we can construct another quadratic programming problem that can find the

nearest solution to satisfy these constraints. If we assume that we have obtained w̃k in the

k-th step, then we can build a projection problem:

min
w̃new

‖w̃new − w̃k‖22

subject to (M ⊗ I) w̃new > 0.

(5.35)

For small and medium size problems, we can solve it efficiently by direct implementation

of standard optimization algorithms. For example, we can use CVX [26, 27] to solve Prob-
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lem (5.35), which turns to be low-cost both in storage and computational consumptions.

However, there are challenges for large-scale problems. For example, saving long vectors or

constructing sparse matrices might require large storage space. Therefore, we should find

a method to decompose Problem (5.35) into small pieces and try to solve each small-sized

problem accurately and efficiently.

Suppose we reshape vectors into matrices, for example using MATLAB’s “reshape”

function, W̃new = reshape (w̃new, Nv, Nm) and W̃k = reshape (w̃k, Nv, Nm), then by Kro-

necker product properties and the connection between the 2-norm and the Frobenius norm,

Problem (5.35) is equivalent to

min
W̃new

∥∥∥W̃new − W̃k

∥∥∥2
F

subject to W̃newM
T > 0.

(5.36)

If we focus on each row of W̃k, W̃k (i, :), then Problem (5.36) can be rewritten as

min
W̃new

Nv∑
i=1

∥∥∥W̃new (i, :)− W̃k (i, :)
∥∥∥2
2

subject to W̃new (i, :)MT > 0, i = 1, 2, · · · , Nv,

(5.37)

where W̃new (i, :) is the i-th row of W̃new. It is obvious that this problem is separable, and

the original problem (5.36) can be separated into small-sized problems that only involve

each row of W̃new and W̃k. Since each row only depends on the number of materials Nm,

then the size of problem is usually 1 × 2 or 1 × 3. In this case, we can solve each small-

sized problem efficiently and concatenate the solutions into a large matrix later. To realize

this idea, we can find a highly efficient solver for small-sized problems and loop around the

number of voxels (pixels if 2D) Nv. In this chapter, we choose CVXGEN [41–44] to generate

a customized solver for small quadratic programming problems. It is a problem-specific, fast

and accurate code generator which can achieve advance performance in particular for small-

sized quadratic programming problems. In addition, if computer clusters are available, we

can write parallel programming codes, such as MPI or OpenMP, and compute the solution
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to this projection problem in parallel. The speedup in this case relies on the number of

available compute nodes, but clearly there is potential for significant speedup with such an

approach.

In conclusion, we can see that this algorithm incorporates the advantages of the power

method, FISTA and the fast solver, CVXGEN, for small problems. With the power method,

we only need to save the Hessian-vector multiplication rather than the full Hessian, and it

is very cheap to compute. Moreover, we can achieve a rapid convergence using FISTA in

the main loop. Finally, the projection problem is decomposed into many small pieces and

each can be solved by CVXGEN efficiently.

5.4 Numerical Experiments

To test the performance of our preconditioner and the main algorithm, we set up a test

problem that is composed of two materials, plexiglass and polyvinyl chloride (PVC). The

size of each material map is 128 × 128. The first material map is a circular mask that

dominates the object, while the second material map consists of small “spikes” that are

scattered randomly inside the circle. The number of “spikes” is chosen to be 50. Outside

of the circle, we assume that there exist no weights of the object. These two images are

shown in Figure 5.1.
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Figure 5.1: The original material maps for plexiglass (Left) and PVC (Right).

Inside the mask, the darker blue areas for the first material map are mainly located
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in the upper left and lower right corners, which corresponds to blank points. Other areas

inside the circle are represented by heavily weighted yellow and green color. In the second

material map, the weights are scattered around the image and only occupy a small part

of the area in total. This test problem can be regarded as a simplification of a real life

application. For example, in medical imaging for cancer detection, the first material map

is similar to a small area of human body or tissue, while the second material map can

represent the calcium located inside this area.

In addition to the test images, we also need other parameters in Equation (5.1). To

generate the ray trace matrix A, we use the MATLAB function fanbeamtomolinear from

AIR Tools [29,32,35] to simulate a fan-beam geometry with a flat detector. The parameters

that we need to choose are presented in Table 4.1 in Chapter 4. In addition, we use 180

projections in total which are equally distributed from 0 to 360 degrees. The spectral

energy of the x-ray source is generated by the MATLAB function spektrSpectrum [53]

with 120 keV voltage as input. The detector is assumed to be photon-counting with 5

energy windows. From the first energy window to the fifth energy window, we assume that

they can detect the range of photon energies 10 to 34 keV, 35 to 49 keV, 50 to 64 keV, 65

to 79 keV and 80 to 120 keV, respectively.

The plot of photon flux density versus photon energy is presented in Figure 4.4. In

Figure 4.4, the red curve represents photon intensity of x-ray source and the gray boxes

indicate energy windows of the detector. Moreover, the black dots are the values of mean

photon energy in each energy window. When we build the test problem, the full energy

spectrum and all the corresponding linear attenuation coefficients are used, while only the

mean photon energies and the corresponding linear attenuation coefficients are applied for

reconstruction. As it is well-known, this strategy of generating data on a finer grid and solve

it on a coarser grid is a standard approach to avoiding what is called the inverse crime.

The curves of linear attenuation coefficients versus photon energies are presented in

Figure 4.3 in Chapter 4. From Figure 4.3, we can see that the slopes of these two curves are

close to each other, which are likely to introduce the collinearity between coefficients. More-

over, we assume that the entries of the matrix Y follow a Poisson distribution, and for large
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scale problems, from the Central Limit Theorem, the Poisson distribution is approximated

well by a Gaussian distribution. So the assumption of Gaussian model is valid.
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Figure 5.2: The reconstructed images for plexiglass (Left) and PVC (Right).

The reconstructed images are shown in Figure 5.2. From Figure 5.2, we can see that

we achieve almost perfect separation for these two materials. Moreover, the reconstructed

images have excellent quality in terms of visuality. Both two material maps are relatively

close to the true images. In the first material map, the distribution of weights is clear to

identify. The low intensity pixels are located in the upper left and lower right areas of the

circle, while other places are occupied by the yellow and green colors. Moreover, we can

easily recognize the edges of the circle that indicate the boundary of the object, which is

a plus. As we can see, the reconstruction of small “spikes” are of great difficulty because

of the randomness of weights and spots. However, we can see that the small “spikes” are

scattered in the same positions as the true image, while they are masked by the shade of a

circle. These results present the significance of the methods proposed in this chapter.

To further validate the results, we plot the relative errors of these two materials versus

the number of FISTA iterations. The decrease of relative errors of corresponding materials

is shown in Figure 5.3. From this figure, we can see that the relative error of the first

material drops sharply as the number of iterations increase. It then stagnates after around

150 iterations. However, the relative error of the second material only decreases fast in

the beginning, and after several iterations, the rate of change slows down and the relative

error cannot reduce further. We can also identify the same phenomenon by comparing
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Figure 5.3: The related errors of each iteration (with preconditioner) for plexiglass
and PVC.

the true and reconstructed images of the second material map. Even if the spots of these

“spikes” are approximately correct, the numerical weights of these dots might not be the

same. Moreover, there are a large number of small values in the background of reconstructed

image, causing somewhat large relative errors, even though visually the result looks quite

good.

Other accuracy measures illustrate this phenomenon. In Figure 5.4 we plot the mean

squared error (MSE) at each iteration, in Figure 5.5 we plot the peak signal to noise ratio

(PSNR), and in Figure 5.6 we plot the structural similarity index (SSIM). Not surprisingly

the MSE produces information very similar to the relative errors, but it also shows a clear

diminution for the second material from Figure 5.4. PSNR provides a similar measure

to MSE, with an inverted interpretation (higher values correspond to better solutions).

The SSIM is a metric for image quality, and as with PSNR, large values correspond to

better solutions. From Figure 5.6, it can be found that the quality of the reconstructed

first material map improves slowly in the early iterations but it achieves a higher quality

measure in the end compared with the second material map. In summary, all of these errors
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Figure 5.4: The MSE of each iteration (with preconditioner) for plexiglass and PVC.
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Figure 5.5: The PSNR of each iteration (with preconditioner) for plexiglass and PVC.

and quality measures illustrate fast convergence to high quality reconstructions.

It may also be of interest to observe the decay of norm of the gradient at each iteration,

which is shown in Figure 5.7. From this figure we can see that the norm of the gradient
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Figure 5.6: The SSIM of each iteration (with preconditioner) for plexiglass and PVC.
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Figure 5.7: The decay of norm of the gradient for overall materials.

decreases significantly in the beginning and levels off after a sufficient number of iterations,

indicating the convergence to a minimizer.

To further validate the strength of our proposed preconditioner, we compare the perfor-
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mance with a preconditioner proposed by Barber [2], and the performance without using

any preconditioners. As previously mentioned, the approach proposed in [2] is based on

the eigenvalue decomposition of CTC. The results are shown in Figure 5.8, where we plot

the decay of relative errors for these three cases. To reduce clutter in this plot, we only

show results for the first material; the behavior for the second material is the same. From
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Figure 5.8: The decay of related errors with new preconditioner, Barber’s [2] precon-
ditioner, and with no preconditioner.

this figure, we can easily observe that both preconditioners are effective at accelerating

convergence, with our approach producing the fastest convergence and the lowest relative

errors.

5.5 Conclusions and Remarks

In this chapter, we use the Gaussian assumption of noise to construct a weighted least

squares problem under bound constraints for energy discriminating x-ray detectors in com-

puted tomography. Based on this problem, we propose a new preconditioner that includes

not only the information of the linear attenuation coefficient matrix C but also the pro-
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jected data matrix Y and the energy spectrum matrix S. With this new preconditioner,

the condition number of the Hessian can be reduced significantly. To implement this new

preconditioner within an optimization framework, we suggest to use a first order method,

FISTA, that can generate fast convergence speed. Because of the introduction of the new

preconditioner, we recommend to construct a projection problem and compute the nearest

step that will satisfy the linear inequality constraints for each iteration. Finally, numeri-

cal experiments also specify the advantages of the method mentioned in this chapter. For

future work, it would be interesting to consider other regularization schemes to emphasize

the edges of the object, such as the total variation.
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Chapter 6

A Two-Step Method for

Energy-windowed Spectral

Computed Tomography

In this chapter, we still focus on the energy-windowed spectral computed tomography model

Y = exp
(
−AWCT

)
S + E, (6.1)

where Y is a matrix that gathers the projected data of each energy window in the cor-

responding column and the exponential operator is applied element-wise (i.e., it is not a

matrix function). A is a matrix that is related to the quantitative information of ray trace

and C is a matrix that contains linear attenuation coefficients for particular (known) mate-

rials at specified energies. S is the matrix that accumulates the spectrum energies for each

energy window in the corresponding column. We assume that S is square and invertible.

Moreover, E represents the noise term and we assume that Eil ∼ N (0, yil) for each compo-

nent Eil in E and yil in Y . We assume that these data are known and the target is to solve

the unknown weight matrix W . W is of size Nv by Nm, where Nv is the number of voxels

(pixels if 2D) for each material map and Nm is the number of materials. Since the weight

matrix W represents the material maps of different materials, then it must be nonnegative



106

and we need to add a lower bound constraint W > 0.

In the previous chapters, we try to compute the solution directly. However, we can also

introduce an auxiliary variable and solve it using two steps. If we let X = AW , then a

two-step model is expressed as

Y = exp
(
−XCT

)
S + E,

X = AW , W > 0.

(6.2)

Based on the Gaussian assumption of noise, we can repeat the process of Chapter 5 to

develop a weighted least squares framework. However, we do not want to solve the entire

model using an iterative method. Instead, we want to construct a series of small-sized

problems and solve each of them efficiently and accurately. Recall that when we imple-

ment the Algebraic Reconstruction Technique (ART) to solve a least squares problem, the

iteration format is based on each row. Inspired by this idea, we want to come up with a

similar method that takes advantage of each row of a weighted least squares problem. In

the first step, we can build a row-wise optimization problem of small-sized and solve each

one with cheap cost. In the second step, we can sum up the results obtained from the first

step and solve a linear system under bound constraints. A challenge comes from the noise

propagation, where we have to quantify the noise in the linear system of the second step.

This quantity can be obtained using the properties of linear transform of the covariance

matrix in the first step and we can use it to build another weighted least squares problem.

We should also mention that splitting the original problem into two steps and solving it

in sequence might put the solution away from the truth. Instead, we can solve (6.2) directly

by constructing an optimization problem of two coupled terms,

min
x̄, w̄

1

2
‖(I ⊗C) x̄− b̂‖2

Σ−1

b̂

+
1

2
‖(A⊗ I) w̄ − x̄‖2

Σ−1
x̄ml

,

subject to w̄ > 0,

(6.3)

where x̄ and w̄ are vectorizations of XT and W T , respectively, and Σ−1
b̂

and Σ−1x̄ml
are

noise covariance matrices. Compared with the two-step method, the solution to (6.3) can
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be obtained using the traditional iterative scheme and the solution is likely to be closer to

the true solution of (6.2). On the other hand, it is likely that the solution to problem (6.3)

might be better in theory, but it can be less attractive in terms of image quality. In this

case, we should conduct numerical experiments to demonstrate strengths and weaknesses

of these methods.

This chapter is organized as follows. In section (6.1), we review the limitations of

previous methods and set up the two-step model. How to obtain the solution in two steps

is also explained in this section. In section (6.2), we discuss another method, the coupled

method, to solve the two-step model. This method combines the two steps together and

uses an iterative framework to compute the solution. Numerical experiments are presented

in (6.3). Concluding remarks and comparisons with the previous method are discussed

in (6.4).

6.1 The Two-step Method

6.1.1 The Framework of Two-step Model

Compared with traditional CT models, the energy-windowed spectral CT model expands

the room for developing mathematical theories and computing numerical solutions. In

Chapter 4, the basic equation related to this model is reformulated as a nonlinear least

squares problem and solved by nonlinear optimization. In Chapter 5, we have transformed

the basic equation into a weighted least squares problem, developed a new preconditioner

and used FISTA to compute the solution. Even if these two methods are based on different

objective functions, they both include a preconditioner to mitigate the influence of ill-

posedness. So it raises a question if we can solve this equation efficiently to a high accuracy

without using preconditioners. In this section, we will focus on a two-step method which

can calculate the solution to the weighted least squares model accurately and economically.

Recall that the discretized energy-windowed spectral CT model is expressed as

Y = exp
(
−AWCT

)
S + E, (6.4)
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where

• Y is a matrix of size (Nd ·Np)×Nb that gathers x-ray photons of each energy window

in the corresponding column.

• A is a matrix of size (Nd · Np) × Nv that collects the fan-beam geometry and each

element corresponds to ai,j .

• C is a matrix of size Ne × Nm that accumulates linear attenuation coefficients and

each entry corresponds to ue,m, the linear attenuation coefficient of e-th energy and

m-th material.

• W is a matrix of size Nv ×Nm and each column corresponds the unknown material

map we want to reconstruct.

• S is a matrix of size Ne × Nb and each column collects the spectrum energy of a

specific range. We assume that S is square and invertible.

• E is the noise matrix that is of size (Nd ·Np)×Nb. The assumption for noise is that

Eil ∼ N (0, yil) for each element Eil in E and yil in Y .

As we have shown in Chapter 5, we can vectorize (6.4) and build a weighted least squares

problem using the Gaussian assumption of noise

min
w

1

2
‖Aw − b‖2Σ−1

subject to w > 0,

(6.5)

where A = C ⊗A, b = − log (y), y = vec (Y ) and w = vec (W ). Σ−1, which combines

information from S and y, is the inverse covariance matrix generated by the Gaussian noise

and logarithmic transformation. ‖·‖2Σ−1 represents a weighted 2-norm and ‖Aw− b‖2Σ−1 =

(Aw − b)T Σ−1 (Aw − b). Because of the collinearity of C and the sparsity of A, solutions

to Equation (6.5) might not be satisfactory. In Chapter 5, we introduce a preconditioner



109

M and the optimization problem (6.5) has been transformed into

min
w̃

1

2
‖Ãw̃ − b‖2Σ−1

subject to (M ⊗ I) w̃ > 0.

(6.6)

where C̃ = CM , Ã = C̃ ⊗A, W̃ = WM−T and w̃ = vec(W̃ ). To solve problem (6.6),

we implement FISTA to solve the main problem and build a projection subproblem (6.7)

to maintain nonnegativity

min
w̃new

‖w̃new − w̃k‖22

subject to (M ⊗ I) w̃new > 0,

(6.7)

where w̃k is the current iteration of w̃. To compute the solution to subproblem (6.7), we

reshape all variables back to a matrix form and split this form into several pieces. Each piece

is a tiny size problem with a row in the original matrix and the corresponding constraints.

For each problem, we solve it using a high performance solver such as CVXGEN. Even if

this method is efficient for large-scale problems, solving the projection problem might still

be a very expensive cost. So we want to figure out a method that can both solve the problem

(6.4) accurately and avoid large expense on keeping the nonnegativity of the solution.

Rather than computing the solution directly, we propose a two-step method with an

auxiliary step and bridge it to the desired solution. Recall that our goal is to solve W from

the equation

Y = exp
(
−AWCT

)
S + E. (6.8)

We first let X = AW and solve X from Equation (6.9)

Y = exp
(
−XCT

)
S + E. (6.9)

After we have obtained X, we solve W from the equation

X = AW , W > 0. (6.10)
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Recall that the size of W is Nv × Nm and the auxiliary step is bound to X, which is of

size (Nd ·Np)×Nm. Usually, Nd ·Np is much larger than Nv so we seem to introduce more

unknown variables and this behavior is undesirable. Another problem we need to consider is

how to quantify the noise propagation from Equation (6.9) to Equation (6.10). In Equation

(6.9), we solve X with the noise E so the solution must include probability properties of E.

When we solve W from (6.10), the variable X is assumed to be known so we should also

identify the noise.

6.1.2 A Solution to the Two-step Model

To solve the first problem, we try to use the statistical properties of noise to decompose the

entire problem into small pieces and solve each of these problems accurately. Recall that E

is the noise matrix and Eil ∼ N (0, yil) for each element Eil in E and yil in Y , so the noise

is independent for each entry of projected data. With this independence, we can decompose

Equation (6.9) in a row-wise or column-wise way. Since Y is of size (Nd · Np) × Nb and

the number of energy windows, Nb, is normally much fewer than Nd ·Np, the splitting over

rows is preferable.

If we let

Y T =
[
y1, y2, · · · ,yNd·Np

]
,

XT =
[
x1, x2, · · · ,xNd·Np

]
,

ET =
[
e1, e2, · · · , eNd·Np

]
,

(6.11)

then Equation (6.9) can be rewritten with respect to each row

yTi = exp
(
−xTi CT

)
S + eTi , (6.12)

for i = 1, 2, · · · , Nd ·Np. Meanwhile, we can notice that each row of Y only depends on

the corresponding row of X and E as well as matrices C and S. If we take the transpose
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for Equation (6.12), then we have

yi = ST exp (−Cxi) + ei. (6.13)

By assumption, S is square and invertible, so we can multiply S−T on both sides

S−Tyi = exp (−Cxi) + S−Tei. (6.14)

If we let ŷi = S−Tyi and êi = S−Tei, then Equation (6.14) is equivalent to

ŷi = exp (−Cxi) + êi. (6.15)

By subtracting êi on both sides and taking the logarithm, we have

log (ŷi − êi) = −Cxi. (6.16)

Using the Taylor expansion, we can expand the left hand side of Equation (6.16) as

log (ŷi − êi) = log (ŷi)− diag (ŷi)
−1 êi +O

(
‖êi‖22

)
. (6.17)

Therefore, Equation (6.16) can be estimated as

b̂i ≈ Cxi − diag (ŷi)
−1 êi. (6.18)

where b̂i = − log (ŷi). By assumption, we have ei ∼ N (0, diag (yi)). Then we can obtain

that

b̂i|xi ∼ N
(
Cxi,Σb̂i

)
, (6.19)

where Σb̂i
= diag (ŷi)

−1 S−Tdiag (yi)S
−1diag (ŷi)

−1. By ignoring constants, the corre-

sponding probability density function can be expressed as

f
(
b̂i;xi

)
= exp

{
−1

2

(
Cxi − b̂i

)T
Σ−1

b̂i

(
Cxi − b̂i

)}
. (6.20)



112

So the log-likelihood function is given by

l
(
xi; b̂i

)
= −1

2

(
Cxi − b̂i

)T
Σ−1

b̂i

(
Cxi − b̂i

)
. (6.21)

Our goal is to maximize the log-likelihood function l
(
xi; b̂i

)
and it is equivalent to min-

imizing the negative log-likelihood function −l
(
xi; b̂i

)
. Based on Equation (6.21), the

maximum likelihood estimator for xi can be represented as

(xi)ml = argmin
xi

{∥∥∥Cxi − b̂i∥∥∥2
Σ−1

b̂i

}
. (6.22)

This equation can be solved analytically and the corresponding solution is

(xi)ml =
(
CTΣ−1

b̂i
C
)−1

CTΣ−1
b̂i
b̂i. (6.23)

Since the matrix C is of size Ne by Nm, then solving each (xi)ml is of low cost. So for the

first step, we can loop around all i = 1, 2, · · · , Nd · Np and solve each linear system to

a high accuracy. After we have obtained all (xi)ml, we can build the maximum likelihood

solution for the matrix X by concatenation

XT
ml =

[
(x1)ml, (x2)ml, · · · , (xNd·Np)ml

]
. (6.24)

So far we have obtained the maximum likelihood solution,XT
ml, for Equation (6.9). However,

we cannot substitute it for the same variable in Equation (6.10) because of the unknown

noise.

To quantify the noise propagation, we repeat a similar process as we have shown in

Chapter 5. To be consistent with the row-wise model, we first take a transpose of Equation

(6.9):

Y T = ST exp
(
−CXT

)
+ ET . (6.25)
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Multiplying S−T on both sides, we can obtain that

S−TY T = exp
(
−CXT

)
+ S−TET . (6.26)

By vectorizing the variables on both sides, we have

(
I ⊗ S−T

)
ȳ = exp (− (I ⊗C) x̄) +

(
I ⊗ S−T

)
ē, (6.27)

where ȳ = vec
(
Y T
)
, x̄ = vec

(
XT

)
and ē = vec

(
ET
)
. Using the former notations, we

define ŷ =
(
I ⊗ S−T

)
ȳ, ê =

(
I ⊗ S−T

)
ē and b̂ = − log(ŷ). Then Equation (6.27) can be

written as

ŷ = exp (− (I ⊗C) x̄) + ê. (6.28)

We take the logarithm as in (6.16) and expand the logarithmic term as Equation (6.17),

then Equation (6.28) can be approximated as

b̂ ≈ (I ⊗C) x̄− diag (ŷ)−1
(
I ⊗ S−T

)
ē, (6.29)

By assumption, we assume that ē ∼ N (0, diag (ȳ)). Then we have

b̂|x̄ ∼ N
(
(I ⊗C) x̄, Σb̂

)
, (6.30)

where Σb̂ = diag (ŷ)−1
(
I ⊗ S−T

)
diag (ȳ)

(
I ⊗ S−1

)
diag (ŷ)−1 is the block-diagonal co-

variance matrix. If we build the maximum likelihood function with Σb̂, then the maximum

likelihood estimator of x̄ can be expressed as

x̄ml = argmin
x

{
1

2
‖(I ⊗C)x− b̂‖2

Σ−1

b̂

}
=
((
I ⊗CT

)
Σ−1

b̂
(I ⊗C)

)−1 (
I ⊗CT

)
Σ−1

b̂
b̂.

(6.31)

By using assumption (6.30), we know that x̄ml is itself a random variable with mean
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(I ⊗C) x̄ and covariance

Σx̄ml
=
((
I ⊗CT

)
Σ−1
b̂

(I ⊗C)
)−1

. (6.32)

So far we have obtained the noise covariance matrix for the second step. With this covariance

matrix, we can build another optimization problem under bound constraints. For the second

step, we transpose the equation first in order to be consistent with x̄:

XT
ml = W TAT . (6.33)

Taking vectorization on both sides, we can obtain that

x̄ml = (A⊗ I) w̄. (6.34)

Using the noise covariance matrix (6.32), we can formulate a weighted least squares problem

under bound constraints to solve w̄:

argmin
w̄

1

2
‖(A⊗ I) w̄ − x̄ml‖2Σ−1

x̄ml

subject to w̄ > 0.

(6.35)

For the regularization term, we take `1 regularization to keep sparsity. So the optimization

problem we need to solve is

argmin
w̄

1

2
‖(A⊗ I) w̄ − x̄ml‖2Σ−1

x̄ml

+ β‖w̄‖1

subject to w̄ > 0,

(6.36)

where β is the regularization parameter. For problem (6.36), we solve it using FISTA with

a projection step onto the boundary. The iteration involved in FISTA only requires the

current gradient as well as the current and previous steps. The current and previous steps

are generated iteratively while the current gradient can be computed using the properties

of the Kronecker product. In this case, we only need a matrix-vector multiplication in each
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iteration and thus can avoid forming the Hessian explicitly.

To conclude, this two-step method can damp the influence of the matrix C and it has

a similar effect as the preconditioner in the last chapter. However, rather than building

a preconditioned system, we solve several row-wise, small-size problems to high accuracy.

Compared with the preconditioning method, it is not necessary to solve a projection problem

in each iteration so the convergence speed is fast. Moreover, the solution of each auxiliary

system does not depend on each other, so we can further implement the solver for the first

step in parallel. On the other hand, the possible drawbacks come from the cost of solving

the linear system in the first step, which might be increased significantly when the size of

image is large. These limitations can also be mitigated by parallel computation.

6.2 The Coupled Method

In the last section, we have discussed how to solve Equation (6.4) using a two step method.

We use an auxiliary variable X such that X = AW . Then we solve X in the first step and

W in the second step. We derive the optimization problem using a log-likelihood function

and use the Gaussian noise assumption to obtain the propagation of noise in the second

step. Then we solve these two problems in sequence and obtain the final result. However,

in each of these two steps, we might either overestimate or underestimate the solutions

and the combined solution is likely to be distorted. To compare and evaluate the two-step

method, we can come up with an integrated framework that merges these separated steps.

Instead of solving these two equations individually, we can try to combine previous two

steps and calculate the solution alternatively. In each iteration, we solve the first equation

and evaluate the result to the corresponding part in the second equation. Then we solve the

second equation under the current circumstances. In this case, we have coupled the results

generated from two separated steps and they might be influential to the following iterations.

Moreover, each equation is still separable and we can use optimization techniques, such as

the coordinate descent method, to update each step. In the previous inferences, we try to
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solve the following two problems

Y = exp
(
−XCT

)
S + E,

X = AW , W > 0.

(6.37)

The noise covariance matrix is Σb̂−1 for the first equation and for the second equation, the

noise covariance matrix can be represented as Σx̄−1
ml

. Recall that the noise covariance matrix

for the second step is based on the maximum likelihood estimate of the first step so if we

couple these two problems, it is only based on the current maximum likelihood estimator of

the first step. With these two covariance matrices, we can build two optimization problems

min
x̄

1

2
‖(I ⊗C) x̄− b̂‖2

Σ−1

b̂

,

min
w̄

1

2
‖(A⊗ I) w̄ − x̄ml‖2Σ−1

x̄ml

subject to w̄ > 0.

(6.38)

where

Σb̂ = diag (ŷ)−1
(
I ⊗ S−T

)
diag (ȳ)

(
I ⊗ S−1

)
diag (ŷ)−1 ,

Σx̄ml
=
((
I ⊗CT

)
Σ−1
b̂

(I ⊗C)
)−1

.

(6.39)

These two problems can be merged into one optimization problem as

min
x̄, w̄

1

2
‖(I ⊗C) x̄− b̂‖2

Σ−1

b̂

+
1

2
‖(A⊗ I) w̄ − x̄‖2

Σ−1
x̄ml

,

subject to w̄ > 0.

(6.40)

The nonnegative constraint w̄ > 0 is equivalent to

χ(wi) =

 0, wi > 0,

∞, wi < 0,
(6.41)

for i = 1, 2, · · · , Nv × Nm. For the regularization, we want to penalize the total sum of

weights. So we add `1 regularization and use another variable, z̄, to facilitate the process.
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The integrated optimization is expressed as

min
x̄, w̄, z̄

1

2
‖(I ⊗C) x̄−b̂‖2

Σ−1

b̂

+
1

2
‖(A⊗ I) z̄ − x̄‖2

Σ−1
x̄ml

+
1

2
‖z̄−w̄‖22+β‖w̄‖1+χ(w̄). (6.42)

As we can see, the first two terms in problem (6.42) are weighted least squares. Furthermore,

the last three terms can be regarded as a soft shrinkage function with a mutation. Given

z̄, the optimization problem can be described as

min
w̄

1

2
‖w̄ − z̄‖22 + β‖w̄‖1 + χ(w̄), (6.43)

Let the i-th element in w̄ be w̄i. If w̄i 6 0, we have w̄i = 0. If w̄i > 0, we differentiate the

equation with respect to w̄i and let the derivative equal 0 for i = 1, 2, · · · , Nv ×Nm. Then

we can obtain that

1

2
(2w̄i − 2z̄i) + β = 0. (6.44)

So we have

w̄i = z̄i − β. (6.45)

With the bound constraint, each w̄i should satisfy the condition

w̄i = max (z̄i − β, 0) . (6.46)

This function is only defined on the half domain of a regular soft shrinkage function. The

plot of this function is shown in Figure 6.1. Therefore, problem (6.43) has an analytical

solution

w̄ = max (z̄ − β, 0) . (6.47)
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Figure 6.1: The soft shrinkage function with a bound constraint.

The updating framework to solve problem (6.42) is presented as

x̄k+1 = x̄k − α1

[
(I ⊗CT )Σ−1

b̂
(I ⊗C)x̄k − (I ⊗CT )Σ−1

b̂
b̂
]
,

z̄k+1 = z̄k − α2

[
(AT ⊗ I)Σ−1x̂ml

(A⊗ I)z̄k − (AT ⊗ I)Σ−1x̂ml
x̄k+1

]
,

w̄k+1 = max (z̄k+1 − β, 0) ,

(6.48)

where α1 and α2 are selected by line search. This iterative framework is similar to the

coordinate descent method, while the result in the first step is reused in the second step and

the result obtained from the second step is indispensable for the third step. This framework

is simple and easy to implement and it is also clear that we can use the properties of the

Kronecker product to avoid saving large matrices.

To conclude, this coupled method might generate a better solution to the optimization

problem (6.2). It has the similarity to the coordinate descent method, in which we only

need to consider one direction in each update of variables. Furthermore, this method is

easy to implement because the iteration in each direction is straightforward. However, we

should consider the quality of reconstructed images as well. Similar to the semi-convergence

properties [16], the solution obtained with extensive iteration might give us unsatisfactory
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results. In this case, we should conduct numerical experiments to compare this method

with the two-step method proposed in the previous section.

6.3 Numerical Experiments

For the numerical experiments, we use the same test problem as Chapter 5. The object

is composed of two materials, plexiglass and polyvinyl chloride (PVC). The first material

map is made up of a circular mask in the center of the image while the second material

map includes only small “spikes”. In real-life applicaitons, the first material map can be

represented by main tissues and these small spikes can indicate calcium in bones. The

original images are shown in Figure 6.2. In addition, we use the same parameters as
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Figure 6.2: The original material maps for plexiglass (Left) and PVC (Right).

Table 4.1 to generate the matrix A and we take 180 projections that are equally distributed

from 0 to 360 degrees. The spectrum is built with 120 kV voltage and and the detector

is assumed to be photon-counting with five energy windows. These energy windows can

detect photon energies of 10 to 34 KeV, 35 to 49 KeV, 50 to 64 KeV, 65 to 79 KeV and 80

to 120 KeV, respectively.

The reconstructed images obtained using the two-step method are shown in Figure 6.3.

As we can identify, the images are of high quality in general. The distributions of weights

are located in the same positions as the origins. For the first figure, the main profile is

similar to the origin but the areas of yellow colors are shrank while the areas of blue color
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are expanded. For the second figure, it still has shades but dots are located in the same

places as the origin. Compared with the reconstructed images in Chapter 5, the first
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Figure 6.3: The reconstructed material maps for plexiglass (Left) and PVC (Right)
using the two-step method.
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Figure 6.4: The relative errors of two material maps solved by the two-step method.

image has artifacts that are located in the center of the images. Moreover, the edges in

the first image are not as smooth as the reconstructed image in Chapter 5. This might

result from the `1 regularization used in this method or early termination of iterations. The
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second images displayed in this chapter and Chapter 5 present similar shades and thus the

reconstruction qualities are close.

We can also present the convergence properties by showing the plot of relative errors.

The relative error figure is shown in Figure 6.4. From Figure 6.4, we can see that the

relative error corresponding to the second material drops fast in the beginning but eventually

stagnates. The relative error corresponding to the first material drops in a similar way but

it arrives to a lower level. It also shows that the first material has a better convergence

property than the second material. Moreover, these two curves both indicate convergences.

The red curve converges to a lower relative error and the blue curve converges to a higher

relative error. The slopes of these two curves in the last several iterations confirm the

convergence phenomenon.

To compare with the two-step method, we also show the results obtained using the

coupled method. The reconstructed images are shown in Figure 6.5. Compared with Fig-
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Figure 6.5: The reconstructed material maps for Plexiglass (Left) and PVC (Right)
using the coupled method.

ure 6.3, these two images are more blurred and have more shades. For the first image,

there are several blue dots scattering around the yellow areas and the yellow areas in the

upper right corner and lower bottoms are not clear to identify. For the second material

map, the locations of spikes are clear but the shades are more obvious compared with the

reconstructed image obtained from the two-step method.

The relative errors corresponding to the iterative process of the coupled method is shown

in Figure 6.6. From the slops of curves, we can see that this method converges slower than
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Figure 6.6: The relative errors of two material maps solved by the coupled method.

the previous two-step method and both materials stagnate at higher levels of relative errors.

This phenomenon coincides with the observations we have found from the reconstructed

images. This coupled method might generate a better solution to the optimization problem

(6.2), but it might be a worse solution in terms of image quality. On the other hand, we

can update the step alternatingly with this coupled method. In contrast, the updating

framework of the two-step method does not have this property.

6.4 Conclusions and Remarks

In this chapter, we propose a two-step method that can solve the spectral CT model in

sequence. In the first step, a row-wise model that is based on a weighted least squares

term is used as a bridge to the second step. Since each row does not depend on each other,

each tiny problem can also be solved in parallel. After we have obtained the results from

the first step, we need to quanitfy the noise propagation and set up another least squares

problem under bound constraints to compute the final solution. We implement FISTA with
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projections to solve this problem to a high accuracy. Instead of using a two-step method,

we can build an optimization problem that consists of these two terms and solve it directly.

This coupled method is likely to provide us a better solution to the optimization problem.

However, based on the numerical results, the two-step method beats the coupled method

in terms of image quality, convergence speed and relative errors.

Compared with the method proposed in Chapter 5, this two-step method is more ef-

ficient when the product of three parameters, number of projections, range of angles and

number of energy bins, is limited. However, for high-resolution images or 3D reconstruc-

tion, extensive projections are necessary to guarantee the image quality. Even if we can use

parallel processing to reduce this influence, we should also choose different methods under

proper circumstances.
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Chapter 7

Conclusions and Future Works

Spectral computed tomography problems involve nonlinearity and require more efforts to

obtain quantitative information. On the other hand, it can also offer material composition as

well as images of higher quality with alleviation of artifacts. Based on different assumptions,

spectral computed tomography problems display distinct forms and various math tools are

used to compute solutions. For the simple energy discriminating model, we build a nonlinear

optimization problem based on a Poisson likelihood estimator, and with this model, a

nonlinear interior-point trust region method is introduced to obtain robust reconstruction.

For the energy-windowed spectral CT model, we contribute to the optimization frameworks

and preconditioners. First, we build a nonlinear least squares problem and solve it with

a two-step method, projected line search plus the trust region method. We also propose

an adaptive preconditioner to further mitigate the influence of small singular values. With

the Gaussian assumption of noise, we transform the energy-windowed spectral CT model

into a weighted least squares problem under bound constraints. An efficient preconditioner

derived from the corresponding Hessian is presented to reduce the ill-posedness significantly.

This preconditioner is inspired from the interlacing of the Kronecker products and diagonal

matrices and is built by using a rank-1 approximation. Moreover, we introduce a subproblem

to simplify the projection step that is used to keep nonnegativity. Even if we can calculate

the solution of the spectral CT model using optimization and precondtioners, we can also

consider further separation of the model. In this case, we propose a two-step method using
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an auxiliary variable. The first step can be further decomposed into row slices, which

can be solved in parallel. After quantifying the noise propagation, we solve the problem

corresponding the second step with FISTA.

Even if we only focus on computing the solutions to spectral CT problems, other research

areas deserve considerations. For example, the model we use is only based on a single

energy source. We can also consider dual-source, or even three or more sources, CT models.

The problem of reconstructing images from limited data is even more challenging, and

it is important to think about how to find a robust reconstruction under this situation.

Furthermore, we can try to combine the state-of-the-art machine learning techniques with

spectral CT. Machine learning can be used to conduct data-preprocessing, predict similar

features and validate the strength of proposed methods. To conlcude, spectral CT is still

an active and promising research area and it can be expected that new inspiring work will

continue to be done for years to come.
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ruë S. Jacques, au coin de la ruë des Mathurins, à l , 1729.
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gewisser mannigfaltigkeiten, Classic Papers in Modern Diagnostic Radiology, 5 (2005),

p. 21.



131

[51] Y. Saad and M. H. Schultz, Gmres: A generalized minimal residual algorithm

for solving nonsymmetric linear systems, SIAM Journal on Scientific and Statistical

Computing, 7 (1986), pp. 856–869.

[52] J. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel,
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