
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Sofia Guzzetti Date

Reduced Models and Parallel Computing for Uncertainty Quantification in
Cardiovascular Mathematics

By

Sofia Guzzetti
Doctor of Philosophy

Department of Mathematics

Alessandro Veneziani, Ph.D.
Advisor

Pablo J. Blanco, Ph.D.
Committee Member

James Nagy, Ph.D.
Committee Member

Lars Ruthotto, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

Reduced Models and Parallel Computing for Uncertainty Quantification in
Cardiovascular Mathematics

By

Sofia Guzzetti
Ph.D., Emory University, 2019

Advisor: Alessandro Veneziani, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Department of Mathematics

2019

Abstract

Reduced Models and Parallel Computing for Uncertainty Quantification in
Cardiovascular Mathematics

By Sofia Guzzetti

Computational fluid dynamics (CFD) has been progressively adopted in the
last decade for studying the role of blood flow in the development of arterial
diseases. While computational (in silico) investigations - compared to more
traditional in vitro and in vivo studies - are generally more flexible and cost-
effective, the adoption of CFD for computer-aided clinical trials and surgical
planning is still an open challenge. The computational time to accurately
and reliably solve mathematical models can be too long for the fast-paced
clinical environment - especially in emergency scenarios, and quantifying the
reliability of the results comes at an even higher computational cost. More-
over, the in silico analysis of large numbers of patients calls for significant
computational resources. Hospitals and healthcare institutions are expected
to outsource numerical simulations, which, however, raises concerns about
privacy, data protection, and efficiency in terms of cost and performance. In
such an articulated and complex scenario, this work addresses the challenges
described above by (i) introducing a novel reduced model that guarantees
levels of accuracy comparable to those achieved by high-fidelity 3D models,
roughly at the same computational cost as the inexpensive yet inaccurate
1D models, by combining the Finite Element Method to describe the main
stream dynamics with Spectral Methods to retrieve the transverse compo-
nents; (ii) designing a new method for uncertainty quantification in large-
scale networks that greatly enhances parallelism by performing uncertainty
quantification at the subsystem level, and propagating uncertainty infor-
mation encoded as polynomial chaos coefficients via overlapping domain
decomposition techniques; (iii) providing an objective criterion to measure
the performance of different parallel architectures based on the user’s prior-
ities in terms of budget and tolerance to delay, and reducing the execution
time by choosing a task-worker mapping strategy ahead of simulation time,
and optimizing the amount of overlap in the domain decomposition phase.

Reduced Models and Parallel Computing for Uncertainty Quantification in
Cardiovascular Mathematics

By

Sofia Guzzetti
Ph.D., Emory University, 2019

Advisor: Alessandro Veneziani, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Department of Mathematics
2019

Acknowledgments

“Ricorda sempre che, anche quando tu non avrai fiducia in te stessa,
qui ci sarà sempre qualcuno che ne avrà per te”. This is how amazing my
advisor has been. Thank you for believing in me, even when it was hard for
me to do so. Your passion for applied Mathematics is contagious and kept
my determination vibrant even with the hardest research challenges. Thank
you for caring about me personally and as a student, and for valuing us as
a group, because - as you say - “the strength of the wolf is the pack, and
the strength of the pack is the wolf”.

Thanks to Simona, for her scientific rigor and support, and to Vaidy,
who advised and encouraged me during my first year and throughout my
studies. I learned a lot from you and I am really grateful for it!

I would like to thank Jim and Lars, and all the professors who con-
tributed to consolidate and broaden my knowledge. You stimulated and
encouraged my curiosity, and led me to explore and appreciate fields in
Mathematics and Computer Science I was not familiar with. And most im-
portantly, thank you for teaching me not to fear questions, rather to embrace
and nourish them.

Pablo and Alonso, my visit was one of the happiest times of my PhD,
and working happily makes a whole world of difference. Thank you for
advising me so generously, and for taking care of me. Alonso, after all my
“spamming”, I think we brought remote collaboration to the next level!
Thank you for your inifinite patience with me, you are the best.

Kevin, Moe, Khachik, and Ray: it has been so amazing working with
each one and all of you! With your expertise, commitment, passion and
enthusiasm even the toughest problems are not intimidating. Thank you for
the time and patience you dedicated to me. Kevin, special thanks to you,
for being so attentive and supportive.

Nulla di tutto ciò sarebbe stato possibile senza la mia famiglia, che mi
e’ sempre stata vicina anche da lontano. Grazie per aver condiviso tanto
la gioia delle mie conquiste quanto la fatica delle mie battaglie, per avermi
spronato e consigliato con affetto e delicatezza, per lasciarmi sempre libera
e mai sola nella scelta. Siete il Bene più prezioso che ho.

Un grazie speciale alla mia nonna, esempio inimitabile di saggezza e
modernità, pazienza e lungimiranza. La tua grinta e il tuo affetto sono la

mia carica per perseverare. Grazie per aver sopportato la distanza per darmi
lo spazio per crescere.

Grazie alla mia famiglia di Atlanta: Massi e Ale, che cosa avrei fatto
senza di voi? Quante ne abbiamo passate... grazie per le risate, i consigli,
le chiacchierate e i silenzi. Continuare a vivere la vostra amicizia da vicino
è stata una fortuna insperata.

Grazie a Manuela, perché ho trovato un’amica, e alle mie amiche di sem-
pre, Marina, Mery, Chiara e Francesca: siete le mie radici.

Cecilia, Maria, Federico, David: you are the best roommates ever! Thank
you for being home to me, for listening, supporting and cheering me up in
the toughest days. I (will) miss you so much!

Jeanne, John, you certainly witnessed the hardest time during my PhD.
Thank you for laughing with me, for reminding me that the world was still
out there in all its beauty, for supporting me.

Myriam, muito obrigada por tudo, por receberme calorosamente no
Brasil e por tratarme como uma filha.

Diversity is one of the greatest gifts I received from this experience. I
won’t take the risk of forgetting someone by making a list of all those who
shared part of or all their path with me, in Atlanta, Livermore or Petropolis:
if you are reading, this is for you too! Whether you are American, because
you really made me feel welcome, or European, because you made me feel
less far away from home, or Latino/a, because you reminded me that hap-
piness is also in the simplest things, or from any other Country, because
you made me experience your side of the world, thank you for making me a
richer person by sharing your culture with me.

Thank you, for being my anchor, gentle breeze or strong wind filling my
sails, and my safe harbor in the storm. Thank you for making Beauty part
of my life again.

A nonna Pia

Contents

1 Introduction 1

2 Hierarchical Model Reduction 5

2.1 Introduction and Background . 5

2.2 HiMod in Cylindrical Domains . 8

2.2.1 The geometric setting . 8

2.2.2 The reference basis set . 9

2.3 Scalar Advection-Diffusion-Reaction Problems 17

2.3.1 Numerical Assessment . 18

2.4 The Navier-Stokes equations in cylindrical coordinates 28

2.4.1 The HiMod formulation . 28

2.4.2 The inf-sup condition . 30

2.4.3 Pole Conditions . 33

2.4.4 Steady case: Poiseuille flow 35

2.4.5 Unsteady case: Womersley flow 39

2.4.6 Choice of the size of the modal space 41

2.5 Numerical Tests in Axisymmetric and Non-Axisymmetric Domains . 47

2.5.1 Axisymmetric models . 47

2.5.2 Non-axisymmetric models . 51

2.5.3 Patient-specific geometries . 52

2.6 Conclusions . 54

3 Network Uncertainty Quantification via Domain Decomposition 62

3.1 Introduction . 62

3.2 The DDUQ method . 64

3.2.1 Problem Formulation . 66

3.2.2 Uncertainty Propagation . 67

3.2.3 Network solver . 68

3.2.4 Software . 71

3.3 Numerical tests . 72

3.3.1 1D heat equation . 72

3.3.2 2D nonlinear heat equation 84

3.4 DDUQ acceleration . 97

3.4.1 The idea . 99

3.4.2 Geometric Multigrid . 99

3.4.3 Full Approximation Scheme (FAS) for non-linear problems . 100

3.4.4 Algebraic Multigrid . 102

3.5 Multigrid Methods for DDUQ Network Problems in Matrix Form . . 103

3.5.1 p-Multigrid . 103

3.5.2 h-Multigrid . 106

3.5.3 Preliminary results . 108

3.6 h-Multigrid Methods for UQ in Networks 125

3.6.1 Prolongation and restriction operators 125

3.6.2 Smoother and coarse-grid operators 127

3.6.3 The definition of the residual 128

3.7 Conclusions . 131

4 Reduced-order models for uncertainty quantification in the cardio-

vascular network via DDUQ 133

4.1 Introduction . 133

4.2 The Transversally-Enriched Pipe-Element Method 137

4.2.1 Pipe discretization strategy 138

4.2.2 Transversally enriched approximation 140

4.3 Uncertainty quantification on blood flow problems 142

4.3.1 Blood flow problem . 143

4.3.2 Geometrical decomposition of the vasculature 145

4.3.3 Formulation by subdomain . 147

4.3.4 The DDUQ-TEPEM algorithm 148

4.4 Numerical results . 149

4.4.1 Test setting . 150

4.4.2 Scalability tests . 150

4.4.3 Towards realistic geometries 153

4.5 DDUQ for unsteady problems . 159

4.5.1 Reduced 1D models . 161

4.5.2 DDUQ formulation . 167

4.5.3 Numerical results . 170

4.6 Final remarks . 186

5 Platform and algorithm effects on computational fluid dynamics 187

5.1 Introduction and Background . 187

5.1.1 The numerical problem . 190

5.1.2 Domain decomposition techniques for the solution of Partial

Differential Equations . 191

5.1.3 Packages used by the numerical solver 195

5.2 CFD Experiences on clouds, grids and on-premise resources 196

5.2.1 Heterogeneous Target Platforms 197

5.2.2 Metrics . 198

5.2.3 Experimental Results . 201

5.3 Adaptive mapping of parallel components on physical resources . . . 209

5.3.1 Test case . 210

5.3.2 Offline mesh partitioning . 210

5.3.3 Evaluation procedure and results 213

5.4 Experimental optimization of parallel 3D overlapping domain decom-

position schemes . 216

5.4.1 Numerical results . 218

5.5 Conclusions . 222

6 Conclusions 226

Appendix 229

7.1 Bottom-Up basis functions . 229

7.2 HiMod coefficients for the Advection-Diffusion-Reaction Equations . . 231

7.3 HiMod coefficients for the Navier-Stokes equations 232

Bibliography 236

13

List of Figures

1.1 Thesis content chart: addressed challenges and proposed solutions. . . 4

2.1 Schematic representation of a Hierarchical Model Reduction; com-

putational cost as a function of accuracy for 1D ROM, HiMod, and

full-order models. 6

2.2 A physical domain of interest mapped to the reference cylindrical do-

main. 9

2.3 ADR with lateral Dirichlet BC: HiMod relative error; Comparison

between HiMod and FEM error. 21

2.4 ADR with Neumann and Robin lateral BC: HiMod relative error as a

function of the number of DOF. 23

2.5 Drug-release modeling: longitudinal section along the xy-plane of

FEM and HiMod solution with m = 10, 20, 40 for Top-Down, parity-

restricted Chebyshev, and Zernike basis. 26

2.6 Distribution of the radial modes (y-axis) across cosinusoidal basis

functions of different frequency (x-axis), for parity-restricted Cheby-

shev and Zernike polynomials, with m = 10, 20, 40. 27

2.7 Block structure of the HiMod matrix associated with the generalized

Navier-Stokes equations. 31

2.8 Matrix pattern of the HiMod matrix by assembling one FE problem

per mode or by solving for all modes per FE. 31

2.9 Inf-sup test: Lower bounds for the velocity/pressure modal spaces of

dimensions (mp + 2,mp), (2mp − 1,mp), and (mu, 4). 33

2.10 Poiseuille flow: Exact and HiMod axial velocity at x = Lx/3 and

pressure drop computed via a top-down and a bottom-up basis. . . . 37

2.11 Poiseuille flow: HiMod relative error associated with a Top-Down basis

for the velocity and for the pressure, for different modes and mesh

sizes; Comparison between the relative error associated with HiMod

and FEM for the velocity and the pressure. 38

2.12 Womersley flow in a cylindrical pipe: velocity and axial component

profile for the exact and the HiMod solution at x = Lx/2 at times

t = 0, T/8, T/4, 3T/8 for Wo = 3, 5, 10, 20. 43

2.13 Womersley flow in a cylindrical pipe for Wo = 20: exact and HiMod

solution with parity-restricted Chebyshev and Zernike basis at t = 3T/8. 44

2.14 Womersley flow in a cylindrical pipe: Normalized exact and HiMod

pressure and axial velocity on the centerline at the inlet for Wo = 3,

mp = 10. 45

2.15 Modal coefficients of the Womersley solution for Wo = 5, 10, 15, 20. . 46

2.16 Sketch of a tapered pipe, of an aneurysmatic and of a stenotic vessel. 49

2.17 Womersley-like flow in a tapered pipe: Oscillating pressure and cen-

terline velocity at x = 0, Lx/3, 2Lx/3. 57

2.18 Womersley-like flow in a tapered pipe: Axial velocity at x = 0, Lx/2, Lx;

Radial velocity at x = Lx/3 and 3D HiMod velocity profile at different

times. 57

2.19 Womersley-like flow in an aneurysmatic pipe: Pressure and axial ve-

locity on the centerline along the x-axis at t = 0.08s, 0.16s, 0.24s. . . 58

2.20 Womersley-like flow in an aneurysmatic vessel: Axial velocity at x =

0, Lx/3, Lx/2 sections; Radial velocity at x = Lx/3; 3D HiMod veloc-

ity profile at different times. 58

2.21 Starting flow in a stenotic pipe at x = 2Lx/3 and at t = 1 and steady

Oseen flow in a non-axisymmetric pipe at x = Lx/2 with twisting

convective field: y- and z- component of the velocity along the y axis

with parity-restricted Chebyshev, Zernike, and modified Zernike basis;

Transverse components of the velocity. 59

2.22 Womersley-like flow in a non-axisymmetric vessel: xy- and xz-plane

view of the geometry; color plots of the radial and angular components

of the velocity and vector plots of the transverse components of the

velocity at x = 1 and x = 1.5 at t = 0.24s. 60

2.23 STL sections and HiMod map on the ϑ-quadrature nodes along a

patient-specific domain. 61

2.24 Patient-specific geometry; Inflow profile; Recirculation in proximity of

the stenosis. 61

3.1 Examples of DDUQ applications to decomposable systems: 30-bus

test system, cardiovascular system. 65

3.2 Sketch of DDUQ problem formulation: single component and full de-

composable system. 67

3.3 Sketch of DDUQ iterative solvers: monolithic, Jacobi and Gauss-

Seidel iteration. 72

3.4 Sketch of the DDUQ network solver. 73

3.5 Overlapping domain decomposition for 1D heat equation. 75

3.6 Directional graph to represent domain decomposition for 1D heat

equation. 76

3.7 Strong and weak scalability convergence results for 1D heat equation:

Iteration number versus normalized residual of interface unknowns

(PC coefficients). 78

3.8 Probability density functions of uncertain inputs, i.e. boundary con-

ditions, for the 1D heat equation. 79

3.9 Strong scalability convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at dif-

ferent location in the domain. 80

3.10 Weak scalability convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at dif-

ferent location in the domain. 81

3.11 Analytical strong convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at dif-

ferent locations in the domain. 82

3.12 Analytical weak convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at dif-

ferent locations in the domain. 83

3.13 Strong scalability results for 1D heat equation: iteration count, serial

and parallel execution time versus network size (number of subdo-

mains) with variability due to permutation matrix. 85

3.14 Weak scalability results for 1D heat equation: iteration count, serial

and parallel execution time versus network size (number of subdo-

mains) with variability due to permutation matrix. 86

3.15 2D nonlinear heat equation on the unit square: Template network

component with corresponding port labels and sketch of the DDUQ

setting. 87

3.16 Solution PCE coefficients for the 2D nonlinear heat equation using a

global NISP. 89

3.17 2D nonlinear heat equation: Normalized L2 error norms for output

PCE coefficients with varying level of PCE truncations for the diffu-

sion parameter and boundary condition. 91

3.18 Strong scalability convergence results for 2D heat equation for ω =

2/3, 1: Iteration number versus normalized residual of interface un-

knowns (PC coefficients). 92

3.19 Weak scalability convergence results for 2D heat equation for ω = 2/3,

1: Iteration number versus normalized residual of interface unknowns

(PC coefficients). 92

3.20 Strong scalability results for 2D heat equation: iteration count, serial

and parallel execution time of solver versus network size (number of

subdomains). 94

3.21 Strong scalability results for 2D heat equation: iteration count, serial

and parallel execution time of solver versus network size (number of

subdomains). 95

3.22 Strong scalability results for 2D heat equation with random permu-

tation matrix for Gauss-Seidel iterations with ω = 1: iteration count,

serial and parallel execution time of solver versus network size (number

of subdomains). 96

3.23 Network-related error for 2D heat equation: normalized error for solu-

tion (PC coefficients) at isolated physical locations for varying network

size with fixed 3-rd order PCE representation of inter-node links. . . . 97

3.24 Network-related error for 2D heat equation: normalized error for solu-

tion (PC coefficients) at isolated physical locations for varying PCE-

order representation of links between the nodes for a 4-node network. 98

3.25 Sketch of a (2, 1) − (3, 1) hMG type: Domain Decomposition and

network representation. 108

3.26 1D heat test: 2-level pMG relative residual vs. number of iterations,

incremental cost in terms of matrix-vector products and number of

deterministic solves, and time for NF = NC = {1, 2, 3}. 112

3.27 1D heat test: 3-level pMG relative residual vs. number of iterations,

incremental cost in terms of matrix-vector products and number of

deterministic solves, and time for NF = NC = {1, 2, 3}. 113

3.28 1D heat test: 4-level pMG relative residual vs. number of iterations,

incremental cost in terms of matrix-vector products and number of

deterministic solves, and time for NF = NC = {1, 2, 3}. 114

3.29 1D heat test: 5-level pMG relative residual vs. number of iterations,

incremental cost in terms of matrix-vector products and number of

deterministic solves, and time for NF = NC = {1, 2, 3}. 115

3.30 1D heat test: 2-level hMG relative residual vs. number of iterations

and time for NF = NC = {1, 2, 3}. 119

3.31 1D heat test: 2-level hMG relative residual vs. incremental cost in

terms of matrix-vector products and number of deterministic solves

for NF = NC = {1, 2, 3}. 120

3.32 1D heat test: 3-level hMG relative residual vs. number of iterations

and time for NF = NC = {1, 2, 3}. 121

3.33 1D heat test: 3-level hMG relative residual vs. incremental cost in

terms of matrix-vector products and number of deterministic solves

for NF = NC = {1, 2, 3}. 122

3.34 1D heat test: 4-level hMG relative residual vs. number of iterations

and time for NF = NC = {1, 2, 3}. 123

3.35 1D heat test: 4-level hMG relative residual vs. incremental cost in

terms of matrix-vector products and number of deterministic solves

for NF = NC = {1, 2, 3}. 124

3.36 Variational property for hMG: 1D example. 129

3.37 (2, 0) × (1, 0)-hMG coarsening: Domain Decomposition setting, fine

and coarse network representation. 130

4.1 Details of a pipe-type discretization of a patient-specific vasculature:

discretization of a non-branched region slabbing the geometry along

the centerline, mesh refinement by axial and transversal split, dis-

cretization of a junction through the use of the transition element,

mapping relating deformed and reference pipe-element. 139

4.2 Geometrical distribution of the degrees of freedom on a generic pipe-

element; planar view of some functions on the transversal basis for

p = 4. 142

4.3 Schematic setting for the TEPEM model problem. 144

4.4 Details in the geometrical decomposition: decomposition of the cen-

terline in two components with a common portion; generation of the

three-dimensional components with the creation of interfaces; local

decomposition of each component. 146

4.5 Geometrical setting for the weak scalability test. Three phantom

branched geometries are considered and decomposed employing a sin-

gle bifurcation as basis component. 151

4.6 TEPEM-DDUQ weak scalability: number of iterations, ideal parallel

time, and speedup of three different network configurations. 154

4.7 TEPEM-DDUQ weak scalability: relative error for pressure and wall

shear stress expected value and standard deviation for three different

network configurations. 155

4.8 Three-dimensional geometries constructed based on the 1D ADAN

model: isolated section from the intracranial system; left coronary

arterial tree. 157

4.9 Geometry A: global view of the coefficient of variation of the pressure

computed via DDUQ-TEPEM strategy; quantities of interest related

to the WSS on three selected regions. 158

4.10 Geometry B: WSS average, standard deviation and coefficient of vari-

ation on five selected regions. 160

4.11 1D bifurcation model, domain decomposition and numerical setting. . 166

4.12 Unsteady 1D DDUQ network problem: component representation

with inputs/outputs for a bifurcation point and a simple vessel. . . . 170

4.13 Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: mean of DDUQ solution at inflow, parent

vessel mid-point, bifurcation point, daughter vessel mid-point, and

outflow for different values of the CFL number. 174

4.14 Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: standard deviation of DDUQ solution at in-

flow, parent vessel mid-point, bifurcation point, daughter vessel mid-

point, and outflow for different values of the CFL number. 175

4.15 Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: mean of baseline and DDUQ solution at in-

flow, parent vessel mid-point, bifurcation point, daughter vessel mid-

point, and outflow. 176

4.16 Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: standard deviation of baseline and DDUQ

solution at inflow, parent vessel mid-point, bifurcation point, daughter

vessel mid-point, and outflow. 177

4.17 Propagating pressure wave in a simple bifurcation with reflecting out-

flow boundary conditions: mean of baseline and DDUQ solution at

inflow, parent vessel mid-point, bifurcation point, daughter vessel mid-

point, and outflow. 179

4.18 Propagating pressure wave in a simple bifurcation with reflecting out-

flow boundary conditions: standard deviation of baseline and DDUQ

solution at inflow, parent vessel mid-point, bifurcation point, daughter

vessel mid-point, and outflow. 180

4.19 Propagating pressure wave in a simple bifurcation with reflecting out-

flow boundary conditions: baseline and DDUQ sensitivities at differ-

ent probe locations. 181

4.20 37-vessel network and output probe vessels. 183

4.21 Deterministic baseline and DDUQ solution in output probe vessels of

37-vessel network. 184

4.22 Mismatch coefficient for the sensitivity peaks in a 37-vessel network

with 9 and 7 deterministic initialization cycles. 185

5.1 Solution of the problem, based on NSE, when t = 0.28s. Streamlines

of the velocity field, when the flow rate is maximum over the cardiac

cycle. 191

5.2 Schematic representation of non overlapping and overlapping DD in a

L-shaped domain Ω. 192

5.3 The considered utility function. Umax is a measure of the importance

of the job to the user, T ∗ is the expected completion time, T0 is the

time at which the utility is zero. 201

5.4 The average computation time per simulated time step and the rela-

tion between the cost and time of the simulation. 204

5.5 Evaluating the cost/time characteristics of the different platforms against

the user-specific utility function. 207

5.6 Solution of Navier Stokes Equations for blood flow in an aneurysmatic

vessel, for t = 0.05s; Different mappings of the coarse mesh for four

4-way nodes. 211

5.7 Relative execution times for all simulation configurations. Each value

represents the speed-up of the mappings in relation to the less efficient

mapping for the configuration. 215

5.8 Parallel time performed as a function of p for two levels of refine-

ment of the mesh for the solution of an ADR problem on a cylinder.

Corresponding number of iterations for fine and very fine meshes. . . 219

5.9 Solution to an ADR problem on an idealized aneurysm and number

of iterations. Parallel time performed as a function of p for a fine and

very fine mesh. 220

5.10 Solution to an ADR problem on a real aneurysmatic vessel. Parallel

time performed as a function of p for a very fine mesh and number of

iterations. 221

7.1 Relative error for the approximation of the function f(r̂) = cos
(
π
2
r̂
)

with Chebyshev polynomials with linear and quadratic shift, Robert,

and Bessel functions. Orthonormality error associated with the Bessel

basis as a function of the numerical precision. 229

23

List of Tables

2.1 Functors associated with different types of boundary conditions. . . . 11

2.2 Main families of eigenfunctions ξn for a 1D Sturm-Liouville eigenvalue

problem in the radial coordinate. 15

2.3 Ordering of the Bottom-Up basis functions. 22

2.4 ADR in a cylinder: relative error associated with the (Chebyshev)

Bottom-Up basis for m = 10 and different values of the FEM mesh

size h. 22

2.5 ADR in a cylinder: L2(Ω)−norm of the relative error associated with

the Bottom-Up and Top-Down basis for a non-axisymmetric solution. 24

2.6 Womersley flow: L2(Ω)-norm of the error associated with the HiMod

velocity for different Wo numbers and at different times. 42

3.1 pMG coarsening types. 105

3.2 pMG for linear 1D heat DDUQ network problem: parameter setting. 111

3.3 hMG for linear 1D heat DDUQ network problem (matrix form): pa-

rameter setting. 117

3.4 hMG types for linear 1D heat DDUQ network problem. 118

4.1 Number of components and pipe-elements employed to discretize each

subnetwork; relative error in the average and standard deviation for

the pressure and wall shear stress between the DDUQ-TEPEM solu-

tion and the monolithic solution for the three networks considered on

the scalability tests. 156

4.2 Relative error in the average and standard deviation for the pressure

and wall shear stress between the DDUQ-TEPEM solution and the

monolithic solution for the three networks considered on the scalability

test. 161

4.3 Synopsis of Euler’s equations formulation (I). 168

4.4 Synopsis of Euler’s equations formulation (II). 169

4.5 Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: mismatch between peaks of DDUQ sensi-

tivities and the results reported in [201]. 178

4.6 Propagating pressure wave in a simple bifurcation with reflecting out-

flow boundary conditions: mismatch between peaks of DDUQ sensi-

tivities and [201]. 182

5.1 Specification of a single node of the test architectures. 198

5.2 Cost of the benchmarked architectures 200

5.3 The performance ranking of the hardware resources for the fastest run

based on the metric time to completion. 205

5.4 Number of nodes of each partition and total number of nodes on the

interfaces for different levels of overlap on a very fine mesh for Test 5. 222

1

Chapter 1

Introduction

Computational fluid dynamics (CFD) has been progressively adopted in the last

decade for studying the role of blood flow on the development of arterial diseases (see,

e.g., [75, 186]). Computational investigations – compared to more traditional in vitro

and in vivo studies – are generally more flexible and cost-effective. In combination

with appropriate image-processing techniques – see, e.g., [148, 20, 190, 88, 193, 87,

202] – CFD can be used in a patient-specific setting. This means that the morphologi-

cal and functional conditions of a specific patient may be reproduced in mathematical

terms and quantitative analyses can be performed by solving the corresponding mod-

els describing the physical and constitutive laws behind the physiopathology, gen-

erally described by systems of partial differential equations. There are several uses

for this kind of analysis, including a deeper understanding of the clinical conditions,

performing virtual surgery or therapy for predicting outcomes, to a personalized op-

timization/customization of generic procedures [182, 100, 60, 131, 139]. Recently, the

concept of Computer Aided Clinical Trials (CACT) has been proposed to identify

the systematic use of scientific computing within the frameworks of studies oriented

to extract knowledge from clinical data [193, 81]. Similarly, Surgical Planning (SP) is

the name given to an ensemble of procedures aimed at the prediction of the outcomes

of an operation by exploiting the intrinsic predictive potential of numerical models.

The adoption of CFD for CACT and SP is however still an open challenge. First

of all, the time for obtaining results from computational studies can be too long for

the fast-paced clinical environment - especially in emergency scenarios. Furthermore,

2

many patient-specific data that are input to mathematical models - such as param-

eters or boundary conditions, are totally inaccessible from a clinical viewpoint, and

the correlation between clinical outcomes and flow patterns needs to be supported

by large volumes of data, which are not always available or easy to obtain. This

introduces uncertainties in the outputs of the numerical solvers, which raise the

question of reliability. Therefore, quantifying the reliability of the results is crucial

for applicability in real-life scenarios, but this comes at an even higher computa-

tional cost. Finally, the computational analysis of large numbers of patients calls

for significant computational resources [193]. Scientists and clinicians have access

to computing platforms which could alleviate the resource bottleneck. While local

(owned) resources are faster and cheaper, overall system and operating expenses have

led to resource sharing and leasing paradigms, i.e., grids and clouds, respectively. In

facts, hospitals and healthcare institutions are expected to outsource numerical sim-

ulations in a routine process more than hosting local computing facilities. This is

already happening, for example, with HeartFlow [1]. However, this raises concerns

about privacy and data protection, and on efficiency, as it is not trivial to identify

the platform that best suits the problem to be solved in each situation. In real

production settings, performance must be judiciously balanced with cost.

In short, we may say that computational hemodynamics is a field with great po-

tential, but currently limited by time and cost constraints. As a matter of fact,

differently than in proofs of concept, in CACT and SP accuracy of computations

is not the only priority - as far as numerical simulations obtain sufficient reliability

to correctly support clinical practice. Efficiency and robustness of the numerical

procedures must be properly considered as well.

In such an articulated and complex scenario, this work addresses the challenges

described above by designing ad-hoc mathematical and computational methods for

cardiovascular applications (see Figure 1.1). In Chapter 2 we present a novel re-

duced model tailored to 3D domains with a geometrically dominant direction. A

“smart” choice of the basis functions of the discrete function spaces guarantees lev-

3

els of accuracy comparable to those achieved by high-fidelity 3D models, but at a

computational cost of the same order as the inexpensive yet inaccurate 1D models.

A new method for uncertainty quantification (UQ) in large-scale networks is pre-

sented in Chapter 3. The application of domain decomposition (DD) in an off-line

phase allows solving the stochastic problem only locally - at the sub-system level,

greatly enhancing parallelism. We introduce new multigrid (MG) methods specifi-

cally designed for networks, that - potentially combined with Anderson Acceleration

- consistently improve the performance of the numerical model for uncertainty quan-

tification. In Chapter 4, the DDUQ method is applied to a variation of the “smart”

reduced model for the cardiovascular system presented in Chapter 2. This enables

accurate uncertainty quantification in patient-specific geometries roughly at the cost

of traditional cheap yet inaccurate reduced models. The infrastructure issue is tack-

led in Chapter 5. We provide an objective criterion to measure the performance of

different parallel architectures based on the user’s priorities in terms of budget and

tolerance to delay. We show that choosing a task-worker mapping strategy ahead

of simulation time can consistently reduce the execution time, and that allowing a

small amount of overlap in the domain decomposition phase can further improve

convergence. We conclude with an overview on possible future work.

4

Figure 1.1: Thesis content chart. The challenges addressed in this work and the cor-

responding proposed solutions are in white and colored boxes, respectively. Dashed

arrows represent relationships between challenges, while solid arrows show problem-

solution connections.

5

Chapter 2

Hierarchical Model Reduction

Acknowledgements. This chapter reflects the content of the paper [98], written

in collaboration with Simona Perotto and Alessandro Veneziani, that has been part

of the research of the author during the years of the graduate program. In addition,

we provide a numerical proof of the inf-sup stability of the reduced spaces considered,

and extend numerical tests to patient-specific geometries.

2.1 Introduction and Background

Hierarchical Model (HiMod) Reduction is a method proposed in [143] for the efficient

solution of Partial Differential Equations defined in domains with a geometrically

dominant direction, like slabs or pipes. In the spirit of a separation of variables, the

HiMod solution is regarded as the combination of the mainstream dynamics driven by

the geometry and the transverse components. The latter are generally of secondary

importance so to be described by few degrees of freedom of a spectral approximation

introduced along the transverse direction, in combination with a finite element or an

isogeometric discretization of the mainstream (see figure 2.1, left). Thus, a purely

1D numerical approximation can be promptly expanded towards the original 3D

problem by a proper selection of the spectral discretization [146]. Although purely 1D

models completely drop the transverse dynamics [149, 76, 119], these may be locally

important. HiMod is intended to provide a unified numerical tool able to promptly

6

Figure 2.1: Schematic representation of a Hierarchical Model Reduction (left); com-

putational cost as a function of accuracy for 1D ROM, HiMod, and full-order models

(FOM) (right).

incorporate the transverse components of the 3D solution into a “psychologically 1D”

solver (see figure 2.1, right). The HiMod reduction has been successfully employed

to solve Advection-Diffusion-Reaction (ADR) problems in two-dimensional domains

[143, 145, 69, 141, 146, 147, 30, 142, 144] and parallelepipeds [9].

Three dimensional problems in non-trivial geometries are considered in [127] for

incompressible fluid dynamics, including domains reconstructed from patient-specific

coronaries. Paper [127] proposes a specific formulation of the HiMod framework,

where the problem is discretized with an approach called Transversally Enriched

Pipe Elements Method (TEPEM). The physical elements are mapped to a reference

slab where the Cartesian framework is exploited for the construction of the modal

basis by tensor product of Legendre polynomials. The method is proved to be reliable

and efficient (when compared to 3D solution), with computational costs close to the

ones of a 1D solver in both idealized and real geometries.

In circular pipes, where the transverse section is (or it is close to be) a circle, like

in arteries, a natural candidate for the non-axial dynamics is a polar coordinate set-

ting. Nevertheless, the spectral approximation of Partial Differential Equations in

polar coordinates suffers from several issues, consequent to the conversion from the

Cartesian frame. Regularity and boundary condition enforcement add requirements

to the spectral basis to use. The selection of a basis with both analytical and nu-

7

merical excellent features is thus challenging. For this reason, investigations on such

problems are often broken into axisymmetric [167, 123, 27, 62, 21] and general cases

[122]. Axial symmetry may, in fact, influence the selection of the basis. Quoting

Boyd (referring to Laplace problems in 2D circular domains - yet the conclusion is

general) “There is no single best basis for the disk” [37].

In this paper, for the first time polar coordinates are explored in the HiMod ap-

proach. Potentialities and drawbacks of different choices are discussed in an extensive

numerical testing. The ultimate application we are interested in is computational

hemodynamics, yet we perform extensive benchmarking in idealized geometries, with

and without axial symmetry. We specifically consider two problems, advection-

diffusion-reaction (ADR) and incompressible Navier-Stokes Equations (NSE), both

related to blood flow problems. We show how accurate the hybrid FEM/Spectral ap-

proximation is, in spite of numerical problems related to the selection of the spectral

basis in polar frames. Specifically, we find that a Top-Down basis resulting from the

solution of a Sturm-Liouville Eigenvalue problem is a viable option for ADR, since

it can be designed to incorporate any kind of boundary conditions, but it is out-

performed by a Bottom-Up approach for the specific case of homogeneous Dirichlet

boundary conditions. For the NSE, a Bottom-Up basis construction is numerically

more robust and to be preferred, in particular resorting to the so-called Zernike

polynomials (aka one-sided Jacobi-Fourier basis). The HiMod approach with these

choices is an improved 1D solver to be next used in networks of pipes [33, 30].

In Section 2.2 we address the HiMod discretization in cylindrical domains in polar

coordinates. We discuss several options for the construction of the spectral basis,

following the excellent extensive work of Boyd [37]. In Section 2.3 we numerically test

ADR, while in Section 2.4 we move to NSE. For the available Womersley solution,

we compare the results presented here with [127] to discuss pros and cons of using

polar coordinates vs geometrical mapping to slab-like Cartesian domains. In view

of medical applications, in Section 2.5 we consider both idealized and non-trivial

models for arterial domains. Conclusions are drawn in the last Section.

8

2.2 HiMod in Cylindrical Domains

2.2.1 The geometric setting

Let us consider a cylindrical domain with a rectilinear axis and circular section

with variable radius R. We assume that the domain can be represented as a three-

dimensional fiber bundle Ω =
⋃
x∈Ω1D

{x} × γx, where Ω1D is a one-dimensional

domain, and γx ⊂ R2 represents the two-dimensional fiber associated with the generic

point x ∈ Ω1D (Figure 2.2). In particular, the supporting fiber is the x−axis, while γx

is the transverse section centered at x. The leading dynamics are aligned with Ω1D,

whereas the transverse dynamics are parallel to fibers γx. For the sake of simplicity,

we assume a rectilinear axis Ω1D =]x0, x1[, but the more general case of a curved

supporting fiber can be considered as well [142, 144]. For each x ∈ Ω1D, we introduce

the mapping

ψx : γx → γ̂, (2.1)

between the physical fiber γx and a reference fiber γ̂. We set ẑ = (x̂, ŷ) = ψ̂(x,y) =

(x, ψx(y)) as the image of the physical point z = (x,y) ∈ Ω through the global map

ψ̂ : Ω → Ω̂, where Ω̂ is the reference cylinder described by the coordinates (x, ŷ),

with ŷ = ψx(y) = (r̂, ϑ̂) ∈ [0, 1) × [0, 2π], so that the transverse reference fiber γ̂

coincides with the unit circle (Figure 2.2). We assume ψx to be a C1-diffeomorphism

for all x ∈ Ω1D and ψ̂ to be differentiable with respect to z.

A cylindrical domain can be parametrized in different ways [35, 127]. A simple

approach is to map the circular section into a square (or a geometry easy to separate

along the Cartesian coordinates), which allows using a Cartesian framework in the

reference space. In this case, the geometric map lacks regularity at the vertices of

the hexahedron, as a counterpart to its conceptual simplicity. On the contrary, the

choice of a cylindrical setting is intrinsically more tailored to the geometry of a pipe.

Here, we introduce the HiMod polar framework and discuss pros and cons of this

choice, with all the challenges pointed out in [37].

9

Figure 2.2: A physical domain of interest (in this case an axisymmetric geometry

obtained by rotation of a curve around the x axis) mapped to the reference cylindrical

domain.

2.2.2 The reference basis set

The fiber structure featured by the domain Ω has a key role in setting the HiMod

reduction. We resort to different function spaces along Ω1D and on the transverse

fibers. The standard notation for the Sobolev spaces as well as for the space of

functions bounded a.e. in Ω is adopted [40]. With reference to standard scalar ADR

problems, we introduce the function space V1D ⊆ H1(Ω1D) on Ω1D, such that the

related functions vanish on Dirichlet boundaries. On the transverse reference fiber we

set a modal basis {ϕ̂k}k∈N+ ⊂ H1(γ̂). In particular, we select functions orthonormal

with respect to a weighted scalar product in L2(γ̂). Clearly, boundary conditions on

Γlat have to be taken into account by the modal basis. Then, the discrete transverse

function space is defined as Vγ̂ = span{ϕ̂k}. For a certain m ∈ N+, the combination

10

of spaces V1D and Vγ̂ yields the reduced space

Vm =

{
vm(x,y) =

m∑
k=1

ṽk(x)ϕ̂k(ψx(y)), with ṽk ∈ V1D, ϕ̂k ∈ Vγ̂, x ∈ Ω1D, y ∈ γx

}
,

(2.2)

with

ṽk(x) =

∫
γ̂

vm(x, ψ−1
x (ŷ))ϕ̂k(ŷ)dγ̂ k ∈ {1, . . . ,m}, (2.3)

for the orthonormality of the basis.

Out of many possible choices for the construction of a basis, here we identify two

possible general strategies.

(i) In the “Top-Down” approach, we construct directly the bivariate basis function

in (r̂, ϑ̂) by solving a Sturm-Liouville Eigenvalue (SLE) problem associated with an

appropriate self-adjoint differential operator defined on the unit-disk, completed with

the homogeneous boundary conditions of the original problem to solve. We mimic

in this way the “educated approach” introduced in [9] for ADR problems in slabs,

where tensor product splitting allows to simplify the 2D computation to 1D SLE

problems.

(ii) In the “Bottom-Up” approach we factorize the construction of the basis by work-

ing along r̂ and ϑ̂, separately, and assembling the bivariate basis afterwards. Bound-

ary conditions are then enforced at a second stage. Several options are available, as

discussed in [35, 37], which we follow closely.

We discuss these two options hereafter.

The Top-Down approach

A possible strategy to build the modal basis is to solve an auxiliary SLE problem

[56, 44] on the transverse section,Lϕ̂k = λ̂kwϕ̂k in γ̂

BC = 0 on ∂γ̂,
(2.4)

11

BC type Condition Functor

Dirichlet ϕ̂k = 0 Jn(
√
λ̂j)

Neumann µ∇ϕ̂k · n = 0

√
λ̂j

R
J ′n(
√
λ̂j)

Robin µ∇ϕ̂k · n + χϕ̂k = 0

√
λ̂j

R
J ′n(
√
λ̂j) +

χ

µ
Jn(
√
λ̂j) (µ, χ > 0)

Table 2.1: Functors associated with different types of boundary conditions.

so to include the generic homogeneous boundary conditions (BC = 0) in the basis

in an essential way. Here L is a suitable differential operator, (λ̂k, ϕ̂k) denotes a

corresponding eigenpair, and w is a positive continuous weight function. Under the

assumptions of the Spectral Theorem [160], the eigenfunctions associated with the

operator L are orthogonal with respect to the L2
w-weighted scalar product and form

a complete set in the same space. Since functions ϕ̂k automatically include the lateral

boundary conditions, the set {ϕ̂k} has been called an “educated” basis [9].

Scalar problems. Let L in (2.4) be the Laplacian (in general, it can be a self-

adjoint operator) on the reference unit circle in polar coordinates. For simplicity,

we consider here homogeneous Dirichlet boundary conditions, although any type of

boundary conditions can be enforced. The set of eigenfunctions associated with this

operator is

ϕ̂k(r̂, ϑ̂) = ϕ̂j,n(r̂, ϑ̂) =
1√

2π‖Jn‖L2
w(0,1)

(
sin(nϑ̂) + cos(nϑ̂)

)
Jn

(√
λ̂j r̂

)
, (2.5)

where Jn is the Bessel function of first type of order n ∈ N+ [56, 203, 180, 59], and

the frequency
√
λ̂j is the j-th root of Jn. More in general, for each type of boundary

condition (Dirichlet/Neumann/Robin), λ̂j is obtained as the (squared) j-th root of a

specific functor (see Table 2.1). As a result, the ordering of the basis functions {ϕ̂k}
depends on the two indices j and n, i.e., k = k(j, n) (for more details, see [94]).

12

Vector problems. In view of hemodynamic applications, hereafter we construct

a modal basis with the eigenfunctions of the Stokes operator, completed with ho-

mogeneous Dirichlet boundary conditions. More explicitly, for such a choice the

Sturm-Liouville eigenvalue problem (2.4) reads

∆ϕ̂uk + λ̂kϕ̂
u
k = ∇ϕ̂pk in γ̂,

∆ϕ̂pk = 0 in γ̂,

∇ · ϕ̂uk = 0 in γ̂,

ϕ̂uk = 0 on ∂γ̂,

(2.6)

being ϕ̂uk and ϕ̂pk the eigenfunctions for the velocity and the pressure, respectively.

Following the procedure adopted for scalar problems, the eigenfunctions are com-

puted as in [158] and they read as

ϕ̂pk(r̂, ϑ̂) = ϕ̂pj,n(r̂, ϑ̂) = c1r̂
n exp(inϑ̂),

ϕ̂uk(r̂, ϑ̂) = ϕ̂uj,n(r̂, ϑ̂) = c1 exp(inϑ̂)

n

λ̂j
r̂n−1 −

nJn

(√
λ̂j r̂

)
r̂λ̂jJn

(√
λ̂j

)

in

 r̂n−1

λ̂j
−
Jn−1

(√
λ̂j r̂

)
− Jn+1

(√
λ̂j r̂

)
2n
√
λ̂jJn

(√
λ̂j

)

,

(2.7)

respectively, where i is the imaginary unit,
√
λ̂j runs through all the roots of Jn+1,

for n 6= 0, and the coefficient c1 is determined via the unitary norm constraint. Note

that, as in the scalar case, the ordering of the basis functions depends on the two

indices j and n. Although from a theoretical viewpoint functions ϕ̂pk and ϕ̂uk are

tailored to the problem we aim to solve, from a practical perspective there are some

drawbacks. Specifically, we need here to drop the complex part, with a relevant loss

of details. More in general (for both scalar and vector problems), Bessel functions

are extremely sensitive to numerical errors [36, 59, 181, 35, 89, 44] and this may limit

13

their use. Therefore, for the numerical tests presented hereafter, a Top-Down vector

basis is built by employing functions (2.5) for each component of the vector function.

The Bottom-Up approach

As an alternative to the Top-Down approach, a two-step procedure is proposed in

[35]. Two scalar 1D Sturm-Liouville eigenvalue problems are solved for the angular

and radial component, respectively. For the ϑ-component, L is chosen as the 1D

Laplacian, leading to the standard Fourier basis, whereas a radial basis {ξn(r̂)}∞n=0

is obtained by defining the differential operator as Lξn = −(sξ′n)′+ qξn, being s > 0

and q given functions of r̂. Then, the 2D spectral basis is assembled by multiplying

the basis functions associated with each component, as

ϕ̂k(r̂, ϑ̂) = ϕ̂sin,cos
j,n (r̂, ϑ̂) = ξn(r̂)

cos(jϑ̂)

sin(jϑ̂),
(2.8)

where the superscript sin/cos specifies the type of trigonometric function considered

and j, n ∈ N+. As in the Top-Down approach, the ordering of the basis functions

{ϕ̂k} depends on the two indices j and n [94]. Thus, the expansion of an arbitrary

function ψ ∈ L2
w ([0, 1]× [0, 2π)) reads

ψ(r̂, ϑ̂) =
∞∑
j=0

∞∑
n=0

[
fjnξn(r̂) cos(jϑ̂) + gjnξn(r̂) sin(jϑ̂)

]
, (2.9)

with fjn, gjn ∈ R for any j, n ∈ N+. Smoothness properties of this series are guaran-

teed by the Parity Theorem, that rules the combination of radial and trigonometric

components in the construction of a polar modal basis. We provide the corresponding

statement for completeness by collecting Theorems 2.1 and 2.2 in [37]:

Theorem 2.1. Let ψ(y, z) be a function written in polar coordinates, so that in

particular

ψ(r̂, ϑ̂) = ψ(−r̂, ϑ̂+ π).

14

Let the corresponding Fourier series be

ψ(r̂, ϑ̂) =
∞∑
j=0

cj(r̂)e
ijϑ̂ =

∞∑
j=0

[
fj(r̂) cos(jϑ̂) + gj(r̂) sin(jϑ̂)

]
.

Then, the coefficients satisfy

cj(r̂) = (−1)jcj(−r̂), fj(r̂) = (−1)jfj(−r̂), gj(r̂) = (−1)jgj(−r̂).

The power series of fj(r̂) and gj(r̂) contain only odd (even) powers of r̂ if j is odd

(even). Also, assume that ψ is analytic in r̂ = 0. Then

fj(r̂) = r̂jFj(r̂), gj(r̂) = r̂jGj(r̂)

for suitable Fj(r̂) and Gj(r̂) non singular functions at r̂ = 0, so that

fj(r̂) = r̂j
∞∑
k=0

fj,2kr̂
2k, gj(r̂) = r̂j

∞∑
k=0

gj,2kr̂
2k

for suitable coefficients fj,k, gj,k.

The Bottom-Up approach leads to some complications for the hierarchical ordering

of the spectrum. Since no 2D eigenvalue problem is defined, there does not exist any

hierarchy between the r-eigenvalues and the ϑ-eigenvalues, and the corresponding

eigenfunctions. Hence, the selection of the number of radial modes and of trigono-

metric functions is somehow arbitrary. Two criteria are proposed in [35], namely

rectangular and triangular truncations. The former employs the same number of

radial functions for each angular wave number j. The latter decreases the number of

radial basis functions as j increases, until the highest wave number has a single radial

basis function. This criterion is usually employed for spherical harmonics because

it guarantees the property of “equiareal resolution”. Nevertheless, such property is

not guaranteed in a cylindrical setting. Therefore, depending on the specific choice

of the radial basis, a rectangular truncation may be preferable, being beneficial in

terms of implementation.

15

Family ξn(r̂), n = n(j) parameters

Bessel Jn(λ̂j r̂) λ̂j: the j-th root of Jn(r̂)

Robert r̂jTn(r̂) Tn: Chebyshev polynomial of degree n

Chebyshev-

linear shift
Tn(2r̂ − 1) Tn: Chebyshev polynomial of degree n

Chebyshev-

quadratic shift
Tn(2r̂2 − 1) Tn: Chebyshev polynomial of degree n

Jacobi r̂jP 0,j
n−j
2

(2r̂2 − 1)
P 0,j
h : Jacobi polynomial of degree h

and order (0, j)

Table 2.2: Main families of eigenfunctions ξn for a 1D Sturm-Liouville eigenvalue

problem in the radial coordinate. Note that the ordering of such basis may depend

on the ordering of the angular basis.

The explicit definition of the basis functions {ξn} in (2.8) may vary, depending

on the choices of the functions s and q in the operator L for the radial component

[56, 44]. Hereafter we focus on two possible choices explored in the sequel. Dif-

ferent options from [35, 37] are shown in Table 2.2 and discussed in Appendix 7.1,

motivating their exclusion.

• Shifted-Chebyshev polynomials with quadratic argument: Tn(2r̂2 − 1).

In order to satisfy the Parity Theorem, the 2D basis functions are chosen so

that the radial part is ξn(r̂) = Tn(2r̂2 − 1) if the angular index j is even,

ξn(r̂) = r̂ Tn(2r̂2 − 1) otherwise. In fact, from the properties of Chebyshev

polynomials, it holds Tn(2r̂2 − 1) = T2n(r̂), with r̂ ∈ (0, 1). As shown in

[35], the convergence rate associated with this basis is higher with respect

to the convergence guaranteed by the linear-shifted polynomials described in

Appendix 7.1.

16

• Zernike polynomials aka One-sided Jacobi basis: r̂jP 0,j
n−j
2

(2r̂2 − 1).

This basis set is represented by Jacobi polynomials, scaled by the factor r̂j

(see Table 2.2). Thanks to the orthogonality constraint, these polynomials

oscillate mostly near r̂ = 1 and consequently the roots move closer and closer

to the outer boundary for a fixed degree and by increasing j, allowing for longer

timesteps [35].

Differently from the Top-Down case, there is no general approach for the construction

of a Bottom-Up vector basis. In what follows, the spectral expansion (2.9) employed

for scalar functions is adopted to represent each component of the vector function

considered.

Enforcement of the boundary conditions. Depending on the selected radial

basis {ξn}, some suitable manipulations may be required to enforce the boundary

conditions, as they are, in general, not fulfilled by the basis functions. This can

be done via a linear combination of basis functions to provide a new basis set that

includes the boundary conditions. Such an approach is adopted in [19], where an

“educated” basis that employs parity-restricted Chebyshev polynomials is proposed.

For all j, n = 1, 2, . . ., it readsξEn (r) = Tn(2r2 − 1)− 1 if j is even

ξOn (r) = rTn(2r2 − 1)− r if j is odd.
(2.10)

Another, multiplicative approach for homogeneous Dirichlet conditions consists

of multiplying the basis functions by the factor 1 − r2, that enforces the conditions

without affecting the parity of the basis functions [21, 117]. This technique is adopted

here for Zernike polynomials, since they feature the correct parity by construction.

17

2.3 Scalar Advection-Diffusion-Reaction Problems

We apply the HiMod technique to the following linear ADR problem:

−∇ · (µ∇u) + b · ∇u+ σu = f in Ω

u = uin on Γin

µ∇u · n = 0 on Γout

u = 0 on Γlat,

(2.11)

where Ω is a cylinder of length Lx and radius R, n is the outward unit normal

vector, and the boundary is labeled according to Figure 2.2. Let µ, σ ∈ L∞(Ω), with

µ ≥ µ0 > 0 a.e. in Ω, be the diffusivity and the reaction coefficient, respectively,

and b = (bx, br, bϑ)T ∈ [L∞(Ω)]3 the convective field. We assume ∇ ·b ∈ L∞(Ω) and

−1
2
∇ · b + σ ≥ 0 a.e. in Ω, and f ∈ L2(Ω) so to guarantee the well-posedness of the

weak form of the problem, as follows from the Lax-Milgram lemma.

We set the problem on the space Vm defined in (2.2). Hypotheses of conformity and

spectral approximability are required to guarantee the well-posedness of the reduced

problem and the convergence to the full problem [143].

We introduce a (uniform) partition Th of Ω1D and the corresponding finite element

space V h
1D ⊂ V1D, with dim(V h

1D) = Nh and basis {ζl}Nh
l=1, such that a standard density

hypothesis of V h
1D in V1D is guaranteed. The discrete counterpart of (2.2) reads

V h
m =

{
vhm(x,y) =

m∑
k=1

ṽhk (x)ϕ̂k(ψx(y)), with ṽhk ∈ V h
1D, ϕ̂k ∈ Vγ̂, x ∈ Ω1D, y ∈ γx

}
.

(2.12)

Then, the HiMod approximation uhm ∈ V h
m for (2.11) and the corresponding test

function vhm ∈ V h
m reads as uhm(x,y) =

∑m
k=1

∑Nh

i=1 uk,iζi(x)ϕ̂k(ψx(y)) and vhm(x,y) =

ζl(x)ϕ̂j(ψx(y)), respectively, for any l = 1, . . . , Nh and any j = 1, . . . ,m. Thus, we

formulate the following problem:

For k = 1, . . . ,m and i = 1, . . . , Nh, find uk,i ∈ R such that, for any j = 1, . . . ,m,

18

l = 1, . . . , Nh

m∑
k=1

Nh∑
i=1

∫
Ω̂1D

{
dkj ζ

′
iζ
′
l + ckj ζ

′
iζl + bkj ζiζ

′
l + akj ζiζl

}
uk,idx̂ =

∫
Ω̂1D

fjζldx̂, (2.13)

where coefficients {a, b, c, d}kj, {f}j collect the contribution of the dynamics trans-

verse to Ω̂1D (we refer to Appendix 7.2 for an explicit expression of such coefficients).

Problem (2.13) represents a linear system of m coupled 1D problems, characterized

by an mNh ×mNh block matrix A (with a hierarchical structure that we point out

in Section 2.4). The indices j and k, associated with the modes, identify the macro-

structure of A (they run on the block rows and block columns, respectively), whereas

l and i, related to the finite element basis, identify rows and columns of each block,

respectively. In this way, each Nh × Nh block Ajk preserves the sparsity pattern

peculiar of the adopted 1D finite element approximation.

For a three-dimensional problem set on a cylindrical domain discretized with a

structured grid via P1-FE, the degrees of freedom are O(NxNrNϑ), being Nx, Nr

and Nϑ the number of degrees of freedom in the x, r, and ϑ direction, respectively.

With a HiMod reduction the number of unknowns is O(mNx). Thus, for m� NrNϑ,

the resulting matrix is much smaller compared to the one associated with the full

problem with a significant reduction of the computational costs [127].

2.3.1 Numerical Assessment

In order to validate the method, we test HiMod on the basis functions (2.5) obtained

with the Top-Down approach for different types of lateral boundary conditions, and

on functions (2.8) with homogeneous Dirichlet lateral boundary conditions. We

compare the numerical properties of the different types of basis functions when ap-

proximating axisymmetric and non-axisymmetric solutions, highlighting strengths

and weaknesses of each option.

We present a set of numerical experiments where the analytical solution is known

to investigate the trend of the error, and a more realistic test where the analytical

19

solution is not available. In the latter case, the ground truth solution is provided by

the standard P1-Finite Element method (FEM) computed on a very fine grid. All

the numerical experiments have been performed using a C++ solver based on the

Finite Element Library LifeV [4], on a Dell Inspiron 15R SE 7520 equipped with a

2.10GHz Intel Core i7 processor and 8GB of RAM. More details are available in [8].

Convergence analysis: The axisymmetric case

Consider problem (2.11) with Lx = 5, R = 1, µ = 1, bx = 5, br = 0, bϑ = 0, σ = 10.

The forcing term and the boundary conditions on Γin are adjusted to match the

following analytical solutions:

uR2(x, r, ϑ) = (R2 − r2)(Lx − x)2, (2.14a)

uR3(x, r, ϑ) = −1

4
r2 +

1

6
r3 +

1

12
, (2.14b)

uR4(x, r, ϑ) = (R2 − r2)2(Lx − x)2, (2.14c)

fulfilling homogeneous Dirichlet, Neumann, and Robin lateral boundary conditions,

respectively.

Top-Down basis. The boundary conditions on Γlat in (2.11) can be generalized

via the homogeneous Robin condition µ∇u · n + χu = 0. For (µ, χ) = (0, 1), and

for (µ, χ) = (1, 0), the constraint reduces to a Dirichlet and Neumann boundary

condition, respectively. Each case is discussed hereafter.

• Dirichlet BC (µ = 0, χ = 1).

Consider the exact solution (2.14a), fulfilling homogeneous lateral Dirichlet

boundary conditions. Figure 2.3 (left) shows the trend of the L2(Ω)−norm of

the HiMod relative error, for different values of h and m. For the largest values

of h the error stagnates, since the FEM error dominates the total error. Con-

versely, for small values of h, the error is dominated by the modal component.

20

The convergence rate is linear with respect to the reciprocal of the number of

modes, which is consistent with the results in [9] on slabs.

HiMod is sensibly competitive with respect to the standard FEM in terms of

accuracy and efficiency. For a given number of degrees of freedom (DOF), the

HiMod error is consistently about one order of magnitude lower than the FEM

error (Figure 2.3, right). Conversely, the number of DOF to obtain a desired

tolerance is consistently smaller for the HiMod method than for FEM. Note

that, for P1-FEM, the number of DOF coincides with the number of vertices

of the mesh, whereas for HiMod it is given by the number of FE nodes along

Ω1D multiplied by the number of modes. This translates into a considerable

reduction of the computational time, validating HiMod as a viable strategy for

replacing purely 1D solvers, with a competitive computational cost.

• Robin (µ = 1, χ = 1), Neumann BC (µ = 1, χ = 0).

For µ = 1, χ = 1 an analytical solution is provided by (2.14c). Figure 2.4

(right) shows that the HiMod error decays as O(N−1.5), being N the number

of DOF. The same happens for χ = 0 (Neumann), with exact solution as in

(2.14b) (Figure 2.4, left). Indeed, as noted in [9] for a slab, in the particu-

lar case of Neumann boundary data, an infinitely regular function whose odd

derivatives vanish at the boundary is approximated by Fourier truncated se-

ries with spectral accuracy. This justifies the superconvergent trend. The gain

yielded by HiMod with respect to standard FEM is evident also for these BC.

Bottom-Up basis. Since for our current technology only Dirichlet boundary con-

ditions can be enforced with a Bottom-Up basis, parity-restricted Chebyshev and

Zernike polynomials are used to approximate solution (2.14a). We order functions

(2.10) as in Table 2.3 (see [19]), and we use a rectangular truncation such that

m = 2NrNϑ, being Nr and Nϑ the number of radial and angular modes, respectively.

The factor 2 takes into account the sinusoidal and cosinusoidal contribution in the

21

m

10
1

10
2

L
2
-e

rr
o
r

10
-3

10
-2

h=0.5

h=0.25

h=0.1

h=0.05

h=0.025

O(1/m)

DOF

10
3

10
4

L
2
-e

rr
o
r

10
-3

10
-2

10
-1

HiMod-R2

HiMod-R3

HiMod-R4

FEM-R2

FEM-R3

FEM-R4

O(1/DOF)

Figure 2.3: ADR with lateral Dirichlet BC: L2(Ω)-norm of the HiMod relative error

as a function of h and m (left); Comparison between HiMod and FEM error for

different exact solutions (right).

modal expansion. Differently, the ordering of the Zernike basis stems from the pyra-

midal structure of the basis, by construction. As a result, while the former basis

allows for more flexibility in the distribution of the radial modes across the angu-

lar frequencies, the latter guarantees more robustness, especially when information

about the solution of the problem is not known a priori.

Since the solution is axisymmetric, for the rectangular truncation of the parity-

restricted Chebyshev basis we set Nϑ = 1 and Nr = m/2. The values of the relative

error for m = 10 are reported in Table 2.4, for different values of h and the corre-

sponding number of DOF. The relative error is super-convergent, decaying slightly

faster than O(h2), and it is roughly constant as m increases. In fact, the radial

component belongs to the discrete space, and the error is dominated by the FEM

discretization. The same considerations hold for the Zernike basis, that is equivalent

in terms of numerical performance.

22

k odd

cos(0ϑ) ξE1 (r) (1) ξE2 (r) (3) ξE3 (r) (7) ξE4 (r) (13)

cos(1ϑ) ξO1 (r) (5) ξO2 (r) (9) ξO3 (r) (15) . . .

cos(2ϑ) ξE1 (r) (11) ξE2 (r) (17) . . .

cos(3ϑ) ξO1 (r) (19) . . .

k even

sin(1ϑ) ξO1 (r) (2) ξO2 (r) (4) ξO3 (r) (8) ξO4 (r) (14)

sin(2ϑ) ξE1 (r) (6) ξE2 (r) (10) ξE3 (r) (16) . . .

sin(3ϑ) ξO1 (r) (12) ξO2 (r) (18) . . .

sin(4ϑ) ξE1 (r) (20) . . .

Table 2.3: Ordering of the Bottom-Up basis functions. The numbering in bold

refers to a triangular truncation, whereas a rectangular truncation employs the same

number of radial basis functions for each angular frequency.

h DOF Relative error

0.5 110 6.894535e-03

0.25 210 1.263055e-03

0.1 510 1.338110e-04

0.05 1010 2.428658e-05

0.025 2010 4.384685e-06

Table 2.4: ADR in a cylinder: relative error associated with the (Chebyshev) Bottom-

Up basis for m = 10 and different values of the FEM mesh size h.

23

DOF

10
3

10
4

L
2
-e

rr
o
r

10
-3

10
-2

10
-1

HiMod

FEM

O(DOF
(-1.5)

)

DOF

1K 2K 3K 4K 5K 6K 7K 8K 9K

L
2
-e

rr
o
r

10
-3

10
-2

10
-1

HiMod

FEM

O(DOF
(-1.5)

)

Figure 2.4: ADR with Neumann (left) and Robin (right) lateral BC: L2(Ω)-norm of

the HiMod relative error as a function of the number of DOF.

Convergence analysis: The non-axisymmetric case

Consider problem (2.11) with Lx = 5, R = 1, µ = 1, bx = 5, br = 0, bϑ = 0, σ = 0,

and the non-axisymmetric solution

u(x, r, ϑ) = r2
(
eR

2−r2 − 1
)

(Lx − x)esin2(ϑ). (2.15)

The relative errors with respect to the L2(Ω)−norm for the Top-Down and Bottom-

Up basis for h = 0.05 and different numbers of modes are compared in Table 2.5.

Note that, for the Chebyshev Bottom-Up basis, more factorizations for m = 2NrNϑ

may be feasible. In such a case, the two values for Nr < Nϑ and Nr > Nϑ are

reported.

The Top-Down basis features slow convergence, and the ill-conditioning leads to

the stagnation of the error. Nevertheless, for small m this option may still be vi-

able, especially to benefit from more flexibility in the choice of the lateral boundary

conditions.

For the Bottom-Up approach, as already noted in [37], the Zernike basis outper-

forms the parity-restricted Chebyshev basis for small/moderate m, whereas the latter

converges faster for large values of m. Nevertheless, the order of magnitude of the

24

Bottom-Up Top-Down

m Zernike Chebyshev (Nϑ ≤ Nr) Chebyshev (Nϑ ≥ Nr) Bessel

8 2.295050e-01 3.946134e-01 4.226621e-01

16 3.417806e-02 3.267148e-01 2.268239e-01 3.627250e-01

18 3.417806e-02 4.848936e-02 3.373612e-01

24 3.417806e-02 4.100592e-02 4.848936e-02 3.401257e-01

32 1.327025e-02 4.100592e-02 3.369967e-01

40 1.327025e-02 4.092920e-02 8.566436e-03 3.487149e-01

48 9.647994e-03 4.092733e-02 8.566436e-03 3.487152e-01

50 9.647994e-03 8.191322e-03 3.487607e-01

56 9.647994e-03 4.092724e-02 7.895026e-03 3.517681e-01

Table 2.5: ADR in a cylinder: L2(Ω)−norm of the relative error associated with the

Bottom-Up and Top-Down basis for a non-axisymmetric solution.

error for the two bases is comparable with few or many modal functions. The main

remarkable difference between these two bases lies in regularity. Zernike polynomials

satisfy all the regularity conditions by construction, yielding approximate solutions

that are infinitely differentiable everywhere. Differently, as well explained in [121]

for the approximation of the solution to the Bessel equation, with parity-restricted

Chebyshev series “the solution is never formally regular, there is no indication of

how bad the nonregularity actually is”.

Drug release modeling

We aim at modeling a drug-eluting stent deployed in a blood vessel. Stents are

medical devices that are used in the surgical treatment of constricted arteries. They

are inserted into the vessel in order to expand the lumen to prevent or alleviate an

obstruction. In particular, drug-eluting stents slowly release a drug to inhibit cell

proliferation, so to avoid the so-called vascular remodeling [55].

25

This test case describes the effects of an advective field on a local source term.

Consider problem (2.11) on the same domain as in the previous test, with uin =

R2 − r2 and a homogeneous Neumann condition on Γout. The physical parameters

are set to µ = 1, σ = 0, bx = 5, br = 0, bϑ = 0, while the forcing term is designed to

model the presence of a high concentration c of drug in proximity of the wall, i.e.,

f(x, r, ϑ) = c1[Lx

7
, Lx

3

](x) ·1[7
10
R,R

](r), (2.16)

where 1[a,b] denotes the characteristic function associated with the generic interval

[a, b]. The concentration of drug and the mesh size along Ω1D are set to c = 10

and h = 0.05, respectively. Since this test case has no analytical solution, we refer

to a FE approximation computed on a fine mesh of approximately 97K nodes. The

solution obtained with the Top-Down and Bottom-Up bases for m = {10, 20, 40}, and

corresponding DOF ∈ {1010, 2020, 4040}, is shown in Figure 2.5. Since the problem

is axisymmetric, the number of angular functions for the parity-restricted Chebyshev

basis is set to Nϑ = 1, so to enrich the approximation of the radial component of the

solution as m increases.

As proved in the convergence tests, the flexibility in the choice of the factorization

of the number of parity-restricted Chebyshev modal functions leads to a fast con-

vergence of the HiMod solution (Figure 2.5, center). Differently, the Zernike basis is

slowly convergent (Figure 2.5, right) due to the presence of angular modes associated

with high frequencies, that do not bring any contribution to the approximation of

the solution (Figure 2.6). Finally, ill-conditioning is responsible for the slow conver-

gence of the Top-Down basis (Figure 2.5, left). In any case, even with a relatively

large number of modes and independently of the choice of the basis, HiMod achieves

the same level of accuracy as FEM with approximately 1% of the DOF (O(1K) vs.

O(100K)).

On balance, the tests presented here for the scalar case show that, in general,

the Bottom-Up basis converges faster than the Top-Down basis, which suffers from

ill-conditioning. Nevertheless, the latter allows to include any type of boundary

26

Figure 2.5: Drug-release modeling: longitudinal section along the xy-plane of FEM

(top) and HiMod solution with m = 10 (second row), m = 20 (third row), m =

40 (bottom) for Top-Down (left), parity-restricted Chebyshev (center), and Zernike

basis (right).

conditions and the background of the SLE theory guarantees that the approach is

accurate enough for practical applications, confirming the excellent results for slab

domains provided in [9]. We plan to use this approach for patients specific coronary

geometries with bioabsorbable stents, to model the elution process [86].

If geometric or analytical features of the solution are known a priori (as in the ax-

isymmetric case), the parity-restricted Chebyshev basis is extremely efficient, thanks

to the factorization of the spectral size, that allows to tailor the enrichment of the

basis to the radial or angular components, separately. However, the regularity of the

27

Figure 2.6: Distribution of the radial modes (y-axis) across cosinusoidal basis func-

tions of different frequency (x-axis), for parity-restricted Chebyshev (filled) and

Zernike (dashed) polynomials, with m = 10 (left), m = 20 (center), m = 40 (right).

approximation at the origin, as noted in [121], is not guaranteed, especially in the

non-axisymmetric case.

When no information about the solution is available a priori, the Zernike basis is

the most robust choice, guaranteeing convergence and regularity of the solution.

28

2.4 The Navier-Stokes equations in cylindrical co-

ordinates

We extend the HiMod procedure to the generalized incompressible Navier-Stokes

equations (NSE)

−∇ ·
(
2νD(u)

)
+ (u · ∇) u + αu +∇p = f in Ω

∇ · u = 0 in Ω

u = 0 on Γlat

u = u0 on Γin

(2νD− pI)n · n = 0 on Γout,

(2.17)

where α ≥ 0 and the kinematic viscosity ν > 0 are given constants, f : Ω → R3

is a given force per unit mass, u = [ux, ur, uϑ] : Ω → R3 and p : Ω → R are

the velocity field and the kinetic pressure, respectively, D(u) is the strain velocity

tensor, I is the identity tensor, u0 is a given inflow profile, and n is the outward

unit normal vector. These equations can be regarded as the result of the time-

discretization of the unsteady counterpart with α = O(∆t−1), being ∆t the time

step. For α = 0 we recover the steady problem. We consider homogeneous Dirichlet

conditions on the lateral boundary Γlat, and Dirichlet and Neumann conditions on

Γin and Γout, respectively. We will denote by Γdir the whole portion of the boundary

where Dirichlet conditions are enforced.

2.4.1 The HiMod formulation

The weak form of problem (2.17) involves the Sobolev spaces V = [H1
Γdir

(Ω)]3,

Q = L2(Ω), where H1
Γdir

(Ω) denotes the set of the functions in H1(Ω) that fulfil

Dirichlet conditions on Γdir. We introduce a modal basis {ϕ̂u,k}k∈N+ ⊂ [H1
0 (γ̂)]3 and

{ϕ̂p,s}s∈N+ ⊂ L2(γ̂) for the velocity and for the pressure, respectively, to define the

29

HiMod reduced spaces

Vmu =

{
vmu(x,y) =

mu∑
k=1

ṽk(x)ϕ̂u,k(ψx(y)), with ṽk ∈ V1D,u, ϕ̂u,k ∈ Vγ̂,u, x ∈ Ω1D

}
,

Qmp =

{
qmp(x,y) =

mp∑
s=1

q̃s(x)ϕ̂p,s(ψx(y)), with q̃s ∈ V1D,p, ϕ̂p,s ∈ Vγ̂,p, x ∈ Ω1D

}
,

where mu and mp denotes the number of modes related to the velocity and the pres-

sure, respectively, V1D,u ⊆ [H1
Γdir

(Ω1D)]3 and V1D,p ⊆ L2(Ω1D) are the 1D spaces

associated with the supporting fiber Ω1D for the velocity and the pressure, respec-

tively, and with Vγ̂,u = span{ϕ̂u,k}, Vγ̂,p = span{ϕ̂p,s}.
We introduce a uniform 1D grid Th on Ω1D and we associate with this partition

the FE spaces V h
1D,u, with dim(V h

1D,u) = Nh,u and basis {ζu,l = [ζx,l, ζr,l, ζϑ,l]
T}Nh,u

l=1 ,

and V h
1D,p, with dim(V h

1D,p) = Nh,p and basis {ζp,l}
Nh,p

l=1 .

Concerning the choice of the modal basis, it is a priori possible to use a differ-

ent number of modes, mx, mr, mϑ, for the three components of the velocity, with

corresponding bases {ϕ̂x,k}, {ϕ̂r,k}, {ϕ̂ϑ,k}. For the sake of simplicity, we assume

mx = mr = mϑ = mu and ϕ̂x,k = ϕ̂r,k = ϕ̂ϑ,k = ϕ̂u,k. Analogously, we set

ζx,l = ζr,l = ζϑ,l = ζu,l. Thus, the HiMod velocity and pressure are expanded as

uhmu
(x,y) =

mu∑
k=1

Nh,u∑
i=1

[
ux,k,i, ur,k,i, uϑ,k,i

]T
ϕ̂u,k(ψx(y))ζu,i(x),

phmp
(x,y) =

mp∑
w=1

Nh,p∑
s=1

pw,sϕ̂p,w(ψx(y))ζp,s(x),

(2.18)

while the test functions are defined as vhmu
= [ζu,bϕ̂u,c, ζu,bϕ̂u,c, ζu,bϕ̂u,c]

T for b =

1, . . . , Nh,u and c = 1, . . . ,mu, q
h
mp

= ζp,lϕ̂p,j for l = 1, . . . , Nh,p and j = 1, . . . ,mp.

We refer to Appendix 7.3 for the explicit HiMod formulation of problem (2.17).

Algebraic and implementation aspects. After the HiMod discretization of the

generalized Navier-Stokes problem, the resulting matrix has a block structure with

the following partitioning of degrees of freedom: muNh,u DOFs are associated with

30

each component ux, ur and uϑ of the velocity, whereas the remaining mpNh,p degrees

of freedom are related to the pressure. The outer block-structure couples the compo-

nents of the velocity and the pressure, as it is standard for Navier-Stokes equations.

Then, each macro-block shares the typical block-wise pattern of the HiMod reduction

applied to a scalar problem (Figure 2.7).

From the implementation viewpoint, the assembly of the matrix is a bottleneck.

In fact, for each pair of modes a full 3D problem has to be reduced to a 1D problem

by integration of the weak formulation. However, this can be done in parallel by

exploiting the block structure of the matrix. At the coarser level we parallelize the

component blocks with openMP sections. Then, within each section, the execution

of the loop on the modal functions can be accelerated via a #pragma omp for direc-

tive, since all the modal blocks are independent. The parallelization of the loops on

the FE nodes is not efficient, because typically the FE blocks are much smaller than

the macro-structure of the matrix, and the overhead associated with the creation

and deletion of threads worsens the performance.

In the implementation, the innermost loop assembles the FE component, i.e., each

1D problem solves for one mode on Ω̂1D. Another choice stems from swapping the

order of assembly, so that each block provides the solution for all the modes at one FE

grid point (see Figure 2.8). Although the two strategies of assembly are in principle

equivalent, the efficiency of the solver may vary, especially with a view to a parallel

implementation of the method. This is an issue that is still under investigation [23].

2.4.2 The inf-sup condition

As well known, the choice of finite dimensional spaces for velocity and pressure in

(2.17) must fulfill the inf-sup condition [41, 34]. While the issue is largely investi-

gated for finite element and spectral methods [38, 68, 153, 44], we are not aware of

any theoretical result for hybrid methods that involve both the techniques. Separa-

tion of variables with different discretization techniques is considered for the inf-sup

in [22, 149]. A lower bound (LB) for the inf-sup constant is provided in [48, 25] for

31

Figure 2.7: Block structure of the HiMod matrix associated with the generalized

Navier-Stokes equations. The indices x, r, ϑ, p in each block highlight the coupling

of the three components of the velocity with the pressure.

Figure 2.8: Matrix pattern of the HiMod matrix by assembling one FE problem per

mode (left) or by solving for all modes per FE (right).

32

the analysis of incompressible solids and fluids, acoustic fluids, plates and shells, and

convective-dominated flows, with mixed finite elements. A sharp lower bound (LA)

for the inf-sup constant for the Stokes problem in a semi-infinite two-dimensional

channel discretized with a Laguerre-Legendre spectral method is proved in [22]. Al-

though the present work deals with a three-dimensional setting discretized via a

hybrid FE-spectral technique, the behavior of the aforementioned bounds has been

tested for different pairs of modal spaces for the velocity and for the pressure. An

analytical proof of the fulfilment of the inf-sup condition for the HiMod spaces is

still a work in progress.

Consider equations (2.17) with α = 0 and negligible non-linear term (Stokes flow).

Then, the algebraic form of the discrete weak formulation can be expressed synthet-

ically as: Ah BT
h

Bh −
1

κ
Th

[uh
ph

]
=

[
fh

0

]
, (2.19)

where κ → ∞, uh, fh ∈ RNu
h , ph ∈ RNp

h , Ah ∈ RNu
h×Nu

h , Bh ∈ RNu
h×N

p
h , and

Th ∈ RNp
h×N

p
h for selected discrete spaces Vh, Qh for the velocity and the pressure, re-

spectively, with dimension Nu
h = dim(Vh) and Np

h = dim(Qh). Set Gh = BT
hT−1

h Bh,

and let Sh be the norm matrix. Then, define the inf-sup constant as

αh = inf
wh∈Qh

sup
vh∈Vh

wT
hGhvh√

wT
hGhwh

√
vThShvh

. (2.20)

If αh does not decrease to zero as the discretization is refined (i.e., as h → 0), then

the selected discrete spaces are inf-sup stable.

By adopting a heuristic approach based on the theory for the Finite Element and

spectral methods (see, e.g., [38, 44]), respectively, we use piecewise quadratic veloc-

ity/linear pressure for the axial dependence, and we setmu = mp+2 for the transverse

one, as in [98]. A different choice has been pursued in [30], with mu = 2mp− 1. Fig-

ure 2.9 (left,center) shows the numerical behavior of the lower bounds LA and LB of

αh for the pairs (mp + 2,mp) and (2mp − 1,mp), respectively. For each choice of the

spaces both the lower bounds are roughly constant as the size of the modal spaces

33

m
u

5 10 15 20

Lo
w

er
 b

ou
nd

0

0.05

0.1

0.15

L
A

L
B

m
u

5 10 15

Lo
w

er
 b

ou
nd

0

0.05

0.1

0.15

L
A

L
B

m
u

10 15 20

Lo
w

er
 b

ou
nd

0

0.05

0.1

0.15

L
A

L
B

Figure 2.9: Inf-sup test: Lower bounds LA (×) and LB (◦) for the velocity/pressure

modal spaces of dimensions (mp + 2,mp) (left), (2mp − 1,mp) (center), and (mu, 4)

(right).

increases. Moreover, by fixing the size of the pressure modal space to mp = 4, LA and

LB do not decrease as the velocity modal space is enriched (see Figure 2.9 (right)).

Therefore, as a preliminary analysis we can conclude that the selected modal spaces

are numerically inf-sup stable.

2.4.3 Pole Conditions

The polar reference system is singular at the origin (r = 0). Therefore, suitable pole

conditions have to be satisfied by a function in polar (cylindrical) coordinates in order

to guarantee the regularity of the corresponding function in Cartesian coordinates

[35, 89, 167]. The extension of such conditions to the vector case is not straightfor-

ward, since vectors are not invariant under the mapping between the two reference

systems [29, 159]. For the specific case of the NSE, two types of pole conditions are

derived in [122] and recalled below.

Consider the spectral expansion of the 3D velocity field and of the pressure

(ux, u±, p) =
+∞∑
j=−∞

(ux,j, u±,j, pj) e
ijϑ̂, (2.21)

where u±,j = ur,j ± iuϑ,j (for the sake of simplicity, the axial and radial dependence

is suppressed in the notation), and i is the imaginary unit number.

34

(I) The essential pole conditions

u+,0 = 0 j = 0,

u+,1 = 0 j = 1,

u±,j = ux,j = 0 j > 1,

pj = 0 j ≥ 1

(2.22)

are sufficient to ensure the well-posedness of the weak formulation of the NSE [123],

as they guarantee the finiteness of the integrals of the bilinear form.

(II) The natural pole conditions

∂k

∂rk
u+,j = 0 k = 1, . . . , j, j ≥ 1,

∂k

∂rk
u−,j = 0 k = 1, . . . , j − 2, j ≥ 3,

∂k

∂rk
ux,j = 0 k = 1, . . . , j − 1, j ≥ 2,

(2.23)

together with the parity conditions, ensure the regularity of the solution at the pole.

Note that, due to the coupling of the radial and angular coefficients of a cylindrical

vector spectral expansion, the extension of the Parity Theorem to the vector case

implies that the modal coefficients of the transverse components have opposite parity

compared to the scalar case [29, 122, 159]. In particular, u±,j has the same parity as

j + 1, and ux,j has the same parity as j.

The construction of a vector basis that satisfies (i) boundary conditions, (ii) well-

posedness constraints, and, possibly, (iii) orthogonality and (iv) regularity conditions

is challenging. Several methods have been proposed in the literature to simplify or

reduce the constraints by decoupling the transverse components via a change of vari-

able (see, e.g., [21, 122]), or by enforcing the constraints via additional terms in the

spectral representation (tau-method, [121, 159]). However, applying such techniques

to the HiMod formulation requires a considerable effort, related to the implementa-

tion of the numerical quadratures for the coefficients of the formulation. We stress

here that HiMod is mainly intended to be an improved 1D solver rather than an

35

alternative to a 3D solver. In this respect, the efforts spent for the construction of a

basis fulfilling requirements (i)-(iv) are not in the spirit of the method. The relevant

question for our purpose is to what extent the fulfilment of the pole conditions is

critical for our solver. This is exactly what we investigate hereafter.

2.4.4 Steady case: Poiseuille flow

We compare the performances of the Top-Down basis (2.5), solution to a 2D Sturm-

Liouville eigenvalue problem, as opposed to the family of Bottom-Up basis functions

of type (2.8). In both cases the scalar basis functions are used to discretize each

component of the velocity. Note that, in general, only the axial component of the

Top-Down and of the Zernike vector bases fulfils the essential and natural pole condi-

tions. Nevertheless, when the velocity field is purely axial (as for the Poiseuille flow),

the pole conditions on the transverse components are automatically satisfied. For

the parity-restricted Chebyshev vector basis, not even the axial component is compli-

ant with (2.22). However, such conditions are only sufficient for the well-posedness

of the weak formulation of the NSE, therefore the feasibility of the solution is not

compromised a priori.

For the Bottom-Up basis, we present results obtained with Chebyshev polynomials

with quadratic shift. Results for the Zernike basis are similar.

Let Ω be a cylindrical domain with radius R = 0.5 and length Lx = 6. For the sake

of the comparison between the two approaches, we enforce homogeneous Dirichlet

boundary conditions on Γlat, and we solve the generalized Stokes equations dropping

the non-linear term in (2.17), completed with the following boundary conditions:

ux =
5

Lx

(R2 − r2)

4µ
on Γin

ur = uϑ = 0 on Γin

(2νD− pI)n · n = 0 on Γout

ur = uϑ = 0 on Γout,

(2.24)

36

so that, for α = 0 (steady case), we have the classical Poiseuille flow (see, e.g., [64]).

The HiMod discretization here employed selects mu = 10, mp = 8 and a uniform

mesh along Ω1D of size h = 0.125.

Top-down basis

As shown in Figure 2.10 (top-left) the peak reached by the axial component of the Hi-

Mod velocity does not match the analytical profile. The pressure gradient, although

constant as expected, is underestimated (Figure 2.10, bottom-left). Nevertheless, the

accuracy of the approximation can be enhanced by further increasing the number of

modes. Figure 2.11 (top) shows the trend of the L2(Ω)-norm of the relative error

associated with the HiMod velocity and pressure as a function of the modal index,

for different values of h. In this case, a refinement of the mesh does not provide any

improvement in the accuracy of the HiMod solution since both the velocity and the

pressure belong to the discrete space associated with Ω1D. Hence, the global error

is dominated by the modal error, which drops as the number of modal functions

increases. Therefore, Bessel functions are inefficient in the spirit of a HiMod reduc-

tion, where few transverse modes are expected to ensure an accurate approximation.

Finally, it is worth noting that the number of degrees of freedom necessary to guar-

antee a fixed level of accuracy is consistently smaller for HiMod than for FEM or,

equivalently, for a fixed size of the problem, HiMod provides a more accurate solution

than FEM (Figure 2.11, bottom).

Bottom-up basis

In order to enforce the lateral boundary conditions, the basis functions (2.10) are

employed to represent each component of the velocity field. As for the pressure,

standard Chebyshev polynomials with quadratic shift are used, as no boundary con-

dition is enforced on p. We employ mp = 2NrNϑ and mu = 2(Nr + 1)Nϑ modes for

the pressure and for each velocity component, respectively. We set Nϑ = 1, being

the problem axisymmetric. Note that, in this case, it holds mu = mp + 2, which is

37

r

-0.5

0

0.5

u
x

0 0.1 0.2 0.3 0.4 0.5 0.6

Exact

HiMod

r

-0.5

0

0.5

u
x

0 0.1 0.2 0.3 0.4 0.5 0.6

Exact

HiMod

x

0 1 2 3 4 5 6

p

0

1

2

3

4

5

6

Exact

HiMod

x

0 1 2 3 4 5 6

p

0

1

2

3

4

5

6

Exact

HiMod

Figure 2.10: Poiseuille flow: Exact (dotted line) and HiMod (solid line) axial velocity

at x = Lx/3 (top) and pressure drop (bottom) computed via a top-down (left) and

a bottom-up (right) basis.

38

m

5 10 20 40

R
e

la
ti
v
e

 E
rr

o
r

10
-2

h = 0.25

h = 0.125

h = 0.063

1/m

m

5 10 20 40

R
e

la
ti
v
e

 E
rr

o
r

10
-2

h = 0.250

h = 0.125

h = 0.063

1/m

DOF

10
3

10
4

R
e

la
ti
v
e

 E
rr

o
r

10
-2

10
-1

HiMod

FEM

1/DOF

DOF

10
3

10
4

R
e

la
ti
v
e

 E
rr

o
r

10
-2

10
-1

HiMod

FEM

1/DOF

Figure 2.11: Poiseuille flow: L2(Ω)-norm of the HiMod relative error associated with

a Top-Down basis for the velocity (left) and for the pressure (right), for different

modes and mesh sizes (top); Comparison between the L2(Ω)-norm of the relative er-

ror associated with HiMod and FEM (bottom) for the velocity (left) and the pressure

(right).

39

expected to yield an inf-sup stable discretization, and the essential pole conditions

are automatically satisfied due to the axisymmetry of the solution.

The quadratic solution for the axial component of the velocity belongs to the ap-

proximation space, and the parity-restricted Chebyshev basis computes it with a

global relative error of the order of 10−15 (Figure 2.10, top-right). The same con-

siderations hold for the pressure, which is constant on each section and linear in x

(Figure 2.10, bottom-right).

A comparison between the Top-Down and the Bottom-Up basis shows that the

former is less efficient than the latter, as expected [35]. In fact, accuracy is improved

only with a large number of modes (Figure 2.11, top). Nevertheless, also for the

Top-Down approach the error associated with the HiMod approximation is much

smaller than with FEM for a fixed size of the discrete problem (Figure 2.11, bottom).

Based on these results, the Bottom-Up basis is preferable for the approximation of

vector problems with homogeneous Dirichlet lateral boundary conditions and will be

adopted in the following numerical tests.

2.4.5 Unsteady case: Womersley flow

HiMod can be generalized to unsteady problems with no particular technical issues.

The generalized Navier-Stokes problem needs to be solved at each time step as the

result of a standard time discretization. In particular, we solve the problem on

the Womersley test case, the well known unsteady counterpart of Poiseuille profile

with a time-periodic pressure drop between inlet and outlet [198]. Note that the

Womersley (and the Poiseuille) flow is the exact solution both to the Stokes and

to the Navier-Stokes equations. The numerical tests presented here are obtained

including the non-linear term. In our case, the pressure drop is given by ALxe
iωt,

with constant amplitude A, frequency ω = 2π
T

and period T (the heart beat). The

interplay between the oscillatory flow frequency ω and the effects of the kinematic

viscosity ν is described by the Womersley number Wo = R
√
ω/ν.

40

We reproduce here the test proposed in [127]. The amplitude and the period are

set to A = 1 and T = 1 (i.e., ω = 2π), respectively, while the length of the pipe

and the radius are set to Lx = 2 and R = 0.2, respectively. We simulate the flow

associated with different Womersley numbers, Wo ∈ {3, 5, 10, 20}, by varying the

viscosity of the fluid. We simulate a complete period by choosing ∆t = T
4000

, and we

assign Neumann inflow/outflow axial conditions to enforce the pressure drop along

the axial direction, homogeneous Dirichlet conditions for the transverse components

of the velocity at the inlet/outlet, and no-slip lateral conditions. The mesh size along

the axis Ω1D is h = 0.125. For the parity-restricted Chebyshev basis, we set Nϑ = 1,

Nr ∈ {3, 5, 10, 20}, so that the total number of pressure modes is mp ∈ {6, 10, 20, 40}
(and mu = mp + 2).

The HiMod solution is compared to the analytical solution in Figure 2.12 at differ-

ent times and for the different values of Wo. For low Womersley numbers, character-

ized by an oscillating profile very close to the Poiseuille parabolic solution, HiMod is

accurate even with few modes. As the Womersley number increases, the wave front

flattens in the center of the pipe and only a higher number of transverse modes is

able to guarantee accuracy (Figure 2.12, third and fourth rows). Table 2.6 shows the

L2(Ω)-norm of the absolute error associated with the HiMod velocity. It reduces of

several orders of magnitude as the number of modes increases, and the higher the

Womersley number, the more apparent the reduction.

The error obtained with Zernike polynomials is of the same order of magnitude

at every time for all Womersley numbers and for all numbers of modes, except for

mp = 40, with a discrepancy that increases with the Womersley number (see, e.g.,

Figure 2.13). In fact, as stated in [37] and confirmed by the numerical tests for

an ADR problem, parity-restricted Chebyshev polynomials are more efficient than

Zernike polynomials for large numbers of modes. Moreover, the radial modes of the

Zernike basis are distributed by construction across different angular modes as mp

is increased, in contrast with the parity-restricted Chebyshev basis, that allows for

the construction of an axisymmetric solution by assigning all the radial modes to a

41

single (constant) angular function.

Figure 2.14 highlights the phase-lag between the (normalized) axial velocity and

the oscillating (normalized) pressure on the centerline at the inlet for Wo = 3 and

mp = 10, in accordance with [198, 101]. The HiMod solution tightly matches the

analytical profile.

We compare the HiMod results with the TEPEM numerical performance. In par-

ticular, we refer to Table I in [127]. The accuracy obtained with HiMod is clearly

higher than with TEPEM for approximately the same number of modes, especially

for highly oscillatory flows. This is likely a consequence of the strict correspondence

between the geometry and the HiMod basis, in contrast with the Cartesian map used

in TEPEM. On the other hand, TEPEM is easy to implement, being the modal basis

a tensor product of univariate Legendre polynomials, even if at the expense of a lack

of regularity in the geometrical map.

2.4.6 Choice of the size of the modal space

A critical aspect of the HiMod approach is the selection of the number of modes

for the transverse approximation. This has been subject of several investigations

[143], including adaptive a posteriori strategies [147, 145]. Here, for hemodynamics

applications, we consider a practical solution based on the Womersley number. A

similar approach is adopted in [184, 192] for the prescription of inflow boundary

conditions, defined as a linear combination of elementary Womersley solutions up to

the highest significant frequency, identified via the Fourier analysis of the measured

data at the inlet and outlet. The approach followed here to select the number of

modes is: (i) Compute a cheap yet sufficiently rich truncated modal expansion of

a reference or measured solution and plot the modulus of the corresponding modal

coefficients; (ii) Identify the first modal coefficient ck̄ such that the corresponding

modulus and the modulus of all the following modal coefficients lie below a chosen

threshold ε, i.e., ck̄ = max{ci : |ci| < ε, ∀i ≥ k̄}; (iii) Set the dimension of the

discrete modal space to k = k̄ − 1. Note that the asymptotic decay of the modal

42

t [s]

∆t T/8 T/4 3T/8

Wo = 3 mp=6 6.1605e-05 3.0130e-04 3.7547e-04 2.3274e-04

mp=10 6.1605e-05 3.0130e-04 3.7547e-04 2.3274e-04

mp=20 1.0816e-05 2.3650e-05 3.9187e-05 3.9295e-05

mp=40 3.8581e-08 2.2202e-05 3.9162e-05 3.7966e-05

Wo = 5 mp=6 1.4950e-03 2.9939e-04 1.7631e-03 2.4781e-03

mp=10 1.4950e-03 2.9939e-04 1.7631e-03 2.4781e-03

mp=20 1.2740e-04 2.3878e-04 2.0445e-04 8.6548e-05

mp=40 2.6278e-08 2.2155e-05 5.3320e-05 7.2622e-05

Wo = 10 mp=6 9.2405e-03 9.2813e-03 4.7665e-03 4.6525e-03

mp=10 9.2405e-03 9.2813e-03 4.7665e-03 4.6525e-03

mp=20 2.4344e-03 9.3545e-04 1.6594e-03 3.0479e-03

mp=40 1.8549e-08 2.0676e-05 5.8521e-05 9.0916e-05

Wo = 20 mp=6 9.7086e-03 1.6770e-02 1.5177e-02 6.6678e-03

mp=10 9.7086e-03 1.6770e-02 1.5177e-02 6.6678e-03

mp=20 7.4874e-03 8.7910e-03 5.7941e-03 3.5640e-03

mp=40 1.2963e-08 1.9626e-05 6.0757e-05 9.9285e-05

Table 2.6: Womersley flow: L2(Ω)-norm of the error associated with the HiMod

velocity for different Wo numbers and at different times.

43

Figure 2.12: Womersley flow in a cylindrical pipe: In each panel velocity (top) and

axial component (bottom) profile for the exact (left and solid line) and the HiMod

(right and O, M, �, � markers) solution at x = Lx/2 at times t = 0, T/8, T/4, 3T/8

(left-right) for Wo = 3, 5, 10, 20 (first-fourth row).

44

Figure 2.13: Womersley flow in a cylindrical pipe for Wo = 20: exact (solid black

line) and HiMod solution (O, M, �, � markers) with parity-restricted Chebyshev

(left) and Zernike (right) basis at t = 3T/8.

coefficients is guaranteed by Parseval’s identity. In particular, the convergence rate

for Chebyshev series is proved in [36].

To test the idea, we compute the spectral size for different flows corresponding

to Womersley numbers Wo ∈ {5, 10, 15, 20} in a cylinder with length Lx = 2 and

constant radius R = 0.2 by applying the procedure described above. Figure 2.15

shows the decay of the modal coefficients of the exact axial velocity and the selected

spectral size k after a truncation with tolerance ε = 10−5. It is worth noting that, for

a fixed ε, the selected dimension of the modal space increases with the Womersley

number, in accordance with the results obtained in Section 2.4.5. We also notice that,

for the range of Womersley number considered, which is spanning a physiological

range in humans, a number of modes ≤ 10 is enough.

Remark. HiMod and full FEM solvers solve the same problem with a different

number of degrees of freedom. In particular, HiMod improves 1D solvers and runs

on architectures that not necessarily belong to the category of High Performance

Computing facilities. In fact, in practice, for some applications such as computational

fluid dynamics in clinical routine, having access to this kind of facilities is not always

possible.

45

t
0 0.2 0.4 0.6 0.8

p,
 u

x

-1.5

-1

-0.5

0

0.5

1

1.5
Exact p
HiMod p
Exact u

x

HiMod u
x

Figure 2.14: Womersley flow in a cylindrical pipe: Normalized exact (solid line) and

HiMod (dotted line) pressure; normalized exact (dashed line) and HiMod (×) axial

velocity on the centerline at the inlet for Wo = 3, mp = 10.

Performing a comparison based on the computational time is therefore quite prob-

lematic, as the different solvers run on different architectures, with different imple-

mentations and, ultimately, with different linear algebra cores. This circumstance

was already pointed out in [127], where a comparison based on execution time re-

quired a normalization of the CPU per computing node, as TEPEM was running on

much simpler architectures than FEM. We do think that the number of degrees of

freedom is an objective indicator to establish a fair comparison, being independent

of factors that do not strictly attain at the methods. The fact that HiMod with

cylindrical coordinates is competitive with TEPEM indirectly confirms that HiMod

is competitive vs. FEM also in terms of CPU time.

More in general, we argue that, with comparable architectures and the most appro-

priate choices of the linear algebra solvers, HiMod does outperform FEM in terms of

computational time. In fact, the additional costs of the assembly of the HiMod sys-

tem matrix (due to the numerical quadratures of the HiMod coefficients) is expected

to be considerably compensated by the computational saving associated with the

solution of a smaller yet “educated” algebraic system. Furthermore, the multi-level

block-structure of the HiMod matrix makes the assembly phase easily parallelizable

46

Modal index (k)
0 5 10 15

M
od

al
 c

oe
ffi

ci
en

t

10-6

10-4

10-2

Wo=5
Wo=10
Wo=15
Wo=20
tol

k=8

k=9

k=6 k=7

Figure 2.15: Modal coefficients of the Womersley solution for Wo = 5 (◦), Wo = 10

(�), Wo = 15 (4), Wo = 20 (×). The truncation is performed with a tolerance of

ε = 10−5 (dashed line).

both with distributed- and shared-memory paradigms. The preliminary numerical

experiments run in [23] for ADR problems using distributed-memory architectures

showed that superlinear speedup can be achieved. This feature is extremely con-

venient especially for nonlinear or time-dependent problems, where each iteration

requires updating the system matrix, as it can significantly expedite the execution.

Hence, overall, we stress that the fact that HiMod may reliably run on smaller

computers is per se a value of our approach, as it enables using computational fluid

dynamics on small and local facilities, with a significant practical impact.

47

2.5 Numerical Tests in Axisymmetric and Non-

Axisymmetric Domains

We present some further numerical tests inspired by computational hemodynamics.

The ultimate goal of HiMod in this field is to provide an efficient way for simulat-

ing blood flow in arteries with computational costs comparable to 1D models, yet

preserving a sufficient local accuracy in the transverse components. TEPEM, pre-

sented in [127], already demonstrated that this is possible. We provide here a proof

of concept in a cylindrical framework by using axisymmetric and non-axisymmetric

geometries. In such a context, the properties of the modal basis are crucial for the

local regularity of the solution. Based on the results obtained so far, parity-restricted

Chebyshev polynomials are adopted for axisymmetric problems because of their flex-

ibility and efficiency, whereas Zernike polynomials are selected for the general case,

due to their robustness and regularity. Moreover, a modified basis of Zernike poly-

nomials is introduced by scaling the transverse components by r. This allows for the

fulfilment of the pole conditions not only for the axial, but also for the transverse

components of the basis, and of the parity conditions for vector functions in cylin-

drical coordinates. Despite the limitations and the challenges in the construction of

a suitable modal basis, the HiMod solution will be able to capture the transverse

dynamics induced in the flow by the geometry or by the physics with a relatively

small number of degrees of freedom.

2.5.1 Axisymmetric models

We consider three types of geometries that model (i) the natural tapering, (ii) a local

expansion (aneurysm), and (iii) a local constriction (stenosis) of blood vessels.

Tapered pipes. Tapering has a significant impact on hemodynamics (and, con-

sequently, on the design of grafts and prosthesis [65, 49, 103]). Following [164], we

48

consider a pipe with radius

R(x) = −(tan Ψ)x+Rin, (2.25)

where Ψ = (Rout−Rin)
Lx

is the tapering angle, and with Rin and Rout the radius of the

inflow and of the outflow section, respectively (Figure 2.16, top).

We set Rin = 1, Rout = 0.5, and Lx = 6, and we solve the Navier-Stokes equations

with the Womersley flow as an inflow velocity profile with A = 1, ν = 2.75 × 10−2.

The transverse components are set to 0 on all the boundaries, and axial Neumann

conditions are enforced at the outlet. The space and time discretization steps are

h = 0.125 and ∆t = 1/100, respectively. The number of basis functions for the

parity-restricted Chebyshev basis is mp = 16, mu = 18 (Nϑ = 1, Nr = 8).

The flow is driven by a space-dependent time-oscillating pressure gradient (Figure

2.17, left). The oscillation of the Womersley velocity profile at the center of the

inlet section of the pipe increases along the x-axis, so that the maximal oscillation

is reached at the outlet (Figure 2.17, right). On each transverse section and at

each time step, the x-component of the velocity reproduces a Womersley-like profile

(Figure 2.18, top). The tapering of the domain triggers transverse dynamics, and the

velocity is not purely axial. The presence of a radial component is correctly detected

by the HiMod solution (Figure 2.18, center). In particular, the planar components

point inward as long as the peak of the axial velocity is positive, and turn outward as

soon as the flow reverses. Figure 2.18 (bottom) shows the 3D HiMod approximation

for the velocity at four different times on the whole domain.

Aneurysmatic vessels. An aneurysm is a balloon-like dilation in an arterial vessel

(Figure 2.16, center). The growth and rupture of the bulge is related to hemody-

namics factors, such as blood velocity, wall shear stress, pressure, particle residence

time and flow impingement [162]. We model the radius of the bulge as a quadratic

exponential function of the axial variable, i.e.,

R(x) = Rin + κe−(x−Lx
2)

2

, (2.26)

49

Figure 2.16: Sketch of a tapered pipe (top), of an aneurysmatic (center) and of a

stenotic (bottom) vessel.

50

where Rin is the radius of the inflow and of the outflow sections, while κ, with

κ ∈ [0, 1], takes into account the entity of the dilation. We set specifically Rin = 0.5,

Lx = 6, and κ = 0.45, and we solve the NSE with the same conditions and data used

above for a tapered pipe.

At each time the pressure is linear along the x-axis in the inflow and outflow

cylindrical segments, with an inflection point in the aneurysm. In particular, it

increases where the vessel enlarges, and it reduces where the regular lumen of the

vessel is restored (Figure 2.19, left). The axial velocity on the centerline drops inside

the bulge, for the conservation of mass (Figure 2.19, right). We refer to [94] for

a detailed analysis of the effect of the size κ of the aneurysm on the pressure and

velocity profiles. The axial component of the velocity on each transverse section

features a Womersley-like profile (Figure 2.20, top). The flow inversion in the bulge,

in the proximity of the wall, is much milder than in the inflow and proximal sections

(Figure 2.20, top-right). The transverse components of the velocity upstream of the

aneurysm are directed outward until the flow reverses (Figure 2.20, center). The 3D

velocity profiles on different sections are shown in Figure 2.20 (bottom).

Stenotic vessels. We consider a local constriction like in atherosclerotic plaques

(Figure 2.16, bottom), modeled as in (2.26), with κ ∈ [−1, 0]. Due to the symmetry

of the problem, the numerical solution obtained with a Womersley inflow profile is

the counterpart of the solution obtained in an aneurysmatic vessel for κ < 0 and with

the same data, and is therefore omitted for the sake of brevity. A full description of

the results can be found in [94].

In order to assess the quality of the HiMod approximation of transverse dynamics,

we are interested in solving an Oseen problem [24] by linearizing the non-linear

term in (2.17) with a twisting time-dependent convective field given by b(t) =

[bx, br, bϑ]T = [1, 0, 2t2]T . In this case we set the inflow profile as a paraboloid with

amplitude A increasing in time as A(t) = 2t2.

As the geometry and the rotational convective field activate the coupling of the

radial and angular components of the velocity, the regularity properties of the modal

51

basis have a major impact on the HiMod approximation. The Cartesian transverse

components (uy and uz) of the solution obtained with the parity-restricted Chebyshev

basis and the Zernike basis are singular at r = 0 (Figure 2.21, top, first and second

plot). On the contrary, the modified Zernike basis yields a smooth solution, thanks

to the compliance with the natural pole conditions (third panel in Figure 2.21, top).

The 2D plot of the transverse components of the HiMod velocity on the section at

x = 2Lx/3 and at t = 1 is shown in Figure 2.21 (top-right).

2.5.2 Non-axisymmetric models

As a simplified model of a non axisymmetric geometry, we consider a pipe with

elliptical section, with major and minor axis of length Y and Z, respectively, and

Z < Y . We perturb Y and Z with a negative and positive sinusoidal function of x,

respectively, so that a(x) = Y − Y/4 sin (4πx/Lx), and b(x) = Z + Z/4 sin (4πx/Lx)

(Figure 2.22, first two rows). As a result, the surface can be expressed as a function

of x and ϑ as

R(x, ϑ) =
a(x)b(x)√

a2(x) sin2(ϑ) + b2(x) cos2(ϑ)
. (2.27)

We solve a steady Oseen problem with convective field b = [bx, br, bϑ]T = [10, 0, 5]T

and a parabolic inflow profile u0(r, ϑ) = U(1 − r2/R(0, ϑ)2) of amplitude U = 1,

and the unsteady NSE with an oscillating parabolic inflow profile uin(r, ϑ, t) =

u0(r, ϑ) sin(2πt). We set Y = 0.2, Z = 0.1, Lx = 2, and ν = 2.75 × 10−2. The

number of modes for the pressure, the mesh size along Ω1D, and the time step are

set to mp = 12 (Nϑ = 3, Nr = 2), h = 0.02, and ∆t = 1/100, respectively.

In the steady Oseen problem, the rotational component of the convective field and

the lack of axial symmetry in the geometry trigger transverse dynamics in the velocity

field. As already observed for the Oseen problem in an axisymmetric stenotic pipe,

the fulfilment of the pole conditions is crucial for the local regularity of the HiMod

solution. In fact, only the transverse components obtained with the modified Zernike

basis are smooth at the origin (Figure 2.21, bottom). Therefore, for the solution

52

of the non-linear time-dependent problem commented hereafter only the modified

Zernike basis is adopted.

The opposite sign of the perturbation of the axes of the transverse section along

the main stream is reflected in the oscillatory pattern of the transverse components

of the velocity (Figure 2.22, third and fourth row). The radial component features

a cosinusoidal behavior, with a positive (negative) oscillation along the minor (ma-

jor) axis of the section when it is decreasing (increasing) along x, and conversely.

Differently, the angular component is characterized by a sinusoidal pattern, induced

by the widening or narrowing of the vessel. The combination of such dynamics is

visualized in the vector plots of Figure 2.22 (last row).

We stress that the transverse dynamics properly described in these results are out

of reach for 1D models, while HiMod - that conceptually is a sort of 1D enriched

modeling - is able to capture the local components of these dynamics by properly

tuning the spectral discretization.

2.5.3 Patient-specific geometries

The reconstruction of the human vasculature from medical images has been pursued

since the early 90s (see, e.g. [14, 76]). The fundamental steps are: 1) Extract

the lumen of interest from each frame (segmentation), which is typically done by

level-set based methods; 2) Connect the different frames, which, with a CT data-

set, requires stacking the different slices obtained from the images in a volume; 3)

Extract the surface of the volume typically in the form of a triangulated surface (STL

file). Possibly, the surface needs smoothening operations to regularize the impact of

image or segmentation artifacts. These steps are conveniently implemented in the

open-source library vmtk [15].

In the HiMod frame, special processing procedures are required by the spacial

discretization, to enhance the separation of variables. In [30], the physical domain

is approximated as a sequence of slabs, called pipe-like elements. A generic element

is mapped to a reference domain, defined as the cube (ξ, η, ζ) ∈ (−1, 1)3. More

53

precisely, each transverse section γx of the vessel is mapped to the reference fiber

γ̂ = (−1, 1)2 via cubic serendipity polynomials {Si}12
i=1. Then, three consecutive

sections are interpolated with quadratic interpolating polynomials {Qk}3
k=1 defined

on the nodes {ξk} = {−1, 0, 1}. As a result, the map from the reference domain to

the real geometry reads as:

χE(ξ, η, ζ) =
3∑

k=1

χgk(ξ, η)Qk(ζ) =
3∑

k=1

12∑
i=1

x
(k)
i Si(ξ, η)Qk(ζ), (2.28)

where
{

x
(k)
i = (xki , y

k
i , z

k
i) : i = 1, . . . , 12

}
is the set of points on the transverse sec-

tion mapped from the section ζ = k − 2 on the reference domain. Although a

Cartesian reference system is practical for the construction of a (modal) basis via

tensor product, mapping a cylinder to a cube introduces singularities that may spoil

the numerical approximation of the problem.

In this work we construct a different geometric map defined on a cylinder with unit

radius as a reference domain, which is more tailored to hemodynamics applications.

This choice leads to a simpler structure and a higher regularity of the geometric

map, with a potential improvement in the accuracy of the numerical solution. More

specifically, the polar reference system allows a lower-dimensional approximation of

the transverse fiber. Indeed, each section γx is mapped to the unit disk γ̂, so that

the physical boundary ∂γx is parametrically described by the radius as a function of

the angular coordinate ϑ. Accordingly, the map χgk in (2.28) reduces to a scalar 1D

interpolating function of ϑ, i.e.,

χgk(ϑ) =

Σk∑
i=1

p
(k)
i Pi(ϑ), (2.29)

where p
(k)
i =

(
x(k), r

(k)
i cos(ϑi), r

(k)
i sin(ϑi)

)
, and Σk is the number of sampled points

on the boundary ∂γx(k) . In particular, the polynomials {Pi}Σk
i=1 are chosen as periodic

cubic splines to suit the periodicity of the domain. Then, the whole sequence of Ns

slices can be interpolated via piecewise cubic Hermite polynomials {Hk}Ns
k=1, so that

54

the global map reads as

χE(ζ, ϑ) =
Ns∑
k=1

Σk∑
i=1

p
(k)
i Pi(ϑ)Hk(ζ). (2.30)

Figure 2.23 shows different sections interpolated on the ϑ-quadrature nodes.

We solve the Navier-Stokes Equations in the patient-specific geometry shown in

Figure 2.24 (top), obtained from medical images (OCT, courtesy of Dr. Giulio

Guagliumi, Hospital Papa Giovanni XXIII, Bergamo (Italy), and Marina Piccinelli).

The inflow profile is obtained from real data via polynomial interpolation (see Figure

2.24, bottom-left). Despite the issues related to the employment of a vector modal

basis in polar coordinates on a non-axisymmetric geometry, the model is capable

of capturing the blood recirculation downstream of the stenosis (see streamlines in

Figure 2.24, bottom-right), which is relevant for therapeutic purposes, as it is an

indicator of the progression of the stenotic plaque.

2.6 Conclusions

In this work we extended the Hierarchical Model Reduction to geometries described

by a cylindrical coordinate system. While the application of HiMod to 2D or 3D

slabs is straightforward thanks to the Cartesian tensor product, the cylindrical set-

ting requires a specific analysis. Using polar coordinates in spectral discretizations

raises some challenges inherited by a HiMod reduction in a cylindrical framework.

A possible approach, based on mapping the circular sections to Cartesian (square)

sections was already investigated in [127]. Here we resorted to a genuine polar co-

ordinate spectral discretization, which seems more natural for domains like the ones

occurring in computational hemodynamics. Nevertheless, the selection of appropri-

ate basis functions is troublesome both for the scalar case, as excellently pointed out

in [37], and - even more - for the vector case, where additional analytical, numerical,

and physical constraints need to be met.

55

First, we considered a standard ADR problem. The comparison between the HiMod

solution and the corresponding 3D approximation highlights the competitiveness of

HiMod with respect to FEM, both in terms of computational effort and accuracy of

the approximation. HiMod significantly improves any 1D solver, with no meaningful

detriment for the computational costs, independently of the choice of the basis. In

general, a Bottom-Up approach is more efficient than a Top-Down procedure, both

for axisymmetric and non-axisymmetric solutions that satisfy homogeneous Dirichlet

lateral boundary conditions. However, the latter allows for more flexibility in the

choice of the lateral boundary conditions. Among the Bottom-Up bases, there is

no best choice. For problems where some a priori information (symmetry, spectral

properties, ...) about the solution is available, the parity-restricted Chebyshev basis

is more efficient, since it allows for more freedom to suitably distribute the radial

modes across the angular components. For general problems, the Zernike basis is

performing better for small numbers of modes, but it is outperformed by the parity-

restricted Chebyshev polynomials for m large. Moreover, among these two specific

basis types, the regularity of the solution at the pole is guaranteed by the Zernike

but not by the Chebyshev polynomials.

The extension to vector problems for the incompressible Navier-Stokes equations is

more problematic, as the construction of a basis that satifies (i) boundary conditions,

(ii) well-posedness constraints, and, possibly, (iii) orthogonality and (iv) regularity

conditions at the pole is still an open problem. As the Top-Down approach lacks

approximability properties, a Bottom-Up strategy seems more viable. With this type

of basis we were able to solve the incompressible Navier-Stokes equations with a small

number of degrees of freedom, so to make the HiMod solver competitive with purely

1D codes, yet retaining transverse dynamics. As found for scalar problems, the

parity-restricted Chebyshev vector basis is more efficient for axisymmetric problems.

For general problems, the Zernike vector basis is more robust and, with a suitable

scaling of the transverse components, it is able to provide smooth solutions.

In comparison with “Cartesian” strategies like in the TEPEM [127], we take ad-

56

vantage of the regularity of the geometrical map, so to have better performances in

reducing the degrees of freedom. It is apparent that the cylindrical frame has sev-

eral drawbacks, in particular from the implementation standpoint. In particular, the

assembly of the matrix requires more effort in the presence of complex geometries.

Furthermore, it is worth noting that other bases beyond parity-restricted Chebyshev

and Zernike could be considered, including hybrid strategies using the Top-Down ap-

proach for each component of the velocity (for the easiness of including the boundary

conditions) and the pressure separately, or the Logan-Shepp basis [37].

The natural follow-up of the present work is the extension of HiMod to patient-

specific geometries and the set-up of a network solver where each pipe is treated

as in the present paper, as done in [30] (in a Cartesian frame). Simultaneously,

we plan to introduce fluid-structure simplified models in the HiMod solver, so to

ultimately compare a 1D HiMod network solver with the current 1D solvers used in

hemodynamics and gasdynamics, based on the Euler equations [140]. In both the

cases, upon the results of the present paper, we plan to use the (modified) Zernike

polynomials as at the current status of our knowledge they provide the best trade-off

between approximation and efficiency. The final goal is to replace current solvers

with the HiMod ones, to adjust the local accuracy for the transverse components by

suitably selecting the spectral discretization parameters.

A comprehensive analysis of the inf-sup condition for the HiMod basis in a cylin-

drical (as well as in Cartesian) frame still requires investigation.

57

Figure 2.17: Womersley-like flow in a tapered pipe: Oscillating pressure (left) and

centerline velocity (right) at x = 0 (dotted line), x = Lx/3 (dashed line), and

x = 2Lx/3 (solid line).

Figure 2.18: Womersley-like flow in a tapered pipe: Axial velocity at x = 0 (dotted

line), x = Lx/2 (dashed line), and x = Lx (solid line) (top); Radial velocity at

x = Lx/3 (center) and 3D HiMod velocity profile (bottom) at different times.

58

x
0 1 2 3 4 5 6

p

0

1

2

3

4

x
0 1 2 3 4 5 6

u
m

ax

0

0.05

0.1

0.15

0.2

Figure 2.19: Womersley-like flow in an aneurysmatic pipe: Pressure (left) and axial

velocity on the centerline (right) along the x-axis at t = 0.08s (dotted line), t = 0.16s

(dashed line), and t = 0.24s (solid line).

Figure 2.20: Womersley-like flow in an aneurysmatic vessel: Axial velocity at x = 0

(dotted line), x = Lx/3 (dashed line) and x = Lx/2 (solid line) sections (top); Radial

velocity at x = Lx/3 (center); 3D HiMod velocity profile (bottom) at different times.

59

Figure 2.21: Starting flow in a stenotic pipe at x = 2Lx/3 and at t = 1 (top) and

steady Oseen flow in a non-axisymmetric pipe at x = Lx/2 (bottom) with twisting

convective field: y- (dashed line) and z- (solid line) component of the velocity along

the y axis with parity-restricted Chebyshev (first column), Zernike (second column),

and modified Zernike (third column) basis; Transverse components of the velocity

(fourth column).

60

Figure 2.22: Womersley-like flow in a non-axisymmetric vessel: xy- and xz-plane

view of the geometry (first and second row); color plots of the radial (third row) and

angular (fourth row) components of the velocity and vector plots of the transverse

components of the velocity (fifth row) at x = 1 (left) and x = 1.5 (right) at t = 0.24s.

61

Figure 2.23: STL sections (solid line) and HiMod map (dotted line) on the ϑ-

quadrature nodes along the domain. The intersection between the transverse fiber

and the centerline of the vessel is marked with a cross (×).

Figure 2.24: Patient-specific geometry (top); Inflow profile (bottom-left); Recircula-

tion in proximity of the stenosis (bottom-right).

62

Chapter 3

Network Uncertainty

Quantification via Domain

Decomposition

Acknowledgements. This chapter contains part of the content of the paper [45],

written in collaboration with Kevin Carlberg, Mohammad Khalil, and Khachik

Sargsyan, that has been part of the research of the author during two summer in-

ternships at the Sandia National Laboratories (Livermore, CA). We also include

preliminary results on acceleration techniques for the DDUQ problem, that will be

extended and consolidated in [46].

3.1 Introduction

For extreme-scale decomposable systems, high-fidelity simulation and uncertainty

quantification (UQ) are typically achievable at the subsystem level, but intractable

for the full system. This is due to long full-system simulation times, limits on the

problem size that can be reliably simulated, and challenges in integrating subsys-

tem models characterized by different physics or scales. Even full-system surrogate

models, which are typically employed to make UQ tractable, may not be possible to

construct, as they rely on a training set of these (possibly infeasible) simulations.

63

Current approaches to UQ for coupled subsystems use simplified probability rep-

resentations [93, 63, 16], consider only feedforward systems [11], or restrict their

attention to two-component systems [17, 53] - especially in the context of multiscale

modeling [137, 134, 135]. These approaches quickly become intractable when consid-

ering non-Gaussian networks (based on elastic mass-and-spring model) with many

subsystems. The most advanced work in this regard is [120], which builds on [11] to

devise an additive-Schwarz-like approach for large-scale networks. However, it relies

extensively on importance sampling (which assumes accurate proposal distributions

can be specified a priori) and density estimation (which scales poorly with the num-

ber of coupling variables). Further, it enforces high-fidelity compatibility constraints

that require full-system simulations for each sample. While this is mitigated by the

use of response-surface surrogates, the uncertainty introduced by these surrogates is

not characterized. The key insights of our proposed work are that (1) Reduced-order

models (ROMs) enable rapid subsystem sampling, which obviates the need for im-

portance sampling and density estimation, (2) ROMs also enable rigorous epistemic

uncertainty quantification, and (3) the complete set of DD methods - combined with

a hierarchy of compatibility conditions - can be considered and leveraged to enable

scalable and rigorous network UQ for arbitrarily complex and large-scale networks.

Subsystem model reduction has also been pursued in the literature, but almost ex-

clusively for linear problems. In particular, the component mode synthesis (CMS)

approach (i.e., Craig-Bampton) [105, 57] has been widely used for model reduction in

component-based structures. This method performs eigenmode model reduction on

each component and couples them using a primal-Schur approach. While extensions

to nonlinearities localized at component interfaces [171] and low-order-polynomial

(geometric) nonlinearities have been proposed [10, 132], CMS has not been extended

to handle general nonlinearities. Relatedly, reduced-basis element methods have

been developed for elliptic partial differential equations. These methods couple com-

ponent reduced-basis approximations using either dual-Schur [124] or primal-Schur

[106] approaches.

64

In this context, the Domain Decomposition Uncertainty Quantification (DDUQ)

method that we propose is a scalable “bottom-up” approach that performs extensive

uncertainty quantification and model reduction at the (tractable) subsystem level,

and propagates coupling information using new techniques inspired by domain de-

composition. More specifically, the approach assigns each subsystem to a node in a

directed graph, and coupling variables to edges. Inter-node compatibility is guaran-

teed by enforcing constraints on the statistical distance between matching coupling

variables, and these constraints are enforced by developing new UQ analogues to DD

methods. On top of this, a ROM for each subsystem can be constructed during an

“offline” pre-processing stage, and integrated with network UQ to enable efficient

subsystem sampling. This approach is promising because (1) full-system ROMs

and UQ analyses can be realized without any full-system simulations, (2) thanks to

network UQ, full-system uncertainties can be attributed to local contributions for

targeted uncertainty reduction, and (3) ‘Lego-like’ design enables solver modularity

and scalability. This divide-and-conquer strategy supports subsystem independence,

as tailored uncertainty analysis, discretizations, solvers, and ROM techniques can

be applied to each subsystem separately. As a result, the level of parallelism of the

underlying numerical solvers is maximized.

This Chapter is organized as follows: the DDUQ method is introduced in Section

3.2 and tested numerically in Section 3.3. Multigrid methods are briefly recalled in

Section 3.4, setting the background for the design of acceleration methods specifically

tailored to network problems, that are described and tested in Section 3.5. The

extension to more general problems is addressed in Section 3.6, and conclusions are

drawn in Section 3.7.

3.2 The DDUQ method

We consider systems composed of interconnected subsystems (e.g. components, sub-

domains), which characterize a wide range of applications such as electrical power

65

Figure 3.1: Examples of DDUQ applications to decomposable systems: 30-bus test

system [118] (left), cardiovascular system [33] (right).

systems, gas transfer systems, multiscale models, or - more specifically for the interest

of this work, the cardiovascular system (see Figure 3.1). The primary difference be-

tween classical DD methods for solving partial differential equations and the present

UQ context lies in characterizing inter-subsystem compatibility. Classically, in a de-

terministic framework, inter-subsystem coupling variables correspond to the solution

along the subdomain boundary: compatibility conditions enforce solution continuity

across this boundary [154, 188]. In the UQ context, coupling variables correspond

to random variables for data exchanged between subsystems. As such, compatibility

conditions should set the statistical distance between matching coupling variables

to zero, i.e., the probability density function (PDF) of a subsystem’s output should

match the associated PDF of the input to the coupled subsystem. For this purpose,

we will consider a hierarchy of compatibility constraints: from high-fidelity (i.e..

functional equivalence) to low-fidelity (i.e., mean matching).

66

3.2.1 Problem Formulation

Assume we have n subsystems, each of which is characterized by random endogenous

inputs yi ∈ Ryi , outputs xi ∈ Rxi , exogenous inputs ui ∈ Rui , each with a certain

PDF, and a forward function f i : Ryi × Rui → Rxi such that the forward function

propagation task can be expressed as [45]

xi = f i(yi,ui), i = 1, . . . , n (3.1)

(see Figure 3.2, left). At the system level, denote by y ∈ Ry, x ∈ Rx, and u ∈ Ru the

vectorization of the subsystem inputs, outputs, and exogeneous inputs, respectively

(e.g., y :=
[
yT1 · · · yTn

]T
) with y :=

∑n
i=1 yi, x :=

∑n
i=1 xi, and u :=

∑n
i=1 ui. Then,

we can rewrite Eq. (3.1) as

x = f(y,u). (3.2)

Here, we have defined the (system-level) forward uncertainty propagator f : Ry ×
Ru → Rx as the vectorization of subsystem propagators.

Outputs of one subsystem comprise the inputs to another subsystem (see Figure

3.2, right). This relationship can be encoded by the adjacency matrix

y = Iyxx (3.3)

with Iyx ∈ {0, 1}y×x, whose entries are defined as

[Iyx]ij =

1 if yi = xj

0 otherwise.
(3.4)

Substituting Eq. (3.3) into Eq. (3.2) yields a fixed point system

x = f(Iyxx,u). (3.5)

Thus, the uncertainty propagation task reduces to solving the system of (generally

nonlinear) equations

r(x,u) = 0, (3.6)

where

r : (χ,υ) 7→ χ− f(Iyxχ,υ). (3.7)

67

Figure 3.2: Sketch of DDUQ problem formulation: single component (left) and full

decomposable system (right).

3.2.2 Uncertainty Propagation

In this work, uncertainties are represented via polynomial chaos expansions [83,

84], and propagated via non-intrusive spectral projection (NISP) [176]. Consider

the stochastic inputs y, u as functions of a multidimensional random variable ξ =

[ξ1, . . . , ξd]
T . The corresponding stochastic representations via PCE, respectively,

read as

y(ξ) =

p∑
k=0

ykΨk(ξ), u(ξ) =

p∑
k=0

ukΨk(ξ), (3.8)

where {uk}pk=0, {yk}pk=0 are deterministic coefficients defined by L2-projection, and

the polynomial chaos {Ψk}k∈N can be chosen to maximize the convergence rate,

according to the Askey scheme [18, 200]. More precisely, each family of polynomials

is orthogonal with respect to a weight function that corresponds to the probability

density function of a known random distribution. For instance, assuming ξ to be a

standard normal random variable, Ψk(·) are Hermite polynomials, orthogonal with

respect to Gaussian density π(ξ) = e−ξ
2/2/
√

2π. Then, uncertainty propagation

consists in finding a PC representation for the output x =
∑p

k=0 xkΨk(ξ), as a

response to the uncertain input through the propagator f . More specifically, the

68

input/output relationship is encoded in the output PC coefficients as

xk =
1

||Ψk||2

∫
Rd

x(ξ)Ψk(ξ)π(ξ)dξ =
1

||Ψk||2

∫
Rd

f (y(ξ),u(ξ)) Ψk(ξ)π(ξ)dξ, (3.9)

where the norm is defined as ||Ψk||2 =
∫
Rd Ψ2

k(ξ)π(ξ)dξ and is known a priori.

The strategy for NISP (also called discrete or pseudospectral projection) is to

approximate (3.9) with (sparse) quadrature rules as

xk =
1

||Ψk||2
Q∑
q=1

f
(
y(ξq),u(ξq)

)
Ψk(ξq)π(ξq)wq, (3.10)

where {ξq, wq}
Q
q=1 are selected quadrature points and weights, respectively. Note

that, in (3.10), the term f
(
y(ξq),u(ξq)

)
is one deterministic solve, corresponding

to the q-th realization of the inputs. Therefore, differently from other intrusive

approaches such as Galerkin projection, NISP does not require any modification to

the underlying deterministic solver, that can be used as a black-box.

3.2.3 Network solver

The system of nonlinear equations (3.6) can be solved by a variety of techniques.

While Newton’s method [109, 152] is the most common approach, it relies on avail-

ability of the gradient ∂r/∂χ, which, in this context, associates with computing the

sensitivity of the output uncertainty representation with respect to the input uncer-

tainty representation. Because this is frequently challenging to obtain, we consider

classical relaxation methods (i.e., Jacobi, Gauss–Seidel, successive over-relaxation)

[109, 152] that do not require gradients and promote independence of the subsystems.

Jacobi iteration. Jacobi iteration is equivalent to ‘splitting’ all edge data and

allowing subsystems to simultaneously and independently perform uncertainty prop-

agation at each iteration (see Figure 3.3, center). This can be interpreted as an

additive Schwarz domain-decomposition approach [188] and corresponds to the iter-

ations at the subsystem level at iteration k:

69

Algorithm 1: DDUQ Jacobi iteration

1 for i=1,. . . ,n do

2 x̄i = f i(y
(k)
i ,ui)

3 end

4 x(k+1) = ωx̄ + (1− ω)x(k)

5 y(k+1) = Iyxx(k+1)

Note that the subsystem forward uncertainty propagation tasks can be executed

independently in parallel for each subsystem at a given iteration. At the full-system

level, this can be expressed in terms of the outputs simply as

x̄ = f(Iyxx(k),u) (3.11)

x(k+1) = ωx̄ + (1− ω)x(k), (3.12)

where ω ∈ R is a weighting factor that can be chosen to improve convergence.

Gauss–Seidel iteration. Gauss–Seidel iteration is equivalent to decomposing the

network into a directed acyclical graph where each iteration corresponds to uncer-

tainty propagation in a feed-forward network (see Figure 3.3, right). In particular,

we can introduce an n-tuple (pi) that provides a permutation of natural numbers

one to n. Each permutation associates with a unique feed-forward network where p1

corresponds to the furthest ‘upstream’ subsystem and pn is the furthest ‘downstream’

subsystem. This approach can be interpreted as a multiplicative Schwarz domain-

decomposition approach, and corresponds to the following algorithm at iteration k:

Algorithm 2: DDUQ Gauss-Seidel iteration

1 y(k+1) ← y(k)

2 for i=1,. . . ,n do

3 x
(k+1)
pi = f pi(E

(yi)
pi
y(k+1),upi)

4 y(k+1) ← Iyx[E(xi)
pi

]Tx
(k+1)
pi

5 end

70

To develop the global-problem description of the Gauss–Seidel iteration, first we

define a block decomposition of the adjacency matrix

P
(yi)
(pi)
Iyx[P

(xi)
(pi)

]T = L+D +U , (3.13)

where the permutation matrix is defined as

P
(wi)
(qi)

:=

E(w1)
q1
...

E(wn)
qn

 ∈ {0, 1}∑n
i=1 wi×

∑n
i=1 wi (3.14)

with P
(wi)
(qi)

T
P

(wi)
(qi)

= P
(wi)
(qi)
P

(wi)
(qi)

T
= I. Further, L ∈ {0, 1}y×x is strictly block lower

triangular (with block (i, j) defined as a yi × xj submatrix), D ∈ {0, 1}y×x is block

diagonal, andU ∈ {0, 1}y×x is strictly block upper triangular. Using these quantities,

we can write this iteration in terms of the global outputs as

x̄ = f([P
(yi)
(pi)

]TLP
(xi)
(pi)

x̄ + [P
(yi)
(pi)

]T (D +U)P
(xi)
(pi)

x(k),u). (3.15)

Successive over-relaxation (SOR). This formulation is similar to Gauss–Seidel

iteration, but allows for a relaxation factor. In particular, this method corresponds

to the following algorithm at iteration k:

Algorithm 3: DDUQ SOR iteration

1 ȳ ← y(k)

2 for i=1,. . . ,n do

3 x̄pi = f pi(ȳpi ,upi)

4 x
(k+1)
pi = ωx̄pi + (1− ω)x

(k)
pi

5 y
(k+1)
pi ← E(yi)

pi
Iyx[E(xi)

pi
]Tx

(k+1)
pi

6 ȳpi ← y
(k+1)
pi

7 end

71

The corresponding global problem is

x̄ = f(ω[P
(yi)
(pi)

]TLP
(xi)
(pi)

x̄ + [P
(yi)
(pi)

]T ((1− ω)L+D +U)P
(xi)
(pi)

x(k),u) (3.16)

x(k+1) = ωx̄ + (1− ω)x(k). (3.17)

Note that the Gauss–Seidel method is recovered for ω = 1, whereas ω < 1 corre-

sponds to underrelaxation, and ω > 1 corresponds to overrelaxation.

As in typical iterative methods, we expect different permutations (pi) to associate

with different convergence rates and different degrees of exposed parallelism; for

example, red–black ordering is known to expose additional parallelism in typical it-

erative methods, with implications on convergence. More in general, the optimal

permutation can be obtained via graph coloring techniques applied to the network

topology (note that the solution may not be unique) [90, 130]. Further, we note

that the permutation can change between Gauss–Seidel or SOR iterations. For ex-

ample, symmetric Gauss–Seidel or SOR can be recovered by reversing the order of

permutation between iterations; this amounts to reversing the information flow in

the uncertainty propagation between iterations.

3.2.4 Software

The solver is characterized by a nested structure. At the outer level, the network

solver receives in input the global (stochastic) BC and the (uncertain) model pa-

rameters, and handles the relaxation iterative process until convergence. At each

iteration, the exogenous inputs specific to each component are selected, and the en-

dogenous inputs are exchanged. With a block-Jacobi network solver, since all the

components are decoupled, the endogenous interface conditions can be exchanged

simultaneously; with a Gauss-Seidel or SOR network solver, the order in which they

are exchanged depends on the permutation of the network components, which can

be picked, for example, to maximize the level of concurrency. Then, for each compo-

nent, the local stochastic solver evaluates the Q realizations of the stochastic inputs,

and calls the deterministic solver for each instance of the inputs. Finally, the output

72

Figure 3.3: Sketch of DDUQ iterative solvers: monolithic (left), Jacobi (center)

and Gauss-Seidel (right) iteration. Green, red, and blue arrows respectively denote

exogenous inputs, endogenous inputs, and subsystem outputs. Black arrows in the

right figure represent the feed-forward network generated by a Gauss-Seidel solver

with a particular choice of components permutation.

PC coefficients are computed according to (3.10), and the termination criterion is

checked by the network solver. The process is repeated until convergence.

The stochastic component of the problem is handled via the C++ library UQTk

[61], developed at the Sandia National Laboratories, which has been embedded in

a MATLAB implementation of the DDUQ network solver. The solver structure is

sketched in figure 3.4.

3.3 Numerical tests

3.3.1 1D heat equation

In this section, numerical results are presented for the one-dimensional stationary

heat equation with uncertain boundary conditions characterized by two-dimensional

73

Figure 3.4: Sketch of the DDUQ network solver. Straight and wavy arrows represent

exogenous stochastic boundary conditions (BC) and parameters, respectively.

PCEs:

−∂
2u (x, ξ)

∂x2
= 0 , x ∈ Ω := (0, L) (3.18)

u (0, ξ) = T1 (ξ) =
K∑
k=0

T1,kΨk (ξ) (3.19)

u (L, ξ) = T2 (ξ) =
K∑
k=0

T2,kΨk (ξ) (3.20)

with ξ = (ξ1, ξ2), ξ1 and ξ2 independent and identically distributed (iid) standard

normal random variables. The PCE coefficients T1,· and T2,· completely character-

ize the uncertain boundary conditions. We will consider the case of statistically

independent random variables T1 and T2 with T1 expressed strictly in terms of ξ1

and T2 expressed strictly in terms of ξ2. The basis functions {Ψk} are 2D Hermite

polynomials of order at most p. This problem permits an analytical solution given

by

u(x, ξ) =
K∑
k=0

((T2,k − T1,k)x/L+ T1,k) Ψk (ξ) . (3.21)

74

Note that solution given by Eq. (3.21) satisfies Eq. (3.18) in a strong sense, i.e., it

satisfies the ODE for all values of ξ. This is not what we expect the solver to provide

in the general sense, but we do require a solution that satisfies the governing equations

projected onto the PCE polynomials via Galerkin projection. This analytical solution

is convenient for code verification in terms of solution matching. This linear system

also allows us to compare the solver convergence rate with ones predicted based on

system eigenvalue analysis.

Domain decomposition setting

We decompose the domain of interest into n overlapping subdomains Ωi, i = 1, . . . , n,

as illustrated in Fig. 3.5. As a result, boundary value problem (BVP) in Eq. (3.18)

is split into n smaller boundary value problems. Let ui denote the approximate

solution in subdomain Ωi. Furthermore, we will use ui,1 to denote ui at the the

artificial internal boundary Γi,i−1, and ui,2 to denote ui at the the artificial internal

boundary Γi,i+1. The solution to Eq. (3.18) is obtained by solving the following

equation for each subdomain Ωi:

−∂
2ui (x, ξ)

∂x2
= 0 in Ωi (3.22)

ui (ξ) =

{
T1 (ξ) , i = 1

ui−1,2 (ξ) , otherwise
on Γi,i−1 (3.23)

ui (ξ) =

{
T2 (ξ) , i = n

ui+1,1 (ξ) , otherwise
on Γi,i+1 . (3.24)

Note that the subdomain-level BVP on subdomain Ωi in Eq. (3.22) depends on

inputs ui−1,2 (ξ) and ui+1,1 (ξ) from adjacent subdomains in the form of uncertain

boundary conditions and thus the BVPs are coupled. These inputs to subdomain

Ωi are outputs from the adjacent subdomains: ui−1,2 (ξ) is an output of subdomain

Ωi−1 and ui+1,1 (ξ) is an output of subdomain Ωi+1. This coupling can be illustrated

using a directional graph, as illustrated for the 4-subdomain case in Fig. 3.6. We

75

Ωn

x0

Ω2

Ω1 Ω3

Γ1,2

Γ2,1 Γ2,3

Γ3,2

Γ3,4 Γn,n-1

Γ

Γn,n+1

L1

L2

Ln

Γ4,3 Γn-1,n

L3

l1,2 = l2,1 l2,3 = l3,2 l3,4 = l4,3 ln-1,n = ln,n-1

Figure 3.5: Overlapping domain decomposition for 1D heat equation.

will represent each of these inputs and outputs using PCE, i.e.

ui,j =
K∑
k=0

ui,j,kΨk (ξ) , i = 1, . . . , n j = 1, 2, (3.25)

and thus all inputs and outputs are in the form of PCE coefficients. Using nota-

tion introduced above, we have the following input and output PCE coefficients for

subdomain i

yi =

[u2,1,1, u2,1,2 · · · u2,1,K]T , i = 1

[un−1,2,1, un−1,2,2 · · · un−1,2,K]T , i = n

[ui−1,2,1, ui−1,2,2 · · · ui−1,2,K , ui+1,1,1, ui+1,1,2 · · · ui+1,1,K]T , otherwise,

(3.26)

xi =

[u1,2,1, u1,2,2 · · · u1,2,K]T , i = 1

[un,1,1, un,1,2 · · · un,1,K]T , i = n

[ui,1,1, ui,1,2 · · · ui,1,K , ui,2,1, ui,2,2 · · · ui,2,K]T , otherwise,

(3.27)

ui =

[T1,1, T1,2 · · · T1,K]T , i = 1

[T2,1, T2,2 · · · T2,K]T , i = n

[] , otherwise.

(3.28)

76

Figure 3.6: Directional graph to represent domain decomposition for 1D heat equa-

tion, with the nodes representing subdomain-level BVPs and the links representing

the exchanged information in the form of subdomain-level uncertain artificial bound-

ary values in the form of PCE coefficients.

For a general application, the input uncertainty is propagated through each subdomain-

specific solver using NISP, defining the forward uncertainty propagator f i for sub-

domain i. For this specific problem, the analytical solution in Eq. (3.21) could be

used at the subdomain level as a propagator in lieu of the more general NISP-based

method. The closed-form input-output mappings are given by

xi = f i(yi,ui) :=

u2,1,k = L1−l1,2

L1
u1,2,k + l1,2

L1
T1,k, k = 1, . . . , K, i = 1

un−1,2,k = Ln−ln,n−1

Ln
un,1,k + ln,n−1

Ln
T2,k, k = 1, . . . , K, i = n{

ui−1,2,k =
Li−li,i−1

Li
ui,1,k +

li,i−1

Li
ui,2,k, k = 1, . . . , K,

ui+1,1,k =
li,i+1

Li
ui,1,k +

Li−li,i+1

Li
ui,2,k, k = 1, . . . , K

, otherwise.

(3.29)

Scalability tests

For this example, we assume Gaussian inputs with the following uncertainty charac-

terization:

[T1,0, T1,1 · · · T1,9] = [1.0, 0.1, 0, 0.01, 0, 0, 0.001, 0, 0, 0] ,

[T2,0, T2,1 · · · T2,9] = [3.0, 0, 0.1, 0, 0, 0, 0.01, 0, 0, 0.001] ,
(3.30)

mapping to the following PCEs for T1 (ξ) and T2 (ξ):

T1 (ξ) = 1.0Ψ0(ξ) + 0.1Ψ1(ξ) + 0.01Ψ3(ξ) + 0.001Ψ6(ξ),

T2 (ξ) = 3.0Ψ0(ξ) + 0.1Ψ2(ξ) + 0.01Ψ5(ξ) + 0.001Ψ9(ξ),
(3.31)

77

where the polynomial chaos in (3.31) are Hermite polynomials of third order in two

variables:

Ψ0(ξ) = 1, Ψ1(ξ) = ξ1, Ψ2(ξ) = ξ2

Ψ3(ξ) = ξ2
1 − 1, Ψ4(ξ) = ξ1ξ2, Ψ5(ξ) = ξ2

2 − 1,

Ψ6(ξ) = ξ3
1 − 3ξ1, Ψ7(ξ) = (ξ2

1 − 1)ξ2, Ψ8(ξ) = ξ1(ξ2
2 − 1), Ψ9(ξ) = ξ3

2 − 3ξ2,

(3.32)

after the Gaussianity assumption. As a result, the input probability density functions

are as shown in Fig. 3.8. Note that the above characterization results in independent

T1 (ξ) and T2 (ξ), although the overall formulation is general and can in principle

include dependent BCs. Fig. 3.7 provides normalized residual convergence results

regarding strong and weak scalability, for different relaxation methods described

above. For weak scalability, we kept the subdomain problem size (i.e. subdomain-

level finite-element nodes) fixed while increasing the number of subdomains. For

strong scalability, we kept the global problem size (i.e. number of global finite-

element nodes) fixed while increasing the number of subdomains.

The results (for strong and weak scalability cases) are identical for the cases in-

volving 16 nodes (subdomains), since they involve the same network with the same

discretization (subdomain overlaps), regardless of method and relaxation used. As

the subdomain number decreases to 8, then to 4 and finally 2, the amount of overlap

relative to the global domain size is smaller for the strong scalability cases, resulting

in the observed inferior convergence rates for the same method and relaxation.

Figs. 3.9 and 3.10 provide normalized error convergence results relating to the

output PC coefficients at specific physical locations, shown for both strong and weak

scalability. Again, the results (for strong and weak scalability cases) are identical,

at a given physical location, for the cases involving 16 nodes (subdomains) since the

amount of chosen overlap is the same. Also, as the number of subdomains decreases,

the amount of overlap relative to the global domain size is smaller for the strong

scalability cases, resulting in the observed inferior convergence rates for the same

method and relaxation. We can also see that, for a specific choice of number of

78

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1 n=2

J, ω=1 n=4

J, ω=1 n=8

J, ω=1 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1 n=2

GS, ω=1 n=4

GS, ω=1 n=8

GS, ω=1 n=16

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

Figure 3.7: Strong (top) and weak (bottom) scalability convergence results for 1D

heat equation: Iteration number versus normalized residual of interface unknowns

(PC coefficients). J or G-S labels denote the use of Jacobi or Gauss-Seidel iterations,

respectively.

79

a)

0.8 1 1.2 1.4
0

1

2

3

4

p
d

f

b)

2.8 3 3.2 3.4 3.6
0

1

2

3

4

p
d

f

Figure 3.8: Probability density functions of uncertain inputs, i.e. boundary condi-

tions, for the 1D heat equation.

subdomains, method, and relaxation, convergence rate is lower for locations further

away from the boundary of the computational domain. This is expected since those

locations are both physically and network distance-wise further away from the sources

of uncertainty and thus a larger number of iterations is required to propagate the

uncertainty to those locations through the network.

For validation purposes, we construct the system-wide propagation matrix (avail-

able for this linear problem with analytical subdomain level propagators, but not

generally available) and apply the same methods and relaxation with the subsequent

convergence results shown Figs. 3.11 and 3.12. These results are both qualitatively

(and quantitatively) matching.

Figs. 3.13 and 3.14 provide strong and weak scalability results, with both serial

and parallel execution timing provided. For all scalability results, all timings are

obtained by performing calculations on an Intel(R) Xeon(R) Core(TM) i7-5557U

CPU @ 3.10GHz with 16 GB RAM. The parallel execution time is the time that one

node takes in propagating the uncertainty (since all nodes are similar in this case)

for the Jacobi iterations. As for the Gauss-Seidel iterations, the parallel execution

time is obtained through repeated simulations with varying permutation matrices to

illustrate its effect on the computational scalability of these solvers. In this case, the

permutation matrix for Gauss-Seidel that provides optimal parallel scalability is the

one that results in updating (propagating uncertainty through) all the even nodes

80

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.0
1

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.1
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.2
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

Figure 3.9: Strong scalability convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at x = 0.0187 (top),

x = 0.1 (center), and x = 0.4 (bottom). J or G-S labels denote the use of Jacobi or

Gauss-Seidel iterations, respectively.

81

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.0
1

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.1
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.2
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

Figure 3.10: Weak scalability convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at x = 0.0187 (top),

x = 0.1 (center), and x = 0.4 (bottom). J or G-S labels denote the use of Jacobi or

Gauss-Seidel iterations, respectively.

82

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.0
1

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.1
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.2
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

Figure 3.11: Analytical strong convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at x = 0.0187 (top),

x = 0.1 (center), and x = 0.4 (bottom). J or G-S labels denote the use of Jacobi or

Gauss-Seidel iterations, respectively.

83

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.0
1

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.1
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

10
0

10
1

10
2

10
3

Iteration

10
-3

10
-2

10
-1

10
0

N
o

r
m

a
li

z
e
d

 e
r
r
o

r
 a

t
x

=
0

.2
0

J, ω=0.7 n=2

J, ω=0.7 n=4

J, ω=0.7 n=8

J, ω=0.7 n=16

J, ω=1.0 n=2

J, ω=1.0 n=4

J, ω=1.0 n=8

J, ω=1.0 n=16

GS, ω=0.7 n=2

GS, ω=0.7 n=4

GS, ω=0.7 n=8

GS, ω=0.7 n=16

GS, ω=1.0 n=2

GS, ω=1.0 n=4

GS, ω=1.0 n=8

GS, ω=1.0 n=16

Figure 3.12: Analytical weak convergence results for 1D heat equation: Iteration

number versus normalized error for solution (PC coefficients) at x = 0.0187 (top),

x = 0.1 (center), and x = 0.4 (bottom). J or G-S labels denote the use of Jacobi or

Gauss-Seidel iterations, respectively.

84

(subdomains) using known outputs of odd nodes and then subsequently updating the

odd nodes using the new outputs from the even nodes. This is known as red-black

ordering [Strang, 2016].

In summary, the numerical tests for a 1D linear heat equation show that the DDUQ

solver is strongly and weakly scalable, both in its additive (Jacobi) and multiplicative

(Gauss-Seidel) version, and for a wide range of relaxation parameters. While Jacobi

iterations are embarassingly parallelizable, the performance of Gauss-Seidel solvers

is greatly affected by the permutation of the nodes in the corresponding feed-forward

network (with red-black ordering being optimal). As expected, the convergence rate

is space-dependent, being slower for those locations that are far away from the sources

of uncertainty (boundaries).

3.3.2 2D nonlinear heat equation

In this section, numerical results are presented for the two-dimensional stationary

nonlinear heat equation with uncertain diffusion and boundary condition and char-

acterized by:

−Ou+ (eµu − 1) = 10sin (2πx1) sin (2πx2) , x ∈ Ω := (0, 1)2 (3.33)

uΓ = T1 (ξ) =
K∑
k=0

T1,kΨk (ξ) (3.34)

µ = T2 (ξ) =
K∑
k=0

T2,kΨk (ξ) (3.35)

with ξ = (ξ1, ξ2), ξ1 and ξ2 independent and identically distributed (iid) standard

normal random variables. The PCE coefficients T1,· and T2,· completely characterize

the uncertain boundary condition and diffusivity parameter, respectively. We will

consider the case of statistically independent random variables T1 and T2 with T1

expressed strictly in terms of ξ1 and T2 expressed strictly in terms of ξ2. Under the

assumption of Gaussian inputs, the basis functions {Ψk} are 2D Hermite polynomials

of order at most p.

85

2 4 6 8 10 12 14 16

Network size (n)

10
3

It
e
r

J, ω=0.7

J, ω=1.0

GS, ω=0.7

GS, ω=1.0

2 4 6 8 10 12 14 16

Network size (n)

10
1

10
2

e
x
e
c
u

ti
o
n

 t
im

e
,
se

r
ia

l

J, ω=0.7

J, ω=1.0

GS, ω=0.7

GS, ω=1.0

10
1

Network size (n)

10
0

ex
ec

u
ti

o
n

 t
im

e,
 p

a
ra

ll
el

J, ω=2/3

J, ω=1

GS, ω=2/3

GS, ω=1

Figure 3.13: Strong scalability results for 1D heat equation: iteration count versus net-

work size (number of subdomains) until convergence with normalized residual of 1× 10−3

(top), serial execution time of solver versus network size (number of subdomains) until

convergence with normalized residual of 1×10−3 (center), parallel execution time of solver

versus network size (number of subdomains) until convergence with normalized residual of

1 × 10−3 with bars indicating spread due to varying permutation matrix (bottom). J or

G-S label denotes the use of Jacobi or Gauss-Seidel iterations, respectively.

86

2 4 6 8 10 12 14 16

Network size (n)

10
2

10
3

It
e
r

J, ω=0.7

J, ω=1.0

GS, ω=0.7

GS, ω=1.0

2 4 6 8 10 12 14 16

Network size (n)

10
1

10
2

e
x
e
c
u

ti
o
n

 t
im

e
,
se

r
ia

l

J, ω=0.7

J, ω=1.0

GS, ω=0.7

GS, ω=1.0

10
1

Network size (n)

10
0

10
1

10
2

ex
ec

u
ti

o
n

 t
im

e,
 p

a
ra

ll
el

J, ω=2/3

J, ω=1

GS, ω=2/3

GS, ω=1

Figure 3.14: Weak scalability results for 1D heat equation: iteration count versus net-

work size (number of subdomains) until convergence with normalized residual of 1× 10−3

(top), serial execution time of solver versus network size (number of subdomains) until

convergence with normalized residual of 1×10−3 (center), parallel execution time of solver

versus network size (number of subdomains) until convergence with normalized residual of

1 × 10−3 with bars indicating spread due to varying permutation matrix (bottom). J or

G-S label denotes the use of Jacobi or Gauss-Seidel iterations, respectively.

87

Figure 3.15: 2D nonlinear heat equation on the unit square: Template network

component with corresponding port labels (left) and sketch of the DDUQ setting

(right). Wavy arrows and red straight arrows represent, respectively, stochastic

input parameters and exogenous boundary conditions. Black edges correspond to

endogenous inputs (stochastic interface conditions).

Problem setup

To decompose the domain, we split the unit square in smaller nx × ny overlapping

rectangles, arranged in a Cartesian grid. Network-wise, each rectangle is a compo-

nent with 8 input/output ports (4 edges and 4 corners - see Figure 3.15, left), and

the network connectivity is dictated by the adjacency pattern of the DD discretiza-

tion. A sketch of the DDUQ setting is shown in figure 3.15 (right). The underlying

deterministic solver is based on FEM.

Due to the nonlinearity in (3.35), a stochastic solution in closed form is not avail-

able. Therefore, we will compare the DDUQ solution with a high-fidelity solution,

obtained via NISP on the monolithic domain. With the following input uncertainty

characterization:

[T1,0, T1,1 · · · T1,9] = [1.0, 0.2, 0, 0.02, 0, 0, 0.002, 0, 0, 0] ,

[T2,0, T2,1 · · · T2,9] = [1.0, 0, 0.2, 0, 0, 0, 0.02, 0, 0, 0.002] ,
(3.36)

mapping to the following PCEs for T1 (ξ) and T2 (ξ)

uΓ = T1 (ξ) = 1.0Ψ0(ξ) + 0.2Ψ1(ξ) + 0.02Ψ3(ξ) + 0.002Ψ6(ξ),

µ = T2 (ξ) = 1.0Ψ0(ξ) + 0.2Ψ2(ξ) + 0.02Ψ5(ξ) + 0.002Ψ9(ξ),
(3.37)

88

where {Ψk}9
k=0 are defined as in (3.32), the high-fidelity solution is as in Fig. 3.16.

Note that the above characterization results in independent T1 (ξ) and T2 (ξ), al-

though the overall formulation is general and can in principle include dependent

BCs.

Truncation errors

We truncated the input parameter PCE expansions to examine the effect of using

a lower fidelity input uncertainty characterization on the system response. With

varying truncation levels, we extract the 10 PCE coefficients for the response (char-

acterizing a third order output PCE) and obtain the normalized L2 and L∞ norms

of the resulting response PCE coefficients with respect to the original case (3rd-order

PCEs for both inputs). The normalized errors show similar trends (as well as similar

values) whether we utilize the L2 or L∞ error norms. For brevity, we will therefore

limit the discussion to the L2 errors that are plotted in Fig. 3.17. When examining

the mean response, i.e. Fig. 3.17 subplot (a), we can observe that a truncation of ei-

ther the diffusivity parameter or boundary condition PCE results in relatively small

errors as long as a 1st-order characterization is used for both inputs. This is expected

as the mean response of a system normally depends on the lower order moments of

the uncertain inputs. It is also observed that 2nd-order PCE truncations result in

less error than 1st order truncations, although the gap in the errors is not significant.

Examining higher order output PCE coefficients, there is a general trend that shows

strong correlation between input order (i.e. truncation used) and error in the related

output PCE coefficients corresponding to polynomials of similar seed (i.e. ξ1 vs ξ2).

For example, consider Fig. 3.17 subplot (b), which illustrates the error in the output

PCE coefficient u1, corresponding to the Hermite polynomial Ψ1(ξ) = ξ1. Since ξ1 is

the random seed associated with the boundary condition uncertainty, a truncation

along that dimension (i.e. boundary condition PCE order) results in a greater error

compared to an equivalent truncation of the input uncertainty associated with ξ2 (i.e.,

parameter PCE). In other words, an accurate approximation of the PC coefficient

89

a)

1

x

0.5
1

y

0.5

0.5

00

u
0

1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

b)

1

x

0.50.2

1

y

0.5

00

u
10.15

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

c)

1

x

0.50

1

y

0.5

-0.02

00

u
2-0.04

-0.06

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

d)

1

x

0.50.02

1

y

0.5

00

0.015

u
3

0.01

0.008

0.01

0.012

0.014

0.016

0.018

0.02

e)

1

x

0.5
1

y

0.5

-5

00

u
4

10
-3

-10

-15

-16

-14

-12

-10

-8

-6

-4

-2

10
-3

f)

1

x

0.50

1

y

0.5

-2

00

u
5

10
-3

-4

-6

-6

-5

-4

-3

-2

-1

0

10
-3

g)

1

x

0.52

1

y

0.5

00

10
-3

u
6
1

0.5

1

1.5

2
10

-3
h)

1

x

0.5
1

y

-0.5

0.5

00

-1

10
-3

u
7-1.5

-2

-2

-1.5

-1

-0.5

10
-3

i)

1

x

0.50

1

y

0.5

-5

00

10
-4

u
8
-10

-14

-12

-10

-8

-6

-4

-2

0

10
-4

j)

1

x

0.50

1

y

0.5

00

-2

u
9

10
-4

-4

-4

-3

-2

-1

0

10
-4

Figure 3.16: Solution PCE coefficients for the 2D nonlinear heat equation using a

global NISP.

90

u1 requires a sufficiently accurate PCE of the related input uncertainty (boundary

condition). The same can be said for the truncation of the diffusivity parameter

(characterized by ξ2) and the output PCE coefficient, u2, corresponding to the Her-

mite polynomial Ψ2 = ξ2, as shown in Fig. 3.17 subplot (c). Similar trends are seen

for higher order output PCE coefficients. Furthermore, we can see that higher order

PCE coefficients incur larger errors due to input PCE truncation than lower order

ones. Since the proposed DDUQ methodology involves the propagation of a trun-

cated boundary condition characterization from one node (subdomain) to the next,

it is important to note that such truncation results in small errors in the lower order

PCE coefficients which correspond to the mean response and capture most of the

uncertainty (when characterized by variance) in the output.

Scalability tests

For this example, we use relaxation methods as outlined above to solve the stochastic

BVP. Figs. 3.18 and 3.19 provide normalized residual convergence results regarding

strong and weak scalability, respectively. For weak scalability, we kept the subdo-

main problem size (i.e. subdomain-level finite-element nodes) fixed while increasing

the number of subdomains. For strong scalability, we kept the global problem size

(i.e. number of global finite-element nodes) fixed while increasing the number of

subdomains. The results (for strong and weak scalability cases) are identical for

the cases involving 64 nodes (subdomains) since they involve the same network with

the same discretization (subdomain overlaps), regardless of method and relaxation

used. As the subdomain number decreases to 16, and then finally to 4, the amount

of overlap is smaller for the strong scalability cases resulting in the observed inferior

convergence rates for the same method and relaxation.

Figs. 3.20 and 3.21 provide strong and weak scalability results, with both serial

and parallel execution timing provided. For all scalability results, all timings are

obtained by performing calculations on an Intel(R) Xeon(R) Core(TM) i7-5557U

CPU @ 3.10GHz with 16 GB RAM. The parallel execution time is the time that one

91

a)
b

)
c)

d
)

e)
f)

g)
h

)
i)

j)

F
ig

u
re

3.
17

:
2D

n
on

li
n
ea

r
h
ea

t
eq

u
at

io
n
:

N
or

m
al

iz
ed

L
2

er
ro

r
n
or

m
s

fo
r

ou
tp

u
t

P
C

E
co

effi
ci

en
ts
u

0
,.
..
,u

9
(a

-j
)

w
it

h

va
ry

in
g

le
ve

l
of

P
C

E
or

d
er

fo
r

th
e

d
iff

u
si

on
p
ar

am
et

er
(c

ol
u
m

n
in

d
ex

)
an

d
b

ou
n
d
ar

y
co

n
d
it

io
n

(r
ow

in
d
ex

).

92

a)

0 20 40 60 80

Iteration number

10
-6

10
-4

10
-2

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, =2/3, n = 64
J, =2/3, n = 16

J, =2/3, n = 4
GS, =2/3, n = 64

GS, =2/3, n = 16
GS, =2/3, n = 4

b)

0 20 40 60 80

Iteration number

10
-6

10
-4

10
-2

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, =1, n = 64
J, =1, n = 16

J, =1, n = 4
GS, =1, n = 64

GS, =1, n = 16
GS, =1, n = 4

Figure 3.18: Strong scalability convergence results for 2D heat equation for ω = 2/3

(left) and ω = 1 (right): Iteration number versus normalized residual of interface

unknowns (PC coefficients). J or G-S labels denote the use of Jacobi or Gauss-Seidel

iterations, respectively.

a)

0 20 40 60 80

Iteration number

10
-15

10
-10

10
-5

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, =2/3, n = 64
J, =2/3, n = 16

J, =2/3, n = 4
GS, =2/3, n = 64

GS, =2/3, n = 16
GS, =2/3, n = 4

b)

0 20 40 60 80

Iteration number

10
-15

10
-10

10
-5

10
0

N
o

r
m

a
li

z
e
d

 r
e
si

d
u

a
l

J, =1, n = 64
J, =1, n = 16

J, =1, n = 4
GS, =1, n = 64

GS, =1, n = 16
GS, =1, n = 4

Figure 3.19: Weak scalability convergence results for 2D heat equation for ω = 2/3

(left) and ω = 1 (right): Iteration number versus normalized residual of interface

unknowns (PC coefficients). J or G-S labels denote the use of Jacobi or Gauss-Seidel

iterations, respectively.

93

node takes in propagating the uncertainty (since all nodes are similar in this case)

for the Jacobi iterations. As for the Gauss-Seidel iterations, the parallel execution

time is obtained by choosing the optimal permutation matrix that maximizes the

parallelizability of the UQ propagation step through the various nodes within the

network at each iteration. Fig. 3.22 provides strong scalability results for Gauss-

Seidel iterations with random permutation matrix and ω = 1 to illustrate the effect

that the permutation matrix has on performance. Varying the permutation matrix

(a total of 10 realizations) seems to have a minimal impact on the total number of

iterations until convergence. On the other hand, we can see large scatter in the serial

execution time and, to a greater extent, the parallel execution time. Specifically

regarding the parallel execution time, the effect is detrimental in terms of scalability

as the execution time increases on average going from a 16-node to a 64-node network,

in contrast to that obtained using an optimal permutation matrix (see Fig. 3.20 (c)).

For the following discussion, we focus on the errors introduced in propagating un-

certainty through the network using the proposed methodology in comparison to

propagating uncertainty at the system level (i.e. without domain decomposition),

with the later acting as the baseline solution. To isolate those errors, we run the iter-

ations until convergence with normalized residual of 1× 10−10. Figs. 3.23 illustrates

the effect of network size (with fixed 3-rd order PCE representation of inter-node

links) and 3.24 the effect of finite PCE-order representation of links (i.e. artificial

boundary values) between the nodes (for a fixed 4-node network). To do this, we

provide normalized error results relating to the output PC coefficients (as a vector-

valued quantity) at specific physical locations. These errors are normalized with

respect to the baseline solution without domain decomposition. We can see that, as

the network size increases, the errors grow due to the finite (3rd) order PCE rep-

resentation of the links between the nodes. We can also see the same trends with

decreasing PCE-order representation of the links. Furthermore, for a specific num-

ber of nodes (subdomains) or PCE-order of links, we see a slower convergence rate

for locations further away from the boundary of the computational domain. This

94

a)

4 16 64

Network size (n)

50

100

150

200

250

N
u

m
b

e
r
 o

f
it

e
r
ti

o
n

s

J, =2/3
GS, =2/3
J, =1
GS, =1

b)

4 16 64

Network size (n)

10
3

e
x

e
c
u

ti
o
n

 t
im

e
,

se
r
ia

l
(s

)

J, =2/3
GS, =2/3
J, =1
GS, =1

c)

4 16 64
Network size (n)

10
2

10
3

ex
ec

u
ti

o
n

 t
im

e,
 p

a
ra

ll
el

 (
s)

J, =2/3
GS, =2/3
J, =1
GS, =1

Figure 3.20: Strong scalability results for 2D heat equation: (a) iteration count ver-

sus network size (number of subdomains) until convergence with normalized resid-

ual of 1 × 10−3, (b) serial execution time of solver versus network size (number of

subdomains) until convergence with normalized residual of 1× 10−3, (c) parallel ex-

ecution time of solver versus network size (number of subdomains) until convergence

with normalized residual of 1 × 10−3. J or G-S label denotes the use of Jacobi or

Gauss-Seidel iterations, respectively. Gauss-Seidel iterations executed with optimal

permutation matrix resulting in minimal parallel execution times.

95

a)

4 16 64

Network size (n)

10
2

N
u

m
b

e
r
 o

f
it

e
r
ti

o
n

s

J, =2/3
GS, =2/3
J, =1
GS, =1

b)

4 16 64

Network size (n)

10
2

10
3

e
x

e
c
u

ti
o
n

 t
im

e
,

se
r
ia

l
(s

)

J, =2/3
GS, =2/3
J, =1
GS, =1

c)

4 16 64

Network size (n)

10
2

ex
ec

u
ti

o
n

 t
im

e,
 p

a
ra

ll
el

 (
s)

J, =2/3
GS, =2/3
J, =1
GS, =1

Figure 3.21: Weak scalability results for 2D heat equation: (a) iteration count versus

network size (number of subdomains) until convergence with normalized residual of

1 × 10−3, (b) serial execution time of solver versus network size (number of subdo-

mains) until convergence with normalized residual of 1 × 10−3, (c) parallel execu-

tion time of solver versus network size (number of subdomains) until convergence

with normalized residual of 1 × 10−3. J or G-S label denotes the use of Jacobi or

Gauss-Seidel iterations, respectively. Gauss-Seidel iterations executed with optimal

permutation matrix resulting in minimal parallel execution times.

96

a)

4 16 64

Network size (n)

40

50

60

70

80

90

N
u

m
b

e
r
 o

f
it

e
r
ti

o
n

s

b)

4 16 64

Network size (n)

1000

1500

2000

2500

3000

e
x

e
c
u

ti
o
n

 t
im

e
,

se
r
ia

l
(s

)

c)

4 16 64

Network size (n)

600

700

800

900

1000

1100

e
x

e
c
u

ti
o
n

 t
im

e
,

se
r
ia

l
(s

)

Figure 3.22: Strong scalability results for 2D heat equation with random permutation

matrix for Gauss-Seidel iterations with ω = 1: (a) iteration count versus network

size (number of subdomains) until convergence with normalized residual of 1× 10−3,

(b) serial execution time of solver versus network size (number of subdomains) until

convergence with normalized residual of 1 × 10−3, (c) parallel execution time of

solver versus network size (number of subdomains) until convergence with normalized

residual of 1× 10−3. Red curve represents the mean and grey region the confidence

interval as plus-or-minus three standard deviations.

97

4 16 64

Network size (n)

10
-4

R
el

a
ti

v
e

er
ro

r

{x,y} = {0.1,0.5}
{x,y} = {0.2,0.5}
{x,y} = {0.3,0.5}
{x,y} = {0.4,0.5}

Figure 3.23: Network-related error for 2D heat equation: normalized error for so-

lution (PC coefficients) at isolated physical locations for varying network size with

fixed 3-rd order PCE representation of inter-node links.

is expected since those locations are both physically and network distance-wise fur-

ther away from the sources of uncertainty and thus a larger number of iterations is

required to propagate the uncertainty to those locations through the network.

3.4 DDUQ acceleration

The iterative process induced by the fixed point system (3.5) is not guaranteed

to converge and, if it does, convergence cannot be more than linear [40]. Several

acceleration methods can be found in the literature to overcome these issues. For

instance, vector extrapolation methods [39] transform a sequence of vectors generated

by some iterative process to a new set of vectors that converge faster than the initial

sequence. Depending on the method used to compute such transformation, we can

distinguish between polynomial methods (Reduced-Rank Extrapolation, Minimal-

Polynomial Extrapolation, etc. [111]) or ε-methods (scalar or vector ε-algorithms

[112]). A different approach is adopted by the family of Anderson Acceleration (AA)

98

0 1 2 3
PCE order (p)

10
-4

10
-3

10
-2

10
-1

R
el

a
ti

v
e

er
ro

r

{x,y} = {0.1,0.5}
{x,y} = {0.2,0.5}
{x,y} = {0.3,0.5}
{x,y} = {0.4,0.5}

Figure 3.24: Network-related error for 2D heat equation: normalized error for solu-

tion (PC coefficients) at isolated physical locations for varying PCE-order represen-

tation of links between the nodes for a 4-node network.

methods [12]. Here the iterates are not modified, but stored and used to compute

the new iterate via linear combination. It has been proved that this is analogous

to the so-called Pulay mixing for electronic applications and to non-linear GMRES

[102, 196]. Moreover, the authors in [71] show how AA is related to the multi-secant

quasi-Newton method and, for the linear case, to GMRES.

Anderson Acceleration has been successfully applied to the DDUQ problem in [113].

However, this method is merely algebraic and unrelated to the specificity of the

problem. Therefore, our goal is to improve the performance of the solver accelerated

via AA, possibly exploiting more information about the (non-linear) DDUQ problem.

On the one hand, since the network formulation arises from the DD approach, the

mathematical and geometrical setting suggests the creation of a hierarchy of sub-

problems by combining neighboring components to obtain a coarser network. On

the other hand, the PC modal expansion employed to represent uncertainties in

the UQ problem leads to the idea of coarsening by truncating the PCE at lower

polynomial degrees. With either perspective, the multilevel structure of the problem

is evident. However, while multigrid (MG) methods strongly rely on the concept

99

of mesh coarsening, or on the adjacency graph of the system matrix, the network

problem is mesh-free, and the DDUQ problem may not admit a matrix formulation,

in general. Moreover, the Spectral Theory does not apply to the PCE right away

because the modal coefficients are not just algebraic quantities, since they involve

multiple PDE solves and a projection on the stochastic space. Therefore, a direct

application of the already well-established MG methods is not possible. In order to

understand how the basic principles of MG may be applied to our problem, we start

by recalling some basics concepts (see [42] for details).

3.4.1 The idea

Smoothing processes are characterized by a fast decay of the error in the first few

iterations, followed by a drastic decrease of the convergence rate. This behavior is

explained by the smoothing action of the iterative solver, that quickly filters out

the high-frequency components of the error within the first few iterations, but is

less efficient in damping the slow persistent modes, resulting in the necessity of a

larger computational effort to achieve the same error reduction. Multigrid methods

are designed to accelerate the reduction of the slow components of the error. The

key idea is that slow frequencies on a fine grid are fast frequencies on a coarse grid.

Hence, an approximate solution on the fine grid obtained after few smoothing steps

can be corrected with an accurate approximation of the error on the coarse grid,

which accelerates damping the slow components.

3.4.2 Geometric Multigrid

Consider a linear system in the form

Au = b, (3.38)

with the corresponding residual equation Ae = r. Referring to quantities on the fine

and coarse grid with the subscripts h and H, respectively, what Geometric Multigrid

100

(GMG) does is (see Algorithm 4): calculating an approximate solution on the fine

grid with few iterations and the corresponding residual (line 1); transferring these two

quantities to the coarse grid via a restriction operator R (line 2); solving the residual

equation on the coarse grid to obtain the error (line 3), that is then transferred back

to the fine grid via a prolongation operator P (line 4), to correct the solution (line 5).

Finally, the corrected solution is used as initial guess for some post-smoothing (line

6). This procedure can be applied recursively, generating V-, µ-, or hybrid cycles.

Algorithm 4: Geometric Multigrid method (2 levels)

1 Pre-smoothing: Calculate an approximate solution vh to Ahuh = fh and the

residual rh;

2 Restrict vh and rh to the coarse grid: vH = Rvh, rH = Rrh;

3 Solve the coarse-grid residual equation AHeH = rH ;

4 Interpolate the error on the fine grid: eh = PeH ;

5 Correct the solution on the fine grid: vh ← vh + eh

6 Post-smoothing: Calculate an approximate solution to Ahuh = fh with

initial guess vh.

3.4.3 Full Approximation Scheme (FAS) for non-linear prob-

lems

While for a linear problem like (3.38) the error can be obtained directly from the

residual equation, for non-linear problems more work is necessary, since the residual

itself is non-linear. More precisely, the residual equation yields the approximate

solution perturbed by the error, which is a full approximation of the solution, rather

then the error itself. Then, the error can be obtained as the difference between the

perturbed and the non-perturbed approximate solution. The multigrid method for a

non-linear problem is called “Full Approximation Scheme” (FAS), after this feature.

Consider a system of nonlinear equations

101

A(u) = b, (3.39)

where u, b ∈ Rn. Let v be an approximation to the exact solution u, and e = u−v,

r = b−A(v) the corresponding error and residual, respectively. By substituting the

original equation (3.39) in the definition of the residual, we obtain

A(u)−A(v) = r. (3.40)

Note that, since the operator A is non-linear, it is not possible to express (3.40)

in terms of the error e. In order to employ the non-linear residual equation (3.40)

in a non-linear multigrid method, we express the exact solution u as the current

approximation corrected by the error, i.e., u = v + e, so that equation (3.40) reads

as

A(v + e)−A(v) = r. (3.41)

Hence, one step of the two-level FAS algorithm can be formulated as follows:

Algorithm 5: Full Approximation Scheme (2 levels)

1 Pre-smoothing: Calculate an approximate solution vh of Ah(uh) = fh on the

fine grid and the corresponding residual rh;

2 Restrict the approximate solution and the residual on the coarse grid:

vH = Rvh, rH = Rrh;

3 Solve the coarse-grid problem AH(vH + eH) = AH(zH) = AH(vH) + rH ;

4 Obtain the error on the coarse grid as eH = zH − vH ;

5 Prolongate the error back to the fine grid eh = PeH ;

6 Correct the solution on the fine grid vh ← vh + eh;

7 Post-smoothing: Calculate an approximate solution of Ah(uh) = fh on the

fine grid with initial guess vh.

where P and R are the prolongation and restriction operators, respectively, and the

subscripts h, H refer to the fine and coarse grid, respectively.

102

3.4.4 Algebraic Multigrid

Algebraic Multigrid (AMG) is a grid-free version of the multigrid method, that can

be applied when the physical locations of the unknowns are themselves unknown or

immaterial. For AMG the coarse-grid unknowns are a subset of the original variables.

The grid points are are the indices of the unknowns and the connections within the

grid are determined by the undirected adjacency graph of the matrix. For the sake

of simplicity, assume that A = {aij} is a symmetric M-matrix, i.e., it is symmetric

positive-definite with positive diagonal entries and non-positive off-diagonal entries.

The selection of the coarse grid is based on the following definition:

Definition. Given a threshold value 0 < ϑ ≤ 1, the variable ui strongly depends

on the variable uj if

−aij ≥ ϑmax
k 6=i
{−aik}, (3.42)

i.e., if the coefficient aij is comparable in magnitude to the largest off-diagonal coef-

ficient in the i-th equation. Conversely, if ui strongly depends on uj, then uj strongly

influences ui. Furthermore, we define the following sets:

• Ni, the set of all points j 6= i such that aij 6= 0;

• Ci, the set of neighboring coarse-grid points that strongly influence i;

• Ds
i , the set of neighboring fine-grid points that strongly influence i;

• Dw
i , the set of neighboring fine- or coarse-grid points that do not strongly

influence i.

It can be shown that smooth error varies slowly in the direction of strong con-

nection. Hence, the prolongation (interpolation) operator P = IhH can be defined

as (
IhHe

)
i

=

ei if i ∈ C∑
j∈Ci

ωijej if i ∈ F ,
(3.43)

103

where C and F are the sets of the coarse- and fine-grid variables, respectively, with

C ∩ F = ∅, and ωij are the interpolation weights defined by

ωij = −

aij +
∑
m∈Ds

i

 aimamj∑
k∈Ci

amk

aii +

∑
n∈Dw

i

ain
. (3.44)

Although this is the “traditional” formulation of AMG, alternative definitions for

the coarsening (compatible relaxation-based, path length-based, . . .) and interpola-

tion (long range, adaptive, red-black, . . .) can be found in the literature.

3.5 Multigrid Methods for DDUQ Network Prob-

lems in Matrix Form

For any Multigrid algorithm, the following “ingredients” are required: (i) A sequence

of grids; (ii) Prolongation and restriction operators between grids; (iii) A relaxation

operator; (iv) A coarse-grid version of the relaxation operator; (v) A solver for the

coarse grid. Depending on the definition of the grid, different classes of MG methods

can be derived. As anticipated above, in what follows we design two new MG methods

by defining the grid as the (partially ordered) set of the coefficients of the PCE that

describes the uncertainties (pMG), or as the network (hMG). We derive a formulation

of the method for UQ problems in networks that can be expressed in matrix form,

and we discuss how this approach can be generalized to any network problem.

3.5.1 p-Multigrid

In a generalized spectral expansion, the Spectral Theorem guarantees that, under

suitable assumptions, the most significative information is captured by the low-order

coefficients (associated with the smallest eigenvalues). Hence, solving the residual

104

equation for the lower frequencies is expected to be beneficial for the convergence

of the full solution. The extension of such reasoning to a PCE is not straightfor-

ward. In this case, the coefficients are obtained by integrating a spatial solution

over the stochastic space, and the corresponding approximation is given by a linear

combination of solutions in space, associated with different samples of the parameter

space. The behavior of the solution as a response to the choice of the parameters is

not easily predictable, especially for non-linear problems. Therefore, dropping high-

order coefficients may lead to loss of information and, consequently, to low-quality

corrections.

In order to better understand the effects of a pMG scheme on a problem of uncer-

tainty quantification, as a first step we assess the numerical behavior of the method

for linear problems that admit a matrix formulation.

Prolongation and Restriction Operators. In a UQ network problem, each edge

is the vehicle of the propagation of the uncertainty, in our case represented via the

coefficients of a PCE of order p. Let such coefficients be stored in a vector p of length

N , which we define as the size of the edge. The outcome of a restriction operation on

an edge pF of size NF is a new edge pC of size NC < NF . The restriction operation R

can be defined in different ways. We explore the following alternatives, summarized

in Table 3.1:

• Truncate coefficient : at each pMG level, drop the last coefficient.

• Truncate order : at level l > 1, drop all the coefficients associated with the

order pl = p− l + 2.

• Average forward : at each pMG level, average consecutive coefficients pairwise.

• Average last : at each pMG level, average the last two PCE coefficients.

• Average by order : at level l > 1, average all the PCE coefficients corresponding

to orders p− l + 2 : p.

105

• Average all orders : for each order, average the PCE coefficients corresponding

to the same order (2-level pMG only).

• Average all : average all the PCE coefficients (2-level pMG only).

• Adaptive: use the PCE coefficients at the fine level as a projector (2-level pMG

only).

Type Description NC Operator

Truncate coeff. Drop last coeff. NF − 1 pFNF = 0

Truncate order Drop highest order Nl pFi = 0, i = NC + 1, . . . , NF

Avg forward Avg coeff. pairwise NF − 1 pCi = avg(pFi ,p
F
i+1)

Avg last Avg last two coeff. NF − 1 pCNC = avg(pFNF−1,p
F
NF)

Avg by order Avg highest order Nl + l − 1 pCNl+l−1 = avg(pFNl+1, . . . ,p
F
Nl+1

)

Avg all orders Avg each order p+ 1 pCl = pCNl+l−1 ∀l = 1, . . . , p+ 1

Avg all Avg all coeff. 1 pCNC = avg(pF1 ,p
F
NF)

Adaptive Project on fine sol. 1 vF · pF

Table 3.1: pMG coarsening types.

Then, the prolongation operator P is obtained from R by transposition (P = RT).

Remark. A coarsening of type pMG does not affect the topology or the connec-

tivity of the network. Rather, it acts on the edge size. In other words, pMG is a

conservative (non-intrusive) method, since the network solver can be used as a black-

box. This feature makes it extremely flexible in terms of applicability. Moreover,

from a user perspective it requires no effort in terms of setup.

106

3.5.2 h-Multigrid

In an hMG method, the grid is defined as the network. This means that the nodes

of the coarse network are “hyper-nodes”, obtained by the aggregation of nodes of

the fine network, according to some rule. As a result, the edges of the network are

coarsened as well.

Definition (hMG coarsening type). Level l (≥ 2) of h-MG is of type (ml, nl)l

if components at level l− 1 are combined in intersecting (overlapping) sets of cardi-

nality ml, with intersection (overlap) of cardinality nl.

In order to guarantee that the coarse network is well-defined, the following condi-

tions must be satisfied:

1. ml ≥ 2nl: the connectivity of the graph is uniquely defined (for each input

port there exist one and only one output port connected to it);

2. NC
comp =

NF
comp − nl
ml − nl

: all the components of the coarse network are the same

size.

Condition (2) is enforced to facilitate the implementation of the coarsening but can

be removed.

The definition of coarsening can be applied recursively, to obtain a multiple-level

multigrid method. Figure 3.25 shows an example of (2, 1) − (3, 1)-hMG for a 1D

network of 8 components. Note that, from a geometrical viewpoint, such 3-level

hMG coarsening is equivalent to a 2-level (4, 2) hMG coarsening. More in general,

a 3-level hMG of type (m2, n2)2 − (m3, n3)3 is geometrically equivalent to a 2-level

107

hMG of type (m
(3)
2 , n

(3)
2)2, with

m
(3)
2 =

⌈m3

2

⌉
m2 +

(⌊m3

2

⌋
−
(

1−
(⌈m3

2

⌉
−
⌊m3

2

⌋)))
(m2 − 2n2) +(

1−
(⌈m3

2

⌉
−
⌊m3

2

⌋))
(m2 − n2) ,

n
(3)
2 =

⌈n3

2

⌉
m2 +

(⌊n3

2

⌋
−
(

1−
(⌈n3

2

⌉
−
⌊n3

2

⌋)))
(m2 − 2n2) +(

1−
(⌈n3

2

⌉
−
⌊n3

2

⌋))
(m2 − n2) .

(3.45)

This property can be applied recursively to obtain (m
(l)
2 , n

(l)
2)2 at level l:

Property. An hMG level l of type (ml, nl)l is geometrically equivalent to a 2-level

hMG coarsening of type (m
(l)
2 , n

(l)
2)2, with

m
(l)
2 =

⌈ml

2

⌉
m

(l−1)
2 +

(⌊ml

2

⌋
−
(

1−
(⌈ml

2

⌉
−
⌊ml

2

⌋)))(
m

(l−1)
2 − 2n

(l−1)
2

)
+(

1−
(⌈ml

2

⌉
−
⌊ml

2

⌋))(
m

(l−1)
2 − n(l−1)

2

)
,

n
(l)
2 =

⌈nl
2

⌉
m

(l−1)
2 +

(⌊nl
2

⌋
−
(

1−
(⌈nl

2

⌉
−
⌊nl

2

⌋)))(
m

(l−1)
2 − 2n

(l−1)
2

)
+(

1−
(⌈nl

2

⌉
−
⌊nl

2

⌋))(
m

(l−1)
2 − n(l−1)

2

)
.

(3.46)

For network problems arising from cartesian domains in higher dimensions, the

hMG type is defined as the cartesian product of the 1D hMG coarsening in each

dimension. For instance, a (2, 1) × (3, 1) coarsening of a 2D cartesian domain is

obtained with a (2, 1) coarsening along the x-axis and a (3, 1) coarsening along the

y direction.

Prolongation and Restriction Operators Preliminary studies have been per-

formed on AMG applied to the matrix formulation of a linear 1D heat problem to

understand how algebraic coarsening can be interpreted from a geometrical view-

point. For network UQ problems that admit an algebraic formulation, prolongation

and restriction operators can be designed in a similar fashion. Recalling that the

unknowns at any coarse level are a subset of the unknowns at the finer level(s), a

prolongation operator P can be constructed as follows:

108

1 2 3 4
𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑥(
5 6 7 8

𝑥)

𝑥"*

𝑥""

𝑥"#

𝑥"$

𝑥"%

𝑥+

𝑥,

𝑥-𝑥"
𝑥#

𝑥$
𝑥%

𝑥&
𝑥'

𝑥(
𝑥)
𝑥"*

𝑥""

𝑥"#

𝑥"$

𝑥"%

𝑥+
𝑥,

𝑥-

𝑥."
𝑥.#

𝑥.$𝑥(
𝑥.%

𝑥.& 𝑥-
𝑥.'

𝑥.+ 1 2 3
𝑥."

𝑥.#

𝑥.$𝑥(4 5 6
𝑥.%

𝑥.& 𝑥-
𝑥.'

7
𝑥.+

1 2 3
𝑥(𝑥-

𝑥./" 𝑥./$

𝑥./#

𝑥(𝑥-
𝑥./" 𝑥./$

𝑥./#

(2,1) (2,1)

(3,1) (3,1)

Figure 3.25: Sketch of a (2, 1)− (3, 1) hMG type: Domain Decomposition (left) and

network (right) representation. The action of the prolongation operator is repre-

sented by dashed arrows.

• If the unknown ui on the fine grid is also an unknown on the coarse grid, the

value is injected from the coarse to the fine grid;

• If the unknown ui on the fine grid is not an unknown on the coarse grid, and

the corresponding location in space lies outside the range of output locations

on the coarse grid, then the value is injected from the closest location on the

coarse grid;

• Otherwise, the value is averaged from the two closest locations on the coarse

grid.

Then, the restriction operator is defined as the transposed prolongation operator

(R = P T). A sketch of the prolongation operator is shown in Figure 3.25.

3.5.3 Preliminary results

As a preliminary investigation, we consider the linear 1D heat equation. In this case,

in fact, the UQ problem can be formulated as a system of linear 1D heat problems,

109

one for each PCE coefficient, and can be expressed in matrix form [45]. As a result,

the prolongation and restriction operators can be assembled explicitly and the pMG

algorithm has the same flavor of an AMG method1.

In order to measure the performance of pMG or hMG, we define the serial cost of

one MG iteration as

cMG = 2NF

L−1∑
l=1

cl
cmax

+NC
cL
cmax

, (3.47)

where

• NF , NC is the number of iterations on the fine and coarse grid, respectively,

• L is the number of MG levels,

• cl is the cost of one iteration at level l,

• cmax = max
l=1,...,L

cl = c1.

The performance of all the methods presented here is expressed in terms of the

serial cost defined in (3.47). The cost of a parallel MG solver depends on the choice

of the smoother. If the smoother is a Jacobi iterative solver, at each level the work

of one propagation is distributed across N l
comp processors, where N l

comp is the number

of components at level l, and executed simultaneously in one step. Conversely, if the

smoother is of type Gauss-Seidel, at each level the work of one propagation is dis-

tributed across N l
comp processors and executed in Ns(πl) sequential steps, depending

on the level of parallelism of the pemutation πl of the network components. In either

case, the parallel cost can be expressed as

cparMG = 2NF

L−1∑
l=1

cl
cmax

N l
seq

N l
comp

+NC
cL
cmax

NL
seq

NL
comp

, (3.48)

where N l
seq = 1 or Ns(πl) for a Jacobi or Gauss-Seidel smoother, respectively.

1The code has been developed from the MATAMG toolbox available at [136].

110

pMG

The setting of the tests is summarized in Table 3.2. The performance of the pMG

method is measured in terms of relative residual as a function of number of iter-

ations, time (averaged over 10), and cost in terms of matrix-vector products and

deterministic solves2. In (3.47), the cost of a lower-triangular matrix-vector product

is calculated as

cl = 2

((
N l
pNE

)2 −N l
pNE

2
+N l

pNE

)
, (3.49)

where N l
p is the number of PCE coefficients at level l, and NE is the number of edges

of the network (constant at each level), while the number of deterministic solves is

cl = (pl + 1)d , (3.50)

where pl is the order of the PCE at level l, and d is the dimension of the stochastic

space.

The results for each pMG level are shown in Figures 3.26, 3.27, 3.28, 3.29. The

coarsening types “adaptive” and “average all orders” are the cheapest in terms of

costs (in fact they support only two levels), whereas “average last” is the fastest in

terms of time (for L > 2). However, in general none of the pMG coarsening types

brings a significant improvement compared to the standard relaxation process and

AMG features the best performance in all the cases.

hMG

The hMG method is tested on the linear 1D heat problem in matrix form with

parameter setting as in Table 3.3. The hMG coarsening types tested are listed

in Table 3.4. Note that not any combination of coarsening is feasible, due to the

constraint (2) stated in paragraph 3.5.2.

2The cost of pMG with coarsening type “average by order” is currently overestimated. It is

possible to work out a more precise formula for it, but it has not been done yet, since the results

are not promising.

111

Parameter Description Value

Lx Length of the physical domain 1

NFE Number of FE 10

Ncomp Number of network components 32

p PCE order 5

Np Number of PCE coefficients 21

T1, T2 Stochastic boundary conditions Random (loaded)

csnType Coarsening type All of above

L Number of pMG levels 1, . . . , p

intpType Interpolation type All of above

smoother Smoother for pMG Gauss-Seidel

ω Relaxation parameter 1

perms Permutations 1 : Ncomp

NV cycles Maximum number of V-cycles 10, 000

tol Tolerance for stopping criterion 10−3

NF = NC Interations on fine/coarse grid 1, . . . , 3

Table 3.2: pMG for linear 1D heat DDUQ network problem: parameter setting.

112

0 1000 2000 3000 4000
Iterations on fine grid

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=1, N levels=2

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=2, N levels=2

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=3, N levels=2

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

100 101 102 103 104

Incremental Cost [mat-vec products]

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=2

100 101 102 103 104

Incremental Cost [mat-vec products]

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=2

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=3, N levels=2

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=2

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=2

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100
R

el
at

iv
e

re
si

du
al

Relative Residual vs. Incremental Cost, N fine=3, N levels=2

10-4 10-2 100 102

Time

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=1, N levels=2

10-4 10-2 100 102

Time

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=2, N levels=2

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=3, N levels=2

Figure 3.26: 1D heat test: 2-level pMG relative residual vs. number of iterations

(top), incremental cost in terms of matrix-vector products (upper center) and number

of deterministic solves (lower center), and time (bottom) for NF = NC = {1, 2, 3}
(left-right).

113

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=1, N levels=3

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=2, N levels=3

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=3, N levels=3

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=3

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=3

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=3, N levels=3

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=3

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=3

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100
R

el
at

iv
e

re
si

du
al

Relative Residual vs. Incremental Cost, N fine=3, N levels=3

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=1, N levels=3

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=2, N levels=3

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=3, N levels=3

Figure 3.27: 1D heat test: 3-level pMG relative residual vs. number of iterations

(top), incremental cost in terms of matrix-vector products (upper center) and number

of deterministic solves (lower center), and time (bottom) for NF = NC = {1, 2, 3}
(left-right).

114

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=1, N levels=4

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=2, N levels=4

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=3, N levels=4

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=4

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=4

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=3, N levels=4

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=4

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=4

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100
R

el
at

iv
e

re
si

du
al

Relative Residual vs. Incremental Cost, N fine=3, N levels=4

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=1, N levels=4

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=2, N levels=4

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=3, N levels=4

Figure 3.28: 1D heat test: 4-level pMG relative residual vs. number of iterations

(top), incremental cost in terms of matrix-vector products (upper center) and number

of deterministic solves (lower center), and time (bottom) for NF = NC = {1, 2, 3}
(left-right).

115

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=1, N levels=5

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=2, N levels=5

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

0 1000 2000 3000 4000
Iterations on fine grid

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Iterations on Fine Grid, N fine=3, N levels=5

truncate coeff
truncate order
forward avg
high-freq avg
full avg
all-orders avg
order avg
adaptive
strong connection
Relaxation

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=5

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=5

100 101 102 103 104

Incremental Cost [mat-vec products]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=3, N levels=5

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=1, N levels=5

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Cost, N fine=2, N levels=5

100 101 102 103 104

Incremental Cost [#deterministic solves]

10-4

10-3

10-2

10-1

100
R

el
at

iv
e

re
si

du
al

Relative Residual vs. Incremental Cost, N fine=3, N levels=5

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=1, N levels=5

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=2, N levels=5

10-4 10-2 100 102

Time

10-4

10-3

10-2

10-1

100

R
el

at
iv

e
re

si
du

al

Relative Residual vs. Incremental Time, N fine=3, N levels=5

Figure 3.29: 1D heat test: 5-level pMG relative residual vs. number of iterations

(top), incremental cost in terms of matrix-vector products (upper center) and number

of deterministic solves (lower center), and time (bottom) for NF = NC = {1, 2, 3}
(left-right).

116

As for the pMG test cases, the performance is measured in terms of relative residual

as a function of number of iterations, time (averaged over 10), and cost in terms of

matrix-vector products and deterministic solves. Here, in (3.47) the cost of a lower-

triangular matrix-vector product is calculated as

cl = 2

((
NpN

l
E

)2 −NpN
l
E

2
+NpN

l
E

)
, (3.51)

where Np is the number of PCE coefficients (constant at each level), and N l
E is the

number of edges of the network at level l, while the number of deterministic solves is

cl = N l
comp (p+ 1)d , (3.52)

where N l
comp is the number of components at level l, p is the order of the PCE, and

d is the dimension of the stochastic space.

Note that, unlike a pMG coarsening, the accuracy of the stochastic representation

of the unknown in terms of PCE (i.e., the edge size) is constant across levels, whereas

the number of edges decreases at each level.

The results for L = {2, 3, 4} levels are shown in Figures 3.30-3.35. First of all,

as a consistency check, notice that (2, 1)-hMG coincides with 2-level AMG (strong

connection), as expected (see Figures 3.30-3.31). In general, for a 2-level hMG the

slowest types are those with no overlap (n2 = 0), whereas the fastest are those

that maximize the overlap ratio ((16, 8), (8, 4), (4, 2): n/m = 50%). Interestingly,

among the fastest hMG types, (8, 4) is the best, probably because it achieves the

best trade-off between accuracy and propagation speed.

For more than 2 levels, a performance analysis is less straightforward. As for the

basic case, Figures 3.32-3.33 show that (2, 1) − (3, 1)-hMG is equivalent to 3-level

AMG, as expected, and the slowest hMG types are those with no overlap at the

second level (n2 = 0). Although it is hard to identify the coarsening type that has

the best performance for L ≥ 3, a comparison across the levels shows that number

of iterations, costs and times decrease significantly as the number of levels increases

(see also Figures 3.34-3.35). This justifies further investigation on more complex

cases.

117

Parameter Description Value

Lx Length of the physical domain 1

NFE Number of FE 10

Ncomp Number of network components 64

p PCE order 5

Np Number of PCE coefficients 21

T1, T2 Stochastic boundary conditions Random (loaded)

csnType Coarsening type see Table 3.4

L Number of hMG levels 2, 3, 4

intpType Interpolation type As above

smoother Smoother for hMG Gauss-Seidel

ω Relaxation parameter 1

perms Permutations 1 : Ncomp

NV cycles Maximum number of V-cycles 10, 000

tol Tolerance for stopping criterion 10−6

NF = NC Interations on fine/coarse grid 1, 2, 3

Table 3.3: hMG for linear 1D heat DDUQ network problem (matrix form): parameter

setting.

118

2 levels 3 levels 4 levels

(2, 0) (2, 0)− (2, 1)

(2, 0)− (4, 2)

(2, 1) (2, 1)− (3, 1) (2, 1)− (3, 1)− (3, 1)

(2, 1)− (7, 3)

(4, 0) (4, 0)− (4, 1)

(4, 0)− (4, 2)

(4, 1) (4, 1)− (3, 1) (4, 1)− (3, 1)− (4, 1)

(4, 1)− (9, 3)

(4, 2) (4, 2)− (3, 1) (4, 2)− (3, 1)− (3, 1)

(4, 2)− (6, 1)

(8, 0) (8, 0)− (2, 1)

(8, 0)− (4, 2)

(8, 0)− (3, 1)

(8, 0)− (5, 1)

(8, 1)

(8, 4) (8, 4)− (3, 1) (8, 4)− (3, 1)

(8, 4)− (8, 1)

(16, 4) (16, 4)− (3, 1)

(16, 8) (16, 8)− (3, 1)

Table 3.4: hMG types for linear 1D heat DDUQ network problem.

119

0
20

00
40

00
60

00
80

00
10

00
0

Ite
ra

tio
ns

 o
n

fin
e

gr
id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=1

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=2

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=3

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=1

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=2

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=3

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
30

:
1D

h
ea

t
te

st
:

2-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

n
u
m

b
er

of
it

er
at

io
n
s

(t
op

)
an

d
ti

m
e

(b
ot

to
m

)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

120

10
0

10
5

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
0

10
5

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
0

10
5

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
0

10
5

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
0

10
5

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

10
0

10
5

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=2

[2
 0

]
[2

 1
]

[4
 0

]
[4

 1
]

[4
 2

]
[8

 0
]

[8
 1

]
[8

 4
]

[1
6

4]
[1

6
8]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
31

:
1D

h
ea

t
te

st
:

2-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

in
cr

em
en

ta
l

co
st

in
te

rm
s

of
m

at
ri

x
-v

ec
to

r

p
ro

d
u
ct

s
(t

op
)

an
d

n
u
m

b
er

of
d
et

er
m

in
is

ti
c

so
lv

es
(b

ot
to

m
)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

121

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=1

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=2

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=3

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=1

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=2

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=3

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
32

:
1D

h
ea

t
te

st
:

3-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

n
u
m

b
er

of
it

er
at

io
n
s

(t
op

)
an

d
ti

m
e

(b
ot

to
m

)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

122

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=3

[2
 0

;2
 1

]
[2

 0
;4

 2
]

[2
 1

;3
 1

]
[2

 1
;7

 3
]

[4
 0

;4
 1

]
[4

 0
;4

 2
]

[4
 1

;3
 1

]
[4

 1
;9

 3
]

[4
 2

;3
 1

]
[4

 2
;6

 1
]

[8
 0

;2
 1

]
[8

 0
;4

 2
]

[8
 1

;3
 1

]
[8

 1
;5

 1
]

[8
 4

;3
 1

]
[8

 4
;8

 1
]

[1
6

4;
3

1]
[1

6
8;

3
1]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
33

:
1D

h
ea

t
te

st
:

3-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

in
cr

em
en

ta
l

co
st

in
te

rm
s

of
m

at
ri

x
-v

ec
to

r

p
ro

d
u
ct

s
(t

op
)

an
d

n
u
m

b
er

of
d
et

er
m

in
is

ti
c

so
lv

es
(b

ot
to

m
)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

123

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=1

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=2

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

0
10

00
20

00
30

00
40

00
50

00
Ite

ra
tio

ns
 o

n
fin

e
gr

id

10
-8

10
-6

10
-4

10
-2

10
0

Relative residual

R
el

at
iv

e
R

es
id

u
al

 v
s.

 It
er

at
io

n
s

o
n

 F
in

e
G

ri
d

, N
fi

n
e
=3

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=1

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=2

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
-4

10
-2

10
0

10
2

T
im

e

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l T

im
e,

 N
fi

n
e
=3

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
34

:
1D

h
ea

t
te

st
:

4-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

n
u
m

b
er

of
it

er
at

io
n
s

(t
op

)
an

d
ti

m
e

(b
ot

to
m

)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

124

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t

[m
at

-v
ec

 p
ro

du
ct

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=1

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=2

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

10
0

10
1

10
2

10
3

10
4

In
cr

em
en

ta
l C

os
t [

#d
et

er
m

in
is

tic
 s

ol
ve

s]

10
-8

10
-6

10
-4

10
-2

10
0

Relative residualR
el

at
iv

e
R

es
id

u
al

 v
s.

 In
cr

em
en

ta
l C

o
st

, N
fi

n
e
=3

, N
le

ve
ls

=4

[2
 1

;3
 1

;3
 1

]
[4

 1
;3

 1
;4

 1
]

[4
 2

;3
 1

;3
 1

]
[8

 4
;3

 1
;3

 1
]

A
M

G
R

el
ax

at
io

n

F
ig

u
re

3.
35

:
1D

h
ea

t
te

st
:

4-
le

ve
l

h
M

G
re

la
ti

ve
re

si
d
u
al

v
s.

in
cr

em
en

ta
l

co
st

in
te

rm
s

of
m

at
ri

x
-v

ec
to

r

p
ro

d
u
ct

s
(t

op
)

an
d

n
u
m

b
er

of
d
et

er
m

in
is

ti
c

so
lv

es
(b

ot
to

m
)

fo
r
N
F

=
N
C

=
{1
,2
,3
}

(l
ef

t-
ri

gh
t)

.

125

3.6 h-Multigrid Methods for UQ in Networks

A matrix formulation of the network problem may not be available, either because

of the intrinsic non-linearity of the problem, or because of the heterogeneity of the

components. Therefore, while the notion of network coarsening can still be applied,

the prolongation and restriction operators as well as the smoother and the solver

on the coarse network need to be re-designed. In what follows we discuss how it is

possible to generalize the matrix version of the methods to network form, highlighting

some delicate issues that need particular care, or desirable mathematical properties

that require some effort to be guaranteed. Numerical results are work in progress

and will be presented in [?].

3.6.1 Prolongation and restriction operators

Since the hyper-nodes of the coarse networks are aggregates of the nodes of the fine

network, the edges of the coarse network are a subset of the edges of the fine network.

Consequently, the restriction operator R selects the edges of the fine network that are

also edges of the coarse network and injects the corresponding values of the solution.

Conversely, the construction of a prolongation operator is more involved. First of

all, notice that the effect of a network propagation at the coarse level is that new

values for the outputs are generated not only for the edges of the coarse network,

but also for those edges of the fine network that are dropped during the coarsening.

If the mesh is preserved across levels, such values are directly accessible. Differently,

if the mesh of a component of the coarse network is coarser than the corresponding

one at the fine level, the values can be retrieved via interpolation. Either way, the

solution after a propagation in the coarse network is defined both on the edges of

the coarse network and on “dummy” edges within each component, corresponding

to the dropped edges of the fine network. The dummy edges are inherited from the

fine-level network and remain inactive during the propagation in the coarse network.

However, since the solution to a propagation in the coarse network is defined herein,

126

it can be injected to the fine network.

It is desirable for a generic MG method to satisfy the variational property defined

by [42]

fH (xH ,uH) = Rfh (PxH ,uh) . (3.53)

For an hMG method this is hard to obtain because of the non-uniqueness of the

solution on the overlapping region, but the prolongation operator can be designed

so that relation (3.53) holds (at least) for some choices of propagation. For instance,

suppose that the propagator fH (xH ,uH) is one iteration of Gauss-Seidel or Jacobi,

and that the prolongation operator fulfills the additional property that, if an output

edge of component i of the fine network is an output edge of component j of the

coarse network, then the input edges of component i are injected from component j.

Then, the variational property (3.53) is satisfied. To see this, consider the Domain-

Decomposition setting in Figure 3.36 (top) with a 2-level coarsening of type (3, 1),

and corresponding network representation as in Figure 3.36 (center). Suppose that

all the outputs are initialized to zero, with some non-zero exogenous inputs xL, xR.

Then, after one iteration of Jacobi on the coarse grid, the solution is as in Figure

3.36 (top). Now, we wish to prolongate such solution to the fine network, run one

Jacobi iteration on the fine network, restrict back to the coarse network and find the

same outputs we started with.

Consider output x2 of the fine network, which is output x̂1 of component ΩC
1 of the

coarse network. The value at such location on the fine network depends on outputs

x1 and x7. If the prolongation operator injects the value to output x7 from the

corresponding location of the component ΩC
2 , the solution at output x2 on ΩF

2 will

be inconsistent with the solution on ΩC
1 . Therefore, since output x2 is generated by

component ΩF
2 , which belongs to component ΩC

1 , all the inputs to component ΩF
2

have to be injected from ΩC
1 .

More formally, consider the dual network in Figure 3.36 (bottom), which is obtained

from the network above by switching the role of nodes and edges (subdomains and

outputs, respectively). This representation is convenient to highlight the dependen-

127

cies between edges. The outputs of the fine network that are outputs of the coarse

network are highlighted in red. For instance, output x2 is determined by output x1

and output x7 through component ΩF
2 . Note that overlapping components leads to

the replication of outputs (in the intersection). For each “red” node (x2 ∈ ΩC
1 and

x6 ∈ ΩC
2), select the adjacent input nodes ({x1,x7} ⊂ ΩC

1 and {x3,x5} ⊂ ΩC
2). In

order for the variational property to be satisfied, the solution on this instance of the

fine edges has to be injected. Any other duplicate (x7 ∈ ΩC
2 , x3 ∈ ΩC

1) has to be

discarded.

Property (1) is relatively easy to implement in the 1D case because each coarse

edge can correspond to one and only one fine edge. However, as the dimensionality

of the domain grows, each edge of the coarse network can be a subset of edges of

the fine network (see Figure 3.37), which makes the variational property hard to

implement.

3.6.2 Smoother and coarse-grid operators

The relaxation operator is a block-Jacobi or block-Gauss-Seidel network solver. A

Jacobi iteration is equivalent to “splitting” all edge data so that all the components

can perform uncertainty propagation independently and simultaneously at each iter-

ation. Gauss-Seidel, instead, is equivalent to decomposing the network in a directed

acyclic graph, so that each iteration corresponds to propagation in a feed-forward

network.

Note that, since each coarse component is a sub-network, one may define the local

solver on each coarse component to be a network solver. However, in such a way

a coarse network solve would be equivalent to a solve on the fine network, with

a particular choice of permutations. Therefore, in order to apply a MG method,

the coarse local solver must be a (stochastic) solver on the whole physical coarse

component. Moreover, the cost of one deterministic solve on a coarse component

should be approximately the same as the cost of a deterministic solve on a fine

component. In a traditional Multigrid fashion, this can be achieved by coarsening

128

the mesh on each coarse component. Alternatively, one may fix the mesh size, and

reduce the cost of a deterministic solve via Reduced-Order Models.

3.6.3 The definition of the residual

We wish to solve the network problem (3.5) on the fine network. To easy the reading,

with abuse of notation we will omit the adjacency matrix Iyx, to highlight the fixed-

point nature of the problem, which leads to the iterative procedure

xkh = fh
(
xk−1
h ,uh

)
, (3.54)

with corresponding residual

rkh = −Ah(x
k
h,uh) = fh

(
xkh,uh

)
− xkh. (3.55)

The definition (3.55) is non-intrusive, since it only involves the network solver (3.5).

Differently, a more intrusive definition could include the residual of the PDE solver

defined on each subsystem. For the sake of completeness, we present the FAS for-

mulation for this case as well.

Consider the local stochastic problem defined on the i-th subsystem

Qi(xi,up,i) = Fi(fi ,xi ,uBC ,i), (3.56)

where Q defines a (PDE) problem on each local component, up,i are the (stochastic)

parametric inputs, fi is the forcing term of the deterministic problem, and uBC,i are

the (stochastic) exogenous boundary conditions, and the corresponding vectorization

Q(x,up) = F(f ,x,uBC). (3.57)

This leads to the iterative process on the fine network

Qh(x
k
h,uh,p) = Fh(fh ,x

k−1
h ,uh,BC), (3.58)

with corresponding residual

rkh = Fh(fh ,x
k
h ,uh,BC)−Qh(xk

h ,uh). (3.59)

One step of FAS consists of the following steps:

129

𝑥" 𝑥# 𝑥$𝑥% 𝑥& 𝑥'

Ω")

𝑥* 𝑥+ 𝑥, 𝑥-

Ω$) Ω&) Ω+) Ω,)

𝑥." 𝑥.$𝑥* 𝑥-

Ω"/ Ω$/

(a) Domain-Decomposition setting: prolongation operator (dashed

arrows) between fine (top) and coarse (bottom) domain.

1 2 3 4

𝑥"

𝑥#

𝑥$

𝑥%

𝑥&

𝑥'

𝑥(
5

𝑥)

𝑥*

𝑥+

1 2

𝑥,"

𝑥,$

𝑥(𝑥+

(b) Fine (top) and coarse (bottom) network representation.

𝑥" 𝑥#𝑥$

𝑥%𝑥&

𝑥'𝑥(

𝑥)𝑥* 𝑥+

Ω"- Ω#-

𝑥."𝑥$ 𝑥+𝑥.#

Ω#/

Ω#/ Ω(/

Ω(/ Ω'/

Ω'/ Ω)/

Ω'/

Ω'/Ω(/

Ω(/Ω#/

Ω#/Ω"/

Ω"/

Ω)/

Ω"-
Ω#-

Ω"-
Ω#-

(c) Fine (top) and coarse (bottom) dual network.

Figure 3.36: Variational property for hMG: 1D example.

130

1

2

3

4

1

2

Ω"#

Ω$# Ω%#

Ω&#

Figure 3.37: (2, 0) × (1, 0)-hMG coarsening: Domain Decomposition setting (left),

fine (center) and coarse (right) network representation. The action of the coarsening

is depicted with dashed lines. Note that the (thick) edges of the coarse network are

subsets of (thin) edges of the fine network.

1. Pre-smoothing: obtain xkh and rkh;

2. If R and P are the restriction and prolongation operators between the fine and

the coarse network, respectively, restrict xH,0 = Rxkh.

3. Compute QH(xH,0,uH,p), where QH is the global stochastic solver on the coarse

network. Note that this operation consists of:

• Evaluating the PCE coefficients of each local solution at the quadrature

nodes (or samples);

• Building the local matrix corresponding to each sample and applying it

to the sampled solution;

• Calculating the PCE coefficients of such resulting samples.

131

Solve the coarse-network problem

QH(zH ,uH,p) = QH(xH,0,uH,p) +Rrkh (3.60)

4. Compute the error eH = zH − xH,0 and prolongate it to the fine network:

eh = PeH ;

5. Correct the solution on the fine grid xkh ← xkh + eh;

6. Post-smoothing: Calculate an approximate solution of Qh(x
k
h,uh,p) = Fh(fh ,x

k−1
h ,uh,BC)

on the fine network with initial guess xkh.

The MG formulation that derives from definition (3.59), however valid, in some sense

defeats the purpose of the DDUQ method to treat each component (and the relative

solver and discretization) as a black-box. Therefore, definition 3.55 will be used in

future numerical experiments.

3.7 Conclusions

In this Chapter we addressed the issue of propagating uncertainties in large-scale

networks, which is often impractical or even intractable, due to the computational

burden. While domain-decomposition based methods for UQ in large-scale problems

have been proposed in the literature, they are still tied to the need of (unaffordably)

expensive high-fidelity simulations, or to poor scalability properties. The DDUQ

method that we propose is a bottom-up approach that exploits the benefits of Do-

main Decomposition in an offline phase to decompose the system in elementary

components, so that UQ (and potentially model reduction) can be performed on-

line only locally, at the (tractable) subsystem level. This approach is (i) rigorous,

since it enforces strong compatibility constraints by matching random variables; (ii)

weakly and strongly scalable with respect to the number of components; (iii) gen-

eral, because each network component can be treated as a black-box with its own

132

physics, solver, discretization, etc.; (iv) modular, because it facilitates the design of

the network configuration by handling components as in a Lego-like approach.

While this approach facilitates the parallel execution of the solver, with a dramatic

reduction of the execution time, the underlying fixed-point iteration is known to

feature slow convergence. Besides Anderson Acceleration, we propose novel multigrid

methods tailored to the network problem, to further accelerate convergence. While

lower-order truncations of the PCE are not beneficial, coarsening the network by

clustering adjacent components improves convergence even more than the traditional

algebraic multigrid method. The method has been validated on a wide variety of MG

configurations for 1D problems that admit an algebraic formulation. We refer to [?]

for more elaborate numerical results in higher-dimensional domains.

We explore the potential of DDUQ combined with model reduction in Chapter

4, on 3D vector problems. Further investigations will address non-stationary prob-

lems, and the combination of the multigrid methods proposed here with Anderson

Acceleration.

133

Chapter 4

Reduced-order models for

uncertainty quantification in the

cardiovascular network via DDUQ

Acknowledgements. This chapter contains part of the content of the paper [96],

written in collaboration with Alonso Mansilla Alvarez, Pablo Blanco, Kevin Carlberg,

and Alessandro Veneziani, that has been part of the research of the author during a

visiting period at the Scientific Computing National Laboratory of Brazil.

4.1 Introduction

Over the last decades, we assisted to a breakthrough of computational hemodynam-

ics into clinical practice, as a tool to support clinicians in the decision process of

surgical planning and clinical trials [185, 54, 76]. This change, that is expected to

consistently affect the implementation of clinical protocols, has been possible thanks

to the recent advances in mathematical and computational models, as well as to the

availability and accessibility of computational resources. However, simulating the

complex physiological, biological, and mechanical dynamics of the whole cardiovas-

cular system (CVS) or of portions of it - not to mention the integrated simulation of

the interaction between the CVS and other physiological compartments - is still an

134

open challenge. For such large-scale problems, the amount of computational power

required by high-fidelity models, such as the Finite Element Method (FEM), can

be prohibitive, and the access to off-site or remote computational platforms is often

impractical for many users, such as hospitals, due to privacy and security policies

that have to be enforced at all times [92, 91]. Moreover, (i) the time due to the phys-

ical transfer of data, (ii) the potential wait time associated with the use of shared

resources, (iii) the execution time of the simulation, and (iv) the post-processing op-

erations, may make numerical models impractical for fast-paced clinical environment

[97] (see Chapter 5).

Reduced-order models (ROMs) have been developed and used to alleviate the com-

plexity of the problem. One-dimensional models, for example, average the cross-

sectional dynamics, resulting in a 1D description of the blood vessel, representative

only of the main-stream dynamics [104, 76, 33]. Then, the effect of other physiolog-

ical compartments or of the peripheral circulation on the local hemodynamics can

be encoded in the boundary conditions via lumped-parameter models [197, 76, 33].

These models are widely employed to study the propagation of pressure waves in-

duced by the mutual interaction between the fluid and the wall of compliant blood

vessels. In fact, the interplay between anomalous pressure waves and pathologies like

atherosclerotic plaques or devices like stents is of great interest from a medical view-

point [161, 85, 177]. However, the transverse dynamics of the blood flow, which plays

a major role in the initiation and development of diseases like stenoses or aneurysms

[115], are completely ignored, which makes these models often impractical from the

clinical perspective.

In addition, both high- and low-fidelity mathematical and numerical models still

suffer from several limitations, such as (i) underlying assumptions that may not be

true in general [179]; (ii) missing data, such as boundary conditions, physical forces,

parameters, geometry, flow-split, and material properties, among others [72, 194, 43];

(iii) intrinsic variability of parameters and data - not only from patient to patient,

but also within the same individual, depending on physiological conditions (e.g., rest

135

vs. stress) [76, 74]; (iv) numerical errors in the approximation process. These limi-

tations motivated the design of mathematical and numerical techniques to quantify

the model uncertainty (or reliability). However, because of these factors, feasibility

and reliability of numerical simulations are in fact competing goals. Quantifying

the uncertainty (reliability) of accurate mathematical models is often computation-

ally unfeasible, while simplified, computationally affordable models are not accurate

enough for clinical purposes.

Uncertainty quantification (UQ) studies on the cardiovascular network (CVN) have

been performed, e.g., in [201, 51, 166, 189, 165]. In [201], uncertainties are described

via a generalized polynomial chaos expansion (gPCE), and sensitivity analysis is

performed via stochastic collocation methods. The study is applied to 1D models

of a simple bifurcation with one source of uncertainty (a model parameter encod-

ing geometric and mechanical properties of the vessel) for each branch, and of a

realistic network of 37 vessels, with one random parameter for each segment. A

more sophisticated analysis is carried out in [51] by splitting the flow into an elastic

and a visco-elastic component, and studying the sensitivity of the solution in a one-

dimensional arterial network with 103 segments and 47 outflow boundaries. Flow

rate, terminal resistance, reference area of the arterial wall, and Young modulus, are

first considered individually as univariate sources of uncertainty. Then, wall thick-

ness, viscosity, density, characteristic time, capacitance, and external and venous

pressure are added to the former uncertainties and studied as an ensemble. Finally,

47 values of resistance and 103 instances of reference area - one for each outflow and

segment, respectively - are considered. While these studies are realistic in terms of

dimension of the stochastic problem and in the sources of uncertainty, they still rely

on the simplistic 1D reduced models.

UQ preliminary studies in 3D vascular models via stochastic collocation were first

performed in [165], and applied to idealized models of an abdominal aortic aneurysm

(AAA) and of a carotid artery bifurcation, and to a patient-specific geometry of a

Fontan surgery for congenital heart defects. Uncertainties are modeled via simple

136

distributions (Gaussian, Uniform) and the number of random parameters is limited

to one or two. Schiavazzi et al. in [166] assess the confidence of virtual surgery hemo-

dynamics predictions for single ventricle palliation. First, distributions of boundary

conditions that match the observed right pulmonary artery flow split and average

pulmonary pressure are obtained via Bayesian parameter estimation. Then, the un-

certainty is propagated to characterize predictions of post-operative hemodynamics

in models with and without pulmonary artery stenosis. The solution of the forward

problem is obtained with 3D geometric multiscale simulations, that required the

computational power of a large parallel cluster. The more recent studies in [189]

assess confidence in predictions of wall shear stress and wall strain in 3D patient-

specific geometries with arterial and venous grafts, obtained with multi-scale models

that account for uncertainty in peripheral compartments and material properties. A

stochastic submodeling approach is developed to reduce the computational cost of

several multi-scale solutions required by the stochastic model. A polynomial surro-

gate is trained on a set of full-model simulations, to predict the boundary conditions

of the sub-model (the grafts). In this way, a large number of less expensive simula-

tions can be run only in the regions of interest.

Although far from being exhaustive, two major challenges or limitations related

to conducting UQ analysis in the CVS stand out: (i) Reduced 1D models can be

inaccurate in capturing anomalies of the physiology in presence of cardiovascular

pathologies like stenoses or aneurysms, especially since quantities of clinical interest

such as the wall shear stress (WSS), related to cross-sectional dynamics, are inacces-

sible; (ii) Full 3D models are extremely costly and require computational resources

that may not be easily accessible by users like healthcare institutions.

In this work we propose a new flexible reduced-order model of the CVS to retrieve

a level of accuracy comparable to 3D models roughly at the same computational

cost as 1D models, while efficiently quantifying its reliability. This is achieved by

(i) enabling rapid and scalable simulations in decomposable systems - such as the

cardiovascular network, by propagating the uncertainty information via Domain De-

137

composition (DD) techniques, and performing uncertainty quantification and model

reduction locally, at the component level, following the guidelines of the DDUQ

method introduced in the previous Chapter, and by (ii) replacing the simplified 1D

models with educated reduced models capable of retaining the local cross-sectional

dynamics, by properly enriching the one-dimensional main dynamics, as illustrated

in Chapter 2.

This Chapter is organized as follows. Section 4.2 presents an overview of the so-

called TEPEM reduced-order model, already mentioned in Chapter 2. In Section

4.3, we describe the UQ problem for hemodynamics applications, and the DDUQ-

TEPEM coupling proposed for the efficient and accurate quantification of uncertain-

ties. Numerical examples are reported and analyzed in Section 4.4. In Section 4.5 the

DDUQ method is validated on unsteady stochastic problems based on 1D reduced

models, and concluding remarks are drawn in Section 4.6.

4.2 The Transversally-Enriched Pipe-Element Method

Recently proposed as a numerical strategy oriented to simulate the blood flow in

three-dimensional patient-specific vasculature, the Transversally-Enriched Pipe-Element

Method (TEPEM) has proven to be an effective strategy to deal with the trade-off

between accuracy and computational burden, which strongly limits the massive use

of current numerical approximations in real clinical applications. In [127, 128], this

methodology was introduced and extensively tested on synthetic and patient-specific

vasculatures. Several numerical results addressed in former works highlight the TE-

PEM ability to speed up hemodynamic simulations while maintaining a level of

precision comparable with the one provided by high-fidelity FE method. As for Hi-

Mod, the effectiveness of this novel numerical strategy relies on the combination of

an educated discretization of the geometrical domain - tailored to geometries that

feature a leading direction coupled with transverse dynamics that can be locally rel-

evant, and a sort of enriched one-dimensional approximation for the physical fields

138

which allow us to take into account the transverse dynamics, commonly dropped

by classical reduced-order models and of major relevance to understand the local

flow dynamics. Although TEPEM and HiMod were originally conceived to speed-up

blood flow simulations, the strategy is quite general and can be applied to any prob-

lem set on pipe-like domains (e.g., gas/water pipes networks, fluvial networks, etc.).

The basic ingredients of TEPEM are described in this section.

4.2.1 Pipe discretization strategy

In the TEPEM methodology, the region of interest is assumed to be a connected

network of tubular structures, as presented in Figure 4.1. Let us consider a domain

Ω ⊂ R3 of this type. By slicing this structure along the centerline we obtain a one-

dimensional partition composed by a reduced number of elements, named as pipe-

elements, and generically denoted by K. This partition, Th(Ω), is characterized by

the mesh parameter h, that stands for the axial length of the pipe-elements.

Each pipe-element K ∈ Th(Ω) clearly identifies the axial direction, where the

fluid is driven, and the direction where the secondary dynamics occurs, named as

transversal direction. For each element, a geometrical mapping χK : K0 7→ K is

defined between the reference pipe-element K0 = [−1, 1]3 (in ξηζ−space) and the

physical pipe element (in xyz−space) as:

χK(ξ, η, ζ) =
3∑

k=1

12∑
i=1

xkiSi(ξ, η)Qk(ζ), (4.1)

where {Si : i = 1, . . . , 12} is the set of cubic Serendipity functions defined in the

square [−1, 1]2 (see [204]), the set {Qk : k = 1, 2, 3} is the classical Lagrangian basis

for the space P2([−1, 1]) (quadratic polynomials defined on the segment [−1, 1]), and

the points {xki } are selected on the lateral surface of the deformed element. As a

result, the geometrical representation of each pipe-element relies on the combination

of piecewise cubic and quadratic polynomials. The main difference between TEPEM

and HiMod lies precisely in the mapping between the physical and the reference

139

Figure 4.1: Details of a pipe-type discretization of a patient-specific vasculature, red

line stands by the centerline. (a) Discretization of a non-branched region slabbing the

geometry along the centerline. (b) Mesh refinement by axial (left) and transversal

(right) split. (c) Discretization of a junction through the use of the transition element

K∗. (c) Mapping relating deformed and reference pipe-element.

element: while the former method maps a tubular structure into the unit cube -

which is very convenient because of the Cartesian setting but introduces singularities

(corners), the latter employs a unit cylinder as a reference domain, resulting in a

smooth map (which is essentially a scaling of the physical radius) that, however,

suffers from the intrinsic singularity of a polar reference system (the origin).

Special attention is needed to perform a pipe-type discretization in complex regions,

as junctions, due to the lack of a mainstream direction inside those structures. As

seen in panel (a) in Figure 4.1, tubular branches are discretized by slabbing the ge-

ometry along the centerline and condensing the local secondary dynamics in a single

element. As commonly performed in classical by-element strategies, each element can

be subdivided to locally refine the mesh. In this case, each pipe-element (with length

h) can be split in two ways: (i) In the axial direction, obtaining two pipe-elements

with axial length h/2, or (ii) In the transversal direction, obtaining two pipe-elements

with the same length h, each covering a portion of the transversal section. Both al-

140

ternatives are outlined in panel (b) in Figure 4.1. This refinement strategy allows

us to naturally cluster two (or more) pipe-elements in the transversal section of re-

gions with higher complexity (geometrical or physical) and, specifically for the case

of discretize branched domains, decompose the mesh in one sub-mesh where a single

pipe-element is employed for the local secondary dynamics (non-bifurcated branches)

and another where two pipe-elements are considered in the transversal direction (for

the discretization of the junctions). Finally, these two sub-meshes are conformally

coupled through the introduction of the so-called transition element, denoted by

K∗, as can be seen in panel (c) in Figure 4.1. For a deeper description of the pipe-

type discretization, as well as further details of the transition element, the reader is

referred to [126, 128].

4.2.2 Transversally enriched approximation

The TEPEM and HiMod can be understood as a smooth fashion to link one-dimensional

approximations (where the transversal dynamic is commonly dropped) and full three-

dimensional approximations. The ability to a priori control the model capabilities

relies in the way in which physical fields are approximated in the reference element.

Any scalar field w, defined in the domain Ω, is approximated with TEPEM by the

function wh defined by

wh ◦ χK(ξ, η, ζ) =
s+1∑
k=1

(
p+1∑
i,j=1

whijkφi(ξ)φj(η)

)
ϕk(ζ), K ∈ Th(Ω), (4.2)

where Th(Ω) is a pipe-type discretization of Ω, p and s are positive integer numbers,

and the sets {φi : i = 1, . . . , p + 1} and {ϕi : i = 1, . . . , s + 1} are Lagrangian bases

for the spaces Pp([−1, 1]) and Ps([−1, 1]), respectively. The parameters p and s are

denominated as transversal and axial polynomial order, respectively, and the func-

tions {φi}i and {ϕi}i as transversal and axial approximation functions. Formally, any

scalar field w is approximated through a function wh living in the finite-dimensional

141

space Tp,s
h , defined as

Tp,s
h =

{
wh ∈ L2(Ω) : wh ◦ χK ∈ [Pp]

2 × Ps, K ∈ Th(Ω)
}
. (4.3)

Notice that the TEPEM and HiMod approximation spaces (4.3) and (2.12), respec-

tively, share the same structure of a one-dimensional approximation enriched with a

transversal modal basis. However, while the radial HiMod basis functions are cou-

pled to the angular functions through the angular frequency, the TEPEM transversal

functions are completely decoupled thanks to the Cartesian reference setting. More-

over, by the way in which the approximation functions are defined, this structure

allows to independently control the model capabilities according to the direction,

enriching the capacities to represent the transverse phenomena by increasing the

value of the parameter p or, analogously for the axial direction, by increasing the

value of the parameter s. Assuming that the local transversal dynamics on each

pipe-elements can be satisfactorily approached by considering a reduced number of

transversal functions, while the axial dynamics can be approximated employing low

order polynomials, we choose 4 ≤ p ≤ 10 and, for the axial dynamic, 1 ≤ s ≤ 2,

leading to a drastic reduction of the computational burden (we refer to Chapter 2

for more details on the problem size reduction).

In [31], it was noticed that spurious oscillations appear in the TEPEM approx-

imation if polynomials defined on equidistant nodes are employed as transversal

functions. In fact, it is known from interpolation theory that the use of high-order

Lagrange polynomials defined on a uniformly spaced set of nodes is affected by spu-

rious oscillations, commonly referred to as Runge phenomenon (see [67]). Differently,

the Chebyshev-Gauss-Lobatto (CGL) nodes, defined as

xi = − cos

(
i− 1

p
π

)
i = 1, . . . , p + 1, (4.4)

for a fixed value of p, are proved to mitigate the spurious oscillations by clustering

nodes near the end-points of the interval [−1, 1] (see Figure 4.2). Therefore, in order

to avoid the appearance of spurious oscillations in the TEPEM solution, the selected

142

(a) Degrees of freedom by transversal plane. A total of 75

degrees of freedom are considered.

(b) Magnitude of four transversal basis for the case p = 4.

Figure 4.2: (a) Geometrical distribution of the degrees of freedom, on a generic pipe-

element, for the combination p = 4 and s = 2. (b) Planar view of some functions on

the transversal basis for p = 4.

functions employed for the transversal approximation are Lagrange polynomials de-

fined on the CGL set.

4.3 Uncertainty quantification on blood flow prob-

lems

As illustrated in Section 4.1, the traditional methods that can be found in the liter-

ature for quantifying uncertainties in large-scale problems suffer from the intensive

computational cost associated with high-fidelity models, or from inaccuracy due to

the reduced 1D models. In this context, DDUQ and TEPEM feature the perfect

capabilities to “fill the gap” between feasibility and reliability: while, on one hand,

143

the DDUQ method provides an effective way to quantify the model uncertainties by

promoting the independence of the subsystems, on the other hand, the TEPEM pro-

vides an effective way to solve the local problems maintaining accuracy and reduced

computational burden.

Thus, in this work we embed the TEPEM solver into the DDUQ framework, in

order to provide relevant statistical information about quantities of clinical interest,

such as the wall shear stress, with a level of detail currently out of reach for the

traditional one-dimensional models, and in a fraction of the computational time

demanded by full three-dimensional approaches.

4.3.1 Blood flow problem

The blood motion is described by the incompressible Navier-Stokes equations, com-

pleted with suitable boundary conditions [76]. Let us denote by Ω ∈ R3 an isolated

region from the cardiovascular system and by Γ its boundary. The whole bound-

ary can be subdivided into three regions: inlet (Γi), outlet (Γo) and lateral (ΓL)

boundaries. We assume inlet and outlet boundaries to be planar sections, and ΓL

to be a smooth surface (see Figure 4.3). At either boundaries Γi and Γo, Neumann

or Dirichlet boundary conditions can be prescribed. In more realistic scenarios, we

may expect that not all the data needed by the mathematical model is available

(defective data problems). In this case, we may consider other approaches for the

prescription of boundary conditions, like Lagrange multipliers [72], the distribution

of a total resistance among multiple outlets [43, 194], the control approach [78, 79],

or generally the geometric multiscale approach [155]. Over the lateral boundary ΓL,

no-slip boundary conditions are considered for the velocity field.

The flow dynamic is totally described through the velocity (u) and pressure (p)

fields, and the variational formulation of this problem reads as follows: find (u, p) ∈

144

Figure 4.3: Schematic setting for the model problem. In the example, the domain Ω

is an isolated region from the intracranial system.

V × L2(Ω) such that∫
Ω

[
ρ
∂u

∂t
· û + ρ(∇u)u · û + 2µε(u) · ε(û)− p div û− p̂ div u

]
dΩ =∫

Γi

tin · û dΓi +

∫
Γo

ton · û dΓo ∀(û, p̂) ∈V × L2(Ω), (4.5)

where ρ and µ are the fluid density and viscosity, respectively, ε(·) = (∇(·))S is the

symmetric part of the gradient, n is the outward normal unit vector, the hat sign (̂·)
denotes an admissible variation of field (·), and ti and to are given data which stand

for the magnitude of the normal component of the traction vector imposed at Γi and

Γo, respectively. The space V is defined as

V = {u ∈ H1(Ω); u|ΓL
= 0, (Πnu)|Γi

= 0, (Πnu)|Γo = 0}, (4.6)

with H1(Ω) = [H1(Ω)]3, and where Πn = I − n ⊗ n is the projection operator over

the surface with normal unit vector n. Since the domain is an isolated region of

the cardiovascular system, we assume that the incoming and outgoing fluid is fully

developed by enforcing the condition (Πnu) = 0 on the inlet and outlet boundaries.

In the TEPEM scope, the numerical solution of the fluid flow problem is obtained

by discretizing the domain Ω with a pipe-type mesh Th(Ω), and by approximating

145

the velocity and pressure fields by the functions uh ∈V
p
h and ph ∈ Q

p
2
h , respectively,

in the discrete spaces defined as

V
p
h =

[
Tp,2
h

]3 ∩ C(Ω) ∩V, Q
p
2
h = T

p
2
,1

h ∩ C
∗(Ω), (4.7)

where p ∈ N is an even parameter which stands for the transversal order of the

model, and C∗(Ω) stands for the space of continuous functions with discontinuities

at the interfaces of transition elements. This combination, inspired by classical inf-

sup stable spaces for FEM and spectral methods, is expected to fulfill the inf-sup

condition due to the absence of spurious modes in all the simulations addressed so

far. Furthermore, this combination satisfies the discrete inf-sup test proposed by

Chapelle in [48], which can be understood as a numerical proof of the pair stability

(see [126]). In general, the inf-sup condition for HiMod-type discretizations is an

open problem. A specific proof is available only for 2D cases, with a combination of

polynomials (axial)/sinusoidal (transverse) functions (see [26]).

4.3.2 Geometrical decomposition of the vasculature

In [128], a simple procedure to discretize patient-specific vasculatures in pipe-type

elements was presented. This procedure can be easily adapted to perform an auto-

matic decomposition of the whole vasculature with overlapping components, taking

each bifurcation in the geometry as a basic component of this subdivision. Then,

each component is discretized with a pipe-type mesh. The decomposition process,

outlined in Figure 4.4, follows these steps:

(i) An overlapping by-bifurcation partitioning of the centerline is performed. Since

the decomposition of a one-dimensional structure is a trivial process, this step

do not introduce further complexities in the whole algorithm.

(ii) A global decomposition is performed by applying the algorithm presented in

[128] to each centerline segment, to construct the vasculature components and

the corresponding pipe-discretization. In this step, artificial internal boundaries

146

Figure 4.4: Details in the geometrical decomposition. Left: Decomposition of the

centerline in two components (red and blue lines) with a common portion (green

line). Center: Generation of the three-dimensional components with the creation of

interfaces (∂Ωin). Right: Local decomposition of each component.

are created for each component (denoted as ∂Ωin) and where suitable boundary

conditions need to be imposed to achieve (at the convergence) the continuity

of the global velocity field.

(iii) An auxiliary internal decomposition on each three-dimensional component is

performed by splitting the overlapping section from the rest of the whole com-

ponent, which allows exchanging information between neighboring subdomains.

As we detail in the next subsection, each subdomain is connected to its neigh-

bors by a Lagrange-multiplier approach that enforces the continuity of the

velocity field on corresponding interface sections of adjacent components. For

example, the continuity of the velocity field over the internal cross-section of Ω2

(denoted as γ2→1) that corresponds to the artificial boundary ∂Ωin
1 of compo-

nent Ω1 is enforced through an outer traction that plays the role of a Lagrange

147

multiplier. It is important to highlight that this subdivision is performed at

the level of the pipe discretization of each component, without the creation of

any additional component for the DD algorithm.

This algorithm exploits the pipe structure of the domain of interest to reduce the

complex task of decomposing a three-dimensional geometry and meshing the gener-

ated overlapping components into a simple routine of decomposing a one-dimensional

centerline. This 1D-like decomposition is extremely inexpensive. As matter of fact,

the geometrical decomposition and meshing process for the larger geometry addressed

in this work (Section 4.4) takes less than 0.5 minutes.

4.3.3 Formulation by subdomain

Let us consider an overlapping partition {Ω1, . . . ,Ωn} of the region of interest Ω, i.e.,

Ω =
n⋃
k=1

Ωk, with Ωk ⊂ Ω and Ωi∩Ωj 6= ∅ for any i, j ∈ {1, . . . , n}, i 6= j. In order to

ease the notation in the definition of the blood flow problem, we introduce the forms

NΩ((u, p); (û, p̂)) =

∫
Ω

[
ρ
∂u

∂t
· û + ρ(∇u)u · û + 2µε(u) · ε(û)− p div û− p̂ div u

]
dΩ

(4.8)

LΩ((û, p̂)) =

∫
∂Ω

t · û dΓ, (4.9)

then, the so-called monolithic problem can be formulated as: find (u, p) ∈V×L2(Ω)

such that

NΩ((u, p); (û, p̂)) = LΩ((û, p̂)) ∀(û, p̂) ∈V × L2(Ω). (4.10)

Using the same notation, in each component Ωk (k = 1, . . . , n) we define the local

problem as: find (u, p, t) ∈Vk × L2(Ωk)×Tk such that

NΩk
((u, p); (û, p̂)) +

n∑
i=1

∫
γk→i

[
JuK · t̂k→i + JûK · tk→i

]
dΓ =

LΩk
((û, p̂)) +

n∑
i=1

∫
γi→k

ti→k · û dΓ ∀(û, p̂) ∈Vk × L2(Ωk)×Tk, (4.11)

148

with ti→k the traction computed in the component Ωi and imposed as a boundary

condition on the component Ωk, J·K denotes the jump of the function and the spaces

Vk and Tk defined by

Vk =

{
u ∈ H1(Ωk); u|ΓL∩∂Ωk

= 0, (Πu)|Γi∩∂Ωk
= 0, (Πu)|Γo∩∂Ωk

= 0

}
, (4.12)

Tk =
{

(tk→1, . . . , tk→n) : tk→i ∈ H1/2(γk→i), i = 1, . . . , n
}
. (4.13)

Notice that, imposing the traction on each artificial boundary, we are ensuring that

each local problem is well-defined with the corresponding spaces for velocity and pres-

sure. Also, the space Tk is formed by the Lagrange multipliers employed to enforce

the continuity in the velocity field in the component Ωk. In a domain decomposition

framework, the values of the traction from neighboring subdomains are enforced on

the corresponding artificial boundaries ∂Ωk as boundary conditions. Then, the local

problems are solved (simultaneously in an additive strategy), and the traction on

the internal interfaces γk→i is computed to be exchanged at the next iteration. The

process is repeated until convergence is reached (we refer to Section 4.4 for details

on the convergence criterion).

4.3.4 The DDUQ-TEPEM algorithm

Our solver is characterized by a nested structure (see Figure 3.4). At the outer level,

the network solver receives global stochastic BC and model parameters as inputs,

and handles the relaxation iterative process until convergence. At each iteration,

the exogenous inputs specific to each component are selected, and the endogenous

inputs are exchanged. With a block-Jacobi network solver, since all the components

are decoupled, the endogenous interface conditions can be exchanged simultaneously;

with a Gauss-Seidel or SOR network solver, the order in which they are exchanged

depends on the permutation of the network components, which can be picked to

maximize the level of concurrency. Then, for each component, the local stochastic

solver evaluates the Q realizations of the stochastic inputs, and calls the TEPEM

149

deterministic solver for each instance of the inputs. Finally, the output PC coeffi-

cients are computed according to (3.10), and the termination criterion is checked by

the network solver. The process is repeated until convergence. The general features

of the method are reported in Chapter 3 and in [45].

The stochastic component of the problem is handled via the C++ library UQTk

[61], developed at the Sandia National Laboratories, which has been embedded in a

MATLAB implementation of the DDUQ network solver.

4.4 Numerical results

To study the numerical and predictive capabilities of the coupling TEPEM-DDUQ

for the quantification of uncertainties in fluid flow simulations, two sets of studies are

addressed: (i) weak scalability tests in phantom branched domains, and (ii) accuracy

tests in more realistic vasculatures generated from the one-dimensional ADAN model

[32]. The scalability properties of the DDUQ method have been previously tested

in [45] on linear and non-linear scalar equations in 1D or 2D elementary domains,

as reported in Chapter 3. The numerical results feature excellent scaling for all the

variations of the network solvers. Here, for the first time we extend the scalability

benchmarking of the DDUQ solver to non-linear vector problems in 3D domains.

The performance of the solver with such setting is not easily predictable, due to

the complexity and intrinsic randomness of the underlying physics induced by the

higher-dimensional non-linearity of the governing equations. In addition, while the

stochastic solver in [45] relies on an underlying high-fidelity FE deterministic model,

here we attempt accurate UQ based on deterministic ROM, to alleviate the cost of

subsystem sampling. Finally, we move from academic proof of concept to real-life

applications by simulating UQ in patient-specific geometries.

150

4.4.1 Test setting

For all the cases addressed, the fluid flow is simulated in a steady state regime

with deterministic fluid density ρ = 1.04 g/cm3 and viscosity µ = 0.04 P (although

stochastic model parameters are also supported by the method). Since a stochastic

solution in closed form is unavailable, statistical moments of the quantities of interest

(QoI) are computed in the whole domain monolithically as a reference solution.

The uncertainties are assumed to be Gaussian, with variability set to 10% of the

corresponding average value, and are represented via first-order PCE. The additive

version of the DDUQ network solver with Anderson Acceleration [12] is employed,

with termination criterion based on relative residual, where the tolerance is set to

ε = 10−4, and the normalization factor is the norm of the first DDUQ Jacobi iterate

with zero initial condition. It has been verified numerically that the level/order of

the quadrature rules is accurate enough to capture the variability of the physics.

Since the focus of this preliminary work is showing the effectiveness of the strategy,

rather than quantifying the potential computational saving, the TEPEM inner solver

uses a direct serial algebraic LU solver on the local problem. The natural parallelism

of the system matrix assembling phase will be exploited in future studies. Differently,

due to the large size of the monolithic domain, the reference solution sampling is

performed by TEPEM using an iterative GMRES method. Within each subsystem

(in a DDUQ or monolithic setting) the sampling is sequential, although the use of

shared-memory paradigms for parallel execution can be applied and will be subject

of future studies.

All the numerical experiments presented here have been performed on Intel(R)

Core(TM) i7-2600 CPU @ 3.40GHz machines.

4.4.2 Scalability tests

Weak scalability is tested on three different network configurations. Networks 1 and

2 feature a binary structure that mimics the physiological topology of the human

151

(a) From left to right: Network 1, Network 2, Network 3.

Subnetwork 1

Subnetwork 2

Subnetwork 3

Subnetwork 4

(b) Basic component employed in the whole system decomposition and subnetworks.

Figure 4.5: Geometrical setting for the weak scalability test. Three phantom

branched geometries are considered and decomposed employing a single bifurcation

as basis component.

vascular system, with one and two global inflows, respectively. Network 3 is char-

acterized by a denser connectivity, that allows modeling multiple internal merging

flows. In each network, the basic component is a bifurcated vessel with constant

radius, where each branch may feature different length or radius, depending on the

network configuration. The description of these geometries is outlined in Figure 4.5.

To study how the problem scales with respect to the problem size, each network is

subdivided in four levels or subnetworks.

As said before, we consider stochastic boundary conditions and deterministic den-

sity and viscosity, although stochastic model parameters are also supported by the

152

method. In particular, since the number of outlets increases with the network size,

uncertainty is localized only at the inlets, so that the dimension of the stochastic

space is constant for every subnetwork. It is also worth stressing that uncertainty

in boundary data for cardiovascular simulations is an important topic, in view of

massive use of numerical modeling in the clinical routine, as done, for instance, by

the company HeartFlow [1].

Deterministic stages are solved employing the TEPEM with transversal polynomial

order p = 4, which was verified to be enough to obtain convergence of the Navier-

Stokes equation. The spatial discretization considers 50 pipe-elements on each basic

component, corresponding to an axial discretization with size h = 0.1, and the

overlap between components is composed by 6 pipe-elements.

For each network configuration, the cost of a local stochastic solve is fixed as the

network size increases. The scalability of the solver is measured in terms of number

of iterations to convergence and ideal parallel execution time as functions of the

network size. In an ideal scenario with no constraints on computational resources,

the additive network solver is embarrassingly parallelizable by defining a task as

one local stochastic solve, and by creating a one-to-one task-processor mapping.

This way, the ideal parallel time Tp (i.e., not including overhead) is computed as

the sum of the execution time of the slowest processor at each iteration, over all

iterations. Analogously, the ideal serial time Ts is the sum of the execution times of

all components over all iterations. In formulae,

Tp =
nε∑
j=1

max
i=1,...,n

T ji , Ts =
nε∑
j=1

n∑
i=1

T ji , (4.14)

where nε is the number of iterations to convergence, n is the number of network

components, and T ji is the execution time of component i at iteration j. Then, the

ideal speedup is given by S = Ts/Tp.

Figure 4.6 shows that the number of iterations and the ideal parallel time grow

sub-linearly with respect to the number of network components, which highlights

the scalability properties of the DDUQ approach also for vector problems in 3D

153

geometries, with a roughly linear ideal speedup. The accuracy of the DDUQ solver is

tested against a high-fidelity solution obtained with a traditional UQ approach in the

corresponding monolithic domain. The quantities of interest relative error of mean

value and standard deviation normalized by the high-fidelity solution is bounded as

the network size increases (see Figure 4.7). As assessed in [45], this confirms that

the local PCE truncation error is not propagated through the iterative process. A

detailed report of the accuracy of the proposed strategy, together with the total

number of components and pipe-elements needed to discretize each subnetwork, is

presented in Table 4.1. Note that, as for the DDUQ scalability studies on 2D scalar

problems in Chapter 3, the error on higher-order moments (i.e., in this case, the

standard deviation), is higher than the corresponding error on lower-order moments.

Moreover, the error on the expected value decreases with the network size. This

is due to the fact that, in a domain decomposition framework, adding components

entails additional exchange of information through the interfaces, leading to a more

accurate approximation. This corrective effect does not happen for higher-order

moments, since the error is dominated by the PCE truncation error.

4.4.3 Towards realistic geometries

Increasing the geometrical complexity on the numerical assessment, we study the

accuracy of the proposed strategy on two domains, named Geometry A and Geometry

B, which are constructed based on the one-dimensional ADAN model according to

the radii information. These two cases represent different levels of complexity: (i)

In the number of sources of uncertainties, and (ii) In the geometrical structure (and

consequently on the network size), as can be seen in Figure 4.8. As before, to

measure the accuracy of the coupling DDUQ-TEPEM we compare the predicted

results against a reference solution obtained with traditional UQ approach in the

whole domain. Besides the average value and standard deviation of the quantities of

interest, we are also interested in the spatial distribution of the coefficient of variation

(CV) of the QoI, also known as relative standard deviation [70]. The CV is computed

154

0 10 20 30

N components

10

20

30

40

N
 i
te

ra
ti
o

n
s

nwk1

nwk2

nwk3

0 10 20 30

N components

1000

1500

2000

2500

3000

P
a

ra
lle

l
ti
m

e
 [

s
]

nwk1

nwk2

nwk3

0 10 20 30

N components

0

10

20

30

S
p

e
e

d
u

p

Nwk1

Nwk2

Nwk3

linear1

Figure 4.6: TEPEM-DDUQ weak scalability: number of iterations (top), ideal par-

allel time (center), and speedup (bottom) of network 1 (◦), network 2 (×), network

3 (�).

155

3 7 15 31

N components

10
-5

10
-4

10
-3

10
-2

R
e

la
ti
v
e

 e
rr

o
r

P avg

P std

WSS avg

WSS std

3 6 12 24

N components

10
-4

10
-2

R
e

la
ti
v
e

 e
rr

o
r

P avg

P std

WSS avg

WSS std

3 8 15 24

N components

10
-5

10
-4

10
-3

10
-2

R
e

la
ti
v
e

 e
rr

o
r

P avg

P std

WSS avg

WSS std

Figure 4.7: TEPEM-DDUQ weak scalability: relative error for pressure expected

value (◦) and standard deviation (�), and WSS expected value (×) and standard

deviation (+) for network 1 (top), network 2 (center) and network 3 (bottom).

156

T
ab

le
4.

1:
N

u
m

b
er

of
co

m
p

on
en

ts
(D

D
)

an
d

p
ip

e-
el

em
en

ts
(P

ip
e)

em
p
lo

ye
d

to
d
is

cr
et

iz
e

ea
ch

su
b
n
et

w
or

k
.

A
ls

o,
ar

e
p
re

se
n
te

d
th

e
re

la
ti

ve
er

ro
r

in
th

e
av

er
ag

e
(a

v
g)

an
d

st
an

d
ar

d
d
ev

ia
ti

on
(s

td
)

fo
r

th
e

p
re

ss
u
re

an
d

w
al

l
sh

ea
r

st
re

ss
b

et
w

ee
n

th
e

D
D

U
Q

-T
E

P
E

M
so

lu
ti

on
an

d
th

e
m

on
ol

it
h
ic

so
lu

ti
on

fo
r

th
e

th
re

e
n
et

w
or

k
s

co
n
si

d
er

ed
on

th
e

sc
al

ab
il
it

y
te

st
.

E
le

m
en

ts
P

re
ss

u
re

er
ro

r
W

S
S

er
ro

r

D
D

P
ip

e
A

v
g

S
td

A
v
g

S
td

N
et

w
or

k
1

S
u
b
n
et

w
or

k
1

3
19

6
3.

88
·1

0−
5

1.
46
·1

0−
3

7.
14
·1

0−
4

3.
91
·1

0−
3

S
u
b
n
et

w
or

k
2

7
44

8
6.

60
·1

0−
5

2.
86
·1

0−
3

4.
59
·1

0−
4

3.
56
·1

0−
3

S
u
b
n
et

w
or

k
3

15
95

2
4.

39
·1

0−
5

1.
72
·1

0−
3

2.
47
·1

0−
4

2.
08
·1

0−
3

S
u
b
n
et

w
or

k
4

32
1

96
0

3.
01
·1

0−
5

2.
90
·1

0−
3

9.
86
·1

0−
5

2.
96
·1

0−
3

N
et

w
or

k
2

S
u
b
n
et

w
or

k
1

3
19

5
7.

90
·1

0−
5

6.
35
·1

0−
3

5.
73
·1

0−
4

6.
20
·1

0−
3

S
u
b
n
et

w
or

k
2

6
40

2
1.

36
·1

0−
5

6.
15
·1

0−
4

6.
68
·1

0−
5

1.
23
·1

0−
3

S
u
b
n
et

w
or

k
3

12
81

0
7.

29
·1

0−
6

2.
31
·1

0−
3

1.
78
·1

0−
5

2.
33
·1

0−
3

S
u
b
n
et

w
or

k
4

24
1

62
6

9.
17
·1

0−
6

3.
33
·1

0−
3

1.
11
·1

0−
5

3.
25
·1

0−
3

N
et

w
or

k
3

S
u
b
n
et

w
or

k
1

3
19

6
2.

99
·1

0−
5

9.
01
·1

0−
4

1.
33
·1

0−
4

3.
58
·1

0−
3

S
u
b
n
et

w
or

k
2

8
46

2
3.

71
·1

0−
5

7.
08
·1

0−
4

1.
32
·1

0−
4

3.
30
·1

0−
3

S
u
b
n
et

w
or

k
3

15
82

7
1.

87
·1

0−
5

7.
40
·1

0−
4

9.
97
·1

0−
5

2.
86
·1

0−
3

S
u
b
n
et

w
or

k
4

24
1

29
1

1.
06
·1

0−
5

2.
43
·1

0−
3

8.
27
·1

0−
5

3.
56
·1

0−
3

157

Figure 4.8: Three-dimensional geometries constructed based on the 1D ADAN model.

(a) Isolated section from the intracranial system. Uncertainties are imposed on

the inlet and also on the four outlets with 10% of variability on each boundary

(σ0 = 0.1q0, σi = 0.1pi, i = 1, . . . , 4). (b) Left coronary arterial tree. Uncertainties

are imposed on the inlet (10% of variability) and two outlets (variability of 0.1). The

other boundaries are outlets with deterministic zero traction.

as the ratio of the standard deviation to the average value, and provides a measure

of the dispersion of the output distribution that is independent from the variable’s

unit measure. More specifically, the higher the CV, the higher the QoI variability.

The first geometry (left panel of Figure 4.8) is a small structure composed by 7

branches, 3 bifurcations, and 5 global boundaries. This structure is decomposed in

three subnetworks - one per bifurcation. Uncertainties are introduced at each global

boundary, with a level of variability of 10%. Specifically, the inlet flow is equal

to q0 = 0.25 cm3/s and, on the outlets, the normal component of the traction is

defined by the values p1 = 1 800 dyn/cm2, p2 = 1 500 dyn/cm2, p3 = 1 600 dyn/cm2

and p4 = 2 000 dyn/cm2. These values are selected to be in concordance with

physiological values. Notice that the number of uncertainty sources increases the

dimension of the PCE space (dim = 5) and also the number of samples needed for

158

WSS avg [dyn/cm²]

WSS std [dyn/cm²]

Pressure CV

(a)

(b)

(c)

WSS CV

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 4.9: Geometry A. Left: Global view of the coefficient of variation of the pres-

sure computed via DDUQ-TEPEM strategy. Right: Quantities of interest related to

the WSS on three selected regions.

the convergence (samples = 81), in comparison with the simpler examples addressed

in the scalability test part.

In Figure 4.9 the pressure CV in the whole geometry as well as the detailed view

of the WSS statistical moments on the three junctions are presented. As expected,

the pressure CV is higher in proximity of the sources of the uncertainty (inlets and

outlets), and lower in the interior of the domain, with a maximum value of the same

order of the input variability percentage (10%). The pattern of the WSS spatial

distribution in proximity of the bifurcations is similar in mean value and standard

deviation. However, in this case the CV is much higher in the smaller vessels, indi-

159

cating that a low mean WSS is typically characterized by a higher variability.

For the second geometry, a left coronary arterial tree, we consider three sources

of uncertainty. On the inlet, a flow value of q̃0 = 0.5 cm3/s with variability of 10%

is considered. Two outlets are selected, as seen in the right panel of Figure 4.8, to

consider a stochastic traction with zero mean value and a variation of 0.1. Over the

other outlets, zero traction is considered. The geometrical complexity of this case is

higher in comparison with the former cases. Therefore, a higher spatial variability

of the QoI is expected. On this larger structure, the proposed strategy allow us

to obtain a detailed spatial description of the statistical moments and, for a better

visualization, five regions were selected to present the average, standard deviation

and CV of the WSS field (see Figure 4.10). As seen in the first geometry, the average

and standard deviation spatial patterns are quite similar (but with different order

of magnitude), and with a maximum value for the average of the same order of the

imposed variability (10%). In the same figure we can see that the higher values of

the CV are localized near the junctions (specially at the tip of each bifurcation),

suggesting the need of further research to check a possible relation between this (or

other) statistical index with regions prone to develop cardiovascular diseases.

A detailed comparison of the errors summarized in Table 4.2 confirms the accuracy

of the DDUQ method on 3D non-trivial geometries, even when using ROM for sam-

pling. In the same table are also detailed the number of component, pipe-elements

employed in the discretization of the whole geometry and the parameters related to

the PCE space.

4.5 DDUQ for unsteady problems

In this section we extend the DDUQ method to unsteady problems. In this case,

we follow a discretize-then-split-procedure. This means that we first discretize in

time, then we apply the DDQ approach at each time step. Here, we consider the

traditional 1D models, that describe the fluid-structure interaction (FSI) between

160

(a) (b)

WSS avg [dyn/cm²]

WSS std [dyn/cm²]

WSS CV

(c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 4.10: Geometry B. WSS average (top), standard deviation (std) and coeffi-

cient of variation (CV) on five selected regions.

161

Table 4.2: Relative error in the average and standard deviation for the pressure and

wall shear stress between the DDUQ-TEPEM solution and the monolithic solution for

the three networks considered on the scalability test. Also, the number of components

considered on the DD partition and the number of pipe-elements for each subnetwork

are reported.

Geo Components PCE space Pressure error WSS error

DD Pipe Dime NS Avg Std Avg Std

A 3 296 5 81 8.84 · 10−5 5.87 · 10−4 1.26 · 10−4 1.06 · 10−3

B 9 719 3 37 2.71 · 10−4 1.74 · 10−3 2.75 · 10−4 2.15 · 10−3

blood and vessel wall. In future work, we plan to model FSI with TEPEM, and to

embed it in the evolutionary version of the DDUQ solver.

4.5.1 Reduced 1D models

Reduced 1D models have been widely used in the literature as an efficient tool to

represent the main dynamics of a large portion of the cardiovascular system at an

affordable cost (see, eg., [76, 201, 51, 125, 155, 73, 74, 77]). Although these models are

extremely simplified compared to the real 3D dynamics, they are easy to interpret,

which makes them “user-friendly”, especially when the users are clinicians. In what

follows we recall the 1D governing equations following the notation and definitions

in [76], we describe how the DDUQ approach can be applied to unsteady problems,

and we validate it by comparing numerical results with the literature.

Fluid-structure interaction model

Consider a compliant pipe with rectilinear axis along the x direction, spanning the

interval [xin, xout]. The governing equations - conservation of mass and momentum

- are derived from Reynold’s transport theorem [151] by averaging, respectively, the

162

unit constant and the velocity on the cross-section, which yields [76]
∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂p

∂x
+KR

Q

A
= 0,

(4.15)

where A, Q, p denote, respectively, the cross-sectional area, the flux, and the pressure.

The coefficient KR > 0 represents the viscous resistance of the flow per unit length

of pipe, and ρ is the blood viscosity. Equations (4.15) can be re-written in a more

compact form as
∂Q

∂t
+
∂G

∂x
(Q) = B(Q), (4.16)

where

Q =

[
A

Q

]
, G =

 Q

Q2

A
+

∫ A

A0

a

ρ

∂p

∂a
da

 , B =

 0

−KR
Q

A
− A

ρ

(
∂p

∂A0

∂A0

∂x
+
∂p

∂β

∂β

∂x

) .
(4.17)

As the number of unknowns exceeds the number of equations, it is common prac-

tice to close the system by providing a constitutive relationship that describes the

pressure p as a function of the vessel area A. For instance, by assuming that the wall

is instantaneously in equilibrium with the pressure forces acting on it, the following

physical law can be derived [76]:

p(x, t) = p0 + β(x)

(√
A(x)

A0(x)
− 1

)
, (4.18)

where

β(x) =

√
πh0E(x)

(1− ν2)
√
A0(x)

, (4.19)

being p0 the external pressure, h0 and A0 the vessel thickness and cross-sectional area

at the equilibrium state, E the Young modulus, and ν the Poisson ratio, typically set

to 1/2, since the blood vessel walls are practically incompressible. More sophisticated

constitutive laws can be derived adding, for example, a model of the viscoelastic

behavior of the vessel [125].

163

Boundary conditions

By recalling that Q = Au, where u is the average velocity, system (4.16) can be

re-written in non-conservative form as

∂U

∂t
+ H

∂U

∂x
(Q) = f(Q), (4.20)

where

U =

[
A

u

]
, H =

 u A

c2

A
u

 , f =

 0
1

ρ

[
KRu−

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

] , (4.21)

and c2 =
β
√
A

2ρ
. The matrix H has two real eigenvalues λ1,2 = u±c and corresponding

eigenvectors lT1,2 = [±c/A, 1], and characteristic variables W1,2 = u ± 4c (Riemann

invariants). Notice that, through the definition of c, the characteristic variables W1,

W2 can be expressed in terms of the system variables A, u (or Q), and conversely.

For the typical values of the physical parameters in the cardiovascular system, the

system is strictly hyperbolic and subcritical (λ1 > 0, λ2 < 0). Therefore, only one

condition at each boundary is required.

Typically, at the proximal boundary we prescribe a given velocity (or flux) profile

uin(t) or pressure function pin(t) (or area, through the constitutive law (4.18)). If

both pieces of information are available, the boundary condition can be encoded in

the incoming Riemann invariant W1 as

W1(xin, t) = W1 (uin(t), pin(t)) . (4.22)

At the distal boundary, we will enforce absorbing conditions as W2 = 0, or reflecting

conditions W2 = −αW1, with 0 < α ≤ 1, that model, respectively, a pressure wave

exiting the domain, or (partially) reflected.

The boundary conditions enforce one constraint at each boundary. However, when

solving the global system, the values of both variables Q (or u) and A need to be

164

calculated. A compatibility relation to close the boundary problem can be obtained

by projecting equation (4.20) onto the outgoing characteristics, which yields

dW2(x(t), t)

dt
− lT2 f(U) = 0 (4.23)

at x = xin, and analogously for W1, l1 at x = xout. Equation (4.23) can be approxi-

mated by following the characteristics backward. With a first-order discretization in

time, we have

W2(xin, t
n+1) = W2(xin − λ2∆t, tn) + ∆tlT2 f(U) := W ∗

2 . (4.24)

The identity (4.24) is known as extrapolation of the characteristic variable.

Bifurcations modeling

The 1D model of a compliant blood vessel can be extended to represent bifurcations

via non-overlapping domain decomposition techniques. If applied repeatedly, this

procedure allows modeling the whole arterial tree.

Consider a simple bifurcation where the parent vessel Ω1 branches out into two

daughter vessels Ω2, Ω3 (see Figure 4.11, left). At the branching point x∗, area and

velocity at the outlet of the parent vessel, and at the inlet of each daughter vessel

need to be determined, for a total of six unknowns (see Figure 4.11, center). The

corresponding equations are obtained by (i) enforcing the conservation of mass flux

through the bifurcation point; (ii) enforcing the continuity of the total pressure pT =

ρu2/2 + β
(√

A−
√
A0

)
across the boundary; (iii) extrapolating the characteristics

165

as in (4.24). As a result, the system of equations reads as

u1A1 = u2A2 + u3A3

ρu1
2

2
+ β1(

√
A1 −

√
A0,1) = ρ

u22
2

+ β2(
√
A2 −

√
A0,2)

ρu1
2

2
+ β1(

√
A1 −

√
A0,1) = ρu3

2

2
+ β3(

√
A3 −

√
A0,3),

u1 + 4A1
1/4
√

β1
2ρ

= W ∗
1,1

u2 − 4A2
1/4
√

β2
2ρ

= W ∗
2,2

u3 − 4A3
1/4
√

β3
2ρ

= W ∗
2,3

(4.25)

where the unknowns are (Ai, ui), i = 1, 2, 3, and the notation W ∗
j,i, j = 1, 2, i = 1, 2, 3,

indicates the j-th Riemann invariant in vessel Ωi. More in general, denoting the

parent vessel by Ω1, for Nd daughter vessels we can extend conditions (4.25) to

Nd+1∑
i=1

Aiui = 0

pT,1 = pT,i+1, i = 1, . . . , Nd,

W1,1 = W ?
1,1, W2,i+1 = W ?

2,i+1 i = 1, . . . , Nd.

(4.26)

Equations (4.25) or (4.26) form a non-linear system that can be solved, for instance,

with Newton’s method. Note that, in the literature, different formulations can be

found, based on variations of the definitions of the quantities involved, or of the

constitutive laws. We provide a synopsis of [76, 201, 51, 125, 155, 73, 74, 77] in

Tables 4.3-4.4.

Numerical model

We discretize system (4.16) with a second-order Taylor-Galerkin method, which en-

tails expanding the system unknowns with a second-order Taylor expansion in time,

and replacing time derivatives with space derivatives. After some manipulations, the

166

Figure 4.11: 1D bifurcation model (left), domain decomposition (center) and nu-

merical (right) setting. BC and IC stand for boundary and interface conditions,

respectively.

final formulation reads

Un+1 = Un −∆t
∂

∂x

[
Gn +

∆t

2
Gn
UBn

]
− ∆t2

2

[
Bn
U

∂Gn

∂x
− ∂

∂x

(
Gn
U

∂Gn

∂x

)]
+ ∆t

(
Bn +

∆t

2
Bn
UBn

)
,

(4.27)

were we used the compact notation (·)n to indicate the evaluation of a certain quan-

tity at time tn = n∆t, and (·)U for the partial derivative ∂(·)/∂U. Then, the solution

to (4.27) is approximated with a classical Finite Elements method. We subdivide

the linear vessel Ω into Ne elements of length h, and herein define Vh as the space

of piecewise linear vector functions, and V0
h as the space of piecewise linear vector

functions that vanish at the boundaries xin, xout. Then, for every n = 1, . . . , Nt, we

need to find Un+1
h ∈ Vh such that, for every ψh ∈ V0

h,(
Un+1
h , ψh

)
= (Un

h, ψh) + ∆t

(
Gn
LW ,

∂ψh
∂x

)
− ∆t2

2

(
Bn
U

∂Gn

∂x
, ψh

)
− ∆t2

2

(
Gn
U

∂Gn

∂x
,
∂ψh
∂x

)
+ ∆t (BLW , ψh)

, (4.28)

where we defined GLW = G + ∆t/2 GUB, BLW = B + ∆t/2 BUB, and (·, ·) denotes

the standard L2(Ω) inner product. It is important to remark that, in order to

167

guarantee the stability of the numerical scheme (4.28), the following CFL condition,

that relates the space and time discretization steps, needs to be fulfilled:

CFL =
∆t

h
max{λ1, λ2} ≤

1√
3
. (4.29)

Note that, for a Finite Difference solver, the upper bound of the same condition is 1.

4.5.2 DDUQ formulation

1D models of the cardiovascular tree are characterized by several parameters, such as

Young modulus, compliance, reference area or pressure for each vessel, that feature

variability from patient to patient, or even within the same individual, depending on

age or physical conditions (stress/rest). UQ studies have been performed in [201, 51],

among others, to assess the sensitivity of the results to input uncertainty.

Since 1D models are computationally inexpensive, the UQ task is affordable even

for large networks. However, as for steady problems, our goal is to enable com-

putationally affordable UQ in large networks governed by evolutionary dynamics,

while preserving the transverse components dropped by the traditional 1D models.

While 1D networks can be tackled monolithically because they are inexpensive, the

introduction of 3D TEPEM-FSI solvers will likely benefit from the DDUQ approach,

since the independence of the subsystems facilitates a higher level of parallelization.

As a first step, we apply DDUQ to the traditional 1D models. At this stage,

our focus is not on parallel performance and computational savings, but rather on

benchmarking the method for evolutionary problems, as a validation step before

introducing the educated reduced models.

Consider a generic 1D network with Nv vessels and Nb bifurcation points with Nd

daughter vessels each. The stochastic network problem is described by the stochastic

counterpart of equations (4.16)-(4.26), where the unknowns are now random vari-

ables expressed as PCEs (we refer to [201] for a rigorous formulation of the problem).

Since 1D bifurcation models are intrinsically formulated via domain decomposition,

DDUQ can be naturally applied by identifying the simple vessel and the bifurcation

168

C
V

M
[7

6]
X

iu
et

al
.

[2
01

]
R

oz
za

et
al

.
[5

1]
B

la
n
co

et
al

.
[1

25
]

(A
,Q

)
(1

0.
27

)
-

(2
)

(1
)

Q
(1

0.
29

),
(Q
,G

,B
)

-
(6

),
(U
,F
,S

)
(3

),
(U
,F
,S

)

(6
),

(U
,H

,B
)

(A
,u

)
(1

0.
28

),
α

=
1

(1
)-

(2
)

-
-

U
(1

0.
31

),
(U
,F
,S

)

(1
0.

35
),

(U
,H

,f
)

(5
),

(U
,H

,0
)

-
-

β

√
π
h

0
E

(1
−
ν

2
)A

0

(1
0.

22
)

√
π
h

0
E

(1
−
ν

2
)A

0

(3
)

√
π
h

0
E

(1
−
ν

2
)√
A

0

(5
)

√
π
h

0
E

(1
−
ν

2
)√
A

0

(2
)

p
−
p 0

β
(√
A
−
√
A

0
)

(1
0.

21
)

β
(√
A
−
√
A

0
)

(3
)

β

(√
A

√
A

0

−
1) +

ψ̃
(A

)
(4

)
β

(√
A

√
A

0

−
1) +

ψ̃
(A

)
(2

)

c
A

1
/
4

√ β 2ρ
(1

0.
35

)
A

1
/
4

√ β 2ρ
(4

)
-

(A A
0

) 1/4
√ β 2ρ

(6
)

W
1
,2

u
±

4c
(1

0.
37

)-
(1

0.
38

)
u
±

4(
c
−
c 0

)
(7

)
-

-

A

(W 1
−
W

2

4

) 4(
ρ 2β

) 2 (1
0.

39
)

-
-

-

u
W

2
+
W

1

2
(1

0.
39

)
-

-
-

G
(2

)
α
Q

2

A
+

A ∫ A
0

a ϕ

∂
ρ

∂
a
d
a

(1
0.

30
),

α
Q

2

A
+

β 3ρ
A

3
/
2

(o
ld

)

-
-

α
Q

2

A
+

A ∫ A
0

a ρ

∂
p

∂
a
d
a

(3
)

α
Q

2

A
+
β
A

3 0

3ρ

((A A
0

) 3/2
−

1) (3
)

W
∗ 2

W
2
(x

1
−
λ

2
∆
t,
tn

)

+
∆
tl
T 2
B

(Q
)

(1
0.

46
)

-
-

T
ab

le
4.

3:
S
y
n
op

si
s

of
E

u
le

r’
s

eq
u
at

io
n
s

fo
rm

u
la

ti
on

(I
).

169

Q
u
ar

te
ro

n
i

et
al

.
[1

55
]

F
or

m
ag

gi
a

et
al

.
[7

3]
L

am
p

on
i

et
al

.
[7

4]
F

or
m

ag
gi

a
V

en
ez

ia
n
i

[7
7]

(A
,Q

)
-

(2
)-

(3
)

(1
)-

(2
)

(1
.8

)

Q
(9

),
(U
,F
,S

)

(7
),

(U
,H

,B
)

(1
3)

,
(U
,F
,B

)
-

(1
.1

6)
,

(U
,F
,B

)

(1
.1

4)
,

(U
,H

,S
)

(A
,u

)
-

-
-

-

U
-

-
-

-

β

√
π
h

0
E

(1
−
ν

2
)

(1
1)

√
π
h

0
E

(ν
=

0)
(1

0)
√
π
h

0
E

(ν
=

0?
)

(4
)

√
π
h

0
E

(1
−
ν

2
)

(1
.1

2)

p
−
p 0

β A
0

(√
A
−
√
A

0
)

(1
1)

β A
0

(√
A
−
√
A

0
)

(9
)

β A
0

(√
A
−
√
A

0
)

(4
)

β A
0

(√
A
−
√
A

0
)

(1
.1

2)

c
A

1
/
4

√ β 2ρ
A

0

(1
1)

A
1
/
4

√ β 2ρ
A

0

(1
2)

A
1
/
4

√ β 2ρ
A

0

(5
)

A
1
/
4

√ β 2ρ
A

0

(1
.1

7)

W
1
,2

u
±

4c
(3

2)
u
±

4c
(1

8)
u
±

4(
c
−
c 0

)
(7

)
u
±

4(
c
−
c 0

)
(1

.3
2)

A
-

(W 1
−
W

2

8

) 4(
2ρ
A

0

β

) 2 (1
9)

(W 1
−
W

2

8
+
c 0

) 4(
2ρ
A

0

β

) 2 (8
)

(W 1
−
W

2

8
+
c 0

) 4(
2ρ
A

0

β

) 2 (1
.3

4)

u
-

W
2

+
W

1

2
(1

9)
W

2
+
W

1

2
(8

)
W

2
+
W

1

2
(1

.3
4)

G
(2

)
α
Q

2

A
+

A ∫ A
0

a ρ

∂
p

∂
a
d
a

(9
)

α
Q

2

A
+

A ∫ 0

a ρ

∂
p

∂
a
d
a

(1
4)

,

α
Q

2

A
+

β

3ρ
A

0

A
3
/
2

(1
4)

α
Q

2

A
+

A ∫ A
0

a ρ

∂
p

∂
a
d
a

α
Q

2

A
+

A ∫ A
0

a ρ

∂
p

∂
a
d
a

(1
.1

6)
,

α
Q

2

A
+

β

3ρ
A

0

A
3
/
2

(1
.1

7)

W
∗ 2

W
2
(x

1
−
λ

2
∆
t,
tn

)
(p

.2
19

)
W

2
(x

1
−
λ

2
∆
t,
tn

)
(p

.2
60

)
W

2
(x

1
−
λ

2
∆
t,
tn

)
(2

0)
W

2
(x

1
−
λ

2
∆
t,
tn

)
(1

.5
0)

T
ab

le
4.

4:
S
y
n
op

si
s

of
E

u
le

r’
s

eq
u
at

io
n
s

fo
rm

u
la

ti
on

(I
I)

.

170

Figure 4.12: Unsteady 1D DDUQ network problem: component representation with

inputs/outputs for a bifurcation point with Nd = 2 daughter vessels (left) and a

simple vessel (right). Note that all the quantities exchanged are the PC coefficients of

the unknowns (area APCE, flow QPCE, and extrapolated Riemann invariants W ∗
1,PCE,

W ∗
2,PCE) at a fixed time instant.

point as two different network components with two and Nd + 1 input/output ports,

respectively (see Figure 4.12). Since we are dealing with a time-advancing scheme

dictated by (4.28)-(4.26) (where now the quantities involved are the PCEs of the

quantities involved), at each time step the bifurcation points receive the PC coeffi-

cients of the extrapolated Riemann invariants from the previous step, and return the

PC coefficients of area and flow at the current time step (see Figure 4.12, left), which

are received by the vessel components to compute the current stochastic extrapolated

Riemann invariants that will be used as inputs by the bifurcation points at the next

step (see Figure 4.12, right). As a result, the time-advancing network solver works as

a sort of red-black tree, where bifurcations and vessels correspond to red and black

nodes, respectively. The numerical procedure described here is outlined in Algorithm

6.

4.5.3 Numerical results

In order to validate the DDUQ method on unsteady problems, we closely follow the

numerical tests performed in [201] on a simple bifurcation and in a 37-vessel network.

171

Algorithm 6: DDUQ in 1D unsteady networks.

1 for n = 1, . . . , Nt do // Time loop

2 Update exogenous inputs and forcing term

3 for nb = 1, . . . , Nb do // Loop on bifurcations

4 Select input W ∗n−1
1,PCE, W ∗n−1

2,PCE

5 Evaluate Ns samples

6 for ns = 1, . . . , Ns do

7 Solve problem (4.26) with ns-th input

8 end

9 Evaluate output PCE AnPCE, Qn
PCE

10 end

11 for nv = 1, . . . , Nv do // Loop on vessels (segments)

12 Select input AnPCE, Qn
PCE

13 Evaluate Ns samples

14 for ns = 1, . . . , Ns do

15 Solve problem (4.28) with ns-th input

16 end

17 Evaluate output PCE W ∗n
1,PCE, W ∗n

2,PCE

18 end

19 end

Simple bifurcation

We consider a simple bifurcation model where parent and daughter vessels are 20cm

long, with diameter of 1cm and 1/
√

6cm, respectively. The sources of uncertainty are

the parameters βi, i ∈ {1, 2, 3}, encoding the mechanical and geometrical properties

of the vessel. We assume the random variables to be independent and uniformly

distributed in (−1, 1), with first-order PCE

βi(ξ) = 〈βi〉 (1 + σiξi) , (4.30)

172

where σi quantifies the variability of the parameter, and 〈·〉 denotes the expected

value of the random variable. For this specific case, we set 〈β1〉 = 32, 497g/(s2 cm2)

and 〈β2,3〉 = 79, 602g/(s2 cm2) for the parent and daughter vessels, respectively, and

σi = 10% for all. The output quantity of interest is the pressure as a function of

time, at the inlet and midpoint of the parent vessel, at the bifurcation point, and

at the midpoint and outlet of a daughter vessel. Each point is labeled as A, B, C,

D, E, in corresponding order. We compare the zero- and first-order moments (mean

and standard deviation) of the DDUQ solution with the literature, as well as the

sensitivity with respect to the uncertain input parameters, defined in [201] as

Si = 〈βi〉
〈
∂p(ξ)

∂βi(ξ)

〉
=

1

σ

∫
∂p(ξ)

∂ξi
π(ξ)dξ, (4.31)

where π(ξ) is a uniform probability density function.

At the inlet we prescribe the following velocity and area profiles:

Uin(0−, t) = U0e
−C(t−t0)2 , Ain(0−, t) =

π

4
, (4.32)

with U0 = 1cm/s, C = 5000s−2, t0 = 0.05s, through the Riemann invariants, and

and absorbing condition on the incoming characteristic. In other words, we setW1 = W1(Ain, Uin), W2 = 0 t < L/c0

W1 = 0, W2 = W ∗
2 t ≥ L/c0,

(4.33)

where t = L/c0 is the time instant when the wave hits the bifurcation point according

to [168], and from (4.33) we obtain Ain = A(W1,W2), Uin = U(W1,W2). The outflow

boundary conditions are set to absorbing or reflecting. Each case is discussed in the

following paragraphs.

Absorbing conditions. Absorbing outflow conditions are modeled as W1 = W ∗
1 ,

W2 = 0. Before comparing the traditional UQ method with DDUQ, we calibrate

the space-time discretization of the underlying deterministic solver by performing a

sensitivity study of the stochastic solution to the CFL number (4.29). We tune the

173

CFL number by fixing the mesh size to h = 0.25cm, and by varying the time step ∆t

to obtain a CFL value that is 10%, 40%, or 90% of the upper bound (M = 1/
√

3).

The DDUQ pressure mean value and standard deviation obtained with the three

different discretizations as functions of time at the five probe locations (A-E) are

shown in Figures 4.13-4.14. While for the expected value the peaks are roughly

independent of the CFL number at all locations (see Figure 4.13), the standard

deviation is more sensitive to the underlying discretization, with a peak slightly

decreasing in value as the CFL number approaches the upper bound (see Figure 4.14).

Since the variation is not significant, we perform the remaining simulations with a

CFL in the mid range (40% of the upper bound), corresponding to ∆t = 5 · 10−4,

and simulate a period of T = 0.5s.

Figures 4.15-4.16 show a comparison of the baseline solution from [201] and the

DDUQ solution. Although a quantitative comparison is impossible due to lack of

numerical data, a visual comparison of the temporal profiles shows good agreement

between the two solutions, both for average value and standard deviation. The peaks

of the standard deviation happen to be lower in value, and the wave shape does not

match perfectly, with lower and sharper dips between peaks (see Figure 4.16). This

could be due to the different time steps, mesh sizes, and discretization methods

employed here (Taylor-Galerkin) and in [201] (Discontinuous Galerkin), that feature

different dispersion/diffusion properties. However, the time instants when the peaks

happen are precisely captured.

The temporal pattern of the sensitivity of the solution with respect to the uncertain

input parameters is in good agreement with the literature. However, there is a

significant mismatch in the values, likely due to a scaling factor not reported in

[201]. Therefore, for a more quantitative comparison, we define the quantity

Ri =

∣∣∣∣ maxt Si(t)

maxt SXSi (t)
− mint Si(t)

mint SXSi (t)

∣∣∣∣ , (4.34)

as a normalized measure of the mismatch between peaks, where Si denotes the DDUQ

sensitivity and SXSi is the corresponding value from [201]. Assuming that Si = αSXSi

for some scaling factor α, we expect Ri ' 0. In fact, from Table 4.5 the error

174

Figure 4.13: Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: mean of DDUQ solution at inflow (first row), parent

vessel mid-point (second row), bifurcation point (third row), daughter vessel mid-

point (fourth row), and outflow (fifth row) for a CFL number equal to 10% (left),

40% (center), or 90% (right) of the upper bound (M = 1/
√

3).

175

Figure 4.14: Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: standard deviation of DDUQ solution at inflow (first row),

parent vessel mid-point (second row), bifurcation point (third row), daughter vessel

mid-point (fourth row), and outflow (fifth row) for a CFL number equal to 10% (left),

40% (center), or 90% (right) of the upper bound (M = 1/
√

3).

176

Figure 4.15: Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: mean of baseline solution from [201] (left) and DDUQ

solution (right) at inflow (first row), parent vessel mid-point (second row), bifurca-

tion point (third row), daughter vessel mid-point (fourth row), and outflow (fifth

row). Deterministic solution is shown in dashed line for comparison.

177

Figure 4.16: Propagating pressure wave in a simple bifurcation with absorbing out-

flow boundary conditions: standard deviation of baseline solution from [201] (left)

and DDUQ solution (right) at inflow (first row), parent vessel mid-point (second

row), bifurcation point (third row), daughter vessel mid-point (fourth row), and

outflow (fifth row).

178

Point B Point C Point D Point E

R1 0.0952 0.1681 0.0349 0.09997

R2 N/A N/A 0.1492 0.0030

Table 4.5: Propagating pressure wave in a simple bifurcation with absorbing outflow

boundary conditions: mismatch between peaks of DDUQ sensitivities and the results

reported in [201].

ranges between 0.3%−17%, which is acceptable, considering that the values from the

literature were extracted by visual inspection from the figures provided. Moreover,

notice that, for this case, not all data is available, since the description of some

results in [201] does not match the corresponding figures, and is therefore impossible

to extract the data needed for comparison purposes.

Reflecting conditions. Reflecting outflow conditions are modeled as W1 = W ∗
1 ,

W2 = −αW1, with α = 50%. We simulate a period of T = 1s, with the same space-

time discretization as the previous test. The same considerations as the absorbing

case hold for the pressure average and standard deviation: the temporal features

are perfectly captured, although the standard deviation profile features deeper and

sharper dips, probably due to the choice of the discretization scheme (see Figures

4.17-4.18). A full comparison on the sensitivities in Figure 4.19 shows good agreement

in the pattern, with peaks mismatch of 0.08%−25%, which is acceptable, considering

the potential inaccuracy of the reference values, extracted visually from the literature

(see Table 4.6).

37-vessel network

We now consider the more realistic case of a network with 37 vessels and 16 bifur-

cations, built in [129] from an in vitro model. At the inlet, the flow profile obtained

from experimental data in [129] is prescribed periodically. The outflow boundary

179

Figure 4.17: Propagating pressure wave in a simple bifurcation with reflecting outflow

boundary conditions: mean of baseline solution from [201] (left) and DDUQ solution

(right) at inflow (first row), parent vessel mid-point (second row), bifurcation point

(third row), daughter vessel mid-point (fourth row), and outflow (fifth row).

180

Figure 4.18: Propagating pressure wave in a simple bifurcation with reflecting outflow

boundary conditions: standard deviation of baseline solution from [201] (left) and

DDUQ solution (right) at inflow (first row), parent vessel mid-point (second row),

bifurcation point (third row), daughter vessel mid-point (fourth row), and outflow

(fifth row).

181

Figure 4.19: Propagating pressure wave in a simple bifurcation with reflecting outflow

boundary conditions: baseline sensitivities from [201] (left) and DDUQ sensitivities

(right) at different probe locations.

182

Point A Point B Point D Point E

R1 0.0051 0.1427 0.1870 0.0896

R2 0.1715 0.2482 0.0600 0.1393

R3 0.1715 0.2482 8.4 · 10−4 0.1646

Table 4.6: Propagating pressure wave in a simple bifurcation with reflecting outflow

boundary conditions: mismatch between peaks of DDUQ sensitivities and [201].

conditions are described as

Q =
p− pout
Rp

, (4.35)

where p is the computed (or measured) pressure at the outlet of the terminal vessel,

pout = 3.2mmHg is the constant hydrostatic pressure measured experimentally, and

Rp is the peripheral resistance, reported in [129, 201]. Due to the large size of the

system, we are interested in the solution in 9 output representative vessels, identified

in Figure 4.20. The deterministic solution obtained with DDUQ after 10 determin-

istic cycles is in good agreement with the literature (see Figure 4.21). Note that,

as remarked in [129], “due to the simple resistance boundary conditions used in the

experiment, the measured pulse waves become less physiological in the more distal

vessels. They contain many non-physiological oscillations, in both pressure and the

flow, whose frequency is surprisingly well captured by the 1-D model.”

For the stochastic test we consider 37 random inputs, corresponding to the pa-

rameter βi in each vessel, represented via first-order PCE as in (4.30). Due to the

high dimensionality of the problem, Smolyak sparse quadrature rules are employed

[178]. Since 10 stochastic cycles are computationally expensive, we run Ndet < 10

deterministic cycles, and Nstoch = 10 − Ndet stochastic cycles initialized in such a

way that the initial expected value is set to the deterministic solution, and the initial

standard deviation is 10% of the latter.

183

Figure 4.20: 37-vessel network and output probe vessels.

We introduce the notation

Si,j = 〈βj〉〈∂pi(ξ)/∂βj(ξ)〉, Ri,j =

∣∣∣∣ maxt Si,j(t)

maxt SXSi,j (t)
− mint Si,j(t)

mint SXSi,j (t)

∣∣∣∣ (4.36)

to denote the sensitivity of the solution in the i-th vessel with respect to the j-th

parameter, and the corresponding peak mismatch. As for the simple bifurcation

case, assuming that Si,j = αSXSi,j for some scaling factor α, we expect Ri,j ' 0.

Maximum and minimum values of sensitivities are provided in [201], therefore it is

possible to compute Ri,j precisely. The results for Ndet = 9 and Ndet = 7 are shown

in Figure 4.22. The mismatch is significantly high in both cases, likely because one or

three stochastic cycles are not enough for the unsteady stochastic problem to got to

regime. However, we noticed a drastic reduction passing from an initialization with

Ndet = 9 to Ndet = 7. Therefore, we expect Rij to further decrease as long as Ndet

is decreased. Simulations for such cases have been launched, but crashed because

of memory issues. In the future we plan to optimize the current code to improve

the efficiency of the data structures employed, for a solid successful validation of the

method in realistic geometries.

184

Figure 4.21: Deterministic baseline solution form [201] (left) and DDUQ solution

(right) in output probe vessels of 37-vessel network.

185

Figure 4.22: Mismatch coefficient for the sensitivity peaks in a 37-vessel network

with 9 (top) and 7 (bottom) deterministic initialization cycles.

186

4.6 Final remarks

In this Chapter we proposed a new approach to perform uncertainty quantification

in the cardiovascular network that is computationally affordable and reliable. This

is achieved by combining the DDUQ approach [45], that employs domain decompo-

sition to propagate uncertainties in large-scale networks scalably, with the TEPEM

method for the steady Navier-Stokes equations [127], that allows the modeling of

3D dynamics in a fraction of the time employed for classical FEM strategies. The

numerical results show that (i) weak scalability can be achieved for non-linear vector

problems in realistic 3D domains; (ii) educated reduced models like TEPEM enable

rapid and agile subsystem sampling in 3D domains, being computationally more af-

fordable than full high-fidelity models, while comparably accurate, and (iii) provide

statistical information about quantities of clinical interest, such as the wall shear

stress, that are completely out of reach for the traditional 1D models; (iv) stochastic

simulations in patient-specific geometries achieve a good trade-off between compu-

tational affordability and accuracy, compared to the traditional models used in the

literature. In the future we plan to consolidate the validation of the DDUQ method

on unsteady problems, and to model fluid-structure interaction with TEPEM.

187

Chapter 5

Platform and algorithm effects on

computational fluid dynamics

Acknowledgements. This chapter reflects the content of [97], in collaboration

with Tiziano Passerini, Umberto Villa, Jaroslaw Slawinsky, Alessandro Veneziani,

and Vaidy Sunderam.

5.1 Introduction and Background

Overall performance of HPC resources depends on two interrelated factors: (1) the

architecture of the physical resource and (2) its optimal exploitation for the spe-

cific problem to solve. In real production settings, performance must be judiciously

balanced with cost.

As for point (1), traditionally performance of HPC applications has been measured

by a single metric, i.e., time to completion for the particular application at hand,

parameterized with respect to problem size and number of processing elements used.

Nevertheless, with the advent of cloud computing, the viability of executing parallel

applications on the cloud (either through self-assembly or renting a prebuilt cluster)

and the actual dollar cost effectiveness of executing HPC applications on different

target platforms have become relevant. On the other hand, communication is an

issue of paramount concern in the matter of efficiency. On clouds, a great deal of

188

attention has been devoted to data handling but there has been relatively little fo-

cus on interconnection network capabilities. For explicit message passing parallel

programs, such as those which make use of MPI, data handling and interconnection

network capabilities lead to substantial heterogeneity in communication, with signif-

icant impact on performance. In addition, it is worth stressing that most real-life

applications we are interested in are not regular or symmetric and thus their MPI

process communication graphs are intrinsically unevenly weighted. The most popu-

lar software packages for graph partitioning (see, e.g., [82]) employ algorithms that

minimize the edge cut or the communication volume as to obtain load balance. Nev-

ertheless, numerical analysis suggests that a suitable percentage of additional work

on each processing unit benefits the overall performance, due to a faster convergence

of the iterative solver. The interplay between the additional numerical costs on each

processor, the advantages induced by the faster convergence of the iterative method

and the total communication time (which in turn relates to the specific architecture

employed) is not trivial in problems of practical interest.

In this work we tackle these issues by exploring two aspects related to work parti-

tioning.

(a) We re-map the effective topology of the application’s interconnection network by

managing the allocation of MPI processes to processor cores before the execution of

the application, so that highly coupled MPI processes are “close,” i.e., mapped on

cores within a single node. In this way the intra-node communication is maximized

and the long-distance inter-node communication is reduced.

(b) We consider well-established methods to associate mathematical formalism to

the parallel solution of complex systems of partial differential equations (PDEs). In

particular, we resort to domain decomposition techniques (DD) to detect the optimal

splitting of the tasks that minimizes the computational time. This method was

historically introduced – well before the advent of parallel computing – to compute

manually the solution of PDEs by splitting the process over different subdomains of

the region of interest to take advantage of simple geometries (e.g., a L-shape domain

189

was split into rectangles Fig. 5.2) where simple methods were available. Nowadays,

DD is a powerful approach to manage the solution over different computational

resources either with or without overlapping of subdomains, depending on the specific

problem of interest and the identification of optimal interfaces to minimize inter-node

communications.

Our reference application is the solution of problems related to computational

hemodynamics, blood flow and solutes like Oxygen. We aim at demonstrating the rel-

evance of all these issues in a realistic context, when dealing with a patient-specific

setting to be considered as one out of many similar - but different- cases to be

routinely simulated. We use an object oriented C++ library for the solution of

PDEs with the finite element method (FEM) called LiFEV (“Library for Finite El-

ements 5”) [4], extensively adopted in several projects of practical interest – see,

e.g., [139, 138, 95, 133, 191, 87].

After providing some background on the numerical setting and the formulation of

the two classes of problems used to test the performance of IaaS grids and clouds as

opposed to local clusters and to experimentally detect the optimal partitioning that

guarantees the fastest convergence of the numerical solver and a brief summary of

the packages used, in Section 5.2 we discuss our experiences with comparing cost and

utility on three typical platform types: (a) Infrastructure as a Service (IaaS) clouds,

(b) grids, and (c) on-premise local resources, with a particular focus on process-to-

node mapping vis-a-vis efficiency.

In Section 5.3 we consider the work balance in terms of DD and interface handling.

We present an automatic procedure to optimize the mapping of the sub-domains

to the available processing units based on graph analysis. We first consider a non

overlapping strategy, where each domain shares with the others only the interface

(e.g., a surface cutting in our case the volume of the artery of interest). However, it is

well known that this is not necessarily the best option. In fact, a faster convergence

to the desired solution in the iterative-by-subdomain approach can be attained if we

allow some overlapping.

190

In Section 5.4 we test this option in both idealized and real 3D geometries. We

show that the detection of the optimal overlapping in real cases – albeit non trivial –

has the potential to significantly reduce the computational costs of the entire solution

process.

5.1.1 The numerical problem

Computational hemodynamics requires the study of incompressible fluids described

by the Navier-Stokes equations (NSE) [150, 66]. From the computational view-

point, these equations are very challenging, for intrinsic mathematical features (see,

e.g., [66]). In our tests NSE - completed by appropriate initial and boundary con-

ditions – are solved for computing blood velocity and pressure in an artery affected

by a disease, called cerebral aneurysm. The latter consists of an abnormal sac in

the artery, inducing non-physiological flow patterns that can lead eventually to rup-

ture of the arterial wall and brain hemorrhage. The application of computational

hemodynamics to the study of vascular diseases is time- and cost- sensitive, as it typ-

ically entails the generation of large data sets of simulations on patient populations,

with the final goal of finding statistical correlations of flow patterns with outcome

[47, 139]. Here, in particular, we consider a benchmark problem proposed in the

Inaugural CFD Challenge Workshop [199], i. e. the study of blood flow inside a giant

brain aneurysm in an internal carotid artery.

The equations are approximated by the Finite Element Method (FEM) combined

with backward difference formulas (BDF) to handle the time dependence. With

FEM, the solution is approximated by piecewise polynomial functions over subdivi-

sions of the artery, called elements. The collection of elements is called mesh. This

step reduces the partial differential equations to a system of ordinary differential

equations in time. The latter is finally solved in selected instants by a second order

BDF approximation. At each time step a large sparse (i. e. with the majority of

entries of the associated matrix equal to 0) linear system needs to be solved. The

more elements are introduced in the computational domain and the more instants

191

Figure 5.1: Solution of the problem, based on NSE, when t = 0.28s. Streamlines of

the velocity field, when the flow rate is maximum over the cardiac cycle.

are collocated for the numerical solution, the higher the computational costs of the

procedure are and the more accurate the solution is. In particular, here we consider

a mesh with 837,154 elements, such that the total number of unknowns in the linear

system is 3,162,146. The equations are collocated in 100 instants within the cardiac

cycle (i. e. the simulation time step is 0.01s). A snapshot of the computed solution

is shown in Figure 5.1. Although current HPC facilities handle larger problems,

these numbers can be considered representative of the size of problems of interest in

CACT and SP in computational hemodynamics – as a reasonable trade-off between

the accuracy requested by clinical applications and the expected timeline.

5.1.2 Domain decomposition techniques for the solution of

Partial Differential Equations

DD techniques provide an important framework to associate mathematical formalism

to the parallel solution of a complex PDEs system – see, e.g., [154, 188]. The PDE

problem over a region of interest Ω is decomposed in subproblems to be iteratively

solved by single processors or clusters up to the fulfillment of a convergence criterion

192

Ω Ω

Ω1

Ω2 Ω2

Ω1

Γ

Γ1 Γ2

(a) (b)

Figure 5.2: Schematic representation of (a) non overlapping and (b) overlapping

DD in a L-shaped domain Ω. In the first case conditions on the interface Γ must

fulfill compatibility constraints depending on the nature of the PDE for the split-by-

subdomain solution to be equivalent to the unsplit one.

stating that the solution found is equivalent to the one of the unsplit system. Each

subproblem exchanges information with the neighborhood ones by means of inter-

face conditions. In non overlapping splittings, these conditions need to be properly

chosen to guarantee that the split-by-subdomain solution is equivalent to the global

one. In overlapping partitions, less constraints are required since synchronization

conditions for each subdomain are prescribed on different space locations. In fact,

each subdomain has its own interfaces. Notice that with overlap the PDE problem

is solved multiple times on the overlapping regions, with a potential computational

duplication overhead. However, beyond the more freedom when selecting the inter-

face conditions, the iterative solver requires in general a lower number of iterations

to converge. We illustrate the difference between the two approaches for a simple

problem in Fig. 5.2.

193

The interplay of (i) additional numerical costs due to the overlap, (ii) efficiency ad-

vantages induced by the specific iterative methods and (iii) versatility of the selection

of domain interfaces (and the associated conditions) for the communication time, is

not trivial in problems of practical interest. Numerical analysis focuses typically on

points (i) and (ii) in idealized or simple geometries, while in the present work we

assess the performances when the geometry of Ω is nontrivial, following up previous

works [58, 99].

To this aim we consider the differential Advection-Diffusion-Reaction (ADR) prob-

lem

−
3∑
i=1

∂

∂xi

(
µ
∂u

∂xi

)
+

3∑
i=1

βi
∂u

∂xi
+ σu = f , (5.1)

for (x1, x2, x3) ∈ Ω ⊂ R3 with µ > 0 and σ coefficients for simplicity assumed

to be constant. Here the unknown u may represent the density of a species in a

region where it diffuses with diffusivity µ, it undergoes to a chemical reaction with

rate σ and it is convected in the domain by the vector field β = [β1 β2 β3]T , that

denotes the blood velocity and it is function of the space coordinates x1, x2, x3.

When available, it can be prescribed analytically, as we do in the tests in idealized

geometries. More in general, it is retrieved by solving the NSE computed as in the

previous Sections. The forcing term f is a given function of space too. Hereafter

it will be set to 0 for simplicity. We associate with the equations the boundary

conditions u(ΓD) = g(x1, x2, x3),
∂u

∂n
(ΓN) = 0, where ΓD and ΓN are two disjoint

portions of the boundary of Ω such that ΓD ∪ ΓN = ∂Ω. This is a simplified model

of the dynamics of blood solutes like Oxygen in the arteries [156]. Specifically, we do

not consider time dependence, since it does not introduce significant changes for the

focus of the present paper. The NSE solution is therefore retrieved in a particular

instant of the hart beat, the so called systolic peak, corresponding to the maximum

opening of the ventricular valve.

To take advantage of domain decomposition, we split the domain Ω into two over-

lapping subdomains Ω1 and Ω2, such that Ω1 ∩ Ω2 = Ωo and Ω1 ∪ Ω2 = Ω. Let us

denote by Γj the interfaces between the two subdomains (j = 1, 2), that is the portion

194

of the boundary of Ωj that is not also boundary of Ω, in short Γj ≡ ∂Ωj \ (∂Ωj∩∂Ω).

The solution of the problem in each subdomain will be denoted by uj(x1, x2, x3). We

reformulate the original problem in an iterative fashion. Given an initial guess u
(0)
j

(typically = 0), we solve on each subdomain for k = 1, 2, . . .

−
3∑
i=1

∂

∂xi

(
µ
∂u

(k)
j

∂xi

)
+

3∑
i=1

βi
∂u

(k)
j

∂xi
+ σu

(k)
j = f in Ωj, j = 1, 2 (5.2)

with boundary conditions

u
(k)
j (ΓD∩∂Ωj) = g(x1, x2, x3),

∂u
(k)
j

∂n
(ΓN∩∂Ωj) = 0, u

(k)
j (Γj) = u

(k−1)
̂ (Γj), (5.3)

(where ̂ = 2 for j = 1 and ̂ = 1 for j = 2) up to the fulfillment of the conver-

gence condition to check that the solution in the overlapping region is not changing

significantly along the iterations.

At each iteration we solve two independent problems in each subdomain, while the

communication by subdomain occurs in the latter of boundary conditions (5.3). The

convergence of the iterative scheme depends in general on the size of the overlapping

region. In fact, if the overlapping is 100 % of Ω, convergence is trivially guaranteed

as at the first iteration (5.2-5.3) we are solving (twice) the unsplit problem. On the

other hand, if the overlapping reduces to a volume-zero region, convergence is not

guaranteed, as in general the juxtaposition of the two problems does not coincide

with the original problem (if the interface conditions are chosen properly).

The one presented here is the so called additive formulation of the overlapping

DD method, where the two subdomain problems can be solved simultaneously – as

opposed to the multiplicative version, where one subdomain can be solved only when

the problem on the other subdomain is completed. In the multiplicative formulation

a faster convergence is guaranteed in terms of number of iterations (about one half

of the additive scheme), but the algorithm has an intrinsically sequential structure.

From now on, we refer only to the additive algorithm.

The selection of the interfaces Γj has the only constraint to guarantee a non empty

overlapping. The optimal selection is the result of the trade-off between the compu-

195

tational cost of each subproblem and the reduction of the communication between

processors. This will be investigated in Sect. 5.4 - see also [99].

5.1.3 Packages used by the numerical solver

For a more detailed description of the implementation of the numerical solver we

refer to [173, 99]. We report here the complete list of required packages:

- LiFEV library [4], for the formulation of the algebraic counterparts to differen-

tial problems; this library is the direct dependency for our solver application;

- Third-party scientific libraries: (1) Trilinos [163] for the solution of linear sys-

tems (data structures and algorithms); (2) ParMETIS [82], used for mesh parti-

tioning; ad hoc MATLAB scripts were prepared to add an overlapping region to

an existing non-overlapping partition. (3) SuiteSparse [6], as a support library

extending the capabilities of Trilinos; (4) BLAS/LAPACK libraries (generic or

vendor-specific implementations); (5) NetGen [114] for generating the mesh to

partition.

- General-purpose and communication libraries: (1) Boost C++ libraries [2]

1.44 or above, mainly used for memory management (smart pointers); (2)

HDF5 [187], for the storage of large data on file; (3) MPI libraries (e.g., Open

MPI);

- Compilers: C++ compiler (e.g., GCC version 4 or above); [optional] Fortran

compiler, compatible with C++;

- Deployment tools: (1) GNU make; (2) Autotools; (3) CMake (version 2.8 or

above).

196

5.2 CFD Experiences on clouds, grids and on-premise

resources

Grids and especially clouds present real opportunities for CFD applications to ex-

ecute on platforms other than their home environments [80]. Nevertheless, appli-

cations often continue to be executed only on the default “home” platform, even if

other viable and better options are present, since executing the application on dif-

ferent target platforms may require a non-trivial amount of re-building effort (even

if the actual application source code is untouched). Message passing parallel pro-

grams are a staple modality of numerical simulations and computational analyses.

In addition to the parallel framework (e.g., MPI), codes depend on various other

auxiliary components: scientific and mathematical libraries, header files, particular

compiler options and flags. These parameters (or subsets thereof) are quite specific

to a particular target platform. In the ADAPT project at Emory [172], we investi-

gated the feasibility and ease of deploying classes of applications on target platforms

other than those on which they normally execute. As a benchmark test, we have

experimented LiFEV [4] whose home environment is a 128-core cluster, and ported

it on other computational platforms: clusters, grids and Amazon’s EC2 cloud. We

conduct both a detailed comparison of platforms based on utility of the computa-

tional task to the user, function of the wait time and the cost, and further analyze

strategies for process mapping when interconnection networks are heterogeneous.1

User-oriented performance analysis has recently been applied to research on HPC

and Grid scheduling strategies. The value that users associate with a completed

job is modeled as a utility function, with a generally non-trivial dependence on time

[116]. The importance of a job to a user can be seen as a function of time, combining

an index for the importance of the results and the user sensitivity to delay. It has

been shown that a proper job scheduling strategy can significantly increase the per-

formance of HPC systems, measured as the aggregate utility of their users [50, 52].

1Preliminary results from these exercises were presented in conference papers [173, 175].

197

Several works in the literature discuss an extension to this scenario, in which hetero-

geneous resources can be discovered and assembled from an arbitrary set of providers.

In this case, the utility for the user may be defined based on a more detailed analysis

of user-specific requirements. For instance, requirements may include the features

of the physical resources (memory, processor speed, presence of GPU), presence of

installed software or availability of specific services. It is then possible to discrimi-

nate between resource providers based on their ability to satisfy the requirements,

in full or in part (partial utility) [169]. The evaluation of the utility function can be

done at runtime, to decide whether or not to dynamically re-distribute resources to

obtain an optimal “quality of execution,” i. e., an optimal trade off between resource

savings and performance degradation [170].

In our approach, the platforms are considered as interchangeable – after the con-

ditioning process. We discuss the effort required to provision each platform with an

environment adequate to sustain the user’s task. Finally, we identify a basic set of

user requirements (minimal cost and minimal execution time of the task) to define

a user-based ranking of the tested architectures.

5.2.1 Heterogeneous Target Platforms

In our study, we compared five heterogeneous computational platforms supporting

the parallel hemodynamics simulation. As the starting point for our analyses, we

selected the in-house computing cluster puma2 constituting a computational test bed

for the LiFEV developer team. As a second platform, we used a larger compute

cluster called ellipse, provided on a fee-for-use basis within our university. The

third platform was the HPC supercomputer lonestar made available to the U. S.

research community by Texas Advanced Computing Center. Next, we evaluated

the usability of on-demand resources. The first such platform was rockhopper [5]

offered as a part of the Penguin’s On-Demand HPC Cloud Service [3] and the second

platform was the IaaS cloud provided by Amazon’s Elastic Compute Cloud (EC2)

2This is the “home” environment where the application is run by default.

198

puma ellipse lonestar rockhopper ec2

type cluster cluster/grid grid cloud cluster IaaS Cloud

cores 2x2 2x2 2x6 4x12 4x4

RAM 8GB 4GB 24GB 2.5GB/slot 66GB

network SDR IB 1GbE QDR IB QDR IB 10GbE

storage NFS NFS Lustre Lustre local fs

support full very limited limited online none

OS Rocks 5.1 CentOS 4.8 CentOS 5.5 CentOS 5.6 AMI 12.03

access user space user space user space user space privileged

MPI Open MPI none MVAPICH2 Open MPI none

Table 5.1: Specification of a single node of the test architectures.

service. From the rich EC2 resource offerings, we picked the most powerful instances

cc2.8xlarge from Cluster Compute (referred to as ec2 in the following).

The five platforms are heterogeneous in many respects: they differ in hardware

configuration, availability (measured as wait-time before execution), access modality

(privileged vs. unprivileged user), storage (e.g., size of user disk space and presence

of a shared file system), build (e.g., the compilers and system tools availability),

computational aggregation (e.g., presence of configured MPI environment), and ex-

ecution (e.g., interactive shell). Table 5.1 collects the main features of the chosen

targets. We refer to [173, 175] for further details.

5.2.2 Metrics

We aim to compare different hardware platforms with respect to the execution of the

same task, evaluating several different metrics.

As previously mentioned, hemodynamics applications are both time- and cost-

sensitive. It is worth noting that optimizing these two aspects separately leads

in general to conflicting strategies, as it is often the case that the most expensive

199

hardware resource provides the result in the shortest time, as we will see later on.

We therefore consider both traditional metrics (“time to completion” and “cost per

simulation”), and a user-specific combination of these two, corresponding to the

“perceived cost” of the computational experiment.

Time to completion This is the wall clock time from program launch to final

exit. In the mainstream HPC community, in which it is a primary focus, it is not

common to include the queue waiting time. In terms of utility in the sense adopted

in this work, queue time is certainly important but it is highly variable and, in

fact, our platforms presented few queue delays compared to the execution time of

the application. We decided to exclude queue time in our analysis for the sake of

simplicity and uniformity, especially since “on-demand” IaaS clouds are practically

characterized by zero waiting time.

Cost per simulation The overall cost for the execution of the job depends mainly

on the unit cost of the hardware resource (cost per core-hour), its pricing policy (by

core or by node, by hour or prorated), and on the execution wall-clock time. Other

factors, that we consider negligible relative to the former (for our application), are

the size of occupied storage and/or volume of data staged in and out. A ranking of

the different platforms based on the metric cost per simulation is shown in Table 5.2.

For each platform, we reported in the table the cost of the cheapest use case.

Utility function The utility function expresses the job’s value to a user, as a

function of time. This has a user-specific, complex dependency on several parameters,

including expenditures, time to completion, and significance of the task. Following

[52, 108], we consider a simple linear utility function with customizable maximum

200

rank price per simulation [$] target # of MPI proc.

1 $3.53 ec2-1 16

2 $4.76 ec2-2 16

3 $5.31 ellipse 4

4 $5.70 puma 16

5 $7.27 ec2-4 64

6 $9.52 lonestar 8

7 $13.09 ec2-8 32

8 $20.99 rockhopper 16

9 $22.59 ec2-16 32

Table 5.2: Cost of the benchmarked architectures

(starting) value and slope, as shown in figure 5.3. The equation reads

U(t) =

Umax if t ≤ T ∗

Umax

(
T0 − t
T0 − T ∗

)
if T ∗ < t ≤ T0

0 if t > T0.

Umax is a measure of the importance of the job to the user, and we assume that it

can be given a monetary value, as the price that the user would be willing to pay

for the simulation. T ∗ is the expected completion time, which can be estimated in

several ways. We use a simple averaging method defined in section 5.2.3, based on

the performance of the available platforms. T0 is the user-defined time at which the

utility is zero, while the distance (T0− T ∗) is a measure of the user’s delay tolerance

and can be measured as a multiple of the expected completion time T ∗.

With this formulation, we assume that there is no loss of value during the expected

duration of the job (when t ≤ T ∗). An extension of the model could take into

account the decrease in the utility function during runtime, reflecting the fact that

faster runtime is valuable to users [116].

201

U

t

Umax

T0T ∗

Figure 5.3: The considered utility function. Umax is a measure of the importance of

the job to the user, T ∗ is the expected completion time, T0 is the time at which the

utility is zero [52].

5.2.3 Experimental Results

Our experiments on different architectures yielded interesting results. This discussion

centers on cost and utility.

Performance, scaling and time to completion

In our study we tested the selected platforms executing a fixed-size simulation (over

3.1M unknowns) with varying numbers of processors, i.e., a strong scalability bench-

mark. All tested clusters allowed the reservation of computing resources by specifying

the number of processes (or slots) used by the parallel job. However, in the case of

the Amazon EC2 cloud, we needed to set the execution policy: we assumed that each

ec2 instance can host a maximum of 16 processes (as they have 16 physical cores)

and we decided to map the MPI processes onto the physical nodes in round-robin

fashion. As Amazon charges users on the basis of running instances, we decided to

optimize the cost of the benchmark by testing small assemblies of ec2 first, and then

to increase the number of nodes in the assembly by powers of 2. For this reason, we

present several configurations of cloud instances; we label such separate assemblies

202

as ec2-i, where i is the number of ec2 nodes.

The application repeats the same set of operations in each simulated time frame (in

our case corresponding to 0.01s intervals). For each considered hardware platform,

the time required to compute a single frame was observed to be constant during the

course of the simulation. We, therefore, use the average computing time for a single

frame as a proxy for the performance of the hardware resource. This facilitates a

side-by-side comparison of all platforms, including cases when the simulation could

not be completed due to cluster usage policies (e.g., ellipse limits the job execution

time to 12 hours so for jobs that spanned small numbers of cores only a fraction of

the entire simulation could be done).

The graph in Figure 5.4a shows a comparison of the performances of the different

platforms, as a function of the number of computing cores. The clusters puma and

ellipse, the grid lonestar and the cloud cluster rockhopper achieve good strong

scaling up to 128 computing cores, while they show a significant decrease in perfor-

mance for larger numbers of cores. In particular, Point A in the figure corresponds

to the fastest execution case in our experiment, that is running the simulation with

128 computing cores on lonestar. If this metric is used to represent utility or value

to the user, it is clear that when using more than 32 cores, lonestar is the best

platform.

ec2 resources scale less well. ec2-1 achieves good scaling only in the range 4-8

cores, ec2-2 up to 16 cores, ec2-4 up to 32, ec2-8 up to 16 cores, while ec2-16

does not achieve strong scaling in any range. Point C in Figure 5.4a corresponds to

the case when the simulation was sustained by 16 computing cores on a single ec2

instance. It is worth noting that the time to completion in this case matches the time

to completion obtained using 16 computing cores on lonestar. Most significantly,

the time to completion required by ec2-1 when using 8 computing cores is lower

than the time required by lonestar with the same number of computing cores. This

result suggests that one of the advantages of IaaS clouds is the availability of powerful

hardware configurations (both in terms of memory and CPU clock speed), that can

203

match and outperform the computing nodes provided by standard grid resources.

This finding is in agreement with previous reports. A study [157] pointed out that

when an EC2 user reserves an entire computing node (this happens in our case using

cc2.8xlarge instances) the impact of virtualization is negligible since processor

cores are not shared among users (see also [110, 195]). This results in performance

comparable to “bare metal” hardware. As predicted by Iosup and coworkers [107],

this is a significant advantage of Cluster Compute instances over former offerings

by EC2, that were suffering from performance degradation due to concurrency of

multiple users or applications using the same processor. On the other hand, the

performance of ec2 platforms seems to be sensitive to overload of the instances, as

shown by the poor strong scaling achieved by ec2-1 when all of the 16 available

computing cores are used for the execution of the simulation.

Point D corresponds to the fastest execution on ec2 resources, that is running

the simulation with 32 computing cores using ec2-16. In this case, we launched 16

EC2 instances and allocated 2 computing cores on each instance in a round robin

fashion. The loss of performance of ec2-16 as the number of cores per instance

increases suggests that when requiring a relatively large number of instances, the

physical connectivity of the nodes may become an issue, and the timings seem to be

dominated by communication overheads. The severe impact of network latency and

bandwidth on EC2 performance is a known issue, especially for large assemblies of

instances [110, 195, 107]. In terms of utility, therefore, individual EC2 nodes offer

high performance but when communication across nodes or racks is involved, this

platform is less attractive.

Based on the metric time to completion we can rank the different resources –

Table 5.3 shows the wall clock times for the fastest run on each platform. The grid

lonestar is by far the fastest resource, while ec2 is generally the slowest. However,

one of the solutions provided by ec2 (namely ec2-16) matches the performance of

the clusters ellipse and puma using a smaller amount of computational nodes (16

for ec2-16 and 32 for the clusters ellipse and puma) and for a monetary cost which

204

2 4 8 16 32 64 128 256

100

1000

A

B

C

D

MPI processes

p
ro
x
y
ti
m
e
in

se
co
n
d
s

puma
ellipse
lonestar
rockhopper
ec2-1
ec2-2
ec2-4
ec2-8
ec2-16

ideal

(a) The average computation time per simulated

time step (proxy), for the benchmarked architec-

tures

2 4 T ∗ 8 16 32

10

100

124
128

128

128

16

16

64

32

32

overall execution time in hours

co
st

p
er

si
m
u
la
ti
on

in
$

puma
ellipse
lonestar
rockhopper
ec2-1
ec2-2
ec2-4
ec2-8
ec2-16

(b) The labels indicate the number of MPI pro-

cesses in the fastest run. T ∗ = 4h 44m corre-

sponds to the average value among the fastest

runs.

Figure 5.4: The average computation time per simulated time step (a) and the

relation between the cost and time of the simulation (b).

is about twice as much the estimated operational cost of the in-house computing

facilities (renting one node on ec2 is about four times the operational cost of our

in-house facilities). This extra cost comes, however, with big advantages: ec2-16 is

an on-demand resource and it is immediately available, whereas in-house computing

facilities are shared among many users and therefore waiting times to obtain the

needed resources may be extremely long. This result further demonstrates one of

the strengths of on-demand resources as compared to on-premise resources, i.e., ec2

can count on a more efficient hardware configuration. The cloud cluster rockhopper

performs best among the tested on-demand resources and better than the tested

on-premise resources. However, it is still significantly slower than the tested HPC

cluster.

205

rank time to completion [s] target # of MPI proc.

1 1h 31m lonestar 128

2 3h 33m rockhopper 128

3 3h 50m ellipse 128

4 3h 53m ec2-16 32

5 4h 05m puma 124∗

6 4h 30m ec2-8 32

7 5h 00m ec2-4 64

8 6h 33m ec2-2 16

9 9h 43m ec2-1 16

Table 5.3: The performance ranking of the hardware resources for the fastest run

based on the metric time to completion.
∗ One node is permanently down.

Utility function

Ideally, users desire to minimize both simulation cost and time to completion but

these objectives compete with each other. This is confirmed by our tests where

the cheapest resource, namely ec2-1, was also the slowest one. In Figure 5.4b we

present how the cost per simulation relates to the time to completion for the different

architectures. The closest points of the graphs to the origin of the axes represent

execution cases that minimize both metrics. Clearly, the decision on which architec-

ture to prefer cannot be made based on a single attribute. The general trend of these

characteristics shows an increase in the cost per simulation with the decreasing time

to completion. A remarkable exception is ec2, for which cost increases with time to

completion. In fact, on this platform slower executions achieved with few comput-

ing cores are actually more expensive due to the policy requiring the reservation of

16-core instances.

To define a ranking of the tested platforms based on a user-centric performance

206

analysis we evaluate the utility function defined in Section 5.2.2. We consider three

user profiles,

Case 1. The job has high priority, and the user has little delay tolerance;

Case 2. The job has average priority, and the user has average delay tolerance;

Case 3. The job has low priority, and the user has large delay tolerance.

Referring for the sake of example to the results of our benchmark, we assume

that the value of a simulation to the user (i.e., the cost the user would be willing

to pay) is in the range between $3.53 (low) and $22.59 (high). More precisely, we

assume that a job with low priority has a value to the user equal to the average

cost of the simulation over the tested architectures, i.e., $10.31. We assign double

this value to a high priority job ($20.62) while an average priority job will have an

intermediate value between the previous two ($15.465). We further assume that for

all the user profiles the expected time to completion T ∗ is the average value of the

times measured on the different architectures (cf. table 5.3), i.e., T ∗ = 4h 44m. A

user with an average delay tolerance is represented by a utility function that remains

non-negative for a runtime up to twice the expected value (i.e., T0 = 2T ∗). A user

with large delay tolerance accepts twice as much delay (T0 = 3T ∗), while a user with

small delay tolerance accepts half as much (i.e., T0 = 1.5T ∗).

We plot in Figure 5.5 the user-specific utility functions together with the graphs

shown in Figure 5.4b. As discussed in previous sections, each platform was tested

in several use cases (varying the number of computing cores); a case is considered

useful to the user if it is represented by a point on the cost/time plot located below

the graph of the user’s utility function. For the sake of example, we reported on the

plot the points corresponding to the cases discussed in detail in the previous sections.

Point A corresponds to the fastest execution of the simulation in our experiment,

obtained when using 128 cores on lonestar. This case is useful to user profiles 1

and 2, for which the importance of the simulation is greater than the actual cost.

User profile 3 would not consider this case useful due to its high cost.

207

2 4 8 16

5

10

15

20

25

A

B

C

D
Case 1

T0,1

Case 2

T0,2

Case 3

T0,3

overall execution time in hours

co
st

p
er

si
m
u
la
ti
on

in
$

puma
ellipse
lonestar
rockhopper
ec2-1
ec2-2
ec2-4
ec2-8
ec2-16

Figure 5.5: Evaluating the cost/time characteristics of the different platforms against

the user-specific utility function. T0,1, T0,2 and T0,3 are the times at which the utility

function is zero for user profiles 1, 2 and 3, respectively.

Despite the cost being relatively lower, the use case of lonestar represented by

point B (8 computing cores) is not useful for any user profile, because for all of

the profiles the time to completion of the simulation exceeds the time T0 for which

the utility function is zero. The use case of ec2-1 corresponding to the cheapest

execution in our experiment (16 computing cores) is represented by point C; because

of the long time to completion, this use case is only useful to user profile 3. The

fastest execution achieved on ec2 resources (2 computing cores on each instance of

ec2-16) is represented by point D. This use case has a cost exceeding the maximum

value of the utility function for all the user profiles, so it is useful to none of them.

In our experiment, a variety of platforms can meet the requirements of user profile

1. Fast and expensive architectures (e.g., lonestar) can be chosen in alternative to

slower and cheaper ones (e.g., ec2). However, because of a small delay tolerance, a

cheap option (ec2-2) has to be ruled out, being penalized by high execution times.

208

The second user profile has the largest pool of useful choices, including the cheaper

(and slower) ec2-2. For user profile 3, because of the low priority assigned by the user

to the job, most of the fastest options (lonestar, ellipse) have to be discarded.

On the other hand, the on-premise cluster puma and some of Amazon’s instances

(most significantly the very cheap ec2-1) can meet the user’s requests.

According to this model, one of the on-demand resources (rockhopper) is not use-

ful to any of the considered user profiles. Amazon’s diverse offering allows instead

this service to be competitive for a wide range of user profiles, being able to pro-

vide reasonably small execution times (ec2-8) or extremely cheap solutions (ec2-1).

On-premise resources do not perform well compared to HPC machines, being signif-

icantly slower, and in most cases they are also outperformed by cheaper on-demand

resources. As a result, they are competitive only in specific execution cases (i.e., with

the proper choice of the number of computing cores). Finally, lonestar is a very

strong competitor in the first two user scenarios (average to high job priority), while

its performance is matched and outperformed both by on-demand and on-premise

resources in the third scenario (low job priority and high delay tolerance).

Notably, the on-demand cutting edge offering by Amazon EC2 has the advantage

of availability. In fact, our analysis does not consider queue waiting times that may

diminish the attractiveness of shorter execution time on grid resources. This feature

would make the IaaS choice even more convenient. Moreover, the cost per simulation

on the resources offered by Amazon can be optimized with a proper scheduling policy

that takes into account the specific pricing policy of Amazon (per-node rather than

per-core). Furthermore, if cost needs to be minimized, it is possible to select cheaper

Amazon instances such as cc2.4xlarge.

209

5.3 Adaptive mapping of parallel components on

physical resources

Communication plays a major role in the performance of parallel architectures, es-

pecially when a pondered load balance is hardly achievable, due to the intrinsic

irregularity and asymmetry of the physical phenomena under examination. IaaS

clouds are particularly sensitive to such an issue, as an effect of the general pur-

pose nature of the interconnection networks. Hence, improving the layout of the

tasks of a parallel application on a particular hardware architecture is an attractive

research subject as it may increase the performance of the application without re-

quiring modifications to the source code. Rubik [7] is a software toolkit that applies

simple geometry transformations (e.g., splits, tilts) to the Cartesian task topology

of an application, altering its mapping to the Cartesian network topology. Thanks

to the tasks shuffling, the underlying hardware may better support MPI collective

operations by utilizing more hardware links while avoiding excessive latency or con-

gestion [28]. Our solution follows a similar approach: we design the layout of MPI

tasks before we execute the application. However, as our hemodynamic CFD code

mainly uses point-to-point communication and has no statically defined communica-

tion topology we need to analyze a data exchange graph for a particular execution

use case in order to optimize the tasks mapping.

A successful mapping strategy has to consider also the properties of the network

backend. Eliminating unnecessary network hops may improve the overall latency

and lead to better performance of the executed application. The project described

in [183] considers the homogenous, multilevel IB network and offers an improved

MPI implementation that exploits the network topology to increase intra-node com-

munication and reducing the long distance inter-node communication. While this

is an end point also for our project, we do not force a different MPI framework

implementation. Moreover, even though currently we consider a simple, single hop

network topology, we propose methods that can be extended to different scenarios. In

210

particular, when considering wider networks, a more aggressive planning of the map-

ping can be applied, aggregating machines from even geographically separated data

centers to provide the computational platform for the distributed applications. The

possibility of the inter-cloud aggregation and the performance of such conglomerate

were evaluated by two of the authors in [174].

5.3.1 Test case

We consider here a subject-specific arterial geometry, extracted from medical images

acquired and processed during the multi-center research project Aneurisk [13]. This

kind of geometries are available for download through the web portal AneuriskWeb

(http://ecm2.mathcs.emory.edu/aneuriskweb). To compute blood velocity and

pressure in the subject specific geometry we solve numerically the NSE equations,

using LiFEV. We simulate blood motion under pulsatile flow conditions, representing

the pumping action of the heart. Blood is described as a Newtonian fluid with

density 1 g/cm3 and dynamic viscosity 0.035 dyn/cm2. For the sake of the analyses

presented here, we limit our simulation to a short time interval (0.10 seconds), solving

the discretized NS equations at 10 instants (i.e., the simulation time step is 0.01s).

A snapshot of the computed solution is shown in Fig. 5.6a.

5.3.2 Offline mesh partitioning

The global mesh consists of the set of all elements, faces, edges and vertices in the

tessellation. To each of those entities a unique identifier (global id) is assigned. We

will denote by Nel, Nf , Ned, Nv the total number of elements, faces, edges, and vertices

in the global mesh. The topology of the mesh is described by the relationship between

different geometric entities and can be expressed in table format (connectivity tables).

For instance, the element-to-face table B0, with size Nel ×Nf is such that

(B0)ij =

1 if face j belongs to element i

0 otherwise.

211

(a) Solution of Navier Stokes

Equations for blood flow in

an aneurysmatic vessel, for t

= 0.05s. Streamlines of the

velocity field colored by the

blood speed.

(b) Different mappings of the coarse mesh

for four 4-way nodes. Each color repre-

sents a part for a single host. Edge thick-

ness represents the number of common

vertices between parts. In this case, the

partitioning using M and D are the same.

Figure 5.6

We have similar definitions for the face-to-edge table B1, with size Nf ×Ned, and

the edge-to-vertex table B2, with size Ned × Nv. Other connectivity tables can be

obtained by composition of these.

In the parallel application, the computational domain may be partitioned by sub-

domains so that each process takes care of only a subset of the global mesh. In

this section we consider non overlapping partitions and we refer to these subsets

as “local” meshes. The splitting is achieved through the use of graph partitioning

algorithms, such as those implemented in the libraries ParMETIS or Scotch, guaran-

teeing a proper load balancing among processes. The load is measured as the number

212

of mesh elements assigned to each process. When local meshes are not overlapping,

each element belongs to one and only one process; however some faces, edges, and

vertices are shared among two or more local meshes (interface entities). In any case,

high quality partitionings should minimize the edgecut or the number of connections

between disjoint partitions. This property is valuable to reduce the communication

between processes necessary to synchronize interface unknowns.

For large scale simulations, mesh partitioning is a highly memory intensive opera-

tion due to the size of the global mesh and it is usually performed offline on dedicated

machines since many times memory on computational nodes is a limiting resource.

In more detail, in [172] the following strategy for mesh partitioning was considered.

1. The element adjacency graph A is built from the topological information stored

by the mesh as A = B0∧BT
0 . Here and in the following we denote by the symbol

∧ the Boolean multiplication operator between tables. The element adjacency

graph is an unweighted symmetric graph such that two elements of the mesh

are connected by a link if they share a common face.

2. The element adjacency graph A is partitioned in np connected components by

using the recursive bisection multilevel partitioning algorithm implemented in

ParMETIS, where np is the number of desired processes to run the simulation.

The result of the partitioning algorithm is a vector p of integer numbers of

length Nel, in which the value of entry i (0 ≤ i ≤ Nel−1) specifies the partition

element i was assigned to.

3. The global mesh is split according to the partitions of the elements induced by

p. By introducing the Boolean table P , of size np ×Nel,

(P)ij =

1 if p[j] == i

0 otherwise

the local mesh corresponding to process i is associated to its own set of elements,

faces, edges, vertices evaluating the non-zeros entries of the i-th row of the

213

matrices Pf = P ∧ B0, Ped = Pf ∧ B1, Pv = Ped ∧ B2, respectively. The above

matrices are also used to define proper mappings between the local meshes and

the original global mesh, while local connectivities tables Bl
i are obtained by

extracting the appropriate rows and columns from the global tables Bi.

4. Finally, the partition connectivity graph M is computed. This is used to es-

timate the communication volume due to synchronization of the variables as-

sociated to interface entities. In particular Mij is proportional to the number

of variables shared by processor i and j, i.e., to the number of shared faces,

edges and vertices. Thus, we have M = αfPfP
T
f +αedPedP

T
ed +αPvP

T
v , where

αf , αed, αv are constant values expressing the number of unknowns associated

to each face, edge, and vertex, respectively. These constants depend only on

the polynomial degree of the finite element basis.

5.3.3 Evaluation procedure and results

To determine the performance of the different process placement scenarios, all sim-

ulation configurations were tested, i.e., three mesh resolutions, from 8 to 128 MPI

processes, for three target architectures, using five different placement strategies (to-

tal 45 benchmark tests). The first three allocation techniques were formed using the

information in the communication graph D, M , and an additional inverted commu-

nication graph I defined as Iij = M −Mij, where M is the maximal entry in M . We

will refer to these strategies as data, part and invert, respectively. The partitioning

of these graphs was performed using the gpart tool from the Scotch 6.0 software

package, that implements graph k-way partitioning heuristics. As a result, we ob-

tained three clusterings CD, CM , and CI , such that each cluster included the same

number of parts equal to the number of processing units available in a single node of

the target machine and the graph cut-sets were minimized. CD gave us the process

placement optimized to the actual communication statistics. CM was the mapping

optimized with respect to the partition connectivity graph M that is a by-product

214

of the partitioning algorithm and does not require any additional work. However,

given the strong correlation between D and M, similar results were expected in these

two cases. Finally, using CI , the worst placement choice was expected.

The second group of allocation strategies were methods commonly used to exe-

cute parallel applications with the OpenMPI: by-node round-robin (rr) and by-cores

(pcore) placements. The first allocation strategy places processes one per node, cy-

cling by node in a round-robin fashion, while the second uses all CPU cores on one

node before moving to the next node (Fig. 5.6b). All tests were repeated twice and

the data were averaged. Figure 5.7 shows the execution times for different MPI pro-

cess placements for all configurations relative to the maximal execution time for that

configuration (i.e., a chart bar having execution time 1 represents the least effective

process placement in the configuration). A detailed description of the results can be

found in [172]: a brief summary follows.

As expected, the execution times for different MPI process placements for all config-

urations demonstrate that deliberate MPI process placement significantly influences

the overall performance of the application. In specific situations, the worst map-

ping in the configuration is almost one order of magnitude slower than the fastest.

The standard pcore placement mapping is well-suited for processing the CFD appli-

cation implemented with the LiFEV library. The reason for this behavior has its

source in the implementation of the ParMETIS partitioning used by the application.

ParMETIS uses recursive bisection, which matches the common 2i-way multipro-

cessing architecture of contemporary computers. However, this allocation may be

improved by the resource-oriented part placement, especially for larger numbers of

hosts performing the computation. Moreover, to design such enhanced placement no

extra computations – for instance evaluating communication statistics – are needed.

The by-product information regarding the pairwise shared mesh entities from the

partitioner phase can be utilized instead. As a result, this shows that it is possible

to adapt performance of parallel MPI applications by communication-aware place-

ment of their MPI processes if the computation structure, input geometry as well as

215

target architecture and network wiring is known and it may be done automatically

by ADAPT.

Figure 5.7: Relative execution times for all simulation configurations. Each value

represents the speed-up of the mappings in relation to the less efficient mapping for

the configuration.

216

5.4 Experimental optimization of parallel 3D over-

lapping domain decomposition schemes

In the previous section we dealt with process placement. Here we notice an additional

opportunity to improve the overall performances on the algorithmic side by resorting

to DD techniques. As pointed out, DD methodology relies on the segregated solution

of the problem of interest on each subdomain and the iterative synchronization of

the partitioned solutions. The advantage of non overlapping splittings is that each

local problem is smaller, so we may expect a faster solution of each local solver. On

the other hand, the final solution is the result of the iterative synchronization and

the number of iterations depends in general on the shape of each subdomains, the

interface conditions and the way the subdomains are synchronized. In this respect,

the introduction of overlap introduces generally some advantages, since the number

of iterations can be reduced. In addition, the interfaces can be positioned in a more

flexible way, so to reduce the communication times. We investigate these aspects in

a series of tests with different geometries.

In our tests we consider only the iterative-by-subdomain solution in the compu-

tational time. Meshing, partitioning and matrix assembly are not included in this

analysis, since they are off-line costs that do not depend on the specific solution

procedure. The time T
(k)
it of each iteration (k) is computed as the maximum of the

two parallel subdomain solution times T
(k)
j ,

T
(k)
it = max

j=1,2
T

(k)
j .

The single processor time is given by the time for solving the linear system added

by the communication time to read from the other processor the last of conditions

(5.3), T
(k)
j = T

(k)
j,sol + T

(k)
j,com. For this particular problem, the computational cost per

iteration is constant (denoted by Tsol + Tcom) , so we get

T =

Nit∑
k=1

T
(k)
it ≈ Nit(Tsol + Tcom).

217

If we denote by p the percentage of overlap in the domain splitting (i.e., the ratio of

the volume of the intersection of the domains to the total volume of the geometry),

theory of overlapping DD proves that Nit decreases with p, Tsol increases with p while

Tcom depends on the position of the interfaces (precisely on the number of vertexes

of the mesh on the interface), so it may change with p in an unpredictable way for

a complicated geometry. We therefore expect that the value p has a major impact

on the solver performances depending on the different geometries. It is worth noting

that the total cost is a function of the mesh size N too. In this case, both factors

Nit and Tsol + Tcom get larger with h, as a price to pay to the improvement of the

accuracy of the approximated solution achieved in this way.

In [99] we have presented several test cases in both academic and nontrivial geome-

tries for a symmetric diffusion reaction problem (i.e., for β1 = β2 = β3 = 0). The

results point out that a small overlap, symmetric with respect to the non overlapping

partition originally determined by ParMETIS, guarantees the best performances in

terms of computational time. Here we investigate the same test cases in the more gen-

eral cases of ADR, when the presence of the ”directional” term weighed by β1, β2, β3

is expected to have an impact on the detection of the optimal overlap.

We considered the following test cases.

Idealized geometries

(1) Cylinder – We consider a cylinder of length L = 6cm and radius R = 0.5cm.

The coefficients µ and σ are set as in [99] and the convective field has been selected

to be constant throughout the domain. We use five meshes with different level of

refinement, for each of the sizes of the overlap. We comment only the simulations

we ran on the fine and very fine meshes as these are the cases of practical interest.

(2) Idealized Aneurysm – We consider an idealized representation of a cerebral

aneurysm where a torus with radius 2cm is merged with a sphere of radius 0.5cm,

representing the sac of the aneurysm. This test emphasizes the role of communication

time. In fact a splitting with an interface intersecting the sac has more vertices than

with interfaces involving only the artery. Overlapping DD allows to manage the

218

location of the interfaces so to avoid many vertices on the interface yet preserving

workload balance between the subdomains. For more details, see [99]. The convective

field has been selected to be tangential with respect to the centerline of the torus

and constant in modulus.

Real geometry We consider the real morphology reported in Fig. 5.1. The convective

field β is given by the solution represented there.

5.4.1 Numerical results

Cylinder Figure 5.8a shows the parallel running time as a function of p. The

varying dependence of number of iterations and cost per iteration on p results in a

convex behavior of the computational time. This behavior is expected, since for small

p the high number of iterations dominates the cost, while beyond a certain value it

does not decrease any longer, while the cost per processor increases. When compared

with the similar tests presented in [99], we notice that the performances are not

significantly affected by the presence of the convective field β. Precisely, the optimal

size of the overlap is achieved at the same percentage as the one obtained for the

problem with β = 0, around 25% and 15% for a fine and very fine mesh, respectively.

In fact the simplicity of the domain makes the presence of the convective field not

relevant for the DD iterations. Nevertheless, it is remarkable that the solution of

the problem on the finest mesh (black line) takes fewer (or the same) iterations than

those needed for a coarser grid (Figure 5.8b). Indeed, a higher concentration of nodes

on the interfaces allows a more detailed exchange of information between the two

partitions through the enforcement of the interface conditions and, consequently, it

boosts the convergence speed by reducing the number of iterations.

Idealized Aneurysm Figure 5.9d shows that the curve related to the very fine

mesh features a minimum at a fraction of overlap of ∼ 30%, like in the advection-free

case [99], i.e., the trend of the estimated parallel time is still invariant with respect

to the presence of the convective field.

219

Relative overlap
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

pa
ra

lle
l t

im
e

[s
]

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fine
VeryFine

(a) Parallel time as a function of the overlap.

Relative overlap
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ite

ra
tio

ns

4

5

6

7

8

9

10

Fine
Very Fine

(b) Number of iterations of the parallel solver.

Figure 5.8: Parallel time performed as a function of p for two levels of refinement

of the mesh for the solution of an ADR problem on a cylinder (a). Corresponding

number of iterations for fine (�) and very fine (◦) meshes (b).

On the contrary, it is interesting to notice that if we do not have a physical con-

vection (β = 0) the minimum of the curve for a coarser grid happens at a larger

size of the overlap (45% vs. 35%, see Figure 5.9c). Numerical performances are here

explained by physical arguments. In fact the solute concentration u at the inflow

is convected through the domain, determining a rapid exchange of information that

accelerates the convergence by subdomains (see Figure 5.9a-5.9b).

Real Aneurysm In this case the geometry is twisted and the convective field

reproduces the real blood flow into the vessel. As we can see from Figures 5.10a-

5.10b, the solute at the inflow section is convected through the vessel and it stagnates

into the aneurysmatic sac. Table 5.4 shows the increment of degrees of freedom when

the overlapping is extended. This number is proportional to the computational cost

required for solving each subdomain. On the other hand, for the different partitions

we have a different number of nodes at the interface, depending on the position of

the two cuts. For instance, passing from 25% to 40% the number of nodes at the

interface of partition 1 decreases. As the optimal trade-off between the reduction

220

(a) Solution on a slice of the domain.

Relative overlap
0.2 0.3 0.4 0.5 0.6 0.7 0.8

ite

ra
tio

ns
4

5

6

7

8

Fine
Very Fine

(b) Number of iterations for a fine (�) and very

fine (◦) mesh.

Relative overlap
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

pa
ra

lle
l t

im
e

[s
]

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

Fine

(c) Parallel time for a fine mesh.

Relative overlap
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

pa
ra

lle
l t

im
e

[s
]

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

Very Fine

(d) Parallel time for a very fine mesh.

Figure 5.9: Solution to an ADR problem on an idealized aneurysm (a) and number

of iterations (b). Parallel time performed as a function of p for a fine (c) and very

fine (d) mesh.

221

(a) Contour surfaces at inflow. (b) Contour surfaces in the aneurysm.

Relative overlap
0 0.1 0.2 0.3 0.4 0.5 0.6

pa
ra

lle
l t

im
e

[s
]

26

27

28

29

30

31

32

33

34

(c) Parallel time as a function of the overlap.

Relative overlap
0 0.1 0.2 0.3 0.4 0.5 0.6

ite

ra
tio

ns

4

6

7

8

(d) Number of iterations.

Figure 5.10: Solution to an ADR problem on a real aneurysmatic vessel (a-b). Paral-

lel time performed as a function of p for a very fine mesh (c) and number of iterations

(d).

222

% overlap DoF0 DoF1 InterNodes0 InterNodes1

5% 86,265 85,096 2046 1491

15% 93,255 89,009 3358 1721

25% 104,465 93,791 5068 1947

40% 118,632 97,760 6161 1584

60% 135,228 101,729 6897 1646

Table 5.4: Number of nodes of each partition (DoF0, DoF1) and total number of

nodes on the interfaces (InterNodes0, InterNodes1) for different levels of overlap on

a very fine mesh for Test 5.

of the iterations attained by a larger overlapping (that however does not improve

after 25%), the increased computational cost per subdomain and the communication

cost, results indicates 15%. This actually yields a well balanced load for the two

subdomains, and a total number of interface degrees of freedom of about 5,000,

even if the total number of iterations is 6 vs the minimum of 4 reached with 25%

overlapping or more (see Figure 5.10c-5.10d).

5.5 Conclusions

High Performance Computing (HPC) quantification of dynamics traditionally de-

scribed more in empirical qualitative terms is expected to bring strong improve-

ments for understanding and optimizing processes with a major impact on industry

and society. A well established example is medicine and cardiovascular sciences in

particular. Numerical analysis of patient-specific settings is becoming a consolidated

tool for clinical routine. This allows to improve the level of knowledge available to

medical doctors thanks to mathematical models and numerical tools that compute

quantities difficult or impossible to measure and overall to enhance the reliability of

measures.

223

However, the intrinsic complexity of the dynamics of interest – reflected by com-

plicated systems of Partial Differential Equations – the constraining timelines of the

clinical routine as well as the large volumes of patients typically needed by clinical

trials rise formidable challenges in terms of computational resources. Traditional

local clusters may be not adequate to afford the computational requests and alter-

native solutions like grid/cloud resources on demand need to be deeply evaluated.

The performance evaluation of these resources is however much more complex for the

variety of user needs and availability scenarios that may present. A general recipe

for the identification of the optimal strategy is currently out of reach. Neverthe-

less, in this paper we aim at presenting the results of years of experience in a vital

environment like Emory University, where mathematicians and computer scientists

routinely assist medical doctors in their daily activity. We focused on a real problem,

such as hemodynamics in patient-specific settings and presented extensive results on

different platforms. We propose a way for measuring the performances under realis-

tic scenarios. Comparing execution time and cost of the application on on-premise

and on-demand targets, we found some evidence to support the claim that IaaS re-

sources may be utilized for scientific CFD simulations possibly at lower cost than

incurred locally. In particular, our test with Amazon’s spot-request feature coupled

with availability of cutting edge resources (16-core nodes, 60GB RAM) suggests that

small on-demand assemblies may be a viable alternative to local clusters. It is crucial

that IaaS’s provide resources immediately while local and grid resources are often

subject to long queue wait times – an aspect that might offset any additional expense.

Furthermore, while a modern local computing cluster with an efficient interconnec-

tion network will outperform an on-demand assembly (which is highly vulnerable

to network performance), the cloud solution might be useful when cost needs to be

minimized.

Among clusters, grids and cloud platforms there is a tremendous variation in com-

munication performance. In order to reduce the heterogeneity due to data handling

and interconnection network capabilities, we analyzed performance variations and

224

process placement strategies for a parallel CFD application based on the finite ele-

ment library LiFEV. The communication profile for this parallel application depends

greatly on the partitioning of the mesh representing the physical geometry of the in-

put. Such communication imbalance invites exploration of the possible mappings

of the parallel tasks onto diversely performing networks of processors. As parallel

target platforms universally present heterogeneous inter-process communication ca-

pabilities when nodes are multicore, performance advantages are possible through

process placement that exploit this knowledge. We studied five process placement

strategies: three of them use problem-related information and the others are typical

OpenMPI process allocations. We found that the standard pcore placement mapping

is well-suited for processing our CFD application. However, we showed that this al-

location may be improved by our part placement, especially for larger numbers of

hosts performing the computation. As a result, we showed that it is possible to

adapt performance of parallel MPI applications by communication-aware placement

of their MPI processes if the computation structure, input geometry as well as tar-

get architecture and network wiring is known and it may be done automatically by

ADAPT.

As a complementary approach, we discuss in detail the optimal splitting of a prob-

lem of interest with different mathematical techniques. The introduction of overlap

in the partition of problems featuring complex morphology gives more freedom in

the optimal selection of interfaces and consequently may outperform more traditional

nonoverlapping approaches. Different aspects have competitive dynamics resulting

in a nontrivial optimization. The dependence of the number of iterations on the

iterative-by-subdomain method decreases with the overlap, while the cost of the

solution on each subdomain increases. The communication time depends on the

location of the interface. Our results in realistic geometries point out the efficacy

of an appropriate selection of overlapping to reduce costs in a parallel computing

setting. In general, a small amount of overlap results in a good trade-off of all the

competitive mechanisms affecting the total computational time. This shows that a

225

more thoughtful positioning of the interfaces can benefit the overall computing per-

formance, at a small additional computational cost on each processing unit. This

complements discussion of sections 5.2 and 5.3, highlighting the trade-offs that can

be achieved on different types of parallel platforms.

This paper has highlighted three dimensions of hemodynamic simulations on clus-

ters, grids and clouds, both algorithmic- and platform-specific. While no universal

conclusions can be drawn, our work proposes indications to the identification of pro-

tocols for hemodynamics computations in outsourcing that we think are needed –

and progressively will be more requested in the next future – by clinical applications.

We plan to include overlapping partitions more extensively in the current activities to

have a more solid experience on the identification of optimal location of the interfaces

and in general of the workbalance.

Acknowledgments

The authors gratefully acknowledge support by the Computational and Life Sciences

(CLS) Strategic Initiative of Emory University. This research was supported in

part by US National Science Foundation Grant OCI-1124418, OCI-1053575, DMS-

1419060, DMS-1412963, Fondazione Cariplo “iCardioCloud,” URC Emory Grant

2015 “Numerical methods and flows at moderate reynolds number in left ventricular

assisted devices.”

226

Chapter 6

Conclusions

This work has been motivated by the vision of Mathematics as a tool to empower

and support clinicians in diagnosis/prognosis, surgical planning, and virtual surgery.

For this to happen, several challenges need to be tackled, such as the large number

of patients that need to be processed, the uncertainty in the numerical results due to

missing patient-specific data and model assumptions, and privacy and efficiency con-

cerns when scientists and clinicians outsource in silico experiments to reduce system

and operating expenses of local computational resources. We addressed these issues

by employing a variety of mathematical and computational techniques – parallel

computing, reduced order modelling, and uncertainty quantification among others -

designed for but not limited to medical applications.

To reduce the computational costs, an educated reduced model (HiMod) for patient-

specific geometries can be tuned to be either as accurate as 3D high-fidelity models,

or as computationally cheap as reduced 1D models. We resorted to a genuine polar

coordinate spectral discretization, which seems more natural for domains like the

ones occurring in computational hemodynamics. The selection of appropriate basis

functions is troublesome both for the scalar case, and - even more - for the vector

case, where additional analytical, numerical, and physical constraints need to be met.

Although, from a mathematical viewpoint, guaranteeing desirable properties such as

well-posedness, well-conditioning, orthogonality, regularity, and the fulfillment of

boundary conditions simultaneously is extremely challenging, from a practical view-

point it can be unnecessary. For instance, a discontinuity in the solution localized

227

around the pole may be irrelevant if the goal is approximating the dynamics in prox-

imity of the walls efficiently. This confirms the hierarchical model reduction as a

competitive method with great potential to radically change the clinical practice by

making quantitative data securely and quickly accessible to the clinicians for more

informed decisions, thus reducing in a broader perspective unnecessary hospitaliza-

tions.

To quantify the uncertainty at an affordable computational cost, we proposed a

domain decomposition approach that solves the stochastic problem only locally, at

the subsystem level, significantly fostering parallelism and enabling accurate and

relatively inexpensive stochastic solves in large-scale networks. The numerical tests

showed excellent strong and weak scalability properties for different types of solvers,

and bounded errors regardless of the network size (i.e., truncation errors do not grow

uncontrollably with the problem size). In order to improve the performance of the

solver, we designed new multigrid methods tailored to network problems. While

coarsening the PCE polynomial order does not provide significant improvements,

combining network components to create coarser networks considerably accelerates

the software convergence, even more than the traditional algebraic multigrid method.

To improve the accuracy of uncertainty quantification in the cardiovascular network

at an affordable computational cost, we combined a Cartesian version of the HiMod

solver (TEPEM) with the DDUQ method. While the traditional methods that can

be found in the literature for quantifying uncertainties in large-scale problems suffer

from the intensive computational cost associated with high-fidelity models, or from

inaccuracy due to the reduced 1D models, DDUQ and TEPEM feature the perfect

capabilities to “fill the gap” between feasibility and reliability: while, on one hand,

the DDUQ method provides an effective way to quantify the model uncertainties by

promoting the independence of the subsystems, on the other hand, the TEPEM pro-

vides an effective way to solve the local problems maintaining accuracy and reduced

computational burden. By embedding the TEPEM solver into the DDUQ frame-

work, we were able to show excellent scaling for 3D non-linear vector problems, and

228

to provide relevant statistical information about quantities of clinical interest, such

as the wall shear stress, with a level of detail currently out of reach for the traditional

one-dimensional models, and in a fraction of the computational time demanded by

full three-dimensional approaches.

To optimize the execution on parallel architectures, we analyzed performance varia-

tions and process placement strategies for parallel CFD applications, that are consis-

tently affected by communication imbalance. We showed that it is possible to adapt

performance of parallel MPI applications by communication-aware placement of the

MPI processes if the computation structure, input geometry, target architecture, and

network wiring is known. Moreover, we compared different hardware platforms with

respect to the execution of the same task, based on time to completion, monetary

cost, and user’s priorities. From a mathematical viewpoint, we detect the optimal

domain splitting that minimizes the computational time via domain decomposition

techniques. Our results in realistic geometries show that a small amount of over-

lap provides a good trade-off of all the competitive mechanisms affecting the total

computational time (number of iterations to convergence vs. local computational

cost).

As future developments, we would like to incorporate fluid-structure interaction

models in the hierarchical reduced-order solvers, for a more realistic representation

of the physics of the phenomenon, which will require the enforcement of non-Dirichlet

boundary conditions. From an analytical viewpoint, the fulfillment of the inf-sup con-

dition in the reduced spaces needs to be rigorously proved in a general framework,

while from an algebraic viewpoint, the design of ad-hoc preconditioners based on the

hierarchical structure of the HiMod matrix is still to be investigated. The computa-

tion of quantities of clinical interest, such as the fractional flow reserve (FFR), will

need to be endowed with confidence intervals in order to make the numerical results

more reliable and usable by clinicians.

229

Appendix

7.1 Bottom-Up basis functions

Possible choices for the basis functions different from Zernike and parity-restricted

Chebyshev polynomials according to a bottom-up approach are detailed here, with

a short motivation about their discard. Figure 7.1 (left) shows the performance

of different basis sets in approximating the function f(r̂) = cos(π
2
r̂) on the interval

(0, 1). The relative error is defined as e = ‖f−fapprox‖L2
w(Ω)/‖f‖L2

w(Ω), where w(r̂) = r̂

and fapprox denotes the approximation of f via the truncation of (2.9).

m

101 102

R
e
la

ti
v
e
 e

rr
o
r

10-15

10-10

10-5

100

Chebyshev Linear Shift

Chebyshev Quadratic Shift

Robert

Bessel

O(exp(-m))

Number of digits

2 4 8 16

O
rt

h
o
n
o
rm

a
lit

y
 e

rr
o
r

10-12

10-8

10-4

10-2

n=0

n=1

n=2

n=3

n=4

Figure 7.1: Left: Relative error for the approximation of the function f(r̂) = cos
(
π
2
r̂
)

with Chebyshev polynomials with linear () and quadratic (�) shift, Robert (�)

and Bessel (×) functions. An exponential decay is shown by the dashed line. Right:

Orthonormality error associated with the basis functions Jn(λj r̂), for n = 0, 1, . . . , 4,

j = 1, 2, . . . , 8, as a function of the numerical precision expressed in number of digits.

230

Bessel functions: Jn(λ̂j r̂). The modal coefficients of Bessel series asymptotically

behave like 1/j3 [89, 36]. For this reason Bessel functions are expected to be a bad

choice for function approximation. In particular, Figure 7.1 (left) shows that even a

large number of modes is unable to guarantee a desired accuracy on the relative er-

ror. Moreover, this basis is highly sensitive to numerical precision. Figure 7.1 (right)

shows that the basis functions lose orthonormality as the accuracy of the roots λ̂j de-

creases. The orthonormality error associated with the basis functions Jn(λ̂j r̂), for n =

0, 1, . . . , 4, j = 1, 2, . . . , 8, is measured via the Frobenius norm of the matrix Mn− I,

where Mn is the mass matrix associated with the normalized Bessel functions of order

n, with components [Mn]jl = ‖Jn(λ̂j r̂)‖−1
L2
w(0,1)‖Jn(λ̂lr̂)‖−1

L2
w(0,1)

1∫
0

Jn(λ̂j r̂)Jn(λ̂lr̂)r̂dr̂,

and I is the identity matrix.

Polar Robert functions: r̂jTn(r̂). As addressed in [35, 37], this basis is extremely

ill-conditioned. Indeed, in proximity of r̂ = 1, the linear independence of the low-

degree basis functions is compromised, since the variation of these functions in this

region is so slow that they are asymptotically equivalent [37]. These features make

the polar Robert functions a basis unsuitable in most cases.

Shifted-Chebyshev polynomials with linear shift: Tn(2r̂ − 1). The grid

{r̂i}Ni=0 constituted by the roots of the Shifted-Chebyshev polynomial of order (N+1)

has points clustered near both r̂ = 0 and r̂ = 1. This property makes this grid ideal

to solve large gradients near the origin, but less suited to a generic dependence of

the function at hand on the radial coordinate.

231

7.2 HiMod coefficients for the Advection-Diffusion-

Reaction Equations

We denote the inverse transpose of the strain gradient tensor by

F̂−T =
∂ψ̂

∂z
◦ ψ̂

−1
=

1 − r̂

R

∂R

∂x̂
0

0
1

R
0

0 − 1

R2

∂R

∂ϑ̂

1

R

 =

1 D̂r D̂ϑ

0 Ĵr D̂rϑ

0 D̂ϑr Ĵϑ

 , (7.1)

where the subscripts r and ϑ refer to the radial and angular component, while r̂ and

ϑ̂ denote the polar coordinates in the reference domain. Notice that, if we assume

the physical radius R to be constant, matrix (7.1) features a diagonal pattern, being

D̂r = D̂ϑ = D̂rϑ = D̂ϑr = 0 and Ĵr = Ĵϑ = R−1.

The coefficients of the HiMod formulation (2.13) for the ADR problem (2.11) with

viscosity µ, convective field b = [bx, br, bϑ]T , reaction coefficient σ and forcing term

f are given by

akj =

∫
γ̂

(
µ(D̂2

r + D̂2
ϑr + Ĵ2

r)
∂ϕ̂k
∂r̂

∂ϕ̂j
∂r̂

+ µ(D̂rD̂ϑ + ĴrD̂rϑ + D̂ϑrĴϑ)
1

r̂

∂ϕ̂k
∂r̂

∂ϕ̂j

∂ϑ̂

+ µ(D̂rD̂ϑ + D̂rϑĴr + ĴϑD̂ϑr)
1

r̂

∂ϕ̂k

∂ϑ̂

∂ϕ̂j
∂r̂

+ µ
(
D̂2
ϑ + D̂2

rϑ + Ĵ2
ϑ

) 1

r̂2

∂ϕ̂k

∂ϑ̂

∂ϕ̂j

∂ϑ̂

+ (bxD̂r + brĴr + bϑD̂ϑr)
∂ϕ̂k
∂r̂

ϕ̂j + (bxD̂ϑ + brD̂rϑ + bϑĴϑ)
1

r̂

∂ϕ̂k

∂ϑ̂
ϕ̂j + σϕ̂kϕ̂j

)
Ĵdγ̂,

bkj =

∫
γ̂

µ

(
D̂r

∂ϕ̂k
∂r̂

ϕ̂j +
D̂ϑ

r̂

∂ϕ̂k

∂ϑ̂
ϕ̂j

)
Ĵdγ̂, dkj =

∫
γ̂

µϕ̂kϕ̂jĴdγ̂,

ckj =

∫
γ̂

(
µD̂rϕ̂k

∂ϕ̂j
∂r̂

+ µ
D̂ϑ

r̂
ϕ̂k
∂ϕ̂j

∂ϑ̂
+ bxϕ̂kϕ̂j

)
Ĵdγ̂, fj =

∫
γ̂

f(ψ̂
−1

(ẑ))ϕ̂jĴdγ̂,

being Ĵ = |det(F̂−T)|, and with dγ̂ = r̂dr̂dϑ̂. The diagonal pattern of matrix F̂−T

232

for the cylindrical setting with a constant radius yields some simplifications, so that

akj =

∫
γ̂

(
µ

R2

∂ϕ̂k
∂r̂

∂ϕ̂j
∂r̂

+
µ

R2r̂2

∂ϕ̂k

∂ϑ̂

∂ϕ̂j

∂ϑ̂
+
br
R

∂ϕ̂k
∂r̂

ϕ̂j +
bϑ
Rr̂

∂ϕ̂k

∂ϑ̂
ϕ̂j + σϕ̂kϕ̂j

)
Ĵdγ̂,

bkj = 0, ckj =

∫
γ̂

bxϕ̂kϕ̂jĴdγ̂, dkj =

∫
γ̂

µϕ̂kϕ̂jĴdγ̂, fj =

∫
γ̂

f(ψ̂
−1

(ẑ))ϕ̂jĴdγ̂.

7.3 HiMod coefficients for the Navier-Stokes equa-

tions

The HiMod formulation of the Navier-Stokes equations (2.17) reads as:

For all k = 1, . . . ,mu, w = 1, . . . ,mp, i = 1, . . . , Nh,u, q = 1, . . . , Nh,p, find

ux,k,i, ur,k,i, uϑ,k,i, pw,q such that, ∀b ∈ {x, r, ϑ, p}, ∀j = 1, . . . , {mu,mp}, ∀l =

1, . . . , {Nh,u, Nh,p}2

∑
a∈{x,r,ϑ}

mu∑
k=1

mp∑
w=1

∫
Ω̂1D

{Nh,u∑
i=1

[
aab,kjζa,iζb,l + bab,kjζa,iζ

′
b,l + cab,kjζ

′
a,iζb,l + dab,kjζ

′
a,iζ
′
b,l

]
ua,k,i+

Nh,p∑
q=1

[
apb,wjζp,qζb,l + bpb,wjζp,qζ

′
b,l

]
pw,q

}
dx̂ =

∫
Ω̂1D

∫
γ̂

f̂ ϕ̂b,jζb,lĴdγ̂dx̂,

(7.2)

where Ĵ = |det(F̂−T)|, dγ̂ = r̂dr̂dϑ̂, and the coefficients aab,kj, apb,wj, bab,kj, bpb,wj,

cab,kj, dab,kj collect the contribution of the transverse dynamics.

For the sake of simplicity, the following notation is adopted:

I
αβ,γδ
ab,cd (f1, f2, . . . ; η1, η2, . . .) =

∫
γ̂

f1(Ĵr, Ĵϑ, D̂r, D̂ϑr, bx, br, bϑ)f2(Ĵr, Ĵϑ, D̂r, D̂ϑr, bx, br, bϑ) . . .

. . . ϕac
(α,β)(r̂, ϑ̂)ϕbd

(γ,δ)(r̂, ϑ̂)η1η2 . . . Ĵdγ̂,

(7.3)

2If b = p, the indices j and l run up to mp and Nh,p, respectively, and up to mu and Nh,u

otherwise.

233

where a, b ∈ {x, r, ϑ; p} refer to the axial, radial, angular component of the modal

function or to the pressure modal basis, and c, d ∈ {1, . . . ,mu or mp} are the corre-

sponding modal indices. The superscripts {α, β, γ, δ} ∈ {0, 1} take into account the

differentiation applied to the modal basis. In particular, when α or γ (β or δ) are

set to 1, the corresponding modal function is differentiated with respect to the radial

(angular) variable. Finally, fi is a function of x̂, r̂, ϑ̂ through Ĵr, Ĵϑ, D̂r, D̂ϑr, bx, br, bϑ,

being {bx, br, bϑ} the terms coming from the linearization of the non-linear term, and

ηi ∈ {α, ν, 2ν,±1} are constant parameters. For instance,

aϑx,sj = I
10,01
ϑx,sj

(
D̂r,

Ĵϑ
r̂

; ν

)
=

∫
γ̂

(
νD̂r

Ĵϑ
r̂
ϕϑs

(1,0)(r̂, ϑ̂)ϕxj
(0,1)(r̂, ϑ̂)

)
Ĵdγ̂.

The explicit expression for all the coefficients is provided below.

axx,kj = I
00,00
xx,kj (1;α) + I

01,00
xx,kj

(
Ĵϑ
r
, bϑ; 1

)
+ I

01,01
xx,kj

(
Ĵ2
ϑ

r̂2
; ν

)
+ I

01,10
xx,kj

(
Ĵϑ
r
, D̂ϑr; ν

)
+

I
10,00
xx,kj

(
D̂ϑr, bϑ; 1

)
+ I

10,00
xx,kj

(
Ĵr, br; 1

)
+ I

10,00
xx,kj

(
D̂r, bx; 1

)
+

I
10,01
xx,kj

(
Ĵϑ
r
, D̂ϑr; ν

)
+ I

10,10
xx,kj

(
D̂2
r ; 2ν

)
+ I

10,10
xx,kj

(
Ĵ2
r ; ν
)

+ I
10,10
xx,kj

(
D̂2
ϑr; ν

)
,

axr,kl = I
10,10
xr,kl

(
D̂r, Ĵr; ν

)
, axϑ,kz = I

01,10
xϑ,kz

(
D̂r,

Ĵϑ
r̂

; ν

)
+ I

10,10
xϑ,kz

(
D̂r, D̂ϑr; ν

)
,

arr,hl = I
00,00
rr,hl (1;α) + I

00,00
rr,hl

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I

01,00
rr,hl

(
Ĵϑ
r
, bϑ; 1

)
+ I

01,01
rr,hl

(
Ĵ2
ϑ

r̂2
; ν

)
+

I
01,10
rr,hl

(
Ĵϑ
r
, D̂ϑr; ν

)
+ I

10,00
rr,hl

(
D̂r, bx; 1

)
+ I

10,00
rr,hl

(
Ĵr, br; 1

)
+

I
10,00
rr,hl

(
D̂ϑr, bϑ; 1

)
+ I

10,01
rr,hl

(
Ĵϑ
r
, D̂ϑr; ν

)
+ I

10,10
rr,hl

(
D̂2
r ; ν
)

+

I
10,10
rr,hl

(
D̂2
ϑr; ν

)
+ I

10,10
rr,hl

(
Ĵ2
r ; 2ν

)
,

234

arϑ,hz = I
00,00
rϑ,hz

(
Ĵϑ
r
, bϑ; 1

)
+ I

00,01
rϑ,hz

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I

00,10
rϑ,hz

(
Ĵϑ
r̂
, D̂ϑr; 2ν

)
+

I
01,00
rϑ,hz

(
Ĵ2
ϑ

r̂2
;−ν

)
+ I

01,10
rϑ,hz

(
Ĵr,

Ĵϑ
r̂

; ν

)
+

I
10,00
rϑ,hz

(
Ĵϑ
r̂
, D̂ϑr;−ν

)
+ I

10,10
rϑ,hz

(
Ĵr, D̂ϑr; ν

)
,

arx,hj = I
10,10
rx,hj

(
Ĵr, D̂r; ν

)
, arp,hi = I

00,00
rp,hi

(
− Ĵϑ
r̂

; 1

)
+ I

10,00
rp,hi

(
−Ĵr; 1

)
,

aϑϑ,sz = I
00,00
ϑϑ,sz (1;α) + I

00,00
ϑϑ,sz

(
Ĵ2
ϑ

r̂2
; ν

)
+ I

00,10
ϑϑ,sz

(
Ĵr,

Ĵϑ
r̂

;−ν

)
+ I

01,00
ϑϑ,sz

(
Ĵϑ
r
, bϑ; 1

)
+

I
01,01
ϑϑ,sz

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I

01,10
ϑϑ,sz

(
Ĵϑ
r̂
, D̂ϑr; 2ν

)
+ I

10,00
ϑϑ,sz

(
Ĵr,

Ĵϑ
r̂

;−ν

)
+

I
10,00
ϑϑ,sz

(
D̂r, bx; 1

)
+ I

10,00
ϑϑ,sz

(
Ĵr, br; 1

)
+ I

10,00
ϑϑ,sz

(
D̂ϑr, bϑ; 1

)
+

I
10,10
ϑϑ,sz

(
D̂2
r ; ν
)

+ I
10,10
ϑϑ,sz

(
Ĵ2
r ; ν
)

+ I
10,10
ϑϑ,sz

(
D̂2
ϑr; 2ν

)
,

aϑr,sl = I
00,00
ϑr,sl

(
Ĵϑ
r
, bϑ;−1

)
+ I

00,01
ϑr,sl

(
Ĵ2
ϑ

r̂2
;−ν

)
+ I

00,10
ϑr,sl

(
Ĵϑ
r
, D̂ϑr;−ν

)
+

I
01,00
ϑr,sl

(
Ĵ2
ϑ

r̂2
; 2ν

)
+ I

10,00
ϑr,sl

(
Ĵϑ
r
, D̂ϑr; 2ν

)
+

I
10,01
ϑr,sl

(
Ĵr,

Ĵϑ
r̂

; ν

)
+ I

10,10
ϑr,sl

(
Ĵr, D̂ϑr; ν

)
,

aϑx,sj = I
10,01
ϑx,sj

(
D̂r,

Ĵϑ
r̂

; ν

)
+ I

10,10
ϑx,sj

(
D̂ϑr, D̂r; ν

)
,

apϑ,wz = I
00,01
pϑ,wz

(
Ĵϑ
r̂

;−1

)
+ I

00,10
pϑ,wz

(
D̂ϑr;−1

)
,

apr,wl = I
00,10
pr,wl

(
Ĵr;−1

)
+ I

00,00
pr,wl

(
Ĵϑ
r̂

;−1

)
, axp,ki = I

10,00
xp,ki

(
D̂r;−1

)
,

apx,wj = I
00,10
px,wj

(
D̂r;−1

)
, aϑp,si = I

01,00
ϑp,si

(
Ĵϑ
r̂

;−1

)
+ I

10,00
ϑp,si

(
D̂ϑr

r̂
;−1

)
;

235

bxx,kj = I
10,00
xx,kj

(
D̂r; 2ν

)
, bxr,kl = I

10,00
xr,kl

(
Ĵr; ν

)
, bpx,wj = I

00,00
px,wj (1;−1) ,

bxp,ki = I
00,00
xp,ki (1;−1) , brr,hl = I

10,00
rr,hl

(
D̂r; ν

)
, bϑϑ,sz = I

10,00
ϑϑ,sz

(
D̂r; ν

)
,

bxϑ,kz = I
01,00
xϑ,kz

(
Ĵϑ
r̂

; ν

)
+ I

10,00
xϑ,kz

(
D̂ϑr; ν

)
;

cxx,kj = I
00,00
xx,kj (bx; 1) + I

00,10
xx,kj

(
D̂r; 2ν

)
, crr,rl = I

00,00
rr,hl (bx; 1) + I

00,10
rr,hl

(
D̂r; ν

)
,

cϑϑ,sz = I
00,00
ϑϑ,sz (bx; 1) + I

00,10
ϑϑ,sz

(
D̂r; ν

)
, crx,hj = I

00,10
rx,hj

(
Ĵr; ν

)
,

cϑx,sj = I
00,01
ϑx,sj

(
Ĵϑ
r̂

; ν

)
+ I

00,10
ϑx,sj

(
D̂ϑr; ν

)
,

drr,hl = I
00,00
rr,hl (1; ν) , dϑϑ,sz = I

00,00
ϑϑ,sz (1; ν) , dxx,kj = I

00,00
xx,kj (1; 2ν) .

236

Bibliography

[1] HeartFlow. https://www.heartflow.com/.

[2] Boost C++ Libraries. http://www.boost.org, 2012.

[3] HPC Cloud Service, Penguin Computing. http://www.penguincomputing.

com/Services/HPCCloud, 2012.

[4] LifeV Project. http://www.lifev.org, 2012.

[5] Penguin Computing On Demand / Indiana University. https://podiu.

penguincomputing.com/, 2012.

[6] SuiteSparse. http://www.cise.ufl.edu/research/sparse/SuiteSparse/,

2012.

[7] Performance Analysis and Visualization at Exascale

(PAVE). https://computation.llnl.gov/project/

performance-analysis-through-visualization/, 2014.

[8] HiMod Project. http://himod.mathcs.emory.edu/, 2017.

[9] M Aletti, S Perotto, and A Veneziani. Educated bases for the HiMod reduc-

tion of advection-diffusion-reaction problems with general boundary conditions.

Technical report, MOX Report No. 37/2015.

237

[10] MS Allen and RJ Kuether. Substructuring with nonlinear subcomponents: a

nonlinear normal mode perspective. In Topics in Experimental Dynamics Sub-

structuring and Wind Turbine Dynamics, Volume 2, pages 109–121. Springer,

2012.

[11] S Amaral, D Allaire, and K Willcox. A decomposition-based approach to

uncertainty analysis of feed-forward multicomponent systems. International

Journal for Numerical Methods in Engineering, 100(13):982–1005, 2014.

[12] DG Anderson. Iterative procedures for nonlinear integral equations. Journal

of the ACM (JACM), 12(4):547–560, 1965.

[13] L Antiga, T Passerini, M Piccinelli, and A Veneziani. Aneurisk web,

ecm2.mathcs.emory.edu/aneuriskweb, 2011.

[14] L Antiga, M Piccinelli, L Botti, B Ene-Iordache, A Remuzzi, and DA Stein-

man. An image-based modeling framework for patient-specific computational

hemodynamics. Medical & biological engineering & computing, 46(11):1097,

2008.

[15] L Antiga and DA Steinman. Vmtk: vascular modeling toolkit. VMTK, San

Francisco, CA, accessed Apr, 27:2015, 2006.

[16] C Anukal and M Sankaran. First-order approximation methods in reliability-

based design optimization. Journal of Mechanical Design, 127(5):851–857,

2005.

[17] M Arnst, R Ghanem, E Phipps, and J Red-Horse. Reduced chaos expansions

with random coefficientsin reduced-dimensional stochastic modeling of cou-

pled problems. International Journal for Numerical Methods in Engineering,

97(5):352–376, 2014.

238

[18] R Askey and JA Wilson. Some basic hypergeometric orthogonal polynomials

that generalize Jacobi polynomials, volume 319. American Mathematical Soc.,

1985.

[19] K Atkinson and O Hansen. A spectral method for the eigenvalue problem for

elliptic equations. Electronic Transactions on Numerical Analysis, 37:386–412,

2010.

[20] F Auricchio, M Conti, A Lefieux, S Morganti, A Reali, F Sardanelli, F Secchi,

S Trimarchi, and A Veneziani. Patient-specific analysis of post-operative aortic

hemodynamics: a focus on thoracic endovascular repair (tevar). Computational

Mechanics, 54(4):943–953, 2014.

[21] F Auteri and L Quartapelle. Spectral elliptic solvers in a finite cylinder. Com-

munications in Computational Physics, 5(2-4):426–441, 2009.

[22] M Azaiez, J Shen, C Xu, and Q Zhuang. A Laguerre–Legendre spectral method

for the Stokes problem in a semi-infinite channel. SIAM Journal on Numerical

Analysis, 47(1):271–292, 2008.

[23] A Barone. Parallel and Multilevel Techniques for Hierarchical Model Reduc-

tion. Master’s thesis, Politecnico di Milano, Italy, 2014.

[24] GK Batchelor. An Introduction to Fluid Dynamics. Cambridge University

Press, Cambridge, 2000.

[25] KJ Bathe. The inf–sup condition and its evaluation for mixed finite element

methods. Computers & structures, 79(2):243–252, 2001.

[26] O Beckwith, S Perotto, and A Veneziani. Inf-sup stability of hierarchical model

reduction. In preparation.

[27] C Bernardi, M Dauge, Y Maday, and M Azäıez. Spectral Methods for Axisym-

metric Domains, volume 3. Gauthier-Villars Paris, 1999.

239

[28] A Bhatele, T Gamblin, SH Langer, PT Bremer, EW Draeger, B Hamann,

KE Isaacs, AG Landge, J Levine, V Pascucci, et al. Mapping applications

with collectives over sub-communicators on torus networks. In High Perfor-

mance Computing, Networking, Storage and Analysis (SC), 2012 International

Conference for, pages 1–11. IEEE, 2012.

[29] HM Blackburn and JM Lopez. Modulated rotating waves in an enclosed

swirling flow. Journal of Fluid Mechanics, 465:33–58, 2002.

[30] PJ Blanco, LA Mansilla Alvarez, and RA Feijóo. Hybrid element-based ap-

proximation for the Navier–Stokes equations in pipe-like domains. Computer

Methods in Applied Mechanics and Engineering, 283:971–993, 2015.

[31] PJ Blanco, LA Mansilla Alvarez, and RA Feijóo. Hybrid element-based ap-

proximation for the Navier–Stokes equations in pipe-like domains. 283:971–993,

2015.

[32] PJ Blanco, SM Watanabe, MARF Passos, PA Lemos, and RA Feijóo. An

anatomically detailed arterial network model for one-dimensional computa-

tional hemodynamics. 62(2):736–753, 2014.

[33] PJ Blanco, SM Watanabe, RAB Queiroz, PR Trenhago, LG Fernandes, and

RA Feijóo. Trends in the computational modeling and numerical simulation of

the cardiovascular system. In RA Feijóo, A Ziviani, and PJ Blanco, editors, Sci-

entific Computing Applied to Medicine and Healthcare, chapter 2, pages 29–77.

National Institute of Science and Technology in Medicine Assisted by Scientific

Computing and National Laboratory for Scientific Computing, Petrópolis, RJ,

2012.

[34] D Boffi, F Brezzi, M Fortin, et al. Mixed Finite Flement Methods and Appli-

cations, volume 44. Springer Berlin, Heidelberg, 2013.

240

[35] JP Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, New

York, second edition, 2001.

[36] JP Boyd and N Flyer. Compatibility conditions for time-dependent partial

differential equations and the rate of convergence of Chebyshev and Fourier

spectral methods. Computer Methods in Applied Mechanics and Engineering,

175(3-4):281–309, 1999.

[37] JP Boyd and F Yu. Comparing seven spectral methods for interpolation and for

solving the Poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge

polynomials, Chebyshev–Fourier series, cylindrical Robert functions, Bessel–

Fourier expansions, square-to-disk conformal mapping and radial basis func-

tions. Journal of Computational Physics, 230(4):1408–1438, 2011.

[38] S Brenner and R Scott. The Mathematical Theory of Finite Element Methods,

volume 15. Springer-Verlag New York, 2008.

[39] C Brezinski. Convergence acceleration during the 20th century. In Numerical

Analysis: Historical Developments in the 20th Century, pages 113–133. Gulf

Professional Publishing, 2001.

[40] H Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equa-

tions. Universitext. Springer New York, 2011.

[41] F Brezzi. On the existence, uniqueness and approximation of saddle-point

problems arising from Lagrangian multipliers. ESAIM: Mathematical Modelling

and Numerical Analysis - Modélisation Mathématique et Analyse Numérique,

8(R2):129–151, 1974.

[42] WL Briggs, VE Henson, and SF McCormick. A multigrid tutorial. SIAM, 2000.

[43] CA Bulant. Computational models for the geometric and functional assessment

of the coronary circulation. PhD thesis, Laboratório Nacional de Computação

Cient́ıfica - LNCC, Petrópolis - Brazil, 2017.

241

[44] C Canuto, MY Hussaini, A Quarteroni, and TA Zang. Spectral Methods -

Fundamentals in Single Domains. Scientific Computation. Springer-Verlag,

Berlin, Heidelberg, 2006.

[45] KT Carlberg, M Khalil, K Sargsyan, and S Guzzetti. Uncertainty propagation

in large-scale networks via domain decomposition. In preparation.

[46] KT Carlberg, M Khalil, R Tuminaro, and S Guzzetti. Multigrid methods

for uncertainty propagation in large-scale networks via overlapping domain

decomposition. In preparation.

[47] JR Cebral, F Mut, J Weir, and C Putman. Quantitative characterization of

the hemodynamic environment in ruptured and unruptured brain aneurysms.

American Journal of Neuroradiology, 32(1):145–151, 2011.

[48] D Chapelle and KJ Bathe. The inf-sup test. Computers & structures, 47(4-

5):537–545, 1993.

[49] P Chaturani and RN Pralhad. Blood flow in tapered tubes with biorheological

applications. Biorheology, 22(4):303–314, 1985.

[50] G Cheliotis, C Kenyon, R Buyya, and A Melbourne. Grid economics: 10

lessons from finance. GRIDS Lab and IBM Research Zurich, Melbourne, Tech.

Rep, 2003.

[51] P Chen, A Quarteroni, and G Rozza. Simulation-based uncertainty quantifi-

cation of human arterial network hemodynamics. International Journal for

Numerical Methods in Biomedical Engineering, 29(6):698–721, 2013.

[52] BN Chun and DE Culler. User-centric performance analysis of market-based

cluster batch schedulers. In 2002 2nd International Symposium on Cluster

Computing and the Grid, pages 30–30. IEEE/ACM, 2002.

242

[53] PG Constantine, ET Phipps, and TM Wildey. Efficient uncertainty propaga-

tion for network multiphysics systems. International Journal for Numerical

Methods in Engineering, 99(3):183–202, 2014.

[54] A Coşkun, C Chen, PH Stone, and CL Feldman. Computational fluid dynamics

tools can be used to predict the progression of coronary artery disease. Physica

A: Statistical Mechanics and its Applications, 362(1):182–190, 2006.

[55] MA Costa and DI Simon. Molecular basis of restenosis and drug-eluting stents.

Circulation, 111(17):2257–2273, 2005.

[56] R Courant and D Hilbert. Methods of Mathematical Physics, volume I. John

Wiley & Sons, Inc., New York, 1966.

[57] R Craig and M Bampton. Coupling of substructures for dynamic analyses.

AIAA journal, 6(7):1313–1319, 1968.

[58] D Darjany, B Englert, and EH Kim. Implementing Overlapping Domain De-

composition Methods on a Virtual Parallel Machine. In Geyong Min, Beni-

amino Di Martino, Laurence T. Yang, Minyi Guo, and Gudula Rünger, edi-

tors, Frontiers of High Performance Computing and Networking – ISPA 2006

Workshops, volume 4331 of Lecture Notes in Computer Science, pages 717–727.

Springer Berlin Heidelberg, 2006.

[59] HF Davis. Fourier Series and Orthogonal Functions. Dover Publications, New

York, 2012.

[60] DA de Zélicourt, CM Haggerty, KS Sundareswaran, BS Whited, JR Rossignac,

KR Kanter, JW Gaynor, TL Spray, F Sotiropoulos, MA Fogel, and AP Yo-

ganathan. Individualized computer-based surgical planning to address pul-

monary arteriovenous malformations in patients with a single ventricle with

an interrupted inferior vena cava and azygous continuation. J. Thorac. Car-

diovasc. Surg., 141(5):1170–1177, May 2011.

243

[61] B Debusschere, K Sargsyan, C Safta, and K Chowdhary. Uncertainty quan-

tification toolkit (uqtk). Handbook of Uncertainty Quantification, pages 1–21,

2016.

[62] S Deparis. Numerical Analysis of Axisymmetric Flows and Methods for Fluid-

Structure Interaction Arising in Blood Flow Simulation. PhD thesis, École

Polytechnique Fédérale de Lausanne, 2004.

[63] X Du and W Chen. Collaborative reliability analysis under the framework of

multidisciplinary systems design. Optimization and Engineering, 6(1):63–84,

2005.

[64] F Durst. Fluid Mechanics: An Introduction to the Theory of Fluid Flows.

Springer Berlin Heidelberg, 2008.

[65] AP Dwivedi, TS Pal, and L Rakesh. Micropolar fluid model for blood flow

through a small tapered tube. Indian Journal of Technology, 20:295–299, 1982.

[66] HC Elman, DJ Silvester, and AJ Wathen. Finite elements and fast iterative

solvers: with applications in incompressible fluid dynamics. Oxford University

Press, USA, 2005.

[67] JF Epperson. On the runge example. The American Mathematical Monthly,

94(4):329–341, 1987.

[68] A Ern and JL Guermond. Theory and Practice of Finite Elements, volume

159. Springer New York, 2013.

[69] A Ern, S Perotto, and A Veneziani. Hierarchical model reduction for advection-

diffusion-reaction problems. In K Kunish, O Günther, and O Steinbach, editors,

Numerical Mathematics and Advanced Applications, pages 703–710. Springer,

Berlin, Heidelberg, 2008.

244

[70] B Everitt. The cambridge dictionary of statistics cambridge university press.

Cambridge, UK, 1998.

[71] H Fang and Y Saad. Two classes of multisecant methods for nonlinear accel-

eration. Numerical Linear Algebra with Applications, 16(3):197–221, 2009.

[72] L Formaggia, JF Gerbeau, F Nobile, and A Quarteroni. Numerical treatment of

defective boundary conditions for the navier–stokes equations. 40(1):376–401,

2002.

[73] L Formaggia, D Lamponi, and A Quarteroni. One-dimensional models for

blood flow in arteries. Journal of engineering mathematics, 47(3-4):251–276,

2003.

[74] L Formaggia, D Lamponi, M Tuveri, and A Veneziani. Numerical modeling of

1d arterial networks coupled with a lumped parameters description of the heart.

Computer Methods in Biomechanics and Biomedical Engineering, 9(5):273–

288, 2006.

[75] L Formaggia, A Quarteroni, and A Veneziani, editors. Cardiovascular Mathe-

matics, volume 1 of M&SA. Springer, Italy, 2009.

[76] L Formaggia, A Quarteroni, and A Veneziani. Multiscale models of the vascular

system. In L Formaggia, A Quarteroni, and A Veneziani, editors, Cardiovascu-

lar Mathematics: Modeling and Simulation of the Circulatory System, volume 1

of MS&A - Modeling Simulation and Applications, chapter 11, pages 395–446.

Springer Milan, 2009.

[77] L Formaggia and A Veneziani. Reduced and multiscale models for the human

cardiovascular system. Lecture notes VKI lecture series, 7, 2003.

[78] L Formaggia, A Veneziani, and C Vergara. A new approach to numerical

solution of defective boundary value problems in incompressible fluid dynamics.

SIAM Journal on Numerical Analysis, 46(6):2769–2794, 2008.

245

[79] L Formaggia, A Veneziani, and C Vergara. Flow rate boundary problems

for an incompressible fluid in deformable domains: formulations and solution

methods. Computer Methods in Applied Mechanics and Engineering, 199(9-

12):677–688, 2010.

[80] I Foster, Y Zhao, I Raicu, and S Lu. Cloud computing and grid computing

360-degree compared. In 2008 Grid Computing Environments Workshop (GCE

’08), pages 1–10. IEEE, 2008.

[81] LM Friedman, C Furberg, DL DeMets, DM Reboussin, CB Granger, et al.

Fundamentals of clinical trials, volume 4. Springer, 2010.

[82] K George and K Vipin. MeTis: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis, 2009.

[83] RG Ghanem and PD Spanos. Spectral stochastic finite-element formulation

for reliability analysis. Journal of Engineering Mechanics, 117(10):2351–2372,

1991.

[84] RG Ghanem and PD Spanos. Stochastic finite elements: a spectral approach.

Courier Corporation, 2003.

[85] GD Giannoglou, JV Soulis, TM Farmakis, DM Farmakis, and GE Louridas.

Haemodynamic factors and the important role of local low static pressure in

coronary wall thickening. IJC, 86(1):27–40, 2002.

[86] BD Gogas, SB King, LH Timmins, T Passerini, M Piccinelli, A Veneziani,

S Kim, DS Molony, DP Giddens, PW Serruys, et al. Biomechanical assessment

of fully bioresorbable devices. JACC: Cardiovascular Interventions, 6(7):760–

761, 2013.

[87] BD Gogas, L Timmins, T Passerini, M Piccinelli, S Kim, D Molony,

A Veneziani, D Giddens, S King, and H Samady. Biomechanical assessment

246

of bioresorbable devices. JACC: Cardiovascular Interventions, 6(7):760–761,

2013.

[88] BD Gogas, B Yang, T Passerini, A Veneziani, M Piccinelli, G Esposito,

E Rasoul-Arzrumly, M Awad, G Mekonnen, OY Hung, et al. Computa-

tional fluid dynamics applied to virtually deployed drug-eluting coronary biore-

sorbable scaffolds: Clinical translations derived from a proof-of-concept. Global

cardiology science & practice, 2014(4):428, 2014.

[89] D Gottlieb and SA Orszag. Numerical Analysis of Spectral Methods: The-

ory and Applications, volume 26 of CBMS-NSF Regional Conference Series in

Applied Mathematics. Society for Industrial and Applied Mathematics, 1977.

[90] R Gould. Graph theory. Menlo Park, CA: Benjamin-Cummings, 1988.

[91] L Grinberg, T Anor, E Cheever, JR Madsen, and GE Karniadakis. Simulation

of the human intracranial arterial tree. Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 367(1896):2371–

2386, 2009.

[92] L Grinberg, T Anor, JR Madsen, A Yakhot, and GE Karniadakis. Large-scale

simulation of the human arterial tree. CEPP, 36:194–205, 2009.

[93] XS Gu, JE Renaud, and CL Penninger. Implicit uncertainty propagation for

robust collaborative optimization. Journal of Mechanical Design, 128(4):1001–

1013, 2006.

[94] S Guzzetti. Hierarchical Model Reduction for Incompressible Flows in Cylin-

drical Domains. Master’s thesis, Politecnico di Milano, Italy, 2014.

[95] S Guzzetti. Hierarchical model reduction for the incompressible navier-stokes

equations, 2014.

247

[96] S Guzzetti, LA Mansilla Alvarez, PJ Blanco, KT Carlberg, and A Veneziani.

Reduced models for uncertainty quantification in large-scale networks via do-

main decomposition. In preparation.

[97] S Guzzetti, T Passerini, J Slawinski, U Villa, A Veneziani, and V Sunderam.

Platform and algorithm effects on computational fluid dynamics applications

in life sciences. Future Generation Computer Systems, 67:382–396, 2017.

[98] S Guzzetti, S Perotto, and A Veneziani. Hierarchical model reduction for

incompressible fluids in pipes. International Journal for Numerical Methods in

Engineering, 114(5):469–500, 2018.

[99] S Guzzetti, V Sunderam, and A Veneziani. Experimental optimization of par-

allel 3d overlapping domain decomposition schemes, 2015. to appear in Pro-

ceedings of 11th International Conference on Parallel Processing and Applied

Mathematics.

[100] CM Haggerty, DA de Zélicourt, M Restrepo, J Rossignac, TL Spray, KR Kan-

ter, MA Fogel, and AP Yoganathan. Comparing pre- and post-operative

Fontan hemodynamic simulations: Implications for the reliability of surgical

planning. Ann Biomed Eng, Jul 2012.

[101] JF Hale, DA McDonald, and JR Womersley. Velocity profiles of oscillating

arterial flow, with some calculations of viscous drag and the Reynolds number.

The Journal of Physiology, 128(3):629–640, 1955.

[102] TP Hamilton and P Pulay. Direct inversion in the iterative subspace (diis)

optimization of open-shell, excited-state, and small multiconfiguration scf wave

functions. The Journal of chemical physics, 84(10):5728–5734, 1986.

[103] TV How and RA Black. Pressure losses in non-Newtonian flow through rigid

wall tapered tubes. Biorheology, 24(3):337–351, 1987.

248

[104] TJR Hughes and J Lubliner. On the one-dimensional theory of blood flow in

the larger vessels. 18:161–170, 1973.

[105] WC Hurty. Dynamic analysis of structural systems using component modes.

AIAA journal, 3(4):678–685, 1965.

[106] DBP Huynh, DJ Knezevic, and AT Patera. A static condensation reduced basis

element method: approximation and a posteriori error estimation. ESAIM:

Mathematical Modelling and Numerical Analysis, 47(1):213–251, 2013.

[107] A Iosup, S Ostermann, MN Yigitbasi, R Prodan, T Fahringer, and DHJ

Epema. Performance Analysis of Cloud Computing Services for Many-Tasks

Scientific Computing. IEEE Transactions on Parallel and Distributed Systems,

22(6):931–945, 2011.

[108] DE Irwin, LE Grit, and JS Chase. Balancing Risk and Reward in a Market-

Based Task Service. In 2004 13th International Symposium on High Perfor-

mance Distributed Computing (HPDC ’04). IEEE, June 2004.

[109] E Isaacson and HB Keller. Analysis of numerical methods. Courier Corpora-

tion, 2012.

[110] KR Jackson, L Ramakrishnan, K Muriki, S Canon, S Cholia, J Shalf,

HJ Wasserman, and NJ Wright. Performance Analysis of High Performance

Computing Applications on the Amazon Web Services Cloud. In CLOUDCOM

’10: Proceedings of the 2010 IEEE Second International Conference on Cloud

Computing Technology and Science. IEEE Computer Society, November 2010.

[111] K Jbilou and H Sadok. Vector extrapolation methods. applications and numer-

ical comparison. Journal of Computational and Applied Mathematics, 122(1-

2):149–165, 2000.

[112] K Jbilou and H Sadok. Matrix polynomial and epsilon-type extrapolation

methods with applications. Numerical Algorithms, 68(1):107–119, 2015.

249

[113] J Jiang, R Tuminaro, and KT Carlberg. Acceleration strategies for uncertainty

propagation via overlapping domain decomposition. In preparation.

[114] S Joachim, G Hannes, and G Robert. NETGEN - automatic mesh generator.

http://www.hpfem.jku.at/netgen, 2012.

[115] DN Ku. Blood flow in arteries. Annual review of fluid mechanics, 29(1):399–

434, 1997.

[116] CB Lee and AE Snavely. Precise and realistic utility functions for user-centric

performance analysis of schedulers. In 2007 16th International Symposium on

High Performance Distributed Computing (HPDC ’07), pages 107–116. ACM,

2007.

[117] A Leonard and A Wray. A new numerical method for the simulation of three-

dimensional flow in a pipe. In Eighth International Conference on Numerical

Methods in Fluid Dynamics, pages 335–342. Springer Berlin, Heidelberg, 1982.

[118] BC Lesieutre, A Pinar, and S Roy. Power system extreme event detection: The

vulnerability frontier. In Proceedings of the 41st Annual Hawaii International

Conference on System Sciences (HICSS 2008), pages 184–184. IEEE, 2008.

[119] RJ LeVeque. Numerical Methods for Conservation Laws. Lectures in Mathe-

matics ETH Zürich, Department of Mathematics Research Institute of Math-

ematics. Birkhäuser Basel, 1992.

[120] Q Liao and K Willcox. A domain decomposition approach for uncertainty

analysis. SIAM Journal on Scientific Computing, 37(1):A103–A133, 2015.

[121] PW Livermore, CA Jones, and SJ Worland. Spectral radial basis functions

for full sphere computations. Journal of Computational Physics, 227(2):1209–

1224, 2007.

250

[122] JM Lopez, F Marques, and J Shen. An efficient spectral-projection method for

the Navier–Stokes equations in cylindrical geometries: II. three-dimensional

cases. Journal of Computational Physics, 176(2):384–401, 2002.

[123] JM Lopez and J Shen. An efficient spectral-projection method for the Navier–

Stokes equations in cylindrical geometries: I. axisymmetric cases. Journal of

Computational Physics, 139(2):308–326, 1998.

[124] Y Maday and EM Rønquist. A reduced-basis element method. Journal of

scientific computing, 17(1-4):447–459, 2002.

[125] ACI Malossi, PJ Blanco, and S Deparis. A two-level time step technique for the

partitioned solution of one-dimensional arterial networks. Computer Methods

in Applied Mechanics and Engineering, 237:212–226, 2012.

[126] LA Mansilla Alvarez. An effective numerical technique for pipe-like domains

and its application in computational hemodynamics. PhD thesis, Laboratório

Nacional de Computação Cient́ıfica - LNCC, Petrópolis - Brazil, 2018.

[127] LA Mansilla Alvarez, PJ Blanco, C Bulant, E Dari, A Veneziani, and R Feijóo.

Transversally enriched pipe element method (TEPEM): An effective numer-

ical approach for blood flow modeling. International Journal for Numerical

Methods in Biomedical Engineering, 33(4), 2017.

[128] LA Mansilla Alvarez, PJ Blanco, CA Bulant, and RA Feijóo. Towards fast

hemodynamic simulations in large-scale circulatory networks. Computer Meth-

ods in Applied Mechanics and Engineering, 344:734–765, 2019.

[129] KS Matthys, J Alastruey, J Peiró, AW Khir, P Segers, PR Verdonck,

KH Parker, and SJ Sherwin. Pulse wave propagation in a model human ar-

terial network: assessment of 1-d numerical simulations against in vitro mea-

surements. Journal of biomechanics, 40(15):3476–3486, 2007.

251

[130] DW Matula, G Marble, and JD Isaacson. Graph coloring algorithms. In Graph

theory and computing, pages 109–122. Elsevier, 1972.

[131] A Migliavacca, G Pennati, G Dubini, R Fumero, R Pietrabissa, G Urcelay,

EL Bove, TY Hsia, and MR De Laval. Modeling of the norwood circulation:

effects of shunt size, vascular resistances, and heart rate. American Journal of

Physiopathology, 280(5):H2076–H2086, May 2001.

[132] MP Mignolet, A Przekop, SA Rizzi, and SM Spottswood. A review of

indirect/non-intrusive reduced order modeling of nonlinear geometric struc-

tures. Journal of Sound and Vibration, 332(10):2437–2460, 2013.

[133] L Mirabella, C Haggerty, Passerini T, M Piccinelli, PJ Del Nido, A Veneziani,

and AP Yoganathan. Treatment planning for a tcpc test case: a numerical in-

vestigation under rigid and moving wall assumptions. Int J Num Meth Biomed

Eng, 29(2):197–216, 2013.

[134] D Olson, P Bochev, M Luskin, and AV Shapeev. Development of an

optimization-based atomistic-to-continuum coupling method. In International

Conference on Large-Scale Scientific Computing, pages 33–44. Springer, 2013.

[135] D Olson, PB Bochev, M Luskin, and AV Shapeev. An optimization-based

atomistic-to-continuum coupling method. SIAM Journal on Numerical Anal-

ysis, 52(4):2183–2204, 2014.

[136] M Park. Matamg: Matlab algebraic multigrid toolbox. https://github.com/

parkmh/MATAMG, 2009.

[137] ML Parks, PB Bochev, and RB Lehoucq. Connecting atomistic-to-continuum

coupling and domain decomposition. Multiscale Modeling & Simulation,

7(1):362–380, 2008.

252

[138] T Passerini, A Quaini, U Villa, A Veneziani, and S Canic. Validation of an

open source framework for the simulation of blood flow in rigid and deformable

vessels. Int J Num Meth Biomed Eng, 29(11):1192–1213, 2013.

[139] T Passerini, LM Sangalli, S Vantini, M Piccinelli, S Bacigaluppi, L Antiga,

E Boccardi, P Secchi, and A Veneziani. An integrated statistical investigation

of internal carotid arteries of patients affected by cerebral aneurysms. Cardio-

vascular Engineering and Technology, 3(1):26–40, 2012.

[140] J Peiró and A Veneziani. Reduced Models of the Cardiovascular System. In

L Formaggia, A Quarteroni, and A Veneziani, editors, Cardiovascular Mathe-

matics, pages 347–394. Springer-Verlag Mailand, 2009.

[141] S Perotto. A survey of hierarchical model (Hi-Mod) reduction methods for

elliptic problems. In S.R. Idelsohn, editor, Numerical Simulations of Coupled

Problems in Engineering, volume 33, pages 217–241. Springer Cham, 2014.

[142] S Perotto. Hierarchical Model (Hi-Mod) reduction in non-rectilinear domains.

In J Erhel, MJ Gander, L Halpern, G Pichot, T Sassi, and O Widlund, editors,

Domain Decomposition Methods in Science and Engineering XXI, pages 477–

485. Springer International Publishing, Cham, 2014.

[143] S Perotto, A Ern, and A Veneziani. Hierarchical local model reduction for

elliptic problems: a domain decomposition approach. Multiscale Modeling &

Simulation, 8(4):1102–1127, 2010.

[144] S Perotto, A Reali, P Rusconi, and A Veneziani. HIGAMod: A Hierarchical

IsoGeometric Approach for MODel reduction in curved pipes. Computers &

Fluids, 142:21–29, 2017.

[145] S Perotto and A Veneziani. Coupled model and grid adaptivity in hierarchical

reduction of elliptic problems. Journal of Scientific Computing, 60(3):505–536,

2014.

253

[146] S Perotto and A Zilio. Hierarchical model reduction: three different approaches.

In A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, and

M.V. Tretyakov, editors, Numerical Mathematics and Advanced Applications

2011, pages 851–859. Springer Berlin, Heidelberg, 2013.

[147] S Perotto and A Zilio. Space–time adaptive hierarchical model reduction for

parabolic equations. Advanced Modeling and Simulation in Engineering Sci-

ences, 2(1):25, 2015.

[148] M Piccinelli, A Veneziani, DA Steinman, A Remuzzi, and L Antiga. A frame-

work for geometric analysis of vascular structures: application to cerebral

aneurysms. IEEE Trans Med Imaging, 28(28):1141–55, 2009.

[149] N Poussineau. Réduction Variationnelle d’un Couplage Fluide-Structure: Ap-

plication à l’Hémodynamique. PhD thesis, Paris 6, 2007.

[150] L. Quartapelle. Numerical solution of the incompressible Navier-Stokes equa-

tions, volume 113. Birkhauser Basel, 1993.

[151] A Quarteroni and L Formaggia. Mathematical modelling and numerical simu-

lation of the cardiovascular system. Handbook of numerical analysis, 12:3–127,

2004.

[152] A Quarteroni, R Sacco, and F Saleri. Numerical mathematics. Text in Applied

Mathematics. Springer, New York, 2007.

[153] A Quarteroni and A Valli. Numerical Approximation of Partial Differen-

tial Equations, volume 23 of Springer Series in Computational Mathematics.

Springer-Verlag Berlin Heidelberg, 1994.

[154] A Quarteroni and A Valli. Domain decomposition methods for partial differ-

ential equations. Technical report, Oxford University Press, 1999.

254

[155] A Quarteroni, A Veneziani, and C Vergara. Geometric multiscale modeling of

the cardiovascular system, between theory and practice. Computer Methods in

Applied Mechanics and Engineering, 302:193–252, 2016.

[156] A Quarteroni, A Veneziani, and P Zunino. Mathematical and numerical mod-

eling of solute dynamics in blood flow and arterial walls. SIAM Journal on

Numerical Analysis, 39(5):1488–1511, 2002.

[157] JJ Rehr, FD Vila, JP Gardner, L Svec, and M Prange. Scientific Computing

in the Cloud. Computing in Science and Engineering, 12(3):34–43, 2010.

[158] B Rummler. The eigenfunctions of the Stokes operator in special domains. I.

ZAMM-Journal of Applied Mathematics and Mechanics, 77(8):619–627, 1997.

[159] T Sakai and LG Redekopp. An application of one-sided Jacobi polynomials

for spectral modeling of vector fields in polar coordinates. Journal of Compu-

tational Physics, 228(18):7069–7085, 2009.

[160] S Salsa. Partial Differential Equations in Action: From Modelling to Theory.

UNITEXT. Springer International Publishing, 3rd edition, 2016.

[161] RS Salzar, MJ Thubrikar, and RT Eppink. Pressure-induced mechanical stress

in the carotid artery bifurcation: a possible correlation to atherosclerosis. Jour-

nal of biomechanics, 28(11):1333–1340, 1995.

[162] H Samady, P Eshtehardi, MC. McDaniel, J Suo, SS Dhawan, C Maynard,

LH Timmins, AA Quyyumi, and DP Giddens. Coronary artery wall shear stress

is associated with progression and transformation of atherosclerotic plaque

and arterial remodeling in patients with coronary artery disease. Circulation,

124(7):779–788, 2011.

[163] Sandia National Laboratories. The Trilinos Project. http://trilinos.

sandia.gov, 2012.

255

[164] DS Sankar and K Hemalatha. Non-linear mathematical models for blood flow

through tapered tubes. Applied Mathematics and Computation, 188(1):567–

582, 2007.

[165] S Sankaran and AL Marsden. A stochastic collocation method for uncer-

tainty quantification and propagation in cardiovascular simulations. Journal

of Biomechanical Engineering, 133(3):031001, 2011.

[166] DE Schiavazzi, G Arbia, C Baker, AM Hlavacek, TY Hsia, AL Marsden, and

IE Vignon-Clementel. Uncertainty quantification in virtual surgery hemody-

namics predictions for single ventricle palliation. International Journal for

Numerical Methods in Biomedical Engineering, 32(3), 2016.

[167] J Shen. Efficient spectral-Galerkin methods III: Polar and cylindrical geome-

tries. SIAM Journal on Scientific Computing, 18(6):1583–1604, 1997.

[168] SJ Sherwin, V Franke, J Peiró, and K Parker. One-dimensional modelling of a

vascular network in space-time variables. Journal of Engineering Mathematics,

47(3-4):217–250, 2003.

[169] JN Silva, P Ferreira, and L Veiga. Service and resource discovery in cycle-

sharing environments with a utility algebra. Parallel & Distributed Processing

(IPDPS), 2010 IEEE International Symposium on, pages 1–11, 2010.

[170] J Simão and L Veiga. QoE-JVM: An Adaptive and Resource-Aware Java

Runtime for Cloud Computing - Springer. On the Move to Meaningful Internet

Systems: OTM, 2012.

[171] T Simmermacher, T Paez, A Urbina, F Bitsie, D Gregory, B Resor, and

DJ Segalman. Probabilistic modeling of localized nonlinearities using compo-

nent mode synthesis. In Proceedings of the 22nd International Modal Analysis

Conference (IMAC-XXII), pages 26–29, 2004.

256

[172] J Slawinski. Adaptive Approaches to Utility Computing for Scientific Applica-

tions. PhD thesis, Emory University, 2014.

[173] J Slawinski, T Passerini, U Villa, A Veneziani, and V Sunderam. Experi-

ences with target-platform heterogeneity in clouds, grids, and on-premises re-

sources. In 2012 26th International Parallel and Distributed Processing Sym-

posium (IPDPS-HCW), pages 41–52. IEEE, 2012.

[174] J Slawinski, M Slawinska, and V Sunderam. Unibus-managed execution of

scientific applications on aggregated clouds. In Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,

pages 518–521. IEEE Computer Society, 2010.

[175] J Slawinski, U Villa, T Passerini, A Veneziani, and V Sunderam. Issues

in communication heterogeneity for message-passing concurrent computing.

In Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International, pages 93–102. IEEE, 2013.

[176] RC Smith. Uncertainty quantification: theory, implementation, and applica-

tions, volume 12. Siam, 2013.

[177] AV Smolensky, S Clement, T Passerini, M Piccinelli, A Veneziani, JN Oshinski,

and WR Taylor. Potential hemodynamic mechanisms for gender differences in

aaa formation. In ASME 2012 Summer Bioengineering Conference, pages 11–

12. American Society of Mechanical Engineers, 2012.

[178] SA Smolyak. Quadrature and interpolation formulas for tensor products of

certain classes of functions. In Doklady Akademii Nauk, volume 148, pages

1042–1045. Russian Academy of Sciences, 1963.

[179] C Soize and C Farhat. A nonparametric probabilistic approach for quantify-

ing uncertainties in low-dimensional and high-dimensional nonlinear models.

257

International Journal for Numerical Methods in Engineering, 109(6):837–888,

2017.

[180] MR Spiegel. Theory and Problems of Fourier Analysis with Applications to

Boundary Value Problems. Schaum’s Outline Series. McGraw-Hill, New York,

1974.

[181] EM Stein and R Shakarchi. Fourier Analysis: An Introduction, volume 1 of

Princeton Lectures in Analysis. Princeton Unversity Press, Princeton, New

Jersey, 2003.

[182] SFC Stewart, EG Paterson, GW Burgreen, P Hariharan, M Giarra, V Reddy,

SW Day, KB Manning, S Deutsch, MR Berman, MR Myers, and RA Malin-

auskas. Assessment of CFD Performance in Simulations of an Idealized Medical

Device: Results of FDA’s First Computational Interlaboratory Study. Cardio-

vascular Engineering and Technology, 3(2):139–160, February 2012.

[183] H Subramoni, S Potluri, K Kandalla, B Barth, J Vienne, J Keasler, K Tomko,

K Schulz, A Moody, and DK Panda. Design of a scalable infiniband topology

service to enable network-topology-aware placement of processes. In Proceed-

ings of the International Conference on High Performance Computing, Net-

working, Storage and Analysis, page 70. IEEE Computer Society Press, 2012.

[184] CA Taylor, T JR Hughes, and CK Zarins. Finite element modeling of blood

flow in arteries. Computer Methods in Applied Mechanics and Engineering,

158(1-2):155–196, 1998.

[185] CA Taylor, TJR Hughes, and CK Zarins. Finite element modeling of blood

flow in arteries. 158(1-2):155–196, 1998.

[186] CA Taylor and DA Steinman. Image-based modeling of blood flow and vessel

wall dynamics: applications, methods and future directions. Annals Biomed

Eng, 38(3):1188–1203, 2010.

258

[187] The HDF Group. Hierarchical data format version 5. http://www.hdfgroup.

org/HDF5, 2012.

[188] A Toselli and O Widlund. Domain Decomposition Methods: Algorithms and

Theory, volume 34 of Springer Series in Computational Mathematics. Springer

Berlin Heidelberg, 2005.

[189] JS Tran, DE Schiavazzi, AM Kahn, and AL Marsden. Uncertainty quantifi-

cation of simulated biomechanical stimuli in coronary artery bypass grafts.

Computer Methods in Applied Mechanics and Engineering, 345:402–428, 2019.

[190] GHW van Bogerijen, F Auricchio, M Conti, A Lefieux, A Reali, A Veneziani,

JL Tolenaar, FL Moll, V Rampoldi, and S Trimarchi. Aortic hemodynamics

after thoracic endovascular aortic repair, with particular attention to the bird-

beak configuration. Journal of Endovascular Therapy, 21(6):791–802, 2014.

[191] GHW van Bogerijen, F Auricchio, M Conti, A Lefieux, A Reali, A Veneziani,

JL Tolenaar, M Moll, V Rampoldi, and S Trimarchi. Aortic hemodynamics

after thoracic endovascular aortic repair with the role of bird-beak. J Endov

Therapy, 21:791–802, 2014.

[192] A Veneziani. Mathematical and Numerical Modeling of Blood Flow Problems.

PhD thesis, University of Milan, Italy, 1998.

[193] A Veneziani. Stent design and improvement: a matter of Mathematics too,

chapter Chapter 4. A. Gruenztig Center, Emory University, 2015.

[194] IE Vignon-Clementel, CA Figueroa, KE Jansen, and CA Taylor. Outflow

boundary conditions for three-dimensional finite element modeling of blood

flow and pressure waves in arteries. 195:3776–3996, 2006.

[195] G Wang and TSE Ng. The Impact of Virtualization on Network Performance

of Amazon EC2 Data Center. In Proc IEEE INFOCOM 2010, pages 1–9, 2010.

259

[196] T Washio and CW Oosterlee. Krylov subspace acceleration for nonlinear multi-

grid schemes. Electronic Transactions on Numerical Analysis, 6(271-290):3–1,

1997.

[197] N Westerhof, JW Lankhaar, and BE Westerhof. The arterial windkessel. Med-

ical & Biological Engineering & Computing, 47(2):131–141, 2009.

[198] JR Womersley. Method for the calculation of velocity, rate of flow and vis-

cous drag in arteries when the pressure gradient is known. The Journal of

Physiology, 127(3):553–563, 1955.

[199] Inaugural CFD Challenge Workshop. The asme 2012 summer bioengineering

conference. www.asmeconferences.org/SBC2012/InauguralCFDWorkshop.

cfm, 2012.

[200] D Xiu and GE Karniadakis. The wiener–askey polynomial chaos for stochastic

differential equations. SIAM journal on scientific computing, 24(2):619–644,

2002.

[201] D Xiu and SJ Sherwin. Parametric uncertainty analysis of pulse wave prop-

agation in a model of a human arterial network. Journal of Computational

Physics, 226(2):1385–1407, 2007.

[202] B Yang, BD Gogas, G Esposito, O Hung, ER Arzrumly, M Piccinelli, S King,

D Giddens, A Veneziani, and H Samady. Novel in-human four dimensional

calculation of a coronary bioresorbable scaffold using optical coherence tomog-

raphy images and blood flow simulations. Journal of the American College of

Cardiology, 65(10S), 2015.

[203] S Zhang and J Jin. Computation of Special Functions. John Wiley and Sons,

Inc., New York, 1996.

[204] OC Zienkiewicz and RL Taylor. The finite element method, volume 3. McGraw-

hill London, 1977.

