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Abstract 
 

Evaluating association between epigenetic clocks and cancer survival among Black 
women diagnosed with high grade serous ovarian cancer. 

 
By Dhanish Revanth Rangaswamy Nandakumar 

 
 

Background:  Epigenetic clocks are tools used to estimate a person's epigenetic age 
based on DNA methylation levels, and numerous studies have demonstrated their 
effectiveness in predicting the risk of cancer mortality and progression. Despite their 
proven efficacy, the association between epigenetic clocks and mortality in Black 
women with high-grade serous ovarian cancer remains largely unexplored. 
 
Methods: We conducted a study on 202 Black women with High Grade Serous Ovarian 
Cancer (HGSOC) from the AACES and NCOCS study cohorts. We calculated the 
mitotic age using Epitoc2 and MiAge and categorized these measures as dichotomous 
and trichotomous exposure variables. We also analyzed the correlation between the 
mitotic ages calculated from the clocks and chronological age and used ANOVA to 
investigate any differences in the mitotic ages across the risk factors. To evaluate the 
association between mitotic age and survival, we fit Cox proportional hazard models 
for different sets of covariates. 
 
Results: The cohort had a median age of 57 years and median follow up of 4.4 years and 
110 subjects had died. The median mitotic age using Epitoc and MiAge was 64.4 with 
annual cell turnover rate and 820.9 relative mitotic age, respectively. We observed that 
mitotic age obtained from Epitoc decreased with increasing chronological age and had a 
higher value for localized stage, whereas MiAge-derived mitotic age did not vary with 
age but had a higher value for localized stage. Cox proportional hazard models between 
MiAge-derived mitotic age and survival did not show a significant association. 
However, for Epitoc-derived mitotic age categorized into tertiles, we found a significant 
difference in survival between the Q2 and Q1 tertiles in all models (HR = 0.61, [95% CI: 
0.35, 1.05; adjusting for age, stage, and debulking status], HR = 0.50 [95% CI: 0.29, 0.88; 
additionally adjusted for hormone use], HR = 0.51 [95% CI: 0.31, 0.84; adjusting for age 
and stage], and HR = 0.57 [95% CI: 0.33, 0.98; adjusting for age and debulking status]. 
 
Conclusion: The association between mitotic age and survival is not linear. Epitoc2 
appears to be a more useful clock in risk stratification. A larger study is required to 
identify the threshold and evaluate the true relation between mitotic age and survival. 
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1.0 Introduction 
 
1.1 Descriptive Epidemiology: 
 

Ovarian cancer is a rare cancer and as per 2017, there were approximately 239,000 newly 

diagnosed ovarian cancer cases worldwide and the mortality was estimated to be 152,000 deaths 

annually. The incidence rate varies across the continents; it is the lowest in Asia and Africa and 

highest in Northern and central parts of Europe followed by North America. In the United States, 

ovarian cancer ranks 11th in incidence among women with 11.2 new diagnoses per 100,000 

women (all races) while ranking 5th in mortality with a rate of 6.7 deaths per 100,000 women 

(all races). From 2014 to 2018, the survival rates for ovarian cancer have improved slightly by 

2.4%, while the incident rates have decreased by 1.6% [1]. While ovarian cancer accounts for a 

relatively small percentage of all new cancer cases (1.6%), it is responsible for a 

disproportionately high percentage (5%) of cancer deaths [2]. The reason for this disparity 

between incidence and mortality is that ovarian cancer is often not detected until it has reached 

an advanced stage, when it is more difficult to treat. At an advanced stage the 5-year survival 

rate is as low as 29%, but 5-year survival can be as high as 92% when diagnosed at stage one [3]. 

The American Cancer Society estimates that in 2022, the lifetime chances of getting ovarian 

cancer and dying due to ovarian cancer is approximately 1 in 78 and 1 in 108 respectively.   

Ovarian cancer incidence rates and mortality rates differ across racial and ethnic groups 

[4]. The age adjusted incidence rate, mortality rate and survival rate by race and ethnicity for 

2013-2017 is tabulated in Table 1.  
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Table 1: Incidence and mortality rate across different racial groups in the US. [3, 5] 

a Rates per 100,000 people for the year 2013-2017 [5] 
b Rates are per 100,000 people for the year 2014-2018 [5] 
c r year survival rate calculated from 2012-2018 [3] 
 

Lowest survival rate is observed among the non-Hispanic Black (NHB) women in Table 

1. This is followed by Non-Hispanic American Indians, and then non-Hispanic White women 

(NHW). Hispanic and Non-Hispanic Asian/Pacific Islanders (NHA) display more than 50% 5-

year survival. This difference in survival between the NHW women and NHB women is also 

found to be significant and consistent across different age groups except for women aged 75 

years and older [6].  In addition to it, NHB women are diagnosed at younger ages compared to 

NHW but diagnosed at a later stage than NHA and Hispanic women [6]. Despite being 

diagnosed at an earlier age compared to the non-Hispanic White women, the NHB women have a 

lower survival rate [6]. 

1.2 Pathological Classification of Ovarian Cancer: 
 
  Ovarian cancer is a heterogeneous cancer that can be classified into 3 subtypes based on 

the type of cell it originates from – Epithelial-stromal (~60 % of all ovarian tumors and 90% of 

malignant ovarian tumors), Sex cord-stromal (~8% of all ovarian tumors and 7% of all malignant 

ovarian tumors) and Germ cells (~25% of all ovarian tumors and 3-7% of malignant ovarian 

Measure  
of Frequency 

Non-
Hispanic 
white 
(NHW) 

Non-
Hispanic 
Black  
(NHB) 

Non-Hispanic 
Asian and Pacific 
Islanders  
(NHA) 

Hispanic 
 

Non-Hispanic 
American 
Indians 
(NHAI) 

Incidence ratea 11.6  9.2 9.4 10.1 11.1 

Mortality rateb 7.1 6.0 4.4 5.1 6.8 

Survival ratec 48.5% 41% 58% 53.8% 43.5% 



 

 

3 

tumors). Based on the level of invasiveness, tumors are classified as benign, borderline and 

malignant. There can also be a combination of two or more histological subtypes, which are 

usually less common. [7] 

Epithelial Ovarian Tumors: 

Among the three subtypes, EOC (Epithelial Ovarian Cancer) is the most common, 

accounting for approximately 90% of all malignant ovarian cancer. Common epithelial 

histotypes include serous, mucinous, endometrioid, and clear cell tumors.  

Serous tumors are further classified into high-grade and low-grade, based on their 

differences in modes of carcinogenesis, distinct molecular-genetic features as well as differences 

in risk factors [8,9]. However, both` high-grade and low-grade serous cancer arise in the 

fallopian tubes. Endometrioid and Clear cell OC are associated with endometriosis (cells like 

those found in uterus and endometrium growing outside uterus) and are more prevalent in Asian 

countries [10]. Mucinous ovarian cancer is a distinct type of cancer compared to the other three, 

comprising of mucus secreting cells that line the stomach, endocervix and intestine [11]. 

This study is focused on survival among self-identified Black women diagnosed with 

high grade serous ovarian tumors, the most common and aggressive histotype of epithelial 

ovarian cancer. HGSOC (High-Grade Serous Ovarian Cancer) are typically diagnosed at 

advanced stages (III and IV) and account for majority of the EOC cases. HGSOCs spread by 

direct extension to other organs or through the cellular detachment from the primary tumor. 

Somatic TP53 mutations, germline BRCA1 or BRCA2 mutation or point mutations at oncogenes 

or tumor suppressor genes is a characteristic feature of HGSOC [8]. Age and stage are the major 

risk factor for survival from HGSOC, with 63 being the median age of diagnosis. 10- year 

survival rate of women diagnosed with HGSOC at an early stage (Stage I and II) is 55% and for 

those diagnosed at an advanced stage (Stage III and IV) is as low as 15% [7, 8]. 
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Table 2: Characteristics of the most common histotypes of EOC: 

Five most common 
histotypes of EOC 

Characteristics Proportion of 
total cases of 

EOC 
High Grade Serous 

[8] 

• Most frequently diagnosed EOC  
• Aggressive patterns, wide dissemination, and 

rapid development 
• Usually have a high mitotic index 
• Genetically unstable, TP53 mutation and defect 

in DNA repair mechanism. 

70-80% 

Low Grade Serous 

[7, 8] 

• Less aggressive and develop from pre-
malignant or borderline lesions like other 
epithelial cancers. 

• More genetically stable and usually do not have 
TP53 mutation. 

<5% 

Mucinous 

[7, 11] 

• Mucinous tumors are formed by cells that 
resemble those found in the intestinal and 
endocervical epithelium. 

• Prevalent in women below 40 years and 
smoking is associated with increased risk 

• Most common mutation – KRAS   

3% 

Endometrioid  

[7, 10] 

 

• It is the second most common EOC histotype 
and ~84-95% are of grade I or II 

• Their origin is hypothesized to be through the 
entry of shed endometrium retrogradely into 
the peritoneal cavity.  

• Increased risk among those with lynch 
syndrome and progression to carcinoma is 
characterized by mutation to ARID1A gene  

10% 

Clear Cell  

[12] 

• They are usually rare and are formed by clear 
peg like cells. 

• The most common mutation is the ARID1A and 
PIK3CA activating mutation  

10% 

 

While comparing the 10-year overall survival at an early stage (localized and regional) 

HGSOC patients have a similar survival to that of clear cell and mucinous while patients with 

Endometrioid and LGSOC have a better overall survival [13]. Similarly, the 10-year overall 

survival of LGSOC and Endometrioid types had a better overall survival while Mucinous type 
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had the worst survival at distant stage. HGSOC and clear cell had a similar survival for distant 

stage [13]. 

1.3 Factors associated with survival: 
 

Not all risk factors associated with EOC, including demographic factors, reproductive 

factors such as menstrual-related factors, age of menarche and menopause, gynecological 

characteristics, hormonal factors, genetic factors, and lifestyle, are associated with overall 

survival. The major factors associated with survival from ovarian cancer are age, cancer stage, 

access to care and treatment [14]. All these factors have been found to be significantly associated 

with overall survival among women with ovarian cancer, along with some clinical factors, 

including optimal debulking, histologic subtype, and volume of disease [14]. 

Reproductive factors that are associated with an increased risk of OC, including parity, 

breastfeeding, and menopause status, have been found to have no effect on survival [15]. Other 

gynecological factors, such as pelvic inflammatory disease, that influence the onset of epithelial 

ovarian cancer also do not affect overall survival [14].  

Studies on post-menopausal hormone use and survival in women with ovarian cancer 

have shown mixed results. However, a recent nationwide cohort study showed a significantly 

better survival among women who reported post-menopausal hormone use for more than 5 years 

compared to those used hormone for less than 0.5 years [41]. Therefore, post-menopausal 

hormone use might lead to an increased survival rate in ovarian cancer patients.  

Demographics characteristics: 

Age is one of the most important prognostic factors for ovarian cancer, and the prognosis 

is better if diagnosed at a younger age [16]. This trend is mostly similar across all racial and 

ethnic groups (NHW – Non-Hispanic White, NHB – Non-Hispanic Black, Hispanic, and Asian 
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and Pacific Islanders) [17]. However, overall survival is worst among the NHB group in all age 

categories compared to other racial and ethnic groups, as stated earlier, even after early diagnosis 

[17]. 

Clinical and pathological characteristics: 

Stage at diagnosis and residual disease after debulking surgery are important predictors of 

survival for HGSOC. Like other diseases, the more advanced the stage of cancer, the less likely 

the probability of survival. According to the American Cancer Society, the 5-year relative 

survival rates for localized and regional ovarian cancer are more than 90%, while the rate for 

distant-stage ovarian cancer is around 30%. 

Optimal debulking is another important prognostic factor that affects the overall survival 

among EOC patients. Optimal debulking is defined as surgery involved in the removal of the 

tumor, leaving only residual tumor less than 1 cm. Suboptimal debulking leads to surgical 

complications and delay in chemotherapy and thus leaves a larger residual tumor, which 

decreases survival rate. Various studies were able to confirm the impact of debulking status on 

overall survival, with optimal debulking leading to better overall survival compared to 

suboptimal debulking [18]. 

Family history and Genetic mutations: 

BRCA1/BRCA2 mutations are not associated with long-term survival in EOC patients. 

However, a significant difference in survival between BRCA mutation carriers and non-carriers 

was observed after the 10-year mark, with non-carriers having a significantly better survival rate 

among those with no residual disease at an advanced stage [19]. BRCA1/BRCA2 mutations were 

also found to be associated with short-term survival (3 years). This association between overall 

survival among carriers and non-carriers was not different in the group that had residual disease. 

Similarly, among serous ovarian cancer patients with no residual tumor, the 10-year survival 
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among the non-carriers was higher compared to the carriers of BRCA mutation [19]. Thus, this 

study identified residual disease to be a more important prognostic factor for survival than 

BRCA1/BRCA2 mutation. 

Lifestyle factors: 

 Various lifestyle factors also affect the risk of mortality among patients with ovarian 

cancer. An increase in body mass index (BMI) is found to be associated with decreased survival, 

along with reduced physical activity [20]. In addition, current smokers have a higher risk of 

mortality compared to former and never smokers [20]. Smoking was also found to be associated 

with mortality among only serous and mucinous histotypes of ovarian cancer in one study [21]. 

The effect was stronger among the mucinous subtype, with current smokers having 91% worse 

survival compared to the never smokers’ group. Among the HGSOC and LGSOC subtypes, 

former smokers had a higher risk of mortality compared to the never smokers and current 

smokers [21]. 

Socio-economic status (SES) also plays a major role in healthcare and treatment access 

and is one of the main factors where racial health disparities arise [4]. The lower the SES, the 

less likely someone will receive an early diagnosis, leading to a later stage presentation of the 

disease [4]. Lower poverty is also associated with a higher 5-year and 10-year relative survival 

rate. This disparity mostly overlaps with race, where white females tend to be in the low poverty 

group and Blacks in the high poverty group. In addition, access to treatment also plays a 

significant role in the disparity in survival rates [22].  

1.4 Epigenetics and Cancer: 
 

The term “Epigenetics” is currently defined as the study of all the heritable changes in 

gene expression levels that are not dependent on the primary DNA sequence [33]. Various 
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modifications that mediate epigenetics or are collectively called the epigenome are methylation 

of cytosine bases in the DNA, post-translational modifications of histone proteins, and 

positioning of nucleosomes along the DNA [23]. Epigenetics is necessary for the maintenance of 

cell division and gene expression levels, and any change in its pattern (loss of function or 

activation) could lead to various complications [24]. The epigenome of an individual is mainly 

affected by lifestyle patterns and environmental factors in addition to heredity, nutrition and diet, 

physical activity and obesity, smoking, alcohol consumption, exposure to toxins, and stress. [25] 

The connection between epigenetic pathways and cancer was initially studied in the early 2000s. 

While most of these early studies were correlative, there has been increasing evidence of 

stronger associations of the epigenetic markers with the disease outcome in recent years. This is 

attributed to technological advances in sequencing and a reduction in the cost to sequence a 

sample. Out of all the different modifications that contribute to the epigenome, DNA methylation 

(DNAm) is the most extensively studied due to ease in sequencing and better stability compared 

to other modifications, making it an ideal marker, especially in FFPE (Formalin Fixed Paraffin 

Embedded) tissues. DNAm is denoted as 5mC; addition of a methyl group on the 5` carbon on 

cytosine in the CpG (Cytosine-phosphate-Guanine) dinucleotides [24]. 

DNAm can be measured using a wide range of techniques, from calculating the 

methylation level of the whole genome to restricting it to a specific set of CpG sites. The former 

is conducted using an array or bead hybridization, which saves time and money and provides 

information on the methylation levels at particular sites of the genome. These sites are usually 

the promoter regions, 3’ and 5’ UTR, coding regions, and island shores of known genes. DNAm 

is identified using bisulfite conversion, which is the “gold standard” technique where DNA is 

treated with bisulphite. This leads to the conversion of unmethylated cytosine to uracil, and the 
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converted residues will be read as thymine by the sequencer. However, the methylated cytosine 

is resistant to this change and remains as cytosine [26].  

The methylation level is calculated as the ratio of the methylated DNA (intensity of 

fluorescence measured) over the total, i.e., M/(M+U), where M and U represent methylated and 

unmethylated intensities. A lot of older epigenetic studies used the Infinium 

HumanMethylation450 Bead Chip array to quantify DNA methylation covering 485,000 CpG 

sites. Currently, an upgraded version of the Infinium HumanMethylation450 Bead Chip array is 

available called the Methylation Epic BeadChip array (850K) that covers 863,904 CpG sites. It 

covers >90% of the CpGs targeted by the 450K and an additional 333,365 CpGs in the enhancer 

region [28]. 

  

Fig 1: DNA methylation of cytosine [27] 
  

The association between DNA methylation in cancer are characterized by two major 

events – Global hypomethylation and site specific hypermethylation. Global hypomethylation 

refers to the loss of methyl group, occurs in various regions of the genome namely, repetitive 

elements, retrotransposons, CpG poor promoters, introns and gene deserts. Global 

hypomethylation at retrotransposons which are genetic materials that copy and paste themselves 

to different regions of the genome, lead to their translocation to other genes. Thus, global 
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hypomethylation activates the proto-oncogenes and induces instability of the genome.  In 

contrast, hypermethylation refers to the addition of a methyl group at specific CpG sites (usually 

the promoter region) which suppresses or inactivates a gene. In cancer the hypermethylation of 

tumor suppressor genes are well established, but how these genes are targeted remains unclear 

[24]. 

The use of DNA methylation information has been increasingly used in epidemiologic 

studies because of several reasons.  

1. Explains the phenotypic variability due to differential gene expression even when the 

DNA sequence remains the same. [29] 

2. Since DNA is more stable compared to RNA and DNAm more stable than other 

epigenetic modifications that include miRNA and histone modification, it is useful in 

large observational studies where the biospecimen is collected and stored decades ago. 

3. DNA methylation is modifiable, which can be used to provide precise treatments which 

target the associated epigenetic markers. [27] 

1.5 Epigenetic age and clocks: 

Epigenetic age is a biomarker that is a combined measure of DNA methylation levels 

along with chronological age and calculation of epigenetic age can be used as a predictor of 

disease in various fields of research and treatment. [30]. Epigenetic clocks are biological clocks 

that measure the rate of epigenetic aging. The first multi tissue epigenetic clock was developed 

by Horvath where he identified 353 CpGs that could predict the epigenetic age. The clock highly 

correlated with most tissue types, and hence is recognized by Horvath as a pan tissue clock. 

However, the clock was poorly calibrated in tissues that reflect hormonal exposure and 

menstruation cycle like the breast and the uterine endometrium. Following Horvath’s pan tissue 
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clock, there were many more epigenetic clocks that were developed, namely, Hannum clock, 

Levine clock (PhenoAge), Lu clock (GrimAge) all of which were based on whole blood. 

Interestingly, the DNAm age acceleration calculated from all the clocks are found to be 

associated with increased risk and mortality of cancer [31]. One major limitation of these clocks 

is that they only calculate DNAm age and DNAm age is not the same as mitotic age; it is highly 

correlative with cells that are non-proliferative hence this age is not correlated highly with cancer 

tissues. [30] 

Mitotic age can be defined as the cumulative number of cell division within an 

individual’s stem cell pool [32]. Mitotic age clock has been increasingly studied in cancer 

research due to high correlation with cancer progression. The clock tracks the cumulative 

number of DNAm errors that arise during cell division. Currently, EpiTOC (Epigenetic timer of 

cancer), HypoClock, MiAge and EpiTOC2, an improved version of EpiTOC, are some of the 

mitotic clocks that have been developed to predict cancer risk and mortality.  

In Table 2, the different mitotic clocks are compared except for the HypoClock due to a 

few limitations. HypoClock is based on hypomethylation at a few specific WCGWs (isolated 

CpGs dinucleotides that are immediately flanked by adenine or thymine) which are usually 

methylated in the fetal stage and gradually lose methylation [32]. The reason why HypoClock 

was not used in this study is because HypoClock predicts the risk of cancer progression well only 

when the cells are under stress and that the model itself has a considerable confounding due to 

cell type heterogeneity which is addressed in both MiAge and EpiToc2 [32, 33]. EpiToc was also 

not used in this study because of the availability of a new, updated version of EpiToc (EpiToc2). 
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1.6 Rationale for using mitotic clocks in HGSOC: 

For this study, we plan to evaluate the association of mitotic clocks – miAge and 

EpiTOC2 along with chronologic age for survival after HGSOC diagnosis among Black women. 

PRC2 complex on which the EpiTOC2 is based on, is overexpressed in ovarian cancers and 

miAge is tissue independent, making these clocks applicable for ovarian cancer tissues. [35]. 

There is no study that has evaluated these mitotic clocks as a prognostic indicator for survival in 

ovarian cancer. Since, NHB women are diagnosed with HGSOC at an early age compared to 

NHW and have a lower survival rate, chronological age alone cannot be considered as an 

accurate prognosis factor for survival. Therefore, it makes us wonder if there is any difference in 

the biological age/epigenetic age which could better explain the progression of cancer among the 

NHB women. 

As NHB women with ovarian cancer have a relatively worse overall survival and poor 

prognosis compared to other racial and ethnic groups; in this study we aim to use the mitotic age 

to differentiate the high-risk group from the lower risk group using the above-mentioned mitotic 

age calculators.  
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Table 2: A comparison between the three different mitotic clocks is shown below: 

 
 Mi-Age [33] EpiToc [34] EpiToc2 [32] 

Description of the 
output 

Mitotic Age calculator – 
Calculates total number of 
lifetime cell division 

Mitotic age – pctgAge – 
Average age cumulative 
DNAm increase across the 
385 CpG sites  

Mitotic Age calculator – 
Calculates the intrinsic 
rate of stem cell division 

Assumption  

1. The probability of failure 
of maintenance in the first 
cell generation is the same 
as the denovo methylation 
probability for all tissue 
samples of the same type. 
2. All cells undergo same 
level of mutation and the 
methylation of one CpG site 
is independent of the other 

1. Assumes that the DNAm 
errors occur in the stem cell 
pool and there is no change 
in DNAm levels after mitosis. 
2. Assumes similar stem cell 
numbers for all individuals 
3. Extrinsic factors and 
intrinsic factors depend on 
the tissue type 

1. Site specific denovo 
methylation and ground 
state methylation values 
are assumed to be 
independent of tissue 
type. 
2. Stem cell rate is 
constant throughout 
life. 

CpG Sites 

286 CpG sites- increasing 
methylated sites – neither 
tissue related not tumor 
related 

385 CpG sites 
1. CpGs that are 
unmethylated in the fetal 
stage 
2. CpGs that are marked by 
PRC2 complex (Polycomb 
Repressive Complex)  
3. CpGs whose DNAm levels 
increase with age 

163 CpG sites 
Polycomb Repressive 
Complex (PRC-2) which 
are generally 
unmethylated across 
fetal tissue types. 

Instrument used Illumina 450K  Illumina 450K  Illumina 450K 

Tissue 
dependence No Yes Yes 
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2.0 Methods  

2.1 Data source 
 

The study population comprises of self-reported NHB (non-Hispanic Black) women 

diagnosed with ovarian cancer enrolled in two case-control studies – AACES (African American 

Cancer Epidemiology Study) and NCOCS (North Carolina Ovarian Cancer Study).  

AACES is a multi-center population-based case control study of Black and African American 

women who were diagnosed with histologically confirmed invasive EOC since December 2010 

and residents of 11 geographical locations in the United States. Most of these regions were in the 

South (Alabama, Georgia, Louisiana, North and South Carolina and Tennessee), Texas from 

south-west, Michigan and Ohio from the Midwest and New Jersey from the mid-Atlantic region. 

Participants were eligible if they were between the age of 20-79 years and belonged to this 

geographical location. AACES had an additional inclusion criterion of including only Black 

women which were self-reported. Cases were identified through rapid case ascertainment 

systems through cancer registries, SEER registries or individual hospitals from 2011 to 2016. 

Passive consent was obtained from the respective physicians to contact the patients. Patients 

were then contacted and interviewed through telephone to obtain information on their 

demographic characteristics, reproductive, gynecological and medical history, external hormone 

use, oral contraceptives and lifestyle characteristics like smoking, alcohol consumption etc.  

The NCOCS is a population-based case control study from the North Carolina region 

with women diagnosed with epithelial ovarian cancer who were identified through the North 

Carolina cancer registry from 1999 to 2008. This study included those with an incident EOC and 

within 20–74 years old. Unlike the AACES study where the subjects were interviewed over 
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phone, data on cancer risk factors was collected through an in-person interview after obtaining 

the informed consent from the study participants.  

In the present study, we included women with HGSOC from AACES and NCOCS who 

self-reported Black race and had a biospecimen available and who did not have a neoadjuvant 

chemotherapy. 

Patient level information like family history of either breast or ovarian cancer, smoking 

status, external hormone uses, and other epidemiological variables that were collected through 

surveys administered for each study (AACES (telephone interview) and NCOCS (in-person 

interview)), were harmonized together.  

For both studies, formalin-fixed paraffin-embedded tissue blocks of the primary tumor 

were procured from the hospitals performing the diagnosing surgery for each participant after 

receiving consent.  

2.2 Methylation data quality control: 

 
A tissue release form was obtained from study participants and tissue samples were 

collected from the patients from their primary cancer site. DNA methylation quantification in the 

tissue was done using Illumina’s Infinium MethylationEPIC array (EPIC Bead chip 850K) in 

three batches. A multiple dimensional scaling plot of the 1000 most variable CpG sites showed 

no significant differences between the batches and no clustering by batch was observed. Some of 

the quality control checks done on the DNA methylation data included the generation of density 

plots which showed an expected bimodal distribution representing the methylation and 

unmethylation signals. Cleaning and normalization steps were performed using the minfi 

package in R which involved determining Cholesky residuals [36], background correction and 

normalization.  
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2.3 Exposure, Outcome and covariates 

The primary exposure in this study is the mitotic age calculated from the two mitotic 

clocks – EpiToc2 and MiAge and the outcome of interest is overall survival truncated at five 

years. Although the product obtained from EpiToc2 is not exactly the mitotic age but rather the 

cell turnover rate or IRS (Intrinsic rate of stem cell division), we would refer to it as mitotic age 

for convenience throughout this paper. The exposure was analyzed as a categorical variable; 

dichotomous and trichotomous, where the lower quantile or the tertile was our low-risk group 

and used as the referent group for all the analyses. In our study, we identified chronological age, 

smoking, family history of breast or ovarian cancer in a first-degree relative, stage and debulking 

status to be a priori confounders. We restricted the follow-up time to 5 years as we found a lot of 

the participants were not followed up longer than 5 years, thus preventing any bias due to follow-

up time.  

Age is defined as the age at diagnosis and smoking status is categorized based on if the 

person has ever smoked or never smoked. The cancer stage at diagnosis was categorized as 

localized, regional and distant where localized and regional were lumped together in one 

category during the analysis phase due to sample size considerations. Similarly, family history of 

ovarian or breast cancer was combined to form a two-level category for the family history 

variable – family history of either breast and/or ovarian cancer and no family history of breast or 

ovarian cancer. Other variables including debulking status, cancer stage, any female hormone 

use (pill patch or injection), and comorbidities were also considered in the multivariable analysis.  
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2.4 Mitotic age calculators 

To calculate the mitotic age, we used two mitotic age calculators- MiAge and EpiTOC2. 

The function used to calculate the mitotic age by the MiAge calculator is as shown below: 

𝑓=∑𝑖∑𝑗(𝐸(𝑋𝑛𝑗,𝑖)−𝛽𝑖,𝑗)2 

This is the sum of squares of the differences between the observed and the expected methylation 

levels, which is summed over all the samples at CpG i and summed over all CpGs.  

𝐸(𝑋𝑛𝑗,𝑖) – Expected methylation levels 

𝛽𝑖,𝑗	–	Observed	methylation	level	for	a	CpG	for	a	sample	j	

Epitoc2	 is	 a	more	 robust	mitotic	 age	 calculator	which	 has	 lesser	 assumptions	 and	 is	 an	

improved	 version	 of	 EpiTOC.	 The	 output	 is	 the	 intrinsic	 rate	 of	 stem	 cell	 division	 –	 IRS	

which	is	based	on	the	total	number	of	stem	cell	division	divided	by	the	age	of	the	person.	

  

IRS(x) = <TNSC(s,x)/A(s)>s 

Where <>s stands for average or median over the samples, s stands for samples, x stands for the 

tissue type. i denotes the CpG site, therefore  would be the methylation level at CpG site i in 

sample s and  would be the methylation level at CpG site i in a fetal tissue.  is the denovo 

methylation probability at CpG site i. 

The mitotic age calculations using EpiToc2 and MiAge were performed in R version 

4.2.1 with the help of the codes available in github. 
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2.5 Statistical Analysis: 

Two sample t-test and chi square test were used to see if there was any statistically 

significant difference in patient characteristics by vital status (dead and alive). Normality was 

checked for continuous variables prior to conducting the t-test and no gross violation was 

identified for age. In case of BMI, Mann Whitney U test was performed due to suspected non-

normal distribution. We looked at how the mitotic age calculated from the two mitotic clocks 

correlated with the chronologic age at the time of diagnosis using Pearson’s correlation 

coefficient. The mitotic age obtained from both the calculators were log transformed to obtain a 

normal distribution prior to this analysis.  

We then compared the mitotic age acceleration in different age groups, smoking status, 

stages and debulking status. We split the age groups into tertiles so that we have similar sample 

size in each group.  

Univariate and multivariable survival analysis was performed using Kaplan Meier and 

Cox-proportional hazard regression. Five covariates were identified based on the a priori criteria 

(age, smoking status and family history of either breast or ovarian cancer, debulking status and 

cancer stage). We performed both graphical tests and goodness of fit test (including the global 

test) to test the PH (proportional hazard) assumption. Confounding was assessed through the 

evaluation of the best model after identifying the apriori confounders.  

We initially adjusted for only chronological age and stage (Model I) and then for 

chronological age and debulking status (Model II). We then adjusted for all three variables – 

chronological age, stage and debulking status. Our final model consisted of the exposure (mitotic 

age – dichotomous and trichotomous), age at diagnosis, debulking status and stage of cancer. We 

also added post hormone replacement therapy use in our model to see if there is any effect on 



 

 

19 

survival (Model IV). In order to test for any effect due to hormone use, we restricted the study 

subject age at 50 years and performed the cox-proportional regression.  

We also tested if the model was sensitive to study site (NCOCS and AACES) since both 

the study cohorts belonged to a different period. We restricted the study only from the AACES 

cohort and performed the Cox Proportional regression, after checking the ph assumptions. 

Significance level of 0.05 was used for all the tests and all the statistical analyses were 

performed in R version 4.2.1. 

3.0 Results 

3.1 Descriptive Statistics 
 

The total study population consists of 202 patients for which methylation using FFPE 

ovarian tissue was determined: 161 from the AACES study and 41 from the NCOCS study. The 

median follow-up time in this cohort is 4.4 years, which was defined as days between diagnosis 

and last follow up. Out of the 202 patients in the study, 92 were alive after 5 years follow up 

from the time of diagnosis, while 110 died. The overall mean age of the cohort was 57.4 years 

and the mean age among those who died was not statistically different from those who were alive 

(mean age of people who died = 58.5 years vs those who were alive after 5 years = 56.1 years, p 

= 0.09). Similarly, the average BMI in the alive group was 31.3 kg/m2 while the average BMI in 

the dead group was only a little higher with 33 kg/m2 (p = 0.15) (Table 3). 

A higher proportion of the patients had distant stage disease; 91.8% among the deceased and 

67.4% among those who were alive. NCOCS had a higher proportion of people who died after 5 

years of follow up compared to the AACES site. A possible explanation for this could be that 

NCOCS was conducted from 1999-2008 while AACES was conducted from 2010-2015. The 
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difference in survival could be attributed to difference in standards of care for the two cohorts. 

Patients who had sub-optimal debulking had a higher proportion of people who died compared to 

those who received an optimal debulking surgery. In both the deceased and alive groups, the 

people who did not have family history had a higher number of people who died and there was 

no difference between the two groups (p value = 0.37). Similarly, there is no difference between 

the proportions of people who died among the ever smokers and never smokers (p = 0.96) and 

female hormone users and never users (p value = 1).  

3.2 Correlation between chronologic age and mitotic age: 
 

After quality control, we had information on 151 of the 163 CpG sites used for the 

EpiTOC and 286 of 286 CpG sites used for MiAge. The mitotic age obtained from EpiToc2 had 

a weak negative correlation with the chronological age at the time of diagnosis (r2 = 0.16) and 

this correlation was significant p < 0.001.  The correlation between chronologic age at the time 

of diagnosis and mitotic age obtained from MiAge calculator was relatively weaker but was also 

negatively correlated (r2 = 0.015). However, there was a strong positive correlation between both 

the log transformed mitotic ages with an r2 of 0.55 measured by EpiToc2 and MiAge and this 

correlation was significant p < 0.001 (Fig 2). 

3.3 Mitotic age acceleration between different risk factors: 
 
  Table 4 shows the difference between mitotic age calculated from both the clocks by age, 

smoking status, and stage. While comparing the mitotic ages calculated from Epitoc2 and 

MiAge, a significant overall difference was found between the groups for mitotic age from 

Epitoc2 (p<0.001) but not for MiAge calculated mitotic age (p = 0.34) (Fig 3a).  
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Table 3: Description of the study population (significance at p < 0.05) 
 

 Dead 
(N=110) 

Alive 
(N=92) 

Overall 
(N=202) 

P value 

Age (years)    0.09 

Mean (SD) 58.5 (9.94) 56.1 (10.1) 57.4 (10.0)  

BMI (kg/m2)    0.15 

Mean (SD) 33.0 (8.74) 31.3 (8.40) 32.2 (8.60)  

Missing 3  0  3   

Stage    <0.0001 

Localized 3 (2.7%) 13 (14.1%) 16 (7.9%)  

Regional 5 (4.5%) 15 (16.3%) 20 (9.9%)  

Distant 101 (91.8%) 62 (67.4%) 163 (80.7%)  

Missing 1  2  3   

Site    0.0012 

AACES 78 (70.9%) 83 (90.2%) 161 (79.7%)  

NCOS 32 (29.1%) 9 (9.8%) 41 (20.3%)  

 
 
Debulking status 

   
 
 

<0.0001 

Optimal debulking 44 (40.0%) 70 (76.1%) 114 (56.4%)  

Suboptimal debulking 47 (42.7%) 15 (16.3%) 62 (30.7%)  

Missing 19  7  26   

Family history    0.37 

No history of Breast or Ovarian 
cancer 64 (58.2%) 58 (63.0%) 122 (60.4%)  

Family history of either breast or 
ovarian cancer 41 (37.3%) 27 (29.3%) 68 (33.7%)  

Missing 5  7  12   

Ever smoked    0.96 

No 53 (48.2%) 46 (50.0%) 99 (49.0%)  

Yes 56 (50.9%) 46 (50.0%) 102 (50.5%)  

Missing 1  0  1   

Ever used any female hormones    1.0 

No 90 (81.8%) 76 (82.6%) 166 (82.2%)  

Yes 20 (18.2%) 16 (17.4%) 36 (17.8%)  
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Fig 2: From the left: Correlation graph between Age at diagnosis and log transformed mitotic age 
obtained from EpiToc2, Correlation graph between Age at diagnosis and log transformed mitotic age 
obtained from MiAge and Correlation graph between log transformed mitotic age obtained from 
EpiToc2 and MiAge. 
 

The Epitoc2 calculated mitotic age showed a decreasing trend with an increase in the age 

tertiles while no clear trend was observed for the mitotic age calculated using MiAge. No 

difference between the subjects’ mitotic age was observed when stratified based on smoking 

status. Upon comparing between the stages, significant differences were observed for an overall 

difference between both the clocks. Both the clocks showed a similar trend in mitotic age across 

the stages with a high mitotic age in the localized stage as compared to the other two (Fig 3b). 



 

 

23 

 
Fig 3a: Boxplot showing the difference in the mitotic age between different chronological age tertiles 

between the two mitotic clocks with p value for an overall difference. 
 

 
 
Fig 3b Boxplot showing the difference in the mitotic age between different stages between the two 
mitotic clocks with the p value for an overall difference 
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Table 4: Comparison of the mitotic age acceleration between age groups, smoking groups and stage for 
the two mitotic clocks: 
 

Variables Group comparison Epitoc 
difference 95% CI P (adj) Miage 

difference 95% CI p (adj) 

Age 

53 – 62 
years 

26-52 
years -18.5 (-35.3, -1.7) 0.027 -4.1 (-250.4, 242.3) 0.999 

63 -77 
years 

26-52 
years -32.9 (-50.3, 15.5) <0.0001 -139.4 (-394, 115.3) 0.401 

63 -77 
years 

53 – 62 
years -14.4 (-31.5, 2.7) 0.118 -135.3 (-385.7, 115.1) 0.410 

Smoking 
status 

Former 
Smoker 

Current 
Smoker 0.6 (-25.9, 27.0) 0.990 61.5 (-308.4, 431.3) 0.920 

Never 
Smoker 

Current 
Smoker 1.8 (-24.2, 27.8) 0.980 -23.5 (-308.4 431.3) 0.990 

Never 
Smoker 

Former 
Smoker 1.2 (-14.2, 16.7) 0.990 -85.0 (-301.4, 131.5) 0.620 

Stage 

Regional Localized -43.9 (-77.6, -10.3) 0.007 -555.4 (-1031.8, -78.9) 0.018 

Distant Localized -46.2 (-72.4, -19.9) 0.0001 -527.8 (-899.9, -155.6) 0.003 

Distant Regional -2.2 (-26.0, 21.5) 0.970 27.6 (-308.9, 364.2) 0.980 

 

3.4 Univariate Kaplan Meier Analysis: 

 
The median chronological age was 57 years, median value of the mitotic age from 

EpiToc2 was 64.4 (annual cell turnover rate) and the median mitotic age from MiAge was 

820.89 (relative biological age). The mitotic age obtained from the MiAge calculator is relatively 

large because it is not an absolute value, but a relative value of a participant compared to the 

others in the study sample. The univariate survival analysis showed a difference in the survival 

rate by median chronological age; those who were diagnosed at or above the age of 57 years had 

a worse survival rate. However, this difference was not statistically significant (Fig 4). 
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Fig 4: From left: Univariate Kaplan-meier curve based on the age at the time of diagnosis; based on 
mitotic age calculated from EpiToc2 and based on mitotic age calculated from MiAge. 
 

The Kaplan Meier curves for the groups stratified based on the median value of Epitoc2 

age showed a worse survival trend in those with a lower mitotic age as calculated from EpiToc2 

compared to those higher than median. However, this difference was not statistically significant; 

p value = 0.09. 

The trend was similar between the groups created based on the median mitotic age 

calculated from MiAge and this difference was again, not statistically significant p value = 0.1. 

3.5 Multivariable Survival Analysis (Cox-Proportional Hazard): 

We found no statistically significant interaction between any of the five covariates – age 

at diagnosis, smoking status, family history, debulking status and stage. Our final model 
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contained age at diagnosis, stage and debulking status along with our exposure of interest – 

mitotic age.  

3.4.1 Mitotic age as a dichotomous variable: 
 

HR estimated for the higher Epitoc group (those who had mitotic age calculated from 

EpiToc2 above the median value of 64.4 cell turnover rate) was 8% more compared to the lower 

Epitoc group (HR: 1.08, 95% CI: 0.67, 1.72; p = 0.76) while the lower Miage group had a higher 

HR by 9% compared to the higher quantile (HR: 0.91, 95% CI: 0.59, 1.4; p = 0.67) after 

adjusting for age at diagnosis, stage and debulking status. However, none of them were 

statistically significant and the 95% confidence interval contained null (Table 5a, Fig 5). Hence, 

there was no difference in survival between the two groups after adjusting for age, debulking 

status and stage. The association remained null when debulking status was removed from the 

model (Model I), when stage was removed from the model (Model II) and when hormone use 

was added to the model (Model IV) (Table 5). 

3.4.2 Mitotic age as a trichotomous variable: 
 

For comparing the tertiles, the reference group was the lower tertile q1 for both the 

clocks. Higher HR estimates were observed for the q3 tertile (Upper) compared to the reference 

and lower HR estimated for the q2 tertile (Middle) compared to the reference. This trend was 

similar when across both the clocks and different models (I – IV). Interaction by stage and 

debulking status were not statistically significant and therefore were removed from the model.    
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Fig 5: Top: Adjusted survival curve showing no difference in the 5-year survival between the two 
EpiToc groups. Bottom: Adjusted survival curve showing no difference in the 5-year survival between 
the two MiAge groups 
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For the model I, where we adjusted for only chronological age and stage and Epitoc as 

the exposure, we observed a better survival in the Q2 tertile compared to the reference (HR: 

0.51, 95% CI: 0.31,0.84; p = 0.009). While the HR estimate was also lower for Q3 tertile 

compared to Q1, the confidence interval contained null and hence there was no difference in 

survival (HR: 0.8, 95% CI: 0.48, 1.32; p = 0.37). While comparing the survival between the 

tertiles categorized based on MiAge calculated mitotic age, we did not observe any difference 

between the groups. (Table 5). 

Similarly, model II with EpiToc2 calculated mitotic age as exposure, showed a better 

survival in Q2 tertile compared to Q1 tertile, where we adjusted for chronological age and 

debulking status only (HR: 0.57; 95% CI: 0.33, 0.98; p = 0.04). However, there was no 

difference in survival between Q3 tertile and Q1 tertile (HR: 0.94; 95% CI: 0.53, 1.65). In 

contrast, no difference in survival was observed between the tertiles categorized based on MiAge 

calculated mitotic age (Table 5).  

Model III for Epitoc2 calculated mitotic age, which looked at survival between the 

tertiles adjusting for chronological age, stage and debulking status, Q3 tertile had a higher HR 

estimate compared to Q1 tertile (HR: 1.04, 95% CI: 0.58, 1.84; p = 0.9), but the difference in 

survival was not significant. While comparing Q2 tertile to Q1 we observed lower HR estimate 

but no significant difference in survival (HR: 0.61, 95% CI: 0.35, 1.05; p = 0.07). Similarly, 

between the MiAge tertiles, no difference in survival was observed between the groups (Table 5, 

Fig 6). Models I and II conserve on power compared to model III due to, missing values for 

debulking status and stage. 
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Fig 6: Top: Adjusted survival curve showing the difference in the 5-year survival between the three 
EpiToc based tertiles after adjusting for debulking status, age and stage.  
Bottom: Adjusted survival curve showing the difference in the 5-year survival between the three MiAge 
based tertiles after adjusting for debulking status, age and stage  
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We also looked at the influence of menopausal hormone use on the exposure and 

outcome. by restricting the study population in this analysis to women who were at least the age 

of 50. Thus, maximizing the likelihood that subjects in this sample are either postmenopausal or 

approaching menopausal status and eligible for hormone use. We added hormone use to our 

model (Model IV) after confirming that the ph assumptions were met.  With the dichotomous 

exposure, the lower quantile Q1 (reference) had a HR estimate for both Epitoc and Miage 

calculated mitotic age (HR = 0.88; 95% CI: 0.53, 1.46, p = 0.6221 and HR = 0.75 (95% CI 0.46, 

1.22, p = 0.25) respectively, after adjusting for debulking status, age, hormone use and stage. 

However, we found no significant difference in survival between the two groups.  

Examination of tertiles with EpiToc as the exposure showed that the lower Q1 tertile 

(reference), had a worse survival compared to Q2 tertile (HR = 0.5 95% CI: 0.29, 0.88, p = 

0.017) while no difference in survival between Q3 and Q1 tertiles was observed (HR = 0.86, 

95% CI: 0.47, 1.58; p = 0.63) (Table 5b, Fig 7). Similar to the other models for MiAge, no 

difference in survival was observed between the groups. (Table 5).  

We explored additional variables that are associated with risk of mortality in cancer 

patients including BMI, smoking status and diabetes status. However, the results did not change 

with addition of BMI, smoking status or diabetes status in the model 

We looked at the trend in the HR between both the exposure variables with different models as 

shown in Fig 8. We observed a V or a U trend between the tertiles and this trend was consistent 

in almost all the models. The tertile Q2 consistently had a lower HR across all the models and 

this difference in HR between Q1 and Q2 was significant with the Epitoc2 calculated mitotic age 

as the variable for risk stratification.  
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Fig 7: Adjusted survival curve showing the difference in the 5-year survival between the three EpiToc2 
based tertiles after adjusting for debulking status, age, hormone use and stage. (Q2 vs Q1, p = 0.017) 
 
Table 5: Cox proportional hazard ratio, 95% confidence interval and their p value are tabulated below 
for the models along with mitotic age calculated using EpiToc2 and MiAge: a) Exposure as a 
dichotomous variable and b) exposure as a trichotomous variable. 
 
a) 
 

  Reference 
group Q1 

Model I (Age, 
stage) 

Model II (Age, 
debulking status) 

Model III (Age, 
stage, debulking 

status) 

Model IV (Age, stage, 
debulking status, 

hormone use) 

  

Q1 is < 
median 

Q2 is >= 
median 

HR 
(95% CI) p HR 

(95% CI) p HR 
(95% CI) p HR 

(95% CI) p 

Miage Q2 0.82 
(0.56, 1.21) 0.33 0.84 

(0.55, 1.28) 0.41 0.91 
(0.59, 1.4) 0.67 0.75 

(0.46,1.22) 0.25 
 

EpiToc2 Q2 0.83 
(0.55, 1.26) 0.39 0.989 

(0.62, 1.57) 0.96 1.077 
(0.67, 1.72) 0.76 0.88 

(0.53, 1.46) 0.62 
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b) 

  Reference 
group Q Model I (Age, stage) Model II (Age, 

debulking status) 

Model III (Age, 
stage, debulking 

status) 

Model IV (Age, 
stage, debulking 

status, hormone use) 

    HR  
(95% CI) p HR  

(95% CI) p HR  
(95% CI) p HR  

(95% CI) p 

 

Miage 

Q2 
0.79 

0.33 
0.87 

0.59 
0.853 

0.54 
0.83 

0.52 
 

(0.49, 1.27) (0.53, 1.44) (0.51, 1.42) (0.48, 1.45)  

Q3 
1.08 

0.73 
1.06 

0.82 
1.17 

0.55 
0.9 

0.74 
 

(0.690, 1.70) (0.64, 1.75) (0.71, 1.93) (0.50, 1.64)  

EpiToc2 

Q2 
0.51 

0.009 
0.57 

0.043 
0.61 

0.07 
0.5 

0.017 
 

(0.31, 0.84) (0.33, 0.98) (0.35, 1.05) (0.29, 0.88)  

Q3 
0.8 

0.37 
0.94 

0.82 
1.04 

0.9 
0.86 

0.63 
 

(0.48, 1.32) (0.53, 1.65) (0.58, 1.84) (0.47, 1.58)  

                                                                          

 
 
A)      B) 

 

 
Fig 8: Comparing the HR trend obtained for each exposure group across the different models. A: MiAge 
calculated mitotic age, B: Epitoc calculated mitotic age 
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3.6 Sensitivity Analysis: 

As NCOCS was conducted during an earlier period (1999 to 2008) than AACES, we 

performed a sensitivity analysis to remove NCOCS subjects from analysis for model I (the 

primary model) to assess any potential impact on our findings. We obtained similar estimates for 

both Miage and Epitoc2 based tertiles compared to when we had samples from both NCOCS and 

AACES cohorts.  

 
 
Table 6: Comparing the HR estimates with only AACES samples and with both AACES 
and NCOCS samples. 
 

Exposure tertile 
(Q1, Q2, Q3) 

Reference 
group - Q1 

Model adjusting for age, stage, 
and debulking status 

(Only AACES) 

Model adjusting for age, stage, 
and debulking status 

(AACES and NCOCS) 

 HR (95% CI) p-value HR (95% CI) p-value 

Miage 

Q2 0.88  
(0.51, 1.51) 0.63 0.853  

(0.51, 1.42) 0.54 

Q3 1.12  
(0.65, 1.95) 0.68 1.17  

(0.71, 1.93) 0.55 

EpiToc2 

Q2 0.64  
(0.36, 1.16) 0.14 0.61  

(0.35, 1.05) 0.07 

Q3 1.11  
(0.59, 2.10) 0.75 1.04  

(0.58, 1.84) 0.9 
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4.0 Discussion: 
 

We observed that both the mitotic ages (Epitoc2 and MiAge) were moderately and 

weakly correlated with chronological age, respectively, and the slope was negative. While 

comparing the mitotic age across chronological age, stage and smoking status, we obtained a 

higher mitotic age calculated using Epitoc2 in lower age group (26-52 years). The mitotic age 

calculated from Epitoc2 and MiAge were both higher for the localized stage. The survival 

analysis performed in this study by stratifying the mitotic age as a dichotomous and trichotomous 

variable did not provide significant result nor conclusive evidence that mitotic age could be used 

for risk stratification and a tool to indicate HGSOC cancer prognosis in Black women. However, 

we found a significant difference in the risk of mortality between tertile Q1 and tertile Q2 when 

EpiToc2 was used as the exposure, across almost all the models when categorized based on 

EpiToc2 calculated mitotic age. 

The adjusted survival curves were interesting because the relationship between the HRs 

and the tertiles was not linear but rather a V or U shaped across all the models for both Epitoc2 

and MiAge.  

The weak correlation between mitotic age calculated from Epitoc and MiAge is expected 

as per the results obtained by Horvath [30] where the correlation between the DNAm and 

chronological age was found to be very weak in uterine and breast tissue. The high rate in error 

could be due to hormonal effects, menstrual cycle and concomitant increase in cell proliferation. 

We likely observed a better correlation of EpiToc2 calculated mitotic age with chronological age 

compared to MiAge because age is used in the calculation of the intrinsic stem cell rate (IRS = 

Total stem cell division/chronological age). Even, MiAge which is not tissue specific had a very 
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weak correlation with chronological age, which might be because ovarian tissue was not used in 

the development and validation of MiAge clock. In contrast, the correlation between the mitotic 

clocks was strong and positive as expected.  

The increase in mitotic age calculated from Epitoc with decrease in chronological age was 

consistent with another study that showed acceleration in age for the different age groups with 

CRC (Colorectal cancer).  This study also observed an age acceleration in the lower age group 

compared to older subjects [37]. This could be because cell division rate in general decreases 

with increasing age and hence the age acceleration was highest in the youngest group coupled 

with cancer progression. Another possible explanation for this could be that during pre-

menopausal years, ovarian epithelium undergoes cell proliferation during menstrual cycle that 

could increase the cell turnover rate. EpiToc2 calculated mitotic age was found to be more 

accurate in differentiating precancerous lesions from cancerous which could also be the reason of 

a higher mitotic age in the localized stage [32]. Thus, we suspect that a higher mitotic age in the 

localized stage and among younger age group could have also contributed to the U or V shaped 

trend in survival. 

We hypothesized an increase in the risk of mortality with an increase in the mitotic age 

since mitotic age tell us the rate at which cells divide and indicates cancer progression. In 

addition to it a pooled prospective cohort study was able to observe a decreasing survival rate 

with an increase in the quartiles using Horvath and Hannum clock for multiple cancers [38]. 

However, in our study, the middle group had the best survival among Epitoc tertiles, while the 

upper tertile and the lower tertile had worse survival, although the difference between the latter 

groups were not significant.  
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This is also the first study known to evaluate an association between mitotic age and 

survival among patients with ovarian cancer. Epigenetic age has been also associated with an 

increased risk of incidence cancer in a few studies but their association with mortality and 

survival is not very clear [38, 39]. Most of the studies that have used epigenetic clocks (Hannum, 

Horvath, GrimAge and PhenoAge) to evaluate their association with survival did not find an 

association [39]. Moreover, these studies did not include ovarian cancer in their analysis, 

therefore, it is difficult to understand the relationship of ovarian cancer and mitotic age given the 

increased rate of error in DNAm [38][39]. The pooled prospective cohort study by Dugue et al., 

was conducted in an Australian cohort and did not involve ovarian cancer patients and used 

different epigenetic clocks which could lead to the heterogeneity in the findings. One study 

found a higher risk in mortality among lung cancer cases with increase in epigenetic age/score 

(based on PhenoAge, GrimAge and MRscore) but an inverse association was obtained for breast 

cancer [40]. 

Furthermore, EpiToc2 and MiAge clocks did not use the ovarian tissue to validate their model, 

which adds to uncertainty in using them for ovarian cancer, which could be reason for not being 

able to obtain clear association for survival.  However, we selected these because the CpG sites 

used to calculate EpiToc2 age lies in the Polycomb Repressive Complex (PRC-2) which is 

usually overexpressed in ovarian cancer [32]. In addition to it, MiAge is a tissue independent 

clock and uses global methylation levels for calculating mitotic age and has been shown to be a 

predictor of mortality in other cancers [33]. Between the two mitotic clocks, Epitoc based 

stratification led to determine association between mitotic age and age groups and stage in our 

study. In addition, it also helped in identification of a group (Q2) with better survival. However, 

Miage based stratification did not provide any conclusive results.  
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There are several limitations in the study; firstly, our sample size was likely not large 

enough to have adequate power to detect an association between the mitotic age and overall 

survival. However, since this is the first study on this topic, we used a well-established cohort 

comprising a relatively large population of Black women with HGSOC. Secondly, we only had 

151 of the 163 CpGs for the calculation of IRS (Epitoc2 age) which could be due removal of 

certain CpGs after quality control. Thirdly, the categorization of the comparison groups was 

done based on quantiles (dichotomous and trichotomous) which might not have been an accurate 

measure of risk stratification. The reason for using quantiles and tertiles in this study to obtain 

the comparison groups was because a) we only had cases, so we could not determine the stem 

cell rate for a non-cancerous tissue to be able to determine the normal turnover rate, b) we could 

not determine the information on the normal turnover rate of ovarian tissue in any other 

published literature. Fourthly, we also have quite a few subjects missing their debulking status 

and stage. Therefore, we created two additional models leaving out debulking status and stage 

and the estimates were not very different from the model containing these variables. Finally, the 

tissues samples were collected and stored for a long time and even though DNA is comparatively 

stable than other specimen, a long-term storage could lead to some denaturation of it and thus 

impacting the results. 

Our study also has a lot of strengths; firstly, the study population included only Black 

women with high grade serous histotype, so race and histotype were controlled by design. Even 

though we had a small sample size, this is a comparatively large sample after restricting race and 

histotype. Secondly, this is also the first study that evaluated the association between mitotic age 

and HGSOC survival in Black women and thus can be used as a baseline study for future studies. 

Thirdly, the study design is also prospective, collection of biospecimen was done prior to 
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observing the outcome and the patients were also not been treated with neoadjuvant 

chemotherapy. Thus, we can be sure that there is no effect of treatment on the DNA methylation 

levels that could affect its association with survival. 

5.0 Conclusion 
 

From our study we conclude that the association between mitotic age and survival after 

HGSOC diagnosis in Black women is not linear but a V or U shaped. The mitotic age is higher at 

a younger age and at localized stage and the risk of mortality based on risk stratification using 

mitotic clocks – EpiToc2 and MiAge was not significant, although Epitoc2 did identify Q2 tertile 

as a group with better survival.  

Therefore, this topic requires more in-depth research to understand the differences 

between different cancer in relation to epigenetic age. Further research is needed on how 

methylation related biomarkers can be used to determine overall survival among cancers that 

interact with hormones and involving the menstrual cycle. Given the importance of epigenetic 

age and mitotic age in predicting cancer progression in current research, knowledge of the 

biological mechanism and basis to an increased mitotic age at early stages and younger age could 

help in better interpreting results obtained from epidemiologic studies. These could help identify 

the underlying type of cell proliferation that leads to an increased mitotic index. While it can be 

protective in some cases (immune cells) but also harmful in other cases (cancer cells).  Further 

studies will need to be done to accurately determine the threshold for stratifying based on mitotic 

age, which could be obtained from a control group, or a non-cancerous ovarian tissue will be 

required from each subject. A more general population (not restricting on histotype and race) 

could provide more power and help in obtaining a much precise estimate. 
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Although our study lacked solid evidence of association between mitotic age calculated 

from Epitoc2 and MiAge, we were able to identify how mitotic age varied between different 

factors associated with survival. In addition to it, we have established baseline research in this 

field, identifying the limitations of such study that could be improved upon in future studies. 
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