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Abstract

GASP: Graph-based Approximate Sequential Pattern Mining

By Wenqin Dong

The rapid growth of data capturing sequential ordering information has led sequential

pattern mining to become an essential data mining task. In sequential pattern mining,

the goal is to discover frequent and useful patterns from sequences in the database. How-

ever, conventional algorithms (or exact sequential pattern mining algorithms) that dis-

cover all frequent sequential patterns generate a large number of patterns and incur a

high computational and memory footprint. Thus, approximate sequential pattern min-

ing techniques have been introduced. Yet, existing approximate methods fail to reflect

the true frequent sequential patterns or only target singe-item event sequences. Multi-

item event sequences are prominent in real-world applications. As an example, sequen-

tial pattern mining of electronic health records where a patient can have multiple in-

terventions or diagnoses at the same visit. To alleviate these issues, we propose GASP, a

graph-based approximate sequential pattern mining, that discovers frequent patterns not

only on single-item event sequences but also multi-item event sequences. Our approach

compresses the sequential information into a concise graph structure which results in a

significantly smaller memory footprint. We assess the performance of GASP with both

singe-item and multi-item event sequence datasets on computation time, memory usage,

and recoverability of frequent patterns. The empirical results suggest that GASP outper-

forms existing approximate models by achieving better recoverability and outperforms

existing exact models on computation time and memory usage.
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Chapter 1

Introduction

An increasing amount of data is collected that contain the time or sequential order-

ing information. Such data is prominent in many applications including market basket

analysis, text analysis, energy reduction of smarthomes, and clinical decision support.

While sequential pattern mining has become a popular tool for these applications, such

data ignores the sequential ordering of the events and consequently may fail to discover

important or useful patterns [8]. As a motivating example, it is important for a healthcare

provider to know the sequence of events (i.e., medical procedures or interventions) that

may have resulted in an unfavorable outcome as shown in Figure 1.

Thus, mining sequential patterns or finding patterns that frequently occur in the

data is important. To date, researchers have developed exact sequential pattern mining

algorithms such as PrefixSpan [15], LAPIN [26], FAST [22], CM-SPADE [6], and CM-

SPAM [6]. Unfortunately, there are two notable limitations that prevent the widespread

usage of these algorithms on real-world applications: computational complexity (in terms

of time and memory) and the generation of trivial frequent subsequences.
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CHAPTER 1. INTRODUCTION

Figure 1: An illustrative example of sequential pattern mining in EHR data. Each patient has a
sequence of visits and each visit can have multiple diagnoses. Using sequential pattern mining
algorithms, frequent patterns can be extracted and only the partial results are shown in the figure.

While several existing works have been shown to be computationally efficient [22, 6],

the experimental results are performed on considerably smaller datasets than the large-

scale datasets like online data streams and medical datasets. Moreover, the datasets that

are predominately used only contain a single item per event. When these exact sequential

pattern mining algorithms are applied to electronic health record data, which contains

multiple items per patient visit (i.e., event) and long patient sequences (i.e., lots of patient

visits), the algorithms often fail to run due to the exponential increase in computational

memory and time. Furthermore, the exact sequential pattern mining algorithms will

generate trivial sequences with a single item or a series of subsequences which differ

from one another only based on one item. The presence of such patterns can negatively

impact the adoption of sequential pattern mining as an analysis method as the results can

overburden the end-user. Therefore, exact sequential pattern mining may not always be

desirable.
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CHAPTER 1. INTRODUCTION

Approximate sequential pattern mining was first proposed by Kum et al. [16] by de-

signing an algorithm called ApproxMap to mine consensus patterns, which are a subset

of long and representative sequential patterns. ApproxMap clustered sequences together

based on the similarity among sequences, and then mined consensus patterns from each

cluster. Yet, ApproxMap can only mine a small subset of the exact sequential patterns

and thus may fail to identify useful or important patterns. More recently, Zhu et al. [28]

proposed a new algorithm to discover frequent approximate sequential patterns based on

the Hamming distance model. They allowed some error as measured by the Hamming

distance (equivalent to a small number of mismatches between two sequences with the

same length) when mining frequent patterns. Similar to Kum et al., Zhu et al. also classi-

fied similar sequences into groups. Then they mined out all globally repeating sequential

approximate patterns in a local search fashion. Unfortunately, this model also fails to

extract a large subset of the exact frequent sequential patterns. GraSeq [18] proposed to

mine approximate sequential patterns by converting sequences into a weighted graph.

Unfortunately, the algorithm only allows a single directed edge in the graph. This by na-

ture excludes events that have multiple items in one event (or bucket). Therefore, GraSeq

can only deal with single-item events. Also, GraSeq produces substantially less sequen-

tial patterns than the exact frequent sequential patterns. Although existing approximate

sequential pattern mining offers more computationally efficient variants and avoids triv-

ial subsequences, the extracted patterns may not be a reflection of the true sequential

patterns.

To address the above limitations, we propose GASP, a novel Graph-based Approximate

Sequential Pattern mining algorithm. We introduce a new graph structure that trans-
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CHAPTER 1. INTRODUCTION

forms multi-item event sequences into a weighted graph with both directed and undi-

rected edges. We also develop a new variant of the random walk algorithm to account

for multi-item events and the variable length associated with the frequent sequences. Us-

ing the graph-based representation and the random walk algorithm, GASP improves the

computational efficiency from both the memory and time perspective, while also offer-

ing reasonable accuracy with the true sequential patterns. We demonstrate GASP on both

single-item and multi-item events and evaluated the performance.

The main contributions of this thesis are:

1. We present a new weighted graph structure to support sequential data that contains

multiple items per event. The graph structure compresses the data while retaining

much of the ordered sequence information.

2. We introduce a variant of the random walk algorithm to improve the efficiency and

the scalability of our algorithm. The algorithm is able to produce close approxima-

tions to the true sequential patterns while having a small memory footprint.

3. We conduct experiments on sequential datasets with more than 1 item per event.

Most of the approximate sequential pattern mining algorithms, including GraSeq,

are designed for single-item events. Moreover, many exact sequential pattern min-

ing algorithms, like CM-SPADE and CM-SPAM, were only tested on such databases.

Our evaluation on three large datasets showcases that GASP requires 200% less

memory and 5 times faster than CM-SPAM and requires 1000% less memory than

CM-SPADE while achieving a similar time.

5



CHAPTER 1. INTRODUCTION

To begin with, Chapter 2 introduces definitions and notations that will be used through-

out the paper. A literature review on both exact sequential pattern mining and approx-

imate sequential pattern mining will also be done in Chapter 2. Chapter 3 elaborates

on the proposed algorithm GASP. Chapter 4 lists the datasets that we did experiment on

and the algorithms that we compared to. The evaluation metric we use to test the perfor-

mance of GASP is also explained in Chapter 4. Chapter 5 reports the comparison results

between GASP and other existing algorithms. Chapter 6 wraps up the major contributions

we make to sequential pattern mining problems, and future paths of the research.
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Chapter 2

Background

In this section, we present the definition of sequential pattern mining and related

works on both exact and approximate sequential pattern mining. We follow the definition

introduced by Fournier-Viger et al. [9].

2.1 Definition and Notation

Given a set of items I = {i1, i2, ..., im}, an itemset X is a set of items such that X ⊆ I . A

sequence s is an ordered list of itemsets such that s = 〈X1,X2, ...,Xn〉. A sequence database

SDB is a list of sequences such that SDB = 〈s1, s2, ..., sp〉 with unique sequence identifiers

1,2, ...,p. Table 1 is an example of SDB which contains four sequences. All items in {} are

one event, and all events in 〈〉 is one sequence. Sequential pattern mining problem aims

at finding frequent subsequences in SDB, and subsequence is defined as below.

Definition 1. (Subsequence). A sequence s1 = 〈a1, a2, ..., am〉 is a subsequence of another

sequence s2 = 〈b1,b2, ..., bn〉 if and only if there exist integers i1, i2, ..., im such that 1 ≤ i1 ≤ i2 ≤

7



CHAPTER 2. BACKGROUND

Table 1: An example of a sequence Database (SDB).

SID Sequences

1 〈{53,98}, {58,98}〉
2 〈{257,53}, {257,58}〉
3 〈{10,53}, {257,259,58}, {98}〉
4 〈{10}, {259,53,58}〉

... ≤ im ≤ n and a1 ⊆ bi1 , a2 ⊆ bi2 , ..., am ⊆ bim .

By the definition, for example, from 〈{53,98}, {58,98}〉, we can find a subsequence

〈{53}, {98}〉. Conventionally, sequential pattern mining requires user-specified support to

determine subsequences that satisfy this support (number of sequences that contain the

pattern).

The absolute support of sequence s in SDB is the number of sequences that contain s.

The relative support is the absolute support divided by the total number of sequences in

SDB [11]. If the relative support of sequence s exceeds the threshold set by the user, s is

considered as a frequent subsequence of SDB.

2.2 Exact Sequential Pattern Mining

Most of the related studies of sequential pattern mining focus on getting the exact

set of subsequences whose support counts are above the user-specified threshold. Since

the computational complexity prevents the widespread usage of sequential pattern min-

ing algorithms, researchers made great efforts to develop algorithms with time and space

scalability to obtain the exact frequent patterns. A considerable amount of sequential

pattern mining algorithms are based on Apriori[2], including AprioriAll [1], GSP [23],

8



CHAPTER 2. BACKGROUND

SPADE [27]. Another important category is Pattern-Growth-based approaches including

PrefixSpan [15] and FreeSpan [14]. More recently, variants of sequential pattern mining

techniques have been proposed to achieve better time and space scalability. Some exam-

ples of these variations are Closed Sequential Pattern Mining [11, 12, 24, 25], Maximal

Sequential Pattern Mining [10, 13, 19, 20]. Closed sequential patterns are the set of se-

quential patterns that are not included in other frequent patterns with the same support

count. Similar to closed sequential patterns, maximal sequential patterns are the set of

sequential patterns that are not included in other frequent patterns. Both Maximal and

Closed Pattern mining can alleviate the drawback of generating trivial sequential pat-

terns.

In general, two factors are considered frequently in order to cut down the compu-

tational complexity. One is the data structure used to represent the original sequential

database, and the other is the method to generate or store the next patterns to be devel-

oped in the search space. As an example, both SPAM [4] and bitSPADE [3] use IDList

representation and encode IDList as bit vectors. IDList is a vertical representation of a

sequence database. For each item i, it records the itemsets where i appears. The major ad-

vantages of IDList is 1. It can be created with one scan of original sequential database; 2.

Extending any pattern s with item i doesn’t require another scan of the original database.

Using such an efficient representation of the SDB avoids scanning database for multi-

ple times. In this way, when generating new patterns, we can avoid maintaining a large

number of candidate patterns in memory.

Although some exact sequential pattern mining algorithms are relatively efficient, still

they meet difficulties when dealing with long sequences and multi-event sequences. Also,

9



CHAPTER 2. BACKGROUND

they may generate a huge number of short and trivial patterns. In order to alleviate these

problems, researchers developed approximate sequential pattern mining algorithms.

2.3 Approximate Sequential Pattern Mining

The goal of approximate sequential pattern mining is to discover similar patterns to

the true frequent sequential patterns but using less time and memory. This research

area was first proposed by Kum et al. [16], where ApproxMap was developed to mine the

consensus patterns shared by many sequences.

ApproxMap approached this problem by first clustering sequences based on similarity

and then mining consensus patterns from each cluster through multiple alignment [16].

Since consensus patterns are a subset of actual frequent patterns, ApproxMap may fail to

recover some important exact sequential patterns. Zhu et al. [28] proposed an algorithm

for mining approximate sequential patterns under the Hamming Distance model using

“break-down-and-build-up” methodology. However, they didn’t compare the accuracy of

their model with other methods. Chang et al. [5] proposed a mining method called eISeq

over an online sequence data stream. In eISeq, a lexicographic tree structure is main-

tained for sequence insertion and frequent sequence selection. Li et al. [18] proposed a

GraSeq, a graph-based approximate sequential pattern mining algorithm which trans-

formed sequences into a directed weighted graph structure with only one scan of data.

Then they introduced a non-recursive depth-first search algorithm to acquire approxi-

mate sequential patterns. Both eISeq and GraSeq were designed specifically for online

data-stream. In other words, they didn’t consider sequential datasets with multi-item

10



CHAPTER 2. BACKGROUND

event sequences. However, most of the real world datasets are actually multi-item event

sequences.

11



Chapter 3

GASP: Graph-based Approximate

Sequential Pattern Mining

Existing approximate sequential pattern mining algorithms [5, 16, 18] fail to recover

some important exact sequential patterns or mine multi-item event sequences. To ad-

dress these limitations, we propose GASP, a graph-based approximate sequential pattern

mining model. We introduce a new graph structure that transforms multi-item event

sequences into a weighted graph using both directed and undirected edges. The graph

compresses the sequential information of all the individual sequences without requiring

a significant memory footprint. The construction of the graph also captures information

to generate variable length frequent sequences. We also extend the random walk algo-

rithm to identify frequent sequential patterns from the SDB. GASP consists of three parts:

1) generate frequent subsequences to encode in the graph; 2) construct a weighted graph

based on the frequent subsequences; and 3) use a random walk variant based on proba-

bilities in the graph to identify the frequent sequences. Algorithm 1 presents an overview

12



CHAPTER 3. GASP

Algorithm 1 GASP

Input: A sequential database T
number of random walk iterations n

Output: A list of sequences with weights R =
{s: w | s is generated by random walk}

1: L1,L2, Pstart, Pend , Plength, Ptrans = GenSubseq(T)
2: G = constructGraph(L1,L2, Pend , Ptrans)
3: R = {}
4: for i = 0 to n do
5: s,w = RandomWalk(G,Pstart, Plength, Pend , Ptrans)
6: if (s : w) exists in R then
7: increment value of s by w
8: else
9: add (s : w) to R

10: end if
11: end for

of GASP. The following subsections describe the details of our method.

3.1 Subsequence Generation

To construct a graph from a SDB, it is necessary to determine the nodes and edges to

capture the order or relation between each item. Our graph will encode a single item

(hereby referred to as a 1-subsequence), and frequent two item sets (2-subsequence).

Since the SDB can have multiple items per event, there are two types of 2-subsequences

to distinguish between the scenario where the two items occur in the same event (type 1)

and the case where the two items occur in a chronological order (type 2). Thus, our graph

structure is a generalization of GraSeq to capture multi-item events.

We formally define the three subsequences as follows:

Definition 2. (1-subsequence).

For a sequence s = 〈X1,X2, · · · ,Xn〉 where X1,X2, ...,Xn are itemsets, a 1-subsequence (denoted

13



CHAPTER 3. GASP

Table 2: All subsequences generated from Table 1.

L1 L2 − 1 L2 − 2

{58 : 4}, {〈53,98〉 : 1}, {〈53〉,〈58〉} : 3, {〈10〉,〈259〉} : 2
{53 : 4}, {〈257,58〉 : 2}, {〈53〉,〈98〉} : 2, {〈53〉,〈257〉} : 2
{98 : 3}, {〈259,58〉 : 2}, {〈10〉,〈58〉} : 2, {〈98〉,〈58〉} : 1
{257 : 3}, {〈58,98〉 : 1}, {〈98〉,〈98〉} : 1, {〈10〉,〈53〉} : 1
{259 : 2}, {〈257,53〉 : 1}, {〈259〉,〈98〉} : 1, {〈257〉,〈257〉} : 1
{10 : 2}, {〈10,53〉 : 1}, {〈257〉,〈58〉} : 1, {〈10〉,〈257〉} : 1

{〈259,53〉 : 1}, {〈58〉,〈98〉} : 1, {〈10〉,〈98〉} : 1
{〈257,259〉 : 1}, {〈53〉,〈259〉} : 1, {〈257〉,〈98〉} : 1

as L1) is L1= 〈ik〉 for all ik ∈ X1 ∪X2 ∪ ...∪Xn.

Definition 3. (2-subsequence-type-1).

For a sequence s = 〈X1,X2, ...,Xn〉 where X1,X2, ...,Xn are itemsets, a 2-subsequence-type-1

(denoted as L2 − 1) is L2 − 1= 〈ik , ij〉 for all ik , ij ∈ Xp such that 1 ≤ p ≤ n. Note that 〈ik , ij〉 is

equivalent to 〈ij , ik〉

Definition 4. (2-subsequence-type-2).

For a sequence s = 〈X1,X2, ...,Xn〉 where X1,X2, ...,Xn are itemsets, a 2-subsequence-type-2

(denoted as L2 − 2) is L2 − 2= 〈〈ik〉,〈ij〉〉 for all ik ∈ Xp, ij ∈ Xq and p < q.

All of the subsequences generated from Table 1 are shown in Table 2. Note that under

our definition, 〈53,98〉 is the same subsequence as 〈98,53〉. However, 〈〈53〉,〈58〉〉 and

〈〈58〉,〈53〉〉 are considered as two different 2-subsequences (type 2). Furthermore, 〈53,98〉

and 〈〈53〉,〈98〉〉 are two different types of 2-subsequences, the former is type 1 while the

latter is type 2.

The generation of L1, L2 − 1, L2 − 2 is listed as below. In particular, the entire subse-

quence generation process only requires a single scan through the SDB. The subsequence

generation process is detailed in Algorithm 2.

14
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Algorithm 2 GenSubseq
Input: A sequential database T
Output: 1-subsequences L1

2-subsequences L2

1: L1,L2 = {}
2: for each sequence t ∈ T do
3: preItem = []
4: k = number of items in t
5: for each itemset X ∈ t do
6: m = number of items in X
7: for i = 0 to m do
8: increment value of L1[X[i]] by 1
9: for j = i to m do

10: L2 = processL2(X[i], X[j], 1, L2)
11: end for
12: for l = 0 to length(preItem) do
13: L2 = processL2(preItem[l], X[i] 2, L2)
14: end for
15: end for
16: add all items in X to preItem
17: end for
18: end for

L1 Generation. The generation process scans all the sequences in the SDB to deter-

mine the unique items that occur in all of the sequences. During this process, it also

stores the frequency of each subsequence. As a result, every item in the SDB is a member

of L1, and the frequency contains the occurrence of each item.

L2 − 1 Generation. During the same scan of all the sequences, the generation process

also identifies the L2 − 1 subsequences. Since this subsequence focuses on items in the

same events, for each sequence s ∈ SDB, and each itemset X ∈ s, the algorithm generates a

set {(a,b) | a,b ∈ X}. The algorithm also stores the number of occurrences of each item pair,

(a,b). The result is a list of all item pairs that occur in the same event and the frequency

of these item pairs.

L2−2 Generation. The generation process for the L2−2 subsequences follows the same

15
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Algorithm 3 processL2
Input: Two items X[i], X[j]

type γ
2-subsequences L2

Output: updated 2-subsequences L2

1: if (X[i],X[j],γ) exists in L2 then
2: increment value of (X[i],X[j],γ) by 1
3: else
4: add {(X[i],X[j],γ) : 1} to L2
5: end if

procedure as L2 − 1. The main difference is that the two items must occur in two events,

and the sequence itself must reflect the actual chronological order. In other words, the

algorithm counts the number of occurrences of each item pair {(a,b) | a ∈ Xi1 ,b ∈ Xi2}

where Xi1 must occur before Xi2 . Algorithm 3 details the generation process for the 2-

subsequence for both types.

3.2 Graph Construction

After the sequence generation is complete, GASP constructs a mixed-type graph to

store the sequence information. Each node in the graph represents an item. An edge

between two nodes in the graph denotes the relation or ordering between two items.

Node Representation. A node in the graph is denoted using then tuple 〈NID,Pstart[NID]〉.

NID is a unique identifier corresponding to each item in the 1-subsequences (L1). Pstart[NID]

is the probability a frequent pattern will start with this NID. Section 3.2.1 illustrates

Pstart in detail.

Edge Representation. Each edge between two nodes is denoted using the tuple

〈a,b, type,weight,Ptrans, Pend〉. a,b are the two nodes (using NID) that are connected by

16
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the edge. To distinguish between items occurring in the same event or two chronological

events, the graph consists of both directed and undirected edges. An undirected edge

captures the type 1 subsequence, where two items occur in the same event. A directed

edge denotes a type 2 edge, and the direction captures the sequential ordering of the

items. The weight of the edge determines the likelihood of traversing to node b. Ptrans

denotes the probability of picking a type-1 edge after traversing from a to b. This is an

essential addition to the graph, as it is important to determine when to transition to a

new event. Section 3.2.2 provides additional motivation and details the computation of

the transition probability. Pend represents the probability of stopping the current pattern

conditioned on traversing the edge from a to b. Section 3.2.3 discusses the motivation

and details of this computation.

3.2.1 Start Probability

While the start of a frequent sequential pattern can arise from any item in the se-

quence, we observe that in the true sequential patterns, items that occur more frequently

in the SDB are more likely to serve as the beginning of such patterns. Thus, to simulate

the exact sequential patterns, the start probability is set to reflect the likelihood of the

item occurring in the SDB. Thus, Pstart is simply the normalized probability across all the

items:

Pstart =
L1[i]∑
j L1[j]

(1)

To take the graph in Table 1 as an example, the frequency of each node is [58: 0.22,

53: 0.22, 98: 0.17, 257: 0.17, 259: 0.11, 10: 0.11]. Then we just randomly choose a vertex

17
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to start with based on this probability (i.e. 58 and 53 are more likely to be chosen, but

259 and 10 still get the chance to be selected).

3.2.2 Event Transition Probability

For multi-item events, it is important to distinguish between the probability of select-

ing an item in the same event or transitioning to a new event. Although the weight of

an edge captures the overall probability of traversing to another node, in long event se-

quences the type-2 edges are likely to dominate in likelihood. In preliminary experiments

using electronic health record data, the type-1 edges were dominated by the type-2 edge

weights and thus yielded inaccurate single-item event patterns. To remedy this, each edge

also contains an event transition probability, Ptrans. The transition probability denotes the

likelihood that the next item will be from the same event conditioned on taking the edge.

In other words, it will determine whether to stop at the current itemset or continue to

add to the current itemset.

The transition probability for the item pair, (i1, i2), is calculated as follows:

Ptrans =


numSameEvent−2

numSameEvent−2+numFollowEvent (i1, i2) is type-1 edge

numSameEvent−1
numSameEvent−1+numFollowEvent (i1, i2) is type-2 edge

(2)

numSameEvent captures the number of items in the current itemset. numFollowEvent

contains the number of items that are in the next (chronological) events. The formula is

different for type-1 and type-2 because if we just picked a type-1 edge, both i1 and i2 are
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from the current event. That means there is only numSameEvent − 2 items that we can

pick from the current itemset. If we just picked a type-2 edge, i2 is in the current itemset

while i1 is from the previous itemsets. Thus, we only exclude one from numSameEvent.

Again, the resulting Ptrans is the probability that the next item will be from the same

event conditioned on taking (i1, i2), and 1−Ptrans is the probability that the next item will

be from the next events. The transition probability for all edges is calculated during the

2-subsequence generation process and does not require an additional pass of the data.

3.2.3 Edge-Based Ending Probability

We observed that in the true sequential patterns (i.e., patterns identified by exact se-

quential pattern mining algorithms), some items or item pairs tend to occur towards the

end of the sequences while some other items or item pairs occur towards the beginning of

the sequence. Since the start probability (Section 3.2.1) captures the latter, we introduce

the edge-based ending probability, Pend , to capture the former. The idea of Pend is to en-

capsulate the likelihood that this particular item or item-pair will terminate the pattern.

For the item pair, (i1, i2), the edge-based ending probability is calculated as:

Pend =


1− numFollowEvent+numSameEvent−2

numItem (i1, i2) is type-1 edge

1− numFollowEvent+numSameEvent−1
numItem (i1, i2) is type-2 edge

(3)

Using the same definition of the variables as Equation (2), numSameEvent and numFollowEvent

are the number of items in the same event and the number of items in the following event
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respectively. numItem is the total number of items in the sequence. The resulting Pend is

the probability that (i1, i2) will terminate the pattern, and 1 − Pend is the probability that

we will continue to pick edges. Thus, if this item pair tends to occur towards the end of

the sequence, the numerator of the second term will tend to be small compared to the

total number of items in the sequence, resulting in a large probability of ending. Simi-

lar to the transition probability, the edge-ending probability is also calculated during the

subsequence generation process. Therefore, each time the item pair occurs, we calculate

the associated Pend and take the average of the occurrences in all the subsequences.

3.2.4 Length-Based Ending Probability

Apriori-based sequential pattern mining algorithms are sensitive to the number of

events(denoted as length for simplicity) in the candidate patterns. The first observation

is that the memory complexity of the algorithms increases exponentially with an increase

in the length of the patterns. Additionally, the size of the candidate patterns substantially

shrinks as many of the candidates are pruned due to their support counts falling below

the minimum support count. To ensure our graph structure encapsulates the shrinking of

the patterns (i.e., less candidates with larger lengths), we introduce a length-based ending

probability, Plength based on the number of events. The length-based ending probability

serves two purposes: (1) to minimize the occurrence of trivial patterns (1 or 2 event

patterns) and (2) to minimize the occurrence of extremely long patterns. Thus, the length-

based cumulative distribution function will approximately be similar to Figure 2.

As shown from the figure, the probability of ending the sequence with a short length
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Figure 2: The cumulative distribution function of the length-based probability, Plength.

is small, whereas the probability of ending will be high for long sequences. This distri-

bution is approximated by counting the total number of events in each sequence, and

normalizing the counts such that the cumulative distribution ends in 1.

Again, for the SDB in Table 1, the resulting probability is {2: 0.75, 3: 1}.

3.2.5 Graph Construction Algorithm

Given the subsequence information and the different probabilities described above,

the graph structure for the dataset can be constructed. First, the nodes are added based

on the 1-subsequences (L1), with the starting probability set to be the normalized fre-

quency. Next, each item pair in the 2-subsequences (L2 − 1 and L2 − 2) is enumerated

to add the appropriate edge, event transition probability, and edge-based ending prob-
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Algorithm 4 constructGraph
Input: 1-subsequences L1

2 subsequences L2
Transition Probability Ptrans
Ending Probability Pend

Output: Graph G
1: for {a : w} in L1 do
2: G.addVertex(a, w)
3: end for
4: for {(a,b, type) : w} in L2 do
5: G.addEdge(a, b, type, w)
6: G.setTransProb(a, b, type, Ptrans[(a,b, type)])
7: G.setEndProb(a, b, type, Pend[(a,b, type)])
8: end for

Figure 3: Constructed Graph from Table 2. Inside each node, the number in white is the NID of
each node, and the number in gold is Pstart[NID]. Blue line denotes type-1 edge and green line
with arrow denotes type-2 edge. The three numbers in dark red denote weight, Ptrans, and Pend
respectively.

ability. Finally, the graph also stores the length-based ending probability as a separate

variable. The graph construction algorithm is presented in Algorithm 4. Note that all

four probabilities Pstart, Ptrans, Pend , Plength can be calculated within one pass while gener-

ating all the subsequences. An example of the graph for Table 1 is shown in Figure 3.
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3.3 Random Walk

Given the constructed graph, we introduce a random walk variant to traverse the

graph and obtain the frequent sequential patterns. Random walk is a natural stochastic

process on graphs and was introduced as a mechanism to replace enumerating all po-

tential possibilities while providing a reasonable simulation of the likely paths through

the graph [21]. In order to simulate the exact sequential patterns, edges that have higher

weights should be traversed more often. Higher weights associated with the edge indi-

cate that the item pair occurs more frequently in the original SDB, thus are more likely

to be included in the frequent sequential patterns. GASP adapts the standard random

walk algorithm to account for several important aspects of our constructed graph. Since

GASP is designed to handle multi-item sequences, a standard random walk is not suf-

ficient to differentiate between the two edge types. Moreover, the stopping criteria of

random walk need to be adapted to reflect the two ending probabilities (edge-based and

length-based). Therefore, in our customized random walk, the edge weight and the event

transition probability, Ptrans, are used to jointly determine the probability of traversing

the next edge. Moreover, rather than randomly stopping the sequence, our random walk

variant uses the two ending probabilities, Pend and Plength, to determine an appropriate

time to stop.

Our random walk proceeds using three basic steps:

1. Randomly pick a start node based on the Pstart and label it as current node.

2. Among all the neighbors of the current node (i.e., all the edges associated with the

current node), randomly select one based on both the edge weight and Ptrans and
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Figure 4: Example of one iteration of random walk.

traverse the selected edge.

3. Based on the Pend of the traversed edge and Plength, randomly decide if the sequence

is complete. If yes, store the result sequence and start a new sequence from step 1.

If no, continue to step 2 and repeat.

Figure 4 provides an example of one iteration of random walk. First, the starting

probability of each node is [58: 0.22, 53: 0.22, 98: 0.17, 257: 0.17, 259: 0.11, 10: 0.11].

If 98 is selected as the start node, we proceed to step 2. Among the 4 possible edges,

random walk chooses a type-1 edge with 53, thus yielding the pattern 53,98. Based on

the completion probability, random walk decides to continue, and thus chooses a type-2

edge of 98.

Choosing an edge (Step 2). The choice of the edge between a,b is dependent on two

factors: (1) weight of the edge itself between the current node, a and the next node, b and

(2) the Ptrans. The likelihood of selecting the edge is calculated as the product between

the weight of the edge and the associated transition probability (Ptrans for a type-1 edge

and 1 − Ptrans for a type-2 edge). Thus, the probability of each edge is the normalized
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likelihood across all possible edges connected to the current node. For each new iteration

of the random walk (i.e, in step 1 of random walk), the Ptrans is initialized to 0.5, or an

equal likelihood of choosing a type 1 edge or a type 2 edge. After selecting the edge, the

transition probability is updated to reflect the Ptrans of the resulting edge.

Using our motivation example, if 98 is selected as the start node, Ptrans = 0.5. The

graph is queried to get the weight of the edges between 98 and all its possible neigh-

bors. The weight of type-1 edges is multiplied by 0.5 and the weight of type-2 edges

is also multiplied by 0.5, and the values are then normalized to produce a normalized

probability. The resulting probabilities will be [〈53,98〉 : 0.25,〈58,98〉 : 0.25,〈〈98〉,〈98〉〉 :

0.25,〈〈98〉,〈58〉〉 : 0.25]. The probabilities are then used to randomly select which edge to

traverse.

Completion of a pattern (Step 3). The choice of determining the end of a random

walk pattern is based on two factors: the latest edge selected and the number of events

in the current pattern. The probability of a completed pattern is then calculated as the

average of the two probabilities, Plength and Pend . Based on this probability, the random

walk decides whether the pattern is complete (and to start a new sequence) or if the

pattern should continue (i.e., pick another edge to traverse).

Using the same example as above, where the starting node is 98, and random walk

selects a type-1 edge with node 53, the edge-ending probability, Pend = 0.5 and Plength[1] =

0. Thus, the final completion probability is 0.25.

The detailed steps of our customized random walk are summarized in Algorithm 5.

Accumulation of Patterns. Upon the completion of a pattern (as defined by the ran-

dom walk algorithm), the weights of all the edges that were traversed are summed up
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to yield the final weight of this particular sequence. As mentioned before, edges with

higher weights occur more frequently in the original SDB and are more likely to be in-

cluded in the frequent sequential patterns. Therefore, a pattern generated from a random

walk with higher summed up weights is more likely to have higher support among the

patterns generated by exact sequential pattern mining algorithms. Thus, the summed up

weights are used for ranking.

If a pattern is generated multiple times by random walk, the weights are accumulated

from all the different iterations. The generated pattern and the weight associated with

the pattern are stored for quick querying.

Using the motivating example from Figure 4, the generated pattern is 〈〈53,98〉,〈98〉〉.

During the process, there were two edges that were traversed, 〈53,98〉,〈〈53〉,〈98〉〉. Since

the weight of the first edge is 1 and the weight of the second edge is 2, the final weight of

the pattern is 3.

3.4 Implementation Details

We implement the algorithms using Python under version 3.6. For the purpose of

maintaining computational efficiency and minimizing memory usage, a virtual graph

object is not constructed. Instead, the Python dictionary is used to store the nodes,

edges, and probabilities for faster queries and also to achieve a compact representation.

Since the random walk algorithm can be easily parallelized to account for multiple runs,

GASP utilizes multiple threads in our implementation to further reduce the running time

on machines with multiple CPUs.
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Algorithm 5 RandomWalk
Input: Graph G

Start Probability Pstart
Length Distribution Plength
Transition Probability Ptrans
Ending Probability Pend

Output: A sequence s
Sequence weight w

1: v = choose(Pstart)
2: s = [v]
3: transP = [0.5, 0.5]
4: w = 0
5: numEvent = 1
6: while True do
7: successors = G.getChild(v)
8: Pnext = {}
9: for each (c, type) ∈ successors do

10: weight = G.getWeight(v, c, type) * transP[type - 1]
11: add {(c, type) : weight} to Pnext
12: end for
13: normalize Pnext
14: child, type = choose(Pnext)
15: s = s.append(child)
16: w += G.getWeight(v, child, type)
17: if type == 2 then
18: increment numEvent by 1
19: end if
20: endP = Pend[v,child, type]
21: lengthP = Plength[numEvent]
22: stop prob = (endP + lengthP )/2
23: stop = choose({1 : stop prob,0 : 1− stop prob})
24: if stop then
25: break
26: end if
27: transP = Ptrans[v,child, type]
28: v = child
29: end while
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Experiment Setup

4.1 Dataset

We employed two datasets, FIFA and CMS dataset, to assess the performance of GASP.

Existing sequential pattern mining algorithms, both exact and approximate, predomi-

nantly perform experiments on SDBs with single-event sequences [18, 6] such as FIFA

dataset. However, in real-world, we are usually dealing with SDBs with multi-event se-

quences. Thus, we also construct two different SDB variants of the CMS dataset.

The FIFA dataset is a real clickstream data from the website of FIFA World Cup 98.

It is obtained directly from the SPMF library1. According to Fournier-Viger [6], the FIFA

dataset is one of the most time-consuming datasets to extract frequent sequential patterns

due to the size of the dataset.

The CMS dataset is a synthesized dataset that was adopted from a publicly accessible

1https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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dataset provided by the Centers for Medicare and Medicaid Services2.

This dataset contains information about the patients’ diagnosis on their visits between

the period 2008 to 2009. While the FIFA dataset is employed to assess the performance

on single-event sequences, the CMS dataset is used to evaluate on multi-event sequences.

Unlike the FIFA dataset which is directly represented as an SDB, the CMS dataset requires

an additional preprocessing step to construct the SDB. To construct a SDB, all the patient

visits are sorted in chronological order and we focus on the International Classification of

Diseases (ICD-9) billing diagnosis codes associated with each visit. It is important to note

that each visit (or event) can contain more than one ICD-9 code. On average, a patient

visit will contain 2.22 codes.

There can be different representations for the patient representation, such as the date

representation, interval representation, etc. [17]. We follow the preprocessing steps de-

tailed in [17] to construct the date representation and interval representation. Specifi-

cally, the date representation, the CMS (date) SDB, encodes each unique visit date as a

single event. Under the interval representation, the CMS (interval) SDB, each event is

constructed by merging visit dates that within a specified interval. For example, if the

interval is set to 1 month, then all visits in the same month are merged into a single event.

Since the CMS (date) SDB is a large dataset capturing more than 65,000 patients (or se-

quences) with an average length of 40.96 (or the average number of events), some exact

sequential pattern mining algorithms were not able to run on CMS (date) because of the

limitation of computational and memory footprint. To compare GASP with existing algo-

2https://www.cms.gov/research-statistics-data-and-systems/Downloadable-Public-Use-

Files/SynPUFs/DE_Syn_PUF
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Table 3: Characteristics of each SDB. The average sequence length refers to the average of number
of events within each sequence.

Dataset # of sequences avg. sequence length

CMS (date) 68,185 40.96
CMS (interval) 68,185 16.74
FIFA 20,450 34.74

rithms, CMS (interval) is used as it contains the shorter length of sequences than CMS

(date). The characteristics of the three SDBs are summarized in Table 3.

4.2 Experimental Design

All the experiments were run on a single machine, an Amazon EC2 r5.4xlarge in-

stance, with 16 CPU cores and 128GB memory. To evaluate the performance of GASP,

we compared against other sequential pattern mining algorithms from both approximate

and exact sequential pattern mining as a baseline. Both GASP and GraSeq, an approximate

sequential pattern mining algorithm, is implemented in Python. The SPMF library [7] is

used for exact sequential pattern mining and implemented in Java.

4.2.1 Approximate Sequential Pattern Mining

As we construct a graph for sequential pattern mining, we compare GASP against

GraSeq [18], a graph-based sequential pattern mining algorithm that transforms sequences

into a directed weighted graph structure to discover the approximate frequent patterns.

The GraSeq implementation is not released, thus, we implement GraSeq in Python. We

note that the other approximate sequential pattern mining algorithms described in Sec-
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tion 2 are also not publicly released and thus are not available for comparison. However,

GraSeq is designed to deal with only single-item event sequences as it only supports a

directed edge in the graph. Thus, the graph in GraSeq only supports the directed edge

(constructed using L2−2). We generalized GraSeq to deal with multi-item event sequences

by considering items in each event as a single “item” and transform the whole event to

a node in the graph. Thus, in contrast to having only one item in each node, now the

graph contains multiple items in each node. In this way, the graph can work with multi-

item sequences with only directed edges. GraSeq extracts sequential patterns by applying

depth-first search over the graph with every node serving as a starting node. A pattern

is considered as frequent if (1) the frequency of every item in the pattern is above a user-

specified threshold; (2) the frequency of every 2-subsequence in the pattern is also above

the threshold; and (3) there is no repeated item in the pattern. In this way, GraSeq extracts

only a few patterns than those generated by exact sequential pattern mining algorithms,

we enhanced GraSeq to use our proposed random walk step to generate more patterns.

4.2.2 Exact Sequential Pattern Mining

Since GASP targets to extract approximate sequential patterns, we also evaluate it

based on how many patterns are recovered compared to the exact sequential pattern

mining algorithms. We compare the results with three exact sequential pattern mining

algorithms.

• FAST [6]: An algorithm that improves SPAM [4] but introduced a concept of in-

dexed sparse IDLists which can calculate the support of candidates more quickly.
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• CM-SPAM [22]: A state-of-the-art sequential pattern mining algorithm that im-

proves SPAM by introducing the concept of co-occurrence pruning using a co-occurrence

map to reduce the number of candidate patterns.

• CM-SPADE [22]: Similar to CM-SPAM, this is also a state-of-the-art sequential pat-

tern mining algorithm which uses co-occurrence pruning. However, the basic idea

follows Spade [27] which uses a vertical database representation while SPAM uses

horizontal database representation.

We use the implementation in the SPMF library [7] for CM-SPAM and CM-SPADE.

More interesting is that the number of frequent patterns returned from each algorithm

were different on the two CMS SDBs. We hypothesize that the discrepancy arises from

the fact that these algorithms are designed to deal with singe-item event sequences while

the CMS dataset is a multi-item event SDB. We also noticed that FAST returned the most

frequent patterns from the SPMF library, and thus use it as the gold standard. How-

ever, FAST requires significant memory to extract frequent sequential patterns from CMS

(date) and FIFA. Moreover, FAST only works with high user-specified support on our

server. Consequently, the algorithm can only identify a relatively small set of sequen-

tial patterns. Due to memory limitations (even using a machine with 128 GB of RAM),

we benchmark GASP, CM-SPADE, CM-SPAM against FAST on the CMS (interval) dataset.

Since we are unable to run FAST on FIFA and CMS (date), we compare GASPto CM-SPADE

on CMS (date) and FIFA dataset.
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4.3 Evaluation Metric

To evaluate GASP against other algorithms, we compared the results from three per-

spectives: recoverability, running time, and memory usage.

4.3.1 Frequent Patterns Recoverability

Zhu et al. [28] proposed an approximate sequential pattern mining algorithm that

works with long sequences in multi-item event sequences. The authors suggested using

error tolerance to determine which subsequences generated by their method should be

included in the set of approximate frequent patterns. In other words, the error is the

percentage of the dissimilarity between two patterns. Given the idea of error tolerance,

as GASP also target multi-event sequences, we want a more direct measurement to see

how dissimilar two sequences are and how well GASP recovered frequent patterns. Thus

Levenshtein distance is used.

The definition is given below:

Definition 5. (Levenshtein distance).

Given two sequences s1, s2, the Levenshtein distance between them is the minimum number of

single-item edits, including insertions, deletions and substitutions, required to change s1 to the

s2 or vice versa.

More formally, the Levenshtein distance between string a and b is given by leva,b(| a |, |
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b |), where | a |, | b | are the lengths of a and b such that:

leva,b(i, j) =



max(i, j) if min(i, j) = 0,

min



leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i − 1, j − 1) + 1aj,bj

otherwise.

(4)

To compute the Levenshtein distance between two sequences a, b, we first transform

both a and b to strings. For instance, 〈〈53,98〉,〈10〉〉 is transferred to string “53 98 10”.

Then, the editing distance between 〈〈53,98〉,〈10〉〉 and 〈〈53〉,〈10〉〉 is 1. Note that the

editing distance between 〈〈53,98〉,〈10〉〉 and 〈〈53,98〉〉 is also 1.

In order to compare patterns generated by GASP or GraSeq to those generated by ex-

act sequential pattern mining algorithms, we take the average of Levenshtein distances

between two lists of patterns. For example, when comparing GASP with CM-SPADE, for

each frequent pattern s in CM-SPADE, we look for the closest match of s on the list of

patterns generated by GASP. A sequence is considered as the closest match if it has the

minimum Levenshtein distance with s. Then, we take an average of the Levenshtein dis-

tances between frequent patterns from CM-SPADE and their closest matches.

4.3.2 Computational Time

The computational time considers the total time of the algorithm. For GASP, a Python

timer is used to calculate the difference between the beginning of the program and the

end of the program, and thus includes the subsequence generation, graph construction,
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and random walk. For CM-SPADE, CM-SPAM, and FAST, the implementation in the

SPMF library provides the running time of these algorithms.

4.3.3 Memory Usage

We use memory-profiler 0.57.0 to monitor the memory consumption of every algo-

rithm. Memory-profiler checks the memory usage of the program every 0.5 seconds and

we report the max memory. Note that in the initial implementation of CM-SPADE, CM-

SPADE and FAST, Fournier-Viger et al. sample limited time-points to check the memory

usage. Thus, the max memory reported by SPMF fluctuates between different runs and

may not be accurate. To address this limitation, we also use memory-profiler to measure

the max memory used by the SPMF-based algorithms.

35



Chapter 5

Empirical Results

5.1 Evaluation with Approximate Sequential Pattern Min-

ing

5.1.1 CMS (date) Dataset

Both GraSeq and GASP are run on CMS (date) with the same number of iterations

(0.1M) using our customized random walk algorithm. The output of the two algorithms

is compared with the sequential patterns generated by CM-SPADE using the support of

20%. Table 4 shows the average Levenshtein distance for GASP and GraSeq to CM-SPADE.

For every two lists of sequences that we are comparing, we take first top K% sequences

to compute the average Levenshtein distance. The editing distance between CM-SPADE

and GraSeq is much larger than the editing distance between CM-SPADE and GASP on

every Top K percent of generated sequences.
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Table 4: The average Levenshtein distance from CM-SPADE to GASP and GraSeq on CMS (date).
The iteration number of random walk is 0.1M.

TopK 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GASP 1.239 1.196 1.184 1.181 1.182 1.195 1.206 1.220 1.231 1.240
GraSeq 2.034 1.971 1.978 1.987 1.994 2.006 2.015 2.025 2.035 2.042

Table 5: The average Levenshtein distance from CM-SPADE to GASP and GraSeq on FIFA. The
iteration number of random walk is 0.5M.

TopK 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GASP 1.371 1.432 1.543 1.565 1.678 1.701 1.759 1.794 1.823 1.901
GraSeq 1.532 1.662 1.72 1.745 1.748 1.823 1.869 1.905 2.101 2.15

5.1.2 FIFA Dataset

A similar experiment as CMS (date) is performed on the FIFA dataset. We assess the

performance of GraSeq and GASP by comparing them to CM-SPADE on 5% support. Both

GraSeq and GASP are run with 0.5M iterations for a random walk.

As Table 5 presents, GASP still outperforms GraSeq on every top K%, but the difference

between these two methods decreases. Since GraSeq was initially designed to deal with

single-event SDBs, it is expected that GraSeq can achieve similar performance on FIFA

than on CMS (date).

5.2 Evaluation with Exact Sequential Pattern Mining

5.2.1 CMS (interval) Dataset

We observed that on CMS (interval) dataset, the exact sequential pattern mining al-

gorithms presented in the SPMF library return a different number of frequent patterns.
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Figure 5: Average Levenshtein distance from FAST to CM-SPADE, CM-SPAM, GASP with 1 mil-
lion, 5 million, 10 million iterations respectively on CMS (interval)

Using a 20% support, FAST, CM-SPADE, CM-SPAM, PrefixSpan return 74,065, 67,708,

63,520, 64,229 patterns respectively. That means, on multi-event sequential datasets like

CMS, these algorithms may not be exact as well. FAST is the algorithm that yields the

most frequent patterns. Thus, we compare GASP, CM-SPADE, and CM-SPAM against

FAST to see how far away these algorithms are from the “truth”.

Figure 5 shows the average Levenshtein distance from FAST to CM-SPADE, CM-SPAM,

and GASP with 1M, 5M, 10M iterations respectively. GASP with 10M iterations perform

very close to CM-SPADE and CM-SPAM on Top 30%, and even in Top 100%, the differ-

ence in Levenshtein distance doesn’t exceed 0.2. Moreover, Figure 5 shows that as we

increase the random walk’s iteration number, the distance between GASP and FAST drops

substantially.
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Table 6: Comparison of time and memory usage of FAST, CM-SPADE, CM-SPAM, GASP with 1
million, 5 million, and 10 million iterations respectively on CMS (interval). The memory is in
megabyte and time is in seconds.

Model Time (s) Memory (MB)

FAST 2240 22296
CM-SPAM 2080 1968
CM-SPADE 321 10747
GASP-1M 286 347
GASP-5M 627 763
GASP-10M 1055 1756

Table 6 presents the memory and time comparison between these algorithms. From

the results, CM-SPADE generates the most similar patterns as FAST does and it fin-

ishes almost 700% times faster than FAST. However, it uses 10 times more memory than

GASP does even when considering the 10M iterations of random walk

Compared to CM-SPAM, which is based on a similar logic, CM-SPADE is fast because

it is parallelized in the implementation. Also, it makes a trade-off between time and

memory based on the fact that CM-SPADE uses almost 10 times more memory than CM-

SPAM and GASP do. In the most top K% comparison, CM-SPAM is the second closest

algorithm to FAST. However, it is 3 times slower than GASP with 5 million iterations, and

2 times slower than GASP with 10 million iterations.

5.2.2 CMS (date) Dataset

For the CMS (date) dataset, as our server (with 128GB RAM) cannot run FAST on low

support count (< 30% support count) because of insufficient memory, we run CM-SPAM

and CM-SPADE using a support of 20%. We choose a low support because we want to

get as many frequent patterns as we can so that we can test thoroughly the recoverability
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Table 7: Comparison of time and memory usage of CM-SPADE, CM-SPAM, GASP with 0.1 million,
1 million, 5 million, 10 million iterations respectively on CMS (date). The memory is in megabyte
and time is in seconds.

Model Time (s) Memory (MB)

CM-SPAM 3798 1937
CM-SPADE 815 11008
GASP-0.1M 220 399
GASP-1M 292 485
GASP-5M 604 887
GASP-10M 965 1856

of GASP. As a result, CM-SPADE gives us 127941 frequent patterns and CM-SPAM gives

124776 frequent patterns. Since CM-SPADE gives us more patterns, we benchmark CM-

SPAM and GASP against CM-SPADE. It is worth noting that the patterns generated by

CM-SPADE may not encompass all of the frequent sequential patterns. These are the

closest approximation to the actual frequent patterns.

First, we compare the computation time and memory usage of CM-SPADE, CM-SPAM,

and GASP with 0.1 million, 1 million, 5 million, and 10 million iterations in random walk

respectively are shown in Table 7. It’s clear that even though the running time of CM-

SPADE is comparable to GASP , it uses 2,759%, 2,270%, 1,241% and 593% memory as

GASP uses with 0.1M, 1M, 5M, 10M iterations respectively. For CM-SPAM, although it

has comparable memory usage as GASP , it uses 1,726%, 1,300%, 629% and 394% time as

GASP uses with 0.1M, 1M, 5M, 10M iterations respectively.

Figure 6 presents the average Levenshtein distance from CM-SPADE to CM-SPAM and

GASP with 0.1 million, 1 million, 5 million, and 10 million iterations respectively. CM-

SPAM generates the closest patterns as CM-SPADE generates. GASP with 10M iterations

are close to CM-SPAM on Top 10% and Top 20%.
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Figure 6: Average Levenshtein distance from CM-SPADE to CM-SPAM, GASP with 0.1, million, 1
million, 5 million, 10 million iterations respectively on CMS (date).

Table 8: The average Levenshtein distance from CM-SPADE to GASP with 5M iterations.

TopK 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GASP-5M 0.701 0.689 0.714 0.801 0.876 0.989 1.15 1.223 1.345 1.452

5.2.3 FIFA Dataset

The same experiment is done on the FIFA dataset to assess the performance of GASP on

single-event sequences. On such datasets, CM-SPADE, CM-SPAM, and FAST give us the

same amount of frequent patterns using the same support. Thus, we compare GASP to the

exact frequent patterns generated by them to see how many patterns GASP can recover.

Table 8 indicates GASP performs worse on FIFA than on CMS. One possibility is that

we are trying to recover 910422 frequent patterns, which is a hard task. The result also

indicates that GASP is more appropriate to be used on a multi-event sequential database.
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Table 9: Comparison of time and memory usage of CM-SPADE, CM-SPAM, GASP with 0.5 million,
1 million, 5 million, 10 million iterations respectively on FIFA. The memory is in megabyte and
time is in seconds.

Model Time (s) Memory (MB)

CM-SPADE 645 7406
CM-SPAM 2247 2601
GASP-0.5M 81 459
GASP-1M 141 536
GASP-5M 579 942
GASP-10M 1194 1201

Table 9 shows the time and memory usage comparison between CM-SPADE, CM-SPAM

and GASP with 0.5 million, 1 million, 5 million, and 10 million iterations. We choose

0.5 million as a starting point because exact sequential pattern mining algorithms return

910,422 frequent patterns. 0.1 million iterations cannot produce a comparable list of

patterns to such a great amount of frequent patterns. Since GASP with 5M iterations have

similar running time to CM-SPADE and much smaller memory usage than both CM-

SPADE and CM-SPAM, we showcase the average Levenshtein distance from CM-SPADE

to GASP with 5M iterations.
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Conclusions

In this thesis, we propose GASP, a new approach for approximate sequential pattern

mining. We present a new weighted graph structure using both directed and undirected

edges which compresses the sequential information. Also, we introduce a variant of a

random walk model that uses the probability in the graph to identify frequent patterns.

This novel approach shows a significant improvement in both time and memory usage

with a great performance on recoverability which denotes that GASP works for SDB with

a long sequence length. Our empirical evaluations verify that GASP is capable of mining

both single-item and multi-item event sequences.

We leave implementing a more efficient random walk as future work. Extensive re-

search has been done on optimizing random walk. And adapting or improving those

techniques into our customized random walk method can enhance the overall perfor-

mance by running with more number iterations in a short computational time with a

better frequent pattern recoverability. Since CMS is a synthesized dataset, further ex-

periments on real dataset with multi-item events can help us test the performance of
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GASP more extensively.
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