
Distribution Agreement 

In presenting this thesis as a partial fulfillment of the requirements for a degree from 

Emory University, I hereby grant to Emory University and its agents the non-exclusive 

license to archive, make accessible, and display my thesis in whole or in part in all forms of 

media, now or hereafter now, including display on the World Wide Web. I understand that I 

may select some access restrictions as part of the online submission of this thesis. I retain 

all ownership rights to the copyright of the thesis. I also retain the right to use in future 

works (such as articles or books) all or part of this thesis. 

 

Shalini Sreedhar                                       April 9, 2019  

  



 

 

Predicting anticancer drug sensitivity from high dimensional genomic data 

 

by 

 

Shalini Sreedhar 

 

Lee Cooper, PhD, MS 

Adviser 

 

Emory Biology Department 

 

 

Lee Cooper, PhD, MS 

Adviser 

 

Gordon Berman, PhD 

Committee Member 

 

Shun Cheung, PhD 

Committee Member 

 

2019 

  



 

 

Predicting anticancer drug sensitivity from high dimensional genomic data 

 

By 

 

Shalini Sreedhar 

 

Lee Cooper 

Adviser 

 

 

 

 

An abstract of 

a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 

of the requirements of the degree of 

Bachelor of Sciences with Honors 

 

Biology 

 

2019 

  



 

Abstract 

Predicting anticancer drug sensitivity from high dimensional genomic data 

By Shalini Sreedhar 

Acute Myeloid Leukemia (AML) is a heterogeneous cancer with at least 11 genetic classes 

and more than 20 subsets. Due to the highly variable nature of the disease, there is a strong 

need for treatment based on individual’s genetic composure. This type of precision medicine 

for AML is relatively new due to the recent decrease in cost and increase in efficiency of 

genetic sequencing. In this study, the primary dataset used in making these predictions is the 

BeatAML dataset which provides RNA sequencing, gene mutation, and drug sensitivity 

information for 451 cell line samples and 122 small molecule drugs. This dataset was 

preprocessed through standard scaling and dimensionality reduction through principle 

component analysis. A deep neural network model was created to make drug sensitivity 

predictions on the gene sequencing data. The problem was first formed as a regression 

problem in order to predict specific sensitivity values for each drug. The problem was then 

simplified to binary classification in order to attempt to improve the accuracy of the 

predictions. Five drugs were chosen as the focus and the sensitivity values were discretized 

into 2 categories (levels) of sensitivity. This resulted in a high training accuracy (average = 

0.98) and a lower testing accuracy (average = 0.62). The importance of generalization, 

dimensionality reduction, and equal testing and training sets was emphasized as methods 

that are most important when dealing with datasets with small sample sizes and large 

feature sizes. Future studies regarding anticancer drug sensitivity predictions should focus 

on regularization techniques in order to improve test set prediction performance. Feature 

importance was evaluated as a method of determining the biological significance found in 

these models. Pathway analysis was performed for each drug on the genes having the most 

importance in predicting drug sensitivity. The strongest correlations between the most 

important features and the pathway targeted by the drug were found for the drugs 

trametinib and selumetinib. Further work needs to be done to interpret these networks in 

order to improve understanding on how predictions are being made and increase the 

likelihood of their adoption in industry. 
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1. Introduction 

1.1  Acute myeloid leukemia 

Acute myeloid leukemia (AML) is a type of cancer distinguished by the infiltration of 

bone marrow, blood, and other tissues by differentiated cells from the hematopoietic 

system (Dohner et al, 2015). The cure rate of the disease is highly variable depending on 

the age at which it arises and can be anywhere from 15 to 40% of patients. There are 

currently over 21,000 diagnoses reported annually in the United States, costing a total of 

$0.5 billion for patients <65 and $1.5 billion for patients >65 (Mahmoud et al, 2012).  

AML is a largely heterogeneous disease, with at least 11 genetic classes and more 

than 20 subsets. Cytogenetic analysis of the genomes of annotated cases of de novo AML 

show that many of the mutations contributing to the pathogenesis of AML are undefined 

(Ley et al, 2013). Furthermore, there were over 2,000 somatically mutated genes observed 

in 200 cases of AML. These analyses show that the pathogenesis is largely caused by 

complex interactions of genetic events. Many of the most prominent mutations are also 

seen in myelodysplastic syndromes which are commonly precursors to secondary AML 

(Lundberg et al, 2014). In this study, many types of AML are analyzed. The classification of 

AML is disputed since, as discussed above, there are large numbers of complex mutations 

causing the disease. Further research into the genetic and epigenetic changes causing AML 

are required to develop a fully accurate classification system for the disease.  

While there is largely a standard and unchanging practice for AML treatment, some 

therapies have been developed to target mutational events (Tyner 2018). One current 

predictive therapy targets patients with retinoic acid receptor rearrangement. Another 

therapy targets FLT3 mutational events for which tyrosine kinase inhibitors are used. 
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Other therapies inhibit epigenetic modifiers such as histone lysine methyltransferase 

through the mutation of these factors when combined with drugs. There has been evidence 

in trials of some of the above therapies that suggest that the response rate of certain agents 

depends on genetic factors in the patient. In one example, decitabine, a hypomethylating 

agent, was shown to have a >30% higher response rate in patients with an unfavorable-risk 

cytogenetic profile than in patients with a more favorable- risk profile (Welch et. al, 2016). 

Furthermore, patients with TP53 mutations had a 59% higher response rate. This evidence 

shows the importance of prescribing therapies based on the genetic composition of the 

patient. 

1.2 Deep learning in genomics 

This increase in predictive therapies is largely due to the massive amount of data 

produced by high through-put genetic sequencing. This allows for complex statistical and 

computational models to be applied to that data (Yue and Wang, 2018). There are many 

ways to process this data, from simplistic linear regression models to more complex tree 

and neural networks. Due to the flexibility and accuracy of deep learning models, they are 

emerging as a preferred method of analyzing genomic data. Some of the most common 

deep learning algorithms that are used in genomics are convolutional neural networks, 

recurrent neural networks, autoencoders, with each of them being suited for specific 

learning tasks. While deep learning models are exciting in their ability to process and make 

predictions from large amounts of data, there is a cost of increasing the complexity of the 

models.  

The algorithms used in this study will be chosen through a literature review and an 

analysis of the dataset. Biological considerations of the data will be used to preprocess the 
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data in a way that allows the models to only take in significant data. After preprocessing, 

CNNs are be used in feature selection, since there are small differences in variance between 

the genomic features. After the initial model is created, it is optimized through 

hyperparameter tuning and other optimization techniques. Transfer learning and multitask 

learning techniques are also considered in order to predict the different drug responses 

concurrently. 

Since the interpretability of the model is also important, biological implications of 

the results are examined. This is done by choosing some drugs that are shown to accurately 

predict drug sensitivity and looking deeply into common themes between the most useful 

predictors. In doing so, cell lines and other pathways that connect the genes and markers 

that are indicated as accurate predictors of sensitivity are investigated. 

 

1.3 Dataset  

The primary dataset, Beat AML, is specifically concerned with acute myeloid 

leukemia (Tyner et al, 2018). The dataset was recently released and is composed from 672 

tumor specimens from 562 patients. These data were collected through whole-genome 

sequencing, RNA sequencing, and analyses of ex-vivo drug sensitivity. This data is most 

relevant to the posed problem since it gives detailed genetic and mutational data along 

with drug sensitivity measures for each sample.  

From the large amount of data gathered in the study, three datasets were selected to 

be used in the analysis. The first was the exome sequencing data which came from 622 

specimens collected from 531 patients. This included information on the exact locus, type 

of mutation, and mutation effect. Next, we examined the RNA sequencing data, which came 
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from sequencing performed on 411 patients, giving data concerning 451 specimens. These 

data were given in counts per million (CPM) and reads per kilo base million (RPKM). The 

original CPM was normalized to remove technical biases in sequenced data such as the 

gene length and depth of sequencing. RPKM specifically considers the gene length for 

normalization, which is important for single end RNA sequencing experiments. 

The final data set gives drug sensitivity information. There were 122 small molecule 

inhibitors tested against the samples. However, not every sample was tested on each of 

these drugs. The data was gathered through an ex-vivo drug sensitivity assay. The values 

given were measured with IC50 and AUC. The IC50 gives a measure of the concentration of 

the inhibitor where the inhibition is reduced in half, while the AUC gives the area between 

the drug response curve and a certain fixed reference value. The AUC was chosen to be 

used in future analysis since it provided more complete information. The sensitivity of each 

drug to each sample was not measured - this led to problems later on in attempting to 

predict drug sensitivity for each drug.  

The other dataset that will be examined is the Cancer Cell Line Encyclopedia (CCLE). 

This dataset contains large-scale genomic data for 947 human cancer cell lines coupled 

with pharmacologic profiling of 24 compounds across approximately half the observations. 

The data concerns 36 tumor types. While there are many datasets describing various 

genomic properties of the cell lines in the CCLE, specific characteristics will be chosen to be 

included in the analysis in order to get the best prediction. This includes DNA copy number, 

mutation data, protein expression data, and mRNA expression data. Drug sensitivity will be 

predicted using various measures corresponding to drug response curves. These 

specifically are the concentration at half- maximal activity (EC50), concentration of 
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inhibitor where inhibition is reduced by half (IC50), maximal level effect (Amax), and the 

area between the drug response curve and a fixed reference value (ActArea). 
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2 Methods 

 

2.1 Initial model 

 The gene expression data was combined with the drug sensitivity data to align the 

samples with their corresponding expression and sensitivity. The expression data was 

standardized using the sklearn StandardScaler to transform the data to have a zero mean 

and unit standard deviation. This was necessary for the features not to be overrepresented 

from differing scales of expression for the various genes in the dataset.   

This problem was initially framed as a regression problem in order to predict drug 

sensitivity values from gene expression data. A dense neural network parametrized by the 

number of layers, the number of nodes, the activation function, and the dropout fraction 

was created in order to determine the optimal model that could predict these data. A dense, 

fully connected, neural network is one in which each node is connected to each node of the 

previous and the next layer. Due to the complex nature of this model, the relationships 

learned may simply be due to sampling noise, which could lead to overfitting to the training 

data. A dropout layer parametrized by the dropout fraction was added in order to lessen 

the chance of overfitting. The dropout technique involves randomly dropping out several 

units and their connected units during each training pass (Srivastava, 2014). Dropout is not 

performed when computing predictions on test data, since we do not want to ignore any 

information in that situation.  

When training the model, hyperparameter selection was performed through a 

randomized grid search. This was achieved by first creating a grid of all the possible 

parameter combinations using the sklearn ParameterGrid function. Next, the model was 
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run on the training and testing data with a set number of hyperparameter combinations, 

chosen randomly from the ParameterGrid. Finally, the hyperparameters with the greatest 

test score was chosen. This randomized search methodology was chosen since the 

parameter space was very large and it was infeasible to exhaustively search through every 

combination of possible parameters in order to determine the optimal model.  

 

2.2 Generalization methods 

 Overfitting is a common problem in deep learning, since there are a larger number 

of layers, nodes, and, in this case, a large number of features. This is when the model 

produces highly accurate predictions on the training data but has much greater error when 

predicting on data that it has not previously seen. The initial results gave several 

indications that the model was being overfit to the training data. 

 The primary methods used to deal with overfitting in neural networks are dropout, 

regularization, early stopping, model complexity, and dimensionality reduction. 

Regularization is a technique that increases the affinity for creating a simpler model by 

reducing model coefficients. In L2, ridge, regularization, weights are penalized in 

proportion to square of value of the value of weight coefficients. This drives outlier weights 

to smaller values. In L1, lasso, regularization, weights are penalized in proportion to the 

absolute value of the magnitude of the coefficient. The primary difference between the two 

methods is that L1 regularization drives coefficient weights to 0, eliminating them entirely, 

while L2 regression simply decreases the impact of these features that are not contributing 

new information. Early stopping involves stopping the training at an iteration at which the 

model has not had time to overfit to the training data and has just finished learning most of 
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what it could from the training set. Decreasing the complexity of machine learning models 

is important due to the bias variance tradeoff. As shown in Figure 1 below, as model 

complexity increases, the total error increases with the variance of the model. Therefore, 

by decreasing the complexity of the model, we can get to the sweet spot where the bias and 

variance are both minimized.  

 
Figure 1: Model complexity vs error (Fortmann-Roe, 2015) 

 Dimensionality reduction is another method of reducing model complexity. Since 

the number of features in the dataset was very large (n=22853), with a small number of 

samples (n=451), the curse of dimensionality was a strong consideration. One way to 

decrease the impact of this factor was to perform dimensionality reduction on the feature 

set prior to feeding it into the deep neural network. Principal component analysis (PCA) 

was performed on the dataset using the sklearn PCA implementation. This implementation 

was a linear dimensionality reduction using singular value decomposition to project the 

data onto a lower dimension space. The number of components was chosen to be n=400. 

This number was based on experimentation looking for the greatest explained variance of 

the selected components.  
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2.3 Creating equal training and testing samples 

 Due to the extremely small number of samples (n=451) in the dataset, it was very 

important to choose training data that accurately represented the entire sample. This is 

because the model would learn the information presented and attempt to use this on the 

testing data. The model would therefore not be able to make accurate predictions on the 

types of gene expression combinations it had not previously seen. In order to confirm that 

the training data was accurately representing the entire population, two methods were 

used. First, the type of cancer was considered.  

 Furthermore, a weighted gene correlation network analysis (WGCNA) was used to 

cluster the genes. WGCNAs are commonly used to determine clusters of genes that are 

strongly co-expressed (Langfelder et al, 2008). These networks are commonly used in 

expression sets obtained from RNA-seq expression analysis, which are typically high 

dimensional datasets. The Python-wrapper iterativeWGCNA was used in this study since it 

is a package that minimizes information loss in determining gene clusters (Greenfest-Allen, 

2017).  This package works by first constructing a gene correlation network (GCN) from a 

weighted adjacency matrix describing the correlation between gene pairs. The adjacency 

adjusted for the proportion of shared connections is then calculated and then used in the 

hierarchical clustering. The clusters are determined by creating sections that maximize 

intra-connectedness among cluster genes. Since the dataset was extremely large, with 

22,853 genes analyzed, the parameters put into this model were tuned to maximize the 

efficiency of the algorithm for the large set. The parameters of interest were the minKME 

and the reassignThreshold. The kME is a measure of module membership, determined by 

the correlation of the gene expression profile with the module eigengene of a given module. 
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The minKME determines the cut off at which a given gene is retained in a given module. 

The reassignThreshold determined the p-value ratio threshold at which genes would be 

reassigned between modules.  

2.4 Dealing with sparse dataset 

 In exploring the drug sensitivity data, it was recognized that many of the samples 

were not tested for sensitivity on each of the 122 drugs in the study. Furthermore, there 

were no drugs with full responses. This introduced a significant problem since neural 

networks cannot deal with null values. In order to deal with this issue, two methods were 

used. First was filling the null values with mean sensitivity values for each drug. While this 

solution allowed the network to be trained, it introduced a class imbalance-like problem in 

which too many of the responses needed to be predicted to be the same value. The next 

solution was to selectively train the network on individual drugs and to create new 

datasets based on removing the null values from each drug’s data. The second methodology 

was favored in order to reduce the bias from filling in new values.  

2.5 Choosing specific drugs 

 Due to the difficulty in making and analyzing predictions on each of the 122 drugs 

presented in the original study, five drugs were selected to focus on. Two metrics were 

used to select the five drugs to focus on. These were the standard deviation and the number 

of samples. The standard deviation of the drug sensitivity of each of the samples was 

chosen as a metric as it would be important to use the data where there are large enough 

differences present in the sensitivity for the various drugs depending on the samples (i.e. 

genomic composition).  The number of samples was also important since there were large 
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amounts of data missing, since not every sample was tested with each of the 122 drugs. The 

drugs chosen are listed in Table 2, in the results section.  

 A smaller drug population to analyze was also helpful in determining any biological 

significance behind the sensitivity predictions. After selecting the five drugs to focus the 

proceeding analysis on, analysis on the mechanism of action and targeted pathway of each 

drug was performed. To do so, a literature search on any pathways targeted by each drug 

was first noted. Next, the gene ontology database was used to determine the specific genes 

affected by each noted pathway. Any genes that were in the pathway and in the feature set 

examined were noted and the feature rank of these genes was examined.   

To calculate scores of how much each gene expression feature had on the final 

prediction, feature scores were calculated for each gene for each drug tested. This was 

calculated as the gradient of the training loss with respect to the training features. This 

gave feature scores for each cell line and gene combination. In order to get the feature 

score per gene, gene scores were averaged across each cell line. The top gene features were 

ranked and compared to the genes in each targeted pathway for each drug. 

2.6 Classification problem 

 After drug sensitivity predictions were made as a regression problem, the results 

were analyzed and the accuracy was measured. While the training accuracy was very high, 

the testing accuracy was comparably lower. A variety of possible explanations for these 

results were considered. First was overfitting, which was addressed in earlier sections. 

Second, the training set was not representative of the overall population, leading to 

different populations being given in the test set. This issue was also addressed above. 
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Finally, it was considered that there were not enough training samples to make sufficient 

predictions on the exact drug sensitivity values. After going back to the original mission of 

this project, to aid in the creation of precision treatment for AML patients based on their 

specific genomic composition, it was determined that it may be possible to simplify the 

problem by considering relative sensitivity instead of exact sensitivity values.  

To do so, the drug sensitivity values were discretized into 10 measures of 

sensitivity, from 0-9. Zero would represent the lowest level of sensitivity, while 10 would 

be the highest level of sensitivity. Two methods of discretization were considered. First 

was creating equally sized bins, resulting in normally distributed buckets. Second was 

creating buckets based on the percentile of each value, resulting in buckets each containing 

around the same number of samples. The second method was preferred since this would 

eliminate the issue of class imbalance while making predictions. Furthermore, this reflects 

the fact that we will be predicting the relative sensitivity to each drug. It also meant that 

the predictions would be on the same scale for each drug prediction but would still be 

accurate measures of how different gene compositions influenced the level of drug 

sensitivity for each drug. After discretizing the data, the neural network from above was 

adapted to a classification problem. An argmax TensorFlow layer was added to the graph to 

determine the class prediction from the logits (raw unnormalized probabilities) outputted 

by the final dense layer of the network. Next, the loss and accuracy calculations were 

considered.  

In order to evaluate the accuracy of the model, multiple methods of accuracy 

calculation were considered. The most commonly used metrics for multi-class accuracy are 
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F1 score, average accuracy, and log loss. These metrics are based off of the confusion 

matrix (Figure 2), which summarizes the performance of a classification algorithm. 

 

Figure 2: Confusion matrix outline 

The metrics used are described in detail below (Sokolova et al, 2009).  

 

Table 1: Classification metrics calculations 
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The cross entropy, or log loss, function, is typically used in classification problems to 

estimate the distance between the actual and predicted values. Figure 3 shows that as the 

predicted probability of the true class gets closer to zero, the loss increases exponentially 

 

Figure 3: Log loss (cross entropy) function 

When training the model and finding the optimal hyperparameters, the F1 score, 

average accuracy, and log loss were all calculated in order to score each model. The F1 

score and the average accuracy were computed using the sklearn metrics package f1_score 

and accuracy functions, respectively. The log loss was computed with the tensorflow 

sparse_softmax_cross_entropy so that it could be used in the optimization of the model. The 

sparse loss function was chosen because the labels were encoded as integers and were not 

one hot encoded. Softmax was used because this is a multiclass prediction problem 

(n_classes = 10).     
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3 Results 

3.0 Drug sensitivity correlations 

 Figure 4 shows the drug correlations among top and bottom 20th percentile drugs in 

terms of sensitivity. It is important to note the interactions between drugs that may cause 

similar responses. It can be seen that there are some blocks of similar colors, which show 

that drugs of similar sensitivities may interact with similar drugs. 

 
Figure 4: Drug sensitivity correlations for the most sensitive and least sensitive drugs 
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3.0 Drug selection and pathway analysis  

 The drugs selected are shown below, selected per the methodology described in 

section 2.5 above. The balance between high standard deviation and number of samples 

was considered. Since there was not much variance in the standard deviations, the number 

of samples was considered more strongly. This is because of the importance of having 

sufficient training data to derive accurate predictions.   

Drug Standard Deviation Number Samples 

Venetoclax 71.091694 186 
Panobinostat 69.893501 128 

Trametinib (GSK1120212) 64.854224 299 
Selumetinib (AZD6244) 63.830559 287 

Tivozanib (AV-951) 61.188227 284 
JNJ-28312141 59.888794 279 

KI20227 58.654778 284 
Dasatinib 58.592302 311 

Flavopiridol 58.503910 288 
PD173955 56.788491 292 

Staurosporine 56.458437 86 
Bortezomib (Velcade) 56.075906 294 

Doramapimod (BIRB 796) 55.667784 287 
Elesclomol 55.655424 272 
Selinexor 55.147435 76 
MK-2206 54.213600 284 

 

Table 2: Variation and number of samples per top drugs, selected drugs are highlighted 

 The specific method of action for each of the chosen drugs is detailed below. 

Trametinib 

 Trametinib is a highly specific allosteric MEK1/2 inhibitor (Salama 2013). It works 

by inhibiting the catalytic activity of MEK through selective phosphorylation inhibition. 

This results in a monophosphorylated protein, rather than the dual phosphorylation 

required for normal MEK activity. MEK is an important part of the mitogen-activated 

protein kinase (MAPK) pathway. This pathway transmits signals from activated cell surface 
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receptors to intracellular effectors. Since it regulates many growth factor signaling 

processes, the pathway plays a role in many times of cancer. Inhibition of MEK causes 

disfunction in the MAPK pathway, which has been linked to various forms of cancer.  

 Through the Gene Ontology database, genes affecting the MAPK pathway were 

determined. In total, there were 624 MAPK genes that had measured expression values in 

the BeatAML study. These values were compared to the feature scores computed in the 

drug prediction regression problem to determine if the neural network was learning any 

biological pathways. There were 64 genes in the MAPK pathway that were also in the top 

300 features.  

Selumetinib 

 Selumetinib, similar to trametinib, is a small molecule inhibitor of MEK1/2. It works 

by inhibiting phosphorylation of ERK1 and ERK2. It works particularly well when cells 

contain BRAF or KRAS mutations. It targets the RAS-mediated signal transduction part of 

the MAPK pathway. Through the gene ontology database, genes that matched the 

selumetinib pathway were determined. There were 51 genes in the pathway that were also 

in the top 300 features in selumetinib sensitivity prediction.  

Tivozanib 

  Tivozanib is part of the receptor type tyrosine kinase (RTK) supergene family and 

vascular endothelial growth factor receptor (VEGFR) family (Shibuya 2013). It is an ABC 

transporter that is a potent inhibitor of VEGF 1/2/3 receptors (Yang 2014). This drug 

works by acting on the ATP-binding cassette transporters, which causes multidrug 
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resistance by pumping out a variety of drugs out of the cells at the expense of ATP 

hydrolysis.  

 In the gene ontology pathway, 111 genes were found in the ABC transporter 

pathway. 84 of these genes were matched to those in the feature set, and 16 of these were 

in the top 500 features.  

3.1 Regression neural network model 

 The optimal parameters found from a randomized grid search are shown in Table 3. 

The parameters for the model were chosen by examining the best performance based on 

the training and the testing data. It was noted that the learning rate chosen was usually 

quite fast for passes that had a higher test accuracy, while the learning rate for passes with 

a higher training accuracy had a slower learning rate. Furthermore, as per the curse of 

dimensionality, as less complex models with an increased dropout rate, fewer nodes, and 

fewer layers tended to perform better on the testing data as well. 

Parameter	 Value	
Dropout	Rate		 0.6	

Number	of	Nodes		 100	
Learning	Rate		 0.01	

Activation	Function	 Relu	
Number	Layers	 7	

Regularization	Rate	 0.01	

  

Table 3: Optimal regression hyperparameters found through randomized grid search 

 The network was trained using the optimal hyperparameters and the mean squared 

error was computed per each drug tested. The network was optimized and trained on a 

model of 122 drugs and a model of 5 drugs, as explained above. The training mean squared 

errors per drug are shown for each of the models in Table 4 and Table 5. Only the best 10 
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mean squared errors are shown for the initial model, for brevity. This shows the 

improvement in the mean squared error when training and optimizing on a smaller subset 

of the drugs presented in the study. The corresponding plots of predictions vs true labels 

are shown in Figure 5 for both the training and the testing datasets. This shows the 

difference between the training and testing accuracies. 

 

Table 4: Mean squared error per drug (top 10) for regression model trained on 122 drugs 

Drug	 mse_train	
Trametinib		 681.903320	
Selumetinib		 731.857910	

Tivozanib	(AV-951)	 578.105469	
KI20227	 942.601807	
Dasatinib	 747.132568	

  

Table 5: Mean squared error per drug for regression model trained on 5 drugs 
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Figure 5: Training (left) and testing (right) predictions for model trained on 5 drugs 

 

3.2 Classification neural network model 

The optimal parameters found from a randomized grid search are shown in Table 6. These 

parameters were chosen by examining the confusion matrix from the results of training on 

each of the parameters with the highest training accuracy. The parameters with the best 

confusion matrix on the testing data were chosen. The matrices are shown in Figure 1. 

Parameter	 Value	
Dropout	Rate		 0.4	

Number	of	Nodes		 100	
Learning	Rate		 0.5	

Activation	Function	 Tanh	
Number	Layers	 5	

Regularization	Rate	 0.01	

      

        Table 6: Optimal classification parameters found through randomized grid search 

The accuracy of the classification model after being trained on the optimal 

parameters is shown in Table 7. The training accuracy is high, with the lowest accuracy 

being 0.952. The testing accuracy, however, is still low, with the highest being 0.14. Since 

there are 10 classes, the testing accuracy is just slightly higher than random on average. 
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The accuracies are similar for each of the five drugs tested, although the hyperparameter 

optimization was only performed on a single drug.  

Drug Avg Train Accuracy Avg Test Accuracy 
Trametinib  0.9904 0.0778 

Selumetinib  0.9901 0.1279 

Tivozanib (AV-951) 0.99 0.0941 

KI20227 0.9849 0.1059 

Dasatinib 0.9954 0.172 
Table 7: Training and testing accuracy from classification problem 

These results are also shown as confusion matrices in Figure 6 below. These 

matrices show the accuracy of each label prediction. As shown above, the training 

accuracies are much higher.  

 



 22 
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Figure 6: Confusion matrix plots for each drug tested, left shows training data results and right shows testing 

data results 
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Figure 7: Confusion matrix plots for each drug tested, left shows training data results and right shows testing 

data results 
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4 Discussion 

4.1 Conclusions 

 This work shows the importance of applying deep learning to problems with high 

dimensional data. The highly accurate training results that were calculated show how 

complex models can appropriately classify or predict values given small amounts of data if 

there are sufficient numbers of features. The models developed in this study show the 

difficulty in making predictions from such a dataset with small numbers of samples.  

 Feature importance evaluations show one method of interpreting so-called black 

box neural network models. In the drugs evaluated in the study, pathway analysis of drug 

target pathways mirrored the features that were most important in the network’s 

prediction of drug sensitivity. Since this work is relevant to clinical settings, it is important 

to be able to explain why certain predictions are being made, instead of simply trusting the 

model predictions given a certain patient’s genomic composition. Further work will be 

important in determining the factors which dictate why only certain drug predictions are 

able to be explained through pathway analysis. 

 Future experiments should be done to create datasets with greater numbers of 

samples in order to allow for prediction of drug sensitivity with higher accuracies. If future 

studies were able to sequence data for over 1000 patients and test their drug sensitivity as 

well for a similar number of drugs, it would be enormously helpful in training and creating 

more generalizable models for AML drug sensitivity predictions. 

 While analyzing and working with this problem, a couple of main challenges were 

encountered.  First, was working with TensorFlow to build the graph model. This was 

difficult in creating the neural network model, learning about and implementing loss 
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functions, and creating the data pipeline. Furthermore, debugging in TensorFlow is quite 

difficult as normal print statements cannot be used in the graph flow. Tensorboard and the 

TensorFlow Print function were the two methods of debugging used. Memory errors and 

long training times were another issue due to the extreme high dimensionality of the data 

and the complexity of the model being implemented.   
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