Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature:

Luyao Zou

Date

Astrochemistry in Star-forming Regions: Laboratory Millimeter–Submillimeter Spectroscopy and Broadband Astronomical Line Surveys

By

Luyao Zou Doctor of Philosophy Chemistry

Susanna L. Widicus Weaver, Ph.D Advisor

> Michael C. Heaven, Ph.D Committee Member

Joel M. Bowman, Ph.D Committee Member

Accepted:

Lisa A. Tedesco, Ph.D Dean of the James T. Laney School of Graduate Studies

Date

Astrochemistry in Star-forming Regions: Laboratory Millimeter–Submillimeter Spectroscopy and Broadband Astronomical Line Surveys

By

Luyao Zou Bachelor of Science, Fudan University, 2012

Advisor: Susanna L. Widicus Weaver, Ph.D

An abstract of A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry 2017

Abstract

Astrochemistry in Star-forming Regions: Laboratory Millimeter–Submillimeter Spectroscopy and Broadband Astronomical Line Surveys

By Luyao Zou

The interstellar medium in star-forming regions is highly molecular, evidenced by the detection of nearly 200 molecules via radio astronomy. Despite the confirmed chemical complexity in star-forming regions, mechanisms that drive the formation of this chemical complexity are far from well understood. The widely accepted overall picture is that ion-molecular reactions dominate the gas phase, while gas-grain chemistry dominate in the icy mantle on the dust surface. Still, when narrating reaction pathways leading to specific interstellar molecules, astronomical observations, laboratory experiments, and modeling often draw convoluted, even contradictory results and interpretations. Models suggest that ions and radicals, the unstable molecules under terrestrial conditions, play key roles in the gas-phase chemistry and ice chemistry, respectively. In order to elucidate these astrochemistry processes, it is insightful to combine perspectives from laboratory rotational spectroscopy and broadband astronomical line surveys. In this dissertation, I first describe a millimeter–submillimeter spectrometer and the development of a fast-sweep technique that facilitates the study of unstable molecules, and then demonstrate the application of these techniques to rotational spectroscopy and astronomy. The performance of the fastsweep technique was fully evaluated, and its application was demonstrated by the spectral acquisition and analysis of $trans-HO_3$ radical and Ar-H₂O dimer. Meanwhile, quantitative abundance and temperature of interstellar molecules were determined from a global analysis of broadband astronomical line surveys of a large sample of star-forming regions. This analysis constructs the correlations between molecules in a variety of interstellar environment and evolutionary stage. It is also a first step to search for new interstellar molecules, preferably the reaction intermediates whose spectra can be measured using the laboratory millimeter-submillimeter spectroscopy described in this dissertation. The preliminary results of global analysis, as well as the search for $trans-HO_3$, were presented.

Astrochemistry in Star-forming Regions: Laboratory Millimeter–Submillimeter Spectroscopy and Broadband Astronomical Line Surveys

By

Luyao Zou Bachelor of Science, Fudan University, 2012

Advisor: Susanna L. Widicus Weaver, Ph.D

A dissertation submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry 2017

Acknowledgement

Looking back to the long journey of graduate school, I cannot exaggerate enough how much I have grown as a researcher, a professional, and a mature adult. The progress I have achieved cannot happen without all the guidance and help I received from the people and the community who cared and supported me and whom I would like to sincerely acknowledge.

First and foremost, I would like to thank my advisor, Dr. Susanna L. Widicus Weaver, for your impassioned mentorship. You are not only an academic advisor, but also a life mentor, who taught me the attitude, ethics, methodology, and professionalism to be a researcher and an independent thinker. As an academic advisor, you lead me into the family of spectroscopists and astrochemists. You offered me the freedom to try and learn, but would also call me out when I lost my direction. With the countless advice, discussions, and comments on research strategies, scientific writing, and presentation and communication skills, you ensured that I was able to fulfill my research objectives. As a life mentor, you are always available, supportive, and empathetic. I greatly appreciate your help in introducing me to the job market, and your discussions with me about my career choice.

I would like to thank my committee members, Dr. Michael Heaven and Dr. Joel Bowman, for your constructive criticism on my research project, for your advice on my career development, and for your care on my success in general. Outside Emory, I thank Dr. Steve Shipman as a great mentor and friend. We had fun chats at conferences and during your visit at Emory. I also thank Dr. Mike McCarthy for your helpful discussion on discharge chemistry, and for offering the opportunity to visit your laboratory, which turned into some great results.

I would like to thank my peers and colleagues in the Widicus Weaver Group. You are great and lovely people, and I enjoyed working with you. Despite the succeeding generations over years, the Widicus Weaver Group maintained a positive, supportive group environment which cannot be made possible without the effort of each of you. I overlapped with Jake Laas and Brian Hays when I joined the group. You were both so patient to teach me the essential laboratory skills, and to tolerate all the mistakes I have made. Jake led me into Linux and coding, and these are the skills I would appreciate for my entire career. Brian, I enjoyed the time working closely with you developing our fast-sweep experimental techniques. I greatly appreciate your enthusiasm on those experiments, in addition to all the fun conversations we had. Nadine Wehres was the lab keeper, who kept everything organized and in track. I enjoyed working with you on the hollow cathode experiment, and thank you for your contribution to the analysis of all the CSO and HIFI line surveys. Then there were AJ Mesko and Morgan McCabe, who always brought joy and cheer to me. We worked so closely together in teaching and in the laboratory. I will miss all the conversations, full with joyfulness and deep thoughts, with you two. AJ, it was so much fun with you at the interferometer workshop in Socorro, NM. For our fresh blood Kevin Roenitz and Carson Powers, I greatly appreciate your enthusiasm and your hard work both in research and in keeping the group dynamics in a healthy track. The extensive responsibility on you may be overwhelming, but I believe in your perseverance and ability to succeed in graduate school. I also thank all the undergraduate students and high school trainees who I have met and worked with: Mary Rad, Jim Sanders III, Trevor Cross, Althea Roy, Anthony Chirillo, Mateo Correa, Houston Smith, Samuel Zinga, Elena Jordanov, Lindsay Rhoades, and Lina Zhang. It was my honor to know you in person.

I would like to thank the staff in the Department of Chemistry, who are devoted to build a strong and supportive program. My special thank goes to Steve Krebs and Clair Scott, who made all their effort to ensure our purchases got processed and our parcels got delivered. I could not remember how many times Steve saved us on the liquid helium Dewar that is the fuel of our bolometer detector. I would also thank Ann Dasher, who made sure I met all the annual requirements and stayed in good standing with my graduate program.

I would like to thank the resources and opportunities provided by the Department of Chemistry, the Laney Graduate School, and Emory. I specially thank Peggy Wagner and Heather Boldt, who were my English teachers in the English Language Support program. Without Peggy and Heather, I could not make such a noticeable progress in my language skills during my first year at Emory. These writing and oral communications skills, again, are not only beneficial to my study at Emory, but also to my entire career. I thank the Professional Development Support Funding from the Laney Graduate School, which allowed me to take unique training and research opportunities to Arecibo, VLA, and Havard University. I also thank the staff in the International Student and Scholar Service at Emory, who understood the special concerns of international students and offered their kind help whenever I needed.

Last but not least, I would like to express my love and gratitude to my family and my friends, for all your understanding and moral support, without which I could not survive in graduate school. I owe a big thank to Mom, who has always been positive and supportive after going through many tough years. Although I had chances to travel and visit, five years of me being overseas was a long time to endure. Dear Wenjun Liu, Sophia Xu, Chuan Yu, Lucy Wang, Zhiyu Qian, Yuanjun Dai, Lin Zhou, and especially Luyuan Xu, I treasure your friendship, for encouraging me when I felt hesitant, for pacifying me when I felt depressed, and for accompanying me when I felt lonely. I would also like to thank Zhihu.com, the online community that encouraged me to start my science communication writings.

Table of Contents

1	Int	roduction	1
	1.1	Rotational spectroscopy	1
	1.2	The environment and chemistry in star-forming regions	3
	1.3	Millimeter-submillimeter spectroscopy and its application to astrochem-	
		istry in star-forming regions	5
	1.4	Organization of this dissertation	6
2	$\mathbf{E}\mathbf{x}$	perimental Design	8
	2.1	The jet-cooled molecular source	8
		2.1.1 Supersonic expansion	8
		2.1.2 High voltage pulsed discharge source.	10
	2.2	The millimeter–submillimeter spectrometer	12
		2.2.1 The multipass spectrometer	12
		2.2.2 Detection of molecular signal	15
	2.3	Fast-sweep data acquisition technique	16
		2.3.1 Concept	16
		2.3.2 Instrument settings and practical consideration	20
		2.3.3 Benchmark with known methanol (CH_3OH) transitions	22
		2.3.4 Concerns regarding radio frequency interference (RFI)	37
	2.4	Summary	38
3	\mathbf{Th}	e Weakly Bound Radical: HO ₃	39
	3.1	Introduction	39
	3.2	Experimental details	43
	3.3	Results	45
		3.3.1 HO_3 and DO_3 detection	45
		3.3.2 New spectral features	48
	3.4	Discussion	51
	3.5	Summary	53
4	\mathbf{Th}	e Vibration-Rotation-Tunneling Spectrum of	
	Ar	-H ₂ O	54
	41	Introduction	54
	4.2	Experimental details	57
	4.3	Model	58
	4.4	Result and discussion	60
	. –	4.4.1 Observed bands	60
		4.4.2 Coriolis interaction	66
	4.5	Summary	72

5	Global Optimization Broadband Analysis Software for				
	Interstellar Chemistry (GOBASIC)	73			
	5.1 An outline of GOBASIC.	73			
6	Broadband Line Surveys of Star-forming Regions Using				
	the Caltech Submillimeter Observatory (CSO)	75			
	6.1 Introduction	75			
	6.2 Observations and data reduction	77			
	6.3 Line identification and analysis	80			
	6.4 Results	87			
	6.5 Discussion	95			
	6.6 Search for HO_3 in star-forming regions	101			
	6.7 Summary	103			
7	Conclusion and Future Outlook	105			
A	Python Script for the Fast-sweep Technique	107			
B SPFIT Assignment and Output File for HO ₂ and DO ₂ 12					
	B.1 SPFIT assignment and output file for HO ₂	121			
	B.2 SPFIT assignment and output file for DO_3	124			
C Full Analysis Result for the CSO Surveys in a Machine-					
	readable Format 13				
В	ibliography	141			

List of Figures

2.1	Schematic of the high voltage discharge source.	11
2.2	Schematic of the millimeter–submillimeter spectrometer	13
2.3	The concept of the fast-sweep technique	19
2.4	Imperfection of the triangle-wave modulation of the synthesizer	23
2.5	Point-by-point scan of the CH_3OH branch	24
2.6	Rotational diagrams of CH_3OH from the direct absorption and the	
	lock-in spectra.	26
2.7	The effect of the fast-sweep bandwidth to the quality of the spectrum.	27
2.8	The quality of fast-sweep spectra under various sampling rates	30
2.9	The effect of modulation frequency to the fast-sweep spectra	32
2.10	Stack of blank and CH_3OH spectra with increasing average numbers.	34
2.11	The noise level of blank sweeps with increasing number of averages at	
	three sweep bandwidth	35
2.12	Signal to noise ratio of the fast-sweep spectra	36
2.13	The discharge interference on the molecular signal	37
3.1	Fast-sweep detection of HO, at 185 GHz and 362 GHz	46
3.2	Stick spectra of all new measured HO_2 and DO_2 transitions	40
0.2	Ster spectra of an new measured frog and Dog transitions	ті
4.1	Ar–H ₂ O energy diagram in the 1_{01} and 1_{10} states region	56
4.2	Fast-sweep spectrum of the Q branch of Ar–H $_2O$ VRT band	
	$\Pi^{+/-}(1_{01}) \leftarrow \Sigma^{+}(1_{01}) B_2(B_1). \ldots \ldots$	61
4.3	Full power-normalized stick spectrum of Ar–H $_2O$ from 200 to 800 GHz.	66
4.4	Power-normalized stick spectrum of each individual band of Ar–H $_2 O.$	67
4.5	Characteristic spectral lines of Ar–H ₂ O	68
61	Deconvolved CSO spectra of 31 star-forming regions	88
6.2	Sample frequency window of molecular components fitted in the global	00
0.2	LTE analysis	90
63	Visualization of Table 6 4: Column density and LTE temperature	96
0.0	visualization of fabre 0.1. Column density and fife temperature.	50

List of Tables

2.1	Models and manufactures of the instruments described in Chapter 2 and in Schematic 2.2.	9
2.2	Frequency bands of the Virginia Diodes Inc. S197 multiplier chain sys- tem	12
$2.3 \\ 2.4$	Parameters and settings involved in the fast-sweep technique Transition frequencies, lower state energies E_{low} , and quantum numbers of the benchmark CH ₃ OH transitions	21 23
3.1	Comparison of the spectroscopic parameters of $trans-HO_3$ from this study and the results from Suma <i>et al.</i> [50]	49
3.2	Comparison of the spectroscopic parameters of $trans-DO_3$ from this study and the results from Suma <i>et al.</i> [50].	50
4.1	Transition frequencies of the $\Pi^{+/-}(1_{01}) \leftarrow \Sigma^+(1_{01}) B_2(B_1)$ band of Ar-H ₂ O.	62
4.2	Transition frequencies of the $\Pi^{+/-}(1_{10}) \leftarrow \Pi^{-}(1_{01}) B_1(B_2)$ band of Ar-H ₂ O	63
4.3	Transition frequencies of the $\Pi^{+/-}(1_{10}) \leftarrow \Pi^+(1_{01}) B_2(B_1)$ band of Ar-H ₂ O	63
4.4	Transition frequencies of the $\Pi^{+/-}(1_{10}) \leftarrow \Sigma^+(1_{01}) B_2(B_1)$ band of Ar-H ₂ O	64
4.5	Transition frequencies of the $\Sigma^{-}(1_{10}) B_1(B_2) \leftarrow \Pi^{+/-}(1_{01})$ band of Ar-H ₂ O	65
4.6	Molecular constants fitted to $Ar-H_2O \ j = 1 \ ortho-$ states and compar- ison with the results from Cohen & Saykally [79].	71
4.7	The contamination arising from the quadratic and cubic terms in the Taylor series expansion of Equation 4.5 for Coriolis perturbed states.	71
6.1	Sources, positions, and velocities used in the CSO observations Summary of the information of line catalogs	78 82
6.3	Interpolated coefficients and relative deviations from catalogs for molecul listed in Table 6.2 using the partition function form Eq. 6.1	es 84
6.4	Detected molecules in 31 sources, their LTE parameters, and associated 1σ uncertainties	04
6.5	Estimation of column density upper limits of HO_3 in astronomical sources	109
	bouroop	104

Chapter 1 Introduction

The interstellar medium (ISM) is the matter between stars and planets, and the physical environment in which the matter resides. It is highly heterogeneous and highly molecular, which is evidenced by the discovery of almost 200 molecules¹. When new stars and planetary systems form, they recycle the materials ejected into the ISM by dead stars, and facilitate the chemical synthesis of new materials. It is believed that the astrochemical processes that occur during star formation shape the initial chemical inventory of protoplanetary disks, which may be preserved and delivered onto planets [1-3]. Nevertheless, understanding the interstellar chemistry in star formation is extremely difficult, and numerous questions have been raised. How does the physical environment of the ISM drive the chemistry, and in turn how do molecules trace the ISM environment? Will our understanding of these astrochemical processes lead us to the explanation of the origin of planetary materials, including those of our own solar system? In order to answer these questions, it is essential to bridge the perspectives of laboratory chemistry and astronomical observations. In this dissertation, I will present the development of laboratory rotational spectroscopy, and show how it facilitates the astrochemical analysis of star-forming regions.

1.1 Rotational spectroscopy

The rotational motion of molecules opens a spectroscopic window for studying molecular structure and chemical bonding. The quantized energy levels of this rotational motion are fully determined by the moments of inertia of the molecules. Each molecule, owing to its unique molecular geometry and structure, possesses 1–3 unique moment(s) of inertia that lead to unambiguous construction of the ladder of

¹http://www.astro.uni-koeln.de/cdms/molecules

rotational levels. Dipole-allowed transitions connecting two adjacent rotational levels can be probed spectroscopically, provided that the molecule has a permanent electric or magnetic dipole moment. By assigning the rotational spectrum, namely recognizing the patterns of the rotational energy levels, one can reconstruct the energy ladder from which the moments of inertia of the molecule can be determined. The structure of the molecule, characterized by its bond lengths, bond angles and dihedral angles, can then be determined by solving an equation set using the moments of inertia values obtained from multiple isotopologues of the same molecule, if we assume the isotope substitution only changes the atomic masses but not the molecular structure.

The spacing between rotational energy levels is on the order of 10^{-23} - 10^{-21} J. These energies correspond to photons ranging $10-10^3$ GHz in frequency and 0.3-30 mm in wavelength, falling into the centimeter, millimeter, and submillimeter regime of light. Because the spacing between levels is in principle inversely proportional to the moment of inertia of the molecule, and proportional to the quantum number of the total rotational angular momentum, transitions from large molecules and low quantum numbers have longer wavelengths, and those from smaller molecules and high quantum numbers have shorter wavelengths. By accessing the full centimeter and millimeter-submillimeter regime, the "softness" of chemical bonds can be estimated from the systematic frequency deviation from an ideal rigid rotor, observed in a large sample of spectral lines connecting a wide range of rotational energy levels. The vibrational-rotational interaction and the internal motion of one part of a molecule with respect to the rest can also be observed as frequency shifts and line splittings in the rotational spectrum. Another advantage of rotational spectroscopy is that the Doppler width of spectral lines is on the order of 0.01–1 MHz. Therefore, under the Doppler broadening limit, fine and ultrafine structures can be resolved. These structures, caused by the coupling between the molecule's rotational angular momenta, electronic spins, and nuclear spins, send messages to us about the local

chemical environment of the molecule. They are also characteristic features that can assist the assignment of spectral lines.

Our understanding of molecular properties is certainly incomplete without theoretical interpretations. Unstable molecules and molecular complexes are often ideal test grounds for modern computational chemistry. The laboratory measurements of these molecules and molecular complexes using millimeter–submillimeter spectroscopy provide theoreticians the empirical perspective and reliable benchmarks, upon which insightful theoretical models can be constructed.

1.2 The environment and chemistry in star-forming regions

The heterogeneous environment in the ISM is shaped by the competition and balance between heating and cooling processes. There are mainly three types of heat sources in the ISM. The stellar radiation predominantly heats up the interstellar material by photoprocesses. Its heating rate is strongly dependent on the radiation field, which can be attenuated by shielding, scattering, and photo-ionization of the interstellar material. The cosmic rays, which are mainly atomic nuclei and electrons with MeV energy, dissipate their energy into the surrounding material when they collide with or penetrate through the material. The cosmic ray flux distribution is roughly consistent throughout the ISM, although small variations, characterized by the cosmic ray ionization rate $\zeta_{\rm H}$, have been reported [4]. The interstellar material can also gain energy from gravitational contraction and acceleration. On the other hand, there are mainly two types of cooling mechanism in the ISM. First of all, radiative cooling is ubiquitous as long as the molecules are able to emit photons via spontaneous emission. The spontaneous emission rate is proportional to the Einstein A coefficient, and thus is molecule- and transition-dependent. Collisional deexcitation also transfers energies between molecules. If the density of molecules is significant for collisions to occur efficiently, local thermodynamic equilibrium (LTE) is reached. Since the heating and cooling processes compete with each other, the temperature of the ISM varies significantly in different regions.

The coldest regions in the ISM are dense molecular clouds, where significant amount of interstellar dust and molecular hydrogen, along with other small molecules, gather. The density of gas-phase molecules in dense clouds is about 10^3-10^6 cm⁻³ [5]. The photon flux in the core of dense clouds is minimal, because the dust efficiently absorbs and scatters the interstellar radiation field. Only a limited amount of secondary UV photons from atomic hydrogen excited by cosmic rays is available. On the other hand, considerable amount of diatomic and triatomic molecules and ions, such as CO, N₂H⁺, HCN, and HNC, are ubiquitously found cohabitating with molecular hydrogen [6]. The radiative cooling by these molecules is much more efficient than the heating from cosmic rays and secondary UV photons, leading to a gas temperature below 10 K in dense cores.

When the mass of the dense cloud exceeds the Jeans limit, the gas starts to collapse due to its own gravity. The collapse converts the gravitational energy into heat. When this compressional heating rate beats the radiative cooling rate, the cloud core starts to warm up, and its center becomes a protostar. If the total mass of the cloud is above the hydrogen fusion limit, which is $0.08 \ M_{\odot}$, the protostar eventually ignites and there forms a new star. During this protostellar phase, the dense core is no longer cold. Instead, it becomes a hot core, or hot corino if the mass of the protostar is comparable to the sun [7]. Hot cores and hot corinos usually have a density of $> 10^7 \ {\rm cm}^{-3}$ and a temperature of $100\text{--}300 \ {\rm K}$ [7, 8]. Hot cores and hot corinos have by far the richest chemistry observed in the ISM; dozens of complex organic molecules (COMs), defined as molecules with 6 or more atoms, are discovered in hot corinos is not completely understood, because astrochemistry models cannot perfectly explain

the abundances of COMs observed in these regions [10]. There is a consensus that pure gas-phase chemistry, although important [11], is not sufficient to explain all the observations. Instead, COMs may be formed on the ice mantles on dusts via photo processes, and then sublimate into the gas phase as the core warms up [12, 13]. Models suggest that radicals are important in the photochemistry in ice mantles, and may be responsible for the observed abundance of COMs, e.g., methyl formate [14–16]. Although extremely challenging, the direct observation in the gas phase of these key reaction intermediates, e.g. the methoxy radical [17, 18], will provide us with invaluable information about the astrochemistry processes occurred in hot cores and hot corinos.

1.3 Millimeter–submillimeter spectroscopy and its application to astrochemistry in star-forming regions

Millimeter–submillimeter spectroscopy serves as the main approach to probe gasphase molecules in the ISM. The rotational lines of molecules are analytical fingerprints to decipher the molecular inventory of the ISM. Because astronomical sources are typically moving relative to Earth, frequencies of spectral lines are shifted by the Doppler effect. Accurate laboratory measurements of the rest frequencies of rotational lines are thus essential for the remote identification of molecular carriers in the forest of rotational lines: only those lines consistently agreeing with the laboratory dataset with the same Doppler shift arise from the same molecule. Such laboratory measurements are usually straightforward for stable molecules accessible from major chemical suppliers. From the chemistry perspective, however, stable molecules do not explain the complete picture of chemical processes in the ISM. As mentioned in Section 1.2, It is often the unstable molecules, as reaction intermediates, that drive the chemistry, especially the chemistry in star-forming regions where significant amount of photochemistry occurs [11, 15]. Laboratory spectroscopy of unstable molecules therefore plays a key role in understanding the interstellar chemistry.

The analysis of astronomical broadband line surveys is challenging due the complexity and volume of the datasets. The complexity mainly arises from the high density of rotational lines that increase exponentially with molecular complexity and temperature. This spectral complexity causes blended lines and ultimately results in a line confusion limit, beyond which individual spectral lines cannot be discerned. In the laboratory, one can prepare molecular samples in high purity to minimize the interference from impurities. Yet, 10^3-10^4 lines are routinely observed for in the range between 0.1-1 THz [19–22]. This is on average one line for every 0.1-1 GHz for a single COM. The spectral signatures for each COM present in an interstellar source are the superimposed in one complicated spectrum. In addition to the number of COMs, these gas-phase molecules in hot cores and hot corinos may have kinematic velocities on the order of 5 km \cdot s⁻¹, which corresponds to a full-width-half-maximum (FWHM) of 5 MHz at 300 GHz, and 17 MHz at 1 THz. In this case, it is highly likely that rotational lines from different molecules are blended, namely overlap with each other, in the same frequency window. Being blended, these overlapping lines increase the difficulty in spectral analysis. Eventually, when the signal-to-noise ratio is sufficiently high, every spectral channel becomes molecular flux, which is the line confusion limit.

1.4 Organization of this dissertation

This dissertation addresses both the laboratory millimeter–submillimeter spectroscopy and its applications in broadband astronomical line surveys. In the first part of this dissertation, I present the result of the laboratory millimeter–submillimeter spectroscopy of weakly bound radicals and molecular complexes using new millimeter–submillimeter spectroscopy techniques. In the second part, I present the identified COMs and their physical parameters in star-forming regions using the results from laboratory millimeter-submillimeter spectroscopy.

This dissertation is organized as following:

- Chapter 2 discusses the laboratory spectroscopy techniques used for these studies.
- Chapter 3 and 4 presents the millimeter–submillimeter spectroscopic study of the HO₃ radical and the Ar–H₂O van der Waals complex, respectively.
- Chapter 5 presents the numerical program "GOBASIC", which was developed for the spectral analysis of astronomical line surveys taking the advantage of laboratory spectroscopy results.
- Chapter 6 presents the spectroscopic analysis of 31 star-forming regions using GOBASIC. The chemical composition and physical conditions in these star-forming regions were determined by the LTE analysis of detected rotational lines. Correlations between COMs and the implications for astrochemistry processes in these star-forming regions are discussed.

Part of the content in this dissertation is reproduced with permission from the following sources:

- L. Zou, B. M. Hays, S. L. Widicus Weaver, J. Phys. Chem. A., 120, 657 (2016).
 2016 American Chemical Society.[©]
- L. Zou and S. L. Widicus Weaver, J. Mol. Spectrosc., 324, 12 (2016). 2016
 Elsevier Inc.[©]

Chapter 2 Experimental Design

The main experimental technique I used in this dissertaion is a supersonic expansion discharge source combined with a 7-pass millimeter–submillimeter spectrometer. This source prepares transient molecules to be discussed in this dissertation by high-voltage discharge. The rotational temperature of these molecules is jet-cooled in the expansion for millimeter–submillimeter spectroscopic detection. For clarity, the manufacturers and models of all instruments and parts used in my experiments are summarized in Table 2.1. The following sections will discuss the details of the experimental design.

2.1 The jet-cooled molecular source

2.1.1 Supersonic expansion

In gas-phase spectroscopy, the use of a supersonic expansion is a mature technique to prepare rotationally cooled molecules, especially transient molecules that are unstable or reactive. In a supersonic expansion, seeding molecules, diluted in buffer gas under high pressure, expand adiabatically into the vacuum through a small orifice. Upon the exit of the orifice, collisions between the seeding molecules and the buffer gas transfer the internal energy of these molecules into their translational velocity along the expansion axis. The rotational and vibrational temperatures of the molecules are thus reduced, resulting in less congested spectral lines. Reaction and dissociation channels are also quenched so that transient molecules can be stabilized and be probed with spectroscopic techniques.

In our experiments, gas mixtures were injected into the vacuum via a solenoid valve (Parker Hannifin, Series 9 general valve) running at a repetition rate of 10–50 Hz. The faceplate of the solenoid valve was adapted for better gas sealing: we expanded

Instrument	Manufacturer	Model & Part Number	Main Specifications
Millimeter-submillimeter syst	tem		
RF synthesizer	Agilent Technology	E8257D PSG (1EA, UNU. 550. & UNT)	0-50 GHz, max 5 dbm
Multiplier chain	Virginia Diodes, Inc.	S197(b) and $S197(c)$	70–1000 GHz, 30 mW (W band)
Teflon lenses	Thorlabs	LAT100, LAT300,	0=50 mm, f=100 mm, 300 mm, 100 mm, 1
	: (-		and 500 mm
Spherical mirrors	Edmund Optics	NT32-836	Q = 6'', f = 6'' (15.2 cm)
Flip mirror mount HeNe laser	Thorlabs Thorlabs	T.R.F.90 HRP020-1	$O = 1'' \ (2.5 \ { m cm}) \ 633 \ { m nm}, \ 2.0 \ { m mW}$
Vacuum and gas system			
Solenoid valve	Parker Hannifin	9S1-A1-P1-9B06	flange orifice $\mathcal{O}=0.038''$ (1 mm) without cone
Pulsed valve driver	Parker Hannifin	Iota One	
Rotary vane pump	Œrlikon	Sogevac SV630 $B(F)$	$755 \text{ m}^3 \cdot \text{h}^{-1}$
Gas flow controller	MKS	1179A	$100-5000~{ m sccm}$
Gas flow readout	MKS	Type 247	4 channel
Discharge system			
High voltage power supply	$\operatorname{Spellman}$	$\mathrm{SL2PN2000}/208/3\mathrm{P}$	$\max 2 \text{ kV}, 2 \text{ kW}$
High voltage pulser	Directed Energy Inc.	PVX-4150	max 1.5 kV, 150 W
Delay generator	Stanford Research Systems	DG645	4 channel
Ballast resistor	DALE	HL-100-06Z	$1-10 \text{ k}\Omega, \max 100 \text{ W}$
Detector and DAQ system			
Zero-biased detector	Virginia Diodes, Inc.	WR8.0 and WR10	$2 { m ~kV/W}$
InSb hot-electron bolometer	QMC Ltd.	QFI/XBI	5 kV/W, 500 kHz bandwidth
Lock-in amplifier	Stanford Research Systems	SR830	
Digitizer card	National Instruments	PCI-5124	12 bit, 200 MS/s

the diameter of the central pinhole (1 mm) on the faceplate, so that a Nylon tube (3 mm outer diameter and 0.91 mm inner diameter) can be inserted in. We found this Nylon tube maintained the gas seal longer than the original manufacturer's design. The stagnation pressure behind the pulsed valve varied between 15 psig (2.0 bar) and 120 psig (9.3 bar), depending on the chemistry needed in the expansion for each experiment. To control the mixing ratios of gases, we used a set of mass flow controllers (MKS 1179A, 100 sccm for seeding gases and 5000 sccm for the buffer gas) and a four channel flow rate readout (MKS Type 247).

The vacuum chamber was pumped by a rotary-vane roots blower combination system ((Erlikon SV630 B(F))). The baseline pressure of the vacuum chamber was below 10 mTorr, and would equilibrate in the range of 30–60 mTorr when the valve was operating.

2.1.2 High voltage pulsed discharge source

In order to prepare transient molecules in the supersonic expansion, a high voltage discharge source was developed based on the design of McCarthy *et al.* [23, 24]. Schematic 2.1 draws the inner structure of our discharge source. The body of the discharge source is a Teflon cap with a length of 1.1'' (2.8 cm) and an inner diameter of 0.5'' (1.27 cm). The cap holds two copper electrodes insulated by Teflon spacers. The electrode closer to the pulsed valve (inner electrode) was always grounded, and the one closer to the source exit (outer electrode) was always applied with positive high voltage. The spacing between the two electrodes, their locations in the Teflon cap, and the size of the gas channel in the center of the spacers, are adjustable via creative combinations of customized parts. The length and the diameter of the pinhole gas channel controls the plasma chemistry by affecting the collision rate of molecules. The optimal configurations of the discharge source are described for each experiment in subsequent chapters.

Schematic 2.1: Schematic of the high voltage discharge source. The CAD drawing is plotted in the top panel and the cartoon schematic is plotted in the bottom panel.

The pulsed high voltage was generated by a pulse generator (Directed Energy Inc., PVX-4150) backed by a high-voltage power supply (Spellman, SL2PN2000). The rising and falling time of the discharge was controlled by a 5 V TTL signal sent into the pulse generator. The maximum discharge current was constrained by ballast resistors.

2.2 The millimeter–submillimeter spectrometer

2.2.1 The multipass spectrometer

The main probe of the molecules is a multipass millimeter–submillimeter spectrometer. The millimeter–submillimeter radiation was generated by the up-conversion of microwave radiation, which was synthesized from am Agilent radio frequency (RF) synthesizer. Frequency bands from 70 GHz to 1 THz were accessed via a chain of Schottky diodes (Virginia Diodes Inc., S197(b) and S197(c)) listed in Table 2.2. The peak output power of the WR10 base band is about 30 mW. The power drops as the frequency band increases.

Band	Diodes	Multiplication	Frequency Coverage (GHz)
3	WR10	3	70–115
4	WR8	3	90 - 140
5	m WR10+WR5.1	$3 \times 2 = 6$	140 - 230
6	m WR10+WR3.4	$3 \times 3 = 9$	215 - 335
7	$\mathrm{WR10} + \mathrm{WR5.1} + \mathrm{WR2.2}$	$3 \times 2 \times 2 = 12$	320 - 450
8(a)	WR10 + WR5.1 + WR1.5	$3 \times 2 \times 3 = 18$	430 - 700
8(b)	$\mathrm{WR10} + \mathrm{WR3.4} + \mathrm{WR1.5}$	$3 \times 3 \times 3 = 27$	650 - 800
9	$\mathrm{WR10} + \mathrm{WR3.4} + \mathrm{WR1.0}$	$3 \times 3 \times 3 = 27$	700 - 1000

Table 2.2: Frequency bands of the Virginia Diodes Inc. S197 multiplier chain system.

Two spherical mirrors (Edmund Optics, NT32-836) spaced roughly by 24" (61 cm) created a multipass cell for the millimeter–submillimeter beam. This multipass design was based on the designs of Kaur *et al.* [25] in the infrared regime, as well as a smaller version in the millimeter–submillimeter regime [26]. Schematic 2.2 shows the design of this multipass cell, along with its controlling and data acquisition components, and

the discharge source.

Schematic 2.2: Schematic of the millimeter–submillimeter spectrometer. The lock-in amplifier and the reference signal, drawn in dashed boxes, are optional. Reprinted with permission from Zou *et al.* [27].

In addition to the two spherical mirrors, three Teflon lenses were used to collimate and focus the millimeter–submillimeter beam. The collimation lens (f = 100 mm) was installed between the multiplier horn and the Plexiglass flange, at a distance of 3"-4" (7.5-10 cm) from the horn. The lens was mounted on a translational stage with tuning micrometers, because the lens location is critical for receiving optimal millimeter–submillimeter power. After collimation, the millimeter–submillimeter beam passed the 1" (2.5 cm) thick Plexiglass flange through a window of 1" (2.5 cm) in diameter. The window was sealed by a 1/8" (3.2 mm) thick polyethylene sheet and a square o-ring. Two guiding mirrors then redirected the millimeter–submillimeter beam to the proper incident angle for the multipass cell. A pair of Teflon lenses, one (f = 300 mm) before the edge of the spherical mirror, and another one (f = 100 mm) before the exit polyethylene window on the other flange, focused the millimeter-submillimeter beam down into the detector. The reason to use polyethylene windows is that Plexiglass of 1" (2.5 cm) thick absorbs 30–40 % of the millimeter-submillimeter power. Polyethylene has a much lower transmission tangent than Plexiglass, therefore can reduce the total millimeter-submillimeter power loss from 60 % to below 10 %.

A HeNe laser (Thorlabs), pre-aligned with the millimeter–submillimeter beam, guided the alignment of the millimeter–submillimeter multipass. A control mirror, mounted on a 90° flip mount (Thorlabs TRF90), switches between the laser beam and the millimeter–submillimeter beam. The HeNe helped to initiate the location of the multipass cell, i.e., the two spherical mirrors and two plain mirrors drawn in Schematic 2.2, in the vacuum chamber to establish a 7-pass beam. After the coarse alignment, the millimeter–submillimeter beam was switched on for fine tuning. In the center of the two spherical mirrors, the millimeter–submillimeter beam focuses into a \sim 5 cm area, and orients perpendicular to the molecular beam. The pulsed valve was positioned so that this area crossed the zone of silence in the supersonic expansion, where rotationally cooled molecules were located.

In Perry's infrared setup, they achieved as many as 57 passes between the two spherical mirrors. They proposed a relationship between the maximum number of passes n_{max} and the optical configuration [25], as

$$n_{\max} = \sqrt[3]{\frac{h^2 \pi^4}{18L\lambda}} \tag{2.1}$$

where h is the height of spot pattern on each mirror, L is the mirror spacing, and λ is the wavelength of the light. In our millimeter–submillimeter version of the multipass, a significant difference is that the wavelength of the millimeter–submillimeter is two orders of magnitude longer than that of the infrared light. Using Perry's model, our optical setup is predicted to achieve a maximum of 6 passes at 300 GHz (1 mm wavelength). In practice, 7 passes were made possible by carefully adjusting the spacing between the two spherical mirrors. More passes were not allowed because of the constraint of the optical design, which is reflected by significant power loss from the millimeter–submillimeter beam clipping off the mirror edges.

Despite the smaller number of passes available in the millimeter–submillimeter regime than in the infrared, this optical design has been shown to improve the signalto-noise ratio by a factor of 5 [26].

2.2.2 Detection of molecular signal

In our experiments, the absorption of the millimeter–submillimeter light by the rotational transitions of molecules was detected. For frequencies in Band 3 and Band 4 (see Table 2.2), we used zero-biased detectors (Virginia Diodes Inc., WR10 and WR8.0); for all frequency bands above 135 GHz, we used an InSb hot electron bolometer (QMC, Ltd., QFI/XBI). Detector signal can be sent into a digitizer card (National Instruments, PCI-5124) for digitizing and data storage, either directly or after the aid of a lock-in amplifier (SR830).

Data acquisition techniques and strategies involved in our experiments include a lock-in scheme using the lock-in amplifier and the digitizer card, a direct absorption scheme using solely the digitizer card, and most importantly, a fast-sweep data acquisition strategy which will be described in more detail in Section 2.3.

In the lock-in scan scheme, the RF generated by the synthesizer was internally frequency-modulated by a sine wave at a frequency of 30 kHz and a deviation of ± 75 kHz away from the carrier frequency. This modulation was imposed onto the millimeter-submillimeter radiation, and demodulated by the lock-in amplifier using a second harmonic detection scheme. The lock-in amplifier not only amplified the signal, but also removed any noise that did not resonant with the second harmonic detection, the spectrum displayed a second-derivative lineshape. In the direct absorption scheme,

the millimeter–submillimeter radiation was directly measured by the detector and recorded by the digitizer card. Therefore, the absorption lineshape was maintained.

In both the lock-in scheme and the direct absorption scheme, the millimeter-submillimeter frequency was scanned at a fixed step size (usually between 0.05 MHz and 0.1 MHz), and the oscilloscope waveform was digitized and recorded by the NIPCI card at each frequency. A 3D plot, illustrated in Figure 2.3(a), was then reconstructed, taking the oscilloscope time as the x axis, the millimeter-submillimeter frequency as the y axis, and the signal intensity as the z axis. A integration of the signal intensity in a time window confined within the molecular absorption generates a plot of integrated intensity with respect to the millimeter-submillimeter frequency, namely, the expected molecular spectrum.

When using zero-biased detectors (ZBDs), the lock-in detection scheme was always applied, because the low output voltage of ZBDs did not favor the direct absorption scheme. When using the bolometer, all three detection techniques could be applied.

2.3 Fast-sweep data acquisition technique

2.3.1 Concept

The goal of the "fast-sweep" technique is to overcome the slow data acquisition by lock-in and direct absorption detections without introducing additional instrumentation. Both the lock-in and the direct absorption scheme (see Section 2.2.2) collects spectral frequencies point-by-point. The data acquisition speed is therefore constrained by the repetition rate of the pulsed valve, provided that the number of spectral averages remains constant. In typical experimental conditions, the pulsed valve runs at 10–50 Hz, which turns into a data collection time of 400—2000 seconds (7–33 minutes) for a 10 MHz spectral bandwidth with 0.05 MHz frequency resolution and 100 spectral averages. Searching for spectral lines in GHz-wide windows is then almost unfeasible because of the long acquisition time required. The invention of the chirped-pulse technique in the microwave regime [28] revolutionized data acquisition in microwave spectroscopy. The chirped-pulse concept has been adopted into the millimeter–submillimeter wavelength range [29–31] for GHzwide fast data collection. These techniques are time-domain, Fourier transform techniques that require Gs/s arbitrary waveform generators to generate frequency chirps of GHz widths within a microsecond, high power amplifiers of Watts to kilowatts, and Gs/s ultrafast digital oscilloscopes for time-domain data acquisition. The sales price of each single piece of these instruments lies at a few hundred thousand dollars. As a result, these techniques require significant financial investment in the laboratory instrumentation.

In our experiments, we applied a "fast-sweep" technique that enables faster data acquisition than the point-by-point scheme without requiring the purchase of expensive new equipment. The technique references the chirped-pulse concept, but adopts it in such a way that a slower frequency chirp of a narrower bandwidth is applied to the frequency-domain detection instead of the time-domain. Because frequencydomain detection is implemented, identical instruments, as described in Section 2.1, can be used in this technique, and there is no requirement for a strong radiation field or an ultrafast oscilloscope. Despite its simple concept, this technique increases the speed of spectral acquisition by 2 orders of magnitude compared to the point-by-point scans.

The preliminary concept of the fast-sweep technique was presented by Hays in his dissertation [32]. In Dr. Hays' dissertation, he described the experimental configuration of the fast-sweep technique for the $O(^{1}D)$ insertion reaction of methylamine. In that particular experiment, the technique was applied to a laser-induced molecular signal that was 50 µs long. The signal was compared to the point-by-point direct absorption scans.

In this dissertation, I present a comprehensive performance test on this fast-sweep

technique, as applied to the supersonic expansion experiments. The concept of the fast-sweep technique is visualized in Figure 2.3. In Figure 2.3(a), the color map shows the oscilloscope waveforms across a frequency window where a CH_3OH transition is located. In the scheme of point-by-point scans, the millimeter–submillimeter frequency at each scanned point remains constant, and is stepped across the window. The spectrum of CH_3OH in this window, however, can be reconstructed with one single scan, if the millimeter–submillimeter frequency sweeps through the entire window, as the diagonal arrow shows in Figure 2.3(a).

To generate this sweep, an internal triangle-wave frequency modulation of the Agilent synthesizer is necessary. This triangle-wave modulation can output linear frequency sweeps that span a few MHz bandwidth in a period of several hundreds of microseconds. Multiplied by the multiplier chain, the sweep bandwidth expands into a few dozens of MHz in the millimeter–submillimeter regime. This linear frequency sweep can then be mapped to the time window where the pulsed valve is open and molecules are present. Therefore, the spectral information within the full bandwidth, i.e., a few dozens of MHz wide, can be collected in a single shot. The pulsed experiment also provides an advantage of background subtraction because a background sweep can be recorded immediately after the pulsed valve is closed, as illustrated in Figure 2.3(b).

Post-processing of the fast-sweep data is performed by a Python3.4 script using the Numpy1.8 and Scipy0.15 modules. The script code is included in Appendix A. The script first maps the oscilloscope time to the millimeter–submillimeter frequencies by combining the pre-recorded modulation output (i.e., the bottom trace in Figure 2.3(b)) and bandwidth information. The next step is to reshape the data array, taking one full sweep as the signal and another one as the background, and to subtract the background from the signal. Lastly, the background-subtracted sweeps at all center frequencies within the same data file (usually set at 1 GHz for convenience)

(b) (top) A molecular direct absorption signal; (middle) the fast-sweep signal of 5 cycles; (bottom) the graphical representation of the frequency deviation from the center frequency, $\nu - \nu_c$, in real time. $\Delta \nu$ is the full sweep bandwidth.

2000

2000

2500

Oscilloscope Time (μ s)

3000

3000

Sweeping Millimeter

Frequency (MHz)

5000

4000

-1.2

-1.6

 $\Delta \nu/2$

 $-\Delta \nu/2$

0

1000

1000

1500

~~~ ~

0

Figure 2.3: The concept of the fast-sweep technique.

were stitched together to create a spectrum. Additional linear and spline baseline removal options are available to suppress large intensity oscillations in the final spectrum, especially in the case of a discharge spectrum. More discussion on the effects of discharge on the fast-sweep spectra can be found in Section 2.3.4.

### 2.3.2 Instrument settings and practical consideration

There are a few practical considerations when applying the concept of fast-sweep. The synchronization between the pulsed valve, the digital oscilloscope, and the discharge firing is essential. The capacity of our instruments should also be tested in order to take the full advantage of this technique.

The synchronization of all pulsed instruments was achieved by phase-locking the four-channel delay generator (Stanford Research Systems, DG645) to the 10 MHz Rb clock output of the Agilent synthesizer. This ensured the phase stability of the frequency modulation with respect to the digitizer card trigger, which was controlled by the delay generator. Other pulse signals, including the triggers to the pulsed valve and discharge source, were also synchronized because they were all generated by the same delay generator.

Several frequencies, including the modulation frequency of the synthesizer  $(f_{\rm RF})$ , the repetition frequency of the pulsed valve  $(f_{\rm v})$ , and the sampling frequency of the digitizer card  $(f_{\rm s})$ , need to match. Since a sweep was considered as a linear increase or decease of the RF, one triangle-wave modulation cycle contains two sweeps. That is to say, the sweep frequency is twice the triangle-wave modulation frequency. The sweep frequency must be divisible by the pulsed valve repetition frequency so that the phase of the triangle modulation is fixed in each molecular pulse. Then, the sampling frequency of the digitizer card needs to coordinate with the sample length (n) so that integer numbers of sweeps are recorded. Only a selection of 2 and 5 multiples are allowed to be set as the sampling frequency due to the manufacture settings on the digitizer card. The modulation bandwidth was manually set by the "modulation depth" option on the synthesizer. The "modulation depth" is the maximum frequency deviation from the center frequency  $\nu_c$ . Therefore, the RF bandwidth  $\delta\nu$  is twice the modulation depth. Moreover, since the modulation depth was set on the synthesizer, the total sweep bandwidth is equal to the product of twice the modulation depth and the frequency multiplication factor g, which varies in different frequency bands (See Table 2.2). Table 2.3 summarizes the key settings in the fast-sweep technique and their relations.

|                | 2                         |                                       |                                          |
|----------------|---------------------------|---------------------------------------|------------------------------------------|
|                | Parameter                 | Relation                              | Recommended Setting                      |
| $f_{\rm v}$    | Pulsed valve repetition   | —                                     | $\leq 50 \ \mathrm{Hz}$                  |
| $f_{\rm RF}$   | Modulation frequency      | $f_{\rm RF} \mod f_{\rm v} \equiv 0$  | $\leq 10 \text{ kHz}$                    |
| $f_{\rm s}$    | Sampling frequency        | $f_{\rm s} = 2Rg\Delta\nu f_{\rm RF}$ | $\leq 10 \mathrm{MHz}$                   |
| $\delta \nu/2$ | Modulation depth $(RF)$   | _                                     | $\leq 5 \text{ MHz}$                     |
| $\delta  u$    | Modulation bandwidth (RF) | —                                     | $\leq 10 \text{ MHz}$                    |
| $\Delta \nu$   | Sweep bandwidth           | $\Delta\nu = g\delta\nu$              | $\leq 10g \text{ MHz}$                   |
| g              | Multipler factor          | _                                     | 3 - 27                                   |
| $ u_{ m c}$    | Center frequency          | _                                     | $70-1000~\mathrm{GHz}$                   |
| n              | Number of sweeps recorded | _                                     | 5                                        |
| l              | Sample length             | $l = n f_{\rm s} / (2 f_{\rm RF})$    | $\leq 10000$ pts                         |
| R              | Frequency resolution      | $R = l/(n\Delta\nu)$                  | $> 20 \text{ pts} \cdot \text{MHz}^{-1}$ |
| N              | number of averages        | _                                     | $\leq 10,000$                            |
| t              | Acquision time            | $t = N/f_{\rm v}$                     | $\leq 5 \min$                            |

Table 2.3: Parameters and settings involved in the fast-sweep technique.

The millimeter-submillimeter frequency is reconstructed under the assumption of the linearity of the frequency sweep centered at  $\nu_c$ . The detector, however, is not sensitive to the "direction", i.e., the sign of the derivative of RF with respect to time, of the sweep. As a result, the sweep signal does not contain information about whether it starts with frequencies higher or lower than  $\nu_c$ . In order to correctly reconstruct the millimeter-submillimeter frequency, we need to record the local frequency output, which resembles the modulation applied to the RF, from the synthesizer using the identical trigger settings of the sweep signal. The direction of the sweep can be determined from the waveform analysis of this local frequency signal. Two modes were available in our data acquisition routine. The "oscilloscope" mode can average the digitizer card signal sitting on a given center frequency and save it as a one-column voltage array. The center frequency and sweep bandwidth themselves, however, are not saved in the file. Therefore, they need to be recorded manually, otherwise the center frequency will be set to a default value of 0 and the bandwidth at 1 MHz in the post-process code (See the code in Appendix A for a full option list). The "scan" mode scans the center frequency by a fixed frequency interval, and saves both the frequency array (1D) and the digitizer card voltage array (2D), in which each column corresponds to the waveform at a scanned frequency point. The frequency step in the scan mode should be set equal to the full sweep bandwidth to avoid frequency gap or frequency overlap. Since the frequency step is set in this way, both center frequencies and sweep bandwidth are recorded in digital files.

The odd sweeps and even sweeps are not perfect mirror images. This is caused by the imperfection of the internal modulation mode of the synthesizer, which has a limited ability of waveform manipulation. This imperfection, represented by the deviation of the local oscillator (LO) voltage from linearity (Figure 2.4), will lead to poor background subtraction if an odd sweep and an even sweep are used for the signal–background pair. Ordinal numbers of the same parity should always be used for background subtraction.

### 2.3.3 Benchmark with known methanol ( $CH_3OH$ ) transitions

The performance of the "fast-sweep" technique was systematically tested with a grid of settings on the modulation bandwidth, the modulation frequency, the sampling rate, and the number of averages. The benchmark was a series of methanol transitions between 193.4 GHz and 193.6 GHz that have been well-characterized and well-documented in literature. The transition frequencies and quantum numbers of these lines were retrieved from the JPL spectroscopy catalog<sup>1</sup> (Version 3, updated in

 $<sup>^{1}</sup>http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html$ 



Figure 2.4: Imperfection of the triangle-wave modulation of the synthesizer, represented by the deviation of the local frequency voltage from linearity.

March 2010). The reason for choosing this set of lines is because within a narrow frequency range, they span a wide range of lower state energies that can be used to conveniently probe the rotational temperature of  $CH_3OH$  in the jet-expansion. The transition frequencies, lower state energies, and quantum numbers are listed in Table 2.4.

Table 2.4: Transition frequencies, lower state energies  $E_{\text{low}}$ , and quantum numbers of the benchmark CH<sub>3</sub>OH transitions.

| Transition (MHz) | $E_{\rm low}~({\rm cm}^{-1})$ | Quantum Number $(J_K)$ | Symmetry             |
|------------------|-------------------------------|------------------------|----------------------|
| 193415.324       | 18.803                        | $4_0 \leftarrow 3_0$   | $\mathrm{E}^+$       |
| 193441.600       | 13.557                        | $4_1 \leftarrow 3_1$   | $E_2^-$              |
| 193454.358       | 9.681                         | $4_0 \leftarrow 3_0$   | $\mathbf{A}^+$       |
| 193471.434       | 44.293                        | $4_3 \leftarrow 3_3$   | $\mathbf{A}^+$       |
| 193471.545       | 44.293                        | $4_3 \leftarrow 3_3$   | $A^-$                |
| 193474.414       | 42.842                        | $4_3 \leftarrow 3_3$   | $\mathrm{E}_1^{\pm}$ |
| 193488.047       | 35.890                        | $4_2 \leftarrow 3_2$   | $A^-$                |
| 193488.964       | 53.266                        | $4_3 \leftarrow 3_3$   | $E_2^{\pm}$          |
| 193506.559       | 24.310                        | $4_1 \leftarrow 3_1$   | $E_1^-$              |
| 193510.750       | 35.890                        | $4_2 \leftarrow 3_2$   | $\mathbf{A}^+$       |
| 193511.225       | 27.682                        | $4_2 \leftarrow 3_2$   | $E_2^+$              |
| 193511.335       | 25.141                        | $4_2 \leftarrow 3_2$   | $\mathrm{E}_1^+$     |

Before fast-sweep tests, two spectra using the traditional point-by-point scan

schemes were measured for reference. One is a direct absorption spectrum integrating the bolometer signal over the time duration of the molecular pulse, and the other is the second harmonic lock-in scan. Both scans were set at a frequency resolution of 0.1 MHz, 20 averages, and a bandwidth of 120 MHz starting from 193400 MHz. The lock-in amplifier was set at a time constant of 30  $\mu$ s, an integration time of 60 ms, an FM frequency of 30 kHz, and an FM bandwidth of  $\pm 75$  kHz on the RF signal. The pulsed valve was running at 50 Hz with a stagnation pressure of 20 psig (2.4 bar).

Both the direct absorption and the lock-in spectra are plotted in Figure 2.5. The



Figure 2.5: Point-by-point scan of the  $CH_3OH$  branch from 193400 MHz to 193520 MHz. The top panel shows the lock-in spectrum, and the bottom panel shows the direct absorption spectrum. Purple sticks represent simulated  $CH_3OH$  transitions from the JPL catalog assuming a rotational temperature of 22.5 K.

direction absorption scan shows the Gaussian lineshape, whereas the lock-in scan shows the second derivative of the Gaussian lineshape because of the second harmonic detection. Slight asymmetry of the lineshape is observed, likely due to the imperfect alignment of the expanding axis of the molecules with the millimeter–submillimeter beam. It causes uneven Doppler components that asymmetrically broadens the spectral lines.

A rotational temperature of 22.5 K was derived from these spectra using a Boltzmann analysis referred to as the "rotational diagram" method [26, 33]. The integrated line intensity is related to the rotational temperature of the molecule by

$$\int I \mathrm{d}\nu = \frac{hc^3}{8\pi k} \frac{Ag_{\mathrm{u}}}{\nu^2} \frac{N_{\mathrm{T}}}{Q(T_{\mathrm{rot}})} e^{-E_{\mathrm{up}}/kT_{\mathrm{rot}}}$$
(2.2)

The  $Ag_{\rm u}/\nu^2$  term can be calculated from the JPL catalog by the conversion [34]

$$\frac{Ag_{\rm u}}{\nu^2} = \frac{10^{\rm LOGINT}Q(T_{300})}{e^{-E_{\rm up}/(300k)} - e^{-E_{\rm low}/(300k)}} \times 2.7964 \times 10^{-16}$$
(2.3)

in which the LOGINT is the documented base-10 logarithm of the line intensity. The lower state energy  $E_{\text{low}}$  and upper state degeneracy  $g_{\text{u}}$  are both listed in the catalog file, and the upper state energy  $E_{\text{up}}$  can be easily calculated from the lower state energy and the transition frequency. Substituting Equation 2.3 into Equation 2.2, we have

$$\int I d\nu = \frac{hc^3}{8\pi k} \frac{10^{\text{LOGINT}}}{e^{-E_{\text{up}}/(300k)} - e^{-E_{\text{low}}/(300k)}} \frac{N_{\text{T}}Q(T_{300})}{Q(T_{\text{rot}})} e^{-E_{\text{up}}/kT_{\text{rot}}} \times 2.7964 \times 10^{-16}$$
(2.4)

The natural logarithm of the integrated intensity is then

$$\ln \int I d\nu = \ln \text{Const} + \ln N_{\rm T} - \ln Q(T_{\rm rot}) - \frac{E_{\rm up}}{kT_{\rm rot}}$$
(2.5)

which is proportional to the upper state energy  $E_{\rm up}/k$  with a slope of  $-1/T_{\rm rot}$ . All fixed constants are packed into the single term ln Const, which introduces a vertical shift of the logarithm intensity. The number density and the partition function are reflected as the vertical intercept. Since calibration of the absolute number density is unnecessary for the determination of the rotational temperature, all data points were vertically shifted to generate a tight-fit plot, which is shown in Figure 2.6. Numerical integration was used to obtain the integrated intensities of the asymmetric CH<sub>3</sub>OH lines, and the blended lines at 193488 MHz and 193511 MHz were omitted because of
the difficulty in the numerical integration. The variation of the millimeter-submillimeter power was corrected by measuring the 1% amplitude-modulation voltage from the lock-in amplifier. The  $3\sigma$  uncertainties are propagated based on the noise level of the spectra and the fluctuation of the power measurement, and a weighted linear least-square fit was used to derive the rotational temperature.



Figure 2.6: Rotational diagrams of  $CH_3OH$  from the direct absorption (red) and the lock-in (blue) spectra. The logarithm integrated intensity was vertically shifted to generate a tight-fit plot, since the intercept on the y axis does not affect the rotation temperature calculation. Error bars represent  $3\sigma$  uncertainty of the intensity measurement. Weighted linear least-square fit was used to derive the dashed lines and the rotational temperature. Blended lines were omitted in this plot.

Both spectra, lock-in and direct absorption, present similar rotational temperatures around 22.5 K. This temperature was used to simulate the catalog spectrum of  $CH_3OH$  throughout this chapter. The simulated spectral intensity at this temperature agrees well with the experimental spectra, as shown in Figure 2.5.

#### Modulation bandwidth

The modulation bandwidth determines the frequency coverage of a sweep. The wider the bandwidth is, the faster a spectral scan will be. The increase of bandwidth, however, should not sacrifice the signal intensity and frequency accuracy of the spectrum. A series of modulation bandwidth from 0.4 to 80 MHz on the RF side, corresponding to 2.4 to 480 MHz at Band 5 for the  $CH_3OH$  benchmark, were tested at a modulation frequency of 1 kHz. The spectra from this series are plotted in Figure 2.7. The full plot stacks these fast-sweep spectra from the highest bandwidth (480 MHz) at the top to the lowest bandwidth (2.4 MHz) at the bottom. Two inset plots zoom into the center and edge of the spectra. Catalog frequencies are also plotted as red sticks for frequency references.



Figure 2.7: The effect of the fast-sweep bandwidth to the quality of the spectrum. The full-scale plot stacks spectra with decreasing total bandwidth from 480 MHz at the top to 2.4 MHz at the bottom. The center frequency was set at 193455 MHz. The left inset plot zooms in the center region of the spectra, while the right inset plot zooms in the right edge of the spectra. Purple sticks reference to the JPL catalog frequencies of  $CH_3OH$  transitions.

For these scans, the sampling rate and sampling length were adapted according to the bandwidth setting so that the frequency resolution was consistently at 500 points per RF MHz. A slight drop of the intensity and an increase of the noise level are observed for modulation bandwidths larger than 20 MHz. Systematic frequency shifts of the spectral lines are also observed, especially with high modulation bandwidths. The frequency shifts appear larger at the edge of the spectrum (1-2 MHz) than at the center of the spectrum (< 0.2 MHz). This is likely due to the imperfection of the triangle modulation, which does not fully cover the entire set bandwidth. The modulation bandwidth accuracy is  $< \pm 3.5\%$  of the set FM bandwidth [35]. A 40 MHz RF sweep generates a maximum frequency deviation of 1.4 MHz, which can be multiplied into 12.4 MHz in the Band 5 system. Because of this imperfection, the spectra slightly "shrink", causing the observed transitions to shift towards the center frequency from the expected catalog frequency. The spectral lines also broaden at high modulation bandwidths, and turn asymmetric. This is likely caused by two factors: the instrumental limitation of the synthesizer, and the finite bandwidth of the bolometer. Under FM mode, the modulation resolution of the RF signal is  $\pm 0.1$  % of the total FM bandwidth or 1 Hz, whichever is the greater [35]. Therefore, when modulating at a RF bandwidth above 40 MHz, the frequency envelop of the millimeter–submillimeter wave approaches 0.04 MHz, which becomes visible in the spectrum as a broadened convolution with the spectral line profile. Another problem at high bandwidths is that the sweep rate pushes the limit of the detector. A 480 MHz sweep at a modulation rate of 1 kHz (0.5 ms per sweep) corresponds to a sweep rate of 0.96 MHz per  $\mu$ s. The rated response bandwidth of the detector is only 0.5 MHz [36]. As a result, the detector is too slow compared to the change of millimeter-submillimeter frequency, and the delay of the detector response becomes visible in the spectrum. In summary, to ensure the quality and accuracy of the fast-sweep spectrum, the RF modulation bandwidth should be constrained to values below 10 MHz (modulation depth  $\leq 5$  MHz).

#### Sampling rate

The quality of the fast-sweep spectra at various sampling rates was tested with a fixed sweep bandwidth of 12 MHz and a fixed modulation frequency of 1 kHz. Considering the full-width-half-maximum of the spectral line is on the order of 0.25 MHz, the Nyquist frequency of the spectral line signal at this modulation setting is  $12/0.25 \times 1 = 48$  kHz. Therefore, a minimum sampling rate of 100 kHz is sufficient for signal acquisition. Theoretically, oversampling by increasing sampling rate improves the frequency resolution, and also provides the advantage of anti-alias. The result of a series of sampling rate from 100 kHz to 10 MHz is plotted in Figure 2.8.

The 40 kHz sampling rate is below the Nyquist frequency, and was therefore expected to fail to resolve the spectral line. The spectral feature is sufficiently sampled above 100 kHz; the best results, however, are those above 500 kHz that provide higher frequency resolution and lower noise. The noise level of the spectra with original sampling rate does not significantly change with an increase of sampling rate, as shown in Figure 2.8(a). A high-frequency sinusoidal contamination is observed in several spectra, especially those sampled at 2 MHz, 4 MHz, and 20 MHz. A Gaussian bandstop filter in the Fourier domain was applied to filter out this contamination prior to downsampling. The effectiveness of down-sampling is presented in Figure 2.8(b), where all spectra are down-sampled to an equivalent 0.5 MHz sampling rate by algorithmic averaging. After down-sampling, the signal-to-noise ratio (SnR) is slightly improved, except for the "4 MHz" trace which still exhibits a sinusoidal contamination oscillating at a lower frequency. The SnR of the original spectra and the down-sampled spectrum is plotted in Figure 2.8(c). The SnR improvement to the original spectra is about a factor of 2, but has large uncertainties. Considering the cost of low maximum bandwidth and large data storage requirements, oversampling is not an optimal option for SnR improvement. The test, however, verifies that high sampling rate does not destroy the molecular signal.



Figure 2.8: The quality of fast-sweep spectra under various sampling rates: (a) the processed spectra at the original sampling rates; (b) the down-sampled spectra with 0.5 MHz equivalent sampling rates; (c) the change of SnR under tested sampling rates with dashed lines indicating the least-square fits of the SnR trend. The red sticks in (a) and (b) refer to the catalog frequency of  $CH_3OH$ .

#### Modulation frequency

The modulation frequency determines the time duration of a single sweep. Faster modulation frequencies produce shorter sweeps, which can be applied to shorter molecular signals. This approach may also allow averaging multiple sweeps in a single molecular pulse, thus increasing the total number of spectral averages without longer data acquisition time. However, high modulation frequency causes problems similar to high modulation bandwidths: the sweep rate exceeds the limit of our detector bandwidth. Moreover, the quality of the triangle modulation drops at high modulation frequencies because of the limited instrumental ability of the RF synthesizer.

The left panel of Figure 2.9 stacks the spectra taken under increasing modulation frequencies with the same bandwidth of 12 MHz and identical frequency resolution. It shows that as the modulation frequency increases, the intensity of the spectrum drops, the width of the spectral line broadens, the purity of the spectral lines breaks down, and the line frequency starts to deviate from the reference frequency listed in the JPL catalog.

The cause of the line broadening, attributed to the limit of detector bandwidth, has been discussed in Section 2.3.3. The cause of the impurity and frequency shift is likely due to both the limitation of the RF synthesizer and the aligning of trigger signals. They are reflected in the right panel of Figure 2.9, which plots the raw data from the digitizer with respect to the oscilloscope time. The gray dash locates the turning point where one sweep ends and the next one starts. At low modulation frequencies, the waveform has sharp turns at the turning point. At high modulation frequencies, such as 40 and 50 kHz, the waveform turns become curved, which is an indication of the decreasing quality of the triangle wave. This quality decrease may introduce undesired impurities into the processed spectra. It is also more difficult to determine the actual turning point of the sweep with the curved edge, introducing



Figure 2.9: The effect of modulation frequency to the fast-sweep spectra. The left panel stacks the fast-sweep spectra at multiple modulation frequencies. The right panel plots the raw oscilloscope traces from which the fast-sweep spectra were reconstructed. The dashed line in the right panel draws the turning point of a frequency sweep.

more uncertainty in aligning the trigger signal with respect to the start of a sweep. As a result, frequency reconstruction becomes unreliable at these high modulation frequencies.

To maintain an acceptable spectral quality, the modulation frequency should be constrained within 10 kHz. 10 kHz modulation frequency corresponds to a 50 µs sweep, sufficiently short for all experiments reported in this dissertation, and also for most scenarios in jet-cooled experiments. 10 kHz was also the setting reported by Hays [32].

#### Signal to noise ratio

The goal of the fast-sweep technique is to achieve an equivalent SnR to that obtained by the point-by-point scan in a shorter spectral acquisition time. The spectral acquisition time increases linearly with the number of averages for both techniques. The difference is that the acquisition time of the point-by-point scan also scales linearly with the increase of spectral bandwidth and spectral resolution, whereas the fast-sweep technique does not.

The theoretical SnR is proportional to the square root of number of averages. Does the SnR of fast-sweep spectra follow this square root of N rule? Will the sweep bandwidth affect the noise level?

To test the SnR behavior of the fast-sweep spectra, both methanol and blank spectra, i.e., spectra without the pulsed valve running, were collected in a series of increasing numbers of averages. The noise levels for the blank spectra are determined by the standard deviation of the data points, and the SnR of each methanol spectrum is determined by the ratio between the peak intensity of the strongest line in the spectrum and the standard deviation of the local baseline around the spectral lines. To test the effect of sweep bandwidth on the SnR, three sweep bandwidths were chosen: 12 MHz, 60 MHz, and 240 MHz, which represent small, medium, and large bandwidth, respectively. All blank and methanol spectra are plotted in Figure 2.10.

The blank spectra of all three sweep bandwidths exhibit a systematic decrease of noise level as the number of averages increases. The noise level of the 240 MHz sweep, however, is visibly larger than those of the 12 MHz and the 60 MHz sweep. For all three sweep bandwidths, when the number of averages is above 1000, interference from the pulsed valve with the detector electronics starts to appear at the edges of the spectra. The baseline is also not completely flat: it shows a small increasing slope. Most of these impurities, however, can be removed by polynomial baseline fitting. Therefore, they do not cause unmanageable trouble in spectral line identification. The SnR behavior of blank spectra is further illustrated in Figure 2.11 by plotting the noise level with respect to the number of averages, as well as the corresponding data acquisition time, in base 10 logarithm scale. The noise level of both the full sweep and the center part (1/6-5/6) of the sweep are plotted in order to evaluate the impact of the pulsed valve impurity, which appears at the spectral edges. The impurity is reflected by the tail of the noise level at high Ns. Especially, the tail of





(c) Blank (left) and CH<sub>3</sub>OH (right) spectra with 240 MHz sweep bandwidth.

Figure 2.10: Stacks of blank and  $CH_3OH$  spectra with increasing average numbers. The intensities of spectra above 1000 averages are multiplied by a factor of 10 for the 12 MHz and 60 MHz series, and a factor of 5 for the 240 MHz series.

the full spectrum is more severe than the one of the center part of the spectrum. The noise curve of the 240 MHz series also lies above the other two, in agreement with the visual conclusion drawn from Figure 2.10.

A least-square fit of the noise points with  $N \leq 1000$  was used to verify the square root of N rule. The best fit equations for each sweep bandwidth are shown in the legend of Figure 2.11. The order on N agrees with the theoretical value of -1/2. The orders from the full spectra window deviate from -1/2 slightly more than the center part of the spectra, because of the impact of spectral impurity.



Figure 2.11: The noise level of blank sweeps with increasing number of averages at three sweep bandwidths: 12 MHz (red square), 60 MHz (blue circle), and 120 MHz (pink diamond). The noise level of the 1/6-5/6 section of the spectra is plotted on the left panel, while that of the full spectrum is plotted on the right panel.

For the molecular spectra, the increase of SnR with increasing spectral averages is also visible in Figure 2.10. The SnR is plotted in Figure 2.12. For all three sweep bandwidths, strong linearity to  $\sqrt{N}$  is observed. The smallest sweep band, 12 MHz, shows the highest SnR, followed closely by the medium 60 MHz sweep. The SnR of the 240 MHz is significantly lower. This is consistent with the results from the blank spectra shown in Figure 2.11. The SnR of the 12 MHz and 60 MHz sweeps became similar at averages larger than 1000. Considering the data acquisition speed of the 60 MHz sweep is 5 times faster than the 12 MHz for a same frequency coverage, the slight sacrifice of the SnR seems reasonable. The SnR of the fast sweep spectra unambiguously beats the point-by-point direct absorption spectrum, but is slightly lower than the lock-in spectrum. Nevertheless, the frequency resolution of the sweep spectra is higher (12 kHz) than the lock-in scan (100 kHz). If the lock-in scan was set at the same frequency resolution and the bandwidth, it will take 2000 s, whereas the 60 MHz sweep only takes 200 s. A zoomed in spectral region is plotted on the right panel of Figure 2.12, from which the quality of the spectra is clearly seen. The spectral lines stand out more clearly in the 60 MHz sweep, owing to the fine frequency resolution, than in the lock-in spectrum, even though the statistical SnR of the 60 MHz sweep is slightly lower. The fine frequency resolution also offers room for down-sampling, which can improve the SnR slightly by a factor of 2, as shown in Figure 2.8.



Figure 2.12: Signal to noise ratio (left panel) of the fast-sweep spectra as an increase of number of averages N, and the comparison to the SnR of the point-by-point lock-in and direct absorption scans, pointed by two stars. The right panel shows a zoomed-in region of the 60 MHz sweep with 10000 averages (200 s acquisition time), as well as two point-by-point scans (240 s acquisition time).

#### 2.3.4 Concerns regarding radio frequency interference (RFI)

The radicals and ions studied in this dissertation were produced in a high-voltage plasma discharge on the throat of the supersonic expansion. Therefore, the applicability of the fast-sweep method to discharge experiments is crucial. There are a few concerns specifically applied to discharge experiments because of the additional interference from the pulsed high voltage field.



Figure 2.13: The discharge interference on the molecular signal, shown as multiple RFI spikes, and a change of the baseline and molecular absorption curve.

In a discharged experiment, RFI from the high voltage contaminates the signal. Figure 2.13 clearly shows multiple RFI spikes in addition to the ones from the solenoid valve. The curvature of the sweep is also strongly distorted by the high voltage plasma. The outcome is that the background subtraction in the fast-sweep method returns results of lower quality compared to the discharge-free experiments. In order to suppress this baseline as much as possible, we attempted to fit the baseline using a univariate spline interpolation method in the data processing. The use of this spline fit has pros and cons. While the spline fit can remove most of the curvature caused by the discharge RFI, the algorithm does not fully recognize spectral lines embedded in the noise except for the extremely strong ones. Therefore, spectral lines of weak to intermediate intensities also contributes in the spline fitting algorithm. The spectral contribution introduces baseline artifacts, and may cause the expected Gaussian absorption lineshape appear to be similar to a second-derivative lineshape.

# 2.4 Summary

This chapter discusses the spectrometer I used to produce and probe unstable molecules and molecular clusters. The spectrometer includes a Perry-style multipass millimeter–submillimeter cell, a supersonic expansion source, and a McCarthy-style discharge source. I specifically focused on the full performance test of the fast-sweep spectroscopic acquisition technique, which is able to facilitate the search for molecular transitions in the millimeter–submillimeter range. This fast-sweep technique is well-suited for spectral searches for unknown molecular transitions in a broad frequency range in the millimeter–submillimeter regime, and has a minimum impact on instrument investment.

This key technique, together with conventional point-by-point direct absorption and lock-in scan methods, was applied to all the molecules studied in this dissertation. In the next few chapters, I will show the success of this technique in the study of the HO<sub>3</sub> radical (Chapter 3) and the Ar–H<sub>2</sub>O dimer (Chapter 4). The supersonic expansion source and the multipass optical arrangement were used throughout all experiments. Specific fast-sweep settings are described in the experimental section of each individual chapter.

# Chapter 3 The Weakly Bound Radical: HO<sub>3</sub>

This chapter, with minor adjustment, is reprinted with permission from L. Zou, B. M. Hays, S. L. Widicus Weaver, J. Phys. Chem. A. 120, 657 (2016). Copyright (2016) American Chemical Society.<sup>©</sup>

# 3.1 Introduction

Molecular oxygen has surprisingly only been detected in a few astronomical sources [37–41], despite the relatively large fractional elemental abundance of oxygen relative to hydrogen [42] in the universe. Identifying the carrier(s) of oxygen in dense molecular clouds encourages new reaction mechanisms to be proposed. Silicates, CO, and water ice are the major reservoirs of oxygen in these environments, but they do not fully explain the low observed molecular oxygen abundance in dense clouds [43]. Other possible oxygen reservoirs must be investigated. Here we explore whether weakly bound clusters could play important roles in the oxygen chemistry in interstellar clouds.

Strongly bound clusters, such as protonated molecular ions  $H_3^+$ ,  $HCO^+$ , and  $N_2H^+$ , play central roles in both terrestrial and interstellar chemistry, and their existence has been unambiguously supported by astronomical observations [44]. Weakly bound clusters such as  $HO_3$ , however, are important reaction intermediates in terrestrial chemistry, but they have been discounted as important intermediates in interstellar chemistry because the low densities in interstellar clouds do not favor their formation. Nonetheless, the question of their possible existence in interstellar clouds is intriguing. Indeed, if a three-body collision is required to form such a cluster, as is typical under terrestrial conditions, such a reaction is unlikely in interstellar environments. Nevertheless, Klemperer and Vaida [44] suggest that weakly bound

clusters whose binding energy is ~5 kcal·mol<sup>-1</sup> are still possible interstellar species because they can form via radiative association reactions, which are common in interstellar environments. In addition to radiative association in the gas phase, weakly bound clusters could also possibly form on interstellar or protoplanetary ices. Specifically for HO<sub>3</sub>, experiments have shown that it can be produced in cold water ice rich in O<sub>2</sub> under proton [45] or electron [46] bombardment. The latest experimental upper limit of HO<sub>3</sub> binding energy is 3 kcal·mol<sup>-1</sup> [47], whereas the theoretical estimation lies between 1.8 kcal·mol<sup>-1</sup> [48] and 2.8 kcal·mol<sup>-1</sup> [49]. HO<sub>3</sub> may therefore be produced within and survive the sublimation of interstellar ices below 100 K. If detected, clusters such as HO<sub>3</sub> could dramatically change our current understanding of the roles of three-body collisions, radiative association reactions, and sublimation in astrochemistry.

The identification of  $HO_3$  via its rotational transitions cannot be achieved without supporting laboratory measurements. We focus here on the millimeter–submillimeter spectrum of  $HO_3$ . Although rotational spectra of *trans*- $HO_3$  are available in the microwave range [50], extrapolation to the millimeter–submillimeter wavelength range may be subject to large uncertainties. Therefore, our experimental measurements of  $HO_3$  transitions at these wavelengths will aid in the search for this cluster in space. Once the  $HO_3$  rotational spectrum is measured, we can apply similar techniques to examine other clusters of astrochemical interest.

In addition to its possible importance in astrochemistry,  $HO_3$  is also of great interest in atmospheric chemistry and theoretical chemistry. It is a challenging target in both experimental and computational studies. In experimental studies, its potential role in shaping the  $HO_x$  cycle that controls the atmospheric  $O_2$  budget was proposed (see Murray et al. [51] and references therein) but then discarded based on more accurate experimental results [47]. In computational studies,  $HO_3$  is a sensitive benchmark for theoretical methods as its experimentally measured properties can rarely be simultaneously reproduced by a single theoretical method.

The experimental measurement of the dissociation energy of HO<sub>3</sub> determines its importance in atmospheric chemistry. The value 10(5) kcal·mol<sup>-1</sup> determined from proton and electron transfer experiments [52, 53] was unreliable due to large experimental uncertainty and large discrepancy from theoretical calculations. From infrared–UV action spectroscopy, Derro *et al.* estimated the upper limit of the dissociation energy of HO<sub>3</sub> to be 5.32 kcal·mol<sup>-1</sup>, by measuring the maximum energy of dissociated OH [54]. Le Picard *et al.* further refined the upper limit of the HO<sub>3</sub> dissociation energy to be 2.97(7) kcal·mol<sup>-1</sup> [47], which was derived from a kinetics model based on laser-induced fluorescence (LIF) decay measurements of OH at various temperatures and O<sub>2</sub> concentrations. Therefore, the originally postulated contribution of HO<sub>3</sub> to atmospheric OH depletion was discarded.

Spectroscopic studies of  $HO_3$  have been primarily conducted in the infrared. Early spectroscopic investigations of  $HO_3$  after its first detection in mass spectrometry [55] include infrared experiments in an Ar matrix [56] and water ice [45, 46]. Rotationally resolved infrared spectra were first obtained by infrared-UV action spectroscopy in a supersonic jet [54, 57–59], where an infrared laser was used to pump the radical, while the dissociation product OH was probed via LIF from its UV excitation. Several rotationally resolved bands were unambiguously assigned to *trans*-HO<sub>3</sub> [54]. Vibrational bands of *trans*-DO<sub>3</sub> were also measured [54, 59].

Additional rotational spectroscopic studies using Fourier Transform Microwave (FTMW) Spectroscopy have shown that HO<sub>3</sub> possesses an extremely long center O– O bond [50, 60]. In these experiments, HO<sub>3</sub> was also formed in a pulsed discharge supersonic expansion comprised of a mixture of O<sub>2</sub> and water vapor or H<sub>2</sub> diluted in Ar. HO<sub>3</sub> and DO<sub>3</sub> were measured by Suma *et al.*, and spectra of its three <sup>18</sup>O isotopologues were measured by McCarthy *et al.*, who also reported a more efficient discharge production mechanism of HO<sub>3</sub> using H<sub>2</sub> instead of H<sub>2</sub>O as a precursor. Transitions for HO<sub>3</sub> were measured up to 80 GHz. Empirical structural information for *trans*-HO<sub>3</sub> was derived from the experimental rotational constants of the five isotopologues retrieved from the microwave spectra, by assuming a planar geometry [60]. The empirical center O–O bond was much longer (1.684 Å) than a normal O–O single bond (e.g., 1.474 Å in HOOH), while the O–H bond was much shorter (0.913 Å) than that in free OH (0.970 Å). As the authors pointed out, however, the empirical bond length  $r_0$  is not directly comparable to the theoretical equilibrium value  $r_e$ , due to the effect of the vibrational wavefunction in the ground state. A recent dipole moment measurement for *trans*-HO<sub>3</sub> in a He nanodroplet further illustrated the large discrepancy between theoretical calculated properties with experimental measurements, as well as the sensitive dependence of the radical's property on its geometry estimation [61].

It is worthwhile to mention that the existence of cis-HO<sub>3</sub> is perplexing. Broad infrared bands containing no rotational structure were tentatively assigned to the cis-conformer [54, 57–59], but the validity of this assignment is questionable because both microwave studies claimed no detection of cis-HO<sub>3</sub> after careful searches [50, 60]. As Raston *et al.* suggested based on their He nanodroplet study, it is possible that there is only one vibrationally averaged structure of HO<sub>3</sub>, and the broad infrared band arises from HO<sub>3</sub>-(O<sub>2</sub>)<sub>n</sub> complexes [62].

Along with these experimental efforts, theoretical calculations have been extensively conducted to reproduce the experimentally measured molecular geometry and dissociation energy, to construct the potential energy surface, and to analyze the dissociation channels of  $HO_3$  [48, 49, 63–74]. Despite this fact, none of these studies can thus far simultaneously reproduce every experimentally measured aspect of this radical. This is not only due to the complexity of the  $HO_3$  system itself, but also to the difficulty of direct comparison of theoretical results with experimental values. The comparison of geometry, dipole moment, and dissociation energy for the ground vibrational state of  $\text{HO}_3$  relies greatly on the estimation of the anharmonic multidimensional potential energy surface as well as the vibrational–rotational interaction. For example, the torsional potential between the *trans* and *cis* conformer (if it does exist) of  $\text{HO}_3$  largely determines the form of the rovibronic wavefunctions. The torsional barrier is estimated to be ~340 cm<sup>-1</sup>, based on the infrared-UV action spectroscopy results [54]. A more recent six-dimensional potential energy surface [48] showed strong coupling between multiple vibrational modes, which all have impact on the estimation of the difference between the theoretical equilibrium geometry and the empirical geometry. Much theoretical and experimental work remains to fully understand the  $\text{HO}_3$  system.

In this dissertation, I report the measurement of pure rotational spectra of  $HO_3$ and  $DO_3$  from 70 GHz to 450 GHz. These new measurements were obtained using the aid of the fast-sweep technique described in Section 2.3. The measurements access more  $K_a$  levels than the microwave studies, thus providing sufficient information to empirically fit all quartic centrifugal distortion constants of  $HO_3$  using a standard asymmetric top Hamiltonian. In addition to the observed  $HO_3$  and  $DO_3$  transitions, we found numerous lines arising from  $Ar-H_2O$  and other unidentified carrier(s). The spectral analysis of  $Ar-H_2O$  is described later in Chapter 4. The comparison of these experimental results with observational spectra to search for  $HO_3$  in 32 star-forming regions is described in Section 6.6.

# 3.2 Experimental details

The overall experimental design has been described in Chapter 2, thus only specific conditions for producing the  $HO_3$  radical are listed here.

The jet-cooled  $HO_3$  radical was produced in our high-voltage discharge source (see Section 2.1.2) by discharging a gas mixture of  $O_2$ ,  $H_2$ , and Ar (NexAir, ultrahigh purity). The seeding gases  $O_2$  and  $H_2$  were pre-mixed at a flow ratio of 3:2, and then diluted to 10% in Ar before being sent into the Parker Series 9 general valve. The valve operated at a repetition rate between 20 and 25 Hz with ~1 ms opening time, which led to a total gas flow rate of 700–850 sccm and an equilibrium chamber pressure of ~50 mTorr. The gas mixture was held at a stagnation pressure of 90 psig (720 kPa). The discharge source used two copper electrodes separated 0.2" (4.8 mm) apart by Teflon washers. Additional Teflon spacers were used to fill the rest of the empty space in the Teflon cap of the discharge source. The gas channel was 0.1" (2.5 mm) in diameter. A 900 V pulsed discharge was applied using a pulse generator (Directed Energy Inc., PVX-4150) backed by a high voltage power supply (Spellman, SL2PN2000). The voltage rose simultaneously with the pulsed valve trigger signal and lasted for 2.2–2.5 ms, and the current was constrained by a 10 k $\Omega$  ballast resistor. All pulses were triggered using a standard 5 V TTL output from a four-channel delay generator (Stanford Research Systems, DG645). DO<sub>3</sub> was produced under identical conditions, by using D<sub>2</sub> (Cambridge Isotopes Laboratories, 99.8% D<sub>2</sub>, 0.2% HD) in place of H<sub>2</sub>.

The fast-sweep technique (see Section 2.3) was used to search for the millimeter transitions of HO<sub>3</sub>. The triangle-wave modulation for the fast-sweep was set at 1 kHz with a RF deviation of  $\pm 1$  MHz. Initial searches aimed at 1 GHz windows around the extrapolated frequencies from published microwave data [50]. Broader spectral windows were scanned after the discovery of new spectral features other than HO<sub>3</sub>. Once the HO<sub>3</sub> transitions were located in the fast-sweep spectrum, point-by-point scans using a lock-in amplifier was used to verify the presence of these transitions, and to retrieve their line center frequencies. The DO<sub>3</sub> spectrum was collected using the same strategy. In general, 500 shots were averaged for the fast-sweep spectra, whereas 100 scans were averaged for the lock-in spectra. More averages were taken for a few weak lines to increase the SnR.

#### 3.3 Results

#### 3.3.1 $HO_3$ and $DO_3$ detection

The detection of  $HO_3$  below 170 GHz was straightforward based on the extrapolation of transition frequencies from previous microwave studies [50, 60], once the discharge and gas mixture conditions were optimized for  $HO_3$  production. The observed experimental transitions agree with the microwave extrapolation. The spectral search above 170 GHz was more difficult because of the large frequency disagreements between the extrapolation and experimental line centers. With the assistance of the fast-sweep technique, which allowed efficient search for these  $HO_3$  transitions in a large frequency window, large frequency shifts from the extrapolation were observed. For transitions from 170 GHz to 320 GHz, the shift was ~35 MHz, while for transitions above 320 GHz, the shift was ~170 MHz. Sample spectra from the fast-sweep experiment are shown in Figure 3.1.

Each new transition observed in the fast-sweep scans was confirmed using a lock-in scan and then fitted by a second derivative Gaussian function to retrieve its transition frequency. Additionally, weaker HO<sub>3</sub> transitions that were ambiguous in the fastsweep data were sought using the lock-in detection. A total of 38 new lines for HO<sub>3</sub> with 118 resolved hyperfine components were measured in the range of 70 GHz to 450 GHz. The highest J level observed was J = 7. The top panel of Figure 3.2 plots a computer generated stick spectrum showing all newly measured transitions of HO<sub>3</sub>. The heights of the sticks are proportional to the integrated intensities of measured spectral lines, which are derived from the second-derivative Gaussian fit. DO<sub>3</sub> transitions were also measured using the same procedure. A total of 44 new lines were recorded. Unfortunately, because of the heavier nuclear mass of deuterium, the hyperfine splitting of most lines was not resolved, except for the partially resolved  $2_{2,1} \leftarrow 2_{1,2}$  transition. The full stick spectrum of DO<sub>3</sub> is plotted in the bottom panel of



Figure 3.1: Fast-sweep detection of  $HO_3$  at 185 GHz and 362 GHz. The spectral extrapolation from the previous microwave study is shown in blue, while the prediction based on the current study is shown in red. Simulations were generated at 10 K rotational temperature using reported molecular constants.

Figure 3.2. A scaling factor based on the lock-in amplifier sensitivity was considered for  $DO_3$ , but not  $HO_3$ . Since the experimental condition details varied day by day, the power fluctuation due to the standing waves in the spectrometer was difficult to calibrate. Therefore, no further power normalization was applied.



Figure 3.2: Stick spectra of all new measured  $HO_3$  and  $DO_3$  transitions. Transitions identified to be  $Ar-H_2O$  and unidentified lines are also included. Intensities are proportional to the integrated intensities of measured transitions and are calibrated for the sensitivity level of the lock-in amplifier for  $DO_3$ , but not  $HO_3$ . No power normalization was applied.

The molecular constants of  $HO_3$  and  $DO_3$  were fitted using the SPFIT program in the CALPGM suite [75]. We used a Watson-A reduced Hamiltonian that includes centrifugal distortion, spin-rotation interaction and associated centrifugal distortion, magnetic dipole-dipole hyperfine splitting, and electric quadrupole hyperfine splitting for deuterium. The hyperfine tensor element  $T_{cc}$  was fixed at  $-T_{aa} - T_{bb}$ , while  $\chi_{cc}$ was fixed at  $-\chi_{aa} - \chi_{bb}$  to ensure the traceless property of the T and  $\chi$  matrices. For unresolved HO<sub>3</sub> hyperfine structure, the same center frequency was assigned to the two strongest hyperfine components. For DO<sub>3</sub>, the strongest three hyperfine components were assigned to the same frequency. The transitions reported by Suma *et al.* [50] in the microwave range were also included in the fit. We assumed a uniform 5 kHz frequency uncertainty for the microwave data from Suma *et al.*, and a uniform 50 kHz frequency uncertainty for the data from this study based on the spectral resolution. The root-mean-square (rms) of the fit is 50 kHz for HO<sub>3</sub> and 51 kHz for DO<sub>3</sub>, both of which agree well with the frequency uncertainty in this work. The molecular constants from this fit are compared to the previous results in Tables 3.1 and 3.2, for HO<sub>3</sub> and DO<sub>3</sub>, respectively. The final fit files with complete spectral assignments for HO<sub>3</sub> and DO<sub>3</sub> are included in Appendix B.

Using the new spectroscopic constants determined in Table 3.1 and 3.2, we updated the HO<sub>3</sub> and DO<sub>3</sub> spectral predictions using the SPCAT program in the CALPGM suite [75]. For these predictions, the *a* and *b* components of the electric dipole moment were set at the experimental values of  $\mu_a = 0.61$  D,  $\mu_b = 1.48$  D for *trans*-HO<sub>3</sub>, and  $\mu_a = 0.62$  D,  $\mu_b = 1.52$  D for *trans*-DO<sub>3</sub> [61]. These new spectral catalogs were used to simulate spectra assuming a rotational temperature of 10 K for comparison to the experimentally measured spectra, shown in Figure 3.1 and 3.2. The HO<sub>3</sub> catalog was also used to compare with astronomical observations, which will be discussed in more detail below.

#### 3.3.2 New spectral features

Along with the detection of  $HO_3$ , we also found a set of new discharge-dependent spectral features using the fast-sweep technique. Follow-up lock-in detections were also conducted to confirm the discovery of new spectral lines. These lines are also

Table 3.1: Comparison of the spectroscopic parameters of trans-HO<sub>3</sub> from this study and the results from Suma *et al.* [50]. 1 $\sigma$  uncertainties in the unit of the last significant digit are included in parentheses.

| Constants (MHz)                     | This Study       | Suma $et al.$ [50] | Difference   |
|-------------------------------------|------------------|--------------------|--------------|
| $A_0$                               | 70781.11869(136) | 70778.1652(24)     | 2.9535(28)   |
| $B_0$                               | 9987.3873(61)    | 9986.9501(11)      | 0.4372(62)   |
| $C_0$                               | 8749.7284(59)    | 8750.1580(11)      | -0.4296(60)  |
| $\Delta_N \times 10^3$              | 47.5200(223)     | 46.461(30)         | 1.059(37)    |
| $\Delta_{NK}$                       | 0.149167(123)    | 0.15335(40)        | -0.00418(42) |
| $\Delta_K$                          | 2.956094(237)    | —                  | _            |
| $\delta_N \times 10^3$              | 6.1406(116)      | 6.11(41)           | 0.031(43)    |
| $\delta_K$                          | 0.21649(298)     | _                  | _            |
| $\epsilon_{aa}$                     | -1252.6932(42)   | -1252.5858(58)     | -0.1074(72)  |
| $\epsilon_{bb}$                     | -106.25192(198)  | -106.2551(26)      | -0.0032(33)  |
| $\epsilon_{cc}$                     | -3.49564(187)    | -3.4954(24)        | -0.0002(30)  |
| $ \epsilon_{ab} + \epsilon_{ba} /2$ | 42.503(80)       | 42.45(11)          | 0.05(14)     |
| $a_F$                               | 3.66102(240)     | 3.6587(30)         | 0.0023(38)   |
| $T_{aa}$                            | 8.4792(46)       | 8.4828(59)         | -0.0036(75)  |
| $T_{bb}$                            | -6.8512(45)      | -6.8533(56)        | 0.0021(72)   |
| $\Delta_N^S \times 10^3$            | 0.987(75)        | 1.00(10)           | -0.01(12)    |
| $\Delta_{NK}^{S}$                   | 0.05626(85)      | 0.0544(15)         | 0.018(17)    |
| $\Delta_K^S$                        | 0.10421(179)     | _                  | _            |
| $\Delta^{[a]}$                      | 0.0176           | 0.0123             | 0.0053       |
| fitted transitions                  | 180              | 62                 |              |
| m rms~(kHz)                         | 50               | 5.4                |              |
| [-]                                 | 9 <b>D</b> :     |                    |              |

<sup>[a]</sup> Inertial defect  $(amu \cdot Å^2)$ 

| Constants (MHz)                        | This Study       | Suma $et al.$ [50] | Difference   |  |
|----------------------------------------|------------------|--------------------|--------------|--|
| $A_0$                                  | 67859.76412(114) | 67857.3708(30)     | 2.3933(32)   |  |
| $B_0$                                  | 9448.9011(46)    | 9448.5330(13)      | 0.3681(48)   |  |
| $C_0$                                  | 8299.0882(45)    | 8299.4517(13)      | -0.3635(47)  |  |
| $\Delta_N \times 10^3$                 | 37.3937(159)     | 36.573(37)         | 0.821(40)    |  |
| $\Delta_{NK}$                          | 0.181509(111)    | 0.18544(51)        | -0.00393(52) |  |
| $\Delta_K$                             | 2.394778(270)    | _                  | _            |  |
| $\delta_N \times 10^3$                 | 4.5481(87)       | 4.566(49)          | -0.018(50)   |  |
| $\delta_K$                             | 0.18323(228)     | _                  | _            |  |
| $\epsilon_{aa}$                        | -1224.7306(40)   | -1224.611(80)      | -0.120(80)   |  |
| $\epsilon_{bb}$                        | -101.53380(183)  | -101.5335(32)      | -0.0003(37)  |  |
| $\epsilon_{cc}$                        | -3.78785(174)    | -3.7870(30)        | 0.0008(35)   |  |
| $ \epsilon_{ab} + \epsilon_{ba} /2$    | 41.154(74)       | 41.25(13)          | -0.10(15)    |  |
| $a_F$                                  | 0.46216(161)     | 0.4607(28)         | 0.0015(32)   |  |
| $T_{aa}$                               | 1.2970(32)       | 1.2972(55)         | -0.0002(64)  |  |
| $T_{bb}$                               | -1.08913(277)    | -1.0893(47)        | 0.0002(55)   |  |
| $\Delta_N^S 	imes 10^3$                | 0.788(64)        | 0.71(11)           | 0.08(13)     |  |
| $\Delta^S_{NK}$                        | 0.04933(74)      | 0.0451(19)         | 0.0042(20)   |  |
| $\Delta_K^S$                           | 0.10804(216)     | _                  | _            |  |
| $\chi_{aa}$                            | 0.0126(44)       | -0.0042(78)        | 0.0168(90)   |  |
| $\chi_{bb}$                            | 0.1556(48)       | 0.1376(74)         | 0.0180(88)   |  |
| $\Delta^{[a]}$                         | -0.0372          | -0.0422            | 0.0050       |  |
| fitted transitions                     | 153              | 74                 |              |  |
| rms (kHz)                              | 51               | 7.6                |              |  |
| [a] Inortial defect (any $\lambda^2$ ) |                  |                    |              |  |

Table 3.2: Comparison of the spectroscopic parameters of trans-DO<sub>3</sub> from this study and the results from Suma *et al.* [50]. 1 $\sigma$  uncertainties in the unit of the last significant digit are included in parentheses.

<sup>[a]</sup> Inertial defect  $(amu \cdot \dot{A}^2)$ 

plotted in Figure 3.2 along with the  $HO_3$  lines. One of the molecular carriers was identified to be the Ar-H<sub>2</sub>O dimer; these lines, marked in purple in Figure 3.2, disappeared with substitution of He buffer gas in place of Ar. Ar-H<sub>2</sub>O, however, does not fully explain all of the unidentified lines measured in this experiment. Additional analysis is required before the carrier(s) of these lines is identified. The full characterization of the Ar-H<sub>2</sub>O spectrum is included in Chapter 4.

# 3.4 Discussion

The search for  $HO_3$  transitions above 170 GHz was complicated due to the large frequency shifts relative to the extrapolation from the previous microwave work. The fast-sweep technique eased the search problem as it could cover a  $\geq 1$  GHz wide spectral range in less than an hour. The large shifts between the measured spectra and the extrapolation from microwave studies are primarily caused by the lack of inclusion of certain quartic centrifugal distortion constants in the analysis of the microwave spectra. This finding is supported by the terms listed in Table 3.1 and 3.2, where most of the spin-orbit interaction, magnetic dipole hyperfine interaction, and electric quadrupole hyperfine interaction terms remain unchanged within their respective statistical uncertainties. In the previous microwave studies, only  $K_a = 1 \leftarrow 0$  transitions were detected, leading to the undetermined centrifugal distortion constants  $\Delta_K$  and  $\delta_K$ . Once higher  $K_a$  levels were accessed, these centrifugal distortion constants could be added in the spectral analysis. As shown in Table 3.1 and 3.2, the centrifugal distortion constants associated with the angular momentum operators on the primary axis  $\hat{N}_a$ , namely  $\Delta_{NK}$ ,  $\Delta_K$ ,  $\delta_K$ ,  $\Delta_{NK}^S$  and  $\Delta_K^S$ , are now well defined. The inclusion of these additional centrifugal distortion constants also led to significant changes in the rotational constants A, B and C, especially the A constant, from the values reported in previous studies. The compensation of the contribution to the energy levels of  $HO_3$  from the centrifugal distortion constants over the rotational constants may be responsible for this large discrepancy. As expected, the change of the rotational constants also leads to a change in the inertial defect, but only by a small amount.

The centrifugal distortion constants  $\Delta_K$  and  $\delta_K$  are significantly larger compared to the other centrifugal distortion constants  $\Delta_N$ ,  $\Delta_{NK}$  and  $\delta_N$ . This result indicates the large dependency of the HO<sub>3</sub> geometry on the projection of its rotational angular momentum along its principle axis. A similar trend was observed in the *trans*-HOCO radical [76], though the C–O bond in HOCO was found to be much shorter than the O– O bond in HO<sub>3</sub>. These large values for  $\Delta_K$  and  $\delta_K$  may provide additional benchmarks for theoretical calculations of the geometry and multi-dimensional potential energy surface for HO<sub>3</sub>, since the distortion tensor relies on the estimation of the moment of inertia gradient and the force field.

The behavior of  $DO_3$  is similar to that of  $HO_3$ . Because of the heavier deuterium nucleus, the shift of  $DO_3$  constants in this work from the previous study is systematically smaller than the shift of  $HO_3$  constants.

In addition to the interesting results for HO<sub>3</sub> and DO<sub>3</sub>, additional spectral lines were observed for other species produced in the discharge. In the previous study by McCarthy *et al.*, OH, H<sub>2</sub>O–OH, H<sub>2</sub>O–O<sub>2</sub>, (H<sub>2</sub>O)<sub>2</sub> and O<sub>3</sub> were also detected [60] using similar discharge conditions to those used in our experiment. Our experiment is consistent with the previous results, as we saw strong transitions from HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, O<sub>3</sub>, H<sub>2</sub>O, O<sub>2</sub> (both  ${}^{3}\Sigma$  and  ${}^{1}\Delta$ ), and Ar–H<sub>2</sub>O dimer. The spectral features of these known species were excluded from the analysis of HO<sub>3</sub> spectrum, and are not plotted in Figure 3.2 (except for Ar–H<sub>2</sub>O). In particular, the presence of Ar–H<sub>2</sub>O was confirmed by a comparison with the spectra of a water and Ar mixture. The Ar–H<sub>2</sub>O vibrationalrotational-tunneling spectra have been studied previously [77–81]. Unfortunately, no experimental data were available in the frequency range of this experiment. We therefore measured the Ar–H<sub>2</sub>O spectra separately to clean up the list of unidentified lines in our HO<sub>3</sub> spectra. The details of the Ar–H<sub>2</sub>O spectra are included in Chapter 4. Despite the prevalence of  $Ar-H_2O$  lines in the spectrum, this dimer can only partially reproduce the unidentified lines shown in Figure 3.2. Consequently, it is likely that at least one additional species was created in the discharge. These spectral lines persisted when Ar was replaced by He, but also remained in a discharge with only  $H_2$  and  $O_2$  as precursors. As such, the carrier is not an Ar cluster nor a He cluster. The splitting pattern of these unidentified lines indicates an open-shell species. Future work will focus on determining the identity of this new species. Meanwhile, this new finding illustrates the capacity of the fast-sweep technique. Since this technique allows scanning for tens of GHz in a day under normal experimental conditions, it makes blind searches feasible even without any spectroscopic prediction. This opens up the possibility of discovering new spectral features in the millimeter-submillimeter range, which could not be done easily before with the conventional point-by-point spectral acquisition technique.

# 3.5 Summary

In this chapter, we have presented the measurement of the pure rotational transitions of  $HO_3$  and  $DO_3$  in the 70–450 GHz frequency range. A large discrepancy was found between these new experimental measurements and the spectral extrapolation from previous FTMW studies [50, 60]. This discrepancy was fully explained by the inclusion of a full list of quartic centrifugal distortion constants in the Hamiltonian. Molecular constants were fitted using the new experimental results and were used to generate a more reliable submillimeter spectral extrapolation for these two radicals. The updated spectral line catalogs based on new experimental measurements presented here are expected to guide astronomical searches in sources that have high expected abundances of  $HO_3$ .

# Chapter 4 The Vibration-Rotation-Tunneling Spectrum of $Ar-H_2O$

This chapter, with minor adjustment, is reprinted with permission from L. Zou and S. L. Widicus Weaver, J. Mol. Spectrosc., 324, 12 (2016). Copyright (2016) Elsevier Inc.<sup>©</sup>

## 4.1 Introduction

The intermolecular interaction of van der Waals complexes is crucial to our understanding of the behavior of these complexes, and can be used to simulate the properties of larger systems such as bulk liquids and solvent-solute interaction [82]. Rich information on the intermolecular potential can be deduced from spectroscopic measurement of these complexes [83]. However, the complexity of the vibration-rotationtunneling (VRT) spectrum arising from the anisotropic intermolecular potential of these complexes is a challenge even for a small dimer system.

Van der Waals complexes can be categorized into the semi-rigid regime or the free-rotor regime based on the barrier height of the intermolecular potential. In the semi-rigid regime, the intermolecular potential is high and the complex can be treated as a whole body with well-defined rotational constants. In the free-rotor regime, on the contrary, one monomer in the complex experiences a low intermolecular potential barrier, and thus rotates almost freely. The effect of the anisotropic intermolecular potential is reflected by the shift and split of rovibrational energy levels of the monomer.

Ar- $H_2O$  dimer is one of the simplest atomic-asymmetric rotor dimers. Nevertheless, its spectrum is complicated. The first two reported VRT bands of Ar- $H_2O$ (0.5–0.8 THz) were assigned by Cohen and coworkers based on a semi-rigid model [77]. The utility of this model was later depreciated after more bands were found both in the far-IR region (1-2 THz) [78, 79] and mid-IR region around the  $v_3$  band  $(3780 \text{ cm}^{-1})$  [84, 85] and  $v_2$  band  $(1620 \text{ cm}^{-1})$  [84, 86–88] of H<sub>2</sub>O. The free-rotor model proposed by Hutson [89] was adopted to assign these bands with success, supporting the fact that the water moiety almost freely rotates. In addition to the Ar-H<sub>2</sub>O bands, detection of Ar-D<sub>2</sub>O bands in the millimeter region (280–460 GHz) [90] and around multiple H<sub>2</sub>O vibration modes,  $v_1 + v_2 + v_3$  (6536 cm<sup>-1</sup>) [91] and  $v_2$  (1190 cm<sup>-1</sup>) [92, 93], also supports this dimer being in the free-rotor limit, assuming the intermolecular potential of Ar-D<sub>2</sub>O is similar to that of Ar-H<sub>2</sub>O. Several transitions were also observed in the microwave range where hyperfine structures were resolved [80, 81]. Combining all of these spectroscopic measurements from the microwave, far-IR, and IR regions, Cohen & Saykally fitted an accurate empirical 3-dimensional potential surface for Ar-H<sub>2</sub>O [94].

Here we report the detection of three additional  $Ar-H_2O$  bands in the millimeter region. This dataset is complementary to the spectra from Cohen *et al.* [77]. An energy diagram for  $Ar-H_2O$  in the range of this experiment is shown in Figure 4.1, highlighting the bands observed by Cohen *et al.* and the bands detected in the present work. We also re-measured the bands reported by Cohen *et al.* with higher frequency resolution. Most importantly, to our knowledge, this is the first direct observation of the band origin of the  $\Pi(1_{01}) \leftarrow \Sigma(1_{01})$  transitions, the value of which could only be indirectly determined from the difference of other infrared band origins [84]. These new measurements support the free-rotor model of  $Ar-H_2O$ , and allow us to determine the band heads with higher accuracy. We present these measurements and the associated analysis herein.



Figure 4.1: Ar–H<sub>2</sub>O energy diagram in the  $1_{01}$  and  $1_{10}$  states region. Red arrows represent the bands detected in the present work. Blue arrows represent the bands reported by Cohen *et al.* [77]. These bands are also remeasured in the present work with higher frequency resolution. Band heads are labeled with their approximate transition frequencies. The relative position of these levels is only a qualitative approximation and does not accurately reflect the actual energy differences between states. Reprinted with permission from Zou & Widicus Weaver [95].

#### 4.2 Experimental details

The  $Ar-H_2O$  spectrum was measured in a jet-cooled expansion using the millimeter-submillimeter spectrometer described in Chapter 2. This complex was detected during an experiment designed for probing  $HO_3$ , the details of which were reported previously [27] and can also be found in Chapter 3. This follow-up study measuring the spectrum of  $Ar-H_2O$  was conducted to confirm the presence of  $Ar-H_2O$  in the  $HO_3$  spectrum.

The dimer was readily produced by expanding water vapor in Ar gas (NexAir, UHP) under ambient temperature into the vacuum. The Ar was bubbled through tap water, which was used without further purification. The backing pressure behind the valve was held at 24 psig (2.0 kTorr). The pulsed valve (Parker Series 9) was driven by a 0.8 ms TTL voltage repeated at a rate of 40 Hz for fast-sweep and 42 Hz for direct absorption.

Millimeter-submillimeter light was generated by passing cm-wave radiation (generated using an Agilent Technology E8257D PSG) through a frequency multiplier chain system (Viginia Diodes Inc., S197(c)). The spectrum of Ar-H<sub>2</sub>O was initially searched using the fast-sweep method, and then confirmed using the direct absorption scheme. In both cases, the InSb hot electron bolometer (QMC Ltd., QFT/XBI) was used to detect the signal, which was recorded digitally via a digitizer card (National Instruments, PCI-5124). In the fast-sweep search scheme, the triangle wave modulation was set at 1 kHz with a RF deviation of  $\pm 1$  MHz. 100–200 spectral averages were taken. In the direct absorption confirmation scheme, the bolometer signal was directly integrated over the valve opening time as a function of the millimetersubmillimeter light frequency. Integrated intensity of the observed lines was then fitted to a Gaussian line shape. We estimated the uncertainty of the measured frequencies to be 0.1 MHz based on the Doppler width and the slight asymmetry of the line shape that was observed. The power level at each transition frequency was also measured for the purpose of power normalization. It was achieved by recording the sine waveform of a  $\pm 5$  % depth amplitude modulation signal at these frequencies. These power measurements were recorded during the same run of the experiment to minimize power fluctuations. A sine function was fitted to the waveform and the fitted amplitude was interpreted to be 10 % of the power level, assuming a linear correlation between the modulation depth and the radiation power. Power normalization was applied to the integrated intensity of measured spectral lines so that transition intensities were qualitatively comparable.

Other works reported that a slit expansion source may be optimal for dimer yield [77, 84, 88, 90, 92]. Nonetheless, we found the pinhole source that had been optimized for  $HO_3$  production [27] yielded sufficiently strong signal for the unambiguous detection of  $Ar-H_2O$ .

### 4.3 Model

The details of the model for Ar-H<sub>2</sub>O have been thoroughly discussed in previous works [79, 89, 90], thus the details are not repeated here. Briefly, since the H<sub>2</sub>O moiety in Ar-H<sub>2</sub>O rotates nearly freely, it is possible to separate the Hamiltonian of the complex from the Hamiltonian of the H<sub>2</sub>O monomer. The Hamiltonian of the monomer is then a standard Watson-A type Hamiltonian, and the Hamiltonian of the complex is in the form for a diatomic rotor. The rotational states are labeled with lowercase  $j_{k_a,k_c}$  for the monomer, and capital J and  $\Omega$  for the complex. The presence of the anisotropic potential arising from the Ar atom splits the rotational states of H<sub>2</sub>O into their projections  $\Omega$  on the monomer–Ar axis. Analogous to the *l*-doubling in linear molecules,  $|\Omega| = 0, 1, 2, \ldots$  are labeled as  $\Sigma, \Pi, \Delta, \ldots$  states, respectively. Coriolis interaction further mixes the states of the complex of the same symmetry and H<sub>2</sub>O rotational quantum number. Because of the challenges in developing an effective model for  $Ar-H_2O$ , the Hamiltonian and notations used to describe the dimer are not consistent in the literature. In this paper, we chose to follow the model of Cohen & Saykally [79] to enable direct comparison with their results. Therefore, the rigid rotor energy of the complex is expressed as

$$E = v + B \left[ J(J+1) - 2\Omega^2 \right] - D \left[ J(J+1) - 2\Omega^2 \right]^2 + H \left[ J(J+1) - 2\Omega^2 \right]^3 + L \left[ J(J+1) - 2\Omega^2 \right]^4$$
(4.1)

where v is the band head of each water state that is treated as an independent vibrational state. The Coriolis splitting on related energy levels is found by the perturbation matrix

$$\begin{bmatrix} E_1 & H_{\rm Cor} \\ H_{\rm Cor} & E_2 \end{bmatrix}$$
(4.2)

where  $H_{\text{Cor}} = 2\beta \sqrt{J(J+1)}$  is the Coriolis perturbation Hamiltonian for j = 1 states, and  $E_1$  and  $E_2$  (assuming  $E_1 < E_2$ ) are the vibrational energies of two connected states. The shifted energies are

$$E_{1}' = \frac{1}{2} \left[ E_{1} + E_{2} - (E_{2} - E_{1})\sqrt{1 + 16J(J+1)\left(\frac{\beta}{E_{2} - E_{1}}\right)^{2}} \right]$$

$$E_{2}' = \frac{1}{2} \left[ E_{1} + E_{2} + (E_{2} - E_{1})\sqrt{1 + 16J(J+1)\left(\frac{\beta}{E_{2} - E_{1}}\right)^{2}} \right]$$
(4.3)

The lower state corresponds to the negative energy shift, while the upper state corresponds to the positive energy shift.

The symmetry and parity labels are shown in Figure. 4.1. For each state, the symmetry label outside the parentheses marks even J levels while that inside the parentheses marks odd J levels. We assign arbitrary signs of '+' to the states with  $B_2(B_1)$  symmetry, and '-' to the states with  $B_1(B_2)$  symmetry. Selection rules allow  $B_1 \leftrightarrow B_2$  transitions [90]. Therefore, for P and R branches where  $\Delta J = 1$ , states with the same sign connect. For Q branches where  $\Delta J = 0$ , states with opposite signs connect. We fitted the measured transition frequencies to the desired model by a weighted nonlinear least squares algorithm using the "lsqcurvefit" solver in Matlab<sup>1</sup>. Four microwave transitions from a previous study [80] were included in the fit. We assign an uncertainty of 0.005 MHz for the microwave transitions and 0.1 MHz uncertainty for our measurements; the relative weight is proportional to the reciprocal of the square of frequency uncertainties.

# 4.4 Result and discussion

#### 4.4.1 Observed bands

Three new bands belonging to the ortho- states of Ar-H<sub>2</sub>O were observed in the millimeter wavelength range using the fast-sweep method. Each band has P, Q, and R branches. One band is assigned to the transitions between the  $\Pi^{+/-}(1_{01})$  and  $\Sigma^+(1_{01}) B_2(B_1)$  states. The fast-sweep spectrum of the Q branch of this band is shown in Figure 4.2. Under our experimental conditions, only 35 min was required to collect the 20 GHz spectral window shown in Figure 4.2 using the fast-sweep method, whereas 132 h was necessary for the point-by-point direct absorption scan to cover the same frequency window with the same number of spectral averages. The other two bands are assigned to transitions between the  $\Pi(1_{10})$  and  $\Pi(1_{01})$  states, in which case the way to group P, Q, and R branches is somewhat arbitrary. We group the branches from the same lower state into one band, i.e., the P and R branches of the  $\Pi^{-}(1_{01})$ band connect to the  $\Pi^{-}(1_{10})$  state and its Q branch connects to the  $\Pi^{+}(1_{10})$  state. Additionally, the two submillimeter bands originally measured by Cohen *et al.* [77] were re-measured with higher frequency resolution. In the previous experiment, the frequency uncertainty for their tunable far-IR lasers was 0.5 MHz. In our experiment, with high precision multiplier chains, we could constrain the frequency uncertainty of our measurements down to 0.1 MHz. All measured transition frequencies, their

 $<sup>^{1}</sup> http://www.mathworks.com/help/optim/ug/lsqcurvefit.html$ 



Figure 4.2: Fast-sweep spectrum of the Q branch of Ar-H<sub>2</sub>O VRT band  $\Pi^{+/-}(1_{01}) \leftarrow \Sigma^{+}(1_{01}) B_2(B_1)$ .

assignments, and the observed—calculated residuals from the least squares fit are listed in Tables 4.1–4.5. The measurements reported by Cohen *et al.* [77] are also included in Tables 4.5 and 4.4 for comparison.

The full spectrum is plotted in Figure 4.3 where each stick is proportional to the power-normalized integrated intensity of the measured transition. The stick spectrum of each separated band is plotted in Figure 4.4. Characteristic spectral lines are shown in Figure 4.5. The weaker intensities of the  $\Pi(1_{01}) \leftarrow \Sigma(1_{01})$  and  $\Pi(1_{10}) \leftarrow \Pi(1_{01})$  bands relative to the stronger  $\Pi(1_{10}) \leftarrow \Sigma(1_{01})$  and  $\Sigma(1_{10}) \leftarrow \Pi(1_{01})$  bands support the assignment of the spectrum under the free-rotor model, because the forbidden transitions between the same H<sub>2</sub>O rotational levels are only weakly relaxed in the anisotropic potential of the Ar-H<sub>2</sub>O dimer [90].

Despite power normalization, the relative line intensities shown here are still qualitative. The correction is more reliable within a given frequency band from the same
Table 4.1: Transition frequencies of the  $\Pi^{+/-}(1_{01}) \leftarrow \Sigma^+(1_{01}) B_2(B_1)$  band of Ar– H<sub>2</sub>O.  $\Delta$  is the difference between experimental measured values and the least-square fit values. Frequency units are MHz. Experimental uncertainty is estimated to be 0.1 MHz.

| Transition | Exp.      | Δ     | Transition | Exp.      | Δ     |
|------------|-----------|-------|------------|-----------|-------|
| P(17)      | 275116.20 | -0.07 | Q(8)       | 342286.93 | 0.09  |
| P(16)      | 277339.86 | 0.02  | Q(9)       | 342854.51 | 0.03  |
| P(15)      | 279687.54 | 0.03  | Q(10)      | 343448.17 | -0.01 |
| P(14)      | 282175.49 | 0.00  | Q(11)      | 344057.23 | -0.08 |
| P(13)      | 284819.92 | -0.04 | Q(12)      | 344670.52 | -0.12 |
| P(12)      | 287637.09 | 0.09  | Q(13)      | 345276.39 | -0.09 |
| P(11)      | 290642.31 | 0.05  | Q(14)      | 345862.73 | -0.07 |
| P(10)      | 293850.95 | 0.10  | Q(15)      | 346417.42 | 0.06  |
| P(9)       | 297277.26 | 0.12  | Q(16)      | 346927.93 | 0.11  |
| P(8)       | 300934.65 | 0.11  | Q(17)      | 347381.93 | 0.02  |
| P(7)       | 304835.44 | 0.07  | R(0)       | 345795.42 | -0.06 |
| P(6)       | 308990.72 | 0.04  | R(1)       | 352185.30 | -0.06 |
| P(5)       | 313410.06 | 0.00  | R(2)       | 358850.72 | -0.05 |
| P(4)       | 318101.52 | -0.01 | R(3)       | 365784.16 | -0.01 |
| P(3)       | 323071.35 | -0.07 | R(4)       | 372976.06 | -0.01 |
| P(2)       | 328324.12 | -0.08 | R(5)       | 380415.19 | 0.00  |
| Q(1)       | 339766.22 | -0.06 | R(6)       | 388088.48 | 0.03  |
| Q(2)       | 339924.17 | -0.02 | R(7)       | 395981.20 | -0.01 |
| Q(3)       | 340157.82 | 0.00  | R(8)       | 404077.33 | 0.00  |
| Q(4)       | 340463.38 | 0.03  | R(9)       | 412359.38 | 0.01  |
| Q(5)       | 340835.78 | 0.06  | R(10)      | 420808.71 | -0.03 |
| Q(6)       | 341268.87 | 0.11  | R(11)      | 429405.85 | -0.02 |
| Q(7)       | 341755.33 | 0.10  |            |           |       |

Table 4.2: Transition frequencies of the  $\Pi^{+/-}(1_{10}) \leftarrow \Pi^{-}(1_{01}) B_1(B_2)$  band of Ar– H<sub>2</sub>O.  $\Delta$  is the difference between experimental measured values and the least-square fit values. Frequency units are MHz. Experimental uncertainty is estimated to be 0.1 MHz.

| Transition | Exp.      | $\Delta$ | Transition | Exp.      | $\Delta$ |
|------------|-----------|----------|------------|-----------|----------|
| P(15)      | 209753.90 | -0.13    | Q(3)       | 292739.54 | 0.00     |
| P(14)      | 214423.35 | 0.00     | Q(4)       | 293437.84 | -0.04    |
| P(13)      | 219268.22 | 0.08     | Q(5)       | 294320.19 | -0.14    |
| P(12)      | 224272.48 | 0.13     | R(1)       | 303584.79 | 0.08     |
| P(11)      | 229420.27 | 0.08     | R(2)       | 309559.69 | 0.05     |
| P(10)      | 234696.27 | 0.06     | R(3)       | 315559.60 | 0.02     |
| P(9)       | 240085.57 | 0.02     | R(4)       | 321587.51 | -0.03    |
| P(8)       | 245574.04 | -0.02    | R(5)       | 327647.80 | -0.04    |
| P(7)       | 251148.48 | -0.04    | R(6)       | 333745.96 | -0.08    |
| P(6)       | 256796.67 | -0.05    | R(7)       | 339888.77 | -0.10    |
| P(5)       | 262507.50 | -0.07    | R(8)       | 346083.92 | -0.11    |
| P(4)       | 268271.22 | -0.03    | R(9)       | 352340.06 | -0.08    |
| P(3)       | 274079.23 | 0.00     | R(10)      | 358666.51 | -0.04    |
| P(2)       | 279924.40 | 0.02     | R(11)      | 365073.25 | 0.04     |
| Q(1)       | 291876.27 | 0.03     | R(12)      | 371570.50 | 0.09     |
| Q(2)       | 292220.27 | 0.00     | R(13)      | 378168.75 | 0.10     |

Table 4.3: Transition frequencies of the  $\Pi^{+/-}(1_{10}) \leftarrow \Pi^+(1_{01}) B_2(B_1)$  band of Ar– H<sub>2</sub>O.  $\Delta$  is the difference between experimental measured values and the least-square fit values. Frequency units are MHz. Experimental uncertainty is estimated to be 0.1 MHz.

| Transition | Exp.      | Δ     | Transition | Exp.      | Δ     |
|------------|-----------|-------|------------|-----------|-------|
| P(14)      | 207269.10 | -0.10 | Q(1)       | 291524.43 | 0.06  |
| P(13)      | 212837.91 | 0.00  | R(1)       | 303820.31 | 0.05  |
| P(12)      | 218550.69 | 0.06  | R(2)       | 309825.98 | 0.05  |
| P(11)      | 224386.84 | 0.08  | R(3)       | 315799.72 | 0.03  |
| P(10)      | 230326.17 | 0.04  | R(4)       | 321745.99 | -0.01 |
| P(9)       | 236349.25 | 0.02  | R(5)       | 327671.20 | 0.01  |
| P(8)       | 242437.50 | 0.02  | R(6)       | 333583.29 | -0.02 |
| P(7)       | 248573.41 | 0.00  | R(7)       | 339491.97 | -0.04 |
| P(6)       | 254740.83 | -0.03 | R(8)       | 345408.30 | -0.05 |
| P(5)       | 260925.14 | -0.01 | R(9)       | 351344.61 | -0.03 |
| P(4)       | 267113.20 | 0.00  | R(10)      | 357314.25 | 0.02  |
| P(3)       | 273293.71 | 0.03  | R(11)      | 363331.30 | 0.01  |
| P(2)       | 279457.16 | 0.01  | R(12)      | 369410.56 | 0.06  |
| Q(5)       | 289074.93 | 0.12  | R(13)      | 375566.92 | 0.04  |
| Q(4)       | 289933.29 | 0.06  | R(14)      | 381815.36 | 0.00  |
| Q(3)       | 290633.11 | 0.06  | R(15)      | 388170.50 | -0.02 |
| Q(2)       | 291165.69 | 0.06  | R(16)      | 394646.19 | -0.03 |

Table 4.4: Transition frequencies of the  $\Pi^{+/-}(1_{10}) \leftarrow \Sigma^+(1_{01}) B_2(B_1)$  band of Ar– H<sub>2</sub>O.  $\Delta$  is the difference between experimental measured values and the least-square fit values. Frequency units are MHz. Experimental uncertainty is estimated to be 0.1 MHz. Experimental values reported by Cohen *et al.* [77] (0.5 MHz uncertainty) are also included.

| Transition | n Exp.    | $\Delta$ | Exp. [77] | Transition | n Exp.    | $\Delta$ | Exp. [77] |
|------------|-----------|----------|-----------|------------|-----------|----------|-----------|
| P(20)      | 564788.83 | -0.03    | 564787.7  | Q(10)      | 637204.47 | -0.01    | 637204.1  |
| P(19)      | 565529.94 | 0.04     | 565530.9  | Q(11)      | 638387.72 | -0.03    | 638388.0  |
| P(18)      | 566549.12 | -0.01    | 566550.2  | Q(12)      | 639685.72 | -0.04    | 639686.1  |
| P(17)      | 567847.65 | -0.01    | 567848.6  | Q(13)      | 641099.85 | -0.05    | 641099.5  |
| P(16)      | 569425.55 | -0.05    | 569427.5  | Q(14)      | 642631.33 | -0.05    | 642632.4  |
| P(15)      | 571282.31 | -0.04    | 571283.3  | Q(15)      | 644281.12 | -0.02    | 644281.8  |
| P(14)      | 573416.69 | -0.04    | 573417.7  | Q(16)      | 646049.72 | -0.01    | 646050.3  |
| P(13)      | 575827.14 | 0.01     | 575828.1  | Q(17)      | 647937.19 | 0.02     | 647937.5  |
| P(12)      | 578511.75 | 0.01     | 578512.8  | Q(18)      | 649942.85 | 0.02     | 649942.9  |
| P(11)      | 581468.56 | 0.04     | 581469.6  | Q(19)      | 652065.22 | -0.01    | 652065.5  |
| P(10)      | 584695.42 | 0.05     |           | R(0)       | 637466.72 | -0.04    | 637466.9  |
| P(9)       | 588190.25 | 0.05     | 588191.4  | R(1)       | 643791.47 | -0.03    | 643791.6  |
| P(8)       | 591951.01 | 0.05     | 591952.1  | R(2)       | 650364.20 | -0.06    | 650364.4  |
| P(7)       | 595975.70 | 0.03     | 595976.8  | R(3)       | 657183.52 | -0.04    | 657184.1  |
| P(6)       | 600262.42 | -0.01    | 600263.6  | R(4)       | 664247.81 | -0.01    | 664249.2  |
| P(5)       | 604809.42 | -0.03    | 604810.7  | R(5)       | 671555.47 | -0.02    | 671556.6  |
| P(4)       | 609614.99 | -0.04    | 609615.4  | R(6)       | 679104.95 | 0.08     | 679104.3  |
| P(3)       | 614677.51 | -0.04    | 614677.8  | R(7)       | 686894.24 | -0.03    | 686896.1  |
| P(2)       | 619995.41 | -0.06    | 619995.6  | R(8)       | 694921.82 | -0.03    | 694922.0  |
| Q(1)       | 631495.57 | -0.04    | 631495.1  | R(9)       | 703185.60 | -0.03    | 703187.0  |
| Q(2)       | 631703.93 | -0.02    | 631703.4  | R(10)      | 711683.45 | -0.03    | 711684.7  |
| Q(3)       | 632016.93 | 0.01     | 632017.1  | R(11)      | 720413.04 | 0.00     | 720414.6  |
| Q(4)       | 632435.07 | 0.01     | 632435.0  | R(12)      | 729371.63 | 0.01     | 729371.1  |
| Q(5)       | 632959.13 | 0.03     | 632959.0  | R(13)      | 738556.05 | -0.06    | 738555.8  |
| Q(6)       | 633589.98 | 0.05     | 633589.9  | R(14)      | 747962.90 | 0.03     | 747963.3  |
| Q(7)       | 634328.65 | 0.03     | 634328.7  | R(15)      | 757587.70 | 0.08     | 757587.8  |
| Q(8)       | 635176.40 | 0.03     | 635176.5  | R(16)      | 767425.22 | 0.03     | 767425.6  |
| Q(9)       | 636134.53 | 0.01     | 636134.6  |            |           |          |           |

Table 4.5: Transition frequencies of the  $\Sigma^{-}(1_{10}) B_1(B_2) \leftarrow \Pi^{+/-}(1_{01})$  band of Ar– H<sub>2</sub>O.  $\Delta$  is the difference between experimental measured values and the least-square fit values. Frequency units are MHz. Experimental uncertainty is estimated to be 0.1 MHz. Experimental values reported by Cohen *et al.* [77] (0.5 MHz uncertainty) are also included.

| Transition | n Exp.    | Δ     | Exp. [77] | Transition | n Exp.    | Δ     | Exp. [77] |
|------------|-----------|-------|-----------|------------|-----------|-------|-----------|
| P(10)      | 692100.92 | 0.26  | 692101.5  | Q(6)       | 742834.32 | 0.01  | 742834.5  |
| P(9)       | 696530.41 | 0.05  | 696532.2  | Q(5)       | 743141.15 | 0.06  | 743141.2  |
| P(8)       | 701135.89 | -0.03 | 701135.9  | Q(4)       | 743404.16 | 0.07  | 743404.2  |
| P(7)       |           |       | 705915.4  | Q(3)       | 743619.40 | -0.02 | 743619.4  |
| P(6)       | 710862.99 | -0.01 | 710863.4  | Q(2)       | 743783.87 | 0.02  | 743783.7  |
| P(5)       | 715978.38 | -0.05 | 715979.3  | Q(1)       | 743894.84 | -0.04 | 743894.8  |
| P(4)       | 721257.54 | -0.07 | 721259.0  | R(1)       | 756202.88 | -0.06 |           |
| P(3)       | 726697.44 | -0.01 | 726699.3  | R(2)       | 762545.99 | -0.01 | 762545.5  |
| P(2)       | 732294.90 | 0.01  | 732294.3  | R(3)       | 769030.48 | 0.05  | 769030.3  |
| P(1)       | 738047.08 | 0.11  | 738046.8  | R(4)       | 775653.81 | -0.01 | 775654.5  |
| Q(13)      | 739871.92 | -0.03 |           | R(5)       | 782413.71 | -0.07 | 782413.3  |
| Q(12)      | 740346.67 | 0.08  |           | R(6)       | 789307.87 | -0.03 | 789307.3  |
| Q(11)      | 740812.25 | 0.00  | 740811.7  | R(7)       | 796333.60 | -0.09 | 796335.7  |
| Q(10)      | 741264.36 | -0.03 | 741264.1  | R(8)       | 803488.30 | -0.16 | 803488.0  |
| Q(9)       | 741697.96 | -0.02 | 741697.4  | R(9)       | 810769.21 | -0.08 | 810769.9  |
| Q(8)       | 742107.78 | 0.08  | 742107.9  | R(10)      | 818172.78 | -0.03 | 818176.4  |
| Q(7)       | 742488.28 | 0.06  | 742488.3  |            |           |       |           |

multiplier, rather than near the band edges or between different multiplier bands. Near the band edges, the power correction did not fully account for the rapid power drop of multiplier output. In particular, for the undetected P(7) transition in the  $\Sigma(1_{10}) \leftarrow \Pi(1_{01})$  band, the majority of radiation power was lost at the frequency of that transition.



Figure 4.3: Full power-normalized stick spectrum of  $Ar-H_2O$  from 200 to 800 GHz. Reprinted with permission from Zou & Widicus Weaver [95].

#### 4.4.2 Coriolis interaction

The Coriolis interaction between  $\Sigma$  and  $\Pi$  states is treated as a perturbation between two levels. The analytical eigenvalues of the two-level perturbation matrix are shown in Eq. 4.3. In previous studies, this interaction is approximated by the first order term of the Taylor series expansion of Equation 4.3:

$$E'_{1} \approx E_{1} - 4\beta^{2}J(J+1)/(E_{2} - E_{1})$$

$$E'_{2} \approx E_{2} + 4\beta^{2}J(J+1)/(E_{2} - E_{1})$$
(4.4)

under the assumption that  $16\beta^2 J(J+1)/(E_2 - E_1)^2 \ll 1$ . In the case of Ar-H<sub>2</sub>O ortho- states, the splitting of  $\Sigma$  and  $\Pi$  states is on the order of 300 GHz, while  $\beta$  is near 3 GHz. For high J levels (i.e., J > 10), the first order approximation starts to



Figure 4.4: Power-normalized stick spectrum of each individual band of  $Ar-H_2O$ . Reprinted with permission from Zou & Widicus Weaver [95].



Figure 4.5: Characteristic spectral lines of  $Ar-H_2O$ . Black solid line is the experimental integrated intensity, and the red dash line is the Gaussian fit. Reprinted with permission from Zou & Widicus Weaver [95].

introduce a noticeable discrepancy as  $16\beta^2 J(J+1)/(E_2-E_1)^2 > 0.1$ . Our initial linear fit test reflected this trend by returning a r.m.s of 2.72 MHz if we only included the number of constants listed in the analysis of Cohen & Saykally [79]. This r.m.s did not reflect our experimental precision, and the difference between calculated frequencies and experimental frequencies was found to be systematically larger at higher J levels. Therefore, we performed a weighted nonlinear fit using the analytical equations of Coriolis terms (Equation 4.3), instead of approximating the square root term with the first order truncated Taylor series expansion. We observed a significant drop of r.m.s down to 0.30 MHz in the nonlinear fit with the same number of constants used in the linear fit. The fit was furthermore improved by adding higher order centrifugal distortion constants that have statistical significance. We included sextic and octic centrifugal constants for most of the states to achieve a final r.m.s of 0.06 MHz, consistent with the estimated uncertainty of our measurements.

The constants resulting from our nonlinear least square analysis are listed along with the result from Cohen & Saykally [79] in Table 4.6. Here we only fitted the reported transitions from the current study, along with the four microwave transitions from Fraser *et al.* [80]. Cohen & Saykally included two additional bands from the ground state to the intermolecular stretching state of Ar–H<sub>2</sub>O. The exclusion of the transitions to these higher states, however, does not significantly affect the constants determined for lower states in our fit, since each water state is treated as an independent vibrational state. From Table 4.6, it can bee seen that the accuracy of the energies of the 1<sub>01</sub>  $\Sigma$  and  $\Pi$  states is significantly improved because of the observation of the direct transitions between these two states. For the states unperturbed by Coriolis interaction, the constants in our analysis agree well with the results from Cohen & Saykally [79], but have a higher precision. For the states perturbed by the Coriolis interaction, i.e.,  $\Sigma^+(1_{01})$ ,  $\Pi^+(1_{01})$ ,  $\Pi^-(1_{10})$ , and  $\Sigma^-(1_{10})$  states, a systematic discrepancy of the centrifugal distortion constants is observed as compared to the results from Cohen & Saykally [79]. This is because our rigorous Coriolis fit prevents the contamination of the higher order coefficients from the Coriolis splitting into the centrifugal distortion constants. The Taylor series expansion of the Coriolis term in Eq. 4.3 up to the third order is

$$\mp \frac{\Delta E}{2} \sqrt{1 + 16J(J+1)\left(\frac{\beta}{\Delta E}\right)^2} = \frac{\Delta E}{2} \pm \frac{4\beta^2}{\Delta E} J(J+1) \pm \frac{16\beta^4}{\Delta E^3} \left(J(J+1)\right)^2 \pm \frac{128\beta^6}{\Delta E^5} \left(J(J+1)\right)^3 \quad (4.5)$$

where  $\Delta E = E_2 - E_1$  is the difference of corresponding vibrational energies. Substituting the  $\beta$  and  $\Delta E$  values we obtained in our rigorous analysis, we can evaluate the amount of contamination that arises from the truncated Taylor series expansion. The calculated coefficients of the quadratic and cubic terms in Equation 4.5 for each water state are listed in Table 4.7. These coefficients are expected to agree with the difference between the constants fitted by Cohen & Saykally [79] and by this work, because our analysis has removed the effect of this Taylor series expansion from the centrifugal distortion constants. The results for the 1<sub>10</sub> states quantitatively agree with the difference. The results for the 1<sub>01</sub> states only qualitatively agree, indicating that there might be other effects we cannot account for in our analysis. After the removal of this contamination in our nonlinear fit, we found that the centrifugal distortion coefficients of the perturbed and unperturbed states are similar. This similarity indicates that the elongation of the bond length of the complex is not severely affected by the Coriolis effect.

The interpretation of each internal  $H_2O$  state energy v from the least squares analysis is model sensitive. The rigid rotor energy term we applied, following Cohen & Saykally [79], is  $J(J+1) - 2\Omega^2$ , i.e., J(J+1) for  $\Sigma$  states and J(J+1) - 2 for  $\Pi$ states. Other models using J(J+1) [90, 93] or  $J(J+1) - \Omega^2$  [96] for all states have also been reported. Attention should be paid when comparing results retrieved from these other reports where different models were applied.

Table 4.6: Molecular constants fitted to Ar–H<sub>2</sub>O j = 1 ortho- states (rms=0.060 MHz) and comparison with the results from Cohen & Saykally [79] (rms=0.623 MHz). The  $1\sigma$  uncertainty of each constant is included in the parentheses.

|               | This             | Work             | Cohen & Saykally [79] |                  |  |  |
|---------------|------------------|------------------|-----------------------|------------------|--|--|
|               | $\Sigma(1_{01})$ | $\Pi(1_{01})$    | $\Sigma(1_{01})$      | $\Pi(1_{01})$    |  |  |
| $\nu$ (GHz)   | 0                | 345.590524(18)   | 0                     | 345.587(18)      |  |  |
| B (MHz)       | 3014.7865(17)    | 2951.6969(70)    | 3014.783(27)          | 2951.658(57)     |  |  |
| D(+) (kHz)    | 90.956(13)       | 115.713(20)      | 72.616(71)            | 135.49(40)       |  |  |
| D(-) (kHz)    |                  | 114.8240(23)     |                       | 114.76(35)       |  |  |
| H(+) (Hz)     | -4.316(61)       | -1.90(13)        | 1.25(20)              |                  |  |  |
| L(+) (mHz)    | -2.207(94)       | 1.85(27)         |                       |                  |  |  |
| $\beta$ (MHz) | 2976.4           | 2976.455(14)     |                       | 2950.84(40)      |  |  |
|               | $\Pi(1_{10})$    | $\Sigma(1_{10})$ | $\Pi(1_{10})$         | $\Sigma(1_{10})$ |  |  |
| $\nu$ (GHz)   | 637.466766(17)   | 1083.637495(35)  | 637.46708(43)         | 1083.634(18)     |  |  |
| B (MHz)       | 3037.4887(13)    | 2953.1776(31)    | 3037.476(15)          | 2953.224(66)     |  |  |
| D(+) (kHz)    | 60.824(17)       |                  | 60.44(13)             |                  |  |  |
| D(-) (kHz)    | 65.149(14)       | 98.107(76)       | 51.42(14)             | 111.75(66)       |  |  |
| H(+) (Hz)     | -18.796(92)      |                  | -21.45(28)            |                  |  |  |
| H(-) (Hz)     | -18.449(71)      | -14.97(67)       | -12.38(32)            | -23.9(22)        |  |  |
| L(+) (mHz)    | -4.54(16)        |                  |                       |                  |  |  |
| L(-) (mHz)    | -2.49(11)        | -9.2(19)         |                       |                  |  |  |
| $\beta$ (MHz) | 2862.8           | 862(17)          | 2880.7                | 8(33)            |  |  |

Table 4.7: The contamination arising from the quadratic and cubic terms in the Taylor series expansion of Equation 4.5 for Coriolis perturbed states. The contamination is compared to the discrepancy between the analyses of ours and Cohen & Saykally [79].

| Constant | State                | Cohen &       | This work    | Difference | Contamination |
|----------|----------------------|---------------|--------------|------------|---------------|
| Constant | State                | Saykally [79] | 1 IIIS WOLK  | Difference | (Eq. 4.5)     |
| -D (kHz) | $\Sigma^{+}(1_{01})$ | -72.616(71)   | -90.956(13)  | 18.340     | 30.4          |
| -D (kHz) | $\Pi^+(1_{01})$      | -135.49(40)   | -115.713(20) | -19.777    | -30.4         |
| H (Hz)   | $\Sigma^{+}(1_{01})$ | 1.25(20)      | -4.316(61)   | 5.566      | 18.0          |
| H (Hz)   | $\Pi^+(1_{01})$      |               | -1.90(13)    | 1.90       | -18.0         |
| -D (kHz) | $\Pi^{-}(1_{10})$    | -51.42(14)    | -65.149(14)  | 13.729     | 12.1          |
| -D (kHz) | $\Sigma^{-}(1_{10})$ | -111.75(66)   | -98.107(76)  | -13.643    | -12.1         |
| H (Hz)   | $\Pi^{-}(1_{10})$    | -12.38(32)    | -18.449(71)  | 6.069      | 4.0           |
| H (Hz)   | $\Sigma^{-}(1_{10})$ | -23.9(22)     | -14.97(67)   | -8.93      | -4.0          |

### 4.5 Summary

We have detected three additional vibrational-rotation-tunneling bands of the Ar-H<sub>2</sub>O ortho- state in the millimeter wavelength range. One band is assigned to the  $\Pi(1_{01}) \leftarrow \Sigma(1_{01})$  state and the other two are assigned to the  $\Pi(1_{10}) \leftarrow \Pi(1_{01})$  states with allowed symmetry. In addition, we confirmed two bands reported by Cohen et al. [77] with higher frequency resolution. The spectrum agrees well with the freerotor model of Ar-H<sub>2</sub>O. The observed bands provide direct measurement of states that were only previously accessible from frequency differences of infrared bands, thus providing additional information of Ar-H<sub>2</sub>O energy levels near the minimum of its intermolecular potential.

# Chapter 5 Global Optimization Broadband Analysis Software for Interstellar Chemistry (GOBASIC)

Due to copyright restrictions from the publisher, the full content from the original publication cannot be reproduced in this dissertation. Therefore, only a brief outline of the GOBASIC program is presented here. The reader is encouraged to be directed to the original publication [97] for more details.

# 5.1 An outline of GOBASIC

GOBASIC is the "Global Optimization Broadband Analysis Software for Interstellar Chemistry". The main goal of GOBASIC is to address the challenge of line blending and line confusion in the broadband analysis of astronomical line surveys. The conventional Boltzmann diagram method [33] may suffer from unreliable estimation of the line intensity for blended lines, because in this method the intensity is estimated manually line by line. GOBASIC uses a different approach by simulating spectral lines from multiple molecules simultaneously. This approach results in a cumulative line intensity in which the contribution of all molecules is accounted for, and therefore provides more reliable treatment for blended lines. GOBASIC is also designed to speed up the analysis of broadband astronomical line surveys by automating the fitting process.

The basis assumptions in GOBASIC are local thermodynamic equilibrium (LTE) for each molecular component, Gaussian spectral lineshape, and the optically thin limit. LTE is a fair assumption in most hot cores and hot corinos because the density of gases is sufficiently high to support collisional deexcitation. It is necessary to point out that assuming a unique temperature for each molecular component is contradictory to the LTE assumption, if the molecules spatially cohabitate and collide with each other. Despite this contradiction, it has been shown that each molecular component does have its own unique temperature [98], which is an indirect evidence of spatial separation and segregation of different molecules in star-forming regions.

GOBASIC is able to load the molecular line catalogs in the JPL/CDMS format [34, 99], which is also the output format of the CALPGM spectral fitting program [75]. This feature of GOBASIC is designed to be user-friendly since the JPL/CDMS catalogs are the standard format for spectral line catalogs in the rotational spectroscopy community. GOBASIC is written in Matlab, and uses the "pattersearch" algorithm in Matlab's Global Optimization Toolbox to perform direct least-square optimization in a parallel computing environment.

As explained in Chapter 6, GOBASIC was used to analyze broadband spectral line surveys of a set of molecule-rich astronomical sources. Initial benchmarks of GOBASIC results was performed by comparison of the Orion-KL spectrum with the results of Blake *et al.* [98] (see the original publication for details). The details of the subsequent analyses are presented in Chapter 6.

The code of the latest GOBASIC program is deposited on http://chemistry. emory.edu/faculty/widicusweaver/gobasic.html.

# Chapter 6 Broadband Line Surveys of Starforming Regions Using the Caltech Submillimeter Observatory (CSO)

# 6.1 Introduction

Nearly 200 molecules have been detected in interstellar and circumstellar environments [99], and a great fraction of these are complex organic molecules (COMs). Here, following the convention of [9], we define a COM as one containing 6 or more atoms. Laboratory, observational, and modeling studies have revealed that very little is understood about the chemical and physical mechanisms driving complex molecule formation in the interstellar medium, despite the chemical diversity confirmed in space. In fact, calculations [10] and laboratory results [100] have shown that the textbook chemical mechanisms thought to lead to complex organics in the ISM — ion-molecule and electron recombination reactions — are actually quite inefficient processes for the formation of most complex molecules. Even simple molecules like methanol present a challenge, with ion-molecule reactions accounting for only a small percentage of the methanol observed in dense clouds [14], and neutral methanol comprising only  $\sim 3\%$ of the dissociative recombination products from protonated methanol [100].

Chemical modeling suggests that reactions of simple radicals on interstellar grain surfaces may be integral to COM formation [15, 16], and that grain surface reactions are the dominant formation mechanism for many of the most abundant COMs under typical interstellar cloud conditions. Based on this type of chemistry, many other uninvestigated COMs are also predicted to be present in high abundance in hot cores. Modeling studies must be compared with observations to test the robustness of the model. Unfortunately, the subset of sources for which extensive COM inventories have been compiled is quite small. Therefore, the modeling studies have initially focused on comparisons with the Sagittarius B2(N) hot molecular core, which has the highest number of detected molecules of any sightline studied to date [101]. It can be expected that with the increase in sensitivity and bandwidth offered by the Stratospheric Observatory for Infrared Astronomy (SOFIA) and the Atacama Large Millimeter Array (ALMA), more COMs will be detected in all interstellar environments.

Before a full understanding of interstellar organic chemistry can be obtained, we must test these models against observations to gain a comprehensive view of the possible chemical and physical parameter space for interstellar clouds. Previously, molecular searches largely consisted of targeted searches focusing on only the most abundant molecules, or on molecules that were high-priority targets. Unbiased, selfconsistent, broadband spectral line surveys, however, are more effective in determining the true composition of interstellar clouds as they allow acquisition of spectral data over large frequency ranges and sample many transitions of each molecule. Such surveys will also guide observations at higher frequencies with the next generation of far-infrared telescopes such as SOFIA and ALMA by identifying the sources that have the richest chemical inventory.

We present here the first results from our molecular line survey observations using two broadband  $\lambda = 1.3$  mm receivers at the Caltech Submillimeter Observatory (CSO). The goal of this program is to conduct deep, broadband spectral line surveys of interstellar clouds to probe the influence of physical environment on molecular complexity. We are observing a wide variety of sources in an attempt to correlate the relative abundances of organic molecules with the physical properties of the source (i.e., temperature, density, dynamics, etc.). Our broader research goal is to improve astrochemical models to the point where accurate predictions of complex molecular inventory can be made based on physical and chemical environment of a given source. The information gained from our observations will serve as a benchmark for these astrochemical models and holds the promise of significantly advancing our understanding of interstellar chemical processes. We report here on the details of the observations, the spectral analysis process, and the initial results for the molecular species that contribute significantly to the spectral line density in this spectral regime.

#### 6.2 Observations and data reduction

The observations were performed with the 10.4 m Leighton Telescope at the Caltech Submillimeter Observatory<sup>1</sup> (CSO). Observations were performed between 2007 September and 2013 June. The nominal source positions and values for  $v_{lsr}$  assumed are listed in Table 6.1. Typical system temperatures  $(T_{sys})$  during the observations were <400 K;  $T_{sys}$  was higher during periods of high opacity, but did not exceed 1100 K.

Observations were performed using two sets of receivers and spectrometers. The first was a prototype 230 GHz wideband receiver [102, 103], which was used with the facility acousto-optical spectrometer (AOS). The receiver has a 12 GHz bandwidth, but the total bandwidth for the observations was limited by the AOS to 4 GHz, with a channel width of ~0.65 MHz. The second receiver was the facility 230 GHz wideband receiver [104], used with the facility Fast Fourier Transform Spectrometer (FFTS). The receiver is a fully synthesized, dual frequency, tuneless wide-IF bandwidth (4–8 GHz) system; the total bandwidth for the observations was limited by the FFTS to 4 GHz, with a channel width of ~0.27 MHz.

All collected spectra were double sideband (DSB). A set of rest frequencies in the range 223.192 – 251.192 GHz were chosen, with each rest frequency setting being separated by 4 GHz. Each frequency point was sampled with a minimum redundancy of six to ensure sufficient sampling for deconvolution of the DSB spectra; most frequencies were sampled with a redundancy of eight. To achieve this redundancy, four IF

 $<sup>^1{\</sup>rm The}$  CSO was operated by the California Institute of Technology under contract from the National Science Foundation

| Source Name                  | Source Type          | $\alpha$ (J2000) | $\delta$ (J2000)  | $v_{lsr}$                           |
|------------------------------|----------------------|------------------|-------------------|-------------------------------------|
|                              |                      |                  | / /               | $(\mathrm{km}\cdot\mathrm{s}^{-1})$ |
| $W3(H_2O)$                   | Hot core             | 2:27:04.61       | +61:52:25.0       | -47.0                               |
| L1448 MM-1                   | Outflow + Class 0    | 3:25:38.80       | +30:44:05.0       | 0.0                                 |
| NGC 1333 IRAS 2A             | Hot corino           | 3:28:55.40       | +31:14:35.0       | 7.8                                 |
| NGC 1333 IRAS 2B             | Hot corino           | 3:28:57.24       | +31:11:14.0       | 7.0                                 |
| NGC 1333 IRAS 4A             | Hot corino           | 3:29:10.30       | +31:13:31.0       | 6.8                                 |
| NGC 1333 IRAS 4B             | Hot corino           | 3:29:11.99       | +31:13:08.9       | 5.0                                 |
| B1-b                         | Pre-stellar core     | 3:33:20.80       | +31:07:40.0       | 0.39                                |
| Orion-KL                     | Hot core             | 5:35:14.16       | -05:22:21.5       | 8.0                                 |
| NGC 2264 MM3                 | Hot core             | 6:41:12.00       | +9:29:09.0        | 7.6                                 |
| NGC6334-29                   | Class 0 protostar    | 17:19:57.00      | -35:57:51.0       | -5.0                                |
| NGC6334-38                   | Class 0 protostar    | 17:20:18.00      | -35:54:42.0       | -5.0                                |
| NGC6334-43                   | Class 0 protostar    | 17:20:23.00      | -35:54:55.0       | -2.6                                |
| NGC6334-I(N)                 | Class 0 protostar    | 17:20:55.00      | -35:45:40.0       | -2.6                                |
| Sgr B2(N-LMH)                | Hot core             | 17:47:19.89      | -28:22:19.3       | 64                                  |
| GCM + 0.693 - 0.027          | Shocked region       | 17:47:21.86      | -28:21:27.1       | 68.0                                |
| GAL $10.47 + 00.03$          | Hot core             | 18:08:38.40      | -19:51:51.8       | 67.8                                |
| GAL 12.21-0.10               | HII region           | 18:12:39.70      | -18:24:20.9       | 24.0                                |
| GAL 12.91-00.26              | Hot core             | 18:14:39.00      | -17:52:0.30       | 37.5                                |
| HH 80-81                     | Outflow              | 18:19:12.30      | -20:47:27.5       | 12.2                                |
| GAL 19.61-0.23               | Hot core             | 18:27:37.99      | -11:56:42.0       | 40.0                                |
| $G24.33{+}00.11 \text{ MM1}$ | Hot core             | 18:35:08.14      | -7:35:01.1        | 113.4                               |
| GAL 24.78+0.08               | Hot core             | 18:36:12.60      | -7:12:11.0        | 111.0                               |
| GAL 31.41+0.31               | Hot core             | 18:47:34.61      | -1:12:42.8        | 97.0                                |
| GAL 034.3+00.2               | Hot core             | 18:53:18.54      | +1:14:57.9        | 58.0                                |
| GAL $45.47 + 0.05$           | Hot core             | 19:14:25.60      | +11:09:26.0       | 62.0                                |
| W51                          | Hot core             | 19:23:43.50      | +14:30:34.0       | 55.0                                |
| GAL 75.78+0.34               | HII region           | 20:21:44.09      | $+37{:}26{:}39.8$ | 4.0                                 |
| W75N                         | Hot core             | 20:38:36.60      | +42:37:32.0       | 10.0                                |
| DR21(OH)                     | Hot core             | 20:39:01.10      | +42:22:49.1       | -3.0                                |
| L1157-MM                     | Class $0 + $ outflow | 20:39:06.20      | +68:02:16.0       | 2.7                                 |
| NGC 7538                     | Hot core             | 23:13:45.70      | +61:28:21.0       | -57.0                               |

Table 6.1: Sources, positions, and velocities used in the CSO observations.

offsets (4.254, 6.754, 5.268, and 7.795 GHz) were applied to each rest frequency, and DSB spectra were collected at each of these frequency settings. Additional IF offsets of 6.283, 4.753, 5.767, and 7.269 GHz were applied to the two lowest rest frequency settings. The number of DSB spectra acquired for each source varied, depending on weather conditions and the amount of available observing time.

Spectral intensities for the raw data were calibrated using the standard chopper wheel calibration method and placed on the atmosphere-corrected temperature scale,  $T_a^*$ . The chopper settings used were either 70 ± 8" of throw with a chopping frequency of 1.123 Hz or 90 ± 8" of throw with a chopping frequency of 1.1 Hz. The estimated percent calibration error in antenna temperature is <20%, based on previous experience with this hardware. Integration times were adjusted based on the  $T_{sys}$  determined after tuning the receiver to a given frequency setting (i.e., for one set of rest frequency and IF values), such that the noise level achieved for a given frequency setting was ~30 mK. Pointing was verified on average every two hours, and pointing offsets were consistent to within  $\leq 5$ " over the course of a given night. As an independent verification of the pointing accuracy, each spectrum was checked against previous spectra recorded for consistency in spectral line intensity. The fullwidth-half-power beam size at 230 GHz was determined to be 33.4" for the prototype receiver, and 35.54" for the facility receiver.

Spectral cleaning and deconvolution was achieved using the CLASS software package included in the GILDAS suite of programs (Institut de Radioastronomie Millimétrique, Grenoble, France). Baselines were fitted and removed from each DSB spectrum using a first degree baseline function. In cases where line density precluded a reliable baseline fit, a constant offset was subtracted from the  $T_a^*$  scale. This offset was determined through comparison to the baseline in neighboring spectral windows. In addition to baseline subtraction, some spurious noise features were present in the spectra, but their identification was straightforward because they were significantly narrower than the spectral linewidths. Such noise features were removed from the spectra by blanking the affected channels prior to processing. After baseline subtraction and removal of noise features, the spectra were resampled at a uniform channel spacing of 1 MHz. The deconvolution was performed using the standard routine included in CLASS. An initial deconvolution was performed assuming no gain variations between the upper and lower sidebands. This was then used as an initial guess to constrain a second deconvolution allowing for varying gains between sidebands. Due to the nature of the algorithm used, extremely strong lines in the spectrum can produce ghosts visible above the final residual noise. Therefore, the CO line at 230.5 GHz and other strong spectral features with intensities above 2 K were masked during deconvolution and later stitched back into the spectrum to prevent the introduction of spurious features. After deconvolution was completed, it was found that a few strong features in the image sideband produced ghosts which appear as negative features in the deconvolved spectrum. These features were blanked in the deconvolved spectrum. After deconvolution, all intensities were corrected to the main beam temperature scale,  $T_{mb}$ , using the relation  $T_{mb} = T_a^*/\eta_{mb}$ . The root-mean-squared noise in the deconvolved spectra was determined to be  $\leq 25$  mK on the  $T_{mb}$  scale.

### 6.3 Line identification and analysis

The deconvolved spectra are near the line confusion limit for many of these sources. Detailed spectral analysis using the traditional Boltzmann diagram approach was therefore quite challenging. Such analyses are often unreliable because they are conducted one molecule at a time using a small set of lines for which line widths are determined independently and do not account for possible line blending. We have therefore developed a new program that analyzes all of the lines from one molecule across the entire broadband spectrum simultaneously. This Global Optimization and Broadband Analysis Software for Interstellar Chemistry (GOBASIC) is described in detail elsewhere [97]. In short, the software assumes local thermodynamic equilibrium (LTE) and Gaussian lineshapes, and conducts a simultaneous, multi-molecule, multi-component, broadband spectral analysis. We used published line surveys for Sgr B2(N) [105] and Orion-KL [98, 106, 107] to guide the initial list of molecules that were included for the analysis for this dataset. We imported spectral line catalogs from the Cologne Database for Molecular Spectroscopy (CDMS) [99] and the Jet Propulsion Laboratory (JPL) Spectral Line Catalog [34]. Unless combined in the JPL/CDMS catalog files, individual vibrational states were treated as unique molecular components. In the case where multiple databases contained information for a given molecule suitable for an LTE analysis, we used the catalog that had most recently been revised and updated according to the online documentation.

The partition function interpolation required for such an analysis is not trivial for many molecules. In order to match line intensities tabulated in the JPL/CDMS catalogs, we used the tabulated partition function values provided by these databases along with the molecular catalogs. These partition function values are determined from direct summations of Boltzmann factors of all accessible energy levels in the catalog. These values are provided in the documentation for each molecule at several specific temperature points spanning from 10 K to 300 K. Blake *et al.* showed that for either linear or nonlinear molecules, their pure rotational partition function  $Q_{\rm rot}(T)$  is always proportional to T or  $T^{3/2}$  [98]. Unfortunately, we discovered that this pure rotational model did not always describe the tabulated partition function values provided by JPL/CDMS, especially for molecules that possess significant internal motions, and for catalogs (and thus partition function values) merging multiple vibrational states together. Therefore, we adopted a general functional form

$$Q(T) = \alpha T^{\beta} [\gamma + \exp(\epsilon/T)]$$
(6.1)

for our partition function interpolation. This functional form consists of two terms: a pure  $Q_{\rm rot}$  term, and a  $Q_{\rm rot}$  combined with a Boltzmann factor for a vibrational state.

When fixing part of the 4 coefficients to specific values, this functional form reduces to simpler cases. For example, a pure  $Q_{\rm rot}$  term is derived when  $\gamma = \epsilon = 0$ . For each molecule to be analyzed, we minimized the coefficients to be fitted in Equation 6.1, only adding additional terms if necessary to obtain a reliable fit. Since the partition function values span several orders of magnitude, the residual may not be reliable to evaluate the goodness of the interpolation. Instead, we simply examined the range of the relative deviation between the interpolated values and the tabulated values. This relative deviation is defined as  $\delta = Q_{\rm interpolated}/Q_{\rm tabulated} - 1$ . The line catalogs, their databases and versions, the coefficients for the partition function interpolation, and the relative deviation range of our interpolation, are summarized in Table 6.2.

| Molecule            | Formula                          | Database     | Version    |
|---------------------|----------------------------------|--------------|------------|
| Acetaldehyde        | CH <sub>3</sub> CHO              | JPL          | Jan 2012   |
| Acetone             | $CH_3COCH_3$                     | $_{\rm JPL}$ | Mar 2008   |
| Carbon Monosulfide  | CS                               | CDMS         | Oct 2008   |
| Carbon Monosulfide  | $^{13}CS$                        | CDMS         | Jan 2004   |
| Carbon Monosulfide  | $^{13}\mathrm{C}^{34}\mathrm{S}$ | CDMS         | Jan 2004   |
| Carbon Monosulfide  | $C^{33}S$                        | CDMS         | Jan 2004   |
| Carbon Monosulfide  | $\rm C^{34}S$                    | CDMS         | Jan 2004   |
| Carbon Monoxide Ion | $\mathrm{CO}^+$                  | CDMS         | Aug 2013   |
| Carbonyl Sulfide    | OCS                              | CDMS         | Nov 2005   |
| Carbonyl Sulfide    | $\rm OC^{34}S$                   | CDMS         | Apr 2005   |
| Cyanide Radical     | $CN (^{2}\Sigma^{+})$            | CDMS         | May 2005   |
| Diazenylium         | $N_2 D^+$                        | CDMS         | Mar 2009   |
| Dimethyl Ether      | $\overline{CH}_{3}OCH_{3}$       | CDMS         | Nov 2011   |
| Ethanol             | $C_2H_5OH$                       | $_{\rm JPL}$ | Apr $2008$ |
| Ethenone (Ketene)   | $H_2CCO$                         | CDMS         | Nov 2003   |
| Ethenone (Ketene)   | HDCCO                            | CDMS         | Jan 2006   |
| Ethenone (Ketene)   | $D_2CCO$                         | CDMS         | Jan 2006   |
| Ethyl Cyanide       | $C_2H_5CN$                       | $_{\rm JPL}$ | Jul 2009   |
| Ethynyl             | CCH                              | CDMS         | Jul 2010   |
| Formaldehyde        | ${\rm H}^{13}_{2}{\rm CO}$       | $_{\rm JPL}$ | Oct 2005   |
| Formaldehyde        | H <sub>2</sub> CO                | CDMS         | Aug 2005   |
| Formaldehyde        | HDCO                             | CDMS         | Feb 2000   |
| Formamide           | $\rm NH_2CH(O)$                  | CDMS         | Apr 2003   |

Table 6.2: Summary of the line catalog information. The molecules are sorted alphabetically by their chemical names.

Continued on next page

| Table 6.2           | - Continued from pre            | evious page  |              |
|---------------------|---------------------------------|--------------|--------------|
| Molecule            | Chemical Formula                | Database     | Version      |
| Formic Acid         | trans-HCOOH                     | CDMS         | Jul 2003     |
| Formyl Cation       | $\mathrm{HCO}^+$                | CDMS         | $Oct \ 2007$ |
| Formyl Cation       | $\mathrm{HC}^{18}\mathrm{O}^+$  | $_{\rm JPL}$ | Dec 1983     |
| Formyl Cation       | $\mathrm{H}^{13}\mathrm{CO}^+$  | CDMS         | Oct~2007     |
| Formyl Radical      | HCO                             | $_{\rm JPL}$ | Aug 1983     |
| Hydrogen Cyanide    | HCN                             | CDMS         | May 2007     |
| Hydrogen Cyanide    | $\mathrm{H}^{13}\mathrm{CN}$    | CDMS         | Nov 2014     |
| Hydrogen Cyanide    | $\mathrm{HC}^{15}\mathrm{N}$    | CDMS         | Aug 2005     |
| Hydrogen Isocyanide | $\mathrm{HN}^{13}\mathrm{C}$    | $_{\rm JPL}$ | Dec 1979     |
| Hydrogen Sulfide    | $H_2S$                          | CDMS         | Oct 2008     |
| Isocyanic Acid      | HNCO                            | CDMS         | May 2009     |
| Isocyanide          | DNC                             | CDMS         | Sep 2009     |
| Methanethiol        | $CH_3SH$                        | CDMS         | Jan 2012     |
| Methanol            | CH <sub>3</sub> OH              | JPL          | Mar 2010     |
| Methanol            | CH <sub>2</sub> DOH             | JPL          | Jun 2012     |
| Methanol            | $^{13}\tilde{CH_{2}OH}$         | CDMS         | Dec 2002     |
| Methenamine         | CH <sub>2</sub> NH              | $_{\rm JPL}$ | Jan 1981     |
| Methyl Cyanide      | CH <sub>2</sub> CN              | CDMS         | Nov 2016     |
| Methyl Cyanide      | $CH_{2}CN (v_{8}=1)$            | CDMS         | Nov 2016     |
| Methyl Cvanide      | CH <sup>13</sup> CN             | CDMS         | Dec 2009     |
| Methyl Cyanide      | $^{13}CH_{2}CN$                 | CDMS         | Dec 2009     |
| Methyl Formate      | HCOOCH,                         | $_{\rm JPL}$ | Apr 2009     |
| Methylamine         | CH <sub>2</sub> NH <sub>2</sub> | JPL          | Jan 2009     |
| Nitric Oxide        | NO                              | $_{\rm JPL}$ | Oct 2010     |
| Nitrogen Sulfide    | NS                              | JPL          | Feb 1995     |
| Nitrogen Sulfide    | $ m N^{34}S$                    | CDMS         | Aug 2011     |
| Propyne             | CH <sub>2</sub> CCH             | CDMS         | Aug 2008     |
| Propyne             | CH <sub>2</sub> CCD             | CDMS         | Apr 2002     |
| Propyne             | CH_DCCH                         | CDMS         | Apr 2002     |
| Propynenitrile      | HCCCN                           | CDMS         | Oct $2000$   |
| Propynenitrile      | HCCCN $(v_7 = 1)$               | CDMS         | Oct 2000     |
| Propynenitrile      | H <sup>13</sup> CCCN            | JPL          | Dec 1979     |
| Propynenitrile      | $HC^{13}CCN$                    | JPL          | Dec 1979     |
| Propynenitrile      | $HCC^{13}CN$                    | JPL          | Dec 1979     |
| Silicon Monoxide    | SiO                             | JPL          | Jan 1984     |
| Sulfur Dioxide      | SO                              | CDMS         | Jul 2005     |
| Sulfur Dioxide      | 33SO                            | JPL          | Nov 1996     |
| Sulfur Dioxide      | $^{34}SO_{2}$                   | JPL          | Nov 1996     |
| Sulfur Monoxide     | SO                              | CDMS         | Aug 1998     |
| Sulfur Monoxide     | <sup>~~</sup> <sup>33</sup> SO  | CDMS         | Aug 1998     |
| Sulfur Monoxide     | 34SO                            | CDMS         | Aug 1998     |
| Sulfur Monoxide Ion | $\widetilde{\mathrm{SO}^+}$     | JPL          | Dec 1996     |
|                     |                                 | 01.17        | 200 1000     |

Table 6.2 – Continued from previous page

Continued on next page

| Molecule         | Chemical Formula  | Database     | Version  |
|------------------|-------------------|--------------|----------|
| Thioformaldehyde | H <sub>2</sub> CS | CDMS         | Feb 2008 |
| Thioformaldehyde | HDCS              | CDMS         | May 2004 |
| Thioformaldehyde | $H_2C^{34}S$      | CDMS         | Feb 2006 |
| Thiomethylium    | $\mathrm{HCS}^+$  | CDMS         | Jun 2003 |
| Vinyl Cyanide    | $C_2H_3CN$        | $_{\rm JPL}$ | Oct 2009 |
| Water            | HDO               | JPL          | Oct 1989 |

Table 6.2 – Continued from previous page

Table 6.3: Interpolated coefficients and relative deviations from catalogs for molecules listed in Table 6.2 using the partition function form Eq. 6.1.

| Chemical Formula                 | α         | β   | $\gamma$ | ε         | $\delta_{\min}$ (%) | $\delta_{\max}$ (%) |
|----------------------------------|-----------|-----|----------|-----------|---------------------|---------------------|
| CH <sub>3</sub> CHO              | 17.1065   | 1.5 | 0.5489   | -256.2868 | -0.51               | 0.27                |
| $CH_3COCH_3$                     | 15274.522 | 1.5 | 0.0165   | -527.2334 | -12.48              | 27.87               |
| $\operatorname{CS}$              | 0.8510    | 1   | 0        | 0.3957    | -0.10               | 0.06                |
| $^{13}CS$                        | 1.8034    | 1   | 0        | 0.3631    | -0.07               | 0.04                |
| $^{13}\mathrm{C}^{34}\mathrm{S}$ | 0.9171    | 1   | 0        | 0.3593    | -0.04               | 0.03                |
| $ m C^{33} m S$                  | 3.4325    | 1   | 0        | 0.3845    | -0.04               | 0.03                |
| $ m C^{34}S$                     | 0.8650    | 1   | 0        | 0.3790    | -0.07               | 0.04                |
| $\mathrm{CO}^+$                  | 0.7105    | 1   | 0        | 0.9603    | -4.04               | 0.63                |
| OCS                              | 3.4361    | 1   | 0        | 0         | -0.75               | 0.21                |
| $OC^{34}S$                       | 3.5220    | 1   | 0        | 0         | -0.73               | 0.21                |
| $CN(^{2}\Sigma^{+})$             | 2.2040    | 1   | 0        | 0.9449    | -0.26               | 0.33                |
| $N_2D^+$                         | 4.9476    | 1   | 0        | 0         | -4.80               | 1.51                |
| $CH_3OCH_3$                      | 91.2742   | 1.5 | 0        | 0         | -1.80               | 4.00                |
| $C_2H_5OH$                       | 6.6674    | 1.5 | 0.4972   | -59.8213  | -0.11               | 0.17                |
| $H_2CCO$                         | 1.0186    | 1.5 | 1        | -3.8746   | -8.45               | 11.59               |
| HDCCO                            | 1.2928    | 1.5 | 0        | 0         | -1.03               | 0.32                |
| $D_2CCO$                         | 2.4272    | 1.5 | 0        | 0.0000    | -2.79               | 0.63                |
| $C_2H_5CN$                       | 7.1989    | 1.5 | 0        | 0         | -0.38               | 0.17                |
| CCH                              | 1.9078    | 1   | 0        | 0.7175    | -0.13               | 0.16                |
| $H_2CO$                          | 0.2791    | 1.5 | 1        | -2.1456   | -9.43               | 14.90               |
| HDCO                             | 0.3694    | 1.5 | 0        | 0.7692    | -2.54               | 3.62                |
| $\mathrm{H}_{2}^{13}\mathrm{CO}$ | 0.2903    | 1.5 | 1        | -2.7718   | -4.11               | 2.85                |
| $\rm NH_2CH(O)$                  | 1.8945    | 1.5 | 0        | 0         | -4.55               | 1.15                |
| trans-HCOOH                      | 1.7189    | 1.5 | 0        | 0         | -1.20               | 0.38                |
| $\mathrm{HCO}^+$                 | 0.4671    | 1   | 0        | 0.7344    | -0.14               | 0.17                |
| $\mathrm{HC^{18}O^{+}}$          | 0.4894    | 1   | 0        | 0.6847    | -0.01               | 0.02                |
| $\mathrm{H}^{13}\mathrm{CO}^+$   | 0.4802    | 1   | 0        | 0.7143    | -0.12               | 0.15                |
| HCO                              | 0.5697    | 1.5 | 0        | 1.8171    | -2.27               | 4.02                |
| HCN                              | 1.4357    | 1   | 0        | 0         | -5.69               | 1.55                |

Continued on next page

Table 6.3 – Continued from previous page

| Chemical Formula                  | $\alpha$ | $\beta$ | $\gamma$ | $\epsilon$ | $\delta_{\min}$ (%) | $\delta_{\max}$ (%) |
|-----------------------------------|----------|---------|----------|------------|---------------------|---------------------|
| $\mathrm{H}^{13}\mathrm{CN}$      | 1.4489   | 1       | 0        | 0.6870     | -0.12               | 0.05                |
| $\mathrm{HC}^{15}\mathrm{N}$      | 0.4892   | 1       | 0        | 0          | -2.64               | 0.78                |
| $\mathrm{HN}^{13}\mathrm{C}$      | 0.4889   | 1       | 0        | 0          | -5.20               | 1.95                |
| $H_2S$                            | 0.1015   | 1.5     | 0        | 0          | -5.25               | 2.55                |
| HNCO                              | 0.4451   | 1.5242  | 0        | 2.8006     | -7.77               | 5.17                |
| DNC                               | 0.5460   | 1       | 0        | 0.6251     | -0.09               | 0.11                |
| $CH_3SH$                          | 46.0687  | 1.7072  | 0.1085   | -1244.7174 | -16.44              | 29.21               |
| $CH_{3}OH$                        | 1.8680   | 1.7336  | 0.2229   | -1005.6869 | -3.17               | 3.14                |
| $\rm CH_2 DOH$                    | 0.5941   | 1.7821  | 0        | 0          | -4.97               | 5.51                |
| $^{13}\mathrm{CH}_{3}\mathrm{OH}$ | 1.2810   | 1.7314  | 0.3372   | -929.5959  | -3.12               | 3.13                |
| $CH_2NH$                          | 1.1497   | 1.5     | 0        | 0          | -3.52               | 1.19                |
| $CH_3CN$                          | 1.9286   | 1.5     | 0        | 1.2952     | -1.94               | 2.11                |
| $CH_3CN (v_8 = 1)$                | 0.1464   | 2.1176  | 0        | -481.7178  | -10.57              | 5.61                |
| $\mathrm{CH}^{13}_{3}\mathrm{CN}$ | 1.9251   | 1.5     | 0        | 1.2743     | -1.28               | 1.79                |
| <sup>13</sup> CH <sub>3</sub> CN  | 2.0506   | 1.5     | 0        | 0          | -10.77              | 2.30                |
| HCOOCH <sub>3</sub>               | 25.2869  | 1.5     | 0.9900   | -190.5726  | -0.30               | 0.22                |
| $CH_3NH_2$                        | 23.9534  | 1.5     | 0        | 0          | -0.20               | 0.23                |
| NO                                | 0.9345   | 1.2435  | 0        | 6.2186     | -4.16               | 3.89                |
| NS                                | 2.6639   | 1.1673  | 0        | 3.1202     | -4.17               | 4.36                |
| $N^{34}S$                         | 3.9120   | 1.0988  | 0        | 1.6296     | -6.92               | 8.19                |
| CH <sub>3</sub> CCH               | 1.0301   | 1.5     | 1        | 2.4731     | -1.02               | 1.57                |
| CH <sub>3</sub> CCD               | 1.1330   | 1.5     | 1        | 2.4383     | -1.02               | 1.57                |
| CH <sub>2</sub> DCCH              | 1.8964   | 1.5     | 0        | 0          | -0.91               | 0.29                |
| HCCCN                             | 4.6073   | 1       | 0        | 0          | -2.07               | 0.53                |
| HCCCN $(v_7 = 1)$                 | 9.1357   | 1       | 0        | -321.0257  | -0.01               | 0.00                |
| H <sup>13</sup> CCCN              | 14.2113  | 1       | 0        | 0          | -0.53               | 0.20                |
| $\mathrm{HC}^{13}\mathrm{CCN}$    | 13.8318  | 1       | 0        | 0          | -0.54               | 0.21                |
| $\mathrm{HCC}^{13}\mathrm{CN}$    | 13.8295  | 1       | 0        | 0          | -0.56               | 0.21                |
| SiO                               | 0.9693   | 1       | 0        | 0          | -2.69               | 1.25                |
| $SO_2$                            | 1.1492   | 1.5     | 0        | 0          | -3.94               | 1.01                |
| $^{33}\mathrm{SO}_2$              | 4.6045   | 1.5     | 0        | 0          | -0.95               | 0.30                |
| $^{34}\mathrm{SO}_2$              | 1.1608   | 1.5     | 0        | 0          | -0.95               | 0.30                |
| SO                                | 1.4598   | 1       | 1        | -16.7494   | -1.19               | 1.95                |
| $^{33}SO$                         | 5.8908   | 1       | 1        | -16.7632   | -0.89               | 2.16                |
| $^{34}SO$                         | 1.4851   | 1       | 1        | -16.7767   | -0.83               | 2.36                |
| $\mathrm{SO}^+$                   | 1.9142   | 1       | 0        | 0.0914     | -8.00               | 5.28                |
| $H_2CS$                           | 0.5848   | 1.5     | 1        | -3.2965    | -9.84               | 13.46               |
| HDCS                              | 0.7709   | 1.5     | 0        | 0          | -1.73               | 0.55                |
| $H_2C^{34}S$                      | 0.6004   | 1.5     | 1        | -3.6703    | -4.28               | 3.12                |
| $\mathrm{HCS}^+$                  | 0.9871   | 1       | 0        | 0          | -2.55               | 0.90                |
| $C_2H_3CN$                        | 29.1521  | 1.5     | 0.5212   | -396.4232  | -0.31               | 0.21                |
| HDO                               | 0.0273   | 1.5     | 0        | 4.7166     | -2.85               | 5.14                |

The values for the source velocity,  $v_{lsr}$ , were set to those listed in Table 6.1 based on information available in the literature. The column density  $(N_{\rm T})$ , rotational temperature  $(T_{\rm rot})$ , line width (characterized as the full-width-half-maximum (FWHM)), and red shift  $\delta V$  with respect to the source  $v_{lsr}$  were determined iteratively for each molecule using the procedures outlined in [97]. In brief, 4 steps were followed for each source. Firstly, spectral lines from CO, <sup>13</sup>CO, C<sup>17</sup>O, and C<sup>18</sup>O were flagged in GOBASIC because of their large intensity and non-Gaussian line shapes. Data in the frequency windows of these 4 lines were omitted in the least-squares fit. Secondly, strong spectral features arising from ubiquitous small molecules, such as CS, CN, CCH, and HCN, were fitted with arbitrary temperature and column density in GOBASIC to achieve only a best fit model for the emission. These molecules only present a few lines in the observed frequency range, and therefore the information is not sufficient to perform an LTE analysis. Nonetheless, their flux was properly accounted for in the analysis by using the arbitrarily fitted parameters. After that, each target molecule was fit using GOBASIC with the inclusion of the results from the second step. In this process, we determined which molecules were unambiguously detected in a source, and we obtained a coarse estimation of their LTE parameters. In the final step, all detected target molecules were fit simultaneously in GOBASIC, using their LTE parameters obtained from the third step as the initial guess. The convergence requirement for the change of r.m.s of the residual and the change of parameter vector were both set to  $< 10^{-6}$  in GOBASIC, with the exception of a few extremely complex sources such as Orion-KL and GAL 10.47+00.03, to which a looser requirement was applied. Caution was taken to make sure the final results did not hit boundaries of the searching parameter space, with the exception of those cases that are specified later in the text. Spectral lines with uncertainties over 1 MHz in the catalog were discarded in our analysis to avoid unreliable assignments. Not all

sources listed in Table 6.1 have interferometric data available in the 1.3 mm band. As a consequence, for consistency, beam dilution effect was not accounted for in our analysis, despite the ability of GOBASIC to do so. Uncertainties for the final parameters were determined from the quality of the fit as described by [97], using  $10^{-3}$  as the grid size for its numerical gradient calculation.

#### 6.4 Results

Due to the highly collaborative nature of this project, many others have contributed to the observations and reduction of the raw data. The discussion here will therefore only focus on the results of the analysis that I performed, rather than give a comprehensive comparison to the literature and discussion of the astrophysical implications. Those additional aspects of this project go well beyond the scope of this dissertation.

The baseline-subtracted, deconvolved spectra for the 31 star-forming regions are shown in Figure 6.1. The spectra are plotted with intensity in the unit of antenna temperature, and sorted from high flux on the top to low flux on the bottom. The spectral coverage is 220–267 GHz in general, with individual variations up to 10 GHz depending on the specific spectral coverage obtained for that source. The Orion-KL survey is particularly short relative to the others, because it was used only as a benchmark to test receiver operation and deconvolution reliability. Given the extensive literature related to Orion-KL [107–128], no new astrochemical information was expected to be gained from its analysis. Likewise, although Sgr B2(N) is included here, a full analysis was not performed, because it has been so extensively studied by other groups [105, 129–146].

In all sources, the CO isotopologue lines, including CO at 230.5 GHz, <sup>13</sup>CO at 220.4 GHz, C<sup>17</sup>O at 224.7 GHz, and C<sup>18</sup>O at 219.6 GHz, are ubiquitously observed. Other strong spectral features include the H<sub>2</sub>CO  $3_{1,2} \rightarrow 2_{1,1}$  line at 225.7 GHz, the CN



Figure 6.1: Deconvolved CSO spectra of 31 star-forming regions.

 $N = 2 \rightarrow 1$  hyperfine lines at 226 GHz, the methyl cyanide  $J = 13 \rightarrow 12$  Q-branch at 239 GHz, the CS  $J = 5 \rightarrow 4$  line at 244.9 GHz, methanol  $J = 5 \rightarrow 4$  Q-branch around 242 GHz and  $K_a = 3 \rightarrow 2$  R-branch around 252 GHz, the CCH  $N = 3 \rightarrow 2$ hyperfine lines at 262.1 GHz, and the HCN  $J = 3 \rightarrow 2$  line at 265.9 GHz. Because of the source-to-source variation of the spectral coverage, molecules such as HCN and HCO<sup>+</sup> are undetected in some sources simply because their lines are outside of the observed spectral window. This non-detection due to the limited spectral range is distinguished from the non-detection due to weak spectral intensity, which impacts the interpretation of the chemistry in these sources.

The full result of the LTE analysis of all detected molecules in the 31 sources (i.e., excluding Sgr B2(N)) is presented in Table 6.4, which is printed in a machine-readable format in Appendix C. The four LTE parameters for each detected molecule are the column density  $N_{\rm T}$  in cm<sup>-2</sup>, the rotational temperature  $T_{\rm rot}$  in K, the FWHM in km·s<sup>-1</sup>, and the red shift with respect to  $v_{lsr}$ ,  $\delta v$ , in km·s<sup>-1</sup>. Only molecules with more than three clean lines at different upper state energies can be fit to a reliable  $T_{\rm rot}$ . Other small molecules are fit with arbitrary  $N_{\rm T}$  and  $T_{\rm rot}$ , and their associated uncertainties may be unphysically large. Figure 6.2 shows a sample frequency window, in which the molecular components fitted in the global LTE analysis are plotted. The spectrum from NGC 1333 IRAS 2B is omitted because we did not find any molecular lines in this source.

Due to the complexity of the physical environment in most of these sources, molecules have a wide range of rotational temperatures and FWHMs. It is to be expected given that many of these sources have been shown through interferometric studies to have multiple kinematic components [122, 147, 148]. Therefore, no upperlimit calculations were performed on undetected molecules. Instead, we simply report a non-detection. It is important to mention that these non-detections can be interpreted in various ways. The insufficient spectral line intensity could come from a low



Figure 6.2: Sample frequency window of molecular components fitted in the global LTE analysis. The  $CH_3OH$  line at 250510 MHz is non-LTE. Continued on next page.



Figure 6.2: Sample frequency window of molecular components fitted in the global LTE analysis. The  $CH_3OH$  line at 250510 MHz is non-LTE. Continued on next page.



Figure 6.2: Sample frequency window of molecular components fitted in the global LTE analysis. The  $CH_3OH$  line at 250510 MHz is non-LTE. Continued on next page.



Figure 6.2: Sample frequency window of molecular components fitted in the global LTE analysis. The  $CH_3OH$  line at 250510 MHz is non-LTE. Continued on next page.



Figure 6.2: Sample frequency window of molecular components fitted in the global LTE analysis. The  $CH_3OH$  line at 250510 MHz is non-LTE.

Table 6.4: Detected molecules in 31 sources, their LTE parameters, and associated  $1\sigma$  uncertainties. The four LTE parameters are the column density  $N_{\rm T}$ in cm<sup>-2</sup>, the rotational temperature  $T_{\rm rot}$  in K, the FWHM in km·s<sup>-1</sup>, and the red shift with respect to  $v_{lsr}$ ,  $\delta v$ , in km·s<sup>-1</sup>. Only molecules with more than three clean lines at different upper state energies can be fit to a reliable  $T_{\rm rot}$ . Other small molecules are fit with arbitrary  $N_{\rm T}$  and  $T_{\rm rot}$ , and their associated uncertainties may be unphysically large.<sup>a</sup>

| Source   | Molecule               | $N_{\rm T}~({\rm cm}^{-2})$ | $T_{\rm rot}$ (K) | FWHM                                | $\delta v$                          |
|----------|------------------------|-----------------------------|-------------------|-------------------------------------|-------------------------------------|
|          |                        |                             |                   | $(\mathrm{km}\cdot\mathrm{s}^{-1})$ | $(\mathrm{km}\cdot\mathrm{s}^{-1})$ |
| B1-b     | SO                     | $6 \pm 1 \times 10^{13}$    | $9.9\pm0.5$       | $1.2 \pm 0.0$                       | $6.7 \pm 0.0$                       |
| DR21(OH) | $CH_3CCH$              | $124\pm4	imes10^{13}$       | $36.8\pm1.0$      | $5.0 \pm 0.2$                       | $0.1\pm0.1$                         |
| DR21(OH) | $CH_3CHO$              | $8\pm1	imes10^{13}$         | $139\pm24$        | $5.5\pm0.4$                         | $0.2 \pm 0.1$                       |
| DR21(OH) | $CH_3CN$               | $231\pm5\times10^{11}$      | $56.7\pm2.1$      | $5.4\pm0.2$                         | $0.6 \pm 0.1$                       |
| DR21(OH) | $CH_3OH$               | $176\pm2\times10^{13}$      | $18.2\pm0.3$      | $5.6\pm0.1$                         | $0.3\pm0.0$                         |
| DR21(OH) | $CH_3OH$               | $152\pm3	imes10^{13}$       | $92.8\pm2.4$      | $5.9\pm0.2$                         | $0.8 \pm 0.0$                       |
| DR21(OH) | $CH_3OCH_3$            | $35\pm2	imes10^{13}$        | $60.0\pm4.9$      | $4.1\pm0.4$                         | $0.3\pm0.2$                         |
| DR21(OH) | $H_2CCO$               | $30\pm3	imes10^{12}$        | $58.0\pm9.7$      | $4.8\pm0.8$                         | $0.4 \pm 0.2$                       |
| DR21(OH) | $H_2CS$                | $148\pm2\times10^{12}$      | $53.7 \pm 1.6$    | $5.6\pm0.1$                         | $0.6 \pm 0.0$                       |
| DR21(OH) | HCCCN                  | $10\pm2	imes10^{12}$        | $79 \pm 12$       | $6.0 \pm 0.3$                       | $0.4 \pm 0.1$                       |
| DR21(OH) | $\mathrm{HCOOCH}_3$    | $107\pm7\times10^{12}$      | $81\pm26$         | $4.1\pm0.4$                         | $0.2\pm0.2$                         |
| DR21(OH) | HDCO                   | $12\pm6	imes10^{12}$        | $79 \pm 42$       | $4.8\pm0.6$                         | $0.6 \pm 0.2$                       |
| DR21(OH) | OCS                    | $4\pm1	imes10^{14}$         | $42.3\pm8.5$      | $5.4 \pm 0.4$                       | $0.6\pm0.1$                         |
| DR21(OH) | SO                     | $431\pm2\times10^{12}$      | $36.2\pm0.5$      | $6.5\pm0.0$                         | $0.9 \pm 0.0$                       |
| DR21(OH) | $SO_2$                 | $288\pm7\times10^{12}$      | $75.6\pm2.6$      | $7.7\pm0.2$                         | $1.6 \pm 0.1$                       |
| DR21(OH) | $^{33}\mathrm{SO^{b}}$ | $6\pm86\times10^{14}$       | $9.7\pm35.8$      | $5.8\pm10.9$                        | $1.9\pm2.8$                         |
| DR21(OH) | $^{34}SO^{b}$          | $29\pm8\times10^{12}$       | $39\pm76$         | $6.3\pm1.7$                         | $1.4\pm0.6$                         |

<sup>a</sup> The full table in a machine-readable format is printed verbatim in Appendix C.

<sup>b</sup> The unphysically large uncertainties indicate the spectral lines of this molecule are detected, but they are insufficient to perform a reliable LTE analysis.

abundance of the carrier molecule in that source, or from beam dilution if the carrier molecule's spatial distribution is compact compared to the single-dish beam.

# 6.5 Discussion

Given that this set of sources was targeted because they are known to be rich in COMs, it does not come as a surprise that many of these sources have extremely rich chemistry. Nonetheless, some surprises are still found in the results from these observations. Additionally, trends can be discerned that offer insight into chemical pathways that have long been assumed for star-forming regions. An overview of the results in graphical form is given in Figure 6.3. Here we plot the column density for a set of molecules as colored circles. The area of each circle was scaled to the magnitude of the column density. The color of each circle corresponds to the temperature, the scale for which is shown on the right. Sources are sorted on the horizontal axis by type, and within each type the chemical complexity of the sources is arranged to increase from left to right. The molecules are sorted on the vertical axis, grouped into the O-bearing, N-bearing, and S-bearing species. Within each group, molecules on the top are more frequently detected in the sources. As such, trends are easily discernable in the dataset. For molecules with multiple temperature and velocity components, we plot concentric circles with each ring representing one component. The column density of molecules in Orion-KL was divided by 10 before plotting.

Here we will not attempt a detailed discussion of each molecule detected in each source and the corresponding implications, but rather will save that level of detail for subsequent papers that examine a particular chemical or physical subset from this dataset. Nonetheless, we can immediately find general trends in these results that offer glimpses into the power of such comprehensive observational studies. The most striking features of these results as gleaned from Figure 6.3 are as follows:

1. Most sources are chemically complex. Among different source types, hot cores



Figure 6.3: Visualization of Table 6.4: Column density and LTE temperature. Sources are on the horizontal axis, and molecules are on the vertical axis. Areas of the circles are proportional to the column density of molecules. Circles for Orion-KL are shrunk by a factor of 10 in area to fit the overall scale of the plot. For molecules with multiple temperature components, concentric circles are drawn, with each ring stands for one particular component. The color of the circles maps the LTE temperature of the molecules. The full scale plot is presented on the top panel, and the zoomed-in region, highlighted by the orange frame, is presented on the bottom panel.

present the most complex chemistry, indicated by the large number of COMs observed in these sources. Protostars present some level of complexity. Hot corinos are quiet in this survey, likely due to their small source sizes and therefore severe beam dilution effect. Some observed complexity is not inherently a surprise, given that these sources were chosen because COMs had already been detected in previous observations. But the level of complexity in many of these sources is comparable to that of Orion-KL, and that is a surprise. The most striking case is that of GAL 10.47+00.03, which displays a remarkable array of COMs at abundances rivaling those observed in Orion-KL.

- 2. Methanol, CH<sub>3</sub>CCH, H<sub>2</sub>CS, OCS, SO, and SO<sub>2</sub> are nearly ubiquitous in this sample set. Methanol, SO, and SO<sub>2</sub> are known to be indicators of grain mantle disruption [149–151]. Hence it is possible that these other ubiquitous molecules are also indicators of this process. It is particularly striking that all of the major sulfur-bearing species are on this list.
- 3. CH<sub>3</sub>OH is, not surprisingly, ubiquitous. For most hot cores, two CH<sub>3</sub>OH temperature components can be found: a cold one of 10–30 K, and a warm one whose temperature ranges from 100 to 300 K, a variable dependent on the size and evolutionary stage of the central star. The ratio between the <sup>13</sup>CH<sub>3</sub>OH and CH<sub>3</sub>OH isotopologues seems to be consistent at ~0.1. Therefore <sup>13</sup>CH<sub>3</sub>OH was only detected in massive star-forming regions with a high CH<sub>3</sub>OH abudance.
- 4. CH<sub>3</sub>CCH is nearly as ubiquitous and abundant as CH<sub>3</sub>OH, and it is always cold. The abundance of CH<sub>3</sub>CCH is surprising. It is thought to be a convenient tracer for dense clouds [152].
- 5. It is not surprising that the S-bearing molecules,  $H_2CS$ , OCS, SO, and  $SO_2$  are nearly ubiquitous in this sample set, since they are simpler than COMs, and therefore have stronger spectral lines. S-bearing molecules are proposed to
be the indicators of grain-mantle disruption and material injection into the gas phase during the star-formation process, and therefore can be used as a chemical clock to trace the evolutionary stage of the source [149–151]. Wakelam *et al.*, however, argued that this chemical clock approach is not that straightforward [153].

In our surveys, it appears that SO is always present. It is definitively detected in Orion-KL. SO and OCS are definitely detected in Orion-KL, but not listed as detections because the narrower spectral coverage for Orion-KL provides insufficient information to perform LTE analysis on these molecules.  $H_2CS$  correlates well with SO across our sources, while OCS and  $SO_2$  do not always coexists. In NGC 1333 IRAS 4A, NGC6334-38, NGC6334-43, and G24.33+00.11 MM1, we only detected OCS but not  $SO_2$ . Since  $SO_2$  is generally less abundant than OCS and SO in other sources, the non-detection of  $SO_2$  in NGC 1333 IRAS 2A may simply be caused by its low spectral intensity, which is below our detection limit. NGC6334-38, NGC6334-43, and G24.33+00.11 MM1, however, present significant OCS abundances. In HH 80-81 and NGC 7538 IRS 1, we only detect  $SO_2$  but not OCS. For sources where all 4 S-bearing molecules are detected, the abundance ratios vary dramatically from source to source. For example, GAL 10.47+00.03 and W51, compared to other hot cores, have significantly more OCS than the rest of S-bearing molecules. Orion-KL is the anomaly on the other extreme: it has extensive amount of  $SO_2$ , which is as abundant as  $CH_3OH$ . In general, we conclude that the abundance of S-bearing small molecules cannot be explained by a simple correlation to the evolutionary stage of the star-forming region. Our observations agree with the argument addressed by Wakelam et al.

6. Nearly all molecules detected that have a CN group are found at elevated temperatures relative to O-bearing COMs. Despite the prevalence of these species in these sources, they are present at much lower abundances than their O-bearing counterparts. The variation of the  $CH_3CN$  temperature across sources is also large. Unlike  $CH_3CCH$  which is always cold, or  $CH_3OCH_3$  and  $HCOOCH_3$  which are always warm but only present in chemically evolved sources,  $CH_3CN$  is nearly ubiquitously detected, and its temperature correlates with the source type.  $C_2H_3CN$  and  $C_2H_5CN$ , the two "interstellar weeds" thought to be ubiquitous in the ISM, are only detected in a handful of massive star-forming regions with the richest chemistry and most elevated temperatures. It is possible that the cyanides larger than  $CH_3CN$  are both warm and compact, and therefore beam diluted. The abundance of  $C_2H_5CN$  is surprisingly low relative to  $CH_3CN$ , despite their nearly equal abundance in Orion-KL.

- 7. There may be a chemical link between dimethyl ether and methyl formate during grain-surface chemistry (see Garrod *et al.* for a lengthy discussion [15]). Based on our results, although these two species are often both present in a given star-forming region, there is no clear correlation between their abundances. In general, CH<sub>3</sub>OCH<sub>3</sub> is more abundant and colder than HCOOCH<sub>3</sub>. The ratio between CH<sub>3</sub>OCH<sub>3</sub> and HCOOCH<sub>3</sub> column density is not consistent throughout our sample set. This result is surprising, given that they are both presumed to form from grain-surface processes involving CH<sub>3</sub>O radicals. Beam dilution can contribute to this inconsistency if CH<sub>3</sub>OCH<sub>3</sub> and HCOOCH<sub>3</sub> have different spatial distributions. It is unclear if scaling by the spatial scale of the emission would result in column densities that are correlated; additional interferometric observations are warranted.
- 8. Previous interferometric studies of methyl formate in Orion indicate that it is formed on grain-surfaces and detected in the colder, extended regions rather than in the hot core [122, 125]. Surprisingly, methyl formate is shown here to

be present at warmer temperatures than  $CH_3OCH_3$  and most of the other Obearing COMs that are detected. The reason for this is unclear. In Orion-KL, methyl formate, similar to methanol, has both an extended, cold component and a hot, compact component [122]. It is possible that we could sufficiently describe its spectral intensity with one temperature component due to its weaker overall line intensities, and this temperature is in fact an averaged value from two different temperatures. If the warm component can be found in multiple sources, it is not impossible that the gas-phase formation mechanisms for HCOOCH<sub>3</sub> [10] are still relevant, although they do not account for all the observed HCOOCH<sub>3</sub> abundance. Further interferometric investigation of its spatial distribution as a function of temperature is warranted.

- 9. Complex O-bearing species such as C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>CHO, trans-HCOOH, and NH<sub>2</sub>CHO are not highly abundant in these sources. They are only detected in a few sources. Indeed, complex molecules are more difficult to find, because of their weaker line intensities and their lower abundances. But our result has huge implications for more complex chemistry, as many of these species are thought to be chemical precursors to more complex molecules. If these molecules are even less abundant than what was anticipated before, the formation routes for more complex molecules are uncertain.
- Interstellar acetone has only been detected in Sgr B2 (N-LMH) [130] and Orion-KL [112]. It is now detected in two additional sources, GAL 31.41+0.31 and GAL 034.4+00.2, where detections had not been reported before.
- 11. The complexity of chemistry may not be directly correlated with elevated temperature. NGC6334-29 and NGC6334-I(N) have similar chemistry, but NGC6334-I(N) is significantly colder than NGC6334-29. In NGC6334-I(N), CH<sub>3</sub>OCH<sub>3</sub> and CH<sub>3</sub>CHO are present at 35 K and 20 K, respectively. In NGC6334-

29,  $CH_3OCH_3$  and  $CH_3CHO$  are present at 135 K and 182 K, respectively. The cold  $CH_3OCH_3$  and  $CH_3CHO$  indicates the gas-grain chemistry origin of these O-bearing molecules, but what unique process causes their sublimation into the gas-phase in NGC6334-I(N) in such a cold environment is not clear. Likewise, GAL 034.3+0.02 presents similar chemical complexity to GAL 31.41+0.31, but its averaged temperature of COMs is lower.

12. The non-LTE  $CH_3OH$  emissions,  $8_{-1,8} \rightarrow 7_{0,7}$  ( $E_{low} = 78$  K) at 229.76 GHz, and  $11_{0,11} \rightarrow 10_{1,10}$  ( $E_{low} = 141$  K) at 250.51 GHz are found primarily in shocks and HII regions. These two non-LTE lines do not appear in B1-b, GAL 12.91-00.26, G24.33+00.11 MM1, GAL 45.47+0.05, GAL 75.78+0.34, L1448 MM-1, NGC 1333 IRAS 2A, and W3(H<sub>2</sub>O). In all other sources, they are observed in flux much larger than the CH<sub>3</sub>OH simulation by the LTE model.

### 6.6 Search for $HO_3$ in star-forming regions

The content in this section is reprinted with permission from L. Zou, B. M. Hays, S. L. Widicus Weaver, J. Phys. Chem. A. 120, 657 (2016). Copyright (2016) American Chemical Society.<sup>©</sup>

After the LTE analysis of COMs in the 31 CSO surveys, we can search for HO<sub>3</sub> using the laboratory spectra obtained in Chapter 3. We used the SPCAT program in CALPGM suite [75] to simulate a line catalog using the molecular parameters given in Table3.1. The partition function was interpolated using the equation  $Q(T) = \alpha T^{1.5}$ . The rotational temperature  $T_{\rm rot}$  and FWHM of the trial fit of HO<sub>3</sub> was constrained to the weighted average of these values found for other molecules in that source, with the weighting set as the reciprocal of their estimated uncertainty. Unfortunately, no transitions of *trans*-HO<sub>3</sub> were found in any of these observational line surveys. Therefore, the fitted column density was interpreted as an upper limit for HO<sub>3</sub> column density in each source, without the correction for beam dilution. The results of this analysis are summarized in Table 6.5. No information is included here for Sgr B2(N),

because severe line confusion and blending precluded analysis for  $HO_3$ .

Table 6.5: Estimation of column density upper limits of  $\text{HO}_3$  in astronomical sources. The listed  $T_{\rm rot}$  and FWHM are the weighted average values from other molecules fitted in each source, and were fixed during the analysis for  $\text{HO}_3$ .

| Source                    | Column Density $(cm^{-2})$ | $T_{\rm rot}$ (K) | FWHM $(km \cdot s^{-1})$ |
|---------------------------|----------------------------|-------------------|--------------------------|
| $W3(H_2O)$                | $\leq 6.9 \times 10^{13}$  | 48.9              | 6.6                      |
| L1448 MM-1                | $\leq 2.4 \times 10^{12}$  | 17.7              | 1.3                      |
| NGC 1333 IRAS 2A          | $\leq 3.2 \times 10^{12}$  | 22.4              | 3.4                      |
| NGC 1333 IRAS 2B          | $\leq 9.0 \times 10^{11}$  | $10^{\mathrm{a}}$ | 1 <sup>b</sup>           |
| NGC 1333 IRAS 4A          | $\leq 2.2 \times 10^{12}$  | 18.9              | 9.6                      |
| NGC 1333 IRAS 4B          | $\leq 3.2 \times 10^{13}$  | 20.0              | 5.5                      |
| B1-b                      | $\leq 1.8 \times 10^{14}$  | 9.9               | 1.2                      |
| Orion-KL                  | $\leq 1.2 \times 10^{15}$  | 80.6              | 9.4                      |
| NGC 2264 MM3              | $\leq 3.1 \times 10^{13}$  | 20.4              | 4.5                      |
| NGC6334-29                | $\leq 4.1 \times 10^{13}$  | 49.6              | 5.4                      |
| NGC6334-38                | $\leq 5.2 \times 10^{12}$  | 26.4              | 3.5                      |
| NGC6334-43                | $\leq 1.3 \times 10^{13}$  | 16.0              | 3.1                      |
| NGC6334-I(N)              | $\leq 8.8 \times 10^{13}$  | 20.2              | 3.9                      |
| $\rm GCM{+}0.693{-}0.027$ | $\leq 3.0 \times 10^{15}$  | $10^{\rm a}$      | 14.1 <sup>c</sup>        |
| GAL 10.47 $+00.03$        | $\leq 2.1 \times 10^{14}$  | 62.0              | 10.8                     |
| GAL 12.21-0.10            | $\leq 2.0 \times 10^{13}$  | 28.9              | 8.2                      |
| GAL 12.91-00.26           | $\leq 4.9 \times 10^{12}$  | 29.4              | 4.9                      |
| HH 80-81                  | $\leq 1.5 \times 10^{12}$  | 19.0              | 2.4                      |
| GAL 19.61-0.23            | $\leq 5.2 \times 10^{13}$  | 53.7              | 9.0                      |
| G24.33+00.11 MM1          | $\leq 1.9 \times 10^{12}$  | 18.2              | 4.7                      |
| GAL 24.78 $+0.08$         | $\leq 2.1 \times 10^{13}$  | 38.0              | 7.2                      |
| GAL $31.41 + 0.31$        | $\leq 2.7 \times 10^{13}$  | 79.1              | 7.4                      |
| GAL $034.3 + 00.2$        | $\leq 3.7 \times 10^{13}$  | 45.8              | 6.8                      |
| GAL $45.47 + 0.05$        | $\leq 5.2 \times 10^{11}$  | 15.1              | 4.6                      |
| W51                       | $\leq 6.7 \times 10^{13}$  | 49.0              | 9.2                      |
| GAL 75.78 $+0.34$         | $\leq 4.2 \times 10^{12}$  | 28.0              | 4.2                      |
| W75N                      | $\leq 1.2 \times 10^{14}$  | 42.7              | 5.6                      |
| DR21(OH)                  | $\leq 3.4\times 10^{13}$   | 39.0              | 6.0                      |
| L1157-MM                  | $\leq 1.7 \times 10^{13}$  | 14.3              | 5.8                      |
| NGC 7538                  | $\leq 3.1\times 10^{11}$   | 19.0              | 3.7                      |

 $^{\rm a}$  No temperature information is available. The temperature was assumed to be 10 K.

<sup>b</sup> FWHM assumed to be 3 times the channel width, which is  $\sim 1 \text{ km} \cdot \text{s}^{-1}$ .

<sup>c</sup> FWHM of CS.

The results of this initial search for  $\mathrm{HO}_3$  are not surprising, especially given that

this particular source sample focused on warmer regions of star formation, where weakly-bound clusters might not be prevalent. Nonetheless, there are several cold pre-stellar cores included in this sample, and yet HO<sub>3</sub> was not detected in any of them. An estimate of expected HO<sub>3</sub> abundance reveals the challenge of such a search. We estimate the HO<sub>3</sub> fractional abundance in dense interstellar clouds to be  $\sim 10^{-14}$ with respect to the abundance of molecular hydrogen. This estimate assumes that the dominant loss mechanism would be photodissociation, and uses typical dark cloud abundances for OH and O<sub>2</sub> [154]. Based on this estimated abundance, the brightest HO<sub>3</sub> rotational line at 20 K would result in an observational signal intensity of  $\sim 0.01$  mK. This is well below the detection limit for these observations, where the noise level is  $\leq 25$  mK.

Despite this lack of detection, there is still a possibility for  $HO_3$  detection in future observations. Recent advances in radio interferometry lead to sensitivity levels that approach what is required for  $HO_3$  detection. For example, a 10 min integration of ALMA array at 240 GHz with 1 MHz bandwidth would achieve a noise level of 10 mK;<sup>2</sup> additional integration time has the potential of achieving the desire sensitivity. Therefore, detection of  $HO_3$  at this signal intensity would be challenging even for the most sensitive observations, but is not completely ruled out. It should be noted that our abundance predictions are highly conservative, and  $HO_3$  may be detectable in other regions with higher  $O_2$  abundance such as O-rich stellar envelopes.

#### 6.7 Summary

We conducted broadband spectral line surveys of 31 star-forming regions in the 1.3 mm band (220–267 GHz) using the 10.4 m Leighton Telescope at the Caltech Submillimeter Observatory. The deconvoled spectra are presented. For each spectrum, we performed a global LTE analysis for molecules with sufficient number of spectral

 $<sup>^2 \</sup>rm Calculated$  by ALMA sensitivity calculator at https://almascience.eso.org/about-alma/proposing/sensitivity-calculator

lines and intensities, using the GOBASIC program. The result of this analysis indicates a series of expected and unexpected trends. Some molecular tracers, such as  $CH_3OH$ ,  $CH_3CCH$ , and SO, are ubiquitously detected in these sources. The difference in chemical complexity between hot cores, hot corinos, and class 0 protostars is verified. Within each type of star-forming regions, however, unexpected variations on the molecular complexity, abundance, and temperatures, are present. No straightforward correlations between different COMs can be drawn. It seems that each source demonstrates a unique chemistry. Because of the large size of the single-dish beam, line intensities are diluted, and spatial distribution of different molecules cannot be resolved. To reveal the details of astrochemistry in these star-forming regions, more information from interferometric studies on these sources is required so that source size can be properly included in the analysis.

Once the global LTE analysis is performed, we can search for potential interstellar molecules using their laboratory spectra, which allow reliable line catalog simulation. To address the possible importance of weakly bound clusters like  $HO_3$  in the astrochemistry of star-forming regions, we attempted a preliminary search for  $HO_3$  in these sources. Unfortunately, no  $HO_3$  was detected in these line surveys, likely due to the presumably low abundance of  $HO_3$ . Nonetheless, upper limits were estimated for each of these sources. Additionally, the updated spectral line catalog based on new experimental measurements presented here is expected to guide new astronomical searches in other sources that have high expected abundances of  $HO_3$ .

### Chapter 7 Conclusion and Future Outlook

In this dissertation, I presented the laboratory and astronomical perspectives of astrochemistry questions. To unravel the details of reaction mechanisms in star-forming regions, searches for unstable molecules in the sources based on precisely measured laboratory rotational spectra are of particular importance. Chapter 2 describes the spectrometer design and the supersonic expansion source that was implemented for studying unstable molecules using plasma discharge chemistry. This chapter demonstrates the performance of the fast-sweep technique, the preliminary concept for which was described in [32]. Chapter 3 and 4 illustrate the application of this fast-sweep technique in searching for spectral lines of unstable molecules, using the example of the weakly-bound radical *trans*-HO<sub>3</sub> and the van der Waals dimer Ar–H<sub>2</sub>O. Chapter 5 and 6 presented the global analysis of broadband astronomical line surveys on 32 star-forming regions, from which insightful trends about the chemical complexity in these sources were drawn. The laboratory measurement of *trans*-HO<sub>3</sub> enabled a search for this molecule in these sources after the analysis presented in Chapter 6. The upper limit of *trans*-HO<sub>3</sub> column density was determined.

The results presented in this dissertation lead to the future work on the astrochemistry of star-forming regions. The future work may include these directions:

- The concept of fast-sweep can be generalized and applied to the search for other astrochemically relevant radicals, ions, and molecular clusters.
- The broadband analysis approach can be further improved to combine singledish line surveys and interferometric images, which are able to reveal the spatial distribution of molecules. Being able to resolve the structure of star-forming regions provides more reliable estimation of the column density and temperature

of molecules, and kinematics can be studied.

• The GOBASIC program can be upgraded to model non-Gaussian lineshapes, non-LTE spectral emissions, and temperature gradients.

## Appendix A Python Script for the Fast-sweep Technique

```
# encoding = utf8
'' This script processes the linear-sweep data for pulsed experiment.
It is REQUIRED that the data takes full cycles of sweeps. ""
import argparse
import numpy as np
import re
from scipy import interpolate
from scipy.optimize import leastsq
# ------
# ----- MESSAGE CONSTANT DECLARATION -----
# _____
FILE\_ERR\_MSG = \{0: '',
                                             # Silent
             1: '{:s} does not exist',
                                            # FileNotFoundError
              2: '{:s} format is not supported', # Format Issue
             3: '{:s} contains an object array that is not allowed to load'
              # npy allow_pickle=False exception
              }
# _____
# ----- Function Declaration (Alphabetical Order) -----
# _____
def analyze_txt_fmt(file_name):
   ''' Analyze the data text format: delimiter and header
   Arguments:
   file_name -- data file name, str
   Returns:
   delm -- delimiter, str
   hd -- number of header rows, int
   eof -- end of file, boolean
   , , ,
   hd = 0
   delm = None
   a_file = open(file_name, 'r')
   # match two numbers and a delimiter
   pattern = re.compile(
            '(-?\d+\.?\d*(e|E.?\d+)?)( |\t|,)+(-?\d+\.?\d*(e|E.?\d+)?)')
   for a_line in a_file:
       if re.match('-?\d+\.?\d*(e|E)?.?\d+ *$', a_line):
```

```
# if the first line is a pure number
            delm = ','
            break
        else:
            try:
                delm = pattern.match(a_line).group(3)
                break
            except AttributeError:
                hd += 1
    # check if end of the file is reached
    eof = (a_file.read() == '')
    a_file.close()
   return delm, hd, eof
def avg_inten(inten, pts, fg):
    ''' Average all intensity sweeps with the same parity to fg togethere.
    Arguments:
    inten -- intensity waveform, 1D/2D np.array
    pts -- number of data points in a single sweep, int
       -- signal ordinal number, int
    fg
   Returns:
    inten_avg -- averaged intenisity array, 1D/2D np.array
    , , ,
    # determine fg parity and total number of sweeps
   parity = fg % 2
    sweep_num = inten.shape[0] // pts
    # generate ordinal numbers than match the fg parity
    ordinal = np.arange(sweep_num) + 1
    match_parity = ordinal[ordinal % 2 == parity]
    # Extract cycles and sum up
    if len(inten.shape)==1:
        inten_ext = np.zeros(pts)
        for i in match_parity:
            inten_ext += inten[(i-1)*pts:i*pts]
    else:
        inten_ext = np.zeros((pts, inten.shape[1]))
        for i in match_parity:
            inten_ext += inten[(i-1)*pts:i*pts, :]
    # return the average
    return inten_ext / len(match_parity)
def box_car(x, win):
   '' Boxcar smooth.
```

```
Arguments:
   x -- x frequency array, np.array
   win -- box-car window, integer
   Returns:
    x_new -- new x array, np.array
    , , ,
    if win == 1:
       return x
    else:
       x_new = np.convolve(x, np.ones(win), 'valid')/win
       return x_new
def box_win(win):
   ''' Verify boxcar window.
   Arguments:
   win -- box-car window, integer
   Returns:
    win_verified -- verified box-car window, odd integer
    , , ,
   win_verified = abs(win)
    if win_verified == 0:
        return 1
    elif not (win_verified % 2):
       return win_verified + 1
    else:
       return win_verified
def check_type(var):
    '' Check data type of variables. If var is None, exit the program '''
    if isinstance(var, type(None)):
        exit()
    else:
        pass
def delay_inten(inten, delay):
    '' Delay intensity array.
   Arguments:
    inten -- intensity array, nd.array
   delay -- delay number of points.
   Returns:
    inten_new -- delayed intensity array
    , , ,
```

```
dim = inten.shape[0]
    # check the dimension of intensity array
    if len(inten.shape)==1:
        inten_new = np.roll(inten, dim - delay)
    else:
        inten_new = np.roll(inten, dim - delay, axis=0)
   return inten_new
def db_poly(y, deg=1):
   '' Polynomial baseline clean.
    Arguments:
    y -- input array, 1D np.array
   Returns:
    y_db -- debaselined array, 1D np.array
    , , ,
    x = np.arange(len(y)) / (len(y)-1)
   popt = np.polyfit(x, y, deg)
   return y - np.polyval(popt, x)
def db_spline(y):
    '' Background subtraction by fitting spline to the baseline.
    Arguments:
   y -- input array, 1D np.array
   Returns:
   y_db -- debaselined array, 1D np.array
    , , ,
    # Because of the discharge disturbance, the background does not exactly
    # match the signal. This creates a curved baseline after background
    # subtraction. Try to fit a B-spline to the baseline.
    x = np.arange(len(y)) / (len(y)-1)
    # Construct weight
    weight = weight_spline(y)
    w_nonzero = np.not_equal(weight, 0)
    # Interpolate spline
    spline = interpolate.UnivariateSpline(x, y, w=weight, k=5)
    # Remove spline
    y_db = y - spline(x)
    # Remove linear feature
   ppoly = np.polyfit(x[w_nonzero], y_db[w_nonzero], 1)
   y_db = y_db - np.polyval(ppoly, x)
    return y_db
```

```
def err_msg_str(f, err_code, msg=FILE_ERR_MSG):
   ''' Generate file error message string
   Arguments:
   f -- file name, str
    err_code -- error code, int
   msg -- error message, dict
   Returns:
    msg_str -- formated error message, str
    , , ,
   return (msg[err_code]).format(f)
def extract_fg(inten, fg, pts):
   ''' Background subtraction routine.
    Arguments:
    inten -- intensity waveform, 1D/2D np.array
       -- ordinal number of the signal sweep, int
    fg
   pts -- number of data points in a single sweep, int
    Returns:
    inten_sig -- Extracted array, 1D/2D np.array
    , , ,
    if len(inten.shape)==1:
                              # if intensity is 1D array
        inten_sig = inten[(fg-1):fg*pts]
                                # if intensity is 2D array
    else:
        inten_sig = inten[(fg-1)*pts:fg*pts, :]
   return inten_sig
def flat_wave(freq, inten, nobase=False):
    '' Flatten frequency and intensity arrays.
    Arguments:
    freq -- frequency array, 1D/2D np.array
    inten -- intensity array, 1D/2D np.array
    nobase -- input argument option (do not perform intensity stitch)
    Returns:
    freq_flat -- flattened frequency array, 1D np.array
    inten_flat -- flattened intensity array, 1D np.array
    , , ,
    if len(inten.shape)==1:
       # sort frequency
       sort_index = np.argsort(freq)
       return freq[sort_index], inten[sort_index]
    else:
```

```
# Flatten frequency and intensity matrices into vector waveforms
        #freq_flat_index = np.argsort(freq.flatten('F'))
        #freq_flat = freq.flatten('F')[freq_flat_index]
        #inten_flat = inten.flatten('F')[freq_flat_index]
        # check frequency array: decreasing freq or increasing freq
        up_bool = freq[0, 0] < freq[-1, 0]
        if up_bool:
            pass
        else:
               # flip freq and inten array upside down
            freq = np.flipud(freq)
            inten = np.flipud(inten)
        freq_flat = freq.flatten('F')
        if nobase: # no stitch intensity
            inten_flat = inten.flatten('F')
        else:
            inten = glue_sweep(inten)
            inten_flat = inten.flatten('F')
        return freq_flat, inten_flat
def flip(signal, ordinal):
    ''' Flip signal array upside down if is even ordinal sweep.
    Arguments:
    signal -- signal array, 1D/2D np.array
    ordinal -- ordinal number, int
    Returns:
    flipped -- flipped signal if necessary, 1D/2D np.array
    , , ,
    if (ordinal % 2):
        return signal
    else:
       return np.flipud(signal)
def glue_sweep(y):
    ''' shift each sweep intensity to make the end of the previous sweep is
    equal to the start of the next sweep, so that the spectrum is
    continuous.
    Arguments:
    y -- intensity array, 2D np.array
   Returns:
    y_stitched -- stitched intensity array, 2D np.array
    , , ,
    # Get the difference of the end of col and the start of col+1
```

```
col_shift = np.roll(y[-1, :], 1) - y[0, :]
    col_shift[0] = 0
    col_shift_accum = np.cumsum(col_shift)
    # Apply shift correction to all columns
    y_stitched = y + np.tile(col_shift_accum, (y.shape[0], 1))
    return y_stitched
def load_data(args):
    ''' Load all data files specified from input arguments. Perform background
    subtraction and data truncation according to input specifications.
    Arguments:
    args -- input argument, argparse Object
    Returen:
   freq -- frequency waveform, np.array 1D
    inten -- intensity waveform, np.array 1D/2D
    , , ,
    # load intensity file
    inten = load_single_file(args.inten[0])
    # exit if intensity file is not loaded correctly
    check_type(inten)
    # load lo file if available
    if args.lo:
        lo = load_single_file(args.lo[0])
       check_type(lo)
        sweep_num = np.count_nonzero(np.delete(lo*np.roll(lo, 1), 0) < 0)</pre>
        # check the direction of the first sweep
        sweep_up = lo[0] < 0
    else:
        # no lo file, invoke interactive interface
        sweep_num, sweep_up = interactive()
    # number of points in a single sweep
   pts = inten.shape[0] // sweep_num
    # set bandwidth
    if args.bdwth:
        bdwth = args.bdwth[0]
    else:
        bdwth = 1.
    # reconstruct frequency array
    if args.cf:
        try:
            center_freq = float(args.cf[0])
        except ValueError:
            center_freq = load_single_file(args.cf[0])
            bdwth = center_freq[1] - center_freq[0]
```

```
else:
       center_freq = 0
    # get signal sweep number
    if args.fg:
        fg = args.fg[0]
    else:
        fg = 1
    # invert sweep_up for even sweeps
    if fg % 2:
        pass
    else:
        sweep_up = not sweep_up
    # reconstruct frequency array
    freq = reconstr_freq(center_freq, pts, sweep_up=sweep_up, bdwth=bdwth)
    # get background sweep number
    if args.bg:
        bg = args.bg[0]
        if fg == bg:
                       # fg==bg, extract fg without background subtraction
            inten = extract_fg(inten, fg, pts)
        else:
                        # fg!=bg, perform background subtraction
            inten = sub_bg(inten, fg, bg, pts)
    else:
                # average intensity if -bg not specified
        inten = avg_inten(inten, pts, fg)
    # roll the intensity array if detector delay is specified
    if args.delay:
        inten = delay_inten(inten, args.delay[0])
    else:
        pass
    # truncate freq & inten array if delay is specified
    if args.delay:
        freq, inten = trunc(freq, inten, args.delay[0])
    return freq, inten
def load_single_file(file_name):
    '' Load single data file & raise exceptions.
    Arguments:
    file_name -- input file name, str
   Returns:
    data -- np.array
    , , ,
    # test if the file is .npy binary
    if re.search('\.npy$', file_name):
        try:
```

```
data = np.load(file_name, mmap_mode='r', allow_pickle=False)
            return data
        except IOError:
            print(err_msg_str(file_name, 2))
            return None
        except ValueError:
            print(err_msg_str(file_name, 3))
            return None
    else:
        try:
            delm, hd, eof = analyze_txt_fmt(file_name)
            if eof or isinstance(delm, type(None)):
                print(err_msg_str(file_name, 2))
            else:
                data = np.loadtxt(file_name, delimiter=delm, skiprows=hd)
                return data
        except FileNotFoundError:
            print(err_msg_str(file_name, 1))
            return None
        except ValueError:
            print(err_msg_str(file_name, 2))
            return None
def interactive():
    '' Command line interactive interface for sweep information input.
   For mode 0, i.e. no LO data available only.
    Returns:
    sweep_num -- number of full sweeps, int
    sweep_up -- first sweep increases in frequency, boolean
    , , ,
    while True:
                    # Get number of sweeps from user input & Error handling
        try:
            typed = input('Input number of full sweeps: ').split()
            sweep_num = int(typed[0])
            break
        except ValueError:
            typed = input('''Must be an integer! Retype: ''').split()
    # Ask if the first sweep goes up
    typed = input('Does the first sweep go up? Y|n ')
    sweep_up = typed in ('y', 'Y', 'yes', 'Yes', 'YES')
    return sweep_num, sweep_up
def proc_nb(freq, inten, args):
    '' Process narrow band (single sweep) according to input specifications.
        Inclues: box-car smooth in each sweep;
                 linear correction of baseline in each sweep;
```

```
Arguments:
```

```
freq -- freuency array, 1D/2D np.array
    inten -- intensity array, 1D/2D np.array
    args -- input arguments, argparse Object
    Returns:
    freq_b -- processed frequency array, 1D/2D np.array
    inten_p/b -- processed intensity array, 1D/2D np.array
    , , ,
    if args.box:
                    # do box-car smooth
        box_win = (args.box[0])
        if len(inten.shape)==1:
            freq_b = box_car(freq, box_win)
            inten_b = box_car(inten, box_win)
        else:
            freq_b = np.apply_along_axis(box_car, 0, freq, box_win)
            inten_b = np.apply_along_axis(box_car, 0, inten, box_win)
    else:
        freq_b = freq
        inten_b = inten
                       # if no baseline removal is specified
    if args.nobase:
        return freq_b, inten_b
    else:
        # Apply linear correction on each sweep
        inten_p = np.apply_along_axis(db_poly, 0, inten_b, 1)
        if args.spline:
            inten_p = np.apply_along_axis(db_spline, 0, inten_b)
        return freq_b, inten_p
def proc_wb(x, y, args):
   '' Process wide band (full stiched spectrum).
    Arguments:
   x -- x frequency data array, 1D np.array
         -- y intensity data array, 1D np.array
    у
    args -- input arguments, argparse Object
    Returns:
    y_db -- debaselined, 1D np.array
    , , ,
    if args.nobase:
        y_db = y
    else:
        y_db = db_poly(y, deg=1)
        if args.spline:
            y_db = db_spline(y_db)
        else:
            pass
    return y_db
```

```
def reconstr_freq(center_freq, pts, sweep_up=True, bdwth=1.):
    ''' Reconstruct frequency array.
    Arguments:
    center_freq -- center frequency of each sweep. float or np.array
    pts -- dimension of the frequency array. int
    **sweep_up -- first sweep frequency increases. defautl True. boolean
    **bdwth -- sweep bandwidth (MHz), default 1. float
    Returns:
    freq -- frequency array, np.array 1D/2D
    , , ,
    if sweep_up:
        single_band = bdwth * (np.arange(pts)/(pts-1) - 0.5)
    else:
        single_band = bdwth * (0.5 - np.arange(pts)/(pts-1))
    if isinstance(center_freq, np.ndarray):
        freq = np.tile(single_band, (len(center_freq), 1)).transpose() + \
               np.tile(center_freq, (pts, 1))
    else:
        freq = single_band + center_freq
    return freq
def save_output(data, args):
    '' Output data in csv format.
    Arguments:
    data -- output xy data, 2D np.array
    args -- input arguments, argparse Object
    Returns: None
    , , ,
    if args.o:
        out_name = args.o[0]
    else:
        out_name = 'SPlot_' + args.inten[0]
   np.savetxt(out_name, data, header='freq,inten', delimiter=',',
               newline='\n', fmt='%.10g', comments='')
    print('-- {:s} Saved --'.format(out_name))
    return None
def sub_bg(inten, fg, bg, pts):
    '' Background subtraction routine.
    Arguments:
```

```
inten -- intensity waveform, 1D/2D np.array
    fg -- ordinal number of the signal sweep, int
         -- ordinal number of the background sweep, int
    bg
    pts -- number of data points in a single sweep, int
    Returns:
    inten_db -- background subtracted array, 1D/2D np.array
    , , ,
    if len(inten.shape)==1:
                                # if intensity is 1D array
        inten_sig = inten[(fg-1)*pts:fg*pts]
        inten_bg = inten[(bg-1)*pts:bg*pts]
    else:
                                # if intensity is 2D array
        inten_sig = inten[(fg-1)*pts:fg*pts, :]
        inten_bg = inten[(bg-1)*pts:bg*pts, :]
    return inten_sig - flip(inten_bg, fg - bg + 1)
def trunc(freq, inten, delay):
    '' Truncate frequency and intensity array if delay is specified.
    Arguments:
    freq -- frequency array, 1D/2D np.array
    inten -- intensity array, 1D/2D np.array
    delay -- number of data points delayed in inten, inten
    Returns:
    freq_tr -- truncated frequency, 1D/2D np.array
    inten_tr -- truncated intensity, 1D/2D np.array
    , , ,
    if len(inten.shape)==1:
        freq_tr = freq[:-delay]
        inten_tr = inten[delay:]
    else:
        freq_tr = freq[:-delay, :]
        inten_tr = inten[delay:, :]
    return freq_tr, inten_tr
def weight_spline(y):
    '' Generate weight for spline interpolation.
    Arguments:
   y -- intensity array, 1D np.array
    Returns:
    weight -- weighting array, 1D np.array
    , , ,
    # shift y_min to 0 and rescale to range [0, 1]
    weight = y - y.min()
```

```
weight = weight / weight.ptp()
    # test strong peak: the median will be falling on the edge of [0, 1]
    if np.median(weight) > 0.9: # negative peak
        weight[weight<0.9] = 0
    elif np.median(weight) < 0.1: # positive peak</pre>
        weight[weight>0.1] = 0
    else:
                            # most baseline
        weight = np.ones_like(weight)
    return weight
# ------ Input Argument Parser ------
def arg():
    ''' Input arguments parser. Returns: argparse Object.'''
    parser = argparse.ArgumentParser(description=__doc__,
             epilog='--- Luyao Zou @ https://github.com/luyaozou/ ---')
    parser.add_argument('inten', nargs=1, help='Intensity data file')
    parser.add_argument('-fg', nargs=1, type=int,
                        help='''The ordinal number of the signal sweep.
                                Default is 1. '')
    parser.add_argument('-bg', nargs=1, type=int,
                       help='''The ordinal number of the background sweep. If
                                bg == fg, simply extract the fg sweep without
                                background subtraction. If not specified, all
                                sweeps with the same parity of fg are averaged
                                together. '')
    parser.add_argument('-cf', nargs=1,
                       help='''Single center frequency (MHz) or a file listing
                                several center frequencies. If neither
                                specified, set at 0, and assume intensity is
                                a single sweep scan.'')
    parser.add_argument('-bdwth', nargs=1, type=float,
                        help='''Full frequency sweep band width (MHz).
                                If not specified while freq file is available,
                                get sweep window from the difference of the
                                first two data points in the freq file,
                                assuming frequency data points are evenly spaced
                                and matches the band width. Default is 1.''')
    parser.add_argument('-box', nargs=1, type=int,
                        help='Boxcar smooth window. Must be an odd integer.')
    parser.add_argument('-lo', nargs=1,
                        help="",'LO file. If not specified, command line
                                interactive questions will be invoked. '')
    parser.add_argument('-o', nargs=1,
                        help='''Output file name. If not specified,
                                default name will be used. '')
    parser.add_argument('-delay', nargs=1, type=int,
                        help=''' Delay of detector response by number of
                                 data points. Default is 0.'')
    parser.add_argument('-spline', action='store_true',
                       help='Fit spline to subtract baseline. Optional')
```

# Appendix B SPFIT Assignment and Output File for $HO_3$ and $DO_3$

## B.1 SPFIT assignment and output file for $HO_3$

|                     |                  | Feet Gran DE 144-E0-40 204E                                                                                   |        |
|---------------------|------------------|---------------------------------------------------------------------------------------------------------------|--------|
| I TNES PEOLES       | TED= 202 NUMBE   | FII SED 25 14:50:19 2015                                                                                      |        |
| MARQUARDT           | PARAMETER = 0.0  | 0000E+00 max (0BS-CALC)/ERROR =1 0000E+06                                                                     |        |
|                     |                  | PARAMETERS - A.PRIORI EROR                                                                                    |        |
| 1                   | 1 10000          | 0 7.0781119276763E+04 1.000000E+10 A                                                                          |        |
| 2                   | 2 20000          | 9.9873872649628E+03 1.000000E+11 B                                                                            |        |
| 3                   | 3 30000          | 0 8.7497288142301E+03 1.000000E+11 C                                                                          |        |
| 4                   | 4 200            | 0 -4.7537800747846E-02 9.702165E+10 -DN                                                                       |        |
| 5                   | 5 1100           | 0 -1.4915714704417E-01 1.000000E+11 -DNK                                                                      |        |
| 6                   | 6 2000           | -2.9561174306797E+00 1.000000E+10 -DK                                                                         |        |
| 7                   | 7 40100          | ) -6.1459872189222E-03 1.000000E+11 -dN                                                                       |        |
| 8                   | 8 41000          | ) -2.1629036345966E-01 1.000000E+10 -dK                                                                       |        |
| 9                   | 9 10010000       | ) -1.2526939239286E+03 5.762869E+10 eaa                                                                       |        |
| 10 1                | 10020000         | ) -1.0623815010345E+02 6.632208E+10 ebb                                                                       |        |
| 11 1                | 1 10030000       | ) -3.4831374211852E+00 6.288901E+10 ecc                                                                       |        |
| 12 1                | 10610000         | ) -4.2245212137638E+01 6.288901E+10 (eab+eba)                                                                 |        |
| 13 1                | 12000000         | ) 3.6602647802840E+00 5.007459E+10 a_F                                                                        |        |
| 14 1                | 120010000        | ) 8.4831445222214E+00 3.642117E+10 Taa                                                                        |        |
| 15 1                | -120030000       | ) -8.4831445222214E+00 -1.000000 Tcc                                                                          |        |
| 16 1                | 120020000        | ) -6.8505998785507E+00 5.970145E+10 Tbb                                                                       |        |
| 17 1                | -120030000       | 0 6.8505998785507E+00 -1.000000 Tcc                                                                           |        |
| 18 1                | 1000100          | 0 2.0192703529843E-03 1.000000E+10 DNS                                                                        |        |
| 19 1                | 10010100         | 5.8543709699932E-02 1.000000E+10 DNKS                                                                         |        |
| 20 1                | 10011000         | 0 1.0278092438995E-01 1.000000E+10 DKS                                                                        |        |
| 20 parameter        | rs read, 18 inde | ependent parameters                                                                                           |        |
| NUMBER OF PA        | ARAMETERS EXCLUD | DED IF INDEX $< 0 = 2$                                                                                        |        |
| ENERGY SORT         | OF WANG SUB-BLO  | ICKS                                                                                                          |        |
| PROLATE ROTO        | DR               |                                                                                                               |        |
| V KMIN K            | MAX WTPL WTMN E  | SYMWT NSYM SPINS                                                                                              |        |
| 0 0                 | 9 1 1            | 999 2 0.5 0.5                                                                                                 |        |
| BLOCK - WT -        | - SYM - V - TSP  | - N - other quanta (rel. to F=0 )                                                                             |        |
| 1 1                 | x 0 0            | -1.0 -0.5                                                                                                     |        |
| 1 1                 | c 0 0            | -1.0 -0.5                                                                                                     |        |
| 1 1                 | x 0 1            | 0.0 0.5                                                                                                       |        |
| 1 1                 | c 0 1            | 0.0 0.5                                                                                                       |        |
| 1 1                 | x 0 2            | 0.0 -0.5                                                                                                      |        |
| 1 1                 | c 0 2            | 0.0 -0.5                                                                                                      |        |
| 1 1                 | x 0 3            | 1.0 0.5                                                                                                       |        |
| 1 1                 | c 0 3            | 1.0 0.5                                                                                                       |        |
| 2 1                 | b 0 0            | -1.0 -0.5                                                                                                     |        |
| 2 1                 | a 0 0            | -1.0 -0.5                                                                                                     |        |
| 2 1                 | b 0 1            | 0.0 0.5                                                                                                       |        |
| 2 1                 |                  | 0.0 0.5                                                                                                       |        |
| 2 1                 | b U 2            | 0.0 -0.5                                                                                                      |        |
| 2 1                 | a 0 2            |                                                                                                               |        |
| 2 1                 | D U 3            |                                                                                                               |        |
| Z I<br>Mawimum Dime | a U J            |                                                                                                               |        |
| Maximum Dime        | ension for Hamil | $\frac{1}{100120} = 40$                                                                                       | EE UT  |
| 1. 2                | 1 0 / / 2        | EAF. TREW CALC. TREW DITT - EAF. EAR E31. EAR AVG. CALC. TREW DI                                              | rr wi. |
| 2. 2                | 1 2 4 4 3        | 1 3 4 4 7 7341.20100 7341.20030 0.00010 0.00000 0.00017                                                       |        |
| 2. 3                | 1 2 4 3 3        | 1 3 4 5 1542.23420 1542.23095 0.00525 0.00500 0.00515                                                         |        |
| 1. 3                | 1 2 3 2 3        | 1 3 3 3 7522 7310 7522 6555 0.00655 0.00500 0.0031                                                            |        |
| 4. 3<br>5. /        | 1 2 3 3 3        | 1 3 3 3 1522.01210 1522.00555 0.00550 0.00500 0.00500<br>1 3 3 2 1638 76800 1638 7787 0.00487 0.00500 0.00580 |        |
| 6. 1                | 04455            |                                                                                                               |        |
| 7. 4                | 04443            |                                                                                                               |        |
| 8. 1                | 04553            |                                                                                                               |        |
| 0. 1                | 0 4 3 4 3        |                                                                                                               |        |
| 10. 1               | 0 1 2 2 0        |                                                                                                               |        |
| 11. 1               | 0 1 2 2 0        |                                                                                                               |        |
| 12. 1               | 0 1 2 1 0        |                                                                                                               |        |
| 13. 1               | 0 1 1 0 0        |                                                                                                               |        |
| 14. 1               | 0 1 1 1 0        |                                                                                                               |        |
| 15. 1               | 1 1 2 1 2        | 0 2 3 2 23068.50590 23068.50207 0.00383 0.00500 0.00201                                                       |        |
| 16. 1               | 1 1 2 2 2        | 0 2 3 3 23071.12390 23071.10896 0.01494 0.00500 0.00216                                                       |        |
| 17. 1               | 1 1 2 2 2        | 0 2 3 2 23071.92500 23071.91868 0.00632 0.00500 0.00241                                                       |        |
| 18: 1               | 1 1 1 1 2        | 0 2 2 2 23881.08610 23881.08407 0.00203 0.00500 0.00253                                                       |        |
| 19: 1               | 1 1 1 1 2        | 0 2 2 1 23883.04530 23883.04747 -0.00217 0.00500 0.00255                                                      |        |
| 20: 1               | 1 1 1 0 2        |                                                                                                               |        |
| 21: 2               | 1 2 2 1 1        | 1 1 1 0 35953.77430 35953.76934 0.00496 0.00500 0.00219                                                       |        |
| 22: 2               | 1 2 2 2 1        | 1 1 1 1 35958.65260 35958.65165 0.00095 0.00500 0.00174                                                       |        |
| 23: 2               | 1 2 3 3 1        | 1 1 2 2 36321.69300 36321.68971 0.00329 0.00500 0.00144                                                       |        |
| 24: 2               | 1 2 3 2 1        | 1 1 2 1 36323.17390 36323.15513 0.01877 0.00500 0.00152                                                       |        |
|                     |                  |                                                                                                               |        |

| 25:  | 2 | 0 | 2 | 3      | 2      | 1 | 0 | 1      | 2 | 2      | 37426.08000  | 37426.07448  | 0.00552  | 0.00500 | 0.00164 |              |                 |
|------|---|---|---|--------|--------|---|---|--------|---|--------|--------------|--------------|----------|---------|---------|--------------|-----------------|
| 26:  | 2 | 0 | 2 | 3      | 3      | 1 | 0 | 1      | 2 | 2      | 37426.87000  | 37426.88420  | -0.01420 | 0.00500 | 0.00114 |              |                 |
| 27:  | 2 | 0 | 2 | 3      | 2      | 1 | 0 | 1      | 2 | 1      | 37427.47590  | 37427.47219  | 0.00371  | 0.00500 | 0.00120 |              |                 |
| 28:  | 2 | 0 | 2 | 2      | 2      | 1 | 0 | 1      | 1 | 1      | 37480.33690  | 37480.33503  | 0.00187  | 0.00500 | 0.00101 |              |                 |
| 29:  | 2 | 0 | 2 | 2      | 1      | 1 | 0 | 1      | 1 | 0      | 37482.89330  | 37482.89215  | 0.00115  | 0.00500 | 0.00160 |              |                 |
| 30:  | 2 | 0 | 2 | 2      | 2      | 1 | 0 | 1      | 2 | 2      | 37563.35480  | 37563.35273  | 0.00207  | 0.00500 | 0.00293 |              |                 |
| 31:  | 3 | 1 | 3 | 3      | 2      | 2 | 1 | 2      | 2 | 1      | 54251.90670  | 54251.90288  | 0.00382  | 0.00500 | 0.00133 |              |                 |
| 32:  | 2 | 1 | 2 | 3      | 3      | 2 | 1 | 2      | 2 | 2      | 54252.47310  | 54252.47342  | -0.00032 | 0.00500 | 0.00133 |              |                 |
| 34.  | 3 | 1 | 3 | 3<br>1 | 2      | 2 | 1 | 2      | 2 | 2      | 54252.61020  | 54252.00700  | 0.00254  | 0.00500 | 0.00246 |              |                 |
| 35.  | 3 | 1 | 3 | 4      | 4      | 2 | 1 | 2      | 3 | 3      | 54375 77330  | 54375 77200  | 0.00130  | 0.00500 | 0.00100 |              |                 |
| 36:  | 3 | 1 | 3 | 4      | 3      | 2 | 1 | 2      | 3 | 2      | 54376.31530  | 54376.31764  | -0.00234 | 0.00500 | 0.00142 |              |                 |
| 37 . | 3 | 0 | 3 | 4      | 3      | 2 | 0 | 2      | 3 | 3      | 56104,80880  | 56104 81535  | -0.00655 | 0.00500 | 0.00169 |              |                 |
| 38   | 3 | 0 | 3 | 4      | 4      | 2 | 0 | 2      | 3 | 3      | 56105.36800  | 56105.35984  | 0.00816  | 0.00500 | 0.00126 |              |                 |
| 39:  | 3 | 0 | 3 | 4      | 3      | 2 | 0 | 2      | 3 | 2      | 56105.62980  | 56105.62508  | 0.00472  | 0.00500 | 0.00128 |              |                 |
| 40:  | 3 | 0 | 3 | 3      | 2      | 2 | 0 | 2      | 2 | 2      | 56155.62460  | 56155.63562  | -0.01102 | 0.00500 | 0.00238 |              |                 |
| 41:  | 3 | 0 | 3 | 3      | 3      | 2 | 0 | 2      | 2 | 2      | 56156.96490  | 56156.96984  | -0.00494 | 0.00500 | 0.00189 |              |                 |
| 42:  | 3 | 0 | 3 | 3      | 2      | 2 | 0 | 2      | 2 | 1      | 56157.58650  | 56157.59902  | -0.01252 | 0.00500 | 0.00193 |              |                 |
| 43:  | 1 | 1 | 0 | 2      | 1      | 1 | 0 | 1      | 2 | 2      | 61706.35800  | 61706.36882  | -0.01082 | 0.00500 | 0.00221 |              |                 |
| 44:  | 1 | 1 | 0 | 2      | 2      | 1 | 0 | 1      | 2 | 2      | 61709.12100  | 61709.12649  | -0.00549 | 0.00500 | 0.00164 |              |                 |
| 45:  | 1 | 1 | 0 | 1      | 1      | 1 | 0 | 1      | 1 | 1      | 62650.40400  | 62650.40539  | -0.00139 | 0.00500 | 0.00248 |              |                 |
| 46:  | 2 | 1 | 1 | 3      | 2      | 2 | 0 | 2      | 3 | 3      | 63050.60000  | 63050.59820  | 0.00180  | 0.00500 | 0.00236 |              |                 |
| 47:  | 2 | 1 | 1 | 3      | 2      | 2 | 0 | 2      | 3 | 2      | 63051.41200  | 63051.40792  | 0.00408  | 0.00500 | 0.00208 |              |                 |
| 48:  | 2 | 1 | 1 | 3      | 3      | 2 | 0 | 2      | 3 | 3      | 63051.68200  | 63051.68492  | -0.00292 | 0.00500 | 0.00205 |              |                 |
| 49:  | 2 | 1 | 1 | 3      | 3      | 2 | 0 | 2      | 3 | 2      | 63052.49400  | 63052.49464  | -0.00064 | 0.00500 | 0.00259 |              |                 |
| 50:  | 2 | 1 | 1 | 2      | 1      | 2 | 0 | 2      | 2 | 2      | 63626.60400  | 63626.59955  | 0.00445  | 0.00500 | 0.00251 |              |                 |
| 51:  | 2 | 1 | 1 | 2      | 2      | 2 | 1 | 2      | 2 | 2      | 70200 07160  | 70200 0001   | 0.01277  | 0.00500 | 0.00210 |              |                 |
| 52.  | 4 | 1 | 4 | 4      | 7      | 3 | 1 | 3      | 3 | 2      | 72389.27100  | 72380 3850/  | 0.01039  | 0.00500 | 0.00200 |              |                 |
| 54.  | 4 | 1 | 4 | 5      | 5      | 3 | 1 | 3      | 4 | 4      | 72369.40340  | 72443 04408  | 0.01940  | 0.00500 | 0.00200 |              |                 |
| 55.  | 4 | 1 | 4 | 5      | 4      | 3 | 1 | 3      | 4 | 3      | 72443 32130  | 72443 31513  | 0.00617  | 0.00500 | 0.00215 |              |                 |
| 56:  | 4 | Ō | 4 | 5      | 5      | 3 | Ō | 3      | 4 | 4      | 74725.09630  | 74725_03407  | 0.06223  | 0.05000 | 0.00249 | 74725 10511  | -0.00881 0.5000 |
| 57:  | 4 | 0 | 4 | 5      | 4      | 3 | 0 | 3      | 4 | 3      | 74725.09630  | 74725.17614  | -0.07984 | 0.05000 | 0.00249 | 74725.10511  | -0.00881 0.5000 |
| 58:  | 4 | 0 | 4 | 4      | 4      | 3 | 0 | 3      | 3 | 3      | 74775.36800  | 74775.36735  | 0.00065  | 0.00500 | 0.00265 | 1120110011   | 0100001 010000  |
| 59:  | 4 | 0 | 4 | 4      | 3      | 3 | 0 | 3      | 3 | 2      | 74775.68290  | 74775.68062  | 0.00228  | 0.00500 | 0.00265 |              |                 |
| 60:  | 1 | 1 | 1 | 2      | 1      | 0 | 0 | 0      | 1 | 1      | 79203.63190  | 79203.63002  | 0.00188  | 0.00500 | 0.00232 |              |                 |
| 61:  | 1 | 1 | 1 | 2      | 2      | 0 | 0 | 0      | 1 | 1      | 79207.03970  | 79207.04663  | -0.00693 | 0.00500 | 0.00190 |              |                 |
| 62:  | 1 | 1 | 1 | 2      | 1      | 0 | 0 | 0      | 1 | 0      | 79207.28570  | 79207.29087  | -0.00517 | 0.00500 | 0.00212 |              |                 |
| 63:  | 1 | 1 | 1 | 1      | 1      | 0 | 0 | 0      | 1 | 1      | 80153.48500  | 80153.49026  | -0.00526 | 0.00500 | 0.00273 |              |                 |
| 64:  | 1 | 1 | 1 | 1      | 0      | 0 | 0 | 0      | 1 | 1      | 80159.27290  | 80159.27735  | -0.00445 | 0.00500 | 0.00291 |              |                 |
| 65:  | 5 | 0 | 5 | 6      | 6      | 4 | 0 | 4      | 5 | 5      | 93266.88880  | 93266.85268  | 0.03612  | 0.05000 | 0.00533 | 93266.89217  | -0.00337 0.5000 |
| 66:  | 5 | 0 | 5 | 6      | 5      | 4 | 0 | 4      | 5 | 4      | 93266.88880  | 93266.93166  | -0.04286 | 0.05000 | 0.00533 | 93266.89217  | -0.00337 0.5000 |
| 67:  | 2 | 1 | 2 | 3      | 2      | 1 | 0 | 1      | 2 | 2      | 96817.77730  | 96817.73168  | 0.04562  | 0.05000 | 0.00230 |              |                 |
| 68:  | 2 | 1 | 2 | 3      | 2      | 1 | 0 | 1      | 2 | 1      | 96819.12770  | 96819.12939  | -0.00169 | 0.05000 | 0.00209 |              |                 |
| 69:  | 2 | 1 | 2 | 3      | 3      | 1 | 0 | 1      | 2 | 2      | 96819.66940  | 96819.68287  | -0.01347 | 0.05000 | 0.00204 |              |                 |
| 70:  | 2 | 1 | 2 | 2      | 2      | 1 | 0 | 1      | 1 | 1      | 97320.03150  | 97320.07075  | -0.03925 | 0.05000 | 0.00221 |              |                 |
| /1:  | 2 | 1 | 2 | 2      | 1      | 1 | 0 | 1      | 1 | 1      | 97321.04420  | 97320.97552  | 0.06868  | 0.05000 | 0.00264 |              |                 |
| 72:  | 2 | 1 | 2 | 2      | 1      | 1 | 0 | 1      | 1 | 0      | 97325.49120  | 97325.49604  | -0.00484 | 0.05000 | 0.00260 |              |                 |
| 73:  | 3 | 1 | 3 | 4      | 3<br>1 | 2 | 0 | 2      | 3 | 2      | 113768 56080 | 113768 57067 | 0.02306  | 0.05000 | 0.00254 |              |                 |
| 75.  | 3 | 1 | 3 | 3      | 3      | 2 | 0 | 2      | 2 | 2      | 11/002 16010 | 11/002 2001/ | 0.04004  | 0.05000 | 0.00255 |              |                 |
| 76.  | 3 | 1 | 3 | 3      | 2      | 2 | 0 | 2      | 2 | 1      | 114094 52610 | 114094 50677 | 0.01933  | 0.05000 | 0.00248 |              |                 |
| 77:  | 4 | 1 | 4 | 5      | 4      | 3 | 0 | 3      | 4 | 3      | 130105.64750 | 130105.66489 | -0.01739 | 0.05000 | 0.00342 |              |                 |
| 78:  | 4 | 1 | 4 | 5      | 5      | 3 | 0 | 3      | 4 | 4      | 130106.23650 | 130106.25492 | -0.01842 | 0.05000 | 0.00342 |              |                 |
| 79:  | 4 | 1 | 4 | 4      | 4      | 3 | 0 | 3      | 3 | 3      | 130324.60700 | 130324.62524 | -0.01824 | 0.05000 | 0.00341 |              |                 |
| 80:  | 4 | 1 | 4 | 4      | 3      | 3 | 0 | 3      | 3 | 2      | 130326.17700 | 130326.16277 | 0.01423  | 0.05000 | 0.00332 |              |                 |
| 81:  | 5 | 1 | 5 | 6      | 5      | 4 | 0 | 4      | 5 | 4      | 145879.42700 | 145879.45063 | -0.02363 | 0.05000 | 0.00574 |              |                 |
| 82:  | 5 | 1 | 5 | 6      | 6      | 4 | 0 | 4      | 5 | 5      | 145880.02170 | 145880.02630 | -0.00460 | 0.05000 | 0.00576 |              |                 |
| 83:  | 5 | 1 | 5 | 5      | 5      | 4 | 0 | 4      | 4 | 4      | 146024.10020 | 146024.09386 | 0.00634  | 0.05000 | 0.00580 |              |                 |
| 84:  | 5 | 1 | 5 | 5      | 4      | 4 | 0 | 4      | 4 | 3      | 146025.28650 | 146025.29005 | -0.00355 | 0.05000 | 0.00572 |              |                 |
| 85:  | 6 | 1 | 6 | 7      | 6      | 5 | 0 | 5      | 6 | 5      | 161145.15710 | 161145.22284 | -0.06574 | 0.05000 | 0.01103 |              |                 |
| 86:  | 6 | 1 | 6 | 7      | 7      | 5 | 0 | 5      | 6 | 6      | 161145.75720 | 161145.77897 | -0.02177 | 0.05000 | 0.01104 |              |                 |
| 87:  | 6 | 1 | 6 | 6      | 6      | 5 | 0 | 5      | 5 | 5      | 161234.68870 | 161234.65644 | 0.03226  | 0.05000 | 0.01076 |              |                 |
| 88:  | 6 | 1 | 6 | 6      | 5      | 5 | 0 | 5      | 5 | 4      | 161235.57960 | 161235.65543 | -0.07583 | 0.05000 | 0.01072 |              |                 |
| 89:  | 5 | 2 | 3 | 6      | 5      | 5 | 1 | 4      | 6 | 5      | 175385.24560 | 175385.29610 | -0.05050 | 0.05000 | 0.01240 |              |                 |
| 90:  | 5 | 2 | 3 | 6      | 6      | 5 | 1 | 4      | 5 | 6      | 175386.24530 | 175386.30239 | -0.05709 | 0.05000 | 0.01240 |              |                 |
| 91:  | 5 | 2 | 2 | 5      | о<br>4 | 5 | 1 | 4      | 5 | э<br>4 | 175937.03940 | 175937.73037 | -0.09097 | 0.05000 | 0.01267 |              |                 |
| 92.  | 7 | 1 | 7 | 8      | 7      | 6 | 0 | 6      | 7 | 6      | 175970 59120 | 175970 45824 | 0 13296  | 0.05000 | 0.01203 | 175970 72419 | -0 13299 0 5000 |
| 94.  | 7 | 1 | 7 | 8      | 8      | 6 | 0 | 6      | 7 | 7      | 175970 59120 | 175970.99015 | -0 39895 | 0.05000 | 0.02042 | 175970 72419 | -0.13299 0.5000 |
| 95.  | 7 | 1 | 7 | 7      | 7      | 6 | 0 | 6      | 6 | 6      | 176016 68620 | 176016.66034 | 0.02586  | 0.05000 | 0.02011 | 110010.12410 | -0.10200 0.0000 |
| 96:  | 7 | 1 | 7 | 7      | 6      | 6 | 0 | 6      | 6 | 5      | 176017.46670 | 176017.52492 | -0.05822 | 0.05000 | 0.02008 |              |                 |
| 97:  | 4 | 2 | 2 | 5      | 4      | 4 | 1 | 3      | 5 | 4      | 177995.61150 | 177995.66262 | -0.05112 | 0.05000 | 0.00652 |              |                 |
| 98:  | 4 | 2 | 2 | 5      | 5      | 4 | 1 | 3      | 5 | 5      | 177996.87040 | 177996.92544 | -0.05504 | 0.05000 | 0.00652 |              |                 |
| 99:  | 4 | 2 | 2 | 4      | 4      | 4 | 1 | 3      | 4 | 4      | 178715.86300 | 178715.90628 | -0.04328 | 0.05000 | 0.00662 |              |                 |
| 100: | 4 | 2 | 2 | 4      | 3      | 4 | 1 | 3      | 4 | 3      | 178717.88770 | 178717.93120 | -0.04350 | 0.05000 | 0.00663 |              |                 |
| 101: | 3 | 2 | 1 | 4      | 3      | 3 | 1 | 2      | 4 | 3      | 180161.00220 | 180161.01435 | -0.01215 | 0.05000 | 0.00408 |              |                 |
| 102: | 3 | 2 | 1 | 4      | 4      | 3 | 1 | 2      | 4 | 4      | 180162.68550 | 180162.72373 | -0.03823 | 0.05000 | 0.00408 |              |                 |
| 103: | 3 | 2 | 1 | 3      | 3      | 3 | 1 | 2      | 3 | 3      | 181139.50460 | 181139.53303 | -0.02843 | 0.05000 | 0.00416 |              |                 |
| 104: | 3 | 2 | 1 | 3      | 2      | 3 | 1 | 2      | 3 | 2      | 181142.58930 | 181142.63855 | -0.04925 | 0.05000 | 0.00410 |              |                 |
| 105: | 2 | 2 | 0 | 3      | 2      | 2 | 1 | 1      | 3 | 2      | 181770.91130 | 181//0.94904 | -0.03774 | 0.05000 | 0.00521 |              |                 |
| 107  | 2 | 2 | 0 | 3      | 3      | 2 | 1 | 1      | 3 | 3      | 102004 72500 | 183004 76070 | -0.01593 | 0.05000 | 0.00528 |              |                 |
| 102. | 2 | 2 | 1 | 2      | 2      | 2 | 1 | л<br>Т | 2 | ∠<br>? | 185/10 /1000 | 185410 /00/8 | -0.02400 | 0.05000 | 0.00559 |              |                 |
| 109. | 2 | 2 | 1 | 3      | 3      | 2 | 1 | 2      | 3 | 3      | 185414 04600 | 185414 28979 | -0.04359 | 0.05000 | 0.00470 |              |                 |
| 110. | 2 | 2 | 1 | 2      | 2      | 2 | 1 | 2      | 2 | 2      | 186973 48500 | 186973 50528 | -0.02028 | 0.05000 | 0.00549 |              |                 |
| 111: | 2 | 2 | 1 | 2      | ĩ      | 2 | 1 | 2      | 2 | ĩ      | 186977.33330 | 186977.45607 | -0.12277 | 0.05000 | 0.00602 |              |                 |
| 112: | 3 | 2 | 2 | 4      | 3      | 3 | 1 | 3      | 4 | 3      | 187411.67050 | 187411.70890 | -0.03840 | 0.05000 | 0.00419 |              |                 |
| 113: | 3 | 2 | 2 | 4      | 4      | 3 | 1 | 3      | 4 | 4      | 187412.43830 | 187412.47178 | -0.03348 | 0.05000 | 0.00422 |              |                 |
| 114: | 3 | 2 | 2 | 3      | 3      | 3 | 1 | 3      | 3 | 3      | 188566.66860 | 188566.68748 | -0.01888 | 0.05000 | 0.00432 |              |                 |
| 115: | 3 | 2 | 2 | 3      | 2      | 3 | 1 | 3      | 3 | 2      | 188568.01490 | 188568.01898 | -0.00408 | 0.05000 | 0.00461 |              |                 |
| 116: | 4 | 2 | 3 | 5      | 4      | 4 | 1 | 4      | 5 | 4      | 189980.22090 | 189980.08009 | 0.14081  | 0.05000 | 0.00677 | 189980.21667 | 0.00423 0.5000  |

| 117:    | 4             | 2        | 3          | 5               | 5          | 4      | 1 4          | 15         | 5         |       | 189980.22090  | 189980 | .35325   | -0.13235    | 0.05000     | 0.00677 | 189980.21667                 | 0.00423 0.5000  |
|---------|---------------|----------|------------|-----------------|------------|--------|--------------|------------|-----------|-------|---------------|--------|----------|-------------|-------------|---------|------------------------------|-----------------|
| 118:    | 5             | 2        | 4          | 6               | 5          | 5      | 1 8          | 56         | 5         |       | 193150.80590  | 193150 | .74393   | 0.06197     | 0.05000     | 0.01271 | 193150.74454                 | 0.06136 0.5000  |
| 119:    | 5             | 2        | 4          | 6               | 3          | 5      | 1 5          | 56         | 6         |       | 193150.80590  | 193150 | .74516   | 0.06074     | 0.05000     | 0.01271 | 193150.74454                 | 0.06136 0.5000  |
| 120.    | 5             | 2        | 4          | 5               | 5          | 5      | 1 5          | 55         | 5         |       | 193968 43630  | 193968 | 52382    | -0.08752    | 0.05000     | 0.01228 | 193968 52691                 | -0.09061 0.5000 |
| 120.    | 5             | 2        | 4          | 5               | 1          | 5      | 1 4          | 5 5        | 4         |       | 193968 43630  | 193968 | 53001    | -0.09371    | 0.05000     | 0.01220 | 193968 52691                 | -0.09061 0.5000 |
| 100.    | 0             | 2        | -          |                 |            | 4      | 1 (          | 5 5        | -         |       | 190900.40000  | 133300 | 00000    | -0.03371    | 0.05000     | 0.01220 | 133300.32031                 | -0.03001 0.3000 |
| 122:    | 2             | 2        | 1          | э.              | 2          | 1      | 1 (          | 2          | 1         |       | 220523.03720  | 220523 | .00000   | -0.01765    | 0.05000     | 0.00451 |                              |                 |
| 123:    | 2             | 2        | 1          | 3               | 3          | 1      | 1 (          | ) 2        | 2         |       | 220524.85220  | 220524 | .84617   | 0.00603     | 0.05000     | 0.00451 | L                            |                 |
| 124:    | 2             | 2        | 1          | 2 3             | 2          | 1      | 1 (          | ) 1        | 1         |       | 221643.19450  | 221643 | .17065   | 0.02385     | 0.05000     | 0.00503 | 3                            |                 |
| 125:    | 2             | 2        | 1          | 2               | 1          | 1      | 1 (          | ) 1        | 0         |       | 221645.73300  | 221645 | .72243   | 0.01057     | 0.05000     | 0.00522 | 2                            |                 |
| 126:    | 2             | 2        | 1          | 2               | 1          | 1      | 1 (          | ) 1        | 1         |       | 221648.06100  | 221648 | .02621   | 0.03479     | 0.05000     | 0.00562 | 2                            |                 |
| 127:    | 2             | 2 1      | 0          | 3               | 2          | 1      | 1 1          | 12         | 1         |       | 221754.07850  | 221753 | .85489   | 0.22361     | 0.05000     | 0.00442 | 221754.01674                 | 0.06176 0.5000  |
| 128     | 2             | 2        | 0          | 3               | 3          | 1      | 1 1          | 1 2        | 2         |       | 221754 07850  | 221754 | 17859    | -0.10009    | 0.05000     | 0.00442 | 221754 01674                 | 0.06176 0.5000  |
| 120.    | 2             | 2        | 0          | 2               | 5          | 1      |              | 1 1        | 1         |       | 2221104.01000 | 221101 | 10001    | 0.07424     | 0.05000     | 0.00112 | 221104.01014                 | 0.00110 0.0000  |
| 129:    | 2             | 2        | 0          | 2.              | 2          | 1      | 1 1          |            | 1         |       | 222951.42560  | 222951 | .49994   | -0.07434    | 0.05000     | 0.00495 |                              |                 |
| 130:    | 2             | 2 (      | 0          | 2               | 1          | 1      | 1 1          | 1 1        | 1         |       | 222956.20070  | 222956 | .33399   | -0.13329    | 0.05000     | 0.00534 | ł                            |                 |
| 131:    | 3             | 2 3      | 2          | 4               | 3          | 2      | 1 1          | 13         | 2         |       | 238128.27230  | 238128 | .27582   | -0.00352    | 0.05000     | 0.00495 | 5                            |                 |
| 132:    | 3             | 2        | 2          | 4               | 1          | 2      | 1 1          | 13         | 3         |       | 238129.34990  | 238129 | .35753   | -0.00763    | 0.05000     | 0.00493 | 3                            |                 |
| 133:    | 3             | 2 3      | 2          | 3               | 3          | 2      | 1 1          | 12         | 2         |       | 239031.07150  | 239031 | .07339   | -0.00189    | 0.05000     | 0.00433 | 3                            |                 |
| 134:    | 3             | 2        | 2          | 3               | 2          | 2      | 1 1          | 12         | 1         |       | 239033.98900  | 239033 | .96280   | 0.02620     | 0.05000     | 0.00431 | l                            |                 |
| 135.    | 3             | 2        | 1          | л ·             | 2          | 2      | 1 4          | 2 3        | 2         |       | 2/1879 70370  | 2/1870 | 56205    | 0 14075     | 0.05000     | 0 00456 | -<br>2/1870 650/0            | 0 04421 0 5000  |
| 126.    | 2             | 2        | 1          |                 | 1          | 2      | 1 4          | 2 2        | 2         |       | 041070 70270  | 0/1070 | 75602    | 0.14070     | 0.05000     | 0.00400 | 241070.00040<br>241070.6E040 | 0.04421 0.0000  |
| 100.    | 0             | 2        | 1          |                 | -          | 2      |              | 2 0        | 0         |       | 2410/3.70370  | 241073 | . 10000  | -0.03233    | 0.05000     | 0.00430 | 241073.03343                 | 0.04421 0.0000  |
| 137:    | 3             | 2.       | 1          | 3.              | 3          | 2      | 1 2          | 22         | 2         |       | 242914.64170  | 242914 | .67200   | -0.03030    | 0.05000     | 0.00467 |                              |                 |
| 138:    | 3             | 2        | 1          | 3 3             | 2          | 2      | 1 2          | 2 2        | 1         |       | 242915.18570  | 242915 | .38615   | -0.20045    | 0.05000     | 0.00503 | 3                            |                 |
| 139:    | 4             | 2        | 3          | 5 4             | 1          | 3      | 1 2          | 24         | 3         |       | 255081.17890  | 255081 | .16426   | 0.01464     | 0.05000     | 0.00643 | 3                            |                 |
| 140:    | 4             | 2        | 3          | 5 !             | 5          | 3      | 1 2          | 24         | 4         |       | 255082.18200  | 255082 | .13704   | 0.04496     | 0.05000     | 0.00642 | 2                            |                 |
| 141:    | 4             | 2        | 3          | 4               | 1          | 3      | 1 2          | 23         | 3         |       | 255789.43070  | 255789 | .41785   | 0.01285     | 0.05000     | 0.00605 | 5                            |                 |
| 142.    | 4             | 2        | 3          | 4               | 3          | 3      | 1 3          | 23         | 2         |       | 255791 54050  | 255791 | 53053    | 0.00997     | 0.05000     | 0.00604 | 1                            |                 |
| 143.    | 4             | 2        | 2          | 5               | 5          | 3      | 1 9          | а <u>4</u> | 4         |       | 262698 74400  | 262698 | 67764    | 0 06636     | 0.05000     | 0 00787 | 262698 69990                 | 0 04410 0 5000  |
| 144.    | Â             | 2        | 2          | с .             | 1          | 2      | 1 0          | 5 1        | 2         |       | 262608 74400  | 202000 | 70017    | 0 00192     | 0.05000     | 0 00797 | 202000.00000                 | 0 04410 0 5000  |
| 144.    | *             | 2 .      | 2          |                 | ± .        | 3      | 1 4          |            | 3         |       | 202090.74400  | 202090 | .12211   | 0.02183     | 0.05000     | 0.00787 | 202090.09990                 | 0.04410 0.5000  |
| 145:    | 4             | 2 :      | 2          | 4 4             | ÷          | 3      | 1 3          | 3 3        | 3         |       | 263596.68290  | 263596 | .59419   | 0.08871     | 0.05000     | 0.00783 | 3 263596.70107               | -0.01817 0.5000 |
| 146:    | 4             | 2 3      | 2          | 4 3             | 3          | 3      | 1 3          | 33         | 2         |       | 263596.68290  | 263596 | .80796   | -0.12506    | 0.05000     | 0.00783 | 3 263596.70107               | -0.01817 0.5000 |
| 147:    | 5             | 2 4      | 4          | 6               | 5          | 4      | 1 3          | 35         | 4         |       | 271389.92550  | 271389 | .96139   | -0.03589    | 0.05000     | 0.01003 | 3                            |                 |
| 148:    | 5             | 2 4      | 4          | 6 (             | <u> </u>   | 4      | 1 3          | 35         | 5         |       | 271390.83030  | 271390 | .84250   | -0.01220    | 0.05000     | 0.01003 | 3                            |                 |
| 149:    | 5             | 2 4      | 4          | 5               | 5          | 4      | 1 3          | 34         | 4         |       | 271952.08840  | 271952 | .05783   | 0.03057     | 0.05000     | 0.00916 | 3                            |                 |
| 150.    | 5             | 2        | 7          | 5               | 1          | 7      | 1 3          | а л        | 3         |       | 271953 69400  | 271053 | 71616    | 0.02216     | 0.05000     | 0 00916 |                              |                 |
| 150.    | 5             | 2        | -          | 6               |            | 7      | 1 1          |            | 5         |       | 211333.03400  | 211300 | 22556    | -0.02210    | 0.05000     | 0.00310 | 004000 45100                 | 0 04700 0 5000  |
| 151:    | 5             | 2        | 3          | 0               |            | 4      | 1 4          | ± 5        | 5         |       | 204292.49000  | 204292 | . 33556  | 0.16324     | 0.05000     | 0.01463 | 204292.45100                 | 0.04780 0.5000  |
| 152:    | 5             | 2        | 3          | 6               | ō          | 4      | 1 4          | 15         | 4         |       | 284292.49880  | 284292 | .56643   | -0.06763    | 0.05000     | 0.01483 | 3 284292.45100               | 0.04780 0.5000  |
| 153:    | 5             | 2        | 3          | 5 4             | 1          | 4      | 1 4          | 14         | 3         |       | 285103.53400  | 285103 | .48459   | 0.04941     | 0.05000     | 0.01463 | 3 285103.55330               | -0.01930 0.5000 |
| 154:    | 5             | 2        | 3          | 5 !             | 5          | 4      | 1 4          | 14         | 4         |       | 285103.53400  | 285103 | .62201   | -0.08801    | 0.05000     | 0.01463 | 3 285103.55330               | -0.01930 0.5000 |
| 155:    | 6             | 2        | 5          | 7 (             | 3          | 5      | 1 4          | 16         | 5         |       | 287065.92180  | 287065 | .98957   | -0.06777    | 0.05000     | 0.01531 | L                            |                 |
| 156:    | 6             | 2        | 5          | 7 .             | 7          | 5      | 1 4          | 16         | 6         |       | 287066.73980  | 287066 | .80519   | -0.06539    | 0.05000     | 0.01532 | 2                            |                 |
| 157.    | 6             | 2        | 5          | 6               | 3          | 5      | 1 4          | 1 5        | 5         |       | 287514 23830  | 287514 | 21606    | 0 02224     | 0.05000     | 0 01397 | 7                            |                 |
| 160.    | 6             | 2        | 5          | 6               | -          | 5      | 1 /          | 1 5        | 4         |       | 207014.20000  | 007515 | 60102    | 0.02224     | 0.05000     | 0.01207 | ,                            |                 |
| 150.    | -             | 2        | 2          | 0 ·             | ,          | 2      |              |            | -         |       | 201010.00000  | 201010 | .00103   | -0.03773    | 0.05000     | 0.01337 | 000440 00070                 | 0 04460 0 5006  |
| 159:    | _             | 2 (      | 6          | 8               | (          | 6      | 1 8          | s /        | 6         |       | 302119.78510  | 302119 | .44544   | 0.33966     | 0.05000     | 0.02361 | 302119.82973                 | -0.04463 0.5000 |
| 160:    | 7             | 2 (      | 6          | 8               | 3          | 6      | 1 8          | 5 7        | 7         |       | 302119.78510  | 302120 | .21401   | -0.42891    | 0.05000     | 0.02361 | 302119.82973                 | -0.04463 0.5000 |
| 161:    | 7             | 2 (      | 6          | 7               | 7          | 6      | 1 5          | 56         | 6         |       | 302475.43730  | 302475 | .42618   | 0.01112     | 0.05000     | 0.02196 | 6                            |                 |
| 162:    | 7             | 2        | 6          | 7 (             | 6          | 6      | 1 5          | 56         | 5         |       | 302476.63160  | 302476 | .63465   | -0.00305    | 0.05000     | 0.02196 | 5                            |                 |
| 163:    | 5             | 3 3      | 2          | 6               | 5          | 5      | 2 3          | 36         | 5         |       | 305866.36330  | 305865 | .73682   | 0.62648     | 0.05000     | 0.01417 | 305866.22546                 | 0.13784 0.5000  |
| 164:    | 5             | 3        | 2          | 6               | 3          | 5      | 2 3          | 36         | 6         |       | 305866.36330  | 305866 | .71411   | -0.35081    | 0.05000     | 0.01417 | 305866.22546                 | 0.13784 0.5000  |
| 165     | 3             | 3        | 0          |                 | 2          | 3      | 2 1          | 1 /        | 3         |       | 306028 03130  | 306020 | 10574    | 0 17444     | 0.05000     | 0 01550 |                              |                 |
| 100.    | 2             | 2        | ~          |                 | ۱          | 2      | 2 1          |            | 4         |       | 206021 01010  | 206023 | 10574    | -0.17444    | 0.05000     | 0.01553 | ,<br>,                       |                 |
| 100:    | 3             |          |            | 4 '             | ± .        | 3      | 2 1          | 1 4        | 4         |       | 306031.21610  | 306031 | .10529   | 0.05261     | 0.05000     | 0.01562 | 2                            |                 |
| 167:    | 4             | 3        | 1          | 5 4             | 1          | 4      | 2 2          | 25         | 4         |       | 306035.96990  | 306036 | .02902   | -0.05912    | 0.05000     | 0.01301 | L                            |                 |
| 168:    | 4             | 3        | 1          | 5 !             | 5          | 4      | 2 2          | 25         | 5         |       | 306037.32960  | 306037 | .38446   | -0.05486    | 0.05000     | 0.01300 | )                            |                 |
| 169:    | 3             | 3        | 1          | 4 :             | 3          | 3      | 2 2          | 24         | 3         |       | 306120.50870  | 306120 | .47126   | 0.03744     | 0.05000     | 0.01553 | 3                            |                 |
| 170:    | 3             | 3        | 1          | 4               | 1          | 3      | 2 2          | 24         | 4         |       | 306122.52810  | 306122 | .50671   | 0.02139     | 0.05000     | 0.01555 | 5                            |                 |
| 171:    | 4             | 3        | 2          | 5 4             | 4          | 4      | 2 3          | 35         | 4         |       | 306310.09890  | 306310 | .15417   | -0.05527    | 0.05000     | 0.01324 | 1                            |                 |
| 172.    | -             | 3        | 2          | 5 1             | -          | 7      | 2 3          | 3 5        | 5         |       | 306311 //300  | 306311 | 16326    | 0 01936     | 0.05000     | 0 0132/ | 1                            |                 |
| 172.    | 6             | 2        | 7          | 7 .             | 7          | 5      | 1 0          |            | 6         |       | 206759 47700  | 206750 | 07117    | 0.00672     | 0.05000     | 0.01024 | 206750 45004                 | 0 01966 0 5000  |
| 175.    | 0             | 2 .      | -          | 7               |            | 5      |              |            | 5         |       | 000750.47700  | 000750 | .2/11/   | 0.20075     | 0.05000     | 0.02722 | 000750.45024                 | 0.01000 0.5000  |
| 1/4:    | 6             | 2 4      | 4          |                 | 2          | 5      | 1 8          | 5 6        | 5         |       | 306/58.4//90  | 306758 | .64/32   | -0.16942    | 0.05000     | 0.02722 | 2 306/58.45924               | 0.01866 0.5000  |
| 175:    | 5             | 3 3      | 2          | 5               | ō          | 5      | 2 3          | 35         | 5         |       | 306966.62590  | 306966 | .70903   | -0.08313    | 0.05000     | 0.01281 | L                            |                 |
| 176:    | 5             | 3 3      | 2          | 5 4             | 1          | 5      | 2 3          | 35         | 4         |       | 306968.19620  | 306968 | .11910   | 0.07710     | 0.05000     | 0.01281 | L                            |                 |
| 177:    | 4             | 3        | 1          | 4 4             | 1          | 4      | 2 2          | 24         | 4         |       | 307386.56250  | 307386 | .34456   | 0.21794     | 0.05000     | 0.01273 | 3                            |                 |
| 178:    | 4             | 3        | 1          | 4 :             | 3          | 4      | 2 2          | 24         | 3         |       | 307388.39770  | 307388 | .44730   | -0.04960    | 0.05000     | 0.01270 | )                            |                 |
| 179:    | 6             | 2        | 4          | 6               | 5          | 5      | 1 8          | 55         | 4         |       | 307518.56600  | 307518 | .43916   | 0.12684     | 0.05000     | 0.02690 | 307518.62539                 | -0.05939 0.5000 |
| 180:    | 6             | 2 4      | 4          | 6 (             | 3          | 5      | 1 8          | 55         | 5         |       | 307518.56600  | 307518 | .81162   | -0.24562    | 0.05000     | 0.02690 | 307518.62539                 | -0.05939 0.5000 |
| 181     | 4             | 3        | 2          | 4               | 1          | 4      | 2 3          | 34         | 4         |       | 307669 55560  | 307669 | .59568   | -0.04008    | 0.05000     | 0.01285 | 5                            |                 |
| 180.    | 4             | 3        | 2          | 4               | 3          | 4      | 2 3          | 3 /        | 3         |       | 307671 74960  | 307671 | 62085    | 0 12975     | 0 05000     | 0.01099 | 3                            |                 |
| 102.    | т<br>2        | 3        |            | 2               | 2          | ž      | 2 0          | - ±        | 3         |       | 307854 04060  | 307054 | 91E/1    | 0 10710     | 0.05000     | 0 01203 | ,                            |                 |
| 103     | 0             |          | 4          |                 |            | 2      | ~ ~          |            | 5         |       | 207059 20200  | 207054 | 04670    | 0.12/19     | 0.05000     | 0.0103/ |                              |                 |
| 184:    | 3             | 3        | 1          | 3               | 2          | 3      | 2 2          | ∠ 3        | 2         |       | 30/858.38960  | 30/858 | . 346/3  | 0.04287     | 0.05000     | 0.01690 | ,                            |                 |
| 185:    | 3             | 3        | 1          | 4               | 3          | 2      | 2 (          | J 3        | 2         |       | 362478.12890  | 362477 | .19804   | 0.33086     | U.05000     | 0.01394 | £ 362478.02982               | 0.09908 0.5000  |
| 186:    | 3             | 3        | 1          | 4 4             | 1          | 2      | 2 (          | 3 3        | 3         |       | 362478.12890  | 362478 | .26161   | -0.13271    | 0.05000     | 0.01394 | 362478.02982                 | 0.09908 0.5000  |
| 187:    | 3             | 3 (      | 0          | 4 3             | 3          | 2      | 2 1          | 13         | 2         |       | 362496.50460  | 362496 | .17651   | 0.32809     | 0.05000     | 0.01394 | 362496.40402                 | 0.10058 0.5000  |
| 188:    | 3             | 3 (      | 0          | 4 4             | 1          | 2      | 2 1          | 13         | 3         |       | 362496.50460  | 362496 | .63152   | -0.12692    | 0.05000     | 0.01394 | 362496.40402                 | 0.10058 0.5000  |
| 189:    | 3             | 3        | 1          | 3               | 3          | 2      | 2 (          | 2          | 2         |       | 363681.32520  | 363681 | .12802   | 0.19718     | 0.05000     | 0.01430 | 363681.30952                 | 0.01568 0.5000  |
| 190:    | 3             | 3        | 1          | 3               | 2          | 2      | 2 0          | 2 2        | 1         |       | 363681.32520  | 363681 | .49102   | -0,16582    | 0.05000     | 0.01430 | 363681.30952                 | 0.01568 0.5000  |
| 101.    | 2             | 3        | 0          | 3               | 2          | 2      | 2 4          | 1 2        | 2         |       | 363700 85300  | 363700 | 65264    | 0 20034     | 0.05000     | 0 01/00 | 363700 80321                 | 0 02969 0 5000  |
| 191:    | 0             | 2 1      | ~          |                 |            | 2<br>0 | ~ 1          | . 2        | 4         |       | 202100.003000 | 202700 | .00204   | 0.20030     | 0.05000     | 0.01425 |                              | 0.02303 0.5000  |
| 192:    | 3             | 3 1      | v          | <b>చ</b> ి<br>- | 2          | 2      | 2 1          | 12<br>     | 1         |       | 303/00.85300  | 363700 | . 99399  | -0.14099    | 0.05000     | 0.01429 | 0 303/00.82331               | 0.02969 0.5000  |
| 193:    | 4             | 3        | 2          | 5 4             | ÷          | 3      | 2 1          | 1 4        | 3         |       | 381230.59710  | 381230 | .30408   | 0.29302     | 0.05000     | 0.01306 | 381230.59033                 | 0.00677 0.5000  |
| 194:    | 4             | 3 3      | 2          | 5 !             | 5          | 3      | 2 1          | 14         | 4         |       | 381230.59710  | 381230 | .87657   | -0.27947    | 0.05000     | 0.01306 | 381230.59033                 | 0.00677 0.5000  |
| 195:    | 4             | 3        | 1          | 5 4             | 1          | 3      | 2 2          | 24         | 3         |       | 381323.33640  | 381323 | .04229   | 0.29411     | 0.05000     | 0.01330 | 381323.31631                 | 0.02009 0.5000  |
| 196:    | 4             | 3        | 1          | 5 !             | 5          | 3      | 2 2          | 24         | 4         |       | 381323.33640  | 381323 | .59032   | -0.25392    | 0.05000     | 0.01330 | 381323.31631                 | 0.02009 0.5000  |
| 197:    | 4             | 3        | 2          | 4               | 1          | 3      | 2 1          | 1 3        | 3         |       | 382319.49370  | 382319 | .48050   | 0.01320     | 0.05000     | 0.01194 | 1                            |                 |
| 198.    | Â             | 3        | 2          | 4               | 3          | 3      | 2 1          | 1 2        | 2         |       | 382320 52630  | 382320 | 51283    | 0.01347     | 0.05000     | 0.0110/ | 1                            |                 |
| 100.    | -             | о .<br>о | ~<br>1     | т.<br>Л         | 1          | 2      | ~ 1<br>^ 1   |            | 2         |       | 202020.02030  | 200440 | 05107    | 0.01047     | 0.05000     | 0.01010 | -                            |                 |
| 199:    | 4             | 3        | Ţ          | ÷ •             | ±          | 3      | 2 2          | ∠ 3        | 3         |       | 302410.18160  | 302416 | .2012/   | -0.06967    | 0.05000     | 0.01219 | 2                            |                 |
| 200:    | 4             | 3        | 1          | 4               | 5          | 3      | 22           | 23         | 2         |       | 382417.14990  | 382417 | 23628    | -0.08638    | 0.05000     | 0.01219 | ,                            |                 |
| 201:    | 5             | 3        | 3          | 5 !             | 5          | 4      | 2 2          | 24         | 4         |       | 400858.40890  | 400858 | .11412   | 0.29478     | 0.05000     | 0.01403 | 400858.57875                 | -0.16985 0.5000 |
| 202:    | 5             | 3        | 3          | 5 4             | 1          | 4      | 2 2          | 24         | 3         |       | 400858.40890  | 400859 | .04338   | -0.63448    | 0.05000     | 0.01403 | 400858.57875                 | -0.16985 0.5000 |
| NORMALI | ZED D         | IAG      | ONA        | L:              |            |        |              |            |           |       |               |        |          |             |             |         |                              |                 |
| 1       | 1.00          | 0000     | E+0        | 0               | 2          |        | 3.2          | 53731      | E-01      | 3     | 3.20359E-02   | 4      | 9.15845  | E-01 5      | 4.98154E-01 | 6       | 7.37702E-01                  |                 |
| 7       | 4.04          | 461      | E-0        | 1               | 8          |        | 9.96         | 52371      | E-01      | 9     | 7.57263E-01   | 10     | 8.03340  | E-01 11     | 8.45857E-01 | 12      | 9.51777E-01                  |                 |
| 12      | 9.80          | 956      | E-0        | 1               | 14         |        | 9 10         | 97301      | 3-01      | 15    | 9.95738F_01   | 16     | 9.999999 | E-01 17     | 5.56068F-01 | 18      | 9.93145E_01                  |                 |
|         | 0.03<br>NT DA | RAM      | <br>FTF    | д<br>В –        | <u>^</u> + | ŢΡ     | 0.13<br>[[QT | FAD        | NGIO      | 1 = 1 | 00            | 10     |          | - 01 11     | 5.000000-01 | 10      | 0.001408-01                  |                 |
| MADINIA |               | - A4 [7] | - N. H. 15 | =               | ν.         | 1.11   | 101          | DAP        | un a t Ul | . – 1 | - MM          |        |          |             |             |         |                              |                 |
| MARQUAR | DIFA          | IGAI     |            |                 |            |        |              | NET        | J DAD     | METE  | B (EST FDDOD) | CUA    | NGE TUT  | S ITERATION | V           |         |                              |                 |

| 1        | 10000        | A              | 70781.11869(136)        | -0         | .00000            |            |       |           |       |           |       |           |  |
|----------|--------------|----------------|-------------------------|------------|-------------------|------------|-------|-----------|-------|-----------|-------|-----------|--|
| 2        | 20000        | В              | 9987.3873( 61)          |            | 0.0000            |            |       |           |       |           |       |           |  |
| 3        | 30000        | С              | 8749.7284( 59)          | _          | 0.0000            |            |       |           |       |           |       |           |  |
| 4        | 200          | -DN            | -0.0475200(223)         | -0.0       | 000000            |            |       |           |       |           |       |           |  |
| 5        | 1100         | -DNK           | -0.149167(123)          | 0.         | 000000            |            |       |           |       |           |       |           |  |
| 6        | 2000         | -DK            | -2.956094(237)          | 0.         | 000000            |            |       |           |       |           |       |           |  |
| 7        | 40100        | -dN            | -6.1406(116)H           | -03        | 0.0000E-          | 03         |       |           |       |           |       |           |  |
| 8        | 41000        | -dK            | -0.21649(298)           | -0         | .00000            |            |       |           |       |           |       |           |  |
| 9        | 10010000     | eaa            | -1252.6932(42)          | -          | 0.0000            |            |       |           |       |           |       |           |  |
| 10       | 10020000     | ebb            | -106.25192(198)         | -0         | .00000            |            |       |           |       |           |       |           |  |
| 11       | 10030000     | ecc            | -3,49564(187)           | 0          | .00000            |            |       |           |       |           |       |           |  |
| 12       | 10610000     | (eab+eba)      | -42.503(80)             |            | 0.001             |            |       |           |       |           |       |           |  |
| 13       | 120000000    | aF             | 3,66102(240)            | -0         | .00000            |            |       |           |       |           |       |           |  |
| 14       | 120010000    | Taa            | 8,4792(46)              |            | 0.0000            |            |       |           |       |           |       |           |  |
| 15       | 120020000    | Tbb            | -6.8512(45)             |            | 0.0000            |            |       |           |       |           |       |           |  |
| 16       | 1000100      | DNS            | 0.987(75)               | -03        | 0.000E-           | 03         |       |           |       |           |       |           |  |
| 17       | 10010100     | DNKS           | 0.05626(85)             | -0         | 00000             |            |       |           |       |           |       |           |  |
| 18       | 10011000     | DKS            | 0 10421(179)            | 0          | 00000             |            |       |           |       |           |       |           |  |
| MTCROW   | AVE AVC =    | 0 007747       | MH7 TR AVC =            | 0 00000    | .00000            |            |       |           |       |           |       |           |  |
| MTCROW   | AVE RMS -    | 0.049902       | MHz TR RMS =            | 0.00000    |                   |            |       |           |       |           |       |           |  |
| END OF   | TTEDATION    | O OID NEU DM   | THE, IN HIS - 1 20      | 479        | 1 2047            | ·0         |       |           |       |           |       |           |  |
| 1 0      | 0 109/22 1   | 2 ULD, NEW RFS | 1 4 0 0401E2 1          | E 0 2274   | 1.3047            | 0 000440   | 1 7   | 0 020166  | 1 0   | 0 100740  | 1 0   | 0 10/101  |  |
| 1 10     | 0.100433 1   | 11 0 119660    | 1 10 0 027000 1         | 12 0 1207  | 21 1 1 1 1        | 0 112065   | 1 15  | 0.050100  | 1 16  | 0.022070  | 1 17  | 0.124131  |  |
| 1 10     | 0.000449 1   | 1 0.110009     | 1 12 0.23/908 1         | 13 0.1397  | 01 1 14<br>05 0 5 | 0.112065   | 1 15  | 0.061610  | 1 10  | -0.033070 | 1 1/  | -0.021927 |  |
| 1 10 -   | -0.02/9/5 2  | 1 0.106433     | 2 3 -0.994220 2         | 4 -0.7669  | 00 Z D            | 0.455916   | 2 0   | -0.174299 | 2 /   | -0.045/12 | 2 0   | -0.995231 |  |
| 2 9 -    | -0.000007 2  | 10 0.025557    | 2 11 0.014671 2         | 12 -0.0134 | 14 2 13           | 0.045193   | 2 14  | 0.002942  | 2 15  | 0.010033  | 2 10  | 0.000556  |  |
| 2 17     | 0.029861 2   | 18 -0.031318   | 3 1 -0.090888 3         | 2 -0.9942  | 20 3 4            | 0.727680   | 3 5   | -0.441525 | 3 6   | 0.169784  | 3 /   | -0.000230 |  |
| 3 8      | 0.997972 3   | 9 -0.009427    | 3 10 -0.011093 3        | 11 -0.0103 | 5 3 12            | -0.015231  | 3 13  | -0.026903 | 3 14  | 0.003377  | 3 15  | -0.010478 |  |
| 3 16 -   | -0.005422 3  | 17 -0.034956   | 3 18 0.038389 4         | 1 -0.0421  | 53 4 2            | -0.788965  | 4 3   | 0.727680  | 4 5   | -0.482079 | 4 6   | 0.145133  |  |
| 4 /      | 0.396484 4   | 8 0.736442     | 4 9 0.066108 4          | 10 -0.1061 | 99 4 11           | -0.026945  | 4 12  | 0.256019  | 4 13  | -0.093883 | 4 14  | -0.019/1/ |  |
| 4 15 -   | -0.000281 4  | 16 0.061161    | 4 17 0.010533 4         | 18 -0.0248 | 45 5 1            | -0.337406  | 5 2   | 0.453918  | 5 3   | -0.441525 | 5 4   | -0.482079 |  |
| 5 6 -    | -0.603695 5  | 7 0.123276     | 5 8 -0.447509 5         | 9 -0.1015  | 79 5 10           | 0.032511   | 5 11  | -0.036858 | 5 12  | -0.168878 | 5 13  | -0.008803 |  |
| 5 14 -   | -0.015536 5  | 15 -0.025674   | 5 16 -0.006315 5        | 1/ 0.0679  | 89 5 18           | 0.004545   | 6 1   | -0.220440 | 62    | -0.174299 | 63    | 0.169784  |  |
| 64       | 0.145133 6   | 5 -0.603695    | 6 7 -0.209456 6         | 8 0.1777   | 77 6 9            | -0.020608  | 6 10  | 0.000059  | 6 11  | -0.022353 | 6 12  | -0.006374 |  |
| 6 13 -   | -0.030953 6  | 14 -0.041361   | 6 15 -0.001050 6        | 16 0.0074  | 37 6 17           | -0.003865  | 6 18  | 0.034862  | 7 1   | 0.030166  | 7 2   | -0.045712 |  |
| 73.      | -0.000230 7  | 4 0.396484     | 7 5 0.123276 7          | 6 -0.2094  | 56 7 8            | -0.032818  | 79    | 0.064722  | 7 10  | -0.057610 | 7 11  | 0.014851  |  |
| 7 12     | 0.240159 7   | 13 -0.036472   | 7 14 -0.028603 7        | 15 0.0082  | 89 7 16           | 0.035352   | 7 17  | 0.033811  | 7 18  | -0.031706 | 8 1   | -0.102742 |  |
| 82.      | -0.995231 8  | 3 0.997972     | 8 4 0.736442 8          | 5 -0.4475  | 0986              | 0.177777   | 87    | -0.032818 | 89    | -0.009091 | 8 10  | -0.012955 |  |
| 8 11 -   | -0.015179 8  | 12 -0.016326   | 8 13 -0.034178 8        | 14 0.0023  | 52 8 15           | -0.011487  | 8 16  | -0.005179 | 8 17  | -0.035068 | 8 18  | 0.037860  |  |
| 91       | 0.124191 9   | 2 -0.000007    | 9 3 -0.009427 9         | 4 0.0661   | 08 9 5            | -0.101579  | 96    | -0.020608 | 97    | 0.064722  | 98    | -0.009091 |  |
| 9 10     | 0.215055 9   | 11 0.231960    | 9 12 0.071332 9         | 13 -0.0109 | 00 9 14           | 0.023143   | 9 15  | -0.178951 | 9 16  | 0.012553  | 9 17  | -0.228702 |  |
| 9 18 -   | -0.200462 10 | 1 0.000449     | 10 2 0.025557 10        | 3 -0.0110  | 93 10 4           | -0.106199  | 10 5  | 0.032511  | 10 6  | 0.000059  | 10 7  | -0.057610 |  |
| 10 8 -   | -0.012955 10 | 9 0.215055     | 10 11 0.273352 10       | 12 -0.0201 | 30 10 13          | 0.076311   | 10 14 | -0.035322 | 10 15 | 0.038026  | 10 16 | -0.531160 |  |
| 10 17    | 0.130400 10  | 18 -0.068578   | 11 1 0.118669 11        | 2 0.0146   | 71 11 3           | -0.010365  | 11 4  | -0.026945 | 11 5  | -0.036858 | 11 6  | -0.022353 |  |
| 11 7     | 0.014851 11  | 8 -0.015179    | 11 9 0.231960 11        | 10 0.2733  | 52 11 12          | 0.176355   | 11 13 | 0.024669  | 11 14 | 0.059830  | 11 15 | -0.117348 |  |
| 11 16 -  | -0.511751 11 | 17 -0.065504   | 11 18 0.064820 12       | 1 0.2379   | 08 12 2           | -0.013414  | 12 3  | -0.015231 | 12 4  | 0.256019  | 12 5  | -0.168878 |  |
| 12 6 -   | -0.006374 12 | 7 0.240159     | 12 8 -0.016326 12       | 9 0.0713   | 32 12 10          | -0.020130  | 12 11 | 0.176355  | 12 13 | -0.027251 | 12 14 | 0.064408  |  |
| 12 15 -  | -0.000304 12 | 16 -0.244252   | 12 17 0.266188 12       | 18 -0.2018 | 18 13 1           | 0.139761   | 13 2  | 0.045193  | 13 3  | -0.026903 | 13 4  | -0.093883 |  |
| 13 5 -   | -0.008803 13 | 6 -0.030953    | 13 7 -0.036472 13       | 8 -0.0341  | 78 13 9           | -0.010900  | 13 10 | 0.076311  | 13 11 | 0.024669  | 13 12 | -0.027251 |  |
| 13 14    | 0.323762 13  | 15 0.017340    | 13 16 0.024078 13       | 17 0.0107  | 79 13 18          | -0.004034  | 14 1  | 0.112065  | 14 2  | 0.002942  | 14 3  | 0.003377  |  |
| 14 4 -   | -0.019717 14 | 5 -0.015536    | 14 6 -0.041361 14       | 7 -0.0286  | 03 14 8           | 0.002352   | 14 9  | 0.023143  | 14 10 | -0.035322 | 14 11 | 0.059830  |  |
| 14 12    | 0.064408 14  | 13 0.323762    | $14\ 15\ -0.166802\ 14$ | 16 -0.0652 | 52 14 17          | -0.080125  | 14 18 | 0.066156  | 15 1  | 0.061610  | 15 2  | 0.010033  |  |
| 15 3 -   | -0.010478 15 | 4 -0.000281    | 15 5 -0.025674 15       | 6 -0.0010  | 50 15 7           | 0.008289   | 15 8  | -0.011487 | 15 9  | -0.178951 | 15 10 | 0.038026  |  |
| 15 11 -  | -0.117348 15 | 12 -0.000304   | 15 13 0.017340 15       | 14 -0.1668 | 02 15 16          | -0.010456  | 15 17 | 0.066062  | 15 18 | -0.019244 | 16 1  | -0.033070 |  |
| 16 2     | 0.000558 16  | 3 -0.005422    | 16 4 0.061161 16        | 5 -0.0063  | 15 16 6           | 0.007437   | 16 7  | 0.035352  | 16 8  | -0.005179 | 16 9  | 0.012553  |  |
| 16 10 -  | -0.531160 16 | 11 -0.511751   | 16 12 -0.244252 16      | 13 0.0240  | 78 16 14          | -0.065252  | 16 15 | -0.010456 | 16 17 | -0.205805 | 16 18 | 0.061386  |  |
| 17 1 -   | -0.021927 17 | 2 0.029861     | 17 3 -0.034956 17       | 4 0.0105   | 33 17 5           | 0.067989   | 17 6  | -0.003865 | 17 7  | 0.033811  | 17 8  | -0.035068 |  |
| 17 9 -   | -0.228702 17 | 10 0.130400    | 17 11 -0.065504 17      | 12 0.2661  | 88 17 13          | 0.010779   | 17 14 | -0.080125 | 17 15 | 0.066062  | 17 16 | -0.205805 |  |
| 17 18 -  | -0.699477 18 | 1 -0.027975    | 18 2 -0.031318 18       | 3 0.0383   | 89 18 4           | -0.024845  | 18 5  | 0.004545  | 18 6  | 0.034862  | 18 7  | -0.031706 |  |
| 18 8     | 0.037860 18  | 9 -0.200462    | 18 10 -0.068578 18      | 11 0.0648  | 20 18 12          | -0.201818  | 18 13 | -0.004034 | 18 14 | 0.066156  | 18 15 | -0.019244 |  |
| 18 16    | 0.061386 18  | 17 -0.699477   |                         |            |                   |            |       |           |       |           |       |           |  |
| hooo pre | edictions    |                |                         | Fri Se     | p 25 14:          | 50:19 2015 |       |           |       |           |       |           |  |
| r        |              |                |                         |            |                   |            |       |           |       |           |       |           |  |

## B.2 SPFIT assignment and output file for $DO_3$

| DOOO predictio | ons             |                          | Fri Sep 25      | 5 15:24:05 2015 |
|----------------|-----------------|--------------------------|-----------------|-----------------|
| LINES REQUEST  | ED= 301 NUMBER  | L OF PARAMETERS= 24 NUMB | ER OF ITERATION | NS= 10          |
| MARQUARDT P    | ARAMETER = 0.00 | 00E+00 max (OBS-CALC)/E  | RROR =1.0000E+0 | 06              |
|                |                 | PARAMETERS - A.PRIORI    | ERROR           |                 |
| 1 1            | 10000           | 6.7859739201555E+04      | 1.000000E+10    | A               |
| 2 2            | 20000           | 9.4489017469189E+03      | 1.000000E+11    | В               |
| 3 3            | 30000           | 8.2990874338975E+03      | 1.000000E+11    | C               |
| 4 4            | 200             | -3.7396588701691E-02     | 9.702165E+10    | -DN             |
| 5 5            | 1100            | -1.8145831961274E-01     | 1.000000E+11    | -DNK            |
| 6 6            | 2000            | -2.3948473083639E+00     | 1.000000E+10    | -DK             |
| 7 7            | 40100           | -4.5480442535809E-03     | 1.000000E+11    | -dN             |
| 8 8            | 41000           | -1.8387445320612E-01     | 1.000000E+10    | -dK             |
| 9 9            | 10010000        | -1.2247319768010E+03     | 5.762869E+10    | eaa             |
| 10 10          | 10020000        | -1.0153511524435E+02     | 6.632208E+10    | ebb             |
| 11 11          | 10030000        | -3.7869174272997E+00     | 6.288901E+10    | ecc             |
| 12 12          | 10610000        | 4.1141821217462E+01      | 6.288901E+10    | (eab+eba)       |
| 13 13          | 120000000       | 4.6222570298589E-01      | 5.007459E+10    | a_F             |
| 14 14          | 120010000       | 1.2969095065145E+00      | 3.642117E+10    | Taa             |
| 15 14          | -120030000      | -1.2969095065145E+00     | -1.000000       | Tcc             |
| 16 15          | 120020000       | -1.0891261460888E+00     | 5.970145E+10    | Tbb             |

| 17        | 15       | -120030000   | 1.0891261          | .460888E+00 -1     | .000000 Tcc                   |                     |             |                 |           |
|-----------|----------|--------------|--------------------|--------------------|-------------------------------|---------------------|-------------|-----------------|-----------|
| 18        | 16       | 1000100      | 7.9925781          | 199592E-04 1.000   | 000E+10 DNS                   |                     |             |                 |           |
| 19        | 1/       | 10010100     | 8.0668962          | 271289E-01 1.000   | 000E+10 DNKS                  |                     |             |                 |           |
| 20        | 18       | 220010000    | 1.5/838/2          | 2306555E-01 1.000  | 000E+10 DKS<br>000E+10 chi as |                     |             |                 |           |
| 21        | 19       | -220010000   | -1 2556538         | 735062E-02 1.000   | 000E+10 CH1_ac                | 1                   |             |                 |           |
| 23        | 20       | 220020000    | 1.5569700          | 755351E-01 1.000   | 000E+10 chi bh                | -<br>)              |             |                 |           |
| 24        | 20       | -220030000   | -1.0373674         | 996675E-01 -0      | .666273 chi_co                |                     |             |                 |           |
| 24 parame | eters re | ad, 20 indep | pendent para       | meters             |                               |                     |             |                 |           |
| NUMBER OF | F PARAME | TERS EXCLUDE | ED IF INDEX        | < 0 = 2            |                               |                     |             |                 |           |
| ENERGY SO | ORT OF W | ANG SUB-BLOG | CKS                |                    |                               |                     |             |                 |           |
| PRULAIE P | KUIUK    | UTDI UTMN EX | OVMUT NOVM C       | DING               |                               |                     |             |                 |           |
| 0         | 0 9      | MIFL WIRN E. | 999 2              | 0510               |                               |                     |             |                 |           |
| BLOCK - V | WT - SYM | - V - TSP -  | - N - othe         | er quanta (rel. to | F=0 )                         |                     |             |                 |           |
| 1         | 1 x      | 0 0 -        | -1.5 -1.0          | •                  |                               |                     |             |                 |           |
| 1         | 1 c      | 0 0 -        | -1.5 -1.0          |                    |                               |                     |             |                 |           |
| 1         | 1 x      | 0 1 -        | -0.5 0.0           |                    |                               |                     |             |                 |           |
| 1         | 1 c      | 0 1 -        | -0.5 0.0           |                    |                               |                     |             |                 |           |
| 1         | 1 X      | 0 2          | -0.5 -1.0          |                    |                               |                     |             |                 |           |
| 1         | 1 x      | 0 3          | 0.5 1.0            |                    |                               |                     |             |                 |           |
| 1         | 1 c      | 0 3          | 0.5 1.0            |                    |                               |                     |             |                 |           |
| 1         | 1 x      | 0 4          | 0.5 0.0            |                    |                               |                     |             |                 |           |
| 1         | 1 c      | 0 4          | 0.5 0.0            |                    |                               |                     |             |                 |           |
| 1         | 1 x      | 0 5          | 1.5 1.0            |                    |                               |                     |             |                 |           |
| 1         | 1 C      | 0 5          | 1.5 1.0            |                    |                               |                     |             |                 |           |
| 2         | 1 D      | 0 0          | -1.5 -1.0          |                    |                               |                     |             |                 |           |
| 2         | 1 b      | 0 1 -        | -0.5 0.0           |                    |                               |                     |             |                 |           |
| 2         | 1 a      | 0 1 -        | -0.5 0.0           |                    |                               |                     |             |                 |           |
| 2         | 1 b      | 0 2 -        | -0.5 -1.0          |                    |                               |                     |             |                 |           |
| 2         | 1 a      | 0 2 -        | -0.5 -1.0          |                    |                               |                     |             |                 |           |
| 2         | 1 b      | 0 3          | 0.5 1.0            |                    |                               |                     |             |                 |           |
| 2         | 1 h      | 0 4          | 0.5 0.0            |                    |                               |                     |             |                 |           |
| 2         | 1 a      | 0 4          | 0.5 0.0            |                    |                               |                     |             |                 |           |
| 2         | 1 b      | 0 5          | 1.5 1.0            |                    |                               |                     |             |                 |           |
| 2         | 1 a      | 0 5          | 1.5 1.0            |                    |                               |                     |             |                 |           |
| Maximum I | Dimensio | n for Hamili | tonian = 60        | EXP ERED - CALC    | FREO - DIFE                   | - FYP FR            | R _ FST FRF | AVG CALC FRED - | DIFF _ WT |
| 1:        | 1 0 1    | 2 2 0 0      | 0 0 1 2            | 17721.19540        | 17721.19441                   | 0.00099             | 0.00500     | 0.00176         | 2         |
| 2:        | 1 0 1    | 2 3 0 0      | 0 0 1 2            | 17721.35780        | 17721.36881                   | -0.01101            | 0.00500     | 0.00102         |           |
| 3:        | 1 0 1    | 2 1 0 0      | 0 0 1 1            | 17721.79450        | 17721.79103                   | 0.00347             | 0.00500     | 0.00152         |           |
| 4:        | 1 0 1    | 2 2 0 0      | 0 0 1 1            | 17721.86240        | 17721.88765                   | -0.02525            | 0.00500     | 0.00179         |           |
| 5:        | 1 0 1    | 1 1 0 0      | 0 0 1 2            | 17799.54830        | 17800 24504                   | -0.00350            | 0.00500     | 0.00255         |           |
| 7:        | 1 0 1    | 1 2 0 0      | 0 0 1 2            | 17800.61770        | 17800.62028                   | -0.00258            | 0.00500     | 0.00192         |           |
| 8:        | 1 0 1    | 1 2 0 0      | 0 0 1 1            | 17801.31780        | 17801.31352                   | 0.00428             | 0.00500     | 0.00260         |           |
| 9:        | 2 0 2    | 3 4 1 0      | 0 1 2 3            | 35452.05770        | 35452.03589                   | 0.02181             | 0.00500     | 0.00110         |           |
| 10:       | 2 0 2    | 3 3 1 0      | 0 1 2 2            | 35452.13960        | 35452.14128                   | -0.00168            | 0.00500     | 0.00111         |           |
| 11:       | 2 0 2    | 3210         | 0 1 2 1            | 35452.21550        | 35452.19281                   | 0.02269             | 0.00500     | 0.00114         |           |
| 13:       | 2 0 2    | 2 3 1 (      | 0 1 2 3            | 35582.80360        | 35582.81006                   | -0.00646            | 0.00500     | 0.00303         |           |
| 14:       | 3 0 3    | 4 5 2 0      | 0 2 3 4            | 53147.67860        | 53147.68171                   | -0.00311            | 0.00500     | 0.00108         |           |
| 15:       | 3 0 3    | 4 4 2 0      | 0233               | 53147.71530        | 53147.72574                   | -0.01044            | 0.00500     | 0.00108         |           |
| 16:       | 3 0 3    | 4 3 2 0      | 0 2 3 2            | 53147.74550        | 53147.75215                   | -0.00665            | 0.00500     | 0.00109         |           |
| 17:       | 3 0 3    | 3 3 2 0      | 0 2 2 3            | 53197.14550        | 53197.14652                   | -0.00102            | 0.00500     | 0.00230         |           |
| 10:       | 3 0 3    | 3420         | 0 2 2 2            | 53197.35430        | 53197.35954                   | -0.00524            | 0.00500     | 0.00256         |           |
| 20:       | 3 0 3    | 3 3 2 0      | 0 2 2 2            | 53197.55260        | 53197.56092                   | -0.00832            | 0.00500     | 0.00170         |           |
| 21:       | 4 0 4    | 5630         | 0345               | 70790.87650        | 70790.86218                   | 0.01432             | 0.00500     | 0.00172         |           |
| 22:       | 4 0 4    | 5 5 3 (      | 0344               | 70790.88860        | 70790.88534                   | 0.00326             | 0.00500     | 0.00172         |           |
| 23:       | 4 0 4    | 5430         | 0343               | 70790.89800        | 70790.89920                   | -0.00120            | 0.00500     | 0.00173         |           |
| 24:       | 4 0 4    | 4 5 3 (      | 0334               | 70839.44750        | 70839.44075                   | 0.00675             | 0.00500     | 0.00246         |           |
| 26:       | 1 1 1    | 2 1 0 0      | 0 0 1 2            | 75841.14880        | 75841.15564                   | -0.00684            | 0.00500     | 0.00245         |           |
| 27:       | 1 1 1    | 2 2 0 0      | 0 0 1 2            | 75841.55660        | 75841.56404                   | -0.00744            | 0.00500     | 0.00223         |           |
| 28:       | 1 1 1    | 2 3 0 0      | 0 0 1 2            | 75842.10090        | 75842.10854                   | -0.00764            | 0.00500     | 0.00165         |           |
| 29:       | 1 1 1    | 2 1 0 0      | 0 0 1 1            | 75841.84000        | 75841.84888                   | -0.00888            | 0.00500     | 0.00194         |           |
| 30:       | 1 1 1    | 2 2 0 0      | 0 0 1 1            | 75842.25100        | 75842.25728                   | -0.00628            | 0.00500     | 0.00218         |           |
| 32:       | 1 1 1    | 1 2 0 0      | 0 0 1 2            | 76769.81040        | 76769.81993                   | -0.00953            | 0.00500     | 0.00275         |           |
| 33:       | 1 1 0    | 2 3 1 (      | 0 1 2 3            | 59245.57960        | 59245.58818                   | -0.00858            | 0.00500     | 0.00170         |           |
| 34:       | 1 1 0    | 2 2 1 0      | 0 1 2 3            | 59245.13240        | 59245.11587                   | 0.01653             | 0.00500     | 0.00193         |           |
| 35:       | 1 1 1    | 2 3 2 0      | 0 2 3 4            | 22668.70190        | 22668.70383                   | -0.00193            | 0.00500     | 0.00217         |           |
| 36:       | 1 1 1    | 222(         | v 2 3 3<br>N 9 2 9 | 22668.21650        | 22000.22835                   | -U.U1185            | 0.00500     | 0.00259         |           |
| 38:       | 1 1 1    | 1 2 2 0      | 0 2 2 2            | 23466.05300        | 23466.05546                   | -0.00246            | 0.00500     | 0.00243         |           |
| 39:       | 1 1 1    | 1 2 2 0      | 0 2 2 3            | 23465.63470        | 23465.64105                   | -0.00635            | 0.00500     | 0.00273         |           |
| 40:       | 1 1 1    | 1 1 2 0      | 0221               | 23467.62750        | 23467.62421                   | 0.00329             | 0.00500     | 0.00316         |           |
| 41:       | 1 1 1    | 1 1 2 (      | 0 2 2 2            | 23467.37250        | 23467.37565                   | -0.00315            | 0.00500     | 0.00275         |           |
| 42:       | 2 1 1    | 342(         | 0234<br>0221       | 60497.23190        | 60497.23642                   | -0.00452<br>0.00877 | 0.00500     | 0.00193         |           |
| 44:       | 2 1 1    | 3420         | 0 2 3 3            | 60497.30410        | 60497.30544                   | -0.00134            | 0.00500     | 0.00241         |           |
| 45:       | 2 1 1    | 3 3 2 0      | 0 2 3 3            | 60497.13800        | 60497.14775                   | -0.00975            | 0.00500     | 0.00211         |           |
| 46:       | 2 1 1    | 3 2 2 0      | 0232               | 60497.16760        | 60497.16882                   | -0.00122            | 0.00500     | 0.00213         |           |
| 47:       | 2 1 1    | 2 3 2 0      | 0 2 2 3            | 61059.94670        | 61059.94833                   | -0.00163            | 0.00500     | 0.00203         |           |
| 48:       | 2 1 1    | 2 2 2 0      | 0 2 2 3            | 61060 36300        | 61060 36274                   | 0.00863             | 0.00500     | 0.00235         |           |
| 50:       | 2 1 1    | 2 2 2 0      | 0 2 2 2            | 61060.02880        | 61060.02697                   | 0.00183             | 0.00500     | 0.00193         |           |
| 51:       | 2 1 1    | 2 1 2 0      | 0 2 2 2            | 61059.91640        | 61059.90701                   | 0.00939             | 0.00500     | 0.00280         |           |

| 52:  | 4 | 0 | 4 | 5      | 6      | 3      | 1 | 3      | 4      | 5      | 15298.49350  | 15298,49236   | 0.00114  | 0.00500 | 0.00236 |               |                 |
|------|---|---|---|--------|--------|--------|---|--------|--------|--------|--------------|---------------|----------|---------|---------|---------------|-----------------|
| 53:  | 4 | 0 | 4 | 5      | 5      | 3      | 1 | 3      | 4      | 4      | 15298.62930  | 15298.63418   | -0.00488 | 0.00500 | 0.00246 |               |                 |
| 54:  | 4 | 0 | 4 | 5      | 4      | 3      | 1 | 3      | 4      | 3      | 15298.82310  | 15298.82903   | -0.00593 | 0.00500 | 0.00238 |               |                 |
| 55:  | 4 | 0 | 4 | 4      | 5      | 3      | 1 | 3      | 3      | 4      | 15077.58710  | 15077.59778   | -0.01068 | 0.00500 | 0.00254 |               |                 |
| 56:  | 4 | 0 | 4 | 4      | 4      | 3      | 1 | 3      | 3      | 3      | 15077.30210  | 15077.31261   | -0.01051 | 0.00500 | 0.00250 |               |                 |
| 57:  | 4 | 0 | 4 | 4      | 3      | 3      | 1 | 3      | 3      | 2      | 15077.16570  | 15077.17461   | -0.00891 | 0.00500 | 0.00273 |               |                 |
| 58:  | 3 | 1 | 3 | 4      | 4      | 2      | 1 | 2      | 3      | 4      | 51541.23720  | 51541.24077   | -0.00357 | 0.00500 | 0.00248 |               |                 |
| 59:  | 3 | 1 | 3 | 4      | 4      | 2      | 1 | 2      | 3      | 3      | 51541.48380  | 51541.48797   | -0.00417 | 0.00500 | 0.00137 |               |                 |
| 60:  | 3 | 1 | 3 | 4      | 3      | 2      | 1 | 2      | 3      | 3      | 51541.28720  | 51541.28831   | -0.00111 | 0.00500 | 0.00248 |               |                 |
| 61:  | 3 | 1 | 3 | 4      | 3      | 2      | 1 | 2      | 3      | 2      | 51541.54670  | 51541.54981   | -0.00311 | 0.00500 | 0.00136 |               |                 |
| 62:  | 3 | 1 | 3 | 3      | 3      | 2      | 1 | 2      | 2      | 3      | 51420.16450  | 51420.16449   | 0.00001  | 0.00500 | 0.00227 |               |                 |
| 63:  | 3 | 1 | 3 | 3      | 4      | 2      | 1 | 2      | 2      | 3      | 51420.09480  | 51420.09523   | -0.00043 | 0.00500 | 0.00138 |               |                 |
| 64:  | 3 | 1 | 3 | 3      | 3      | 2      | 1 | 2      | 2      | 2      | 51419.98700  | 51419.98501   | 0.00199  | 0.00500 | 0.00138 |               |                 |
| 65:  | 3 | 1 | 2 | 4      | 5      | 3      | 1 | 3      | 4      | 5      | 6819.48040   | 6819.47915    | 0.00125  | 0.00500 | 0.00298 |               |                 |
| 66:  | 3 | 1 | 2 | 4      | 4      | 3      | 1 | 3      | 4      | 4      | 6819.56630   | 6819.57656    | -0.01026 | 0.00500 | 0.00317 |               |                 |
| 67:  | 3 | 1 | 2 | 4      | 3      | 3      | 1 | 3      | 4      | 3      | 6819.83950   | 6819.83284    | 0.00666  | 0.00500 | 0.00300 |               |                 |
| 68:  | 3 | 1 | 2 | 3      | 4      | 3      | 1 | 3      | 3      | 4      | 6991.36430   | 6991.35934    | 0.00496  | 0.00500 | 0.00326 |               |                 |
| 69:  | 3 | 1 | 2 | 3      | 3      | 3      | 1 | 3      | 3      | 3      | 6990.92520   | 6990.92032    | 0.00488  | 0.00500 | 0.00308 |               |                 |
| 70:  | 4 | 1 | 4 | 5      | 6      | 3      | 1 | 3      | 4      | 5      | 68667.43430  | 68667.43523   | -0.00093 | 0.00500 | 0.00186 |               |                 |
| 71:  | 4 | 1 | 4 | 5      | 5      | 3      | 1 | 3      | 4      | 4      | 68667.48360  | 68667.48495   | -0.00135 | 0.00500 | 0.00186 |               |                 |
| 72:  | 4 | 1 | 4 | 4      | 5      | 3      | 1 | 3      | 3      | 4      | 68614.52340  | 68614.50801   | 0.01539  | 0.00500 | 0.00190 |               |                 |
| 73:  | 4 | 1 | 4 | 4      | 4      | 3      | 1 | 3      | 3      | 3      | 68614.50410  | 68614.48514   | 0.01896  | 0.00500 | 0.00189 |               |                 |
| 74:  | 4 | 1 | 4 | 4      | 3      | 3      | 1 | 3      | 3      | 2      | 68614.47340  | 68614.46767   | 0.00573  | 0.00500 | 0.00188 |               |                 |
| 75:  | 5 | 1 | 5 | 6      | 5      | 4      | 0 | 4      | 5      | 4      | 139153.20170 | 139153.09341  | 0.10829  | 0.05000 | 0.00547 | 139153.21044  | -0.00874 0.3333 |
| 76:  | 5 | 1 | 5 | 6      | 6      | 4      | 0 | 4      | 5      | 5      | 139153.20170 | 139153.23701  | -0.03531 | 0.05000 | 0.00547 | 139153.21044  | -0.00874 0.3333 |
| 77:  | 5 | 1 | 5 | 6      | 7      | 4      | 0 | 4      | 5      | 6      | 139153.20170 | 139153.30090  | -0.09920 | 0.05000 | 0.00547 | 139153.21044  | -0.00874 0.3333 |
| 78:  | 5 | 1 | 5 | 5      | 6      | 4      | 0 | 4      | 4      | 5      | 139297.71660 | 139297.51127  | 0.20533  | 0.05000 | 0.00566 | 139297.72198  | -0.00538 0.3333 |
| 79:  | 5 | 1 | 5 | 5      | 5      | 4      | 0 | 4      | 4      | 4      | 139297.71660 | 139297.76941  | -0.05281 | 0.05000 | 0.00566 | 139297.72198  | -0.00538 0.3333 |
| 80:  | 5 | 1 | 5 | 5      | 4      | 4      | 0 | 4      | 4      | 3      | 139297.71660 | 139297.88528  | -0.16868 | 0.05000 | 0.00566 | 139297.72198  | -0.00538 0.3333 |
| 81:  | 6 | 1 | 6 | 7      | 6      | 5      | 0 | 5      | 6      | 5      | 153671.03410 | 153670.95139  | 0.08271  | 0.05000 | 0.01084 | 153671.06338  | -0.02928 0.3333 |
| 82:  | 6 | 1 | 6 | 7      | 7      | 5      | 0 | 5      | 6      | 6      | 153671.03410 | 153671.08962  | -0.05552 | 0.05000 | 0.01084 | 153671.06338  | -0.02928 0.3333 |
| 83:  | 6 | 1 | 6 | 7      | 8      | 5      | 0 | 5      | 6      | 7      | 153671.03410 | 153671.14913  | -0.11503 | 0.05000 | 0.01084 | 153671.06338  | -0.02928 0.3333 |
| 84:  | 6 | 1 | 6 | 6      | 7      | 5      | 0 | 5      | 5      | 6      | 153761.85940 | 153761.68369  | 0.17571  | 0.05000 | 0.01056 | 153761.86259  | -0.00319 0.3333 |
| 85:  | 6 | 1 | 6 | 6      | 6      | 5      | 0 | 5      | 5      | 5      | 153761.85940 | 153761.90380  | -0.04440 | 0.05000 | 0.01056 | 153761.86259  | -0.00319 0.3333 |
| 86:  | 6 | 1 | 6 | 6      | 5      | 5      | 0 | 5      | 5      | 4      | 153761.85940 | 153762.00027  | -0.14087 | 0.05000 | 0.01056 | 153761.86259  | -0.00319 0.3333 |
| 87:  | 6 | 2 | 4 | 7      | 6      | 6      | 1 | 5      | 7      | 6      | 165942.51130 | 165942.37438  | 0.13692  | 0.05000 | 0.01660 | 165942.52377  | -0.01247 0.3333 |
| 88:  | 6 | 2 | 4 | 7      | 7      | 6      | 1 | 5      | 7      | 7      | 165942.51130 | 165942.54417  | -0.03287 | 0.05000 | 0.01660 | 165942.52377  | -0.01247 0.3333 |
| 89:  | 6 | 2 | 4 | 7      | 8      | 6      | 1 | 5      | 7      | 8      | 165942.51130 | 165942.65276  | -0.14146 | 0.05000 | 0.01660 | 165942.52377  | -0.01247 0.3333 |
| 90:  | 6 | 2 | 4 | 6      | 7      | 6      | 1 | 5      | 6      | 7      | 166371.89780 | 166371.67567  | 0.22213  | 0.05000 | 0.01756 | 166371.87891  | 0.01889 0.3333  |
| 91:  | 6 | 2 | 4 | 6      | 6      | 6      | 1 | 5      | 6      | 6      | 166371.89780 | 166371.91590  | -0.01810 | 0.05000 | 0.01756 | 166371.87891  | 0.01889 0.3333  |
| 92:  | 6 | 2 | 4 | 6      | 5      | 6      | 1 | 5      | 6      | 5      | 166371.89780 | 166372.04516  | -0.14736 | 0.05000 | 0.01756 | 166371.87891  | 0.01889 0.3333  |
| 93:  |   | 1 | _ | 8      | (      | 6      | 0 | 6      |        | 6      | 167774.06960 | 16///4.06345  | 0.00615  | 0.05000 | 0.01993 | 16///4.16999  | -0.10039 0.3333 |
| 94:  |   | 1 | _ | 8      | 8      | 6      | 0 | 6      |        | (      | 167774.06960 | 16///4.19553  | -0.12593 | 0.05000 | 0.01993 | 16///4.16999  | -0.10039 0.3333 |
| 95:  | ( | 1 | 4 | 8      | 9      | 6      | 0 | 6      | (      | 8      | 16///4.06960 | 16///4.25100  | -0.18140 | 0.05000 | 0.01993 | 167774.16999  | -0.10039 0.3333 |
| 96:  | 7 | 1 | - | 7      | 8      | 6      | 0 | 6      | 6      | 6      | 16/822.8/630 | 16/822.68413  | 0.19217  | 0.05000 | 0.01944 | 16/822.84116  | 0.03514 0.3333  |
| 97:  | 7 | 1 | 7 | 7      | 6      | 6      | 0 | 6      | 6      | 6      | 167022.07030 | 167022.07010  | -0.00180 | 0.05000 | 0.01944 | 167022.04116  | 0.03514 0.3333  |
| 90:  | 5 | 1 | 2 | 6      | 0      | 0      | 1 | 0      | 0      | 5      | 16/622.0/030 | 167622.96126  | -0.08496 | 0.05000 | 0.01944 | 167622.04110  | 0.03514 0.3333  |
| 100. | 5 | 2 | 2 | 6      | 6      | 5      | 1 | 4      | 6      | 6      | 169607 77040 | 1606097.09140 | 0.18092  | 0.05000 | 0.00891 | 169607 76910  | 0.00430 0.3333  |
| 100: | 5 | 2 | 2 | 6      | 7      | 5      | 1 | 4      | 6      | 7      | 169607 77040 | 160697.70014  | -0.01574 | 0.05000 | 0.00891 | 160697.76010  | 0.00430 0.3333  |
| 101. | 1 | 2 | 2 | 5      | 4      | 1      | 1 | 2      | 5      | 4      | 171124 10700 | 171122 02604  | -0.13229 | 0.05000 | 0.00891 | 171124 05060  | 0.00430 0.3333  |
| 102: | 4 | 2 | 2 | 5      | 4      | 4      | 1 | 2      | 5      | 4      | 171134.10790 | 171124 07015  | 0.27106  | 0.05000 | 0.00470 | 171134.05269  | 0.05521 0.3333  |
| 104. | 1 | 2 | 2 | 5      | 6      | 1      | 1 | 3      | 5      | 6      | 171134.10790 | 171134.07013  | 0.1/316  | 0.05000 | 0.00470 | 171134.05269  | 0.05521 0.3333  |
| 104. | 4 | 2 | 2 | 1      | 5      | 4      | 1 | 2      | 1      | 5      | 171040 00260 | 17104.20100   | -0.14310 | 0.05000 | 0.00470 | 171040 005209 | 0.00021 0.0000  |
| 106. | 4 | 2 | 2 | 4      | 4      | 4      | 1 | 3      | 4      | 4      | 171842 20360 | 171842 34258  | _0 13898 | 0.05000 | 0.00537 | 171842 28544  | -0.08184 0.3333 |
| 107. | 1 | 2 | 2 | 1      | 3      | 1      | 1 | 3      | 1      | 3      | 171842.20300 | 1718/2 57108  | 0.36838  | 0.05000 | 0.00537 | 171842.20544  | 0.08184 0.3333  |
| 108. | 3 | 2 | 1 | 4      | 3      | 3      | 1 | 2      | 4      | 3      | 173149 00280 | 173148 67178  | 0.33102  | 0.05000 | 0.00378 | 173148,95362  | 0.04918 0.3333  |
| 109. | 3 | 2 | 1 | 4      | 4      | 3      | 1 | 2      | 4      | 4      | 173149.00280 | 173148 96362  | 0.03918  | 0.05000 | 0.00378 | 173148,95362  | 0.04918 0.3333  |
| 110. | 3 | 2 | 1 | 4      | 5      | 3      | 1 | 2      | 4      | 5      | 173149.00280 | 173149, 22547 | -0.22267 | 0.05000 | 0.00378 | 173148,95362  | 0.04918 0.3333  |
| 111: | 3 | 2 | 1 | 3      | 4      | 3      | 1 | 2      | 3      | 4      | 174109.58570 | 174109.14572  | 0.43998  | 0.05000 | 0.00455 | 174109.66793  | -0.08223 0.3333 |
| 112: | 3 | 2 | 1 | 3      | 3      | 3      | 1 | 2      | 3      | 3      | 174109.58570 | 174109.75380  | -0.16810 | 0.05000 | 0.00455 | 174109.66793  | -0.08223 0.3333 |
| 113: | 3 | 2 | 1 | 3      | 2      | 3      | 1 | 2      | 3      | 2      | 174109.58570 | 174110.10429  | -0.51859 | 0.05000 | 0.00455 | 174109.66793  | -0.08223 0.3333 |
| 114: | 2 | 2 | 0 | 3      | 2      | 2      | 1 | 1      | 3      | 2      | 174641.26450 | 174640.68911  | 0.57539  | 0.05000 | 0.00535 | 174641.10621  | 0.15829 0.3333  |
| 115: | 2 | 2 | 0 | 3      | 3      | 2      | 1 | 1      | 3      | 3      | 174641.26450 | 174641.09422  | 0.17028  | 0.05000 | 0.00535 | 174641.10621  | 0.15829 0.3333  |
| 116: | 2 | 2 | 0 | 3      | 4      | 2      | 1 | 1      | 3      | 4      | 174641.26450 | 174641.53531  | -0.27081 | 0.05000 | 0.00535 | 174641.10621  | 0.15829 0.3333  |
| 117: | 2 | 2 | 0 | 2      | 3      | 2      | 1 | 1      | 2      | 3      | 176045.80590 | 176045.87657  | -0.07067 | 0.05000 | 0.00723 |               |                 |
| 118: | 2 | 2 | 1 | 3      | 2      | 2      | 1 | 2      | 3      | 2      | 178023.52620 | 178023.23196  | 0.29424  | 0.05000 | 0.00493 | 178023.46269  | 0.06351 0.3333  |
| 119: | 2 | 2 | 1 | 3      | 3      | 2      | 1 | 2      | 3      | 3      | 178023.52620 | 178023.40185  | 0.12435  | 0.05000 | 0.00493 | 178023.46269  | 0.06351 0.3333  |
| 120: | 2 | 2 | 1 | 3      | 4      | 2      | 1 | 2      | 3      | 4      | 178023.52620 | 178023.75427  | -0.22807 | 0.05000 | 0.00493 | 178023.46269  | 0.06351 0.3333  |
| 121: | 2 | 2 | 1 | 2      | 3      | 2      | 1 | 2      | 2      | 3      | 179549.24940 | 179549.25519  | -0.00579 | 0.05000 | 0.00730 |               |                 |
| 122: | 2 | 2 | 1 | 2      | 2      | 2      | 1 | 2      | 2      | 2      | 179550.24680 | 179549.95642  | 0.29038  | 0.05000 | 0.00744 | 179550.20473  | 0.04207 0.5000  |
| 123: | 2 | 2 | 1 | 2      | 1      | 2      | 1 | 2      | 2      | 1      | 179550.24680 | 179550.45304  | -0.20624 | 0.05000 | 0.00744 | 179550.20473  | 0.04207 0.5000  |
| 124: | 3 | 2 | 2 | 4      | 3      | 3      | 1 | 3      | 4      | 3      | 179886.35280 | 179886.26598  | 0.08682  | 0.05000 | 0.00379 | 179886.34939  | 0.00341 0.3333  |
| 125: | 3 | 2 | 2 | 4      | 4      | 3      | 1 | 3      | 4      | 4      | 179886.35280 | 179886.30770  | 0.04510  | 0.05000 | 0.00379 | 179886.34939  | 0.00341 0.3333  |
| 126: | 3 | 2 | 2 | 4      | 5      | 3      | 1 | 3      | 4      | 5      | 179886.35280 | 179886.47448  | -0.12168 | 0.05000 | 0.00379 | 179886.34939  | 0.00341 0.3333  |
| 127: | 3 | 2 | 2 | 3      | 4      | 3      | 1 | 3      | 3      | 4      | 181014.76410 | 181014.61069  | 0.15341  | 0.05000 | 0.00462 | 181014.80187  | -0.03777 0.3333 |
| 128: | 3 | 2 | 2 | 3      | 3      | 3      | 1 | 3      | 3      | 3      | 181014.76410 | 181014.79063  | -0.02653 | 0.05000 | 0.00462 | 181014.80187  | -0.03777 0.3333 |
| 129: | 3 | 2 | 2 | 3      | 2      | 3      | 1 | 3      | 3      | 2      | 181014.76410 | 181015.00429  | -0.24019 | 0.05000 | 0.00462 | 181014.80187  | -0.03777 0.3333 |
| 130: | 4 | 2 | 3 | 5      | 5      | 4      | 1 | 4      | 5      | 5      | 182275.14650 | 182275.09673  | 0.04977  | 0.05000 | 0.00519 | 182275.13230  | 0.01420 0.3333  |
| 131: | 4 | 2 | 3 | 5      | 4      | 4      | 1 | 4      | 5      | 4      | 182275.14650 | 182275.11999  | 0.02651  | 0.05000 | 0.00519 | 182275.13230  | 0.01420 0.3333  |
| 132: | 4 | 2 | 3 | 5      | 6      | 4      | 1 | 4      | 5      | 6      | 182275.14650 | 182275.18016  | -0.03366 | 0.05000 | 0.00519 | 182275.13230  | 0.01420 0.3333  |
| 133: | 4 | 2 | 3 | 4      | 5      | 4      | 1 | 4      | 4      | 5      | 183194.98920 | 183194.93658  | 0.05262  | 0.05000 | 0.00548 | 183194.97867  | 0.01053 0.3333  |
| 134: | 4 | 2 | 3 | 4      | 4      | 4      | 1 | 4      | 4      | 4      | 183194.98920 | 183194.94965  | 0.03955  | 0.05000 | 0.00548 | 183194.97867  | 0.01053 0.3333  |
| 135: | 4 | 2 | 3 | 4      | 3      | 4      | 1 | 4      | 4      | 3      | 183194.98920 | 183195.04979  | -0.06059 | 0.05000 | 0.00548 | 183194.97867  | 0.01053 0.3333  |
| 136: | 5 | 2 | 4 | 6      | 6      | 5      | 1 | 5      | 6      | 6      | 185221.79520 | 185221.69341  | 0.10179  | 0.05000 | 0.00979 | 185221.72671  | 0.06849 0.3333  |
| 137: | 5 | 2 | 4 | 6      | 7      | 5      | 1 | 5      | 6      | 7      | 185221.79520 | 185221.73228  | 0.06292  | 0.05000 | 0.00979 | 185221.72671  | 0.06849 0.3333  |
| 138: | 5 | 2 | 4 | 6      | 5      | 5      | 1 | 5      | 6      | 5      | 185221.79520 | 185221.75445  | 0.04075  | 0.05000 | 0.00979 | 185221./2671  | 0.06849 0.3333  |
| 140. | 5 | 2 | 4 | 5      | 5      | 5      | 1 | ъ<br>г | 5      | 5      | 186018.61500 | 186018.5/062  | 0.04438  | 0.05000 | 0.00998 | 186018.60527  | 0.00973 0.3333  |
| 140: | 5 | 2 | 4 | э<br>г | 4      | о<br>г | 1 | э<br>г | э<br>г | 4      | 100010.01500 | 106010.014/2  | 0.00028  | 0.05000 | 0.00998 | 100010.0052/  | 0.00973 0.3333  |
| 141: | 5 | 2 | 4 | 5<br>7 | 0<br>7 | о<br>с | 1 | о<br>с | о<br>7 | 0<br>7 | 100743 43000 | 100010.03048  | -0.01548 | 0.05000 | 0.00998 | 100010.0052/  | 0.009/3 0.3333  |
| 142: | 6 | 2 | 5 | 7      | (      | б      | 1 | 6      | (      | (      | 188/43.43200 | 100743.27360  | 0.15840  | 0.05000 | 0.01843 | 100743.30606  | 0.12594 0.3333  |
| 143: | o | 2 | э | - (    | ø      | σ      | Ŧ | σ      | (      | 0      | 100/43.43200 | 100/43.205//  | 0.14023  | 0.05000 | 0.01043 | 100143.30006  | v.12594 V.3333  |

| 144: | 6      | 2      | 5 | 7      | 6      | 6 | 1      | 6      | 7      | 6      | 188743.43200 | 188743.35880 | 0.07320  | 0.05000 | 0.01843 | 188743.30606                 | 0.12594 0.3333  |
|------|--------|--------|---|--------|--------|---|--------|--------|--------|--------|--------------|--------------|----------|---------|---------|------------------------------|-----------------|
| 145: | 6      | 2      | 5 | 6      | 6      | 6 | 1      | 6      | 6      | 6      | 189463.19730 | 189463.15047 | 0.04683  | 0.05000 | 0.01862 | 189463.18726                 | 0.01004 0.3333  |
| 146: | 6      | 2      | 5 | 6      | 5      | 6 | 1      | 6      | 6      | 5      | 189463.19730 | 189463.16295 | 0.03435  | 0.05000 | 0.01862 | 189463.18726                 | 0.01004 0.3333  |
| 147: | 6      | 2      | 5 | 6<br>3 | 2      | 6 | 1      | 6      | 6      | 1      | 189463.19730 | 189463.24835 | -0.05105 | 0.05000 | 0.01862 | 189463.18726                 | 0.01004 0.3333  |
| 140. | 2      | 2      | 1 | 3      | 2      | 1 | 1      | 0      | 2      | 2      | 211328.74560 | 211328.51503 | 0.23037  | 0.05000 | 0.00468 | 211328 70863                 | 0.03697 0.3333  |
| 150: | 2      | 2      | 1 | 3      | 4      | 1 | 1      | õ      | 2      | 3      | 211328.74560 | 211328.86910 | -0.12350 | 0.05000 | 0.00468 | 211328.70863                 | 0.03697 0.3333  |
| 151: | 2      | 2      | 0 | 3      | 2      | 1 | 1      | 1      | 2      | 1      | 212470.00720 | 212469.99288 | 0.01432  | 0.05000 | 0.00462 | 212470.02480                 | -0.01760 0.3333 |
| 152: | 2      | 2      | 0 | 3      | 3      | 1 | 1      | 1      | 2      | 2      | 212470.00720 | 212470.01362 | -0.00642 | 0.05000 | 0.00462 | 212470.02480                 | -0.01760 0.3333 |
| 153: | 2      | 2      | 0 | 3      | 4      | 1 | 1      | 1      | 2      | 3      | 212470.00720 | 212470.06790 | -0.06070 | 0.05000 | 0.00462 | 212470.02480                 | -0.01760 0.3333 |
| 154: | 2      | 2      | 0 | 2      | 3      | 1 | 1      | 1      | 1      | 2      | 213640.16150 | 213640.18385 | -0.02235 | 0.05000 | 0.00649 |                              |                 |
| 155: | 3      | 2      | 2 | 4      | 4      | 2 | 1      | 1      | 3      | 3      | 228029.12110 | 228029.13685 | -0.01575 | 0.05000 | 0.00428 | 228029.11531                 | 0.00579 0.3333  |
| 156: | 3      | 2      | 2 | 4      | 3      | 2 | 1      | 1      | 3      | 2      | 228029.12110 | 228028.91950 | 0.20160  | 0.05000 | 0.00428 | 228029.11531                 | 0.00579 0.3333  |
| 157: | 3      | 2      | 2 | 4      | 5      | 2 | 1      | 1      | 3      | 4      | 228029.12110 | 228029.28959 | -0.16849 | 0.05000 | 0.00428 | 228029.11531                 | 0.00579 0.3333  |
| 158: | 3      | 2      | 2 | 3      | 4      | 2 | 1      | 1      | 2      | 3      | 228914.29310 | 228913.93058 | 0.36252  | 0.05000 | 0.00451 | 228914.41989                 | -0.12679 0.3333 |
| 160. | 3      | 2      | 2 | 3      | 2      | 2 | 1      | 1      | 2      | 1      | 228914.29310 | 228914.01000 | -0.22243 | 0.05000 | 0.00451 | 228914.41989                 | -0.12679 0.3333 |
| 161: | 3      | 2      | 1 | 4      | 4      | 2 | 1      | 2      | 3      | 3      | 231510.05280 | 231510.02815 | 0.02465  | 0.05000 | 0.00386 | 231510.05721                 | -0.00441 0.3333 |
| 162: | 3      | 2      | 1 | 4      | 3      | 2 | 1      | 2      | 3      | 2      | 231510.05280 | 231510.05442 | -0.00162 | 0.05000 | 0.00386 | 231510.05721                 | -0.00441 0.3333 |
| 163: | 3      | 2      | 1 | 4      | 5      | 2 | 1      | 2      | 3      | 4      | 231510.05280 | 231510.08904 | -0.03624 | 0.05000 | 0.00386 | 231510.05721                 | -0.00441 0.3333 |
| 164: | 3      | 2      | 1 | 3      | 4      | 2 | 1      | 2      | 2      | 3      | 232520.69730 | 232520.60028 | 0.09702  | 0.05000 | 0.00469 | 232520.68804                 | 0.00926 0.3333  |
| 165: | 3      | 2      | 1 | 3      | 3      | 2 | 1      | 2      | 2      | 2      | 232520.69730 | 232520.65913 | 0.03817  | 0.05000 | 0.00469 | 232520.68804                 | 0.00926 0.3333  |
| 166: | 3      | 2      | 1 | 3      | 2      | 2 | 1      | 2      | 2      | 1      | 232520.69730 | 232520.80472 | -0.10742 | 0.05000 | 0.00469 | 232520.68804                 | 0.00926 0.3333  |
| 167: | 4      | 2      | 3 | 5      | 4      | 3 | 1      | 2      | 4      | 3      | 244123.04090 | 244122.80443 | 0.23647  | 0.05000 | 0.00505 | 244122.98193                 | 0.05897 0.3333  |
| 160: | 4      | 2      | 3 | 5      | 5<br>6 | 3 | 1      | 2      | 4      | 4      | 244123.04090 | 244123.00513 | 0.03577  | 0.05000 | 0.00505 | 244122.90193                 | 0.05697 0.3333  |
| 170. | 4      | 2      | 3 | 4      | 5      | 3 | 1      | 2      | 3      | 4      | 244818,40260 | 244818 08525 | 0.31735  | 0.05000 | 0.00522 | 244818, 44573                | -0.04313 0.3333 |
| 171: | 4      | 2      | 3 | 4      | 4      | 3 | 1      | 2      | 3      | 3      | 244818.40260 | 244818.51447 | -0.11187 | 0.05000 | 0.00522 | 244818.44573                 | -0.04313 0.3333 |
| 172: | 4      | 2      | 3 | 4      | 3      | 3 | 1      | 2      | 3      | 2      | 244818.40260 | 244818.73746 | -0.33486 | 0.05000 | 0.00522 | 244818.44573                 | -0.04313 0.3333 |
| 173: | 4      | 2      | 2 | 5      | 5      | 3 | 1      | 3      | 4      | 4      | 251190.04520 | 251189.98928 | 0.05592  | 0.05000 | 0.00501 | 251190.02144                 | 0.02376 0.3333  |
| 174: | 4      | 2      | 2 | 5      | 6      | 3 | 1      | 3      | 4      | 5      | 251190.04520 | 251190.01855 | 0.02665  | 0.05000 | 0.00501 | 251190.02144                 | 0.02376 0.3333  |
| 175: | 4      | 2      | 2 | 5      | 4      | 3 | 1      | 3      | 4      | 3      | 251190.04520 | 251190.05650 | -0.01130 | 0.05000 | 0.00501 | 251190.02144                 | 0.02376 0.3333  |
| 176: | 4      | 2      | 2 | 4      | 4      | 3 | 1      | 3      | 3      | 3      | 252065.32990 | 252065.28736 | 0.04254  | 0.05000 | 0.00544 | 252065.32219                 | 0.00771 0.3333  |
| 177: | 4      | 2      | 2 | 4      | 5      | 3 | 1      | 3      | 3      | 4      | 252065.32990 | 252065.31530 | 0.01460  | 0.05000 | 0.00544 | 252065.32219                 | 0.00771 0.3333  |
| 178: | 4      | 2      | 2 | 4      | 3      | 3 | 1      | 3      | 3      | 2      | 252065.32990 | 252065.36391 | -0.03401 | 0.05000 | 0.00544 | 252065.32219                 | 0.00771 0.3333  |
| 180: | 5      | 2      | 4 | 6      | 6      | 4 | 1      | 3      | 5      | 5      | 259617.68590 | 259617.64548 | 0.04042  | 0.05000 | 0.00804 | 259617.62025                 | 0.06565 0.3333  |
| 181: | 5      | 2      | 4 | 6      | 7      | 4 | 1      | 3      | 5      | 6      | 259617.68590 | 259617.75804 | -0.07214 | 0.05000 | 0.00804 | 259617.62025                 | 0.06565 0.3333  |
| 182: | 5      | 2      | 4 | 5      | 6      | 4 | 1      | 3      | 4      | 5      | 260170.66320 | 260170.36599 | 0.29721  | 0.05000 | 0.00808 | 260170.65218                 | 0.01102 0.3333  |
| 183: | 5      | 2      | 4 | 5      | 5      | 4 | 1      | 3      | 4      | 4      | 260170.66320 | 260170.70786 | -0.04466 | 0.05000 | 0.00808 | 260170.65218                 | 0.01102 0.3333  |
| 184: | 5      | 2      | 4 | 5      | 4      | 4 | 1      | 3      | 4      | 3      | 260170.66320 | 260170.88268 | -0.21948 | 0.05000 | 0.00808 | 260170.65218                 | 0.01102 0.3333  |
| 185: | 5      | 2      | 3 | 6      | 6      | 4 | 1      | 4      | 5      | 5      | 271584.00620 | 271583.90579 | 0.10041  | 0.05000 | 0.00815 | 271583.93983                 | 0.06637 0.3333  |
| 186: | 5      | 2      | 3 | 6      | 7      | 4 | 1      | 4      | 5      | 6      | 271584.00620 | 271583.90930 | 0.09690  | 0.05000 | 0.00815 | 271583.93983                 | 0.06637 0.3333  |
| 187: | 5      | 2      | 3 | 6      | 5      | 4 | 1      | 4      | 5      | 4      | 271584.00620 | 271584.00442 | 0.00178  | 0.05000 | 0.00815 | 271583.93983                 | 0.06637 0.3333  |
| 189. | 5      | 2      | 3 | 5      | 4      | 4 | 1      | 4      | 4      | 4      | 272373.05540 | 272373.00000 | 0.04880  | 0.05000 | 0.00854 | 272373.04092                 | 0.00848 0.3333  |
| 190: | 5      | 2      | 3 | 5      | 6      | 4 | 1      | 4      | 4      | 5      | 272373.05540 | 272373.09746 | -0.04206 | 0.05000 | 0.00854 | 272373.04692                 | 0.00848 0.3333  |
| 191: | 6      | 2      | 5 | 7      | 7      | 5 | 1      | 4      | 6      | 6      | 274523.92570 | 274523.91058 | 0.01512  | 0.05000 | 0.01326 | 274523.88386                 | 0.04184 0.3333  |
| 192: | 6      | 2      | 5 | 7      | 6      | 5 | 1      | 4      | 6      | 5      | 274523.92570 | 274523.73115 | 0.19455  | 0.05000 | 0.01326 | 274523.88386                 | 0.04184 0.3333  |
| 193: | 6      | 2      | 5 | 7      | 8      | 5 | 1      | 4      | 6      | 7      | 274523.92570 | 274524.00986 | -0.08416 | 0.05000 | 0.01326 | 274523.88386                 | 0.04184 0.3333  |
| 194: | 6      | 2      | 5 | 6      | 7      | 5 | 1      | 4      | 5      | 6      | 274966.12500 | 274965.83901 | 0.28599  | 0.05000 | 0.01315 | 274966.08106                 | 0.04394 0.3333  |
| 195: | 6      | 2      | 5 | 6      | 6      | 5 | 1      | 4      | 5      | 5      | 274966.12500 | 274966.12988 | -0.00488 | 0.05000 | 0.01315 | 274966.08106                 | 0.04394 0.3333  |
| 196: | 6      | 2      | 5 | 6      | 5      | 5 | 1      | 4      | 5      | 4      | 274966.12500 | 274966.27429 | -0.14929 | 0.05000 | 0.01315 | 274966.08106                 | 0.04394 0.3333  |
| 197: | 7      | 2      | 6 | 0      | 2      | 6 | 1      | 5      | 7      | 7      | 200051.21150 | 200051.033/1 | 0.17779  | 0.05000 | 0.02150 | 200001.1/094                 | 0.03256 0.3333  |
| 199. | 7      | 2      | 6 | 8      | 9      | 6 | 1      | 5      | 7      | 8      | 288851,21150 | 288851 29644 | -0.08494 | 0.05000 | 0.02158 | 288851 17894                 | 0.03256 0.3333  |
| 200: | 7      | 2      | 6 | 7      | 8      | 6 | 1      | 5      | 6      | 7      | 289203.75800 | 289203.49615 | 0.26185  | 0.05000 | 0.02130 | 289203.70996                 | 0.04804 0.3333  |
| 201: | 7      | 2      | 6 | 7      | 7      | 6 | 1      | 5      | 6      | 6      | 289203.75800 | 289203.75473 | 0.00327  | 0.05000 | 0.02130 | 289203.70996                 | 0.04804 0.3333  |
| 202: | 7      | 2      | 6 | 7      | 6      | 6 | 1      | 5      | 6      | 5      | 289203.75800 | 289203.87898 | -0.12098 | 0.05000 | 0.02130 | 289203.70996                 | 0.04804 0.3333  |
| 203: | 6      | 2      | 4 | 7      | 8      | 5 | 1      | 5      | 6      | 7      | 292780.58980 | 292780.40930 | 0.18050  | 0.05000 | 0.01427 | 292780.46130                 | 0.12850 0.3333  |
| 204: | 6      | 2      | 4 | 7      | 7      | 5 | 1      | 5      | 6      | 6      | 292780.58980 | 292780.42522 | 0.16458  | 0.05000 | 0.01427 | 292780.46130                 | 0.12850 0.3333  |
| 205: | 6      | 2      | 4 | 7      | 6      | 5 | 1      | 5      | 6      | 5      | 292780.58980 | 292780.54938 | 0.04042  | 0.05000 | 0.01427 | 292780.46130                 | 0.12850 0.3333  |
| 206: | 6      | 2      | 4 | 6      | 5      | 5 | 1      | 5      | 5      | 4      | 293518.32690 | 293518.30015 | 0.02675  | 0.05000 | 0.01472 | 293518.34519                 | -0.01829 0.3333 |
| 207. | 6      | 2<br>2 | 4 | 6      | 7      | 5 | 1<br>1 | 5      | 5      | 6      | 293518.32690 | 293518 43438 | -0.10748 | 0.05000 | 0.01472 | 293518 34519                 | -0.01829 0.3333 |
| 209: | 5      | 3      | 2 | 6      | 5      | 5 | 2      | 3      | 6      | 5      | 293822.30290 | 293822.25640 | 0.04650  | 0.05000 | 0.01264 | 293822.40541                 | -0.10251 0.3333 |
| 210: | 5      | 3      | 2 | 6      | 6      | 5 | 2      | 3      | 6      | 6      | 293822.30290 | 293822.40102 | -0.09812 | 0.05000 | 0.01264 | 293822.40541                 | -0.10251 0.3333 |
| 211: | 5      | 3      | 2 | 6      | 7      | 5 | 2      | 3      | 6      | 7      | 293822.30290 | 293822.55880 | -0.25590 | 0.05000 | 0.01264 | 293822.40541                 | -0.10251 0.3333 |
| 212: | 3      | 3      | 0 | 4      | 3      | 3 | 2      | 1      | 4      | 3      | 293955.04070 | 293954.66238 | 0.37832  | 0.05000 | 0.01762 | 293954.96683                 | 0.07387 0.3333  |
| 213: | 3      | 3      | 0 | 4      | 4      | 3 | 2      | 1      | 4      | 4      | 293955.04070 | 293954.94343 | 0.09727  | 0.05000 | 0.01762 | 293954.96683                 | 0.07387 0.3333  |
| 214: | 3      | 3      | 0 | 4      | 5      | 3 | 2      | 1      | 4      | 5      | 293955.04070 | 293955.29469 | -0.25399 | 0.05000 | 0.01762 | 293954.96683                 | 0.07387 0.3333  |
| 215: | 4      | 3      | 1 | 5      | 4      | 4 | 2      | 2      | 5      | 4      | 293970.36190 | 293970.11988 | 0.24202  | 0.05000 | 0.01387 | 293970.32328                 | 0.03862 0.3333  |
| 216: | 4      | 3      | 1 | 5      | 5      | 4 | 2      | 2      | 5      | 5<br>6 | 293970.36190 | 293970.31257 | 0.04933  | 0.05000 | 0.01387 | 293970.32328                 | 0.03862 0.3333  |
| 217. | *<br>3 | 3      | 1 | 4      | 3      | 3 | 2      | 2      | 4      | 3      | 293970.30190 | 293970.33739 | 0 37512  | 0.05000 | 0.01367 | 293970.32328                 | 0.03602 0.3333  |
| 210. | 3      | 3      | 1 | 4      | 4      | 3 | 2      | 2      | 4      | 4      | 294037.12760 | 294037.02740 | 0.10020  | 0.05000 | 0.01761 | 294037.05207                 | 0.07553 0.3333  |
| 220: | 3      | 3      | 1 | 4      | 5      | 3 | 2      | 2      | 4      | 5      | 294037.12760 | 294037.37633 | -0.24873 | 0.05000 | 0.01761 | 294037.05207                 | 0.07553 0.3333  |
| 221: | 4      | 3      | 2 | 5      | 4      | 4 | 2      | 3      | 5      | 4      | 294216.65450 | 294216.49434 | 0.16016  | 0.05000 | 0.01385 | 294216.68856                 | -0.03406 0.3333 |
| 222: | 4      | 3      | 2 | 5      | 5      | 4 | 2      | 3      | 5      | 5      | 294216.65450 | 294216.67546 | -0.02096 | 0.05000 | 0.01385 | 294216.68856                 | -0.03406 0.3333 |
| 223: | 4      | 3      | 2 | 5      | 6      | 4 | 2      | 3      | 5      | 6      | 294216.65450 | 294216.89587 | -0.24137 | 0.05000 | 0.01385 | 294216.68856                 | -0.03406 0.3333 |
| 224: | 5      | 3      | 3 | 6      | 5      | 5 | 2      | 4      | 6      | 5      | 294396.01340 | 294395.90977 | 0.10363  | 0.05000 | 0.01254 | 294396.04411                 | -0.03071 0.3333 |
| 225: | 5      | 3      | 3 | 6      | 67     | 5 | 2      | 4      | 6      | 6<br>7 | 294396.01340 | 294396.03591 | -0.02251 | 0.05000 | 0.01254 | 294396.04411                 | -0.03071 0.3333 |
| 226: | 5      | 3      | 3 | 6<br>7 | (<br>6 | 5 | 2      | 4<br>5 | 6<br>7 | (<br>6 | 294396.01340 | 294396.18664 | -0.1/324 | 0.05000 | 0.01254 | 294396.04411<br>294616 20854 | -0.030/1 0.3333 |
| 221: | 6      | 3      | 4 | 7      | 7      | 6 | 2<br>2 | 5      | 7      | 7      | 294616 27740 | 294616 29255 | -0.01515 | 0.05000 | 0.01525 | 294616 29854                 | -0.02114 0.3333 |
| 229: | 6      | 3      | 4 | 7      | 8      | 6 | 2      | 5      | 7      | 8      | 294616.27740 | 294616.40116 | -0.12376 | 0.05000 | 0.01525 | 294616.29854                 | -0.02114 0.3333 |
| 230: | 5      | 3      | 2 | 5      | 6      | 5 | 2      | 3      | 5      | 6      | 294901.27530 | 294901.03399 | 0.24131  | 0.05000 | 0.01463 | 294901.25880                 | 0.01650 0.3333  |
| 231: | 5      | 3      | 2 | 5      | 5      | 5 | 2      | 3      | 5      | 5      | 294901.27530 | 294901.27713 | -0.00183 | 0.05000 | 0.01463 | 294901.25880                 | 0.01650 0.3333  |
| 232: | 5      | 3      | 2 | 5      | 4      | 5 | 2      | 3      | 5      | 4      | 294901.27530 | 294901.46529 | -0.18999 | 0.05000 | 0.01463 | 294901.25880                 | 0.01650 0.3333  |
| 233: | 4      | 3      | 1 | 4      | 5      | 4 | 2      | 2      | 4      | 5      | 295292.73070 | 295292.36360 | 0.36710  | 0.05000 | 0.01742 | 295292.69990                 | 0.03080 0.3333  |
| 234: | 4      | 3      | 1 | 4      | 4      | 4 | 2      | 2      | 4      | 4      | 295292.73070 | 295292.72983 | 0.00087  | 0.05000 | 0.01742 | 295292.69990                 | 0.03080 0.3333  |
| 235: | 4      | 3      | 1 | 4      | 3      | 4 | 2      | 2      | 4      | 3      | 295292.73070 | 295293 00627 | -0.27557 | 0.05000 | 0.01742 | 295292.69990                 | 0.03080 0.3333  |

| 236:     | 72     | 5    | 8   | 9      | 6     | 1    | 6    | 7    | 8     |                | 314880   | .54880  | 314880 | .22737  | 0      | .32143  | 0.05000   | ) 0        | .0253  | 1 31488          | 30.29691 | 0.25189 0.3333    |
|----------|--------|------|-----|--------|-------|------|------|------|-------|----------------|----------|---------|--------|---------|--------|---------|-----------|------------|--------|------------------|----------|-------------------|
| 237:     | 72     | 5    | 8   | 8      | 6     | 1    | 6    | 7    | 7     |                | 314880   | .54880  | 314880 | .25850  | 0      | .29030  | 0.05000   | ) 0        | .0253  | 1 31488          | 30.29691 | 0.25189 0.3333    |
| 238:     | 72     | 5    | 8   | 7      | 6     | 1    | 6    | 7    | 6     |                | 314880   | .54880  | 314880 | .40486  | 0      | 14394   | 0.05000   | 0          | .0253  | 1 31488          | 30.29691 | 0.25189 0.3333    |
| 239      | 7 2    | 5    | 7   | 6      | 6     | 1    | 6    | 6    | 5     |                | 315591   | 51540   | 315591 | 47510   | 0      | 04030   | 0.05000   | 0          | 02599  | 9 31559          | 1 54544  | -0.03004 0.3333   |
| 240.     | 7 2    | 5    | 7   | 7      | 6     | 1    | 6    | 6    | 6     |                | 315591   | 51540   | 315591 | 49810   | 0      | 01730   | 0.05000   | 0          | 02599  | 9 31559          | 1.54544  | -0.03004 0.333    |
| 2/1.     | 7 2    | 5    | 7   | 。<br>。 | 6     | 1    | 6    | 6    | 7     |                | 315501   | 51540   | 315501 | 66312   | 0      | 1/772   | 0.05000   | , o        | 02500  | 31550            | 1 5/5//  |                   |
| 241.     | 3 3    | 1    |     | 3      | 2     | 2    | 0    | 3    | 2     |                | 3/7/25   | 06600   | 3/7/0/ | 08287   | 0      | 08313   | 0.05000   | , õ        | 01548  | 5 34740          | 06117    |                   |
| 242.     | 2 2    | 1    | -   | 1      | 2     | 2    | 0    | 2    | 2     |                | 247405   | .000000 | 247405 | 07002   | 0      | .00313  | 0.05000   | , 0<br>, 0 | 01540  | 5 34742          | 06 06117 | 0.00403 0.333     |
| 243.     | 3 3    | 1    | 4   | 4      | 2     | 2    | 0    | 2    | 3     |                | 347420   | .000000 | 247420 | 12061   | -0     | 00403   | 0.05000   |            | 01540  | 5 34742          | 20.00117 |                   |
| 244:     | 3 3    | 1    | 4   | 5      | 2     | 2    | 0    | 3    | 4     |                | 347425   | .06600  | 347425 | .13061  | -0     | .06461  | 0.05000   | 0          | .01548 | 5 34742          | 25.06117 | 0.00483 0.3333    |
| 245:     | 3 3    | 0    | 4   | 3      | 2     | 2    | 1    | 3    | 2     |                | 347441   | .53660  | 347441 | .48484  | 0      | .05176  | 0.05000   | 0          | .01544 | 4 34/44          | 1.56134  | 4 -0.02474 0.3333 |
| 246:     | 3 3    | 0    | 4   | 4      | 2     | 2    | 1    | 3    | 3     |                | 347441   | .53660  | 347441 | .56973  | -0     | .03313  | 0.05000   | ) ()       | .01544 | 4 34744          | 1.56134  | 4 -0.02474 0.3333 |
| 247:     | 33     | 0    | 4   | 5      | 2     | 2    | 1    | 3    | 4     |                | 347441   | .53660  | 347441 | .62946  | -0     | .09286  | 0.05000   | ) 0        | .01544 | 4 34744          | 1.56134  | 4 -0.02474 0.3333 |
| 248:     | 33     | 1    | 3   | 4      | 2     | 2    | 0    | 2    | 3     |                | 348601   | .91710  | 348601 | .73263  | 0      | . 18447 | 0.05000   | ) ()       | .0201: | 1 34860          | 01.76924 | 0.14786 0.3333    |
| 249:     | 33     | 1    | 3   | 3      | 2     | 2    | 0    | 2    | 2     |                | 348601   | .91710  | 348601 | .73698  | 0      | .18012  | 0.05000   | ) ()       | .0201  | 1 34860          | 01.76924 | 0.14786 0.3333    |
| 250:     | 3 3    | 1    | 3   | 2      | 2     | 2    | 0    | 2    | 1     |                | 348601   | .91710  | 348601 | .83811  | 0      | .07899  | 0.05000   | ) ()       | .0201  | 1 34860          | 01.76924 | 0.14786 0.3333    |
| 251:     | 3 3    | 0    | 3   | 3      | 2     | 2    | 1    | 2    | 2     |                | 348619   | .46580  | 348619 | .28666  | 0      | . 17914 | 0.05000   | 0 (        | .02013 | 3 34861          | 19.32015 | 0.14565 0.3333    |
| 252:     | 3 3    | 0    | 3   | 4      | 2     | 2    | 1    | 2    | 3     |                | 348619   | .46580  | 348619 | .28740  | 0      | . 17840 | 0.05000   | ) ()       | .02013 | 3 34861          | 19.32015 | 5 0.14565 0.3333  |
| 253:     | 3 3    | 0    | 3   | 2      | 2     | 2    | 1    | 2    | 1     |                | 348619   | .46580  | 348619 | .38639  | 0      | .07941  | 0.05000   | 0          | .02013 | 3 34861          | 9.32015  | 5 0.14565 0.3333  |
| 254.     | 4 3    | 2    | 5   | 4      | 3     | 2    | 1    | 4    | 3     |                | 365190   | 74200   | 365190 | 62699   | 0      | 11501   | 0.05000   | 0          | 0124   | 3 36510          | 0 71686  | 3 0 02514 0 3333  |
| 255.     | 4 3    | 2    | 5   | 5      | 3     | 2    | 1    | Â    | 4     |                | 365190   | 74200   | 365190 | 71696   | 0      | 02504   | 0.05000   | 0          | 0124   | 3 36510          | 0 71686  | 0 02514 0 333     |
| 256.     | 1 3    | 2    | 5   | 6      | 3     | 2    | 1    | 1    | 5     |                | 365100   | 74200   | 365100 | 80664   | 0      | 06464   | 0.05000   | , 0<br>) 0 | 01240  | 3 36510          | 0.71686  | 0.02514.0.333     |
| 200.     | 4 3    | 4    | 5   | 4      | 2     | 2    | 2    | 4    | 2     |                | 303130   | .74200  | 265073 | 01020   | -0     | 00404   | 0.05000   | , 0<br>, 0 | 0124   | 0 00010          | 72 00523 |                   |
| 257:     | 4 3    | 1    | 5   | 4      | 3     | 2    | 2    | 4    | 3     |                | 305273   | .99640  | 305273 | .91039  | 0      | .06601  | 0.05000   | , ,        | .01240 | 0 00527          | 0.99533  | 0.00107 0.3333    |
| 258:     | 4 3    | 1    | 5   | 5      | 3     | 2    | 2    | 4    | 4     |                | 365273   | .99640  | 365273 | .99415  | 0      | .00225  | 0.05000   | 0          | .01240 | 36527            | 3.99533  | 3 0.00107 0.3333  |
| 259:     | 4 3    | 1    | 5   | 6      | 3     | 2    | 2    | 4    | 5     |                | 365273   | .99640  | 365274 | .08146  | -0     | .08506  | 0.05000   | ) ()       | .01240 | 36527            | 3.99533  | 3 0.00107 0.3333  |
| 260:     | 4 3    | 2    | 4   | 5      | 3     | 2    | 1    | 3    | 4     |                | 366256   | .31000  | 366256 | .07753  | 0      | .23247  | 0.05000   | 0 0        | .01539 | 9 36625          | 6.23805  | 0.07195 0.3333    |
| 261:     | 43     | 2    | 4   | 4      | 3     | 2    | 1    | 3    | 3     |                | 366256   | .31000  | 366256 | .24689  | 0      | .06311  | 0.05000   | 0 (        | .01539 | 9 36625          | 56.23805 | 5 0.07195 0.3333  |
| 262:     | 43     | 2    | 4   | 3      | 3     | 2    | 1    | 3    | 2     |                | 366256   | .31000  | 366256 | .38973  | -0     | .07973  | 0.05000   | 0 (        | .01539 | 9 36625          | 56.23805 | 5 0.07195 0.3333  |
| 263:     | 4 3    | 1    | 4   | 5      | 3     | 2    | 2    | 3    | 4     |                | 366343   | .27120  | 366343 | .06821  | 0      | .20299  | 0.05000   | ) ()       | .01546 | 6 36634          | 13.22022 | 0.05098 0.3333    |
| 264:     | 4 3    | 1    | 4   | 4      | 3     | 2    | 2    | 3    | 3     |                | 366343   | .27120  | 366343 | .22656  | 0      | .04464  | 0.05000   | ) ()       | .01546 | 6 36634          | 13.22022 | 0.05098 0.3333    |
| 265:     | 4 3    | 1    | 4   | 3      | 3     | 2    | 2    | 3    | 2     |                | 366343   | .27120  | 366343 | .36588  | -0     | .09468  | 0.05000   | ) ()       | .01546 | 36634            | 13.22022 | 0.05098 0.3333    |
| 266:     | 53     | 3    | 6   | 5      | 4     | 2    | 2    | 5    | 4     |                | 382879   | .60440  | 382879 | .53015  | 0      | .07425  | 0.05000   | 0 (        | .01180 | 38287            | 79.61167 | -0.00727 0.3333   |
| 267:     | 5 3    | 3    | 6   | 6      | 4     | 2    | 2    | 5    | 5     |                | 382879   | .60440  | 382879 | .61123  | -0     | .00683  | 0.05000   | 0          | .01180 | 38287            | 79.61167 | -0.00727 0.3333   |
| 268.     | 53     | 3    | 6   | 7      | 4     | 2    | 2    | 5    | 6     |                | 382879   | 60440   | 382870 | 69362   | _0     | 08922   | 0.05000   | 0          | 01180  | 1 38287          | 79 61167 | 7 _0 00727 0 3333 |
| 200.     | E 2    | 2    | 6   | Ē      | 1     | 2    | 2    | 5    | 4     |                | 202121   | 20720   | 202121 | 1/0002  | 0      | 06627   | 0.00000   | , ŭ        | 0116   | 1 20212          | 21 0100/ |                   |
| 209.     | 5 3    | 2    | 6   | 6      | 4     | 2    | 2    | 5    | 5     |                | 202121   | 20720   | 202121 | 01007   | 0      | 00037   | 0.05000   | , 0<br>, 0 | 0116   | 4 20213          | 21.21234 |                   |
| 270:     | 53     | 2    | 0   | 0      | 4     | 2    | 3    | 5    | 5     |                | 303131   | .20720  | 303131 | .21007  | -0     | .00287  | 0.05000   | , ,        | .01164 | 4 00040          | 01.21294 | ± -0.00574 0.3333 |
| 2/1:     | 5 3    | 2    | 6   |        | 4     | 2    | 3    | 5    | 6     |                | 383131   | .20720  | 383131 | .28793  | -0     | .08073  | 0.05000   | 0          | .01164 | 4 38313          | 31.21294 | 4 -0.00574 0.3333 |
| 272:     | 53     | 3    | 5   | 4      | 4     | 2    | 2    | 4    | 3     |                | 383819   | .13630  | 383819 | .24675  | -0     | .11045  | 0.05000   | 0          | .01338 | 5 38381          | 19.11131 | 0.02499 0.333     |
| 273:     | 53     | 3    | 5   | 5      | 4     | 2    | 2    | 4    | 4     |                | 383819   | .13630  | 383819 | .12241  | 0      | .01389  | 0.05000   | ) 0        | .0133  | 5 38381          | 19.11131 | 0.02499 0.3333    |
| 274:     | 53     | 3    | 5   | 6      | 4     | 2    | 2    | 4    | 5     |                | 383819   | .13630  | 383818 | .96477  | 0      | .17153  | 0.05000   | 0 (        | .0133  | 5 38381          | 19.11131 | L 0.02499 0.3333  |
| 275:     | 53     | 2    | 5   | 6      | 4     | 2    | 3    | 4    | 5     |                | 384079   | .35280  | 384079 | .19486  | 0      | .15794  | 0.05000   | ) ()       | .01352 | 2 38407          | 79.32704 | 0.02576 0.3333    |
| 276:     | 53     | 2    | 5   | 5      | 4     | 2    | 3    | 4    | 4     |                | 384079   | .35280  | 384079 | .33408  | 0      | .01872  | 0.05000   | ) ()       | .01352 | 2 38407          | 79.32704 | 0.02576 0.3333    |
| 277:     | 53     | 2    | 5   | 4      | 4     | 2    | 3    | 4    | 3     |                | 384079   | .35280  | 384079 | .45219  | -0     | .09939  | 0.05000   | ) ()       | .01352 | 2 38407          | 79.32704 | 0.02576 0.3333    |
| 278:     | 63     | 4    | 7   | 6      | 5     | 2    | 3    | 6    | 5     |                | 400442   | .40010  | 400442 | .34158  | 0      | .05852  | 0.05000   | ) ()       | .01462 | 2 40044          | 12.41430 | -0.01420 0.3333   |
| 279:     | 63     | 4    | 7   | 7      | 5     | 2    | 3    | 6    | 6     |                | 400442   | .40010  | 400442 | .41499  | -0     | .01489  | 0.05000   | ) ()       | .01462 | 2 40044          | 12.41430 | -0.01420 0.3333   |
| 280:     | 6 3    | 4    | 7   | 8      | 5     | 2    | 3    | 6    | 7     |                | 400442   | .40010  | 400442 | .48632  | -0     | .08622  | 0.05000   | ) 0        | .01462 | 2 40044          | 12.41430 | -0.01420 0.3333   |
| 281 .    | 6 3    | 3    | 7   | 6      | 5     | 2    | 4    | 6    | 5     |                | 401032   | 82790   | 401032 | 78177   | 0      | 04613   | 0 05000   | 0          | 01414  | 4 40103          | 32 83930 | -0.01140.0.333    |
| 282      | 6 3    | 3    | 7   | 7      | 5     | 2    | 4    | 6    | 6     |                | 401032   | 82790   | 401032 | 83605   | -0     | 00815   | 0.05000   | 0          | 01414  | 4 40103          | 32 83930 | -0.01140.0.333    |
| 202.     | 6 3    | 3    | 7   | 8      | 5     | 2    | 1    | 6    | 7     |                | 401002   | 82700   | 401032 | 90008   | 0      | 07218   | 0.05000   | , 0<br>) 0 | 01/11/ | 1 /0100          | 2.00000  |                   |
| 203.     | 6 3    | 3    | 6   | 7      | 5     | 2    | *    | 5    | 6     |                | 401032   | .02190  | 401032 | . 90008 | -0     | 07676   | 0.05000   |            | .01414 | 40103<br>7 40103 | 74 00670 |                   |
| 204:     | 6 3    | 4    | 6   | 6      | 5     | 2    | 3    | 5    | 5     |                | 401271   | .04950  | 401271 | .11214  | 0      | 01010   | 0.05000   |            | .0150  | 7 40127          | 1.090/0  |                   |
| 285:     | 63     | 4    | 6   | 6      | 5     | 2    | 3    | 5    | 5     |                | 401271   | .84950  | 401271 | .90721  | -0     | .05//1  | 0.05000   | 0          | .0150  | 40127            | 1.89678  | 3 -0.04/28 0.3333 |
| 286:     | 63     | 4    | 6   | 5      | 5     | 2    | 3    | 5    | 4     |                | 401271   | .84950  | 401272 | .01040  | -0     | .16090  | 0.05000   | 0 0        | .0150  | 7 40127          | 1.89678  | 3 -0.04728 0.3333 |
| 287:     | 63     | 3    | 6   | 7      | 5     | 2    | 4    | 5    | 6     |                | 401878   | .68880  | 401878 | .65909  | 0      | .02971  | 0.05000   | 0 0        | .0152: | 1 40187          | 8.76163  | 3 -0.07283 0.3333 |
| 288:     | 63     | 3    | 6   | 6      | 5     | 2    | 4    | 5    | 5     |                | 401878   | .68880  | 401878 | .76609  | -0     | .07729  | 0.05000   | 0 0        | .0152: | 1 40187          | 78.76163 | 3 -0.07283 0.3333 |
| 289:     | 63     | 3    | 6   | 5      | 5     | 2    | 4    | 5    | 4     |                | 401878   | .68880  | 401878 | .85972  | -0     | .17092  | 0.05000   | ) ()       | .0152: | 1 40187          | 78.76163 | 3 -0.07283 0.3333 |
| 290:     | 73     | 5    | 8   | 7      | 6     | 2    | 4    | 7    | 6     |                | 417822   | .18060  | 417822 | .16816  | 0      | .01244  | 0.05000   | ) ()       | .02112 | 2 41782          | 22.23491 | -0.05431 0.3333   |
| 291:     | 73     | 5    | 8   | 8      | 6     | 2    | 4    | 7    | 7     |                | 417822   | .18060  | 417822 | .23719  | -0     | .05659  | 0.05000   | ) ()       | .02112 | 2 41782          | 22.23491 | -0.05431 0.3333   |
| 292:     | 73     | 5    | 8   | 9      | 6     | 2    | 4    | 7    | 8     |                | 417822   | .18060  | 417822 | .29940  | -0     | .11880  | 0.05000   | ) ()       | .02112 | 2 41782          | 22.23491 | -0.05431 0.3333   |
| 293:     | 73     | 5    | 7   | 8      | 6     | 2    | 4    | 6    | 7     |                | 418558   | .07670  | 418558 | .16155  | -0     | .08485  | 0.05000   | ) ()       | .02092 | 2 41855          | 58.26889 | -0.19219 0.3333   |
| 294:     | 73     | 5    | 7   | 7      | 6     | 2    | 4    | 6    | 6     |                | 418558   | .07670  | 418558 | .27911  | -0     | .20241  | 0.05000   | ) ()       | .02092 | 2 41855          | 58.26889 | -0.19219 0.3333   |
| 295:     | 73     | 5    | 7   | 6      | 6     | 2    | 4    | 6    | 5     |                | 418558   | .07670  | 418558 | .36602  | -0     | .28932  | 0.05000   | ) ()       | .02092 | 2 41855          | 58.26889 | -0.19219 0.3333   |
| 296:     | 73     | 4    | 8   | 7      | 6     | 2    | 5    | 7    | 6     |                | 419008   | .43830  | 419008 | .48959  | -0     | .05129  | 0.05000   | 0          | .02023 | 2 41900          | 08.53408 | -0.09578 0.3333   |
| 297      | 7 3    | 4    | 8   | 8      | 6     | 2    | 5    | 7    | 7     |                | 419008   | 43830   | 419008 | 53056   | -0     | 09226   | 0.05000   | 0          | 02023  | 2 41900          | 08.53408 | -0.09578.0.333    |
| 298.     | 7 3    | 4    | 8   | a      | 6     | 2    | 5    | 7    | 8     |                | 419008   | 43830   | 419008 | 58207   | _0     | 14377   | 0.05000   | 0          | 02021  | 2 41900          | 08 53408 | -0.09578.0.333    |
| 200.     | 7 3    | 4    | 7   | 8      | 6     | 2    | 5    | 6    | 7     |                | 419772   | 16660   | 419772 | 29244   | _0     | 12584   | 0.05000   | 0          | 02022  | a 41977          | 72 36986 |                   |
| 300.     | 7 3    | 1    | 7   | 7      | 6     | 2    | 5    | 6    | 6     |                | /10770   | 16660   | /10770 | 37197   | 0      | 20527   | 0.05000   | , 0<br>) 0 | 02000  | A1077            | 2.00000  |                   |
| 201.     | 7 3    | -    | 7   | 6      | 6     | 2    | 5    | 6    | 5     |                | 410770   | 10000   | 410770 |         | -0     | 07067   | 0.05000   | , ,        | .02000 | 0 41075          | 2.30300  |                   |
| 301:     | 7 3    | 4    |     | 0      | 0     | 2    | э    | 0    | э     |                | 419//2   | .10000  | 419//2 | .44527  | -0     | .2/00/  | 0.05000   | , 0        | .02063 | 9 41977          | 2.30900  | -0.20326 0.3333   |
| NURPIALI | ZED DI | AGUN | AL: |        | ~     | ~    |      |      | ~ .   | ~              |          |         |        |         |        | -       |           |            |        |                  |          |                   |
| 1 7      | 1.000  | OOE+ | 100 |        | 2     | 2.   | 993  | 90E- | -01   | 3              | 3.833    | 246-02  | 4      | 9.88521 | E-01   | 5       | 4.77356E- | -01        | 6      | 1.46/18          | SE-01    |                   |
|          | 4.713  | 98E- | -01 |        | 8     | 9.   | 997  | (/E- | -01   | 9              | 1.6//    | 27E-01  | 10     | 7.45390 | DE-01  | 11      | 8.60250E- | -01        | 12     | 9.15974          | 1E-01    |                   |
| 13       | 9.093  | 83E- | -01 | 1      | 4     | 9.   | 882  | 57E- | -01   | 15             | 9.945    | 10E-01  | 16     | 9.99214 | E-01   | 17      | 5.51359E- | -01        | 18     | 9.99978          | 3E-01    |                   |
| 19       | 9.169  | 92E- | -01 | 2      | 0     | 9.   | 820  | 07E- | -01   |                |          |         |        |         |        |         |           |            |        |                  |          |                   |
| MARQUAR  | DT PAR | AMEI | ſER | = 0    | , Т   | RUS  | ST E | (PAI | ISIO  | N = 1          | .00      |         |        |         |        |         |           |            |        |                  |          |                   |
|          |        |      |     |        |       |      | 1    | VEW  | PAR   | AMETE          | R (EST.  | ERROR)  | CHA    | NGE THI | IS ITH | ERATION | I         |            |        |                  |          |                   |
| 1        |        | 1000 | 00  |        |       | A    | 1    | 6    | 67859 | 9.764          | 12(114)  |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 2        |        | 2000 | 00  |        |       | E    | 3    |      | 944   | 48.90          | 11( 46)  |         | -0.0   | 000     |        |         |           |            |        |                  |          |                   |
| 3        |        | 3000 | 00  |        |       | C    | 2    |      | 829   | 99.08          | 82(45)   |         | 0.0    | 000     |        |         |           |            |        |                  |          |                   |
| 4        |        | 20   | 00  |        |       | -DN  | I    |      | -0.0  | 03739          | 37(159)  |         | 0.0000 | 000     |        |         |           |            |        |                  |          |                   |
| 5        |        | 110  | 00  |        | _     | DNK  | (    |      | -0    | . 1815         | 09(111)  |         | -0.000 | 000     |        |         |           |            |        |                  |          |                   |
| 6        |        | 200  | 00  |        |       | -DK  | c c  |      | -2    | .3947          | 78(270)  |         | 0.000  | 000     |        |         |           |            |        |                  |          |                   |
| 7        |        | 4010 | 00  |        |       | -41  | I    |      | -     | _4 5/          | 81 ( 87) | E-03    | _0 0   | 000F-03 | 2      |         |           |            |        |                  |          |                   |
| ,<br>o   |        | 4100 | 0   |        |       | -40  | r    |      |       | 1.192          | 23(228)  |         | 0.00   | 000     | -      |         |           |            |        |                  |          |                   |
| 0        | 100    | 1000 | 0   |        |       | -uñ  |      |      | 10    | 2.103<br>24 72 | 20(220)  |         | 0.00   | 000     |        |         |           |            |        |                  |          |                   |
| 3        | 100    | 1000 | 0   |        |       | eaa  | 1    |      | -12   | 4.13           | 00(40)   |         | 0.0    | 000     |        |         |           |            |        |                  |          |                   |
| 10       | 100    | 2000 | 0   |        |       | ebb  |      |      | -10   | 1.533          | 00(183)  |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 11       | 100    | 3000 | 10  | ,      |       | ecc  | ;    |      | -:    | 5.787          | 00(1/4)  |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 12       | 106    | 1000 | 00  | (ea    | p+e   | eba) |      |      |       | 41.1           | 54(74)   |         | -0.    | 000     |        |         |           |            |        |                  |          |                   |
| 13       | 1200   | 0000 | 00  |        |       | a_F  | ·    |      | (     | 0.462          | 16(161)  |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 14       | 1200   | 1000 | 00  |        |       | Taa  | 1    |      |       | 1.29           | 70(32)   |         | 0.0    | 000     |        |         |           |            |        |                  |          |                   |
| 15       | 1200   | 2000 | 00  |        |       | Tbb  | >    |      | - 3   | 1.089          | 13(277)  |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 16       | 10     | 0010 | 00  |        |       | DNS  | 5    |      |       | 0.7            | 88(64)   | E-03    | 0.     | 000E-03 | 3      |         |           |            |        |                  |          |                   |
| 17       | 100    | 1010 | 00  |        | D     | NKS  | 5    |      | (     | 0.049          | 33(74)   |         | -0.00  | 000     |        |         |           |            |        |                  |          |                   |
| 18       | 100    | 1100 | 00  |        |       | DKS  | 3    |      | (     | 0.108          | 04(216)  |         | 0.00   | 000     |        |         |           |            |        |                  |          |                   |
| 10       | 2200   | 1000 | 0   |        | chi   |      |      |      |       | 0 01           |          |         | 0.0    | 000     |        |         |           |            |        |                  |          |                   |
| 19       | 2/.00  | TOUV |     |        | C11 - |      | 1    |      |       | 0.01           | 26(44)   |         | -0.0   | 000     |        |         |           |            |        |                  |          |                   |

| 20 220020000      | chi_bb 0.1556(48) 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MICRUWAVE AVG =   | 0.003/59 MHZ, 1R AVG = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| MICROWAVE RMS =   | 0.051022 MHz, IR RMS = 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| END OF ITERATION  | 3 OLD, NEW RMS ERROR= 1.56394 1.56394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 1 2 -0.022094     | 3 0.037605 1 4 0.080635 1 5 -0.258150 1 6 -0.165095 1 7 0.126779 1 8 0.022394 1 9 0.036632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1 10 -0.047851    | 11 0.040043 1 12 -0.238034 1 13 0.184718 1 14 0.065397 1 15 0.026565 1 16 -0.051480 1 17 0.098079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1 18 -0.071896    | 19 0.083727 1 20 0.016780 2 1 -0.022094 2 3 -0.991206 2 4 -0.706759 2 5 0.640423 2 6 -0.260912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 2 7 0.165373      | 8 -0.994867 2 9 -0.028986 2 10 0.009439 2 11 0.006369 2 12 0.005298 2 13 0.005449 2 14 0.009114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2 15 0.006959     | 16 -0.007103 2 17 0.005976 2 18 0.035349 2 19 0.004535 2 20 0.003147 3 1 0.037605 3 2 -0.991206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3 4 0.617713      | 5 -0.601933 3 6 0.243412 3 7 -0.182125 3 8 0.996430 3 9 0.017017 3 10 0.006694 3 11 -0.007666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3 12 0 030134     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3 20 0 006062     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| J 20 -0.000002    | 10, 0, 0, 0, 0, 0, 0, 1, 10, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4 9 0.073117      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 4 17 0.062487     | 18 -0.0/55/7 4 19 0.002338 4 20 0.005586 5 1 -0.258150 5 2 0.640423 5 3 -0.601933 5 4 -0.659840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 5 6 -0.684195     | 0 / 0.066353 5 8 -0.613585 5 9 -0.063631 5 10 0.056432 5 11 -0.025722 5 12 0.226206 5 13 -0.040772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 5 14 -0.001983    | 15 0.000125 5 16 0.035354 5 17 -0.063918 5 18 0.110288 5 19 -0.008458 5 20 -0.002848 6 1 -0.165095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 6 2 -0.260912     | 6 3 0.243412 6 4 0.267628 6 5 -0.684195 6 7 -0.122357 6 8 0.251281 6 9 0.042743 6 10 -0.013688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 6 11 0.008047     | 12 -0.074117 6 13 -0.019267 6 14 -0.014875 6 15 -0.010382 6 16 -0.008995 6 17 0.039816 6 18 -0.116475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 6 19 -0.021424    | 20 -0.003513 7 1 0.126779 7 2 0.165373 7 3 -0.182125 7 4 0.080065 7 5 0.066353 7 6 -0.122357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7 8 -0.229856     | 9 0.015979 7 10 -0.017737 7 11 0.028747 7 12 -0.154769 7 13 0.041184 7 14 0.005769 7 15 -0.014888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 7 16 -0.067329    | 17 0.024400 7 18 0.005759 7 19 -0.037628 7 20 -0.013978 8 1 0.022394 8 2 -0.994867 8 3 0.996430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8 4 0.648077      | 5 -0.613585 8 6 0.251281 8 7 -0.229856 8 9 0.020861 8 10 0.000949 8 11 -0.009451 8 12 0.025419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 8 13 -0.006527    | 14 -0.004773 8 15 -0.004947 8 16 0.012537 8 17 -0.012239 8 18 -0.030563 8 19 0.000210 8 20 -0.002027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 9 1 0.036632      | 2 -0 028986 9 3 0 017017 9 4 0 073117 9 5 -0 063631 9 6 0 042743 9 7 0 015979 9 8 0 020861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 9 10 0 189202     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0 18 0 247177     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 10 6 0 012699 1   | 13 - 0.10303 - 3.20 - 0.00302 - 10 - 1 - 0.01001 - 10 - 2 - 0.00353 - 10 - 3 - 0.000054 - 10 0.101005 - 10 - 3 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 - 0.00452 |  |
| 10 0 -0.013086 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 10 15 0.005396 1  | 16 -0.548286 10 1/ 0.08095 10 18 -0.014812 10 19 -0.069225 10 20 -0.038383 11 1 0.040043 11 2 0.005369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 11 3 -0.007666 1  | 4 0.013252 11 5 -0.025722 11 6 0.008047 11 7 0.028747 11 8 -0.009451 11 9 0.141457 11 10 0.317847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 11 12 -0.238013 1 | 13 -0.033595 11 14 -0.032229 11 15 -0.043378 11 16 -0.540724 11 17 0.094240 11 18 -0.016456 11 19 0.033763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 11 20 0.043320 1  | 2 1 -0.238034 12 2 0.005298 12 3 0.030134 12 4 -0.288834 12 5 0.226206 12 6 -0.074117 12 7 -0.154769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 12 8 0.025419 1   | 9 -0.036272 12 10 0.088821 12 11 -0.238013 12 13 -0.039772 12 14 -0.090737 12 15 -0.005041 12 16 0.283097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 12 17 -0.310019 1 | 18       0.207572       12       19       -0.016791       12       20       -0.003971       13       1       0.184718       13       2       0.005449       13       3       -0.001511       13       4       0.005008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 13 5 -0.040772 1  | 6 -0.019267 13 7 0.041184 13 8 -0.006527 13 9 0.033112 13 10 -0.037326 13 11 -0.033595 13 12 -0.039772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 13 14 0.367331 1  | 15 -0.015102 13 16 0.020856 13 17 0.030701 13 18 -0.033354 13 19 0.107199 13 20 -0.160517 14 1 0.065397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 14 2 0.009114 1   | 3 -0.003126 14 4 -0.017027 14 5 -0.001983 14 6 -0.014875 14 7 0.005769 14 8 -0.004773 14 9 0.073957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 14 10 -0.106779 1 | 11 -0.032229 14 12 -0.090737 14 13 0.367331 14 15 -0.087597 14 16 0.019182 14 17 -0.041564 14 18 0.019074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 14 19 0.167286 1  | 20 -0.038479 15 1 0.026565 15 2 0.006959 15 3 -0.010405 15 4 0.006726 15 5 0.000125 15 6 -0.010382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 15 7 -0.014888 1  | 8 -0.004947 15 9 -0.166131 15 10 0.005396 15 11 -0.043378 15 12 -0.005041 15 13 -0.015102 15 14 -0.087597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 15 16 -0.000193 1 | 17 0 017873 15 18 0 010763 15 19 0 158957 15 20 0 069307 16 1 -0 051480 16 2 -0 007103 16 3 0 009569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 16 4 -0 020318 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 16 12 0 283097 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 17 1 0.203037 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 17 1 0.098079 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 17 9 -0.171037 1  | 10 0.080695 17 11 0.094240 17 12 -0.310019 17 13 0.030701 17 14 -0.041564 17 15 0.017873 17 16 -0.215375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 17 18 -0.714164 1 | 19 -0.004727 17 20 0.002443 18 1 -0.071896 18 2 0.035349 18 3 -0.029014 18 4 -0.075577 18 5 0.110288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 18 6 -0.116475 1  | 7 0.005759 18 8 -0.030563 18 9 -0.247177 18 10 -0.014812 18 11 -0.016456 18 12 0.207572 18 13 -0.033354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 18 14 0.019074 1  | 15 0.010763 18 16 0.031389 18 17 -0.714164 18 19 0.018934 18 20 -0.014071 19 1 0.083727 19 2 0.004535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 19 3 -0.005712 1  | 4 0.002338 19 5 -0.008458 19 6 -0.021424 19 7 -0.037628 19 8 0.000210 19 9 -0.105355 19 10 -0.069225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 19 11 0.033763 1  | 12 -0.016791 19 13 0.107199 19 14 0.167286 19 15 0.158957 19 16 0.008538 19 17 -0.004727 19 18 0.018934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 19 20 -0.297141 2 | 1 0.016780 20 2 0.003147 20 3 -0.006062 20 4 0.006586 20 5 -0.002848 20 6 -0.003513 20 7 -0.013978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 20 8 -0.002027 2  | 9 0.059662 20 10 -0.038383 20 11 0.043320 20 12 -0.003971 20 13 -0.160517 20 14 -0.038479 20 15 0.069307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 20 16 0.031772 2  | 17 0.002443 20 18 -0.014071 20 19 -0.297141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| D000 predictions  | Fri Sep 25 15:24:05 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| •                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

# Appendix C Full Analysis Result for the CSO Surveys in a Machine-readable Format

| Source           | Molecule  | Log10(NT) | 1siama | NT(cm^-2)  | 1sioma    | T rot(K)       | 1sioma F       | WHM (km/g)   | 1siama | dv(km/s) | 1siama |  |
|------------------|-----------|-----------|--------|------------|-----------|----------------|----------------|--------------|--------|----------|--------|--|
| B1-b             | CCH       | 13.27     | 0.09   | 1.871e+13  | 3.744e+12 | 38.62          | 18.29          | 1.19         | 0.16   | 6.63     | 0.06   |  |
| B1-b             | CN        | 15.04     | 0.08   | 1.086e+15  | 1.958e+14 | 2.71           | 0.04           | 1.03         | 0.07   | 6.33     | 0.04   |  |
| B1-b             | CS        | 12.97     | 2.84   | 9.298e+12  | 6.077e+13 | 10.81          | 29.92          | 1.37         | 0.18   | 6.48     | 0.04   |  |
| B1-b             | H2CO      | 13.43     | 0.15   | 2.718e+13  | 9.473e+12 | 6.66           | 0.57           | 1.64         | 0.31   | 6.37     | 0.10   |  |
| B1-b             | HCN       | 17.66     | 0.83   | 4.519e+17  | 8.645e+17 | 3.48           | 0.04           | 0.93         | 0.10   | 7.37     | 0.03   |  |
| B1-b             | N2D+      | 12.28     | 0.06   | 1.923e+12  | 2.460e+11 | 38.51          | 11.02          | 1.45         | 0.05   | 6.34     | 0.03   |  |
| B1-b             | NO        | 14.64     | 0.57   | 4.348e+14  | 5.726e+14 | 14.62          | 37.61          | 1.12         | 0.11   | 6.33     | 0.05   |  |
| B1-b             | SO        | 13.67     | 0.07   | 4.627e+13  | 6.955e+12 | 9.89           | 0.53           | 1.16         | 0.04   | 6.66     | 0.02   |  |
| DR21(OH)         | C-13-S    | 13.36     | 1.46   | 2.294e+13  | 7.689e+13 | 17.45          | 59.57          | 4.49         | 0.75   | 0.34     | 0.23   |  |
| DR21(OH)         | CCH       | 15.55     | 0.06   | 3.522e+15  | 4.711e+14 | 8.24           | 0.27           | 4.29         | 0.21   | 0.52     | 0.06   |  |
| DR21(OH)         | CH3CCH    | 15.09     | 0.01   | 1.236e+15  | 3.685e+13 | 36.81          | 0.95           | 4.98         | 0.16   | 0.12     | 0.07   |  |
| DR21(OH)         | CH3CH0    | 13.88     | 0.08   | 7.513e+13  | 1.360e+13 | 138.86         | 24.20          | 5.53         | 0.41   | 0.19     | 0.14   |  |
| DR21(OH)         | CH3CN     | 13.36     | 0.01   | 2.307e+13  | 5.062e+11 | 56.67          | 2.06           | 5.35         | 0.20   | 0.63     | 0.09   |  |
| DR21(OH)         | CH30CH3   | 14.54     | 0.03   | 3.498e+14  | 2.412e+13 | 60.05          | 4.90           | 4.08         | 0.40   | 0.31     | 0.15   |  |
| DR21(OH)         | CH30H     | 15.18     | 0.01   | 1.515e+15  | 3.177e+13 | 92.79          | 2.42           | 5.89         | 0.20   | 0.78     | 0.04   |  |
| DR21(OH)         | CH30H     | 15.25     | 0.00   | 1.764e+15  | 1.768e+13 | 18.19          | 0.35           | 5.63         | 0.09   | 0.34     | 0.02   |  |
| DR21(OH)         | CN        | 14.08     | 0.62   | 1.201e+14  | 1.727e+14 | 6.36           | 3.59           | 2.24         | 2.62   | -2.69    | 0.59   |  |
| DR21(OH)         | CN        | 14.33     | 0.49   | 2.124e+14  | 2.401e+14 | 5.71           | 1.60           | 1.96         | 3.06   | 2.90     | 0.78   |  |
| DR21(OH)         | CS        | 14.10     | 0.05   | 1.251e+14  | 1.467e+13 | 34.46          | 12.22          | 2.75         | 0.08   | -1.44    | 0.04   |  |
| DR21(OH)         | CS        | 14.11     | 0.15   | 1.274e+14  | 4.391e+13 | 29.51          | 27.96          | 4.15         | 0.41   | 2.00     | 0.09   |  |
| DR21(OH)         | CS        | 14.37     | 0.07   | 2.355e+14  | 3.817e+13 | 10.00          | 0.59           | 12.12        | 0.49   | -2.00    | 0.44   |  |
| DR21(OH)         | CS-33     | 13.05     | 1.66   | 1.117e+13  | 4.258e+13 | 15.31          | 44.31          | 5.01         | 1.93   | 0.63     | 0.61   |  |
| DR21(UH)         | CS-34     | 13.68     | 0.69   | 4.///e+13  | 7.558e+13 | 19.33          | 34.23          | 5.24         | 0.37   | 0.61     | 0.13   |  |
| DR21(UH)         | DNC       | 12.00     | 1.26   | 1.002e+12  | 2.911e+12 | 58.08          | 257.98         | 2.68         | 2.00   | -1.68    | 0.98   |  |
| DR21(UH)         | DNC       | 12.00     | 9.81   | 1.000e+12  | 2.258e+13 | 68.56          | 2303.59        | 2.69         | 2.49   | 1.85     | 1.07   |  |
| DR21(UH)         | H2C-13-U  | 13.11     | 2.98   | 1.288e+13  | 0.049e+13 | 100.00         | 584.91         | 3.02         | 2.03   | 0.34     | 0.78   |  |
| DR21(UH)         |           | 13.48     | 0.05   | 3.038e+13  | 3.15/e+12 | 51.91          | 9.65           | 4.80         | 0.79   | 0.43     | 0.23   |  |
| DR21(UH)         | H2CU      | 13.40     | 1.09   | 2.540e+13  | 0.3/8e+13 | 84.89          | 191.19         | 1.00         | 0.36   | 2.00     | 0.24   |  |
| DR21(UH)         | H2CU      | 13.57     | 0.10   | 3./31e+13  | 8.694e+12 | 13.85          | 0.34           | 1.72         | 0.52   | -2.00    | 0.15   |  |
| DR21(UR)         | 1200      | 14.51     | 0.06   | 3.202e+14  | 4.511e+13 | 9.55           | 0.79           | 7.19         | 0.32   | 0.32     | 0.21   |  |
| DR21(UR)         | H2C5      | 14.17     | 1 24   | 1.4//0+14  | 2.5450+12 | 100.00         | 256 10         | 5.59         | 0.09   | 0.56     | 0.04   |  |
| DR21(UH)         | H203-34   | 12.03     | 0 11   | 1 2000+12  | 2 275+10  | 100.00         | 07.01          | 5.94         | 9.21   | 0.41     | 2.91   |  |
| DR21(UH)         | HC 12 0+  | 13.14     | 0.11   | 1.00Ee+13  | 0.7110+11 | 41.90          | 1 96           | 0.00         | 0.29   | 0.23     | 0.13   |  |
| DR21(0H)         | HCCCN     | 13.00     | 0.04   | 1.005e+13  | 1 713o+12 | 79.05          | 11 73          | 4.07         | 0.19   | 0.23     | 0.08   |  |
| DR21(0H)         | HCN 15    | 13.02     | 0.07   | 5 5980+12  | 7 7540+12 | 88 03          | 169.26         | 5 95         | 1 33   | 0.37     | 0.13   |  |
| DR21(0H)         | HCN-15    | 12.75     | 83 98  | 1 0000+12  | 1 03/0+1/ | 50.93          | 105.20         | 5 37         | 2 50   | 0.02     | 1 25   |  |
| DR21(0H)         | нсоосиз   | 14.03     | 0.03   | 1.0720+14  | 7 4450+12 | 80.81          | 25 78          | J. 37        | 0.41   | 0.35     | 0.16   |  |
| DR21(OH)         | HCS+      | 13.02     | 19 38  | 1 048e+13  | 4 677e+14 | 17 48          | 529 79         | 5 35         | 2 61   | 0.10     | 0.10   |  |
| DR21(0H)         | HDCO      | 13.02     | 0.22   | 1 2170+13  | 6 249e+12 | 79 16          | 41 64          | 4 83         | 0 64   | 0.55     | 0.23   |  |
| DR21(0H)         | HDCS      | 13 92     | 3 75   | 8 270e+13  | 7 1320+14 | 9 37           | 19.08          | 5.08         | 11 65  | 0.65     | 2 61   |  |
| DR21(0H)         | HNC-13    | 12.46     | 0.76   | 2.852e+12  | 4.991e+12 | 14.02          | 31.90          | 5.32         | 2.76   | 0.21     | 0.85   |  |
| DB21(0H)         | HNCO      | 13.87     | 0.20   | 7.349e+13  | 3.378e+13 | 29.39          | 10.42          | 8.00         | 11.53  | 2.31     | 2.54   |  |
| DB21(0H)         | NO        | 15.01     | 0.16   | 1.021e+15  | 3.649e+14 | 22.94          | 32.04          | 4.33         | 1.82   | 0.26     | 0.75   |  |
| DR21(0H)         | NS        | 13.23     | 1.02   | 1.689e+13  | 3.947e+13 | 66.17          | 298.01         | 4.81         | 1.75   | 1.50     | 0.60   |  |
| DR21(OH)         | OCS       | 14.55     | 0.16   | 3.544e+14  | 1.331e+14 | 42.26          | 8.46           | 5.39         | 0.35   | 0.56     | 0.13   |  |
| DR21(OH)         | S-33-0    | 13.81     | 5.86   | 6.389e+13  | 8.622e+14 | 9.68           | 35.80          | 5.84         | 10.93  | 1.89     | 2.81   |  |
| DR21(OH)         | S-34-0    | 13.46     | 0.12   | 2.913e+13  | 7.777e+12 | 39.32          | 75.83          | 6.34         | 1.67   | 1.35     | 0.63   |  |
| DR21(OH)         | SO        | 14.63     | 0.00   | 4.312e+14  | 1.658e+12 | 36.17          | 0.51           | 6.52         | 0.02   | 0.92     | 0.01   |  |
| DR21(OH)         | S02       | 14.46     | 0.01   | 2.885e+14  | 7.046e+12 | 75.57          | 2.62           | 7.73         | 0.15   | 1.55     | 0.06   |  |
| DR21(OH)         | SiO       | 13.01     | 0.08   | 1.012e+13  | 1.750e+12 | 66.37          | 25.97          | 7.79         | 0.67   | 0.99     | 0.36   |  |
| G24.33+00.11_MM1 | C-13-H3OH | 13.78     | 0.08   | 5.976e+13  | 1.120e+13 | 81.64          | 8.36           | 3.54         | 1.00   | 1.20     | 0.17   |  |
| G24.33+00.11_MM1 | C-13-S    | 12.23     | 0.10   | 1.694e+12  | 4.035e+11 | 44.81          | 18.10          | 4.03         | 0.85   | 0.68     | 0.46   |  |
| G24.33+00.11_MM1 | C2H5CN    | 13.06     | 0.05   | 1.153e+13  | 1.356e+12 | 88.42          | 13.08          | 4.58         | 0.40   | 1.11     | 0.18   |  |
| G24.33+00.11_MM1 | C2H5OH    | 13.74     | 0.08   | 5.436e+13  | 1.047e+13 | 76.02          | 10.43          | 3.37         | 0.95   | 0.97     | 0.24   |  |
| G24.33+00.11_MM1 | CH2NH     | 12.99     | 0.05   | 9.672e+12  | 1.221e+12 | 43.40          | 7.07           | 3.43         | 0.39   | 0.99     | 0.19   |  |
| G24.33+00.11_MM1 | CH3CCH    | 14.04     | 0.11   | 1.096e+14  | 2.654e+13 | 41.11          | 8.82           | 3.42         | 0.48   | 0.95     | 0.23   |  |
| G24.33+00.11_MM1 | CH3CN     | 13.13     | 0.07   | 1.358e+13  | 2.111e+12 | 301.71         | 42.38          | 4.96         | 0.41   | 1.18     | 0.18   |  |
| G24.33+00.11_MM1 | CH3CNv8   | 12.89     | 0.26   | 7.757e+12  | 4.601e+12 | 149.62         | 78.33          | 3.42         | 1.16   | 1.22     | 0.50   |  |
| G24.33+00.11_MM1 | CH30CH3   | 14.58     | 0.05   | 3.783e+14  | 4.763e+13 | 200.29         | 24.68          | 3.92         | 0.42   | 1.28     | 0.20   |  |
| G24.33+00.11_MM1 | CH30H     | 14.72     | 0.02   | 5.211e+14  | 2.320e+13 | 233.10         | 8.32           | 4.40         | 0.12   | 1.22     | 0.07   |  |
| G24.33+00.11_MM1 | CH30H     | 14.83     | 0.01   | 6.711e+14  | 1.186e+13 | 13.83          | 0.19           | 4.82         | 0.05   | 0.96     | 0.02   |  |
| G24.33+00.11_MM1 | CN        | 15.71     | 0.11   | 5.139e+15  | 1.253e+15 | 2.75           | 0.04           | 2.33         | 0.12   | 0.25     | 0.06   |  |
| G24.33+00.11_MM1 | CS        | 13.27     | 0.02   | 1.853e+13  | 8.482e+11 | 41.51          | 8.20           | 4.09         | 0.11   | 0.62     | 0.04   |  |
| G24.33+00.11_MM1 | CS        | 13.50     | 0.22   | 3.160e+13  | 1.629e+13 | 17.34          | 8.34           | 16.70        | 0.69   | 1.34     | 0.24   |  |
| G24.33+00.11_MM1 | CS-34     | 12.55     | 0.12   | 3.534e+12  | 9.835e+11 | 27.65          | 27.01          | 4.33         | 0.55   | 0.64     | 0.23   |  |
| G24.33+00.11_MM1 | H2CCU     | 13.20     | 0.21   | 1.598e+13  | /./88e+12 | 32.02          | 13.76          | 3.55         | 0.57   | 0.66     | 0.27   |  |
| G24.33+00.11_MM1 | H2CU      | 13.21     | 0.14   | 1.626e+13  | 5.217e+12 | 36.38          | 15.87          | 14.29        | 1.35   | 2.20     | 0.65   |  |
| G24.33+00.11_MM1 | H2CU      | 13.77     | 0.06   | 5.925e+13  | 0.49/e+12 | 99.98          | 11.48          | 4.73         | 0.25   | 0.83     | 0.07   |  |
| 024.33+00.11_MM1 | H2C5      | 13.36     | 0.04   | 2.2000+13  | 1.0//e+12 | 14.35          | 1.90           | 3.81         | 0.20   | 0.68     | 0.10   |  |
| 024.33+00.11_MM1 | HCN 1F    | 12.66     | 0.24   | 4.5996+12  | 2.0100+12 | 100.00         | 33.51<br>71 02 | 8.16<br>E 27 | 1 10   | 0.01     | 0.42   |  |
| 024.33+00.11_MM  | 1010-10   | 11.99     | 0.27   | 0.201-110  | 0.0190+11 | 100.00         | 15 11          | 5.0/         | 1.12   | 3.32     | 0.04   |  |
| 024.33+00.11_MM1 | HUCO      | 13.9/     | 0.04   | J.JUIE+13  | J.ZIZ0+12 | 124.27         | 10.11          | 3.54         | 0.32   | 2.11     | 0.12   |  |
| G24.33+00.11_MM  | NO        | 15.90     | 0.13   | 1 3000+15  | 2.332e+13 | 23.23<br>GE 90 | 30.90          | 10.00        | 2.59   | 3.00     | 0.21   |  |
| G24 33+00 11 MM1 | NS        | 10.14     | 0.1/   | 6 0600±10  | 6 0952+19 | 15 /0          | 6 73           | 0.00         | 3 00   | 1 62     | 0.21   |  |
| G24.33+00.11_MM1 | 110       | 12.78     | 0.44   | 2 035a±14  | 1 845a±14 | 10.42          | 12 02          | 2.19         | 0.54   | 1.03     | 0.32   |  |
| 324.00.11_nn1    | 305       | 14.31     | 0.39   | 2.00000714 | 1.0406414 | 00.94          | 12.00          | 0.23         | 0.00   | 0.02     | 0.20   |  |

| G24 33+00 11 MM1 | 50                | 13 83 | 0 50 | 6 7860+13              | 7 8170+13              | 12 77         | 5.03         | 5 42         | 0 45         | 1 75          | 0.24 |
|------------------|-------------------|-------|------|------------------------|------------------------|---------------|--------------|--------------|--------------|---------------|------|
| GAL 034.3+00.2   | C-13-H3CN         | 12.90 | 0.11 | 7.979e+12              | 1.970e+12              | 149.91        | 45.21        | 5.25         | 0.85         | -0.03         | 0.38 |
| GAL 034.3+00.2   | C-13-H30H         | 14.91 | 0.02 | 8.086e+14              | 4.233e+13              | 154.88        | 6.81         | 5.55         | 0.26         | 1.36          | 0.10 |
| GAL 034.3+00.2   | C-13-S            | 13.75 | 0.10 | 5.599e+13              | 1.248e+13              | 100.00        | 31.58        | 5.31         | 0.35         | 0.37          | 0.18 |
| GAL_034.3+00.2   | C-13-S-34         | 12.88 | 5.79 | 7.499e+12              | 1.000e+14              | 88.56         | 1869.76      | 7.33         | 5.90         | 1.13          | 2.52 |
| GAL_034.3+00.2   | C2H5CN            | 13.81 | 0.02 | 6.416e+13              | 2.512e+12              | 107.06        | 7.35         | 5.27         | 0.21         | -0.12         | 0.09 |
| GAL_034.3+00.2   | C2H5OH            | 14.68 | 0.02 | 4.734e+14              | 2.363e+13              | 61.10         | 2.45         | 5.74         | 0.35         | 0.85          | 0.14 |
| GAL_034.3+00.2   | CCH               | 15.03 | 0.23 | 1.062e+15              | 5.531e+14              | 13.15         | 5.64         | 5.96         | 0.41         | 0.76          | 0.11 |
| GAL_034.3+00.2   | CH2NH             | 13.71 | 0.06 | 5.125e+13              | 7.407e+12              | 64.33         | 10.83        | 6.22         | 0.59         | 0.11          | 0.27 |
| GAL_034.3+00.2   | CH3CCH            | 15.31 | 0.01 | 2.041e+15              | 4.625e+13              | 44.35         | 1.20         | 6.25         | 0.22         | 0.38          | 0.07 |
| GAL_034.3+00.2   | CH3CH0            | 13.72 | 0.06 | 5.248e+13              | 6.822e+12              | 90.89         | 11.90        | 5.73         | 0.95         | 0.36          | 0.28 |
| GAL_034.3+00.2   | CH3CN             | 14.04 | 0.01 | 1.10/e+14              | 2.4/9e+12              | 100.07        | 3.79         | 1.11         | 0.13         | 0.82          | 0.05 |
| GAL_034.3+00.2   | CHOCNVO           | 14 05 | 0.17 | 3.420e+13              | 1.3510+13              | 120.34        | 50.69        | 4.07         | 0.94         | -0.37         | 0.25 |
| GAL 034 3+00 2   | CH3OCH3           | 15 55 | 0.10 | 3 576e+15              | 9 2620+13              | 144 78        | 3 61         | 6 54         | 0.71         | 1.00          | 0.22 |
| GAL 034.3+00.2   | CH30H             | 15.36 | 0.00 | 2.292e+15              | 2.432e+13              | 16.46         | 0.17         | 5.79         | 0.05         | 0.44          | 0.02 |
| GAL_034.3+00.2   | СНЗОН             | 15.84 | 0.00 | 6.965e+15              | 6.178e+13              | 190.17        | 1.55         | 7.39         | 0.05         | 1.50          | 0.02 |
| GAL_034.3+00.2   | CS                | 14.02 | 0.11 | 1.037e+14              | 2.676e+13              | 37.48         | 0.59         | 6.17         | 0.75         | 0.83          | 0.32 |
| GAL_034.3+00.2   | CS                | 14.14 | 0.04 | 1.382e+14              | 1.262e+13              | 38.29         | 1.09         | 3.98         | 0.10         | -1.24         | 0.09 |
| GAL_034.3+00.2   | CS                | 14.25 | 0.12 | 1.778e+14              | 4.794e+13              | 76.10         | 16.78        | 11.33        | 0.42         | 1.30          | 0.19 |
| GAL_034.3+00.2   | CS-33             | 13.00 | 0.85 | 1.000e+13              | 1.960e+13              | 50.50         | 79.46        | 3.97         | 2.77         | 0.50          | 0.77 |
| GAL_034.3+00.2   | CS-33             | 13.10 | 0.56 | 1.251e+13              | 1.605e+13              | 33.96         | 15.81        | 9.08         | 8.61         | 0.82          | 1.52 |
| GAL_034.3+00.2   | CS-34             | 13.70 | 0.11 | 5.037e+13              | 1.226e+13              | 35.60         | 0.96         | 7.14         | 1.20         | 0.62          | 0.26 |
| GAL_034.3+00.2   | CS-34             | 13.75 | 0.47 | 5.586e+13              | 5.994e+13              | 12.14         | 3.39         | 3.22         | 0.52         | 0.49          | 0.20 |
| GAL_034.3+00.2   | DNC               | 12.20 | 0.42 | 1.591e+12              | 1.532e+12              | 32.01         | 97.26        | 5.72         | 3.17         | 1.27          | 1.38 |
| GAL_034.3+00.2   | H2CC0             | 14.03 | 0.02 | 1.000e+14              | 1 7980+13              | 26.01         | 12 55        | 9.55         | 0.44         | 1 11          | 0.15 |
| GAL 034.3+00.2   | H2C0              | 14.00 | 0.31 | 1.000e+14              | 7.122e+13              | 60.53         | 61.07        | 3 43         | 0.84         | -1.91         | 0.73 |
| GAL_034.3+00.2   | H2CO              | 14.06 | 0.50 | 1.160e+14              | 1.334e+14              | 99.98         | 108.89       | 3.01         | 0.88         | 0.05          | 0.59 |
| GAL_034.3+00.2   | H2CS              | 14.45 | 0.01 | 2.798e+14              | 6.521e+12              | 74.91         | 2.27         | 6.41         | 0.10         | 0.99          | 0.05 |
| GAL_034.3+00.2   | HC-13-N           | 12.88 | 0.16 | 7.588e+12              | 2.711e+12              | 23.61         | 6.87         | 13.66        | 4.06         | 1.54          | 1.30 |
| GAL_034.3+00.2   | HC-13-N           | 13.14 | 0.10 | 1.366e+13              | 3.121e+12              | 30.19         | 20.37        | 5.08         | 0.54         | -0.12         | 0.17 |
| GAL_034.3+00.2   | HC-13-0+          | 12.69 | 0.34 | 4.936e+12              | 3.836e+12              | 25.53         | 2.27         | 7.30         | 2.21         | 1.58          | 1.17 |
| GAL_034.3+00.2   | HC-13-0+          | 13.00 | 0.61 | 1.000e+13              | 1.408e+13              | 88.88         | 101.88       | 4.43         | 0.82         | 0.06          | 0.42 |
| GAL_034.3+00.2   | HCCCN             | 13.56 | 0.04 | 3.644e+13              | 3.403e+12              | 80.96         | 7.27         | 7.58         | 0.17         | 0.97          | 0.08 |
| GAL_034.3+00.2   | HCCCNv7           | 13.08 | 0.15 | 1.204e+13              | 4.296e+12              | 95.54         | 46.61        | 5.57         | 0.53         | -0.20         | 0.27 |
| GAL_034.3+00.2   | HCN               | 13.59 | 0.17 | 3.852e+13              | 1.492e+13              | 11.76         | 0.88         | 8.00         | 0.99         | -3.33         | 0.39 |
| GAL_034.3+00.2   | HCN 1E            | 12.04 | 0.20 | 4.404e+13              | 2.064e+13              | 71 01         | 4.03         | 5.40         | 0.79         | -2.04         | 0.06 |
| GAL_034.3+00.2   | HCN-15<br>HCO_18+ | 12 26 | 0.24 | 1 8270+12              | 2 159e+12              | 38 80         | 137 66       | 5 58         | 2 08         | 1 81          | 0.30 |
| GAL 034.3+00.2   | HCOOCH3           | 15.10 | 0.01 | 1.272e+15              | 4.037e+13              | 160.34        | 5.70         | 6.47         | 0.13         | 1.14          | 0.05 |
| GAL_034.3+00.2   | HCS+              | 13.00 | 1.14 | 1.004e+13              | 2.631e+13              | 99.41         | 444.46       | 5.59         | 1.86         | 1.12          | 0.92 |
| GAL_034.3+00.2   | HDO               | 14.54 | 0.11 | 3.446e+14              | 8.620e+13              | 100.00        | 80.23        | 5.60         | 2.02         | 0.11          | 0.64 |
| GAL_034.3+00.2   | HNC-13            | 12.75 | 2.26 | 5.624e+12              | 2.924e+13              | 87.22         | 640.03       | 4.97         | 1.23         | 0.50          | 0.53 |
| GAL_034.3+00.2   | HNCO              | 13.98 | 0.05 | 9.475e+13              | 1.069e+13              | 34.78         | 3.84         | 6.00         | 0.55         | 0.31          | 0.25 |
| GAL_034.3+00.2   | NH2CH0            | 13.23 | 0.07 | 1.697e+13              | 2.685e+12              | 122.29        | 22.07        | 6.04         | 0.73         | -0.10         | 0.27 |
| GAL_034.3+00.2   | NO                | 15.52 | 0.48 | 3.274e+15              | 3.647e+15              | 68.67         | 87.73        | 6.12         | 3.17         | 1.07          | 0.93 |
| GAL_034.3+00.2   | NS                | 13.97 | 0.95 | 9.410e+13              | 2.061e+14              | 15.12         | 19.17        | 6.07         | 0.71         | 1.06          | 0.30 |
| GAL_034.3+00.2   | OCS               | 14.93 | 0.06 | 8.437e+14              | 1.230e+14              | 60.32         | 8.48         | 7.27         | 0.20         | 0.89          | 0.09 |
| GAL_034.3+00.2   | 5-33-U<br>9 34 0  | 12.09 | 1 20 | 1.2420+13              | 2.045e+15              | 100.00        | 330.97       | 4.63         | 1.00         | 1.22          | 2.09 |
| GAL_034.3+00.2   | S-34-0            | 14 62 | 0.01 | 4.9540+13              | 5 758e+12              | 25.87         | 480.08       | 6.88         | 0.05         | 0.90          | 0.00 |
| GAL 034.3+00.2   | S02               | 14.73 | 0.01 | 5.390e+14              | 1.839e+13              | 126.90        | 4.50         | 6.41         | 0.14         | 0.54          | 0.06 |
| GAL 034.3+00.2   | SiO               | 13.06 | 0.09 | 1.146e+13              | 2.341e+12              | 72.61         | 24.19        | 10.02        | 1.17         | 2.21          | 0.68 |
| GAL_034.3+00.2   | t-HCOOH           | 13.66 | 0.21 | 4.524e+13              | 2.177e+13              | 132.90        | 79.94        | 4.65         | 1.09         | 0.66          | 0.49 |
| GAL_10.47+00.03  | C-13-H3CN         | 13.76 | 0.05 | 5.809e+13              | 6.944e+12              | 298.91        | 32.94        | 11.00        | 0.45         | -0.18         | 0.24 |
| GAL_10.47+00.03  | C-13-H3OH         | 15.25 | 0.01 | 1.790e+15              | 5.903e+13              | 178.79        | 4.81         | 11.54        | 0.25         | -1.35         | 0.15 |
| GAL_10.47+00.03  | C2H3CN            | 14.66 | 0.02 | 4.534e+14              | 1.639e+13              | 507.57        | 15.49        | 10.69        | 0.19         | -0.03         | 0.11 |
| GAL_10.47+00.03  | C2H5CN            | 14.33 | 0.01 | 2.137e+14              | 2.770e+12              | 177.34        | 3.97         | 9.48         | 0.12         | 0.05          | 0.06 |
| GAL_10.47+00.03  | CH2NH             | 15.13 | 0.09 | 1.345e+15              | 2.848e+14              | 656.07        | 103.76       | 8.99         | 0.52         | -0.13         | 0.26 |
| GAL_10.47+00.03  | CH3CCH            | 15.02 | 0.01 | 1.047e+15              | 2.816e+13              | 59.37         | 2.60         | 11 61        | 0.32         | -0.51         | 0.13 |
| GAL_10.47+00.03  | CH3CN9            | 14.73 | 0.03 | 1 00/o+1E              | 3.944e+13              | 752 51        | 30.03        | 11.61        | 0.17         | -0.42         | 0.09 |
| GAL 10.47+00.03  | CH30H             | 15.20 | 0.00 | 1.687e+15              | 1.652e+13              | 20.60         | 0.19         | 9.00<br>7.43 | 0.20         | -0.69         | 0.14 |
| GAL 10.47+00.03  | СНЗОН             | 16.05 | 0.00 | 1.114e+16              | 1.119e+14              | 258.05        | 1.97         | 11.03        | 0.07         | -0.91         | 0,04 |
| GAL_10.47+00.03  | СНЗОСНЗ           | 15.70 | 0.01 | 4.987e+15              | 8.921e+13              | 130.78        | 2.23         | 11.30        | 0.19         | -1.05         | 0.09 |
| GAL_10.47+00.03  | H2CCO             | 14.38 | 0.02 | 2.383e+14              | 1.169e+13              | 142.06        | 8.90         | 11.03        | 0.31         | -0.74         | 0.19 |
| GAL_10.47+00.03  | H2CS              | 14.59 | 0.01 | 3.854e+14              | 1.280e+13              | 119.09        | 4.32         | 9.59         | 0.17         | -0.94         | 0.09 |
| GAL_10.47+00.03  | HCCCN             | 13.69 | 0.06 | 4.927e+13              | 6.490e+12              | 65.34         | 5.74         | 10.87        | 0.27         | -0.01         | 0.13 |
| GAL_10.47+00.03  | HC00CH3           | 15.45 | 0.01 | 2.838e+15              | 7.965e+13              | 232.99        | 6.23         | 10.87        | 0.12         | -1.14         | 0.07 |
| GAL_10.47+00.03  | NH2CH0            | 14.05 | 0.04 | 1.129e+14              | 1.047e+13              | 246.99        | 22.35        | 11.74        | 0.41         | -0.08         | 0.22 |
| GAL_10.47+00.03  | OCS               | 15.52 | 0.10 | 3.324e+15              | 7.347e+14              | 30.67         | 2.35         | 10.07        | 0.28         | -0.66         | 0.12 |
| GAL_10.47+00.03  | 5U<br>202         | 14.26 | 0.01 | 1./99e+14<br>7.018o+14 | 4.04/e+12              | 39.94         | 7.04         | 9.26         | 0.19         | -0.45         | 0.09 |
| GAL_10.47+00.03  | 502<br>+_HCOOH    | 14.90 | 0.01 | 1.310e+14              | 2.0/0e+13<br>3.625o±12 | 102.04        | 58 32        | 2 50         | 0.23<br>1 70 | -0.22<br>1 79 | 0.11 |
| GAL 10.47+00.03  | C2H50H            | 15.23 | 0.01 | 1.7080+15              | 4.5140+13              | 168 27        | 4 79         | 10 00        | 0.25         | _1 15         | 0.10 |
| GAL_10.47+00.03  | CH3CH0            | 14.83 | 0.03 | 6.714e+14              | 5.336e+13              | 331.43        | 20.37        | 10.00        | 0.34         | -0.27         | 0.16 |
| GAL_10.47+00.03  | СНЗСОСНЗ          | 14.32 | 0.02 | 2.095e+14              | 7.431e+12              | 62.08         | 2.96         | 10.00        | 0.41         | -0.76         | 0.15 |
| GAL_10.47+00.03  | C-13-S-34         | 13.12 | 0.37 | 1.318e+13              | 1.130e+13              | 25.90         | 79.00        | 12.41        | 2.19         | 1.84          | 1.00 |
| GAL_10.47+00.03  | C-13-S            | 13.51 | 0.11 | 3.235e+13              | 7.843e+12              | 62.21         | 31.02        | 9.33         | 0.58         | -0.89         | 0.28 |
| GAL_10.47+00.03  | CCH               | 14.54 | 0.85 | 3.479e+14              | 6.805e+14              | 13.46         | 26.72        | 6.89         | 0.62         | -0.59         | 0.17 |
| GAL_10.47+00.03  | CN                | 14.89 | 0.03 | 7.686e+14              | 5.592e+13              | 4.97          | 0.08         | 7.22         | 0.23         | -1.11         | 0.14 |
| GAL_10.47+00.03  | CS-33             | 13.22 | 0.07 | 1.662e+13              | 2.583e+12              | 49.92         | 18.39        | 9.30         | 0.92         | -0.53         | 0.46 |
| GAL_10.47+00.03  | 05-34             | 13.50 | 0.17 | 3.162e+13              | 1.255e+13              | 86.83         | 66.79        | 11.13        | 2.10         | 0.90          | 2.64 |
| GAL_10.47+00.03  | 03-34<br>CS       | 15.24 | 0.34 | 1./5le+13              | 1.308e+13              | 35.99         | 0.80         | 6.28<br>o F4 | 1./1         | -2.11         | 0.55 |
| GAL_10.47+00.03  | CS                | 13.55 | 0.13 | 1.012e+15<br>3.514e+19 | 5.103e+14<br>6.326±12  | 0.00<br>27 /7 | 0.97<br>4 00 | 0.51<br>4 37 | 0.11         | -0.21         | 0.20 |
| GAL 10.47+00.03  | CS                | 13.48 | 0.29 | 3.016e+13              | 1.988e+13              | 29.44         | 5.08         | 20.00        | 6.42         | 2.39          | 2.43 |
| GAL_10.47+00.03  | H2CO              | 13.66 | 0.12 | 4.567e+13              | 1.276e+13              | 49.95         | 19.14        | 5.15         | 1.07         | -3.09         | 0.27 |
| GAL_10.47+00.03  | H2CO              | 13.81 | 0.12 | 6.501e+13              | 1.808e+13              | 28.85         | 2.36         | 9.57         | 0.95         | 0.89          | 1.26 |
| GAL_10.47+00.03  | HC-13-CCN         | 12.99 | 0.08 | 9.878e+12              | 1.713e+12              | 131.63        | 69.40        | 10.00        | 0.94         | 0.96          | 0.44 |
| GAL_10.47+00.03  | HC-13-N           | 13.03 | 0.38 | 1.083e+13              | 9.562e+12              | 100.00        | 138.75       | 13.72        | 2.58         | 2.41          | 2.65 |

| CAT 10 47+00 02 | UC 12 N   | 10 60 | 0 62  | 4 9E7a+10  | 7 064+10  | 27 00   | 166 60  | E 01          | 1 26  | 2 00  | 0.21  |
|-----------------|-----------|-------|-------|------------|-----------|---------|---------|---------------|-------|-------|-------|
| GAL 10 47+00.03 | HC 12 0+  | 12.03 | 0.00  | 4.000+12   | 6 0060+11 | 20 62   | 14 05   | 7 02          | 0.40  | -3.00 | 0.01  |
| CAL 10 47+00.03 | HCC 12 CN | 12.01 | 0.00  | 2 1020+12  | 2.067+12  | 1140 90 | 1200 05 | 10.00         | 0.42  | -0.02 | 0.21  |
| GAL_10.47+00.03 | HCC-13-0N | 13.49 | 0.45  | 3.1230-113 | 3.207e+13 | 1140.02 | 1002 10 | 10.99         | 1 00  | -0.18 | 0.49  |
| GAL_10.47+00.03 | HCCC-13-N | 13.52 | 0.43  | 3.332e+13  | 3.310e+13 | 1109.16 | 1293.12 | 12.00         | 1.09  | 1.00  | 0.45  |
| GAL_10.47+00.03 | HCN-15    | 12.57 | 0.32  | 3.715e+12  | 2.766e+12 | 15.99   | 19.50   | 0.94          | 1.69  | -1.08 | 0.60  |
| GAL_10.47+00.03 | HDU       | 14.63 | 0.07  | 4.238e+14  | 6.//8e+13 | 100.00  | 59.36   | 8.96          | 1.40  | -0.92 | 0.61  |
| GAL_10.47+00.03 | HNC-13    | 12.61 | 0.16  | 4.092e+12  | 1.52/e+12 | 36.70   | 40.24   | 7.37          | 0.93  | -1.87 | 0.44  |
| GAL_10.47+00.03 | NO        | 15.93 | 0.13  | 8.565e+15  | 2.582e+15 | 100.00  | 33.33   | 7.90          | 0.81  | -0.29 | 0.37  |
| GAL_10.47+00.03 | NS        | 14.01 | 1.23  | 1.027e+14  | 2.913e+14 | 13.59   | 18.92   | 8.25          | 0.62  | 0.13  | 0.26  |
| GAL_10.47+00.03 | 0CS-34    | 14.44 | 0.60  | 2.744e+14  | 3.771e+14 | 100.00  | 519.54  | 8.85          | 0.87  | -0.45 | 0.35  |
| GAL_10.47+00.03 | S-34-0    | 13.79 | 0.09  | 6.195e+13  | 1.300e+13 | 100.00  | 30.90   | 8.38          | 1.00  | -0.24 | 0.41  |
| GAL_10.47+00.03 | SiO       | 12.99 | 0.11  | 9.849e+12  | 2.559e+12 | 29.23   | 15.96   | 18.94         | 3.28  | 3.88  | 1.10  |
| GAL_12.21-0.10  | C-13-S    | 13.00 | 1.46  | 1.000e+13  | 3.356e+13 | 75.68   | 459.42  | 7.73          | 1.04  | 0.27  | 0.44  |
| GAL_12.21-0.10  | CCH       | 14.55 | 0.16  | 3.511e+14  | 1.278e+14 | 11.67   | 3.29    | 6.56          | 0.31  | 0.98  | 0.11  |
| GAL_12.21-0.10  | CH3CCH    | 14.55 | 0.02  | 3.528e+14  | 1.756e+13 | 44.30   | 2.78    | 7.25          | 0.68  | 0.57  | 0.17  |
| GAL_12.21-0.10  | CH3CN     | 13.01 | 0.02  | 1.017e+13  | 4.384e+11 | 78.41   | 4.17    | 8.29          | 0.62  | 0.19  | 0.20  |
| GAL_12.21-0.10  | CH30CH3   | 14.95 | 0.02  | 8.822e+14  | 3.968e+13 | 148.18  | 6.12    | 11.95         | 0.69  | -0.07 | 0.24  |
| GAL_12.21-0.10  | CH30H     | 14.93 | 0.01  | 8.434e+14  | 1.991e+13 | 161.98  | 3.57    | 8.76          | 0.25  | 0.18  | 0.09  |
| GAL_12.21-0.10  | CH3OH     | 14.98 | 0.00  | 9.621e+14  | 9.771e+12 | 15.76   | 0.17    | 7.59          | 0.08  | 0.41  | 0.03  |
| GAL_12.21-0.10  | CN        | 14.11 | 0.41  | 1.294e+14  | 1.215e+14 | 3.45    | 1.38    | 20.00         | 14.27 | -2.00 | 1.95  |
| GAL_12.21-0.10  | CN        | 14.33 | 0.05  | 2.119e+14  | 2.414e+13 | 5.08    | 0.35    | 4.10          | 0.44  | -1.52 | 0.07  |
| GAL_12.21-0.10  | CS        | 13.65 | 0.24  | 4.421e+13  | 2.469e+13 | 33.49   | 2.71    | 6.60          | 0.89  | 0.24  | 0.15  |
| GAL_12.21-0.10  | CS        | 13.67 | 0.25  | 4.698e+13  | 2.664e+13 | 42.53   | 13.08   | 9.86          | 0.75  | 0.25  | 0.24  |
| GAL 12.21-0.10  | CS-33     | 12.99 | 2.29  | 9.730e+12  | 5.120e+13 | 11.77   | 30.95   | 8.06          | 1.74  | 0.56  | 0.87  |
| GAL 12.21-0.10  | CS-34     | 13.24 | 0.36  | 1.746e+13  | 1.440e+13 | 25.80   | 56.73   | 7.40          | 0.43  | 0.89  | 0.18  |
| GAL 12.21-0.10  | H2CCO     | 13,41 | 0.04  | 2.567e+13  | 2.601e+12 | 76.80   | 10.39   | 9.50          | 1.30  | -0.67 | 0.40  |
| GAL 12.21-0.10  | H2CO      | 13.83 | 0.36  | 6.753e+13  | 5.529e+13 | 31.59   | 58.09   | 7.45          | 0.22  | -0.57 | 0.07  |
| GAL 12.21-0.10  | H2CS      | 13.88 | 0.01  | 7.588e+13  | 2.398e+12 | 64.77   | 2.90    | 8.02          | 0.20  | 0.72  | 0.08  |
| GAL 12 21-0 10  | HC_13_N   | 12 88 | 0.21  | 7 520e+12  | 3 632e+12 | 90.60   | 59 65   | 9.04          | 0.53  | 0.21  | 0.26  |
| GAL 12 21-0.10  | HC_13_0+  | 12.00 | 0.14  | 3 1270+12  | 1 0340+12 | 58.98   | 34 42   | 7 63          | 0.53  | 0.53  | 0.20  |
| GAL 12 21-0 10  | HCCCN     | 12 86 | 0 12  | 7.2330+12  | 2.050+12  | 73 95   | 17 09   | 10.87         | 0.70  | 0 73  | 0.31  |
| GAL 12 21-0.10  | HCN       | 12.00 | 0.12  | 9.7566+12  | 6.950+11  | 24 02   | 0.70    | 17 00         | 1 04  | 0.13  | 0.31  |
| GAL 12 21 0 10  | HCN       | 13 00 | 0.03  | 1 2400+12  | 7 0800±11 | 27.30   | 1 57    | £ 02          | 0 10  | _1 5/ | 0.06  |
| GAL_12.21-0.10  | HON 1E    | 13.09 | 0.02  | 1.2400+13  | 6 700-111 | 21.10   | 107.60  | 10.02         | 0.19  | -1.54 | 1.71  |
| GAL_12.21-0.10  | HCN-15    | 11.93 | 0.35  | 0.40/e+11  | 0.729e+11 | 30.63   | 107.62  | 10.06         | 3.55  | 0.51  | 1.71  |
| GAL_12.21-0.10  | HCU-10+   | 11.50 | 33.14 | 3.162e+11  | 2.4130+13 | 47.05   | 1053.00 | 4.75          | 10.51 | 0.29  | 4.05  |
| GAL_12.21-0.10  | HCS+      | 12.50 | 38.22 | 3.1666+12  | 2.787e+14 | 18.64   | 1253.43 | 5.91          | 4.10  | 1.77  | 1.32  |
| GAL_12.21-0.10  | HNC-13    | 12.09 | 0.29  | 1.236e+12  | 8.16/e+11 | 16.08   | 15.50   | 7.52          | 3.33  | -0.14 | 0.88  |
| GAL_12.21-0.10  | NO        | 15.28 | 0.27  | 1.925e+15  | 1.213e+15 | 89.25   | 58.92   | 7.85          | 3.05  | 0.37  | 0.90  |
| GAL_12.21-0.10  | NS        | 13.26 | 0.18  | 1.832e+13  | 7.764e+12 | 100.00  | 56.69   | 7.86          | 1.16  | 0.92  | 0.49  |
| GAL_12.21-0.10  | OCS       | 14.17 | 0.10  | 1.495e+14  | 3.498e+13 | 71.91   | 23.30   | 8.60          | 0.47  | 0.36  | 0.21  |
| GAL_12.21-0.10  | S-34-0    | 13.01 | 1.77  | 1.023e+13  | 4.168e+13 | 85.00   | 646.93  | 8.33          | 5.43  | 1.59  | 1.37  |
| GAL_12.21-0.10  | SO        | 13.93 | 0.03  | 8.437e+13  | 6.392e+12 | 26.09   | 2.71    | 8.00          | 0.15  | 0.95  | 0.07  |
| GAL_12.21-0.10  | S02       | 13.90 | 0.04  | 7.859e+13  | 8.083e+12 | 127.76  | 14.22   | 10.64         | 0.79  | -0.59 | 0.38  |
| GAL_12.21-0.10  | SiO       | 12.32 | 0.10  | 2.076e+12  | 4.758e+11 | 55.63   | 32.10   | 8.97          | 1.68  | 1.08  | 0.81  |
| GAL_12.91-00.26 | C-13-H30H | 13.79 | 0.07  | 6.168e+13  | 9.703e+12 | 99.02   | 12.68   | 3.04          | 0.42  | 1.70  | 0.16  |
| GAL_12.91-00.26 | C-13-S    | 12.62 | 0.11  | 4.194e+12  | 1.089e+12 | 47.23   | 26.56   | 4.05          | 0.69  | 0.38  | 0.36  |
| GAL_12.91-00.26 | CCH       | 14.58 | 0.34  | 3.807e+14  | 2.977e+14 | 11.35   | 6.34    | 4.43          | 0.23  | 0.28  | 0.08  |
| GAL_12.91-00.26 | CH2NH     | 13.16 | 0.05  | 1.441e+13  | 1.557e+12 | 38.87   | 5.76    | 5.48          | 0.58  | 1.28  | 0.26  |
| GAL_12.91-00.26 | CH3CCH    | 14.85 | 0.03  | 7.012e+14  | 4.513e+13 | 28.93   | 1.07    | 3.65          | 0.10  | -0.10 | 0.05  |
| GAL_12.91-00.26 | CH3CN     | 13.18 | 0.02  | 1.500e+13  | 5.431e+11 | 116.96  | 5.26    | 5.23          | 0.16  | 0.91  | 0.09  |
| GAL_12.91-00.26 | CH30CH3   | 14.70 | 0.02  | 4.967e+14  | 2.604e+13 | 111.88  | 5.77    | 4.74          | 0.29  | 1.09  | 0.12  |
| GAL 12.91-00.26 | CH30H     | 14.95 | 0.01  | 8.972e+14  | 2.188e+13 | 178.20  | 4.79    | 5.10          | 0.07  | 1.25  | 0.04  |
| GAL 12.91-00.26 | CH30H     | 14.98 | 0.01  | 9.549e+14  | 1.325e+13 | 13.89   | 0.19    | 5.12          | 0.03  | -0.06 | 0.02  |
| GAL 12.91-00.26 | CN        | 13.25 | 5.98  | 1.798e+13  | 2.476e+14 | 10.94   | 217.52  | 4,90          | 10.53 | 5.88  | 5.25  |
| GAL 12.91-00.26 | CN        | 15.62 | 0.86  | 4.160e+15  | 8.198e+15 | 3.37    | 0.70    | 2.87          | 1.67  | -0.09 | 0.56  |
| GAL 12.91-00.26 | CS        | 13.59 | 0.02  | 3.893e+13  | 2.066e+12 | 39.75   | 1.77    | 4.05          | 0.11  | 0.57  | 0.03  |
| GAL 12.91-00.26 | CS        | 13.90 | 0.02  | 7.933e+13  | 3.740e+12 | 99.94   | 3.28    | 11.01         | 0.30  | -0.39 | 0.12  |
| GAL 12.91-00.26 | CS-33     | 12.12 | 23.10 | 1.334e+12  | 7.092e+13 | 50.94   | 8811.19 | 4.14          | 4.01  | 0.42  | 1.13  |
| GAL 12 91-00 26 | CS-34     | 12 20 | 1 25  | 1 575+12   | 4 527e+12 | 35 14   | 3 93    | 3 91          | 7 47  | 4 24  | 5 26  |
| GAL 12.91-00.26 | CS-34     | 12.22 | 1.84  | 1.655e+12  | 7.029e+12 | 35.06   | 1.95    | 6.09          | 25.88 | -4.75 | 11.26 |
| GAL 12 91-00 26 | CS-34     | 12 97 | 0.59  | 9 348+12   | 1 260e+13 | 19 10   | 0.98    | 3 62          | 2 69  | 0.27  | 0.59  |
| GAL 12 91-00 26 | DNC       | 12.00 | 0.61  | 1 005e+12  | 1 403e+12 | 57 79   | 126 30  | 4 94          | 1 51  | -0.25 | 0.75  |
| GAL 12.91-00.26 | H2CCD     | 13 17 | 0.05  | 1.4810+12  | 1.720+12  | 68 15   | 20 92   | 3 68          | 0.54  | 0.83  | 0.24  |
| GAL 12 91-00 26 | H2C0      | 13.60 | 0.07  | 3.971e+12  | 6.5420+12 | 38.97   | 10.96   | 11.89         | 1.31  | 0.28  | 0.35  |
| CAL 12 91 00 26 | H2C0      | 14 02 | 0.50  | 1 0530+14  | 1 2190+14 | 100.00  | 102.04  | 11.00         | 0.25  | 0.20  | 0.07  |
| GAL 12 91_00 26 | H2CS      | 13 50 | 0.00  | 3.8996+12  | 1.7940+19 | 58 /7   | 4 36    | 4 16          | 0 14  | 0.20  | 0.07  |
| GAL 12 91 00 20 | HC_13_N   | 10.09 | 0.02  | 1 3954±10  | 8 748-11  | 26 AF   | 3.00    | 3 36          | 1 01  | 0.40  | 0.07  |
| GAL 12 01 00 06 | HC-13-N   | 10 01 | 0.21  | 6 3020+12  | 1 6010+10 | 20.00   | 1 9/    | 2.30<br>2 AE  | 1 00  | 1 00  | 0.55  |
| GAL_12.91-00.20 | HC 12 0+  | 10 52 | 0.11  | 2 205 + 10 | 1.051e+12 | 40.09   | 12 00   | 2 07          | 0.14  | 0.20  | 0.00  |
| GAL 12 01 00 06 | HCCCN     | 10 70 | 0.00  | 5 2//0+12  | 5 0362±11 | 100 07  | 21 00   | 5.01          | 0.14  | 0.00  | 0 11  |
| CAL 12.91-00.20 | HCCCN+7   | 12.12 | 1.00  | 4 052-110  | 1 000-110 | 100 00  | 51.20   | 0.20          | 2 00  | 0.99  | 1 24  |
| GAL_12.91-00.26 | HCCCNV/   | 12.69 | 1.60  | 4.9530+12  | 1.0200+13 | 100.00  | 547.59  | 0.70          | 3.20  | 0.11  | 1.31  |
| CAL 12.91-00.20 | HON       | 12.14 | 0.10  | 1 010-112  | 1.0010+12 | 10.20   | 0.00    | 0.90<br>F 40  | 0.39  | -0./1 | 0.32  |
| GAL 12.91-00.26 | HCN       | 12 07 | 0.05  | 1.0196+13  | 1.9430+12 | 99.94   | 0.24    | 5.49<br>10.02 | 1 24  | 3.39  | 0.06  |
| GAL 12.91-00.26 | HON 1E    | 10.04 | 0.04  | 1.00000+13 | 1.00/0+12 | 20.02   | 0.11    | 19.93         | 1.31  | 1.20  | 0.34  |
| GAL_12.91-00.26 | NUN-15    | 12.01 | 0.19  | 1.025e+12  | 4.586e+11 | 38.19   | 38.32   | 5.32          | 1.24  | 0.87  | 0.61  |
| GAL_12.91-00.26 | HCU-18+   | 11.75 | 1.65  | 5.623e+11  | 2.140e+12 | 90.95   | 486.18  | 3.61          | 1.76  | 1.42  | 0.76  |
| GAL_12.91-00.26 | HCUUCH3   | 13.89 | 0.04  | 1.841e+13  | 8.027e+12 | 108.80  | 21.52   | 3.54          | 0.28  | 1.38  | 0.12  |
| GAL_12.91-00.26 | HCS+      | 12.19 | 0.32  | 1.564e+12  | 1.141e+12 | 56.09   | 132.76  | 6.00          | 3.35  | 1.12  | 1.87  |
| GAL_12.91-00.26 | HDCU      | 12.90 | 0.67  | / 868e+12  | 1.213e+13 | 100.00  | 144.09  | 3.85          | 0.93  | 1.00  | 0.50  |
| GAL_12.91-00.26 | HDU       | 13.87 | 0.24  | (.363e+13  | 4.048e+13 | 100.00  | 503.29  | 3.89          | 1.76  | 1.19  | 0.62  |
| GAL_12.91-00.26 | HNC-13    | 12.24 | 0.12  | 1.727e+12  | 4.949e+11 | 34.39   | 34.68   | 3.91          | 0.58  | 0.34  | 0.24  |
| GAL_12.91-00.26 | HNCO      | 13.52 | 0.04  | 3.276e+13  | 2.997e+12 | 35.95   | 3.86    | 5.00          | 0.46  | 0.72  | 0.16  |
| GAL_12.91-00.26 | NO        | 14.91 | 0.07  | 8.131e+14  | 1.274e+14 | 21.22   | 4.86    | 4.55          | 0.92  | 0.04  | 0.45  |
| GAL_12.91-00.26 | NS        | 13.02 | 0.35  | 1.040e+13  | 8.405e+12 | 20.45   | 17.06   | 4.66          | 1.20  | 0.60  | 0.42  |
| GAL_12.91-00.26 | UCS       | 14.24 | 0.16  | 1.735e+14  | 6.418e+13 | 50.27   | 12.92   | 5.74          | 0.38  | 0.68  | 0.17  |
| GAL_12.91-00.26 | S-34-0    | 13.13 | 0.78  | 1.338e+13  | 2.411e+13 | 16.55   | 17.22   | 3.41          | 1.37  | 0.97  | 0.48  |
| GAL_12.91-00.26 | SO        | 14.03 | 0.01  | 1.075e+14  | 2.964e+12 | 20.13   | 0.56    | 6.72          | 0.07  | 0.04  | 0.04  |
| GAL_12.91-00.26 | S02       | 13.94 | 0.02  | 8.690e+13  | 4.380e+12 | 81.82   | 4.82    | 5.85          | 0.23  | 0.95  | 0.11  |
| GAL_12.91-00.26 | SiO       | 12.45 | 0.28  | 2.824e+12  | 1.824e+12 | 55.89   | 149.23  | 13.87         | 2.70  | -0.38 | 1.40  |
| GAL_19.61-0.23  | C-13-H3OH | 13.72 | 0.23  | 5.220e+13  | 2.780e+13 | 51.08   | 19.08   | 4.62          | 3.62  | 1.11  | 0.63  |
| GAL_19.61-0.23  | C-13-S    | 13.20 | 0.21  | 1.583e+13  | 7.798e+12 | 27.25   | 53.84   | 7.83          | 0.79  | 1.33  | 0.33  |
| GAL_19.61-0.23  | C2H3CN    | 13.52 | 0.02  | 3.344e+13  | 1.570e+12 | 129.34  | 8.79    | 8.77          | 0.50  | 0.77  | 0.22  |

| GAL_19.61-0.23   | C2H5CN    | 13.77 | 0.01 | 5.867e+13  | 1.454e+12              | 151.05 | 8.84   | 8.32         | 0.24  | 0.44  | 0.12  |
|------------------|-----------|-------|------|------------|------------------------|--------|--------|--------------|-------|-------|-------|
| GAL_19.61-0.23   | CCH       | 14.81 | 0.41 | 6.432e+14  | 6.027e+14              | 12.58  | 10.09  | 8.18         | 0.43  | 2.49  | 0.11  |
| GAL_19.61-0.23   | CH3CCH    | 14.88 | 0.01 | 7.582e+14  | 2.259e+13              | 47.08  | 1.71   | 5.79         | 0.18  | 1.91  | 0.09  |
| GAL_19.61-0.23   | CH3CN     | 14.09 | 0.04 | 1.223e+14  | 1.129e+13              | 467.33 | 35.68  | 9.32         | 0.24  | 0.79  | 0.11  |
| GAL_19.61-0.23   | CH30CH3   | 14.61 | 0.06 | 4.062e+14  | 5.670e+13              | 137.87 | 24.38  | 4.80         | 0.59  | 0.69  | 0.26  |
| GAL_19.61-0.23   | CH30H     | 14.61 | 0.02 | 4.053e+14  | 1.467e+13              | 14.29  | 0.42   | 6.98         | 0.21  | 2.21  | 0.10  |
| GAL_19.61-0.23   | CH30H     | 15.25 | 0.01 | 1.787e+15  | 3.473e+13              | 176.85 | 2.99   | 7.40         | 0.12  | 0.90  | 0.05  |
| GAL_19.61-0.23   | CN        | 14.00 | 0.10 | 9.944e+13  | 2.220e+13              | 74.58  | 17.02  | 20.00        | 1.59  | -2.80 | 0.95  |
| GAL_19.61-0.23   | CN        | 15.38 | 0.05 | 2.414e+15  | 2.768e+14              | 3.54   | 0.07   | 4.30         | 0.19  | 1.77  | 0.12  |
| GAL_19.61-0.23   | CS        | 14.00 | 0.07 | 1.001e+14  | 1.582e+13              | 52.47  | 24.89  | 7.33         | 0.19  | 2.24  | 0.04  |
| GAL_19.61-0.23   | CS        | 14.00 | 0.12 | 9.983e+13  | 2.657e+13              | 74.26  | 37.49  | 17.59        | 0.74  | 2.28  | 0.18  |
| GAL_19.61-0.23   | CS-33     | 12.86 | 0.20 | 7.176e+12  | 3.243e+12              | 46.20  | 76.40  | 7.45         | 1.22  | 1.36  | 0.62  |
| GAL_19.61-0.23   | CS-34     | 13.43 | 0.11 | 2.703e+13  | 6.684e+12              | 28.41  | 26.90  | 7.72         | 0.41  | 1.94  | 0.18  |
| GAL_19.61-0.23   | H2CCO     | 13.60 | 0.07 | 4.026e+13  | 6.756e+12              | 108.56 | 28.27  | 7.04         | 0.90  | 1.11  | 0.30  |
| GAL_19.61-0.23   | H2CO      | 13.79 | 0.63 | 6.191e+13  | 8.970e+13              | 99.98  | 111.61 | 5.41         | 0.67  | 1.43  | 0.23  |
| GAL_19.61-0.23   | H2CO      | 14.23 | 0.73 | 1.694e+14  | 2.860e+14              | 99.98  | 145.28 | 13.99        | 0.97  | 2.03  | 0.38  |
| GAL_19.61-0.23   | H2CS      | 13.95 | 0.02 | 8.833e+13  | 3.994e+12              | 70.19  | 4.26   | 7.12         | 0.22  | 1.55  | 0.10  |
| GAL 19.61-0.23   | HC-13-N   | 12.18 | 0.32 | 1.517e+12  | 1.101e+12              | 100.00 | 45.78  | 3.76         | 1.84  | 1.79  | 0.57  |
| GAL 19.61-0.23   | HC-13-N   | 12.94 | 0.05 | 8.628e+12  | 9.013e+11              | 23.28  | 14.87  | 13.40        | 1.30  | 1.32  | 0.38  |
| GAL 19.61-0.23   | HC-13-0+  | 12.70 | 0.04 | 4.969e+12  | 5.057e+11              | 44.72  | 9.48   | 7.98         | 0.33  | 2.08  | 0.17  |
| GAL 19.61-0.23   | HCCCN     | 13.31 | 0.03 | 2.040e+13  | 1.241e+12              | 114.26 | 14.59  | 11.52        | 0.24  | 0.78  | 0.13  |
| GAL 19.61-0.23   | HCN       | 12.81 | 0.05 | 6.418e+12  | 7.583e+11              | 29.54  | 3.21   | 7.58         | 0.51  | -1.00 | 0.23  |
| GAL 19.61-0.23   | HCN       | 13.25 | 0.10 | 1.778e+13  | 3.908e+12              | 30.47  | 42.91  | 23.04        | 1.00  | 2.79  | 0.45  |
| GAL 19 61-0 23   | HCN-15    | 12 48 | 0.08 | 3 027e+12  | 5 269e+11              | 37 58  | 11 17  | 9 65         | 1 19  | 0.80  | 0.65  |
| GAL 19 61_0 23   | HC0_18+   | 11 74 | 0.00 | 5 5460+11  | 9 8850+11              | 67 63  | 86 59  | 4 65         | 10 10 | 3 89  | 1 55  |
| CAL 19 61 0 23   | новеточ   | 14 28 | 0.05 | 1 9020+14  | 2 1630+13              | 138 /6 | 10.88  | 4.00         | 0.26  | 0.76  | 0.11  |
| GAL_19.01-0.23   | HDO       | 14.20 | 0.05 | 1.0510+14  | 2.10Je+13              | 100.00 | 315 82 | 5 3/         | 2 47  | 0.70  | 0.11  |
| GAL_10.61.0.22   | UNC 12    | 19.02 | 0.15 | 2 0020+12  | 6 1/Fe+11              | 27 /1  | 11 72  | 11 05        | 2.11  | 0.00  | 1 00  |
| GAL_10.61.0.22   | HNCO NO.  | 14 12 | 0.03 | 1 2520+14  | 7 0240+12              | 176 17 | 0 67   | 11.05        | 2.04  | 0.30  | 0.00  |
| GAL_19.01-0.23   | NO        | 14.13 | 0.02 | 1.005+14   | 1.670e+15              | 60.07  | 67 60  | 7 05         | 2 60  | 1 40  | 0.20  |
| CAL 10 61 0 02   | NG        | 13 47 | 0.30 | 1.2036+12  | 1.0/UET10              | 100 00 | 01.09  | 7.00         | 0.00  | 1.49  | 0.33  |
| GAL 10 61 0 02   | 1000      | 10.4/ | 0.08 | 2.9240+13  | 0.002-114              | 100.00 | 24.50  | 1.60         | 0.94  | 1.00  | 0.43  |
| GAL_19.01-0.23   |           | 14.66 | 0.12 | 4.750e+14  | 1.2930+14              | 40.00  | 0.95   | 9.33         | 0.42  | 0.31  | 0.18  |
| GAL_19.61-0.23   | S-34-U    | 13.58 | 0.41 | 3.824e+13  | 3.612e+13              | 20.96  | 18.57  | 9.15         | 1.87  | 0.32  | 0.67  |
| GAL_19.61-0.23   | SO        | 14.35 | 0.00 | 2.251e+14  | 2.281e+12              | 44.44  | 2.01   | 14.05        | 0.12  | 1.33  | 0.07  |
| GAL_19.61-0.23   | S02       | 14.83 | 0.01 | 6.722e+14  | 1.753e+13              | 150.12 | 3.66   | 11.90        | 0.23  | 0.07  | 0.09  |
| GAL_19.61-0.23   | SiO       | 13.03 | 0.31 | 1.066e+13  | 7.510e+12              | 54.51  | 196.14 | 20.00        | 1.59  | 1.96  | 0.75  |
| GAL_24.78+0.08   | C-13-H30H | 14.16 | 0.03 | 1.448e+14  | 1.139e+13              | 84.24  | 4.29   | 5.64         | 0.53  | 0.11  | 0.18  |
| GAL_24.78+0.08   | C-13-S    | 12.92 | 0.14 | 8.279e+12  | 2.624e+12              | 34.76  | 1.02   | 12.94        | 2.75  | -0.87 | 1.37  |
| GAL_24.78+0.08   | C-13-S    | 13.06 | 0.09 | 1.139e+13  | 2.248e+12              | 34.55  | 1.15   | 4.22         | 0.51  | -0.09 | 0.17  |
| GAL_24.78+0.08   | CCH       | 14.49 | 0.26 | 3.102e+14  | 1.822e+14              | 11.59  | 5.17   | 5.24         | 0.31  | 0.11  | 0.12  |
| GAL_24.78+0.08   | CH2NH     | 13.47 | 0.04 | 2.973e+13  | 2.692e+12              | 53.91  | 6.14   | 5.26         | 0.41  | 0.33  | 0.16  |
| GAL_24.78+0.08   | CH3CCH    | 14.88 | 0.02 | 7.600e+14  | 2.996e+13              | 38.24  | 1.34   | 4.74         | 0.13  | -0.39 | 0.07  |
| GAL_24.78+0.08   | CH3CN     | 13.75 | 0.02 | 5.586e+13  | 2.043e+12              | 203.52 | 7.50   | 7.92         | 0.16  | -0.15 | 0.07  |
| GAL_24.78+0.08   | CH30CH3   | 15.12 | 0.01 | 1.329e+15  | 3.869e+13              | 124.81 | 3.55   | 6.47         | 0.20  | 0.12  | 0.09  |
| GAL_24.78+0.08   | CH30H     | 15.16 | 0.00 | 1.433e+15  | 1.159e+13              | 16.99  | 0.17   | 7.81         | 0.04  | 0.01  | 0.03  |
| GAL_24.78+0.08   | CH30H     | 15.19 | 0.01 | 1.554e+15  | 1.898e+13              | 140.87 | 1.87   | 5.85         | 0.05  | 0.28  | 0.03  |
| GAL_24.78+0.08   | CN        | 14.71 | 0.04 | 5.072e+14  | 4.918e+13              | 4.44   | 0.08   | 4.70         | 0.22  | 1.67  | 0.11  |
| GAL_24.78+0.08   | CS        | 13.92 | 0.05 | 8.234e+13  | 1.007e+13              | 23.00  | 3.12   | 20.00        | 0.97  | -0.16 | 0.21  |
| GAL_24.78+0.08   | CS        | 14.04 | 0.06 | 1.094e+14  | 1.540e+13              | 17.75  | 2.48   | 7.47         | 0.26  | 0.07  | 0.05  |
| GAL_24.78+0.08   | CS-33     | 12.96 | 0.07 | 9.122e+12  | 1.558e+12              | 47.19  | 25.20  | 6.06         | 0.67  | -0.00 | 0.31  |
| GAL 24.78+0.08   | CS-34     | 13.14 | 0.09 | 1.370e+13  | 2.912e+12              | 35.46  | 0.44   | 13.41        | 2.24  | -0.40 | 0.79  |
| GAL 24.78+0.08   | CS-34     | 13.97 | 0.32 | 9.432e+13  | 6.887e+13              | 9.70   | 2.34   | 4.82         | 0.28  | 0.17  | 0.11  |
| GAL 24.78+0.08   | DNC       | 11.97 | 0.96 | 9.306e+11  | 2.056e+12              | 99.33  | 261.27 | 4.06         | 1.80  | 0.13  | 0.99  |
| GAL 24.78+0.08   | H2CO      | 13.80 | 0.14 | 6.378e+13  | 2.025e+13              | 49.94  | 19.19  | 17.09        | 1.44  | 0.02  | 0.62  |
| GAL 24.78+0.08   | H2C0      | 14.43 | 0.21 | 2.672e+14  | 1.283e+14              | 200.00 | 73.96  | 6.40         | 0.46  | 0.71  | 0.14  |
| GAL 24.78+0.08   | H2CS      | 14.06 | 0.01 | 1.149e+14  | 3.125e+12              | 69.90  | 2.63   | 6.03         | 0.10  | 0.04  | 0.05  |
| GAL 24 78+0.08   | HC-13-N   | 12.50 | 0.44 | 3.155e+12  | 3.231e+12              | 24.70  | 6.36   | 6.44         | 2.64  | 0.91  | 0.36  |
| GAL 24.78+0.08   | HC-13-N   | 12.92 | 0.22 | 8.410e+12  | 4.195e+12              | 49.94  | 6.81   | 13.62        | 2.65  | 0.49  | 0.65  |
| GAL 24 78+0.08   | HC-13-0+  | 12.50 | 0.69 | 3.173e+12  | 5.034e+12              | 35.74  | 213.94 | 5.07         | 0.32  | 0.32  | 0.11  |
| GAL 24.78+0.08   | HCCCN     | 13.30 | 0.06 | 2.014e+13  | 2.630e+12              | 70.28  | 6.88   | 8.61         | 0.20  | 0.06  | 0.11  |
| GAL 24 78+0.08   | HCCCNv7   | 12.97 | 0.11 | 9.235e+12  | 2.272e+12              | 106.70 | 47.88  | 7.90         | 0.66  | 0.05  | 0.29  |
| GAL 24 78+0.08   | HCN       | 13.00 | 0.07 | 1.000e+13  | 1.667e+12              | 48.73  | 12.77  | 13.90        | 0.93  | -9.22 | 0.45  |
| GAL 24 78+0.08   | HCN       | 13.08 | 0.08 | 1.201e+13  | 2.218e+12              | 49.65  | 17.15  | 5.26         | 0.21  | 4.24  | 0.08  |
| GAL 24.78+0.08   | HCN       | 13.98 | 0.09 | 9.509e+13  | 1.976e+13              | 5.04   | 0.30   | 13.49        | 0.93  | 10.57 | 0.50  |
| GAL 24.78+0.08   | HCN-15    | 12.42 | 0.10 | 2.646e+12  | 6.145e+11              | 33.07  | 26.59  | 7.63         | 0.92  | 0.30  | 0.42  |
| GAL 24.78+0.08   | HCO-18+   | 11.76 | 0.65 | 5.798e+11  | 8.645e+11              | 100.00 | 166.47 | 2.63         | 1.03  | 0.84  | 0.59  |
| GAL 24.78+0.08   | НСООСНЗ   | 14.49 | 0.02 | 3.074e+14  | 1.614e+13              | 132 89 | 9.84   | 5 90         | 0.20  | 0.15  | 0.09  |
| GAL 24.78+0.08   | HCS+      | 12.40 | 0.25 | 2.528e+12  | 1.446e+12              | 32.09  | 50.29  | 3 42         | 1.51  | 0.27  | 0.54  |
| GAL 24.78+0.08   | HNC-13    | 12.43 | 0.07 | 2.716e+12  | 4.401e+11              | 44.53  | 10.25  | 4,98         | 0.46  | -0.30 | 0.27  |
| GAL 24.78+0.08   | HNCO      | 13.95 | 0.04 | 8,994e+13  | 9.210e+12              | 27 08  | 2.17   | 7.00         | 0.29  | -0.97 | 0.15  |
| GAL 24 78+0 08   | NO        | 15 13 | 0.05 | 1.357e+15  | 1.656e+14              | 23.13  | 8.56   | 5.20         | 0.73  | -0.39 | 0.36  |
| GAL 24.78+0.08   | NS        | 13.54 | 0.17 | 3.450e+13  | 1.336e+13              | 78.53  | 48.93  | 6.17         | 0.43  | 0.41  | 0.20  |
| GAL 24 78+0 08   | 003       | 14 84 | 0 11 | 6 910e+14  | 1 756e+14              | 37 93  | 4 41   | 7 24         | 0.23  | -0.11 | 0 11  |
| GAL 24.78+0.08   | so        | 14.19 | 0.01 | 1.561e+14  | 2.415e+12              | 27 74  | 0.84   | 8 79         | 0.07  | -0.59 | 0.04  |
| GAL 24 78+0 08   | S02       | 14 18 | 0.03 | 1.531e+14  | 1.041e+13              | 102.10 | 8.48   | 8.70         | 0.31  | -0.35 | 0.16  |
| GAL 24 78+0 08   | SiO       | 13 05 | 0 12 | 1.1310+19  | 3 407-10               | 20 63  | 7 10   | 20 00        | 1 32  | -0.88 | 0.72  |
| GAL 31 41+0 31   | C-13-H3CN | 12.74 | 0.07 | 5.554+10   | 8.834+11               | 105 22 | 28.00  | 5 35         | 0.77  | 0 74  | 0.30  |
| CAL 31 /110 31   | C-13-H30W | 14 07 | 0.07 | 1 19/0+1/  | 4 0040+19              | 37 74  | 11 60  | 7 /0         | 0.07  | 0.74  | 0.00  |
| GAL_01.41+0.01   | C_13_H30H | 14 83 | 0.10 | 6 7120+14  | 4 5974119              | 208 /1 | 28 97  | 6 /3         | 0.51  | 0.70  | 0.42  |
| CAL 31 41±0 31   | C_13_S    | 13 30 | 0.03 | 2 436-+12  | 6 7640±10              | 53 50  | 20.07  | 6 33         | 0.33  | 0.00  | 0.15  |
| CAL 31 /1+0 21   | COH3CN    | 13 24 | 0.12 | 2.7000713  | 0.70±e+12              | 167 01 | 22.00  | 0.00         | 1 74  | 1 40  | 0.10  |
| GAL_01.41+0.01   | C2H5CN    | 13.89 | 0.05 | 2.2008+13  | 1 3860±10              | 134 37 | 5 50   | 9.20<br>7 51 | 0.16  | 1.42  | 0.39  |
| CAL 31 41+0.31   | CONFUN    | 10.00 | 0.01 | 5 607a+14  | 1.3000+12              | 107 10 | 0.00   | 1.51         | 0.10  | 0.50  | 0.07  |
| CAL 31 /1+0 21   | CCH       | 14.70 | 1 11 | 3 /60-+14  | 2.2000+13<br>1 15/o+15 | 121.12 | 0.20   | 5 21         | 0.21  | 1 1/  | 0.11  |
| GAL_31.41+0.31   | CHONN     | 12 67 | 1.44 | J. 4090+14 | 1.1040+15              | 13.03  | 40.40  | 5.31         | 0.00  | 1.44  | 0.10  |
| GAL_31.41+0.31   |           | 10.07 | 0.06 | +.0000+13  | 0.9300+12              | 11.32  | 13.15  | 0.05         | 0.01  | 0.64  | 0.24  |
| GAL_31.41+0.31   | CH3CCH    | 14.8/ | 0.01 | 1.413e+14  | 1.824e+13              | 53.44  | 1.99   | 5.11         | 0.14  | 1.04  | 0.07  |
| GAL_31.41+0.31   | CHJCHU    | 13.80 | 0.04 | 0.356e+13  | o.333e+12              | 102.62 | 10.86  | 6.95         | 0.53  | 0.25  | 0.19  |
| GAL_31.41+0.31   | CH3CN     | 14.08 | 0.02 | 1.206e+14  | 5.141e+12              | 320.97 | 12.30  | 8.92         | 0.14  | 0.07  | 0.07  |
| GAL_31.41+0.31   | CH3CNV8   | 13.67 | 0.08 | 4.051e+13  | 0.03/e+12              | 1/9.84 | 23.84  | (.12         | 0.93  | 0.08  | 0.27  |
| GAL_31.41+0.31   | CH3CUCH3  | 14.28 | 0.33 | 1.885e+14  | 1.433e+14              | 137.10 | 39.64  | 6.02         | 0.40  | 0.33  | 0.16  |
| 1 Gal 31 41+0 31 | CH3UCH3   | 15.41 | 0.01 | 2.553e+15  | 3./44e+13              | 95.32  | 1.30   | 1.26         | 0.11  | 0.70  | 0.06  |
|                  | 0112011   | 15 00 | 0 04 | 1 014 .15  | 1 510 140              | 20 44  | A 4F   | 7 7 4        | A 44  | 0 70  | ~ ~ ~ |
| CAT 21 4110 21                                                                                           | CI12OII                                          | 15 57                                              | 0.01                                          | 2 700-115                                                                  | 6 500-112                                                                  | 060.05                                     | 4 62                                      | 7 00                                 | 0.07                                 | 0.60                                      | 0.04                                 |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|
| GAL_31.41+0.31                                                                                           | Cuscu                                            | 12 71                                              | 0.01                                          | 5.708e+13                                                                  | 0.0056+13                                                                  | 208.05                                     | 4.03                                      | 7.00<br>F.00                         | 0.07                                 | 0.02                                      | 0.04                                 |
| GAL_31.41.0.31                                                                                           | CIIII                                            | 10.11                                              | 0.13                                          | 1 152-116                                                                  | 2.270e+15                                                                  | 20.00                                      | 1.00                                      | 5.00                                 | 0.55                                 | 0.00                                      | 0.45                                 |
| GAL_51.41+0.51                                                                                           | CN                                               | 10.00                                              | 0.20                                          | 1.1550+16                                                                  | 5.4320+15                                                                  | 2.02                                       | 0.06                                      | 5.00                                 | 0.52                                 | 0.49                                      | 0.19                                 |
| GAL_31.41+0.31                                                                                           | CS                                               | 13.92                                              | 0.06                                          | 8.288e+13                                                                  | 1.240e+13                                                                  | 23.48                                      | 5.14                                      | 5.38                                 | 0.09                                 | -0.02                                     | 0.03                                 |
| GAL_31.41+0.31                                                                                           | CS                                               | 14.00                                              | 0.10                                          | 1.009e+14                                                                  | 2.251e+13                                                                  | 16.67                                      | 2.89                                      | 14.76                                | 0.36                                 | 1.29                                      | 0.17                                 |
| GAL_31.41+0.31                                                                                           | CS-33                                            | 13.28                                              | 0.05                                          | 1.926e+13                                                                  | 2.063e+12                                                                  | 55.42                                      | 12.90                                     | 7.19                                 | 0.42                                 | -0.05                                     | 0.21                                 |
| GAL_31.41+0.31                                                                                           | CS-34                                            | 13.87                                              | 2.34                                          | 7.357e+13                                                                  | 3.960e+14                                                                  | 13.98                                      | 46.15                                     | 6.42                                 | 0.99                                 | 0.20                                      | 0.09                                 |
| GAL_31.41+0.31                                                                                           | H2C-13-0                                         | 13.03                                              | 1.30                                          | 1.081e+13                                                                  | 3.226e+13                                                                  | 16.70                                      | 120.12                                    | 7.24                                 | 1.49                                 | -0.87                                     | 0.59                                 |
| GAL_31.41+0.31                                                                                           | H2CCO                                            | 14.04                                              | 0.02                                          | 1.092e+14                                                                  | 5.012e+12                                                                  | 126.42                                     | 7.60                                      | 7.12                                 | 0.26                                 | 0.36                                      | 0.12                                 |
| GAL_31.41+0.31                                                                                           | H2CO                                             | 12.77                                              | 0.50                                          | 5.895e+12                                                                  | 6.853e+12                                                                  | 49.98                                      | 58.59                                     | 2.87                                 | 3.99                                 | 5.00                                      | 0.46                                 |
| GAL_31.41+0.31                                                                                           | H2CO                                             | 13.39                                              | 0.19                                          | 2.458e+13                                                                  | 1.082e+13                                                                  | 26.05                                      | 31.59                                     | 5.46                                 | 1.13                                 | -1.13                                     | 0.35                                 |
| GAL_31.41+0.31                                                                                           | H2CO                                             | 13.61                                              | 0.12                                          | 4.086e+13                                                                  | 1.147e+13                                                                  | 49.98                                      | 34.28                                     | 15.70                                | 8.87                                 | 1.11                                      | 0.98                                 |
| GAL_31.41+0.31                                                                                           | H2CS                                             | 14.33                                              | 0.01                                          | 2.119e+14                                                                  | 4.859e+12                                                                  | 85.85                                      | 2.40                                      | 6.64                                 | 0.09                                 | 0.72                                      | 0.04                                 |
| GAL_31.41+0.31                                                                                           | HC-13-N                                          | 13.01                                              | 0.07                                          | 1.030e+13                                                                  | 1.713e+12                                                                  | 70.93                                      | 17.18                                     | 8.47                                 | 0.37                                 | -0.38                                     | 0.19                                 |
| GAL_31.41+0.31                                                                                           | HC-13-0+                                         | 12.26                                              | 0.15                                          | 1.827e+12                                                                  | 6.120e+11                                                                  | 31.37                                      | 62.03                                     | 5.21                                 | 0.48                                 | 1.20                                      | 0.20                                 |
| GAL_31.41+0.31                                                                                           | HCCCN                                            | 13.31                                              | 0.07                                          | 2.032e+13                                                                  | 3.353e+12                                                                  | 70.44                                      | 8.75                                      | 9.53                                 | 0.29                                 | 0.48                                      | 0.15                                 |
| GAL_31.41+0.31                                                                                           | HCN                                              | 12.65                                              | 0.07                                          | 4.421e+12                                                                  | 6.851e+11                                                                  | 23.71                                      | 3.99                                      | 4.18                                 | 0.38                                 | 7.14                                      | 0.10                                 |
| GAL_31.41+0.31                                                                                           | HCN                                              | 12.82                                              | 3.16                                          | 6.641e+12                                                                  | 4.825e+13                                                                  | 49.98                                      | 755.34                                    | 8.84                                 | 0.36                                 | -7.71                                     | 0.25                                 |
| GAL_31.41+0.31                                                                                           | HCN                                              | 12.89                                              | 2.65                                          | 7.756e+12                                                                  | 4.731e+13                                                                  | 49.98                                      | 640.19                                    | 15.66                                | 1.60                                 | 15.00                                     | 1.05                                 |
| GAL_31.41+0.31                                                                                           | HCN                                              | 12.93                                              | 0.04                                          | 8.505e+12                                                                  | 8.211e+11                                                                  | 23.52                                      | 8.80                                      | 3.89                                 | 0.14                                 | -3.13                                     | 0.05                                 |
| GAL_31.41+0.31                                                                                           | HCN-15                                           | 12.41                                              | 0.11                                          | 2.588e+12                                                                  | 6.792e+11                                                                  | 38.84                                      | 23.36                                     | 6.97                                 | 0.84                                 | -0.06                                     | 0.43                                 |
| GAL_31.41+0.31                                                                                           | HCOOCH3                                          | 15.14                                              | 0.01                                          | 1.392e+15                                                                  | 4.271e+13                                                                  | 223.97                                     | 6.59                                      | 6.06                                 | 0.07                                 | 0.55                                      | 0.04                                 |
| GAL_31.41+0.31                                                                                           | HCS+                                             | 12.53                                              | 0.94                                          | 3.351e+12                                                                  | 7.287e+12                                                                  | 25.70                                      | 71.53                                     | 4.44                                 | 2.91                                 | 1.25                                      | 0.69                                 |
| GAL_31.41+0.31                                                                                           | HDO                                              | 13.98                                              | 1.24                                          | 9.524e+13                                                                  | 2.711e+14                                                                  | 50.00                                      | 139.38                                    | 5.97                                 | 6.80                                 | 0.98                                      | 1.66                                 |
| GAL_31.41+0.31                                                                                           | HNC-13                                           | 11.82                                              | 0.58                                          | 6.565e+11                                                                  | 8.695e+11                                                                  | 33.98                                      | 170.47                                    | 4.03                                 | 1.83                                 | 0.14                                      | 0.79                                 |
| GAL_31.41+0.31                                                                                           | NH2CH0                                           | 12.85                                              | 0.06                                          | 7.096e+12                                                                  | 9.711e+11                                                                  | 53.36                                      | 9.64                                      | 6.63                                 | 1.43                                 | 0.32                                      | 0.42                                 |
| GAL_31.41+0.31                                                                                           | NO                                               | 15.41                                              | 0.29                                          | 2.583e+15                                                                  | 1.701e+15                                                                  | 100.00                                     | 73.83                                     | 5.99                                 | 1.50                                 | 1.41                                      | 0.64                                 |
| GAL 31.41+0.31                                                                                           | NS                                               | 13.36                                              | 0.39                                          | 2.303e+13                                                                  | 2.045e+13                                                                  | 23.65                                      | 31.63                                     | 6.45                                 | 0.75                                 | 0.79                                      | 0.30                                 |
| GAL 31.41+0.31                                                                                           | OCS                                              | 15.07                                              | 0.10                                          | 1.170e+15                                                                  | 2.694e+14                                                                  | 35.86                                      | 3.52                                      | 7.39                                 | 0.19                                 | 0.32                                      | 0.09                                 |
| GAL_31.41+0.31                                                                                           | S-34-0                                           | 14.74                                              | 1.26                                          | 5.544e+14                                                                  | 1.609e+15                                                                  | 6.67                                       | 3.31                                      | 8.49                                 | 3.60                                 | 0.09                                      | 1.34                                 |
| GAL_31.41+0.31                                                                                           | SO                                               | 14.19                                              | 0.01                                          | 1.538e+14                                                                  | 3.428e+12                                                                  | 23.79                                      | 0.74                                      | 8.08                                 | 0.10                                 | 0.13                                      | 0.05                                 |
| GAL_31.41+0.31                                                                                           | S02                                              | 14.00                                              | 0.04                                          | 9.955e+13                                                                  | 9.880e+12                                                                  | 83.26                                      | 11.65                                     | 8.32                                 | 0.54                                 | -0.07                                     | 0.23                                 |
| GAL_31.41+0.31                                                                                           | SiO                                              | 12.99                                              | 2.66                                          | 9.752e+12                                                                  | 5.978e+13                                                                  | 21.25                                      | 122.26                                    | 19.51                                | 2.14                                 | 1.76                                      | 1.04                                 |
| GAL 45.47+0.05                                                                                           | C-13-S                                           | 12.50                                              | 46.37                                         | 3.162e+12                                                                  | 3.376e+14                                                                  | 12.56                                      | 798,33                                    | 4.94                                 | 4.35                                 | 0.15                                      | 1.11                                 |
| GAL 45.47+0.05                                                                                           | CCH                                              | 14.30                                              | 0.05                                          | 2.014e+14                                                                  | 2.408e+13                                                                  | 14.24                                      | 1.95                                      | 4.60                                 | 0.28                                 | 0.84                                      | 0.08                                 |
| GAL 45 47+0.05                                                                                           | CH3CCH                                           | 14.56                                              | 0.03                                          | 3.610e+14                                                                  | 2.435e+13                                                                  | 34.95                                      | 1.85                                      | 4.08                                 | 0.16                                 | 1.08                                      | 0.09                                 |
| GAL 45.47+0.05                                                                                           | СНЗОН                                            | 14.82                                              | 0.01                                          | 6.581e+14                                                                  | 1.120e+13                                                                  | 13.31                                      | 0.16                                      | 4.76                                 | 0.04                                 | 0.87                                      | 0.02                                 |
| GAL 45 47+0 05                                                                                           | CN                                               | 13 08                                              | 0.06                                          | 1 201e+13                                                                  | 1 681e+12                                                                  | 19 25                                      | 0.49                                      | 5 32                                 | 0 42                                 | 1 37                                      | 0.27                                 |
| CAL 45 47+0.05                                                                                           | CN                                               | 15 04                                              | 0.00                                          | 1 1050+15                                                                  | 9.3710+13                                                                  | 3 46                                       | 0.07                                      | 3 /2                                 | 0.10                                 | 0.22                                      | 0.07                                 |
| GAL_45.47+0.05                                                                                           | CS                                               | 1/ 12                                              | 0.04                                          | 1 3150+10                                                                  | 2 3010+13                                                                  | 13 51                                      | 1 27                                      | 5 18                                 | 0.10                                 | 0.22                                      | 0.07                                 |
| CAL 45 47+0.05                                                                                           | CG 33                                            | 10 /0                                              | 6 82                                          | 3 1020+12                                                                  | A 8680+13                                                                  | 0.52                                       | 54.48                                     | 3 36                                 | 1 86                                 | 1 08                                      | 0.02                                 |
| GAL_45.47+0.05                                                                                           | CS 34                                            | 12.45                                              | 0.02                                          | 3 56/0+12                                                                  | 5 302o+11                                                                  | 48.25                                      | 12 90                                     | 5.00                                 | 0.64                                 | 1.00                                      | 0.33                                 |
| GAL_45.47+0.05                                                                                           | DNC                                              | 12.00                                              | 2 35                                          | 1 1080+12                                                                  | 6 /810+12                                                                  | 6 95                                       | 15 01                                     | 6 25                                 | 3 57                                 | 1 31                                      | 1.46                                 |
| GAL_45.47+0.05                                                                                           | HOCO HOCO                                        | 14 01                                              | 2.30                                          | 1.1900+12                                                                  | 0.4010+12                                                                  | 0.95                                       | 2 10                                      | 0.20<br>E 22                         | 0 10                                 | 1.31                                      | 1.40                                 |
| GAL_45.47+0.05                                                                                           | H2CU                                             | 12 00                                              | 0.35                                          | 1.030e+14                                                                  | 0.3330+13                                                                  | 9.07                                       | 5.10                                      | 2.33                                 | 0.19                                 | 1 25                                      | 0.04                                 |
| GAL_45.47+0.05                                                                                           | H2C5                                             | 10.47                                              | 0.02                                          | 1.004e+13                                                                  | 9.503e+11                                                                  | 39.63                                      | 0.00                                      | 5.96                                 | 0.24                                 | 1.25                                      | 0.11                                 |
| GAL_45.47+0.05                                                                                           | HC-13-N                                          | 12.47                                              | 1.44                                          | 2.931e+12                                                                  | 9.725e+12                                                                  | 9.67                                       | 19.06                                     | 5.69                                 | 0.54                                 | 1.03                                      | 0.23                                 |
| GAL_45.47+0.05                                                                                           | HC-13-0+                                         | 12.72                                              | 11.11                                         | 5.191e+12                                                                  | 1.406e+14                                                                  | 8.10                                       | 93.19                                     | 4.35                                 | 3.49                                 | 1.12                                      | 0.15                                 |
| GAL_45.47+0.05                                                                                           | HCCCN                                            | 12.26                                              | 0.46                                          | 1.840e+12                                                                  | 1.940e+12                                                                  | 68.22                                      | 52.54                                     | 4.57                                 | 0.71                                 | 2.35                                      | 0.37                                 |
| GAL_45.47+0.05                                                                                           | HCN                                              | 12.70                                              | 0.04                                          | 4.994e+12                                                                  | 4.445e+11                                                                  | 22.01                                      | 4.58                                      | 16.83                                | 0.91                                 | -4.13                                     | 0.53                                 |
| GAL_45.47+0.05                                                                                           | HCN                                              | 12.71                                              | 0.05                                          | 5.165e+12                                                                  | 5.025e+11                                                                  | 26.95                                      | 0.61                                      | 5.10                                 | 0.43                                 | -0.52                                     | 0.21                                 |
| GAL_45.47+0.05                                                                                           | HCN                                              | 10.75                                              | 76.00                                         | 1.231e+13                                                                  | 1.016e+13                                                                  | 9.03                                       | 3.23                                      | 3.35                                 | 10.10                                | 3.63                                      | 0.10                                 |
| GAL_45.47+0.05                                                                                           | HCS+                                             | 12.75                                              | /6.90                                         | 5.625e+12                                                                  | 9.960e+14                                                                  | 10.43                                      | 594.17                                    | 3.00                                 | 10.47                                | 2.54                                      | 3.01                                 |
| GAL_45.47+0.05                                                                                           | HNC-13                                           | 12.00                                              | 0.20                                          | 1.000e+12                                                                  | 1 006-112                                                                  | 10.18                                      | 11 75                                     | 4.00                                 | 0.72                                 | 0.04                                      | 0.34                                 |
| GAL_45.47+0.05                                                                                           | NO                                               | 15.21                                              | 0.35                                          | 1.011e+13                                                                  | 1.200e+13                                                                  | 23.00                                      | 11.75                                     | 0.13                                 | 0.73                                 | -0.06                                     | 0.42                                 |
| GAL_45.47+0.05                                                                                           | NO                                               | 10.02                                              | 0.25                                          | 1.0470+13                                                                  | 0.1200+14                                                                  | 0.00                                       | 41.73                                     | 4.10                                 | 1 07                                 | 1.00                                      | 0.20                                 |
| GAL_45.47+0.05                                                                                           | NS<br>009                                        | 10.04                                              | 1 15                                          | 2.212e+13                                                                  | 4.455e+15<br>2.0E0a+14                                                     | 9.92                                       | 17 00                                     | 7.55                                 | 1.97                                 | 1.90                                      | 1.10                                 |
| GAL_45.47+0.05                                                                                           | 003                                              | 12 00                                              | 1.15                                          | 1.4900+14                                                                  | 3.950e+14                                                                  | 25.15                                      | 17.92                                     | 5.90                                 | 1.33                                 | 1.00                                      | 0.55                                 |
| GAL_45.47+0.05                                                                                           | 50                                               | 13.92                                              | 0.02                                          | 0.4130+13                                                                  | 4.0666+12                                                                  | 15.67                                      | 0.51                                      | 5.40                                 | 0.09                                 | 0.76                                      | 0.05                                 |
| GAL_45.47+0.05                                                                                           | 502<br>840                                       | 10 04                                              | 0.04                                          | 2.202e+13                                                                  | 2.2090+12                                                                  | 43.92                                      | 1 50                                      | 5.51                                 | 1 17                                 | 2.34                                      | 0.27                                 |
| GAL_45.47+0.05                                                                                           | G 12 G                                           | 10.00                                              | 0.22                                          | 0.9370+12                                                                  | 3.4566+12                                                                  | 10.10                                      | 1.50                                      | 0.00                                 | 1.17                                 | 0.53                                      | 0.40                                 |
| GAL_75.70+0.34                                                                                           | C-13-5                                           | 14.05                                              | 0.10                                          | 9.219e+12                                                                  | 3.299e+12                                                                  | 100.00                                     | 51.62                                     | 4.07                                 | 0.30                                 | -3.94                                     | 0.16                                 |
| GAL_75.70+0.34                                                                                           | CURCCU                                           | 14.95                                              | 0.12                                          | 2 007e+14                                                                  | 2.03500+14                                                                 | 24 55                                      | 1.05                                      | 4.00                                 | 0.13                                 | -3.55                                     | 0.05                                 |
| CAL 75 78±0 24                                                                                           | CH3CN                                            | 12 77                                              | 0.02                                          | 5.871a+10                                                                  | 2.010e+13                                                                  | 01 70                                      | 1.20                                      | J.12<br>1 20                         | 0.09                                 | -3.55                                     | 0.05                                 |
| GAL_75.70+0.34                                                                                           | CHOCK                                            | 14 67                                              | 0.03                                          | 3.8/1e+12                                                                  | 1 4740+12                                                                  | 150.06                                     | 0.06                                      | 4.39                                 | 0.37                                 | -3.72                                     | 0.14                                 |
| CAL 75 70±0 34                                                                                           | CHOON                                            | 14.0/                                              | 0.01                                          | A 0920144                                                                  | 1 0660110                                                                  | 14 00                                      | 9.00                                      | 3.43                                 | 0.07                                 | -4.21                                     | 0.04                                 |
| GAL_75.70+0.34                                                                                           | Choun                                            | 14.70                                              | 0.01                                          | 4.9650+14                                                                  | 1.0666+13                                                                  | 14.00                                      | 0.49                                      | 4.20                                 | 0.04                                 | -4.00                                     | 0.03                                 |
| GAL_10.10+U.34                                                                                           | 01                                               | 12 40                                              | 0.03                                          | 2.002-110                                                                  | 2.330e+13                                                                  | 4.15                                       | 0.07                                      | D.00                                 | 0.11                                 | -3.13                                     | 0.07                                 |
| CAL 75 78±0 24                                                                                           | CG CG                                            | 14 00                                              | 0.04                                          | 1 0000+14                                                                  | 2.3310+12<br>5 888a+10                                                     | 00.10                                      | 0.00                                      | 7 10                                 | 0.15                                 | -3.40                                     | 0.03                                 |
| CAL 75 70±0 04                                                                                           | 00                                               | 10 /1                                              | 0.03                                          | 2 5/00/10                                                                  | 5 02000412                                                                 | 10.00                                      | 2.34                                      | 2 50                                 | 0.12                                 | -2.32                                     | 0.01                                 |
| GAL_75.78+0.34                                                                                           | CS-33                                            | 12.41                                              | 0.86                                          | 2.549e+12                                                                  | 5.038e+12                                                                  | 40.23                                      | 661.01                                    | 3.59                                 | 0.75                                 | -3.40                                     | 0.33                                 |
| GAL_75.78+0.34                                                                                           | CS-34                                            | 13.11                                              | 0.04                                          | 1.303e+13                                                                  | 1.230e+12                                                                  | 49.81                                      | 14.22                                     | 3.82                                 | 0.16                                 | -3.66                                     | 0.08                                 |
| GAL_75.78+0.34                                                                                           | DNC                                              | 11.54                                              | 0.69                                          | 3.449e+11                                                                  | 5.444e+11                                                                  | 13.93                                      | 29.31                                     | 2.67                                 | 2.03                                 | -3.73                                     | 0.70                                 |
| GAL_/0./8+0.34                                                                                           | n2000                                            | 13.02                                              | 0.08                                          | 1.054e+13                                                                  | 2.005e+12                                                                  | 02./1                                      | 20.49                                     | 4.79                                 | 1.21                                 | -3.33                                     | 0.30                                 |
| GAL_/0./0+0.34                                                                                           | n200                                             | 13.02                                              | 0.10                                          | +.203e+13                                                                  | 3.2930+12                                                                  | 11.14                                      | 0.09                                      | 0.00                                 | 0.54                                 | -4.50                                     | 0.15                                 |
| GAL_75.78+0.34                                                                                           | H2CU                                             | 13.83                                              | 0.56                                          | 6.807e+13                                                                  | 8.793e+13                                                                  | 97.70                                      | 109.26                                    | 3.3/                                 | 0.22                                 | -3.69                                     | 0.07                                 |
| GAL_/5./8+0.34                                                                                           | п205<br>ис. 12. М                                | 13.54                                              | 0.01                                          | 3.503e+13                                                                  | 1.099e+12                                                                  | 49.42                                      | 3.09                                      | 3.56                                 | 0.09                                 | -3./1                                     | 0.05                                 |
| GAL_75.78+0.34                                                                                           | HC-13-N                                          | 12.43                                              | 0.04                                          | 2.689e+12                                                                  | 2.762e+11                                                                  | 44.43                                      | 7.82                                      | 4.29                                 | 0.24                                 | -3.03                                     | 0.13                                 |
| GAL_/5./8+0.34                                                                                           | nu-13-U+                                         | 12.52                                              | 0.06                                          | 3.333e+12                                                                  | 4.32/e+11                                                                  | 51.10                                      | 12.84                                     | 3.8/                                 | 0.11                                 | -3.32                                     | 0.06                                 |
| GAL_/0./8+0.34                                                                                           | HOCON7                                           | 12.08                                              | 0.08                                          | 4./92e+12                                                                  | 0.092e+11                                                                  | 00.70                                      | 18.21                                     | 4.89                                 | 0.26                                 | -3.21                                     | 0.11                                 |
| GAL_/5./8+0.34                                                                                           | HCCCNV/                                          | 12.64                                              | 0.40                                          | 4.414e+12                                                                  | 4.070e+12                                                                  | /9.10                                      | 00.66                                     | 4.43                                 | 0.98                                 | -2.90                                     | 0.44                                 |
| GAL_/5./8+0.34                                                                                           | nun<br>ucn                                       | 12.94                                              | 0.04                                          | 0./85e+12                                                                  | 1.528e+11                                                                  | 19.76                                      | 4.82                                      | 13.66                                | 0.48                                 | -4.61                                     | 0.28                                 |
| GAL_/5./8+0.34                                                                                           | ICN 15                                           | 13.00                                              | 0.06                                          | 1.000e+13                                                                  | 1.334e+12                                                                  | 96.02                                      | 15.32                                     | 3.80                                 | 0.12                                 | -1.05                                     | 0.05                                 |
| GAL_/5./8+0.34                                                                                           | NUN-15                                           | 11.85                                              | 0.11                                          | 1.036e+11                                                                  | 1.852e+11                                                                  | 39.81                                      | 12.82                                     | 4.04                                 | 0.62                                 | -3.37                                     | 0.43                                 |
| GAL_/5./8+0.34                                                                                           | nUU-18+                                          | 11.54                                              | 0.29                                          | 3.489e+11                                                                  | ∠.352e+11                                                                  | 10.08                                      | 33.26                                     | 3.24                                 | 1.33                                 | -2.08                                     | 0.50                                 |
| GAL_/5./8+0.34                                                                                           | nu5+                                             | 12.08                                              | U.17                                          | 1.200e+12                                                                  | 4.823e+11                                                                  | 43.34                                      | 909.17                                    | 2.71                                 | 1.28                                 | -3.10                                     | 0.51                                 |
| GAL (5. (8+0.34                                                                                          | 110.00                                           | 10 50                                              | ~ ~~                                          | - 169a+10                                                                  | · ////a+10                                                                 | 63 46                                      | 36.55                                     | 3.11                                 | 0.64                                 | -3 64                                     | 0.25                                 |
|                                                                                                          | HDCO                                             | 12.50                                              | 0.20                                          | 1 004                                                                      | 1.4730+12                                                                  | 04.00                                      | 10.05                                     |                                      | F 60                                 | 0.01                                      | 1 00                                 |
| GAL_75.78+0.34                                                                                           | HDCO<br>HDO                                      | 12.50<br>14.01                                     | 0.20                                          | 1.034e+14                                                                  | 1.090e+14                                                                  | 31.22                                      | 18.85                                     | 5.69                                 | 5.26                                 | -3.48                                     | 1.22                                 |
| GAL_75.78+0.34<br>GAL_75.78+0.34                                                                         | HDCO<br>HDO<br>HNC-13                            | 12.50<br>14.01<br>11.85                            | 0.20<br>0.46<br>0.15                          | 1.034e+14<br>7.157e+11                                                     | 1.090e+14<br>2.472e+11                                                     | 31.22<br>31.89                             | 18.85<br>43.47                            | 5.69                                 | 5.26<br>0.68                         | -3.48                                     | 1.22                                 |
| GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34                                     | HDCO<br>HDO<br>HNC-13<br>HNCO                    | 12.50<br>14.01<br>11.85<br>13.52                   | 0.20<br>0.46<br>0.15<br>0.06                  | 1.034e+12<br>1.034e+14<br>7.157e+11<br>3.296e+13                           | 1.473e+12<br>1.090e+14<br>2.472e+11<br>4.450e+12                           | 31.22<br>31.89<br>40.38                    | 18.85<br>43.47<br>6.89                    | 5.69<br>3.08<br>8.00                 | 5.26<br>0.68<br>3.17                 | -3.48<br>-3.59<br>-1.00                   | 1.22<br>0.30<br>0.91                 |
| GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34                                     | HDCO<br>HDO<br>HNC-13<br>HNCO<br>NO              | 12.50<br>14.01<br>11.85<br>13.52<br>15.26          | 0.20<br>0.46<br>0.15<br>0.06<br>0.21          | 1.034e+12<br>1.034e+14<br>7.157e+11<br>3.296e+13<br>1.815e+15              | 1.473e+12<br>1.090e+14<br>2.472e+11<br>4.450e+12<br>8.603e+14              | 31.22<br>31.89<br>40.38<br>100.00          | 18.85<br>43.47<br>6.89<br>49.26           | 5.69<br>3.08<br>8.00<br>4.33         | 5.26<br>0.68<br>3.17<br>0.99         | -3.48<br>-3.59<br>-1.00<br>-3.72          | 1.22<br>0.30<br>0.91<br>0.37         |
| GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34<br>GAL_75.78+0.34 | HDCO<br>HDO<br>HNC-13<br>HNCO<br>NO<br>NS<br>OCC | 12.50<br>14.01<br>11.85<br>13.52<br>15.26<br>13.00 | 0.20<br>0.46<br>0.15<br>0.06<br>0.21<br>11.28 | 1.034e+12<br>1.034e+14<br>7.157e+11<br>3.296e+13<br>1.815e+15<br>1.000e+13 | 1.473e+12<br>1.090e+14<br>2.472e+11<br>4.450e+12<br>8.603e+14<br>2.597e+14 | 31.22<br>31.89<br>40.38<br>100.00<br>12.69 | 18.85<br>43.47<br>6.89<br>49.26<br>147.91 | 5.69<br>3.08<br>8.00<br>4.33<br>3.38 | 5.26<br>0.68<br>3.17<br>0.99<br>2.21 | -3.48<br>-3.59<br>-1.00<br>-3.72<br>-3.37 | 1.22<br>0.30<br>0.91<br>0.37<br>0.48 |

| GAT 75 78+0 34  | 5-34-0    | 13 25 | 0 32  | 1 7700+13 | 1 3140+13 | 100 00 | 128 54  | 5 25  | 1 05   | -3 19  | 0.36  |
|-----------------|-----------|-------|-------|-----------|-----------|--------|---------|-------|--------|--------|-------|
| GAL 75 78+0 34  | S0        | 14.34 | 0.00  | 2.164e+14 | 2.381e+12 | 20.88  | 0.24    | 5.21  | 0.02   | -3.68  | 0.00  |
| GAL 75.78+0.34  | S02       | 14.17 | 0.01  | 1.463e+14 | 2.598e+12 | 59.08  | 1.43    | 5.70  | 0.10   | -3.36  | 0.04  |
| GAL 75.78+0.34  | SiO       | 12.10 | 0.09  | 1.262e+12 | 2.506e+11 | 59.93  | 11.56   | 5.36  | 0.89   | -3.97  | 0.54  |
| GCM+0.693-0.027 | CCH       | 14.57 | 0.03  | 3.696e+14 | 2.149e+13 | 42.15  | 5.37    | 13.45 | 0.40   | 4.61   | 0.20  |
| GCM+0.693-0.027 | CH2NH     | 14.21 | 0.01  | 1.625e+14 | 4.926e+12 | 27.77  | 2.33    | 22.87 | 0.78   | 1.92   | 0.32  |
| GCM+0.693-0.027 | CH3CCH    | 15.16 | 0.02  | 1.430e+15 | 5.559e+13 | 37.48  | 1.14    | 17.92 | 0.55   | 3.98   | 0.31  |
| GCM+0.693-0.027 | CH30H     | 15.76 | 0.00  | 5.708e+15 | 5.202e+13 | 14.90  | 0.10    | 19.70 | 0.08   | 3.71   | 0.05  |
| GCM+0.693-0.027 | CS        | 12.84 | 0.11  | 6.978e+12 | 1.790e+12 | 92.86  | 42.44   | 4.72  | 1.86   | -11.39 | 0.56  |
| GCM+0.693-0.027 | CS        | 14.04 | 0.23  | 1.087e+14 | 5.753e+13 | 10.78  | 0.65    | 13.10 | 1.32   | 4.00   | 1.50  |
| GCM+0.693-0.027 | CS        | 14.22 | 0.62  | 1.647e+14 | 2.342e+14 | 10.00  | 6.93    | 13.00 | 1.65   | 9.65   | 1.46  |
| GCM+0.693-0.027 | H2CO      | 13.90 | 11.85 | 7.950e+13 | 2.169e+15 | 15.79  | 699.15  | 11.29 | 13.88  | 9.67   | 0.43  |
| GCM+0.693-0.027 | H2CS      | 14.17 | 0.02  | 1.481e+14 | 7.520e+12 | 62.77  | 4.90    | 24.10 | 1.01   | 2.97   | 0.46  |
| GCM+0.693-0.027 | HC-13-N   | 15.28 | 0.68  | 1.896e+15 | 2.980e+15 | 2.87   | 0.17    | 9.45  | 3.42   | 9.75   | 0.88  |
| GCM+0.693-0.027 | HC-13-0+  | 13.53 | 0.21  | 3.383e+13 | 1.603e+13 | 4.68   | 0.40    | 10.23 | 2.66   | 6.54   | 0.85  |
| GCM+0.693-0.027 | NO        | 16.25 | 0.04  | 1.766e+16 | 1.759e+15 | 100.70 | 10.29   | 17.26 | 0.70   | 0.28   | 0.32  |
| GCM+0.693-0.027 | NS        | 13.35 | 0.13  | 2.237e+13 | 6.936e+12 | 23.25  | 9.61    | 14.16 | 1.32   | 4.70   | 0.69  |
| GCM+0.693-0.027 | OCS       | 14.92 | 0.13  | 8.348e+14 | 2.515e+14 | 49.93  | 10.47   | 23.53 | 1.07   | -0.56  | 0.50  |
| GCM+0.693-0.027 | SiO       | 13.00 | 0.22  | 1.000e+13 | 5.084e+12 | 31.02  | 37.74   | 18.30 | 2.50   | 6.43   | 1.33  |
| GCM+0.693-0.027 | SiO       | 13.00 | 0.47  | 1.000e+13 | 1.076e+13 | 13.98  | 5.62    | 13.13 | 3.33   | -9.65  | 1.63  |
| HH_80-81        | C-13-S    | 12.25 | 3.70  | 1.778e+12 | 1.517e+13 | 71.47  | 1152.70 | 2.11  | 0.69   | -0.01  | 0.29  |
| HH_80-81        | CCH       | 14.65 | 0.08  | 4.481e+14 | 8.585e+13 | 9.93   | 1.03    | 2.15  | 0.05   | 0.08   | 0.03  |
| HH_80-81        | CH3CCH    | 14.49 | 0.12  | 3.107e+14 | 8.404e+13 | 20.03  | 1.91    | 1.48  | 0.10   | -0.20  | 0.05  |
| HH_80-81        | CH30H     | 14.32 | 0.01  | 2.091e+14 | 6.331e+12 | 14.73  | 0.35    | 2.97  | 0.06   | 0.73   | 0.03  |
| HH_80-81        | CN        | 13.47 | 0.16  | 2.936e+13 | 1.092e+13 | 36.16  | 26.17   | 5.60  | 0.47   | -0.33  | 0.16  |
| HH_80-81        | CN        | 14.89 | 0.06  | 7.809e+14 | 1.118e+14 | 3.81   | 0.13    | 2.01  | 0.09   | 0.08   | 0.04  |
| HH_80-81        | CS        | 13.36 | 0.16  | 2.303e+13 | 8.734e+12 | 34.59  | 4.55    | 2.10  | 0.48   | 0.08   | 0.16  |
| HH_80-81        | CS        | 13.71 | 2.47  | 5.128e+13 | 2.915e+14 | 17.77  | 83.88   | 3.51  | 0.65   | 0.48   | 0.25  |
| HH_80-81        | CS-33     | 11.78 | 0.32  | 6.040e+11 | 4.454e+11 | 27.95  | 67.92   | 2.43  | 3.06   | 0.45   | 0.76  |
| HH_80-81        | CS-34     | 12.95 | 12.64 | 8.989e+12 | 2.617e+14 | 12.74  | 206.91  | 2.41  | 0.63   | 0.03   | 0.11  |
| HH_80-81        | H2CO      | 13.16 | 0.10  | 1.452e+13 | 3.229e+12 | 27.92  | 3.29    | 5.75  | 0.40   | 1.31   | 0.40  |
| HH_80-81        | H2CO      | 13.97 | 0.29  | 9.248e+13 | 6.086e+13 | 99.17  | 55.82   | 2.52  | 0.11   | 0.17   | 0.03  |
| HH_80-81        | H2CS      | 13.03 | 0.10  | 1.065e+13 | 2.529e+12 | 25.70  | 8.56    | 2.31  | 0.17   | 0.01   | 0.09  |
| HH_80-81        | HC-13-N   | 12.09 | 0.06  | 1.218e+12 | 1.691e+11 | 43.21  | 8.05    | 3.01  | 0.27   | 0.20   | 0.16  |
| HH_80-81        | HC-13-0+  | 12.33 | 0.04  | 2.154e+12 | 1.828e+11 | 100.00 | 7.94    | 2.00  | 0.08   | -0.03  | 0.05  |
| HH 80-81        | HCN       | 13.76 | 0.10  | 5.816e+13 | 1.342e+13 | 7.70   | 0.44    | 4.52  | 0.16   | 0.34   | 0.03  |
| HH_80-81        | HCO-18+   | 11.19 | 0.59  | 1.532e+11 | 2.071e+11 | 19.58  | 77.80   | 2.99  | 3.73   | 1.24   | 1.18  |
| HH 80-81        | HNC-13    | 11.63 | 0.70  | 4.254e+11 | 6.885e+11 | 17.01  | 46.91   | 2.66  | 1.73   | 0.05   | 0.54  |
| HH 80-81        | NO        | 14.89 | 0.40  | 7.713e+14 | 7.139e+14 | 57.13  | 64.93   | 2.00  | 0.46   | 0.13   | 0.16  |
| HH 80-81        | NS        | 12.56 | 0.31  | 3.616e+12 | 2.614e+12 | 100.00 | 98.88   | 2.48  | 1.97   | 0.47   | 0.61  |
| HH 80-81        | S-34-0    | 12.84 | 1.24  | 6.929e+12 | 1.973e+13 | 100.00 | 494.05  | 2.37  | 0.45   | -0.02  | 0.25  |
| HH 80-81        | SO        | 14.09 | 0.01  | 1.228e+14 | 2.086e+12 | 18.68  | 0.27    | 2.29  | 0.01   | 0.01   | 0.01  |
| HH 80-81        | S02       | 13.65 | 0.01  | 4.503e+13 | 1.509e+12 | 46.93  | 2.36    | 3,13  | 0.10   | 0.12   | 0.06  |
| L1157-MM        | CH30H     | 14.69 | 0.01  | 4.918e+14 | 1.036e+13 | 14.25  | 0.23    | 3.62  | 0.05   | -1.34  | 0.04  |
| L1157-MM        | CH30H     | 14.92 | 0.01  | 8.227e+14 | 1.476e+13 | 14.24  | 0.20    | 5.87  | 0.10   | -3.70  | 0.03  |
| L1157-MM        | CN        | 13.38 | 0.85  | 2.383e+13 | 4.638e+13 | 9.76   | 23.15   | 6.08  | 0.61   | -2.51  | 0.23  |
| L1157-MM        | CS        | 13.18 | 0.15  | 1.503e+13 | 5.167e+12 | 99.94  | 32.44   | 3.95  | 0.32   | -1.71  | 0.13  |
| L1157-MM        | CS        | 13.28 | 0.03  | 1.898e+13 | 1.436e+12 | 23.40  | 2.22    | 6.96  | 0.31   | -4.86  | 0.30  |
| L1157-MM        | H2C0      | 13.36 | 0.23  | 2.316e+13 | 1.218e+13 | 20.19  | 4.55    | 3.61  | 0.58   | -0.90  | 0.11  |
| L1157-MM        | H2CO      | 13.65 | 0.15  | 4.519e+13 | 1.539e+13 | 31.57  | 10.72   | 6.47  | 0.56   | -3.21  | 0.74  |
| L1157-MM        | HCN       | 13.28 | 0.91  | 1.905e+13 | 3.982e+13 | 7.11   | 5.80    | 11.25 | 3.71   | -7.47  | 1.66  |
| L1157-MM        | HCN       | 13.86 | 0.57  | 7.280e+13 | 9.605e+13 | 6.43   | 1.81    | 6.45  | 1.23   | -2.46  | 0.34  |
| L1157-MM        | SO        | 13.90 | 0.05  | 7.887e+13 | 8.777e+12 | 13.46  | 0.71    | 6.15  | 0.21   | -3.95  | 0.17  |
| L1157-MM        | SO        | 14.00 | 0.07  | 9.974e+13 | 1.622e+13 | 9.79   | 0.60    | 3.02  | 0.14   | -0.98  | 0.05  |
| L1157-MM        | SiO       | 12.48 | 0.10  | 3.036e+12 | 6.760e+11 | 40.31  | 4.73    | 11.75 | 2.06   | -10.33 | 1.36  |
| L1157-MM        | SiO       | 13.03 | 3.41  | 1.070e+13 | 8.394e+13 | 15.05  | 60.12   | 5.90  | 0.56   | -3.04  | 0.20  |
| L1448 MM-1      | СНЗОН     | 13.10 | 0.13  | 1.264e+13 | 3.796e+12 | 17.71  | 2.79    | 1.28  | 0.55   | 5.80   | 0.14  |
| L1448 MM-1      | CN        | 14.65 | 0.06  | 4.455e+14 | 6.199e+13 | 2,90   | 0.05    | 1.07  | 0.06   | 5.27   | 0.03  |
| L1448 MM-1      | CS        | 12.66 | 0.03  | 4.620e+12 | 2.820e+11 | 25.80  | 3.27    | 1.43  | 0.04   | 5.56   | 0.02  |
| L1448 MM-1      | DNC       | 11.97 | 0.10  | 9.253e+11 | 2.104e+11 | 10.17  | 1.94    | 1.01  | 0.07   | 5.18   | 0.03  |
| L1448 MM-1      | H2C0      | 12.51 | 3.77  | 3.264e+12 | 2.836e+13 | 13.02  | 110.12  | 1.12  | 0.10   | 5.76   | 0.05  |
| L1448 MM-1      | HCN       | 11.77 | 0.03  | 5.925e+11 | 4.538e+10 | 24.13  | 7.11    | 1.86  | 0.17   | 3.18   | 0.07  |
| L1448 MM-1      | HCN       | 12.19 | 0.12  | 1.564e+12 | 4.287e+11 | 18.23  | 12.03   | 2.35  | 0.10   | 6.74   | 0.04  |
| L1448_MM-1      | HDCO      | 12.00 | 0.16  | 9.987e+11 | 3.617e+11 | 39.23  | 24.94   | 0.92  | 0.17   | 5.51   | 0.08  |
| L1448_MM-1      | N2D+      | 11.93 | 0.03  | 8.577e+11 | 6.043e+10 | 24.14  | 5.58    | 0.50  | 0.02   | 5.28   | 0.01  |
| NGC6334-29      | C-13-H3CN | 12.38 | 0.11  | 2.386e+12 | 6.096e+11 | 83.49  | 57.63   | 4.02  | 0.97   | -1.31  | 0.49  |
| NGC6334-29      | C-13-H3OH | 13.94 | 0.06  | 8.750e+13 | 1.170e+13 | 54.30  | 7.23    | 4.12  | 0.67   | -0.55  | 0.20  |
| NGC6334-29      | C-13-S    | 12.84 | 11.67 | 6.862e+12 | 1.843e+14 | 30.12  | 249.77  | 9.47  | 460.93 | -2.73  | 95.26 |
| NGC6334-29      | C-13-S    | 13.12 | 10.25 | 1.327e+13 | 3.131e+14 | 28.76  | 137.01  | 3.59  | 35.74  | -0.91  | 12.35 |
| NGC6334-29      | C2H5CN    | 13.38 | 0.03  | 2.380e+13 | 1.376e+12 | 147.07 | 18.61   | 5.49  | 0.34   | -1.70  | 0.18  |
| NGC6334-29      | CCH       | 14.45 | 0.32  | 2.801e+14 | 2.065e+14 | 18.46  | 18.63   | 9.68  | 2.66   | -1.04  | 0.81  |
| NGC6334-29      | CCH       | 14.69 | 0.32  | 4.881e+14 | 3.541e+14 | 16.22  | 17.25   | 3.05  | 0.58   | -0.29  | 0.12  |
| NGC6334-29      | CH2NH     | 13.34 | 0.05  | 2.206e+13 | 2.542e+12 | 39.38  | 5.62    | 5.04  | 0.58   | -1.34  | 0.26  |
| NGC6334-29      | CH3CCH    | 15.22 | 0.01  | 1.652e+15 | 3.281e+13 | 39.50  | 0.68    | 3.77  | 0.05   | -0.89  | 0.03  |
| NGC6334-29      | СНЗСНО    | 13.88 | 0.06  | 7.629e+13 | 1.138e+13 | 181.70 | 22.51   | 5.59  | 0.56   | -1.23  | 0.24  |
| NGC6334-29      | CH3CN     | 13.83 | 0.01  | 6.818e+13 | 1.557e+12 | 169.74 | 4.27    | 5.48  | 0.07   | -1.00  | 0.04  |
| NGC6334-29      | CH30CH3   | 15.02 | 0.02  | 1.045e+15 | 5.070e+13 | 135.01 | 6.39    | 5.27  | 0.30   | -0.89  | 0.12  |
| NGC6334-29      | СНЗОН     | 15.22 | 0.00  | 1.641e+15 | 1.322e+13 | 18.69  | 0.22    | 5.49  | 0.03   | -1.22  | 0.02  |
| NGC6334-29      | СНЗОН     | 15.28 | 0.00  | 1.891e+15 | 2.154e+13 | 127.86 | 1.68    | 4.33  | 0.04   | -0.70  | 0.02  |
| NGC6334-29      | CN        | 14.10 | 0.29  | 1.254e+14 | 8.431e+13 | 38.75  | 52.68   | 3.26  | 0.19   | 0.27   | 0.06  |
| NGC6334-29      | CN        | 15.43 | 0.06  | 2.711e+15 | 3.714e+14 | 4.53   | 0.14    | 7.22  | 0.23   | -1.23  | 0.18  |
| NGC6334-29      | CS        | 14.32 | 0.05  | 2.097e+14 | 2.358e+13 | 30.52  | 7.96    | 4.08  | 0.16   | -0.07  | 0.03  |
| NGC6334-29      | CS        | 14.50 | 0.06  | 3.145e+14 | 4.631e+13 | 99.18  | 23.36   | 11.21 | 0.20   | -1.55  | 0.08  |
| NGC6334-29      | CS-33     | 12.73 | 2.09  | 5.312e+12 | 2.561e+13 | 28.35  | 224.40  | 3.34  | 4.99   | -0.43  | 0.89  |
| NGC6334-29      | CS-33     | 12.96 | 1.24  | 9.035e+12 | 2.579e+13 | 100.00 | 188.79  | 8.46  | 14.94  | -1.72  | 6.33  |
| NGC6334-29      | CS-34     | 13.25 | 0.20  | 1.781e+13 | 8.298e+12 | 32.35  | 56.63   | 10.24 | 3.53   | -1.56  | 1.16  |
| NGC6334-29      | CS-34     | 13.50 | 0.34  | 3.165e+13 | 2.493e+13 | 58.50  | 107.90  | 3.69  | 0.51   | -0.64  | 0.15  |
| NGC6334-29      | DNC       | 12.26 | 0.75  | 1.803e+12 | 3.112e+12 | 47.42  | 152.68  | 2.81  | 1.08   | -1.52  | 0.48  |
| NGC6334-29      | H2CCO     | 13.69 | 0.02  | 4.873e+13 | 2.761e+12 | 65.06  | 7.13    | 4.63  | 0.28   | -0.74  | 0.14  |
| NGC6334-29      | H2CO      | 14.04 | 0.09  | 1.095e+14 | 2.274e+13 | 28.64  | 8.31    | 10.77 | 1.03   | -1.84  | 0.40  |
| NGC6334-29      | H2CO      | 14.11 | 0.14  | 1.294e+14 | 4.209e+13 | 21.25  | 36.56   | 4.00  | 0.77   | -0.69  | 0.07  |
| NGC6334-29      | H2CS      | 13.84 | 0.05  | 6.972e+13 | 7.965e+12 | 25.77  | 3.34    | 9.38  | 0.89   | -1.59  | 0.31  |

| NCC6224 20 | HOCS      | 14 00 | 0.02  | 1 040+14   | 6 7410+10              | 60.00  | 4 10    | 2 10  | 0.15  | 0 60  | 0.04  |
|------------|-----------|-------|-------|------------|------------------------|--------|---------|-------|-------|-------|-------|
| NGC6334 20 | H205      | 10.06 | 0.00  | 0.078+10   | 0.741e+12              | 09.90  | F4 24   | 10 01 | 0.15  | 1 02  | 1 06  |
| NGC6334-29 | HC-13-N   | 12.96 | 0.15  | 9.076e+12  | 2.790e+12              | 20.05  | 54.34   | 12.91 | 2.47  | -1.65 | 1.06  |
| NGC6334-29 | HC-13-N   | 13.25 | 0.45  | 1.780e+13  | 1.825e+13              | 50.72  | 108.96  | 4.51  | 0.38  | -0.07 | 0.11  |
| NGC6334-29 | HC-13-0+  | 12.54 | 0.29  | 3.460e+12  | 2.334e+12              | 58.86  | 47.71   | 9.99  | 2.01  | -1.87 | 1.26  |
| NGC6334-29 | HC-13-0+  | 12.86 | 0.05  | 7.267e+12  | 8.439e+11              | 26.83  | 10.01   | 3.34  | 0.25  | -0.45 | 0.08  |
| NGC6334-29 | HCC-13-CN | 12.55 | 0.76  | 3.541e+12  | 6.198e+12              | 243.00 | 1314.45 | 6.51  | 3.39  | -2.32 | 1.41  |
| NGC6334-29 | HCCCN     | 13 65 | 13 79 | 4 4530+13  | 1 414e+15              | 44 75  | 532 30  | 3 62  | 2 89  | -0.58 | 2 19  |
| NGC6224 20 | HCCCN     | 12 70 | 10.00 | E 020a+12  | 2 20Eo+1E              | 12 27  | 701 04  | 0.02  | 10 50 | 2 01  | 7 64  |
| NGC0334-29 | HCCCN Z   | 10.12 | 19.00 | 0.045 +40  | 2.3950+15              | 43.37  | 721.24  | 0.20  | 12.52 | -3.01 | 7.04  |
| NGC6334-29 | HCCCNV7   | 13.47 | 0.49  | 2.945e+13  | 3.339e+13              | 68.12  | 56.84   | 6.19  | 1.16  | -2.25 | 0.53  |
| NGC6334-29 | HCN-15    | 12.17 | 1.74  | 1.483e+12  | 5.945e+12              | 30.00  | 166.36  | 5.62  | 12.06 | -4.67 | 8.34  |
| NGC6334-29 | HCN-15    | 12.98 | 0.47  | 9.645e+12  | 1.041e+13              | 100.00 | 50.04   | 4.38  | 1.35  | -0.19 | 1.29  |
| NGC6334-29 | HCO-18+   | 12.08 | 0.65  | 1.196e+12  | 1.801e+12              | 13.69  | 21.56   | 3.16  | 1.57  | 0.29  | 0.65  |
| NGC6334-29 | HCOOCH3   | 14.78 | 0.05  | 6.037e+14  | 6.560e+13              | 285.40 | 28.51   | 5.94  | 0.21  | -0.62 | 0.12  |
| NGC6334 29 | HCS+      | 12 00 | 2 80  | 9 7720+12  | 6 2060+13              | 14 02  | 44.00   | 4 05  | 2 20  | 0.30  | 1 1/  |
| NGC0334-23 | UDO       | 14 15 | 2.00  | 1 406-114  | 0.2306+13              | 100.00 | 11.00   | 4.05  | 2.23  | -0.50 | 1.14  |
| NGC0334-29 | HDO       | 14.15 | 0.25  | 1.4200+14  | 8.060e+13              | 100.00 | 220.94  | 4.35  | 2.02  | -1.34 | 1.15  |
| NGC6334-29 | HNC-13    | 12.41 | 0.64  | 2.570e+12  | 3.763e+12              | 30.75  | 168.64  | 11.35 | 6.93  | -4.33 | 5.86  |
| NGC6334-29 | HNC-13    | 12.83 | 0.67  | 6.721e+12  | 1.035e+13              | 99.90  | 150.79  | 3.60  | 1.57  | -1.07 | 0.34  |
| NGC6334-29 | HNCO      | 14.24 | 0.11  | 1.748e+14  | 4.621e+13              | 25.03  | 3.71    | 8.00  | 0.75  | -0.82 | 0.39  |
| NGC6334-29 | NH2CH0    | 13.10 | 0.09  | 1.263e+13  | 2.611e+12              | 26.67  | 3.50    | 6.16  | 0.72  | -1.85 | 0.34  |
| NGC6334-29 | NO        | 14.95 | 6.28  | 8.957e+14  | 1.296e+16              | 9.28   | 80.97   | 3.25  | 3.73  | -0.90 | 1.37  |
| NGC6334-29 | NO        | 15 22 | 0.28  | 1 674e+15  | 1 085e+15              | 17 25  | 6 85    | 10 77 | 4 04  | -3 51 | 3 37  |
| NGC6224 20 | NG        | 12 00 | 11 20 | 1 0000+12  | 2 E00e+14              | 21 50  | 142.46  | 2 /1  | 21 00 | 0.67  | 11 55 |
| NGC0334-29 | 113       | 13.00 | 11.25 | 1.0000+13  | 2.0990+14              | 21.50  | 143.40  | 3.41  | 31.09 | -0.07 | 11.55 |
| NGC6334-29 | NS        | 13.07 | 7.66  | 1.1/6e+13  | 2.073e+14              | 26.30  | 199.02  | 7.23  | 55.21 | -2.15 | 19.45 |
| NGC6334-29 | OCS       | 14.45 | 0.47  | 2.812e+14  | 3.065e+14              | 46.28  | 27.14   | 3.72  | 0.73  | -0.96 | 0.15  |
| NGC6334-29 | OCS       | 14.81 | 0.48  | 6.481e+14  | 7.203e+14              | 36.79  | 17.41   | 8.25  | 1.02  | -2.67 | 0.74  |
| NGC6334-29 | S-33-0    | 13.19 | 1.22  | 1.566e+13  | 4.403e+13              | 24.10  | 80.55   | 4.93  | 3.88  | -0.75 | 1.92  |
| NGC6334-29 | S-34-0    | 13.12 | 1.73  | 1.330e+13  | 5.307e+13              | 100.00 | 374.44  | 2.93  | 4.54  | -0.66 | 1.26  |
| NGC6334-29 | 5-34-0    | 13 60 | 0.29  | 3 9430+13  | 2 610e+13              | 44 85  | 115 33  | 8 35  | 4 36  | _1 95 | 1 50  |
| NGC6224 20 | g 34 00   | 14 10 | 0.20  | 1 506-114  | 1 000-112              | 100.40 | 0.75    | 6.00  | 4.00  | 1 70  | 0.14  |
| NGC6334-29 | 5-34-02   | 14.10 | 0.03  | 1.526e+14  | 1.0960+13              | 109.46 | 0.75    | 0.30  | 0.27  | -1.79 | 0.14  |
| NGC6334-29 | 50        | 14.54 | 0.12  | 3.4466+14  | 9.802e+13              | 204.86 | 73.50   | 4.32  | 0.07  | -0.43 | 0.02  |
| NGC6334-29 | SO        | 14.56 | 0.34  | 3.651e+14  | 2.825e+14              | 191.72 | 191.31  | 13.49 | 0.25  | -2.98 | 0.15  |
| NGC6334-29 | S02       | 13.96 | 0.03  | 9.067e+13  | 7.208e+12              | 12.89  | 1.67    | 5.89  | 0.41  | -1.58 | 0.29  |
| NGC6334-29 | S02       | 14.95 | 0.01  | 8.995e+14  | 1.635e+13              | 137.77 | 2.90    | 6.95  | 0.08  | -1.44 | 0.04  |
| NGC6334-29 | SiO       | 12 16 | 0.66  | 1 439e+12  | 2 201e+12              | 48 53  | 707 10  | 3 97  | 4 25  | -0.29 | 1.33  |
| NGC6334 29 | 510       | 13 00 | 1 22  | 9 9010+12  | 2.2010+12              | 17 53  | 34 44   | 16.08 | 5.09  | 5 00  | 4.03  |
| NGC0334-23 | 510       | 13.00 | 1.22  | 0.050.40   | 2.7510113              | 17.00  | 07.47   | 10.00 | 0.05  | -5.00 | 4.03  |
| NGC6334-38 | C-13-5    | 13.53 | 0.08  | 3.3566+13  | 6.550e+12              | 57.83  | 27.47   | 3.12  | 0.15  | 1.46  | 0.07  |
| NGC6334-38 | CCH       | 15.30 | 0.05  | 1.973e+15  | 2.359e+14              | 10.38  | 0.50    | 3.21  | 0.11  | 1.78  | 0.04  |
| NGC6334-38 | CH3CCH    | 14.98 | 0.01  | 9.544e+14  | 1.547e+13              | 43.62  | 0.66    | 2.88  | 0.04  | 2.14  | 0.02  |
| NGC6334-38 | CH3CN     | 13.02 | 0.03  | 1.044e+13  | 7.399e+11              | 33.20  | 1.72    | 4.15  | 0.23  | 1.66  | 0.11  |
| NGC6334-38 | CH30H     | 14.94 | 0.00  | 8.681e+14  | 4.846e+12              | 21.74  | 0.15    | 3.72  | 0.02  | 1.48  | 0.01  |
| NGC6334-38 | CN        | 14 06 | 0.08  | 1 1470+14  | 1 9990+13              | 100 00 | 13 49   | 3 13  | 0 34  | 4 25  | 0.17  |
| NGC6224 28 | CN        | 15 00 | 0.00  | 1 0010+15  | 1.00000+10             | 7 50   | 0.16    | 2 65  | 0.04  | 1.20  | 0.06  |
| NGC0334-38 | CN        | 15.00 | 0.02  | 1.0010+15  | 4.3700+13              | 1.50   | 0.10    | 3.05  | 0.08  | 1.00  | 0.00  |
| NGC6334-38 | CU+       | 12.15 | 0.72  | 1.420e+12  | 2.351e+12              | 34.79  | 102.77  | 5.08  | 8.37  | 2.45  | 1.48  |
| NGC6334-38 | CS        | 13.94 | 0.02  | 8.738e+13  | 4.529e+12              | 37.14  | 0.34    | 13.08 | 0.62  | 1.51  | 0.17  |
| NGC6334-38 | CS        | 14.45 | 0.03  | 2.839e+14  | 1.698e+13              | 30.89  | 3.45    | 3.89  | 0.10  | 1.56  | 0.01  |
| NGC6334-38 | CS-33     | 13.21 | 0.09  | 1.611e+13  | 3.366e+12              | 44.91  | 42.66   | 3.14  | 0.26  | 1.49  | 0.12  |
| NGC6334-38 | CS-34     | 13.80 | 0.04  | 6.310e+13  | 5.440e+12              | 50.30  | 16.46   | 3 29  | 0.08  | 1.55  | 0.04  |
| NGC6224 28 | DNC       | 11 57 | 0.01  | 2 7010+11  | 4 0100+11              | 20.10  | 07 11   | 0.20  | 0.00  | 1 79  | 1 01  |
| NGC0334-38 | DNC       | 11.57 | 0.50  | 5.701e+11  | 4.9190+11              | 30.19  | 07.11   | 2.35  | 2.34  | 1.78  | 1.21  |
| NGC6334-38 | H2C-13-U  | 12.76 | 3.50  | 5.700e+12  | 4.595e+13              | 53.83  | 475.36  | 4.33  | 7.93  | 1.62  | 2.36  |
| NGC6334-38 | H2CCO     | 13.20 | 0.05  | 1.591e+13  | 1.735e+12              | 45.25  | 6.60    | 3.51  | 0.30  | 1.51  | 0.17  |
| NGC6334-38 | H2CO      | 14.00 | 1.98  | 1.000e+14  | 4.558e+14              | 53.21  | 250.54  | 4.88  | 1.27  | 0.55  | 1.11  |
| NGC6334-38 | H2CO      | 14.00 | 6.56  | 1.000e+14  | 1.511e+15              | 68.68  | 1070.60 | 3.08  | 0.25  | 2.55  | 0.11  |
| NGC6334-38 | H2CS      | 14.02 | 0.01  | 1.044e+14  | 1.204e+12              | 47.58  | 1.24    | 3.23  | 0.03  | 1.73  | 0.02  |
| NGC6334-38 | H2CS_34   | 12 37 | 0 44  | 2 337+12   | 2 378e+12              | 37 46  | 302 19  | 1 18  | 1 10  | 1 62  | 0.60  |
| NGC6334-30 | H205-54   | 10 64 | 0.11  | 4 2640+12  | 2.570e+12<br>2.500e+12 | 20 50  | 20 04   | 0 52  | 4 74  | 2 20  | 0.00  |
| NGC0334-38 | HC-13-N   | 12.04 | 0.35  | 4.3040+12  | 3.5000+12              | 22.00  | 20.94   | 9.00  | 4.74  | 2.30  | 0.80  |
| NGC6334-38 | HC-13-N   | 12.98 | 2.96  | 9.559e+12  | 6.512e+13              | 12.27  | 71.20   | 3.82  | 2.07  | 1.91  | 0.17  |
| NGC6334-38 | HC-13-0+  | 12.93 | 0.21  | 8.548e+12  | 4.136e+12              | 100.00 | 65.51   | 3.08  | 0.13  | 2.13  | 0.06  |
| NGC6334-38 | HCCCN     | 13.56 | 0.10  | 3.655e+13  | 8.681e+12              | 36.30  | 2.60    | 4.00  | 0.12  | 2.47  | 0.07  |
| NGC6334-38 | HCN       | 12.98 | 0.04  | 9.453e+12  | 8.477e+11              | 33.43  | 3.81    | 3.45  | 0.18  | -2.00 | 0.07  |
| NGC6334-38 | HCN       | 13.21 | 0.04  | 1.637e+13  | 1.637e+12              | 47.34  | 9.03    | 2.80  | 0.09  | 4.45  | 0.03  |
| NGC6334-38 | HCN       | 13.91 | 0.06  | 8 058e+13  | 1.066e+13              | 99 98  | 15.90   | 13 71 | 0.23  | 1.63  | 0.15  |
| NGC6334_38 | HCN_15    | 12 28 | 0 1 9 | 1 9150+10  | 8 1550+11              | 36 //  | 40 31   | 3 30  | 0 6/  | 2.00  | 0.30  |
| NCC6224 20 | UCO 19+   | 11 00 | 1 1 1 | 6 064-144  | 1 220-140              | 17 11  | -10.01  | 2.32  | 1 07  | 2.00  | 0.32  |
| NGC0334-30 | HCU-10+   | 11.60 | 1.14  | 6.264e+11  | 1.0300+12              | 17.11  | 92.63   | 3.07  | 1.97  | 3.11  | 0.75  |
| NGC0334-38 | пu3+      | 12.98 | 3.15  | 9.539e+12  | 0.919e+13              | 18.96  | 106.46  | 2.78  | 0.64  | 1.64  | 0.28  |
| NGC6334-38 | HNC-13    | 12.23 | 0.25  | 1.692e+12  | 9.675e+11              | 43.22  | 46.95   | 2.75  | 1.12  | 2.03  | 0.37  |
| NGC6334-38 | HNCO      | 13.38 | 0.11  | 2.377e+13  | 5.835e+12              | 23.04  | 3.48    | 5.00  | 0.47  | 2.59  | 0.27  |
| NGC6334-38 | NO        | 15.42 | 0.71  | 2.639e+15  | 4.288e+15              | 5.27   | 1.63    | 3.06  | 6.83  | 1.53  | 1.05  |
| NGC6334-38 | NS        | 13.22 | 0.37  | 1.662e+13  | 1.399e+13              | 28.56  | 67.89   | 3.57  | 0.96  | 1.90  | 0.33  |
| NGC6334-38 | OCS       | 14.55 | 0.28  | 3.552e+14  | 2.301e+14              | 30.52  | 6.81    | 4.11  | 0.36  | 1.57  | 0.14  |
| NGC6334-38 | S-34-0    | 13.12 | 1.76  | 1.304e+13  | 5.270e+13              | 16 86  | 41.57   | 3 23  | 2,83  | 1 44  | 0.94  |
| NGC6334_38 | SU        | 14 39 | 0 00  | 2 3860+14  | 2 6120+12              | 21 /2  | 0.24    | 3 58  | 0 01  | 1 64  | 0.01  |
| NCC6334 20 | 50        | 10 00 | 0.00  | 0 /87+10   | 1 062-112              | 1/ 50  | 15 17   | 0.00  | 1 00  | 1 75  | 1 09  |
| NGG6224 42 | 0 10 0    | 12.30 | 0.90  | 1 000 112  | 1 100 15               | 14.00  | 10.11   | 9.40  | 1.09  | 1.10  | 1.00  |
| NGC0334-43 | U-13-5    | 13.28 | 25.85 | 1.898e+13  | 1.130e+15              | 10.33  | 866.28  | 2.62  | 4.81  | 2.43  | 0.14  |
| NGC6334-43 | CCH       | 14.84 | 0.04  | 6.939e+14  | 6.583e+13              | 100.00 | 10.45   | 2.59  | 0.57  | 2.21  | 0.18  |
| NGC6334-43 | CH3CCH    | 14.86 | 0.02  | 7.308e+14  | 3.281e+13              | 31.25  | 0.87    | 3.04  | 0.08  | 2.05  | 0.03  |
| NGC6334-43 | CH3CN     | 13.17 | 0.15  | 1.472e+13  | 5.162e+12              | 17.64  | 2.03    | 4.00  | 0.57  | 2.58  | 0.28  |
| NGC6334-43 | CH30H     | 14.80 | 0.01  | 6.369e+14  | 7.358e+12              | 16.83  | 0.18    | 3.12  | 0.03  | 2.57  | 0.01  |
| NGC6334-43 | CN        | 14.49 | 0.05  | 3.098e+14  | 3.663e+13              | 7.59   | 0.13    | 2.36  | 0.09  | 1.80  | 0,05  |
| NGC6334-43 | CN        | 15 67 | 0 14  | 4.625e+1F  | 1.4600+15              | 2 91   | 0.20    | 2.00  | 0.28  | 2.00  | 0.14  |
| NCC6224 42 | 00        | 12 00 | 0.14  | 7 774      | 1.4006410              | 21 50  | U.22    | 2.00  | 0.20  | 2.00  | 0.14  |
| NGC0334-43 | 00        | 13.89 | 0.05  | 1 114e+13  | 0.2200+12              | 01.58  | 5.21    | 4.14  | 0.11  | 2.90  | 0.15  |
| NGC6334-43 | 68        | 14.07 | 0.03  | 1.165e+14  | 1.231e+12              | 47.63  | 5.19    | 2.77  | 0.03  | 1.55  | 0.02  |
| NGC6334-43 | CS-33     | 13.04 | 1.56  | 1.098e+13  | 3.941e+13              | 14.44  | 34.99   | 2.80  | 0.51  | 2.33  | 0.18  |
| NGC6334-43 | CS-34     | 13.63 | 0.05  | 4.231e+13  | 5.072e+12              | 17.50  | 1.87    | 2.74  | 0.12  | 2.20  | 0.04  |
| NGC6334-43 | DNC       | 11.85 | 0.30  | 7.155e+11  | 4.930e+11              | 11.65  | 4.34    | 2.34  | 2.48  | 2.06  | 0.57  |
| NGC6334-43 | H2CCO     | 13.65 | 0.35  | 4.452e+13  | 3.599e+13              | 17.55  | 4.99    | 4.35  | 0.75  | 1.93  | 0.45  |
| NGC6334-43 | H2C0      | 13 25 | 0 00  | 1.7980+12  | 3 7130+13              | 24 05  | 37 07   | 2 86  | 1 70  | £ 15  | 2 10  |
| NGC6334 42 | H200      | 14 00 | 0.90  | 1 0000-110 | A 612-12               | 24.00  | 0 04    | 2.00  | 0 /7  | 1 70  | 2.10  |
| NGC0334-43 | 11200     | 12 75 | 0.20  | 1.000e+14  | 1 170 10               | 30.75  | 0.01    | 2.09  | 0.47  | 1./0  | 0.49  |
| NGC0334-43 | n205      | 13./5 | 0.01  | 5.009e+13  | 1.1/6e+12              | 33.54  | 1./6    | 2.89  | 0.06  | 2.18  | 0.03  |
| NGC6334-43 | HC-13-N   | 12.74 | U.12  | 5.499e+12  | 1.580e+12              | 87.87  | 29.32   | 2.99  | 0.49  | 2.20  | 0.16  |
| NGC6334-43 | HC-13-0+  | 13.11 | 0.35  | 1.286e+13  | 1.023e+13              | 6.90   | 1.38    | 2.05  | 0.41  | 2.03  | 0.09  |
| NGC6334-43 | HCCCN     | 13.12 | 0.40  | 1.320e+13  | 1.209e+13              | 33.98  | 8.48    | 3.80  | 0.52  | 2.32  | 0.21  |
|            | HCN       | 14 53 | 0.07  | 3.408e+14  | 5.859e+13              | 8.23   | 0.05    | 3.96  | 0 17  | 2 18  | 0 04  |

| NGG6224 42       | HON 15    | 11 07 | 0.24   | 0.000-111              | 7 171-111              | 12.00  | 12.00     | 0.60  | 1 20  | 0.11  | 0.41 |
|------------------|-----------|-------|--------|------------------------|------------------------|--------|-----------|-------|-------|-------|------|
| NGC0334-43       | HCN-15    | 11.97 | 0.34   | 9.220e+11<br>2.024e+11 | 0 422o+11              | 21 01  | 13.39     | 2.09  | 4 70  | 2.11  | 1 20 |
| NGC0334-43       | 100-10    | 10 41 | 1 1 2  | 0.560-110              | 2.4000-11              | 06.15  | 40.00     | 0.50  | 2.70  | 2.75  | 1.52 |
| NGC0334-43       | HCS+      | 12.41 | 1.13   | 2.560e+12              | 0.0/Se+12              | 26.15  | 80.63     | 2.50  | 3.52  | 2.33  | 0.00 |
| NGC6334-43       | HNC-13    | 12.24 | 0.36   | 1.735e+12              | 1.431e+12              | 61.89  | 76.84     | 2.04  | 0.58  | 1.61  | 0.20 |
| NGC6334-43       | NU        | 14.65 | 1.55   | 4.483e+14              | 1.603e+15              | 13.19  | 59.94     | 2.69  | 3.44  | 1.80  | 1.03 |
| NGC6334-43       | NS        | 13.14 | 0.34   | 1.371e+13              | 1.075e+13              | 29.25  | 73.56     | 2.58  | 0.62  | 2.28  | 0.23 |
| NGC6334-43       | UCS       | 14.31 | 1.36   | 2.024e+14              | 6.339e+14              | 30.66  | 32.38     | 3.67  | 1.70  | 2.85  | 0.62 |
| NGC6334-43       | SO        | 14.70 | 0.02   | 4.994e+14              | 2.467e+13              | 10.18  | 0.16      | 3.02  | 0.03  | 2.52  | 0.01 |
| NGC6334-I(N)     | C-13-H30H | 14.11 | 0.07   | 1.299e+14              | 2.200e+13              | 14.67  | 2.59      | 4.73  | 0.39  | -1.28 | 0.17 |
| NGC6334-I(N)     | C-13-S    | 13.04 | 0.68   | 1.102e+13              | 1.720e+13              | 43.36  | 317.19    | 2.89  | 0.30  | -1.81 | 0.13 |
| NGC6334-I(N)     | CCH       | 15.72 | 0.07   | 5.205e+15              | 8.499e+14              | 6.00   | 0.13      | 2.53  | 0.16  | -1.14 | 0.06 |
| NGC6334-I(N)     | CH2NH     | 13.05 | 0.05   | 1.134e+13              | 1.427e+12              | 22.08  | 4.78      | 3.40  | 0.44  | -1.71 | 0.23 |
| NGC6334-I(N)     | CH3CCH    | 15.44 | 0.03   | 2.763e+15              | 1.694e+14              | 20.69  | 0.45      | 2.79  | 0.05  | -1.75 | 0.03 |
| NGC6334-I(N)     | CH3CH0    | 13.88 | 0.07   | 7.540e+13              | 1.174e+13              | 19.48  | 1.10      | 3.54  | 0.35  | -1.55 | 0.15 |
| NGC6334-I(N)     | CH3CN     | 13.33 | 0.06   | 2.132e+13              | 3.171e+12              | 22.94  | 1.57      | 3.95  | 0.27  | -1.33 | 0.15 |
| NGC6334-I(N)     | CH30CH3   | 14.50 | 0.03   | 3.134e+14              | 2.072e+13              | 35.18  | 3.17      | 3.26  | 0.30  | -1.43 | 0.14 |
| NGC6334-I(N)     | CH30H     | 15.18 | 0.03   | 1.515e+15              | 1.094e+14              | 20.42  | 0.76      | 3.39  | 0.12  | -2.18 | 0.02 |
| NGC6334-I(N)     | CH30H     | 15.25 | 0.02   | 1.792e+15              | 8.260e+13              | 16.49  | 1.08      | 6.90  | 0.10  | -0.89 | 0.16 |
| NGC6334-I(N)     | CN        | 15.66 | 0.04   | 4.548e+15              | 4.076e+14              | 4.24   | 0.04      | 2.92  | 0.07  | -1.90 | 0.06 |
| NGC6334-I(N)     | CS        | 13.50 | 0.07   | 3.166e+13              | 4.891e+12              | 99.22  | 10.45     | 2.00  | 0.14  | -3.77 | 0.04 |
| NGC6334-I(N)     | CS        | 13.53 | 0.03   | 3.417e+13              | 2.045e+12              | 20.15  | 1.85      | 9.45  | 0.48  | 5.00  | 0.29 |
| NGC6334-I(N)     | CS        | 13.97 | 0.05   | 9.311e+13              | 1.082e+13              | 19.87  | 2.93      | 4.76  | 0.26  | 0.13  | 0.07 |
| NGC6334-I(N)     | CS-33     | 12.98 | 288.98 | 9.599e+12              | 6.387e+15              | 13.13  | 5051.55   | 2.51  | 17.21 | -1.69 | 0.33 |
| NGC6334-I(N)     | CS-34     | 13.46 | 0.04   | 2.907e+13              | 2.812e+12              | 57.64  | 13.47     | 3.23  | 0.12  | -1.89 | 0.05 |
| NGC6334-I(N)     | DNC       | 11.89 | 0.68   | 7.688e+11              | 1.200e+12              | 18.33  | 113.65    | 2.52  | 0.89  | -1.90 | 0.40 |
| NGC6334-I(N)     | H2C-13-0  | 13.16 | 0.37   | 1.455e+13              | 1.236e+13              | 30.98  | 55.49     | 3.46  | 0.46  | -1.49 | 0.20 |
| NGC6334-I(N)     | H2CCO     | 13.97 | 0.11   | 9.422e+13              | 2.312e+13              | 21.33  | 2.27      | 4.04  | 0.27  | -1.65 | 0.14 |
| NGC6334-I(N)     | H2C0      | 13.97 | 4.81   | 9.248e+13              | 1.025e+15              | 77.88  | 804.99    | 2.68  | 0.29  | -4.07 | 0.04 |
| NGC6334-I(N)     | H2C0      | 14.00 | 1.95   | 1.000e+14              | 4.483e+14              | 81.81  | 336.46    | 3.25  | 0.15  | 1.12  | 0.05 |
| NGC6334-I(N)     | H2CO      | 14.04 | 0.03   | 1.102e+14              | 6.706e+12              | 26.00  | 3.59      | 13.41 | 0.55  | -0.53 | 0.23 |
| NGC6334-I(N)     | H2CS      | 14.04 | 0.01   | 1.099e+14              | 1.506e+12              | 36.40  | 1.31      | 3.16  | 0.04  | -1.63 | 0.02 |
| NGC6334-I(N)     | HC-13-N   | 12.94 | 1.89   | 8.647e+12              | 3.754e+13              | 99.67  | 586.51    | 6.37  | 0.53  | -1.43 | 0.25 |
| NGC6334-I(N)     | HC-13-0+  | 12,51 | 0.25   | 3.249e+12              | 1.887e+12              | 17.88  | 20.17     | 3.24  | 0.23  | -1.45 | 0.08 |
| NGC6334-I(N)     | HCCCN     | 14.38 | 0.33   | 2.416e+14              | 1.818e+14              | 22.16  | 2.88      | 6.64  | 0.49  | -1.17 | 0.29 |
| NGC6334-I(N)     | HCN       | 12.90 | 7.44   | 7.986e+12              | 1.369e+14              | 99.98  | 2497.39   | 3.65  | 5.27  | 4.14  | 1.66 |
| NGC6334-I(N)     | HCN       | 13.04 | 0.06   | 1.087e+13              | 1.431e+12              | 43.71  | 23.46     | 3.32  | 0.58  | -5.60 | 0.07 |
| NGC6334-I(N)     | HCN       | 13.41 | 0.36   | 2.570e+13              | 2.149e+13              | 22.71  | 79.01     | 26.19 | 9.52  | 0.94  | 0.87 |
| NGC6334_T(N)     | HCN-15    | 11 83 | 1 33   | 6 835e+11              | 2 101+12               | 15 03  | 70 34     | 2 56  | 1 37  | -1 57 | 0 47 |
| NGC6334 I(N)     | HC0 18+   | 11 /2 | 0.36   | 2 6240+11              | 2.2000+11              | 33 10  | 67.04     | 2.00  | 1 60  | 0.78  | 0.91 |
| NGC6334 I(N)     | HCS+      | 13 00 | 36 31  | 1 0000+13              | 2.200e+11<br>8.361o+1/ | 14 40  | 598 11    | 2.17  | 1 31  | 1 01  | 0.30 |
| NGC6334 I(N)     | HDCS      | 13 05 | 0 57   | 8 99/0+13              | 1 18/0+1/              | 10.06  | 3 38      | 3 51  | 0.45  | 1 54  | 0.31 |
| NGC6334 I(N)     | HNC 13    | 12.20 | 116 58 | 1 9680+12              | 5 28/o+1/              | 17 11  | 037/ 82   | 2 9/  | 17 08 | 1 88  | 0.31 |
| NGC0334-I(N)     | HNC-13    | 14 25 | 0 10   | 1.900e+12              | 5.2040+14              | 16 21  | 1 67      | 2.94  | 0 50  | -1.00 | 0.23 |
| NGC0334-I(N)     | NOD       | 14.33 | 0.12   | 2.2190+14              | 1 001-110              | 20.31  | 1.07      | 7.00  | 0.52  | -0.50 | 1 52 |
| NGC0334-I(N)     | N2D+      | 11.74 | 0.00   | 5.530e+11              | 1.091e+12              | 33.17  | 201.10    | 3.90  | 0.02  | -2.01 | 1.55 |
| NGC0334-I(N)     | NO        | 15.10 | 0.00   | 1.4960+15              | 2.7020+14              | 25.43  | 15.30     | 2.05  | 0.30  | -1.72 | 0.16 |
| NGC6334-I(N)     | NS        | 14.50 | 1.48   | 3.161e+14              | 1.075e+15              | 8.20   | 6.50      | 2.74  | 0.31  | -1.87 | 0.11 |
| NGC6334-1(N)     | UCS       | 14.74 | 0.23   | 5.5066+14              | 2.863e+14              | 31.20  | 5.72      | 3.56  | 0.25  | -1.73 | 0.10 |
| NGC6334-1(N)     | S-34-0    | 12.98 | 0.29   | 9.606e+12              | 6.35/e+12              | 34.72  | 84.62     | 3.25  | 0.93  | -1.77 | 0.47 |
| NGC6334-1(N)     | SU        | 14.30 | 0.04   | 2.000e+14              | 1.751e+13              | 13.76  | 0.62      | 8.56  | 0.14  | 0.49  | 0.14 |
| NGC6334-1(N)     | SU        | 14.69 | 0.03   | 4.940e+14              | 3.012e+13              | 14.25  | 0.37      | 2.91  | 0.03  | -1.75 | 0.01 |
| NGC6334-I(N)     | S02       | 13.57 | 0.04   | 3.693e+13              | 3.134e+12              | 34.72  | 4.03      | 4.62  | 0.37  | -1.79 | 0.21 |
| NGC6334-I(N)     | SiO       | 13.04 | 0.07   | 1.086e+13              | 1.675e+12              | 63.40  | 25.41     | 13.13 | 0.87  | 0.76  | 0.47 |
| NGC_1333_IRAS_2A | CCH       | 13.56 | 0.09   | 3.655e+13              | 7.444e+12              | 82.12  | 19.73     | 2.00  | 0.15  | 0.14  | 0.24 |
| NGC_1333_IRAS_2A | CH30H     | 13.65 | 0.02   | 4.482e+13              | 2.431e+12              | 26.01  | 1.55      | 2.79  | 0.13  | 0.06  | 0.09 |
| NGC_1333_IRAS_2A | CN        | 14.80 | 0.05   | 6.276e+14              | 7.009e+13              | 3.00   | 0.04      | 1.30  | 0.06  | -0.24 | 0.03 |
| NGC_1333_IRAS_2A | CS        | 12.74 | 0.21   | 5.484e+12              | 2.643e+12              | 47.30  | 97.72     | 6.25  | 3.36  | 0.49  | 0.34 |
| NGC_1333_IRAS_2A | CS        | 12.98 | 509.73 | 9.572e+12              | 1.124e+16              | 100.00 | 183359.46 | 2.22  | 5.35  | -0.05 | 0.34 |
| NGC_1333_IRAS_2A | DNC       | 12.00 | 0.08   | 1.011e+12              | 1.957e+11              | 83.90  | 9.70      | 2.00  | 0.17  | -0.62 | 0.21 |
| NGC_1333_IRAS_2A | H2CO      | 12.86 | 0.13   | 7.226e+12              | 2.218e+12              | 35.95  | 18.21     | 2.64  | 0.11  | 0.00  | 0.07 |
| NGC_1333_IRAS_2A | HC-13-N   | 11.51 | 0.13   | 3.231e+11              | 9.412e+10              | 43.31  | 21.56     | 2.71  | 0.56  | -0.19 | 0.30 |
| NGC_1333_IRAS_2A | HC-13-0+  | 12.19 | 0.03   | 1.546e+12              | 9.333e+10              | 100.00 | 3.33      | 2.00  | 0.05  | 0.27  | 0.07 |
| NGC_1333_IRAS_2A | HCN       | 12.24 | 1.41   | 1.757e+12              | 5.698e+12              | 16.95  | 47.81     | 5.00  | 5.93  | -1.72 | 8.33 |
| NGC_1333_IRAS_2A | HCN       | 12.33 | 1.72   | 2.128e+12              | 8.418e+12              | 39.41  | 18.49     | 5.00  | 5.97  | 1.95  | 7.05 |
| NGC_1333_IRAS_2A | HCN-15    | 11.29 | 0.15   | 1.934e+11              | 6.781e+10              | 34.57  | 17.71     | 2.96  | 1.07  | 1.00  | 0.58 |
| NGC_1333_IRAS_2A | HDCO      | 12.48 | 0.12   | 3.032e+12              | 8.674e+11              | 48.46  | 19.24     | 3.18  | 0.34  | -0.19 | 0.21 |
| NGC_1333_IRAS_2A | HNC-13    | 11.43 | 0.22   | 2.669e+11              | 1.380e+11              | 51.23  | 19.63     | 2.00  | 0.95  | -0.49 | 0.34 |
| NGC_1333_IRAS_2A | NO        | 14.31 | 0.55   | 2.019e+14              | 2.545e+14              | 11.74  | 15.36     | 2.13  | 0.85  | 0.32  | 0.32 |
| NGC_1333_IRAS_2A | SO        | 13.31 | 0.04   | 2.022e+13              | 1.806e+12              | 18.79  | 1.55      | 4.03  | 0.13  | -0.21 | 0.09 |
| NGC_1333_IRAS_4A | C-13-S    | 12.24 | 0.12   | 1.730e+12              | 4.717e+11              | 44.62  | 12.14     | 5.92  | 1.25  | 1.89  | 0.79 |
| NGC_1333_IRAS_4A | CCH       | 13.75 | 0.37   | 5.646e+13              | 4.812e+13              | 90.84  | 106.57    | 5.07  | 0.68  | 1.25  | 0.32 |
| NGC_1333_IRAS_4A | CH30H     | 14.05 | 0.14   | 1.128e+14              | 3.716e+13              | 17.64  | 7.19      | 2.98  | 0.17  | 0.61  | 0.07 |
| NGC_1333_IRAS_4A | CH30H     | 14.71 | 0.06   | 5.076e+14              | 7.072e+13              | 16.48  | 2.65      | 11.79 | 0.26  | -0.78 | 0.16 |
| NGC_1333_IRAS_4A | CN        | 14.45 | 0.12   | 2.789e+14              | 7.837e+13              | 3.03   | 0.11      | 2.19  | 0.21  | 0.54  | 0.11 |
| NGC_1333_IRAS_4A | CS        | 13.02 | 0.02   | 1.035e+13              | 5.589e+11              | 51.19  | 5.38      | 2.53  | 0.07  | 0.24  | 0.03 |
| NGC_1333_IRAS_4A | CS        | 13.75 | 0.02   | 5.623e+13              | 3.212e+12              | 78.53  | 7.70      | 13.89 | 0.21  | 0.40  | 0.09 |
| NGC_1333_IRAS_4A | CS-34     | 12.55 | 0.09   | 3.540e+12              | 7.625e+11              | 45.05  | 33.60     | 7.83  | 1.10  | 0.36  | 0.56 |
| NGC_1333_IRAS_4A | DNC       | 11.83 | 0.15   | 6.785e+11              | 2.304e+11              | 30.16  | 37.79     | 2.36  | 0.32  | 0.98  | 0.15 |
| NGC_1333_IRAS_4A | H2CO      | 13.48 | 0.67   | 3.035e+13              | 4.691e+13              | 94.32  | 126.14    | 2.74  | 0.13  | 0.25  | 0.05 |
| NGC_1333_IRAS_4A | H2CO      | 13.62 | 0.09   | 4.217e+13              | 8.579e+12              | 33.12  | 13.00     | 13.19 | 0.44  | 0.58  | 0.16 |
| NGC_1333_IRAS_4A | H2CS      | 12.65 | 0.10   | 4.497e+12              | 1.065e+12              | 41.41  | 18.92     | 2.85  | 0.53  | 0.58  | 0.23 |
| NGC_1333_IRAS_4A | H2CS      | 13.34 | 0.29   | 2.177e+13              | 1.439e+13              | 14.38  | 4.22      | 11.99 | 2.82  | -1.25 | 1.05 |
| NGC_1333_IRAS_4A | HC-13-N   | 12.06 | 0.07   | 1.157e+12              | 1.912e+11              | 35.43  | 8.53      | 11.04 | 1.58  | 1.58  | 0.86 |
| NGC_1333_IRAS_4A | HC-13-0+  | 11.84 | 0.05   | 6.983e+11              | 7.591e+10              | 35.70  | 10.10     | 2.74  | 0.19  | 0.41  | 0.09 |
| NGC_1333_IRAS_4A | HCN       | 12.52 | 0.05   | 3.289e+12              | 3.515e+11              | 100.00 | 13.17     | 2.00  | 0.07  | -0.17 | 0.04 |
| NGC_1333_IRAS_4A | HCN       | 13.14 | 0.17   | 1.365e+13              | 5.318e+12              | 28.91  | 110.68    | 17.74 | 0.53  | 0.29  | 0.11 |
| NGC_1333_IRAS_4A | HCO-18+   | 11.29 | 0.47   | 1.930e+11              | 2.069e+11              | 15.95  | 32.92     | 2.71  | 2.34  | 1.93  | 0.70 |
| NGC_1333_IRAS_4A | HDCO      | 12.78 | 0.02   | 6.002e+12              | 3.045e+11              | 30.83  | 2.90      | 3.56  | 0.16  | 0.82  | 0.08 |
| NGC_1333_IRAS_4A | HNC-13    | 11.75 | 0.20   | 5.595e+11              | 2.524e+11              | 33.34  | 53.58     | 9.23  | 2.91  | 0.92  | 1.46 |
| NGC_1333_IRAS_4A | N2D+      | 12.26 | 0.14   | 1.803e+12              | 5.733e+11              | 51.60  | 26.17     | 3.05  | 0.26  | 0.87  | 0.13 |
| NGC_1333_IRAS_4A | OCS       | 13.48 | 0.12   | 3.000e+13              | 8.012e+12              | 100.00 | 85.33     | 6.96  | 1.32  | 0.70  | 0.80 |
| NGC_1333_IRAS_4A | SO        | 13.44 | 0.03   | 2.744e+13              | 2.061e+12              | 18.01  | 1.19      | 2.59  | 0.08  | 0.69  | 0.03 |
| NGC_1333_IRAS_4A | SO        | 14.04 | 0.16   | 1.089e+14              | 4.010e+13              | 145.35 | 73.91     | 20.94 | 0.61  | 1.20  | 0.22 |
|                  |           |       |        |                        |                        |        |           |       |       |       |      |

| NCC 1222 TRAC 44 | 810       | 11 0/ | 0.00   | 6 067+11  | 2 EE10+11 | 11 00          | 6 04           | E 01  | 0.01  | 1 90  | 0 02 |
|------------------|-----------|-------|--------|-----------|-----------|----------------|----------------|-------|-------|-------|------|
| NGC_1333_TRAS_4A | 810       | 10.05 | 0.22   | 1 779+11  | 0.627o+10 | 44.00          | 262 64         | 0.01  | 2.21  | 14.06 | 0.03 |
| NGC_1333_IRAS_4A | 510       | 12.25 | 0.64   | 1.7760+12 | 2.63/e+12 | 94.22          | 262.64         | 9.01  | 2.01  | 14.06 | 0.77 |
| NGC_1333_IRAS_4A | SiO       | 12.38 | 0.07   | 2.419e+12 | 4.033e+11 | 46.00          | 3.37           | 13.54 | 2.73  | -7.15 | 1.18 |
| NGC_1333_IRAS_4B | CH30H     | 13.94 | 0.06   | 8.769e+13 | 1.298e+13 | 23.90          | 1.20           | 5.45  | 0.91  | -4.01 | 0.40 |
| NGC_1333_IRAS_4B | CH30H     | 14.68 | 0.01   | 4.827e+14 | 1.352e+13 | 18.45          | 0.24           | 4.92  | 0.11  | 2.42  | 0.07 |
| NGC 1333 TRAS 4B | CN        | 14.14 | 0.18   | 1.387e+14 | 5.760e+13 | 3.46           | 0.26           | 2.82  | 0.25  | 1.60  | 0.11 |
| NGC 1333 TRAS 4B | CS        | 13.14 | 0.06   | 1.367e+13 | 1.943e+12 | 100.00         | 17.76          | 3.06  | 0.12  | 2.43  | 0.05 |
| NGC 1333 TRAS AB | CS .      | 13 /7 | 0.02   | 2 9510+13 | 1 3730+12 | 50 99          | 5 85           | 13 11 | 0.35  | 1 44  | 0.14 |
| NGC_1000_TRAD_4D | 05        | 10.11 | 0.02   | 2.3316,13 | 1.0700112 | 50.33          | 0.00           | 15.11 | 0.00  | 1.11  | 4.55 |
| NGC_1333_IRAS_4B | CS-34     | 12.83 | 0.11   | 6.747e+12 | 1.6/66+12 | 52.26          | 30.39          | 25.00 | 2.37  | 2.22  | 1.55 |
| NGC_1333_IRAS_4B | DNC       | 11.97 | 0.07   | 9.354e+11 | 1.527e+11 | 33.49          | 12.44          | 2.79  | 0.27  | 1.91  | 0.14 |
| NGC_1333_IRAS_4B | H2CO      | 13.53 | 0.37   | 3.372e+13 | 2.854e+13 | 44.02          | 48.68          | 12.16 | 0.63  | 1.54  | 0.23 |
| NGC_1333_IRAS_4B | H2CO      | 13.75 | 0.08   | 5.617e+13 | 1.044e+13 | 100.00         | 16.02          | 3.59  | 0.15  | 1.87  | 0.05 |
| NGC_1333_IRAS_4B | H2CS      | 12.99 | 1.55   | 9.875e+12 | 3.530e+13 | 11.63          | 20.91          | 2.67  | 6.89  | 2.16  | 1.50 |
| NGC 1333 TRAS 4B | H2CS      | 13.42 | 0.09   | 2.648e+13 | 5.568e+12 | 75.78          | 21.17          | 15.00 | 3.76  | 2.08  | 0.78 |
| NGC 1333 TRAS 4B | HC_13_0+  | 11 64 | 0.07   | 4 3460+11 | 6 985e+10 | 43 96          | 9 58           | 2 65  | 0.20  | 2 77  | 0.15 |
| NCC 1222 TRAC 4P | HDCO      | 12 05 | 0.07   | 1 110+12  | 0.0000+10 | 64 10          | 14 10          | 6.06  | 0.20  | 2.11  | 0.10 |
| NGC_1333_IRAS_4B | IDCO      | 10.00 | 0.08   | 0.207-112 | 2.1400+12 | 54.19          | 14.12          | 10.20 | 0.29  | 2.92  | 0.22 |
| NGC_1333_1RAS_4B | HNCU      | 13.38 | 0.03   | 2.397e+13 | 1.914e+12 | 50.24          | 11.38          | 10.00 | 2.21  | 3.00  | 0.26 |
| NGC_1333_IRAS_4B | N2D+      | 12.51 | 0.17   | 3.203e+12 | 1.236e+12 | 57.38          | 35.44          | 3.05  | 0.16  | 2.12  | 0.08 |
| NGC_1333_IRAS_4B | SO        | 13.39 | 0.02   | 2.449e+13 | 1.341e+12 | 35.45          | 6.47           | 12.37 | 0.52  | -4.93 | 0.34 |
| NGC_1333_IRAS_4B | SO        | 13.77 | 0.03   | 5.948e+13 | 3.887e+12 | 14.91          | 0.60           | 3.73  | 0.07  | 2.43  | 0.05 |
| NGC_1333_IRAS_4B | SiO       | 12.62 | 0.04   | 4.173e+12 | 4.146e+11 | 25.26          | 1.87           | 20.00 | 1.59  | -2.33 | 0.87 |
| NGC_2264         | C-13-S    | 12.46 | 0.18   | 2.892e+12 | 1.221e+12 | 43.60          | 40.04          | 7.14  | 2.15  | 0.78  | 1.22 |
| NGC 2264         | CCH       | 14.84 | 0.17   | 6.881e+14 | 2.757e+14 | 9.93           | 2.09           | 3.38  | 0.14  | 0.95  | 0.04 |
| NGC 2264         | СИЗССИ    | 14 28 | 0.03   | 1 8920+14 | 1 3810+13 | 49.28          | 4 38           | 4 04  | 0.21  | 1 24  | 0 14 |
| NGC 2264         | CHOON     | 14.00 | 0.00   | 7 0000+14 | 7 4160+10 | 17 40          | 0.16           | 1.01  | 0.21  | 0.07  | 0.02 |
| NGC_2204         | CHISCHI   | 14.50 | 0.00   | 1.5256114 | 7.4106/12 | 11.45          | 0.10           | 4.00  | 0.05  | 0.21  | 0.02 |
| NGC_2264         | CN        | 15.10 | 0.03   | 1.2030+15 | 7.767e+15 | 4.14           | 0.04           | 3.31  | 0.08  | 1.04  | 0.05 |
| NGC_2264         | 6J        | 13.32 | 0.05   | ∠.070e+13 | ∠.201e+12 | 47.03          | 8.44           | 18.51 | 1.32  | 1./8  | 0.69 |
| NGC_2264         | CS        | 13.81 | 0.37   | 6.391e+13 | 5.418e+13 | 18.64          | 15.04          | 4.03  | 0.21  | 0.38  | 0.03 |
| NGC_2264         | CS-33     | 12.44 | 0.20   | 2.759e+12 | 1.266e+12 | 47.49          | 39.87          | 8.75  | 2.47  | -0.08 | 1.62 |
| NGC_2264         | CS-34     | 12.96 | 0.51   | 9.225e+12 | 1.088e+13 | 15.21          | 13.64          | 3.83  | 0.43  | 0.61  | 0.22 |
| NGC_2264         | DNC       | 12.01 | 0.23   | 1.025e+12 | 5.486e+11 | 35.40          | 47.13          | 3.29  | 0.66  | 0.75  | 0.31 |
| NGC_2264         | H2CO      | 13.76 | 0.00   | 5.716e+13 | 4.675e+11 | 19.56          | 0.32           | 5.11  | 0.04  | 0.38  | 0.02 |
| NGC 2264         | H2CS      | 13.42 | 0.03   | 2.604e+13 | 1.769e+12 | 56.42          | 6.46           | 5.30  | 0.23  | 0.79  | 0.14 |
| NGC 2264         | HC_13_N   | 10.12 | 0 10   | 2 1374+10 | 4 9010+11 | 30 62          | 22.20          | 4 20  | 0 30  | 0 7/  | 0.20 |
| NGC 0064         | HC 12 0+  | 10 54 | 0.10   | 2.10/0+12 | 1 27010   | 00.00<br>61.00 | 22.20<br>AE 61 | 4.20  | 0.39  | 0.79  | 0.20 |
| NGC_2264         | HC-13-U+  | 12.51 | 0.19   | 3.199e+12 | 1.3/2e+12 | 61.63          | 45.61          | 3.38  | 0.14  | 0.78  | 0.06 |
| NGC_2264         | HCN       | 12.48 | 0.19   | 3.039e+12 | 1.303e+12 | 49.85          | 21.29          | 2.71  | 0.85  | 3.99  | 0.22 |
| NGC_2264         | HCN       | 12.91 | 0.02   | 8.140e+12 | 4.510e+11 | 47.92          | 5.87           | 3.14  | 0.13  | -1.81 | 0.04 |
| NGC_2264         | HCN       | 12.97 | 0.04   | 9.233e+12 | 7.962e+11 | 32.27          | 17.98          | 28.92 | 3.20  | 1.75  | 0.75 |
| NGC_2264         | HCN-15    | 11.77 | 0.25   | 5.886e+11 | 3.380e+11 | 27.51          | 132.37         | 4.05  | 1.51  | 0.05  | 0.65 |
| NGC_2264         | HCO+      | 12.42 | 0.11   | 2.609e+12 | 6.312e+11 | 12.33          | 2.06           | 2.48  | 0.34  | 3.78  | 0.09 |
| NGC 2264         | HCO+      | 12.69 | 0.03   | 4.870e+12 | 3.196e+11 | 32.05          | 16.29          | 17.50 | 1.21  | 1.27  | 0.35 |
| NGC 2264         | HCO+      | 13.00 | 0.42   | 1.000e+13 | 9.645e+12 | 60.02          | 112.32         | 2.61  | 0.09  | -1.25 | 0.01 |
| NGC 2264         | HCO 18+   | 11 60 | 0.12   | 3 9520+11 | 1 6690+11 | 33 57          | 27 73          | 3 20  | 1 07  | 1 64  | 0.56 |
| NGC_2204         | HC0-18+   | 11.00 | 0.18   | 3.9520+11 | 7.054 +11 | 53.57          | 21.13          | 3.29  | 1.07  | 1.04  | 0.50 |
| NGC_2264         | HCS+      | 12.34 | 0.15   | 2.1000+12 | 7.654e+11 | 51.47          | 19.45          | 4.61  | 1.35  | 1.31  | 0.62 |
| NGC_2264         | HDCU      | 12.89 | 0.05   | 7.675e+12 | 9.669e+11 | 44.81          | 8.38           | 4.39  | 0.20  | 0.18  | 0.13 |
| NGC_2264         | HNC-13    | 12.08 | 0.13   | 1.209e+12 | 3.526e+11 | 36.64          | 21.94          | 4.52  | 0.84  | 0.47  | 0.44 |
| NGC_2264         | N2D+      | 11.87 | 0.29   | 7.426e+11 | 5.001e+11 | 30.83          | 51.79          | 5.37  | 2.00  | 0.53  | 1.11 |
| NGC_2264         | NO        | 14.83 | 0.80   | 6.739e+14 | 1.246e+15 | 9.51           | 12.59          | 3.82  | 1.09  | 0.81  | 0.67 |
| NGC 2264         | SO        | 13.71 | 0.01   | 5.187e+13 | 1.156e+12 | 30.21          | 1.70           | 4.24  | 0.06  | 0.31  | 0.03 |
| NGC 2264         | SiO       | 12.34 | 0.05   | 2.184e+12 | 2.319e+11 | 38.23          | 26.22          | 7.00  | 0.79  | -0.56 | 0.39 |
| NGC 7538         | C 13 S    | 12 88 | 102 54 | 7 /090+12 | 1 7700+15 | 93.03          | 3/518 18       | 3 26  | 1 14  | 0.00  | 0.23 |
| NGC_7530         | CC13-5    | 14 00 | 0 14   | 0.625+14  | 2 1600+14 | 90.00<br>0 / E | 1 10           | 2 60  | 0.14  | -0.03 | 0.25 |
| NGC_7536         | CCH       | 14.90 | 0.14   | 9.6250+14 | 3.162e+14 | 0.45           | 1.10           | 3.62  | 0.14  | -0.41 | 0.06 |
| NGC_7538         | CH3CCH    | 15.21 | 0.19   | 1.61/e+15 | 7.210e+14 | 14.37          | 1.58           | 3.12  | 0.39  | -0.38 | 0.13 |
| NGC_7538         | CH3CN     | 12.89 | 0.08   | 7.755e+12 | 1.451e+12 | 244.44         | 42.66          | 3.95  | 0.51  | -1.35 | 0.20 |
| NGC_7538         | CH30H     | 14.38 | 0.01   | 2.417e+14 | 4.486e+12 | 24.30          | 0.87           | 3.09  | 0.06  | -0.44 | 0.03 |
| NGC_7538         | CH3OH     | 14.59 | 0.04   | 3.864e+14 | 3.335e+13 | 256.81         | 20.51          | 3.26  | 0.19  | -2.34 | 0.09 |
| NGC_7538         | CN        | 13.96 | 0.29   | 9.222e+13 | 6.239e+13 | 8.53           | 5.46           | 14.55 | 1.44  | -0.27 | 0.42 |
| NGC 7538         | CN        | 14.51 | 0.05   | 3.263e+14 | 3.541e+13 | 5.28           | 0.24           | 2.71  | 0.19  | -0.56 | 0.05 |
| NGC 7538         | CS        | 14 00 | 0.02   | 9 8940+13 | 3 960e+12 | 56.00          | 5 41           | 3 20  | 0 04  | 0.46  | 0.01 |
| NGC 7538         | CS CS     | 1/ 01 | 0.04   | 1 0220+14 | 1 0530+13 | 12 55          | 0.71           | 8 50  | 0.20  | 0.12  | 0.12 |
| NGC 7530         | CG 22     | 10.00 | 0.04   | 0 40440   | 1.0036+13 | 12.00          | 0.11           | 0.09  | 0.23  | 0.12  | 0.12 |
| NGC_7538         | CS-33     | 12.38 | 0.17   | 2.401e+12 | 9.4896+11 | 50.58          | 36.41          | 3.55  | 0.88  | 0.38  | 0.54 |
| NGC_/538         | UD-34     | 13.21 | 0.04   | 1.628e+13 | 1.048e+12 | 57.16          | 12.99          | 3.31  | U.15  | 0.17  | 0.07 |
| NGC_/538         | DNC       | 11.41 | 1.28   | 2.560e+11 | (.558e+11 | 22.52          | 11432.55       | 3.23  | 3.29  | -0.90 | 1.29 |
| NGC_7538         | H2CCO     | 12.93 | 0.07   | 8.590e+12 | 1.443e+12 | 66.06          | 14.15          | 2.70  | 0.59  | -1.06 | 0.22 |
| NGC_7538         | H2CO      | 13.91 | 1.70   | 8.086e+13 | 3.171e+14 | 86.34          | 300.99         | 11.64 | 2.37  | -0.96 | 0.63 |
| NGC_7538         | H2CO      | 14.00 | 0.73   | 1.000e+14 | 1.687e+14 | 64.04          | 109.58         | 3.79  | 0.25  | -0.52 | 0.05 |
| NGC_7538         | H2CS      | 13.54 | 0.02   | 3.444e+13 | 1.409e+12 | 47.77          | 4.05           | 3.72  | 0.15  | -0.12 | 0.06 |
| NGC_7538         | HC-13-N   | 12.88 | 0.56   | 7.524e+12 | 9.731e+12 | 94.25          | 168.07         | 4.23  | 0.24  | -0.26 | 0.10 |
| NGC_7538         | HC-13-0+  | 12.50 | 0.19   | 3.197e+12 | 1.403e+12 | 71.34          | 48.89          | 3.50  | 0.19  | -0.38 | 0.08 |
| NGC 7538         | HCCCN     | 13.40 | 0.48   | 2.498e+13 | 2.756e+13 | 28 13          | 7.01           | 4.08  | 0.49  | -0.68 | 0.27 |
| NCC 7538         | HCN       | 13 24 | 0.40   | 2.1000-10 | 3 866-110 | 16 46          | 1.01           | 4.00  | 0 20  | 0.50  | 0.04 |
| NGC 7520         | HON       | 12.04 | 0.00   | 2.1926+13 | 2 206-110 | 10.00          | 4.29           | 4.92  | 1 01  | -0.00 | 0.04 |
| NGC_/ 530        | HON AF    | 13.3/ | 0.06   | 2.3296+13 | 5.500e+12 | 59.55          | 0.13           | 14.60 | 1.01  | 0.60  | 0.19 |
| NGC_/538         | HUN-15    | 12.07 | 198.89 | 1.1/3e+12 | 5.3/3e+14 | 29.09          | 93868.02       | 3.76  | 27.11 | -0.37 | 0.40 |
| NGC_7538         | HNC-13    | 11.60 | 0.25   | 4.017e+11 | 2.349e+11 | 33.00          | 86.19          | 2.95  | 2.09  | -1.21 | 0.81 |
| NGC_7538         | NS        | 12.49 | 0.59   | 3.071e+12 | 4.162e+12 | 25.35          | 54.80          | 2.39  | 3.22  | -2.03 | 0.80 |
| NGC_7538         | SO        | 14.34 | 0.01   | 2.189e+14 | 7.362e+12 | 13.31          | 0.23           | 3.92  | 0.04  | 0.05  | 0.02 |
| NGC_7538         | S02       | 13.51 | 0.04   | 3.262e+13 | 3.094e+12 | 60.25          | 11.34          | 4.51  | 0.34  | -0.99 | 0.18 |
| NGC_7538         | SiO       | 11.74 | 0.51   | 5.530e+11 | 6.529e+11 | 51.77          | 219.03         | 3.47  | 3.60  | -1.12 | 0.98 |
| Orion-KL         | C-13-H30H | 15 95 | 0.03   | 8.994e+15 | 6.768e+14 | 140.00         | 8.22           | 5 69  | 0.19  | -0.64 | 0.11 |
| Orion-VI         | C_13_S    | 13 60 | 0.00   | 4 9250+12 | 4 2360+19 | 00 00          | 10 10          | A 91  | 1 07  | _0 05 | 0 50 |
| Orion VI         | 0-10-0    | 10.09 | 0.3/   | 1.0208+13 | 1.2000710 | 33.30          | +0.13          | 4.31  | 1.21  | -0.25 | 0.00 |
| Orion KI         | 0-13-3    | 10.00 | 0.11   | J.U2/0+13 | 2.23de+13 | 35.92          | 3.89           | 11.96 | 2.80  | -0.31 | 0.0/ |
| Urion-KL         | C-13-S-34 | 12.81 | 6.82   | ь.396e+12 | 1.004e+14 | 16.32          | 98.97          | 3.75  | 56.52 | 6.95  | 7.64 |
| Urion-KL         | C-13-S-34 | 13.50 | 0.28   | 3.162e+13 | 2.014e+13 | 54.76          | 64.58          | 8.69  | 8.57  | -1.66 | 3.76 |
| Urion-KL         | C2H3CN    | 14.96 | 0.02   | 9.057e+14 | 4.269e+13 | 202.61         | 9.62           | 11.47 | 0.36  | -4.04 | 0.24 |
| Orion-KL         | C2H5CN    | 15.11 | 0.03   | 1.281e+15 | 8.667e+13 | 236.70         | 14.88          | 7.06  | 0.27  | -3.64 | 0.08 |
| Orion-KL         | C2H5CN    | 15.38 | 0.01   | 2.395e+15 | 7.348e+13 | 115.20         | 4.33           | 21.69 | 0.54  | -5.47 | 0.23 |
| Orion-KL         | CH2NH     | 14.70 | 0.13   | 4.994e+14 | 1.454e+14 | 79.50          | 30.55          | 10.00 | 1.42  | -0.96 | 0.64 |
| Orion-KL         | CH3CCH    | 15.54 | 0.05   | 3.438e+15 | 3.819e+14 | 95.53          | 15.41          | 4.35  | 0.51  | 0.37  | 0.26 |
| Orion-KL         | CH3CN     | 15.64 | 0.01   | 4.328e+15 | 9.292e+13 | 229.57         | 4.99           | 13.84 | 0.11  | -1.82 | 0.06 |
| Orion-KL         | CH3COCH3  | 16 37 | 0 16   | 2.344+16  | 8 465e+15 | 308 30         | 42 89          | 8 50  | 0 49  | -1 39 | 0.34 |
| Orion KI         | CH30CH3   | 16 42 | 0.10   | 2.6970+10 | 8 0620+14 | 10E 10         | 3 01           | A 19  | 0.10  | 0 00  | 0.05 |
| Orion KI         | CUDOU     | 10.43 | 0.01   | 2.00/e+16 | 0.0030+14 | 120.19         | 3.84           | 4.13  | 0.10  | -0.80 | 0.05 |
|                  | ULIOUL    | 10.60 | 0.01   | ა.9490+16 | 9.052e+14 | 131.13         | 1.8/           | 4.34  | 0.04  | -0.25 | 0.02 |

| Onion KI  | CHOON              | 16 01 | 0.01   | 9 106+16               | 1 5450+15              | 104 01           | 0 55     | 11 67        | 0 11   | 1 01  | 0.07   |
|-----------|--------------------|-------|--------|------------------------|------------------------|------------------|----------|--------------|--------|-------|--------|
| Orion-KI  | CN                 | 14 19 | 0.01   | 1 556e+14              | 2 3440+13              | 15 20            | 2.00     | 3 29         | 0.11   | 0.22  | 0.19   |
| Orion-KL  | CN                 | 15.00 | 0.02   | 1.009e+15              | 5.508e+13              | 61.63            | 1.02     | 35.06        | 1.79   | -0.12 | 0.89   |
| Orion-KL  | CS                 | 14.68 | 0.15   | 4.751e+14              | 1.614e+14              | 99.93            | 60.55    | 4.17         | 0.18   | 1.10  | 0.05   |
| Orion-KL  | CS                 | 15.14 | 0.07   | 1.384e+15              | 2.194e+14              | 99.93            | 12.67    | 16.04        | 0.72   | -1.12 | 0.19   |
| Orion-KL  | CS                 | 15.24 | 0.03   | 1.749e+15              | 1.289e+14              | 35.92            | 3.70     | 30.65        | 1.12   | 0.59  | 0.29   |
| Orion-KL  | CS-33              | 13.88 | 0.21   | 7.533e+13              | 3.620e+13              | 40.16            | 1.11     | 14.19        | 4.83   | -1.35 | 2.07   |
| Orion-KL  | CS-33              | 14.00 | 0.35   | 1.000e+14              | 8.153e+13              | 12.57            | 0.92     | 4.63         | 2.00   | -0.14 | 0.44   |
| Orion-KL  | CS-34              | 14.17 | 0.10   | 1.493e+14              | 3.531e+13              | 70.52            | 30.11    | 4.44         | 0.33   | 0.07  | 0.12   |
| Orion-KL  | CS-34              | 14.46 | 0.06   | 2.903e+14              | 3.789e+13              | 68.61            | 12.96    | 17.73        | 1.08   | -1.70 | 0.57   |
| Orion-KL  | H2CCO              | 14.80 | 0.08   | 6.318e+14              | 1.225e+14              | 138.42           | 34.00    | 5.84         | 0.53   | -0.87 | 0.31   |
| Orion-KL  | H2CO               | 15.00 | 0.02   | 1.000e+15              | 5.112e+13              | 47.54            | 2.60     | 4.58         | 0.11   | 0.44  | 0.05   |
| Orion-KL  | H2CO               | 15.00 | 0.04   | 1.000e+15              | 8.651e+13              | 22.30            | 0.55     | 25.00        | 0.63   | 0.61  | 0.45   |
| Orion-KL  | H2CO               | 15.00 | 0.07   | 1.000e+15              | 1.523e+14              | 43.74            | 4.15     | 16.92        | 0.48   | -1.80 | 0.34   |
| Orion-KL  | H2CS               | 15.12 | 0.02   | 1.332e+15              | 6.248e+13              | 95.30            | 5.45     | 5.27         | 0.12   | -0.05 | 0.07   |
| Orion-KL  | HCCCN              | 14.12 | 8.42   | 1.320e+14              | 2.559e+15              | 481.60           | 11802.56 | 10.01        | 15.40  | 12.36 | 9.83   |
| Urion-KL  | HCCCN              | 14.33 | 0.70   | 2.11/e+14              | 3.425e+14              | 55.18            | 19.76    | 4.84         | 3.14   | 0.21  | 0.68   |
| Urion-KL  | HCCCN              | 14.91 | 0.25   | 8.120e+14              | 4.754e+14              | 120.95           | 47.82    | 17.62        | 5.37   | -4.18 | 4.59   |
| Orion KL  | HCCCNV7<br>HCCCNv7 | 14.41 | 0.40   | 2.5/0e+14              | 2.381e+14              | /34.49<br>655 00 | 461.61   | 17 50        | 1.65   | -3.70 | 0.36   |
| Orion KI  | HCOOCH3            | 16 24 | 0.15   | 1 7200+16              | 2.361e+14<br>4 662o+14 | 182 12           | 235.03   | 5 35         | 2.90   | -3.30 | 0.49   |
| Orion-KL  | HDCO               | 14.25 | 0.19   | 1.763e+14              | 7.792e+13              | 16.31            | 6.31     | 4.21         | 0.51   | 0.13  | 0.24   |
| Orion-KL  | HDO                | 15.99 | 0.02   | 9.681e+15              | 3.794e+14              | 107.62           | 9.10     | 9.48         | 0.31   | -2.45 | 0.16   |
| Orion-KL  | HNCO               | 15.37 | 0.02   | 2.327e+15              | 8.539e+13              | 40.70            | 1.83     | 10.00        | 0.23   | -1.90 | 0.10   |
| Orion-KL  | NO                 | 16.70 | 0.03   | 5.048e+16              | 3.320e+15              | 17.66            | 0.46     | 22.10        | 1.66   | -1.14 | 0.78   |
| Orion-KL  | NO                 | 16.79 | 0.14   | 6.098e+16              | 1.971e+16              | 7.30             | 0.69     | 5.27         | 0.70   | -0.32 | 0.30   |
| Orion-KL  | OCS                | 15.26 | 0.16   | 1.839e+15              | 6.690e+14              | 99.98            | 53.58    | 7.95         | 2.12   | -4.78 | 1.86   |
| Orion-KL  | OCS                | 15.54 | 0.11   | 3.487e+15              | 9.085e+14              | 99.98            | 23.12    | 5.00         | 0.46   | -0.34 | 0.18   |
| Orion-KL  | OCS                | 15.91 | 0.06   | 8.168e+15              | 1.105e+15              | 99.98            | 40.10    | 21.87        | 1.58   | -2.01 | 0.45   |
| Orion-KL  | S-33-0             | 15.44 | 0.04   | 2.745e+15              | 2.713e+14              | 100.00           | 11.63    | 40.00        | 4.47   | 4.22  | 1.36   |
| Orion-KL  | S-33-02            | 14.66 | 27.24  | 4.524e+14              | 2.837e+16              | 126.62           | 362.35   | 10.01        | 87.81  | 8.00  | 187.02 |
| Orion-KL  | S-33-02            | 15.13 | 8.88   | 1.337e+15              | 2.735e+16              | 100.18           | 352.43   | 16.00        | 251.32 | -4.20 | 164.96 |
| Orion-KL  | S-34-0             | 15.99 | 0.03   | 9.818e+15              | 7.296e+14              | 112.00           | 13.95    | 24.11        | 0.36   | 0.13  | 0.17   |
| Orion-KL  | S-34-02            | 14.95 | 0.17   | 8.945e+14              | 3.485e+14              | 39.57            | 9.78     | 8.82         | 2.06   | -3.45 | 0.46   |
| Orion-KL  | S-34-02            | 16.06 | 0.02   | 1.147e+16              | 5.830e+14              | 148.98           | 9.45     | 26.00        | 1.20   | 1.01  | 0.48   |
| Orion-KL  | SO                 | 17.30 | 2.87   | 1.981e+17              | 1.308e+18              | 56.99            | 476.05   | 30.10        | 4.10   | -0.97 | 2.26   |
| Urion-KL  | SU2                | 16.10 | 0.02   | 1.268e+16              | 4.830e+14              | 15.36            | 0.44     | 22.02        | 0.42   | -0.01 | 0.21   |
| Urion-KL  | SU2                | 16.22 | 0.07   | 1.6566+16              | 2.729e+15              | 246.30           | 18.47    | 8.90         | 1.53   | -2.55 | 0.25   |
| Orion KL  | 5U2<br>+ UCOOU     | 10.97 | 0.01   | 9.301e+16              | 2.8230+15              | 20 14            | 2.09     | 29.59        | 0.47   | 1.63  | 0.13   |
| U11011-VL | C 12 U20U          | 14.73 | 0.00   | 1 5790+14              | 9.039e+13              | 116 06           | 5.00     | 6.55         | 1 20   | -0.22 | 0.50   |
| W3(H20)   | C-13-H30H          | 14.20 | 0.12   | 1.5760+14              | 4.3050+13              | 100.90           | 5 48     | 4 54         | 0 43   | 2.49  | 0.30   |
| W3(H20)   | C-13-S             | 12 75 | 0.10   | 5 5860+12              | 6 041e+12              | 40.83            | 6 61     | 12 69        | 8.05   | _1 27 | 3 61   |
| W3(H2D)   | C-13-S             | 13.19 | 0.16   | 1.542e+13              | 5.674e+12              | 33.34            | 2.00     | 5.28         | 1.03   | 0.38  | 0.32   |
| W3(H20)   | C-13-S-34          | 12.34 | 0.45   | 2.171e+12              | 2.265e+12              | 33.60            | 1279.52  | 10.28        | 12.80  | 0.53  | 4.99   |
| W3(H2O)   | C2H5CN             | 13.41 | 0.02   | 2.557e+13              | 9.655e+11              | 112.83           | 7.18     | 9.23         | 0.30   | -0.11 | 0.18   |
| W3(H2O)   | CCH                | 14.86 | 0.14   | 7.294e+14              | 2.354e+14              | 15.34            | 5.89     | 5.14         | 0.22   | -0.27 | 0.06   |
| W3(H2O)   | CH3CCH             | 14.84 | 0.01   | 6.875e+14              | 8.347e+12              | 80.78            | 2.28     | 5.13         | 0.07   | 0.68  | 0.04   |
| W3(H2O)   | CH3CN              | 13.70 | 0.01   | 4.977e+13              | 1.031e+12              | 152.50           | 3.71     | 8.56         | 0.14   | 0.31  | 0.06   |
| W3(H2O)   | CH30CH3            | 14.55 | 0.05   | 3.517e+14              | 3.975e+13              | 22.51            | 3.18     | 8.64         | 0.68   | 0.50  | 0.48   |
| W3(H2O)   | CH30CH3            | 14.83 | 0.24   | 6.794e+14              | 3.740e+14              | 156.50           | 13.92    | 5.36         | 1.54   | -3.24 | 1.34   |
| W3(H2O)   | CH30CH3            | 14.99 | 0.16   | 9.840e+14              | 3.681e+14              | 108.32           | 13.41    | 5.77         | 0.87   | 1.73  | 0.84   |
| W3(H2O)   | CH30H              | 14.96 | 0.00   | 9.071e+14              | 6.042e+12              | 16.74            | 0.12     | 4.36         | 0.03   | 0.65  | 0.01   |
| W3(H2O)   | CH30H              | 15.24 | 0.01   | 1.745e+15              | 4.619e+13              | 151.50           | 1.72     | 4.09         | 0.05   | 2.20  | 0.02   |
| W3(H2O)   | СНЗОН              | 15.44 | 0.01   | 2.784e+15              | 4.855e+13              | 149.92           | 1.29     | 9.66         | 0.08   | 0.12  | 0.05   |
| W3(H2O)   | CN                 | 14.60 | 0.03   | 4.026e+14              | 2.751e+13              | 6.19             | 0.12     | 4.80         | 0.13   | -1.33 | 0.07   |
| W3(H2U)   | CS                 | 13.70 | 0.14   | 5.025e+13              | 1.613e+13              | 34.11            | 2.21     | 3.27         | 0.37   | -1.82 | 0.16   |
| W3(H2U)   | CS<br>CS           | 13.97 | 0.10   | 9.3696+13              | 2.232e+13              | 99.93            | 5.75     | 4.46         | 0.42   | 1.50  | 0.26   |
| W3(H2U)   | C5<br>(19.33       | 10.97 | 1 27   | 9.306e+13<br>3.515o+12 | 1 025o±13              | 19.70            | 2/0.39   | 0.04<br>3.51 | 2 30   | -0.50 | 0.46   |
| W3(H20)   | CS-33              | 13 09 | 0.18   | 1.226e+12              | 4.955e+12              | 35.96            | 1.80     | 7 31         | 1.49   | _0.09 | 0.83   |
| W3(H2D)   | CS-34              | 13.91 | 14.55  | 8.212e+13              | 2.752e+15              | 14.27            | 296.93   | 5.72         | 7.07   | 0.39  | 0.18   |
| W3(H2O)   | DNC                | 11.84 | 0.63   | 6.849e+11              | 9.930e+11              | 15.10            | 36.08    | 4.95         | 4.64   | 0.42  | 1.46   |
| W3(H2O)   | H2CCO              | 13.57 | 0.02   | 3.734e+13              | 1.943e+12              | 83.08            | 8.60     | 6.85         | 0.37   | 1.02  | 0.17   |
| W3(H2O)   | H2CO               | 13.25 | 0.32   | 1.774e+13              | 1.327e+13              | 22.23            | 1.01     | 3.61         | 1.24   | 2.34  | 0.70   |
| W3(H2O)   | H2CO               | 14.00 | 0.38   | 1.000e+14              | 8.830e+13              | 89.24            | 107.66   | 3.75         | 0.98   | -1.44 | 0.36   |
| W3(H2O)   | H2CO               | 14.00 | 0.46   | 1.000e+14              | 1.071e+14              | 83.62            | 134.23   | 9.24         | 2.95   | -0.18 | 0.68   |
| W3(H2O)   | H2CS               | 14.20 | 0.01   | 1.592e+14              | 1.981e+12              | 71.79            | 1.20     | 5.49         | 0.05   | 0.42  | 0.02   |
| W3(H2O)   | HC-13-N            | 13.17 | 0.05   | 1.473e+13              | 1.534e+12              | 46.74            | 10.45    | 6.74         | 0.21   | 0.48  | 0.10   |
| W3(H2O)   | HC-13-0+           | 12.73 | 138.99 | 5.425e+12              | 1.736e+15              | 13.59            | 4339.87  | 4.97         | 68.77  | -0.22 | 0.43   |
| W3(H2O)   | HCCCN              | 13.06 | 0.01   | 1.160e+13              | 2.048e+11              | 178.68           | 23.23    | 6.90         | 0.11   | 0.14  | 0.06   |
| W3(H2U)   | HCUCNV/            | 12.72 | 0.20   | 5.225e+12              | 2.42/e+12              | 82.87            | 37.12    | 8.33         | 1.39   | 0.95  | 0.45   |
| W3(H2U)   | N-13<br>HCO 18+    | 11 77 | 0.82   | 1.00Ue+12              | 1.43Ue+13<br>7 761a+14 | 92.58<br>18 01   | 240.01   | 0.18         | 0.00   | 1 10  | 0.27   |
| W3(H20)   | HC00CH3            | 14 62 | 0.57   | 0.922e+11              | 1.701e+11              | 162 53           | 6 24     | 4.93         | 2.90   | 2.46  | 0.16   |
| W3(H20)   | НСООСНЗ            | 14 70 | 0.03   | 5.0020+14              | 4.6816+13              | 239 20           | 12 76    | 4.10<br>6.16 | 0.20   | -2.40 | 0.34   |
| W3(H2D)   | HCS+               | 12.27 | 8.19   | 1.856e+12              | 3.499e+13              | 233.20           | 1945.34  | 2.89         | 93.04  | -2.69 | 34.02  |
| W3(H2O)   | HCS+               | 13.15 | 2.26   | 1.406e+13              | 7.316e+13              | 50,58            | 220.32   | 4.35         | 14.88  | 0.98  | 9.93   |
| W3(H2O)   | HDCO               | 12.91 | 0.04   | 8.139e+12              | 7.173e+11              | 38.87            | 5.29     | 5.88         | 0.38   | 0.76  | 0.16   |
| W3(H2O)   | HDCS               | 12.95 | 0.25   | 8.902e+12              | 5.143e+12              | 47.27            | 61.58    | 4.26         | 2.54   | 1.21  | 1.29   |
| W3(H2O)   | HNC-13             | 12.03 | 0.72   | 1.071e+12              | 1.767e+12              | 21.28            | 195.32   | 5.00         | 1.92   | -0.23 | 0.88   |
| W3(H2O)   | HNCO               | 13.65 | 0.11   | 4.438e+13              | 1.074e+13              | 36.58            | 9.70     | 8.00         | 1.21   | 1.00  | 0.55   |
| W3(H2O)   | NO                 | 15.12 | 0.53   | 1.304e+15              | 1.602e+15              | 16.17            | 57.54    | 6.05         | 1.58   | -0.30 | 0.67   |
| W3(H2O)   | NS                 | 13.57 | 0.17   | 3.692e+13              | 1.441e+13              | 100.00           | 52.17    | 6.13         | 0.72   | 0.89  | 0.32   |
| W3(H2O)   | OCS                | 14.55 | 0.01   | 3.563e+14              | 6.335e+12              | 131.95           | 21.50    | 7.42         | 0.12   | 0.38  | 0.05   |
| W3(H2O)   | S-33-0             | 14.07 | 1.91   | 1.185e+14              | 5.200e+14              | 9.58             | 11.15    | 7.49         | 4.10   | 0.35  | 1.64   |
| W3(H2O)   | S-34-0             | 13.66 | 0.04   | 4.591e+13              | 4.240e+12              | 41.99            | 36.42    | 6.88         | 0.66   | -0.27 | 0.31   |
| W3(H2U)   | SU                 | 14.74 | 0.00   | 5.551e+14              | 5.133e+12              | 65.19            | 1.97     | 6.29         | 0.01   | 0.02  | 0.01   |
| W3(H2U)   | 50+                | 13.33 | 0.39   | 2.141e+13              | 1.932e+13              | 61.32            | 143.10   | 4.81         | 2.13   | 0.60  | 0.81   |
| W3(H2U)   | 502                | 13.82 | 0.12   | 6.659e+13              | 1.900e+13              | 10.09            | 17.18    | 3.58         | 0.63   | -0.74 | 0.10   |
| W3(H2U)   | 502<br>902         | 10.97 | 0.04   | 3.320e+13              | 3.525e+12              | 148 00           | 1.98     | 0.52<br>0 00 | 0.28   | 0.24  | 0.28   |
| #J(1120)  | 502                | 14.01 | 0.01   | 1.0004+14              | 1.73/8713              | 1-10.00          | 0.17     | 0.90         | 0.23   | 0.03  | 0.13   |

| W3(H2O)       | SiO             | 13.01 | 0.04 | 1.021e+13 | 1.001e+12              | 65.53          | 13.51        | 7.60         | 0.46  | -0.23 | 0.24 |
|---------------|-----------------|-------|------|-----------|------------------------|----------------|--------------|--------------|-------|-------|------|
| W51           | C-13-H3OH       | 14.55 | 0.02 | 3.553e+14 | 1.710e+13              | 159.39         | 5.93         | 9.93         | 0.41  | 1.47  | 0.22 |
| W51           | C-13-S          | 13.24 | 0.08 | 1.729e+13 | 3.028e+12              | 47.52          | 25.41        | 8.98         | 0.68  | 1.98  | 0.32 |
| W51           | C-13-S-34       | 12.30 | 0.80 | 2.011e+12 | 3.716e+12              | 37.47          | 447.01       | 8.22         | 8.94  | 3.86  | 4.01 |
| W51           | CCH             | 14.05 | 1.51 | 1.134e+14 | 3.949e+14              | 16.61          | 105.82       | 4.61         | 1.61  | 3.73  | 0.24 |
| W51           | CCH             | 14.30 | 3.92 | 2.017e+14 | 1.822e+15              | 18.87          | 440.39       | 13.68        | 3.32  | 4.28  | 0.53 |
| W51           | CH2NH           | 13.22 | 0.07 | 1.653e+13 | 2.529e+12              | 53.44          | 10.88        | 9.00         | 1.19  | 3.88  | 0.56 |
| W51           | CH3CCH          | 14.68 | 0.01 | 4.766e+14 | 1.094e+13              | 62.45          | 2.72         | 7.45         | 0.27  | 3.49  | 0.11 |
| W51           | CH3CN           | 13.45 | 0.03 | 2.841e+13 | 1.660e+12              | 226.37         | 12.53        | 9.51         | 0.33  | 1.85  | 0.15 |
| W51           | CH30CH3         | 15.11 | 0.02 | 1.282e+15 | 4.792e+13              | 146.32         | 5.20         | 8.99         | 0.29  | 0.98  | 0.16 |
| W51           | СНЗОН           | 14.87 | 0.00 | 7.393e+14 | 6.368e+12              | 22.88          | 0.26         | 7.75         | 0.07  | 2.18  | 0.03 |
| W51           | CH3UH           | 15.33 | 0.01 | 2.162e+15 | 4.124e+13              | 257.17         | 4.02         | 9.32         | 0.13  | 1.99  | 0.06 |
| W51           | CN              | 14.93 | 0.04 | 8.500e+14 | 8.097e+13              | 3.83           | 0.06         | 6.04         | 0.28  | 2.76  | 0.14 |
| W51           | CS              | 13.13 | 0.41 | 1.358e+13 | 1.283e+13              | 35.67          | 0.34         | 5.56         | 3.04  | -2.33 | 1.35 |
| WD1<br>UE1    | CS<br>CS        | 14 00 | 0.12 | 4.013e+13 | 1.000e+13              | 12 25          | 0.07         | 6 40         | 2.06  | 2.99  | 1.17 |
| W51           | C2 33           | 14.00 | 0.10 | 6 792o+11 | 2.305e+13              | 30.00          | 111 10       | 2 78         | 3.67  | 3.06  | 1 40 |
| W51           | CS-33           | 13 00 | 9.00 | 9 973e+12 | 2 280e+14              | 14 44          | 227 30       | 10.02        | 2 29  | 2 02  | 1 44 |
| W51           | CS-34           | 12.61 | 6.07 | 4.067e+12 | 5.684e+13              | 31.81          | 65.50        | 5.04         | 25.28 | 4.11  | 3.57 |
| W51           | CS-34           | 13.34 | 2.91 | 2.207e+13 | 1.477e+14              | 15.63          | 34.06        | 9.09         | 7.80  | 2.38  | 7.68 |
| W51           | H2CCO           | 13.70 | 0.03 | 4.959e+13 | 3.730e+12              | 91.42          | 11.16        | 11.02        | 0.61  | 2.14  | 0.33 |
| W51           | H2CO            | 13.10 | 0.16 | 1.263e+13 | 4.771e+12              | 22.44          | 1.40         | 4.80         | 0.94  | 4.47  | 0.30 |
| W51           | H2CO            | 14.06 | 0.12 | 1.143e+14 | 3.108e+13              | 63.38          | 18.15        | 11.42        | 0.49  | 1.90  | 0.36 |
| W51           | H2CS            | 14.08 | 0.01 | 1.192e+14 | 3.406e+12              | 87.74          | 3.02         | 8.27         | 0.14  | 2.26  | 0.07 |
| W51           | HC-13-N         | 12.64 | 0.16 | 4.336e+12 | 1.645e+12              | 39.01          | 41.80        | 10.04        | 0.87  | 3.03  | 0.40 |
| W51           | HCCCN           | 13.51 | 0.08 | 3.270e+13 | 5.807e+12              | 44.53          | 3.05         | 11.38        | 0.32  | 3.46  | 0.18 |
| W51           | HCN             | 12.83 | 0.19 | 6.762e+12 | 2.947e+12              | 25.66          | 1.33         | 6.95         | 0.86  | -4.16 | 0.85 |
| W51           | HCN             | 12.90 | 0.10 | 7.986e+12 | 1.875e+12              | 20.00          | 0.74         | 35.00        | 9.81  | -1.34 | 3.38 |
| W51           | HCN             | 13.28 | 0.18 | 1.894e+13 | 7.708e+12              | 99.88          | 1.26         | 8.77         | 2.02  | 1.90  | 1.03 |
| W51           | HCN-15          | 12.15 | 0.15 | 1.409e+12 | 4.881e+11              | 35.75          | 33.59        | 8.70         | 1.97  | 2.99  | 0.94 |
| W51           | HCOOCH3         | 15.32 | 0.03 | 2.067e+15 | 1.269e+14              | 472.55         | 23.66        | 10.79        | 0.16  | 1.47  | 0.10 |
| W51           | HCS+            | 12.00 | 5.96 | 1.007e+12 | 1.382e+13              | 22.41          | 345.86       | 2.87         | 4.77  | 2.23  | 1.27 |
| W51           | HCS+            | 12.50 | 0.28 | 3.151e+12 | 2.051e+12              | 37.46          | 45.39        | 12.10        | 5.43  | 2.68  | 2.76 |
| W51           | HNC-13          | 11.86 | 0.27 | 7.167e+11 | 4.426e+11              | 33.42          | 48.95        | 7.61         | 3.13  | 1.98  | 1.75 |
| W51           | HNCU            | 15.52 | 0.02 | 3.294e+13 | 1.8856+12              | 45.94          | 4.27         | 10.00        | 1.07  | 4.00  | 0.24 |
| WD1<br>UE1    | NU              | 12 20 | 0.32 | 2.510e+15 | 1.000e+15<br>E 200e+10 | 100.00         | 79.04        | 9.04         | 2.3/  | 2.10  | 1.10 |
| W51           | 003             | 15.32 | 0.11 | 1 6210+15 | 3 8760+14              | 26 77          | 1 86         | 9.20         | 0.28  | 2.97  | 0.00 |
| W51<br>UE1    | d 34 D          | 12.21 | 0.10 | 1.670+12  | 3.870e+14              | 20.11          | 70 12        | 9.20         | 0.20  | 2.01  | 1 01 |
| W51           | S-34-0          | 14 52 | 0.11 | 3 3300+14 | 4.439e+12<br>3.413e+13 | 40.15          | 0.67         | 9.51         | 2.54  | 2 76  | 0.05 |
| W51           | S02             | 14.52 | 0.04 | 2 752e+14 | 1 1820+13              | 192 76         | 7 77         | 10 32        | 0.10  | 3 30  | 0.05 |
| W51           | SiO             | 12.50 | 0.96 | 3.162e+12 | 6.959e+12              | 21.85          | 61.74        | 8.74         | 5.97  | 3.85  | 1.79 |
| W51           | SiO             | 12.57 | 0.19 | 3.743e+12 | 1.678e+12              | 37.75          | 16.32        | 30.35        | 40.26 | 0.05  | 4.19 |
| W75N          | C-13-S          | 13.12 | 0.19 | 1.310e+13 | 5.601e+12              | 52.03          | 50.44        | 5.13         | 0.94  | 0.39  | 0.51 |
| W75N          | CCH             | 14.88 | 0.26 | 7.633e+14 | 4.647e+14              | 13.20          | 6.83         | 4.54         | 0.33  | -0.35 | 0.11 |
| W75N          | CH3CCH          | 14.88 | 0.02 | 7.541e+14 | 2.718e+13              | 54.00          | 2.63         | 4.66         | 0.14  | -0.10 | 0.09 |
| W75N          | CH3CN           | 13.73 | 0.02 | 5.426e+13 | 2.066e+12              | 169.26         | 7.14         | 8.06         | 0.20  | 0.04  | 0.10 |
| W75N          | СНЗОН           | 15.17 | 0.00 | 1.494e+15 | 1.116e+13              | 19.18          | 0.19         | 4.18         | 0.03  | -0.27 | 0.01 |
| W75N          | СНЗОН           | 15.50 | 0.01 | 3.187e+15 | 4.742e+13              | 206.76         | 2.89         | 8.24         | 0.08  | -0.66 | 0.04 |
| W75N          | CN              | 14.80 | 0.03 | 6.329e+14 | 4.963e+13              | 6.77           | 0.15         | 4.73         | 0.14  | 0.59  | 0.10 |
| W75N          | CS              | 13.92 | 0.04 | 8.316e+13 | 8.254e+12              | 38.54          | 0.66         | 10.72        | 0.63  | 0.42  | 0.21 |
| W75N          | CS              | 14.36 | 0.02 | 2.303e+14 | 9.157e+12              | 39.74          | 4.81         | 4.32         | 0.10  | 0.25  | 0.02 |
| W75N          | CS-33           | 12.98 | 2.77 | 9.572e+12 | 6.107e+13              | 14.49          | 63.38        | 5.17         | 2.22  | 0.08  | 1.05 |
| W75N          | CS-34           | 13.46 | 0.08 | 2.879e+13 | 5.628e+12              | 60.31          | 24.51        | 4.61         | 0.39  | 0.16  | 0.19 |
| W75N          | DNC             | 12.23 | 0.22 | 1.700e+12 | 8.553e+11              | 27.78          | 46.99        | 4.15         | 1.62  | -0.24 | 0.76 |
| W/5N          | H2CCU           | 13.84 | 0.03 | 6.941e+13 | 4.269e+12              | 80.03          | 8.69         | 10.21        | 0.46  | -0.18 | 0.32 |
| W/5N<br>UZEN  | n200            | 14 14 | 0.14 | 1.299e+13 | 2.292e+13              | 23.86          | 1.59         | 8.91         | 0.94  | 0.13  | 0.58 |
| W/DIN<br>W75N | H2CU            | 14.14 | 0.08 | 1 2170+14 | 2.0U20+13              | 20.18<br>65 00 | 3.58<br>9 41 | 4.41         | 0.30  | 0.95  | 0.09 |
| W75N<br>W75N  | п203<br>НС_13_N | 13 26 | 0.01 | 1 8110+19 | 2 705a±12              | 50.00<br>50 50 | 2.01         | 4.78<br>5.71 | 0.00  | -0.32 | 0.04 |
| W75N          | HC-13-0+        | 13.16 | 0.00 | 1.4516+13 | 2.8864+12              | 58 52          | 21 76        | 4 30         | 0.14  | -0.09 | 0.06 |
| W75N          | HCCCN           | 13.36 | 0.06 | 2.276e+13 | 3.370e+12              | 66.76          | 6.77         | 7.57         | 0.20  | 0.13  | 0.11 |
| W75N          | HCN             | 13.27 | 0.83 | 1.873e+13 | 3.599e+13              | 13.48          | 27.93        | 3.23         | 2,15  | -3.71 | 0.21 |
| W75N          | HCN             | 13.46 | 0.16 | 2.907e+13 | 1.058e+13              | 41.26          | 13.30        | 3.32         | 0.33  | 2.21  | 0.08 |
| W75N          | HCN             | 13.86 | 1.83 | 7.267e+13 | 3.065e+14              | 99.70          | 524.34       | 14.22        | 2.72  | -0.15 | 0.74 |
| W75N          | HCN-15          | 12.89 | 0.18 | 7.778e+12 | 3.225e+12              | 100.00         | 45.11        | 5.78         | 0.75  | 0.03  | 0.46 |
| W75N          | HCO-18+         | 12.28 | 0.24 | 1.920e+12 | 1.075e+12              | 45.08          | 42.23        | 5.46         | 1.41  | 1.00  | 0.82 |
| W75N          | HCS+            | 12.52 | 0.84 | 3.296e+12 | 6.375e+12              | 27.58          | 84.59        | 4.12         | 5.10  | -0.35 | 1.66 |
| W75N          | HDCO            | 13.13 | 4.07 | 1.341e+13 | 1.258e+14              | 50.00          | 750.66       | 8.06         | 6.18  | -0.36 | 2.89 |
| W75N          | HDO             | 14.31 | 0.20 | 2.052e+14 | 9.379e+13              | 100.00         | 112.79       | 8.24         | 3.68  | 0.45  | 2.09 |
| W75N          | HNC-13          | 12.50 | 2.15 | 3.149e+12 | 1.555e+13              | 73.14          | 550.39       | 4.02         | 1.49  | -0.81 | 0.61 |
| W75N          | HNCO            | 13.91 | 0.05 | 8.174e+13 | 9.718e+12              | 49.56          | 9.32         | 8.00         | 1.60  | 1.32  | 0.57 |
| W75N          | NO              | 15.74 | 0.31 | 5.504e+15 | 3.895e+15              | 100.00         | 73.82        | 6.18         | 1.35  | 0.30  | 0.78 |
| W75N          | NS              | 13.24 | 0.27 | 1.743e+13 | 1.064e+13              | 100.00         | 84.57        | 6.13         | 2.22  | -0.29 | 1.24 |
| W75N          | UCS             | 14.54 | 0.10 | 3.498e+14 | 7.822e+13              | 60.26          | 12.99        | 7.43         | 0.27  | -0.23 | 0.15 |
| W75N          | S-33-0          | 13.27 | 1.04 | 1.882e+13 | 4.528e+13              | 69.73          | 431.56       | 7.05         | 4.18  | -0.20 | 2.11 |
| W/5N          | 5-34-U          | 13.68 | 0.12 | 4.808e+13 | 1.358e+13              | 36.95          | 50.36        | 6.48         | 0.99  | 0.43  | 0.53 |
| W/DN<br>UZEN  | 202             | 14.68 | 0.01 | 4./öle+14 | 1.035e+13              | 32.84          | 1.61         | 5.4/         | 0.02  | 0.24  | 0.01 |
| W/DIN<br>UZEN | 3UZ             | 12 02 | 0.01 | 1.067-112 | 1.0330+13              | 112.93         | 1.70         | 7 74         | 0.07  | 0.63  | 0.04 |
| wron          | 01U             | 13.03 | 0.10 | 1.00/0+13 | 2.4210+12              | 01.31          | 20.91        | 1.14         | 0.05  | 0.55  | 0.49 |

## Bibliography

- 1. Oró, J. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions. *Nature* **191**, 1193–1194 (09/1961).
- Chyba, C., Thomas, P., Brookshaw, L. & Sagan, C. Cometary delivery of organic molecules to the early Earth. *Science* 249, 366–373. ISSN: 0036-8075 (1990).
- Raymond, S. N., Quinn, T. & Lunine, J. I. Making other earths: dynamical simulations of terrestrial planet formation and water delivery. *Icarus* 168, 1– 17. ISSN: 0019-1035 (2004).
- Indriolo, N. & McCall, B. J. Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H<sub>3</sub><sup>+</sup>. Astrophys. J. 745, 91 (2012).
- 5. Ferrière, K. M. The interstellar environment of our galaxy. *Rev. Mod. Phys.* **73**, 1031–1066 (2001).
- Bergin, E. A. & Tafalla, M. Cold dark clouds: the initial conditions for star formation. Annu. Rev. Astron. Astrophys. 45, 339–396 (2007).
- Ceccarelli, C. The hot corinos of solar type protostars in Star Formation in the Interstellar Medium: In Honor of David Hollenbach (eds Johnstone, D., Adams, F. C., Lin, D. N. C., Neufeeld, D. A. & Ostriker, E. C.) **323** (2004), 195.
- Kurtz, S., Cesaroni, R., Churchwell, E., Hofner, P. & Walmsley, C. M. Hot Molecular Cores and the Earliest Phases of High-Mass Star Formation. *Proto*stars and Planets IV, 299–326 (05/2000).
- Herbst, E. & van Dishoeck, E. F. Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009).
- Horn, A. et al. The gas-phase formation of methyl formate in hot molecular cores. Astrophys. J. 611, 605–614 (2004).
- Smith, I. W. Laboratory astrochemistry: gas-phase processes. Annu. Rev. Astron. Astrophys. 49, 29–66 (2011).
- Garrod, R., Wakelam, V. & Herbst, E. Non-thermal desorption from interstellar dust grains via exothermic surface reactions. *Astron. Astrophys.* 467, 1103– 1115 (2007).
- Garrod, R. T. & Widicus Weaver, S. L. Simulations of hot-core chemistry. Chem. Rev. 113, 8939–8960 (2013).
- Garrod, R., Park, I. H., Caselli, P. & Herbst, E. Are gas-phase models of interstellar chemistry tenable? The case of methanol. *Faraday Discuss.* 133, 51–62 (2006).

- Garrod, R. T., Weaver, S. L. W. & Herbst, E. Complex chemistry in starforming regions: an expanded gas-grain warm-up chemical model. *Astrophys.* J. 682, 283–302 (2008).
- Laas, J. C., Garrod, R. T., Herbst, E. & Widicus Weaver, S. L. Contributions from grain surface and gas phase chemistry to the formation of methyl formate and its structural isomers. *Astrophys. J.* **728**, 71–79 (2011).
- Cernicharo, J. *et al.* Discovery of the methoxy radical, CH<sub>3</sub>O, toward B1: dust grain and gas-phase chemistry in cold dark clouds. *Astrophys. J. Lett.* **759**, L43 (2012).
- Bacmann, A. & Faure, A. The origin of gas-phase HCO and CH<sub>3</sub>O radicals in prestellar cores. Astron. Astrophys. 587, A130 (2016).
- Oesterling, L. C., Albert, S., Lucia, F. C. D., Sastry, K. V. L. N. & Herbst, E. The millimeter- and submillimeter-wave spectrum of methyl formate. *Astro*phys. J. 521, 255 (1999).
- 20. Medvedev, I. *et al.* The millimeter- and submillimeter-wave spectrum of the trans-gauche conformer of diethyl ether. *J. Mol. Spectrosc.* **228**, 314–328 (2004).
- Carroll, P. B., Drouin, B. J. & Weaver, S. L. W. The submillimeter spectrum of glycolaldehyde. Astrophys. J. 723, 845 (2010).
- Mesko, A., Zou, L., Carroll, P. B. & Widicus Weaver, S. L. Millimeter and submillimeter spectrum of propylene oxide. J. Mol. Spectrosc. (2017).
- 23. McCarthy, M. C., Chen, W., Travers, M. J. & Thaddeus, P. Microwave spectra of 11 polyyne carbon chains. *Astrophys. J. Suppl. Ser.* **129**, 611–623 (2000).
- Grabow, J.-U., Palmer, E. S., McCarthy, M. C. & Thaddeus, P. Supersonicjet cryogenic-resonator coaxially oriented beam-resonator arrangement Fourier transform microwave spectrometer. *Rev. Sci. Instrum.* 76, 093106/1–11 (2005).
- Kaur, D. et al. Multipass cell for molecular beam absorption spectroscopy. Appl. Opt. 29, 119–124 (1990).
- Laas, J. C., Hays, B. M. & Widicus Weaver, S. L. Multipass millimeter-submillimeter spectrometer to probe dissociative reaction dynamics. J. Phys. Chem. A 117, 9548–9554 (2013).
- Zou, L., Hays, B. M. & Widicus Weaver, S. L. Weakly bound clusters in astrochemistry? Millimeter and submillimeter spectroscopy of trans-HO<sub>3</sub> and comparison to astronomical observations. J. Phys. Chem. A 120, 657–667 (2016).
- Brown, G. G. et al. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 79. doi:http://dx.doi. org/10.1063/1.2919120 (2008).
- Petkie, D. T. et al. A fast scan submillimeter spectroscopic technique. Rev. Sci. Instrum. 68, 1675–1683 (1997).

- Melnik, D. G., Gopalakrishnan, S., Miller, T. A., De Lucia, F. C. & Belov, S. Submillimeter wave vibration-rotation spectroscopy of Ar·CO and Ar·ND<sub>3</sub>. J. Chem. Phys. **114**, 6100–6106 (2001).
- Park, G. B., Steeves, A. H., Kuyanov-Prozument, K., Neill, J. L. & Field, R. W. Design and evaluation of a pulsed-jet chirped-pulse millimeter-wave spectrometer for the 70–102 GHz region. J. Chem. Phys. 135, 024202/1–10 (2011).
- 32. Hays, B. M. Rotational spectroscopy of  $O(^1D)$  insertion products PhD thesis (Emory University, 2015).
- Goldsmith, P. F. & Langer, W. D. Population diagram analysis of molecular line emission. Astrophys. J. 517, 209 (1999).
- Pickett, H. M. et al. Submillimeter, millimeter, and microwave spectral line catalog. J. Quant. Spectrosc. Radiative Trans. 60, 883–890 (1998).
- Agilent Technologies. Agilent E8257D PSG microwave analog signal generator data sheet (01/06/2012), 21.
- 36. QMC Instruments Ltd. Magnetically enhanced indium antimonide (InSb) hotelectron bolometer models QFI/XBI and QFI/XB (2011).
- Goldsmith, P. F. et al. Herschel measurements of molecular oxygen in Orion. Astrophys. J. 737, 96 (2011).
- Liseau, R. et al. Multi-line detection of O<sub>2</sub> toward ρ Ophiuchi A. Astron. Astrophys. 541, A73 (2012).
- Melnick, G. J. *et al.* Herschel search for O<sub>2</sub> toward the Orion Bar. Astrophys. J. 752, 26 (2012).
- Chen, J.-H. *et al.* Herschel HIFI observations of O<sub>2</sub> toward Orion: special conditions for shock enhanced emission. *Astrophys. J.* **793**, 111 (2014).
- Wirström, E. S., Charnley, S. B., Cordiner, M. A. & Ceccarelli, C. A search for O<sub>2</sub> in CO-depleted molecular cloud cores with Herschel. *Astrophys. J.* 830, 102 (2016).
- Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).
- Whittet, D. C. B. Oxygen depletion in the interstellar medium: implications for grain models and the distribution of elemental oxygen. Astrophys. J. 710, 1009 (2010).
- Klemperer, W. & Vaida, V. Molecular complexes in close and far away. Proc. Nat. Acad. Sci. 103, 10584–10588 (2006).
- Cooper, P. D., Moore, M. H. & Hudson, R. L. Infrared detection of HO<sub>2</sub> and HO<sub>3</sub> radicals in water ice. J. Phys. Chem. A **110**, 7985–7988 (2006).
- Zheng, W., Jewitt, D. & Kaiser, R. I. Mechanistical studies on the formation of isotopomers of hydrogen peroxide (HOOH), hydrotrioxy (HOOO), and dihydrogentrioxide (HOOOH) in electron-irradiated H<sup>18</sup><sub>2</sub>O/O<sub>2</sub> ice mixtures. *Phys. Chem. Chem. Phys.* 9, 2556–2563 (2007).

- 47. Le Picard, S. D., Tizniti, M., Canosa, A., Sims, I. R. & Smith, I. W. M. The thermodynamics of the elusive HO<sub>3</sub> radical. *Science* **328**, 1258–1262 (2010).
- Suma, K., Sumiyoshi, Y. & Endo, Y. Force-field calculation and geometry of the HOOO radical. J. Chem. Phys. 139, 094301/1–8 (2013).
- Varandas, A. J. C. Ab Initio treatment of bond-breaking reactions: Accurate course of HO<sub>3</sub> dissociation and revisit to isomerization. J. Chem. Theory Comput. 8, 428–441 (2012).
- 50. Suma, K., Sumiyoshi, Y. & Endo, Y. The rotational spectrum and structure of the HOOO radical. *Science* **308**, 1885–1886 (2005).
- 51. Murray, C., Derro, E. L., Sechler, T. D. & Lester, M. I. Weakly bound molecules in the atmosphere: a case study of HOOO. Acc. Chem. Res. 42, 419–427 (2009).
- 52. Speranza, M. Structure, stability, and reactivity of cationic hydrogen trioxides and thermochemistry of their neutral analogs. A Fourier-transform ion cyclotron resonance study. *Inorg. Chem.* **35**, 6140–6151 (1996).
- 53. Speranza, M. Stable vs metastable HOOO. An experimental solution for an evergreen theoretical dilemma. J. Phys. Chem. A 102, 7535–7536 (1998).
- 54. Derro, E. L., Sechler, T. D., Murray, C. & Lester, M. I. Observation of  $\nu_1 + \nu_n$  combination bands of the HOOO and DOOO radicals using infrared action spectroscopy. J. Chem. Phys. **128**, 244313/1–9 (2008).
- Cacace, F., de Petris, G., Pepi, F. & Troiani, A. Experimental detection of hydrogen trioxide. *Science* 285, 81–82 (1999).
- Nelander, B., Engdahl, A. & Svensson, T. The HOOO radical. A matrix isolation study. *Chem. Phys. Lett.* 332, 403–408 (2000).
- Derro, E. L., Murray, C., Sechler, T. D. & Lester, M. I. Infrared action spectroscopy and dissociation dynamics of the HOOO radical. *J. Phys. Chem. A* 111, 11592–11601 (2007).
- Murray, C., Derro, E. L., Sechler, T. D. & Lester, M. I. Stability of the hydrogen trioxy tadical via infrared action spectroscopy. J. Phys. Chem. A 111, 4727– 4730 (2007).
- Derro, E. L., Sechler, T. D., Murray, C. & Lester, M. I. Infrared action spectroscopy of the OD stretch fundamental and overtone transitions of the DOOO radical. J. Phys. Chem. A 112, 9269–9276 (2008).
- McCarthy, M. C., Lattanzi, V., Kokkin, D., Oscar Martinez, J. & Stanton, J. F. On the molecular structure of HOOO. J. Chem. Phys. 136, 034303/1–10 (2012).
- Liang, T., Magers, D. B., Raston, P. L., Allen, W. D. & Douberly, G. E. Dipole moment of the HOOO radical: resolution of a structural enigma. J. Phys. Chem. Lett. 4, 3584–3589 (2013).
- Raston, P. L., Liang, T. & Douberly, G. E. Infrared spectroscopy of HOOO and DOOO in <sup>4</sup>He nanodroplets. J. Chem. Phys. 137, 184302/1–7 (2012).

- Varandas, A. J. C. & Yu, H. G. Double many-body expansion potential energy surface for ground-state HO<sub>3</sub>. Mol. Phys. 91, 301–318 (1997).
- 64. Denis, P. A., Kieninger, M., Ventura, O. N., Cachau, R. E. & Diercksen, G. H. Complete basis set and density functional determination of the enthalpy of formation of the controversial HO<sub>3</sub> radical: a discrepancy between theory and experiment. *Chem. Phys. Lett.* **365**, 440–449 (2002).
- Mansergas, A., Anglada, J. M., Olivella, S., Ruiz-Lopez, M. F. & Martins-Costa, M. On the nature of the unusually long OO bond in HO<sub>3</sub> and HO<sub>4</sub> radicals. *Phys. Chem. Chem. Phys.* 9, 5865–5873 (2007).
- 66. Braams, B. J. & Yu, H.-G. Potential energy surface and quantum dynamics study of rovibrational states for  $HO_3$  ( $X^2A''$ ). *Phys. Chem. Chem. Phys.* **10**, 3150–3155 (2008).
- Varner, M. E., Harding, M. E., Gauss, J. & Stanton, J. F. On the geometry of the HO<sub>3</sub> radical. *Chem. Phys.* **346**, 53–55 (2008).
- Denis, P. A. & Ornellas, F. R. Theoretical characterization of hydrogen polyoxides: HOOH, HOOOH, HOOOOH, and HOOO. J. Phys. Chem. A 113, 499– 506 (2009).
- Varner, M. E., Harding, M. E., Vázquez, J., Gauss, J. & Stanton, J. F. Dissociation energy of the HOOO radical. J. Phys. Chem. A 113, 11238–11241 (2009).
- Anglada, J. M., Olivella, S. & Solé, A. On the dissociation of ground state trans-HOOO radical: a theoretical study. J. Chem. Theory Comput. 6, 2743– 2750 (2010).
- Beames, J. M., Lester, M. I., Murray, C., Varner, M. E. & Stanton, J. F. Analysis of the HOOO torsional potential. J. Chem. Phys. 134, 044304/1–9 (2011).
- 72. Varandas, A. J. C. Is HO<sub>3</sub> minimum cis or trans? An analytic full-dimensional ab initio isomerization path. *Phys. Chem. Chem. Phys.* **13**, 9796–9811 (2011).
- Varandas, A. J. C. On the stability of the elusive HO<sub>3</sub> radical. *Phys. Chem. Chem. Phys.* 13, 15619–15623 (2011).
- 74. Hoy, E. P., Schwerdtfeger, C. A. & Mazziotti, D. A. Relative energies and geometries of the cis- and trans-HO<sub>3</sub> radicals from the parametric 2-electron density matrix method. J. Phys. Chem. A 117, 1817–1825 (2013).
- Pickett, H. M. The fitting and prediction of vibration-rotation spectra with spin interactions. J. Mol. Spectrosc. 148, 371–377 (1991).
- Sears, T. J., Radford, H. E. & Moore, M. A. b-dipole transitions in trans-HOCO observed by far infrared laser magnetic resonance. J. Chem. Phys. 98, 6624–6631 (1993).
- Cohen, R. C. *et al.* Tunable far infrared laser spectroscopy of van der Waals bonds: vibration-rotation-tunneling spectra of Ar-H<sub>2</sub>O. J. Chem. Phys. 89, 4494-4504 (1988).

- Cohen, R. C., Busarow, K. L., Lee, Y. T. & Saykally, R. J. Tunable far infrared laser spectroscopy of van der Waals bonds: the intermolecular stretching vibration and effective radial potentials for Ar-H<sub>2</sub>O. J. Chem. Phys. 92, 169–177 (1990).
- Cohen, R. C. & Saykally, R. J. Multidimensional intermolecular dynamics from tunable far-infrared laser spectroscopy: angular-radial coupling in the intermolecular potential of Argon-H<sub>2</sub>O. J. Chem. Phys. 95, 7891–7906 (1991).
- Fraser, G., Lovas, F., Suenram, R. & Matsumura, K. Microwave spectrum of Ar-H<sub>2</sub>O: Dipole moment, isotopic studies, and <sup>17</sup>O quadrupole coupling constants. J. Mol. Spectrosc. 144, 97–112 (1990).
- Germann, T. C. & Gutowsky, H. S. Nuclear hyperfine interactions and dynamic state of H<sub>2</sub>O in Ar-H<sub>2</sub>O. J. Chem. Phys. 98, 5235–5238 (1993).
- Buckingham, A. D., Fowler, P. W. & Hutson, J. M. Theoretical studies of van der Waals molecules and intermolecular forces. *Chem. Rev.* 88, 963–988 (1988).
- Hutson, J. M. Intermolecular forces from the spectroscopy of van der Waals molecules. Annu. Rev. Phys. Chem. 41, 123–154 (1990).
- Nesbitt, D. J. & Lascola, R. Vibration, rotation, and parity specific predissociation dynamics in asymmetric OH stretch excited Ar-H<sub>2</sub>O: A half collision study of resonant V–V energy transfer in a weakly bound complex. J. Chem. Phys. 97, 8096–8110 (1992).
- 85. Kuma, S., Slipchenko, M. N., Momose, T. & Vilesov, A. F. Infrared spectra and intensities of Ar–H<sub>2</sub>O and O<sub>2</sub>–H<sub>2</sub>O complexes in the range of the  $\nu_3$  band of H<sub>2</sub>O. J. Phys. Chem. A **114**, 9022–9027 (2010).
- 86. Weida, M. J. & Nesbitt, D. J. High resolution mid-infrared spectroscopy of Ar–H<sub>2</sub>O: The  $\nu_2$  bend region of H<sub>2</sub>O. J. Chem. Phys. **106**, 3078–3089 (1997).
- Verdes, D. & Linnartz, H. Depletion modulation of Ar-H<sub>2</sub>O in a supersonic planar plasma. *Chem. Phys. Lett.* 355, 538–542 (2002).
- Liu, X. & Xu, Y. New rovibrational bands of the Ar-H<sub>2</sub>O complex at the ν<sub>2</sub> bend region of H<sub>2</sub>O. J. Mol. Spectrosc. **301**, 1–8 (2014).
- Hutson, J. M. Atom–asymmetric top van der Waals complexes: Angular momentum coupling in Ar–H<sub>2</sub>O. J. Chem. Phys. 92, 157–168 (1990).
- 90. Zwart, E. & Meerts, W. The submillimeter rotation-tunneling spectrum of Ar-D<sub>2</sub>O and Ar-NH<sub>3</sub>. Chem. Phys. 151, 407–418 (1991).
- Didriche, K. & Földes, T. High resolution spectroscopy of the Ar-D<sub>2</sub>O and Ar-HDO molecular complexes in the near-infrared range. J. Chem. Phys. 138. doi:http://dx.doi.org/10.1063/1.4794161 (2013).
- 92. Li, S., Zheng, R., Zhu, Y. & Duan, C. Rovibrational spectra of the Ar–D<sub>2</sub>O and Kr–D<sub>2</sub>O van der Waals complexes in the  $\nu_2$  bend region of D<sub>2</sub>O. J. Mol. Spectrosc. **272**, 27–31 (2012).

- Stewart, J. T. & McCall, B. J. Additional bands of the Ar–D<sub>2</sub>O intramolecular bending mode observed using a quantum cascade laser. J. Mol. Spectrosc. 282, 34–38 (2012).
- Cohen, R. C. & Saykally, R. J. Determination of an improved intermolecular global potential energy surface for Ar-H<sub>2</sub>O from vibration-rotation-tunneling spectroscopy. J. Chem. Phys. 98, 6007–6030 (1993).
- Zou, L. & Widicus Weaver, S. L. Direct measurement of additional Ar-H<sub>2</sub>O vibration-rotation-tunneling bands in the millimeter-submillimeter range. J. Mol. Spectrosc. **324**, 12–19 (2016).
- Suzuki, S., Bumgarner, R. E., Stockman, P. A., Green, P. G. & Blake, G. A. Tunable far-infrared laser spectroscopy of deuterated isotopomers of Ar-H<sub>2</sub>O. *J. Chem. Phys.* 94, 824–825 (1991).
- Rad, M. L., Zou, L., Sanders III, J. L. & Widicus Weaver, S. L. Global optimization and broadband analysis software for interstellar chemistry (GOBASIC). *Astron. Astrophys.* 585, A23 (2016).
- Blake, G. A., Masson, C. R., Phillips, T. G. & Sutton, E. C. The rotational emission-line spectrum of Orion A between 247 and 263 GHz. Astrophys. J. Suppl. Ser. 60, 357–374 (1986).
- Müller, H., Schlöder, F., Stutzki, J. & Winnewisser, G. The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005).
- 100. Geppert, W. D. *et al.* Dissociative recombination of protonated methanol. *Faraday Discuss.* **133**, 177–190 (2006).
- Snyder, L. E. Interferometric observations of large biologically interesting interstellar and cometary molecules. *Proc. Nat. Acad. Sci.* 103, 12243–12248 (2006).
- 102. Kaul, A. B. *et al.* Fabrication of wide-IF 200–300 GHz superconductor-insulatorsuperconductor mixers with suspended metal beam leads formed on silicon-oninsulator. *JVSTB* 22, 2417–2422 (2004).
- 103. Rice, F. *et al.* SIS mixer design for a broadband millimeter spectrometer suitable for rapid line surveys and redshift determinations. *Proc. SPIE* **4855**, 301–311 (2003).
- 104. Kooi, J. W. et al. A 275–425 GHz tunerless waveguide receiver based on AlNbarrier SIS technology. *IEEE Trans. Microw. Theory Techn.* 55, 2086–2096 (2007).
- Nummelin, A. et al. A three-position spectral line survey of Sagittarius B2 between 218 and 263 GHz. I. The observational data. Astrophys. J. Suppl. Ser. 117, 427 (1998).
- 106. Sutton, E. C., Blake, G. A., Masson, C. R. & Phillips, T. G. Molecular line survey of Orion A from 215 to 247 GHz. Astrophys. J. Suppl. Ser. 58, 341–378 (1985).

- 107. Blake, G. A., Sutton, E., Masson, C. & Phillips, T. Molecular abundances in OMC-1 – The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. 315, 621–645 (1987).
- 108. Mangum, J. G., Wootten, A., Wadiak, E. J. & Loren, R. B. Observations of the formaldehyde emission in Orion-KL-Abundances, distribution, and kinematics of the dense gas in the Orion molecular ridge. *Astrophys. J.* 348, 542–556 (1990).
- Minh, Y., Ohishi, M., Roh, D., Ishiguro, M. & Irvine, W. M. Interferometric observations for oxygen-containing organic molecules toward Orion-KL. Astrophys. J. 411, 773–777 (1993).
- Liu, S.-Y., Girart, J. M., Remijan, A. & Snyder, L. E. Formic Acid in Orion KL from 1 Millimeter Observations with the Berkeley-Illinois-Maryland Association Array. Astrophys. J. 576, 255 (2002).
- 111. Beuther, H. *et al.* Subarcsecond Submillimeter Continuum Observations of Orion KL. *Astrophys. J. Lett.* **616**, L31 (2004).
- 112. Friedel, D. N., Snyder, L. E., Remijan, A. J. & Turner, B. E. Detection of interstellar acetone toward the Orion-KL hot core. Astrophys. J. Lett. 632, L95 (2005).
- Beuther, H. et al. Submillimeter Array 440 μm/690 GHz Line and Continuum Observations of Orion KL. Astrophys. J. 636, 323–331 (2006).
- 114. Persson, C. M. *et al.* A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. *Astron. Astrophys.* **476**, 807–828 (2007).
- 115. Friedel, D. N. & Snyder, L. E. High-Resolution  $\lambda = 1 \text{ mm}$  CARMA Observations of Large Molecules in Orion-KL. Astrophys. J. 672, 962 (2008).
- 116. Crockett, N. R. et al. Herschel observations of EXtra-Ordinary Sources (HEXOS): The Terahertz spectrum of Orion KL seen at high spectral resolution. Astron. Astrophys. 521, L21 (2010).
- 117. Gupta, H. *et al.* Detection of  $OH^+$  and  $H_2O^+$  towards Orion KL. Astron. Astrophys. **521**, L47 (2010).
- Margulès, L. *et al.* Rotational Spectrum and Tentative Detection of DCOOCH<sub>3</sub>– Methyl Formate in Orion. *Astrophys. J.* **714**, 1120 (2010).
- 119. Favre, C. *et al.* HCOOCH<sub>3</sub> as a probe of temperature and structure in Orion-KL. *Astron. Astrophys.* **532**, A32 (2011).
- 120. Favre, C. *et al.* High-resolution Expanded Very Large Array Image of Dimethyl Ether (CH<sub>3</sub>)<sub>2</sub>O in Orion-KL. *Astrophys. J. Lett.* **739**, L12 (2011).
- 121. Zapata, L. A., Schmid-Burgk, J. & Menten, K. M. Orion KL: the hot core that is not a "hot core". Astron. Astrophys. 529, A24 (2011).

- Friedel, D. N. & Widicus Weaver, S. L. Complex organic molecules at high spatial resolution toward ORION-KL. II. Kinematics. Astrophys. J. Suppl. Ser. 201, 17 (2012).
- 123. Brouillet, N. *et al.* CH<sub>3</sub>OCH<sub>3</sub> in Orion-KL: a striking similarity with HCOOCH<sub>3</sub>? *Astron. Astrophys.* **550**, A46 (2013).
- 124. Crockett, N. R. *et al.* Herschel Observations of Extraordinary Sources: Analysis of the HIFI 1.2 THz Wide Spectral Survey toward Orion KL. I. Methods. *Astrophys. J.* **787**, 112 (2014).
- 125. Favre, C. *et al.* <sup>13</sup>C-Methyl formate: observations of a sample of high-mass star-forming regions Including Orion-KL and spectroscopic characterization. *Astrophys. J. Suppl. Ser.* **215**, 25 (2014).
- 126. Frayer, D. T. *et al.* The GBT 67-93.6 GHz Spectral Line Survey of Orion-KL. *Astron. J.* **149**, 162 (2015).
- 127. Morris, P. W. et al. Herschel/HIFI Spectral Mapping of C<sup>+</sup>, CH<sup>+</sup>, and CH in Orion BN/KL: The Prevailing Role of Ultraviolet Irradiation in CH<sup>+</sup> Formation. Astrophys. J. 829, 15 (2016).
- 128. Tahani, K. *et al.* Analysis of the Herschel/Hexos Spectral Survey Toward Orion South: A Massive Protostellar Envelope with Strong External Irradiation. *Astrophys. J.* 832, 12 (2016).
- Nummelin, A. et al. A Three-Position Spectral Line Survey of Sagittarius B2 between 218 and 263 GHz. II. Data Analysis. Astrophys. J. Suppl. Ser. 128, 213 (2000).
- 130. Snyder, L. E. *et al.* Confirmation of interstellar acetone. *Astrophys. J.* **578**, 245 (2002).
- 131. Friedel, D. N., Snyder, L. E., Turner, B. E. & Remijan, A. A Spectral Line Survey of Selected 3 Millimeter Bands toward Sagittarius B2(N-LMH) Using the National Radio Astronomy Observatory 12 Meter Radio Telescope and the Berkeley-Illinois-Maryland Association Array. I. The Observational Data. Astrophys. J. 600, 234 (2004).
- Leigh, D., Remijan, A. & Turner, B. Complete 2mm Spectral Line Survey (130-170 GHz) Of Sgr B2N, Sgr B2 OH, IRC+10 216, Orion (KL), Orion-S, W51M And W3(IRS5) in American Astronomical Society Meeting Abstracts 39 (12/2007), 961.
- 133. Belloche, A., Müller, H. S. P., Menten, K. M., Schilke, P. & Comito, C. Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M). Astron. Astrophys. 559, A47 (2013).
- Neill, J. L. *et al.* Herschel Observations of Extraordinary Sources: Analysis of the Full Herschel/HIFI Molecular Line Survey of Sagittarius B2(N). *Astrophys.* J. 789, 8 (2014).

- Miao, Y. & Snyder, L. E. Full Synthesis Observations of CH<sub>3</sub>CH<sub>2</sub>CN in Sagittarius B2: Further Evidence for Grain Chemistry. *Astrophys. J. Lett.* 480, L67 (1997).
- 136. Mehringer, D. M., Snyder, L. E., Miao, Y. & Lovas, F. J. Detection and Confirmation of Interstellar Acetic Acid. Astrophys. J. Lett. 480, L71 (1997).
- 137. Hollis, J. M., Lovas, F. J. & Jewell, P. R. Interstellar glycolaldehyde: the first sugar. Astrophys. J. 540, L107–L110 (2000).
- 138. Remijan, A., Snyder, L. E., Liu, S.-Y., Mehringer, D. & Kuan, Y.-J. Acetic Acid in the Hot Cores of Sagitarrius B2(N) and W51. Astrophys. J. 576, 264 (2002).
- 139. Hollis, J. M. *et al.* Detection of Acetamide (CH<sub>3</sub>CONH<sub>2</sub>): The Largest Interstellar Molecule with a Peptide Bond. *Astrophys. J. Lett.* **643**, L25 (2006).
- 140. Halfen, D. T., Apponi, A. J., Woolf, N., Polt, R. & Ziurys, L. M. A Systematic Study of Glycolaldehyde in Sagittarius B2(N) at 2 and 3 mm: Criteria for Detecting Large Interstellar Molecules. Astrophys. J. 639, 237 (2006).
- 141. Apponi, A. J. *et al.* Investigating the Limits of Chemical Complexity in Sagittarius B2(N): A Rigorous Attempt to Confirm 1,3-Dihydroxyacetone. *Astrophys. J. Lett.* **643**, L29 (2006).
- Belloche, A. et al. Detection of amino acetonitrile in Sgr B2(N). Astron. Astrophys. 482, 179–196 (2008).
- 143. Belloche, A. *et al.* Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). *Astron. Astrophys.* **499**, 215–232 (2009).
- Martín-Pintado, J., Rizzo, J. R., de Vicente, P., Rodríguez-Fernández, N. J. & Fuente, A. Large-Scale Grain Mantle Disruption in the Galactic Center. *Astrophys. J. Lett.* 548, L65 (2001).
- 145. Halfen, D. T., Ilyushin, V. & Ziurys, L. M. Formation of Peptide Bonds in Space: A Comprehensive Study of Formamide and Acetamide in Sgr B2(N). Astrophys. J. 743, 60 (2011).
- 146. Halfen, D. T., Ilyushin, V. V. & Ziurys, L. M. Insights into Surface Hydrogenation in the Interstellar Medium: Observations of Methanimine and Methyl Amine in Sgr B2(N). Astrophys. J. 767, 66 (2013).
- 147. Furuya, R. S., Cesaroni, R. & Shinnaga, H. Infall, outflow, and rotation in the G19.61-0.23 hot molecular core. *Astron. Astrophys.* **525**, A72 (2011).
- 148. Minh, Y. C. *et al.* Submillimeter array observations toward the massive starforming core MM1 of W75N. *Astrophys. J.* **723**, 1231 (2010).
- 149. Charnley, S. B. Sulfuretted molecules in hot cores. Astrophys. J. 481, 396 (1997).
- 150. Hatchell, J., Thompson, M. A., Millar, T. J. & MacDonald, G. Sulphur chemistry and evolution in hot cores. *Astron. Astrophys.* **338**, 713–722 (1998).

- 151. Buckle, J. V. & Fuller, G. A. Sulphur-bearing species as chemical clocks for low mass protostars? *Astron. Astrophys.* **399**, 567–581 (2003).
- 152. Kuiper, T. B. H., Kuiper, E. N. R., Dickinson, D. F., Turner, B. E. & Zuckerman, B. Methyl acetylene as a temperature probe for dense interstellar clouds. *Astrophys. J.* 276, 211–220 (1984).
- Wakelam, V., Caselli, P., Ceccarelli, C., Herbst, E. & Castets, A. Resetting chemical clocks of hot cores based on S-bearing molecules. *Astron. Astrophys.* 422, 159–169 (2004).
- 154. Hincelin, U. *et al.* Oxygen depletion in dense molecular clouds: a clue to a low  $O_2$  abundance? *Astron. Astrophys.* **530**, A61 (2011).