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ABSTRACT  

Background: Prior studies have shown clinical outcomes for heart failure with reduced 

ejection fraction (HFrEF) are worse for Black Americans, even after adjusting for 

confounders.  We sought to determine if unique small molecule metabolites contribute to 

racial differences in HF outcomes.  
 
Methods: We performed a metabolome wide association study to identify metabolites 

differentially expressed between 225 Black and White patients (46.5% Black) with 

HFrEF enrolled in the Atlanta Cardiomyopathy Consortium. Kaplan-Meier analysis and 

Cox proportional hazards regression were used to estimate the association of race and 

small molecule metabolites with a composite primary endpoint of death and HF 

hospitalization.  
 
Results: Compared to Whites, Blacks were younger, and were more likely to have 

nonischemic HF etiology, hypertension, and chronic kidney disease. During the study 

period, (median follow-up 1114 days, IQR 710 – 1422 days), the composite primary 

endpoint occurred in 176 (78.2%) patients, including 34 (15.1%) deaths and 174 (77.3%) 

hospitalizations. After adjustment for covariates, Black race was associated with a higher 

risk for the primary endpoint (HR 1.59, 95% CI 1.03 – 2.46; P=0.03). At false discovery 

rate=0.2, 86 metabolites were identified to be differentially expressed between Blacks 

and Whites after adjustment for the covariates. The highest risk for the primary endpoint 

was in Blacks in the highest salsolinol quartile, while the lowest risk for the primary 

endpoint was in Whites in the lowest salsolinol quartile (P=0.06 for race*salsolinol 

interaction). In race stratified Cox models, elevated salsolinol levels were associated with 

increased risk for the primary endpoint in Whites (quartile 4 vs. 1: adjusted HR 3.07, 

95% CI 1.18 – 7.96; P=0.02) and Blacks (quartile 4 vs. 1: adjusted HR 2.24, 95% CI 0.93 

– 5.40; P=0.07). 
 
Conclusion: In a cohort of patients with HFrEF, we have confirmed 86 metabolites 

differentially expressed between Blacks and Whites. Moreover, the metabolite salsolinol 

was associated with a higher risk for death and HF hospitalizations. Further 

investigations are warranted to confirm these findings in larger cohorts. 

 

Keywords: race/ethnicity, racial disparities, heart failure, metabolomics, oxidative stress 
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INTRODUCTION 

Heart failure (HF) with reduced ejection fraction (HFrEF) affects over 2.5 million 

Americans, with >50% mortality within 5 years of diagnosis.(1) Important racial 

disparities in the epidemiology of HFrEF have been identified, with Black patients 

having a higher incidence of HF, as well as higher rates of hospitalization and death 

compared to other racial groups.(1, 2) Although differences in access to care and 

traditional risk factors for cardiovascular (CV) disease may impact racial disparities, data 

also suggest that the pathophysiology of HF may be different in Blacks than Whites.  

Small studies have shown increased oxidative stress (OS) and lower nitric oxide (NO) 

bioavailability in Blacks, pathways which are both involved in the pathogenesis of 

vascular and myocardial dysfunction. Increased OS disrupts NO signaling, inducing 

endothelial dysfunction and increased vascular stiffness that augments the workload for 

the failing left ventricle (LV).(3) Prior data from our laboratory in non-HF patients 

demonstrate greater OS, lower NO bioavailability, and impaired vascular function in 

Blacks as compared to Whites.(4-6) Although unfavorable balance of OS and NO, and 

impaired vascular function may contribute to the excess HFrEF observed in Blacks, this 

has not been proven in clinical studies. Currently, there are limited data examining 

biomarkers of OS in relation to myocardial function, or clinical events such as death or 

hospitalization in HFrEF patients.  

Metabolomic analysis is an emerging field with the potential for discovery of novel 

pathways associated with disease. An assay of >20,000 detectable metabolites in human 

plasma provides a comprehensive view of human physiology and metabolism.(7) 

Utilizing high-resolution metabolomics assays, in addition to traditional biomarkers, is a 
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novel, hypothesis-generating approach that can be used to discover new pathways that 

distinguish more severe HF phenotypes, including pathways that may be uniquely altered 

in Blacks. Prior data in limited cohorts has identified upregulation of metabolites 

associated with pathways of OS.(8, 9) However, to date, there are limited reports of 

metabolites associated with racial differences in HF severity. 

Utilizing a retrospective cohort study design, the purpose of this analysis was to 1) 

examine racial differences in clinical HF outcomes including death and hospitalization, 2) 

to identify novel metabolites that are differentially expressed between Blacks and Whites, 

and can be used to further characterize racial differences in HF phenotypes through 

unique metabolic pathways.  
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BACKGROUND 

 

It is estimated that 5.8 million Americans have HF, and roughly half have HF with 

reduced ejection fraction (HFrEF).(1) However, important racial disparities exist in HF, 

with Blacks having the highest risk for HF compared to other race/ethnic groups. Black 

patients are more likely to develop HF at younger age (10), have a greater prevalence of 

nonischemic HF (11, 12), and experience higher rates of hospitalization and a higher risk 

of death.(2, 10, 13-15) It must be considered whether these worrisome trends are the 

result of important differences in the underlying pathophysiology of HF that may be 

different in Blacks as compared to Whites.  

Epidemiologic data document a possible genetic predisposition for dilated 

cardiomyopathy in Blacks(16), as well as higher rates of traditional cardiovascular (CV) 

risk factors, including hypertension, obesity and diabetes. Moreover, Blacks are more 

likely to be of lower socioeconomic status, which has been associated with higher risk for 

adverse CV outcomes.(17-19) However, the morbidity and mortality from HF in Blacks 

exceeds what would be expected solely based on differences in traditional CV risk factor 

burden and SES.(15) In order to improve prognosis and racial disparities in HF related 

clinical outcomes, future investigations must be targeted towards elucidating alternate 

pathophysiologic pathways in order to clarify racial disparities in HF etiology as well as 

differences in response to pharmacologic therapy for HF. 

The balance between oxidative stress (OS) and nitric oxide (NO) plays a central 

role in the regulation of ventricular function and vascular tone, which are major 

determinants of hemodynamic status in HF. NO is a potent vasodilator, and the 
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vasodilatory effects of NO critically depend on the equilibrium between NO and OS. A 

central pathophysiological effect of OS is the disruption of NO signaling, which 

promotes vascular inflammation, endothelial dysfunction, and a higher afterload for the 

failing LV.(20) OS can also directly impair LV contractile function through modification 

of proteins central to excitation-contraction coupling.(21) Thus, the increases in OS 

associated with neurohormonal activation in worsening HF unfavorably shifts the balance 

away from the beneficial vascular effects of NO (22), adding to the vasoconstriction and 

depressed myocardial function that are characteristic of worsening HF.  

 Racial differences in systemic OS may be a key factor underlying racial 

disparities in HF. Basic science and translational studies suggest that the endothelial cells 

of Blacks generate more OS leading to enhanced NO inactivation.(5) Our prior studies 

confirm higher levels of OS in Blacks compared to Whites, even after adjusting for 

traditional CVD risk factors and inflammation.(4) Currently there is little clinical data to 

show that racial differences in OS specifically affect HF outcomes. However, the African 

American HF trial (A-HeFT) also suggests that imbalance of OS and NO impacts 

treatment response in Blacks with HF. This randomized controlled trial showed a 

significant benefit in mortality and HF hospitalizations in Blacks treated with fixed dose 

hydralazine plus isosorbide dinitrate compared to standard HF therapy.(23) It has been 

postulated that the improvement in outcomes in Blacks treated with this regimen is due to 

the biologic underpinnings of this drug combination; isosorbide dinitrate is an organic 

nitrate that stimulates NO signaling and improves NO bioavailability, and hydralazine is 

a vasodilator and antioxidant that inhibits the enzymatic formation of reactive oxygen 

species and ameliorates excess OS. 
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 Since the metabolome represents the final downstream products of genetics, 

epigenetics, proteomics, and environmental influences affecting disease outcomes (7), 

metabolomic analysis could provide a complete profile of the small-molecule metabolites 

that characterize worsening HF. Moreover, metabolomics analysis has the potential to 

elucidate novel molecular pathways involved in the pathogenesis of the phenotype, as 

well as the identification of novel diagnostic markers and therapeutic targets. Recent 

studies have identified metabolites related to pathways of OS, that are associated with 

clinical outcomes in patients with HF. Levels of trimethylamine-N-oxide (TMAO), an 

intestinal microbiota-dependent metabolite formed from dietary trimethylamine-

containing nutrients, was associated with higher mortality in a cohort of stable HF 

patients.(24)  

To date, there are few studies examining whether biomarkers of OS and 

metabolomics profiles are associated with racial differences in HF outcomes. This gap in 

the medical literature forms the rationale for my thesis proposal.  
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METHODS 

 

Research goals. The purpose of this analysis was to 1) examine racial differences in 

clinical HF outcomes including death and hospitalization, and 2) identify novel 

metabolites associated with pathways of OS that can be used to further characterize racial 

differences in HF phenotypes through unique metabolic pathways. For these study aims, 

we hypothesized that 1) Black patients will have higher rates of death and HF 

hospitalization, even after adjustment for demographic, socioeconomic and clinical 

variables, and 2) Black patients will have unique metabolomic and oxidative profiles that 

are associated with higher rates of death and HF hospitalization.  

Study population. We utilized data from the Atlanta Cardiomopathy Consortium 

(TACC), which was a prospective cohort study that enrolled outpatients with HF from 3 

Emory University-affiliated hospitals in the greater metropolitan Atlanta area from 2007-

2011. Participants were recruited according to previously published methods.(25) 

Inclusion criteria included age older than 18 years, ability to understand and sign written 

informed consent and participate, and a diagnosis of HF with either reduced or preserved 

ejection fraction (EF). Exclusion criteria included congenital heart disease, previous heart 

or other solid organ transplant or awaiting transplant, known cardiac infiltrative disease 

(eg, amyloidosis), end-stage HF requiring outpatient continuous inotrope infusion, or the 

presence of any medical condition other than HF that are likely to alter the participant’s 

status over the 6 months after enrollment. After informed consent and enrollment, 

interviews and medical records were used to collect pertinent data, including 
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demographics, medical history, medication list, laboratory results, and medical procedure 

results. In addition, biospecimens were obtained and stored in the TACC Biobank. 

Study design. For the purpose of my thesis, we utilized a retrospective cohort design to 

examine data only for TACC participants who had heart failure with reduced ejection 

fraction (HFrEF), defined by EF ≤ 40% by echocardiogram at the time of enrollment.  

Study covariates. Information on demographic, socioeconomic, and clinical covariates 

were collected at the baseline TACC study visit.  The primary exposure of interest was 

defined as self-reported Black or White race. Covariates of interest included the 

following variables: age, gender, HF etiology (ischemic vs. non-ischemic), history of 

hypertension, history of diabetes mellitus (DM), history of chronic kidney disease 

(CKD), history of hyperlipidemia, level of education, marital status, insurance status, 

living alone, presence of device therapy, New York Heart Association (NYHA) 

symptoms, blood pressure (BP), body mass index (BMI), serum creatinine, left 

ventricular end-diastolic diameter (LVIDd), and B-type natriuretic peptide (BNP).     

 The proportion of missing data was examined for each covariate. There was no 

missing data for age or gender. Missing data was present for the following variables, 

expressed as N(%):  HF etiology 2 (0.9), device therapy 2 (0.9), marital status 3 (1.3), 

history of CKD 4 (1.8), history of hypertension 5 (2.2), level of education 5 (2.2), history 

of hyperlipidemia 5 (2.2), history of DM 6 (2.7), BP 2 (0.9), NYHA symptoms 6 (2.7), 

BMI 6 (2.7), serum creatinine 10 (4.4), LVIDd 44 (19.6), and BNP 45 (20.0). For 

continuous variables, imputation to the mean was used to replace missing data. For 

categorical variables, use of an indicator variable was employed to allow these 

participants to contribute their available risk factors to the multivariable models.  
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Study outcomes. Data on clinical outcomes including death, hospitalizations (all-cause 

and HF specific), emergency department (ED) visits, and HF clinic visits were 

prospectively collected at 6-month intervals and adjudicated by an independent review 

committee. Mortality data were collected through medical record review, information 

from family members, and Social Security Death Index query. Data on hospitalizations, 

ED and HF clinic visits were obtained from electronic health records review, outpatient 

notes from any specialty encounter for any admission to an outside hospital, and direct 

patient inquiry during follow-up.   

 The primary endpoint for this analysis was defined as the composite of time to 

first HF hospitalization and/or death. Secondary endpoints included the individual 

endpoints of death, HF hospitalization, ED visits, and HF clinic visits. Censoring 

occurred at the time of loss to follow-up, receipt of advanced HF therapies (i.e. left 

ventricular assist device or heart transplant), or last date of follow-up on April 9, 2012. 

High-resolution metabolomic profiling. Plasma specimens were collected at the 

baseline TACC study visit, processed according to standard methodology outlined in the 

TACC Manual of Operating Procedures, and stored on a designated rack and shelf at -

80°C. Samples were extracted and analyzed as previously described.(26, 27) Briefly, 

extractions were performed with acetonitrile containing a mixture of internal standards 

and maintained in an autosampler maintained at 4°C until injection. Samples were 

analyzed in triplicate by liquid chromatography–Fourier transform mass spectrometry 

(Accela-LTQ Velos Orbitrap; m/z range from 85 to 850) with 10 uL injection volume 

using a dual chromatography setup (anion exchange and C18) and a formic 

acid/acetonitrile gradient. Electrospray ionization was used in the positive ion mode. Data 
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were extracted using apLCMS (28) with modifications by xMSanalyzer as m/z features 

(29), where an m/z feature is defined by m/z (mass-to-charge ratio), RT (retention time) 

and ion intensity (integrated ion intensity for the chromatographic peak). Identities of 

many of the m/z features are known from previous research using ion dissociation 

patterns by tandem mass spectrometry (MS/MS), coelution with authentic standards and 

cross-platform validation. Possible identities of other m/z features were obtained using 

the Metlin Mass Spectrometry Database.(30) Where feasible, metabolite identities were 

confirmed via MS/MS and matching fragmentation patterns to those of known standards.  

Statistical analysis. Data are presented as mean ± standard deviation (SD), median 

(interquartile range [IQR]), or N (%) of patients. Baseline characteristics were compared 

between patients according to race using the Student t-test for normally distributed 

continuous variables, the Wilcoxon rank-sum test for non-normally distributed 

continuous variables, and the 
2
 test for categorical variables. Kaplan-Meier analysis with 

Cox proportional hazards regression was used to estimate the association of race with the 

primary endpoint. The proportional hazards assumption was tested and verified for all 

risk factors using Schoenfeld residual correlation analysis.  All variables in Table 1 were 

considered for inclusion in the multivariable models. Variables that differed by racial 

group, and/or that were associated with the primary endpoint (based on our data or well 

known in the literature) were included in the multivariable models. LVIDd and BNP were 

not considered for inclusion in the multivariable models due to the amount of missing 

data. Multivariable adjustments were made for the following risk factors in Model 1: age, 

gender, HF etiology (ischemic vs. non-ischemic), history of HTN, history of CKD, 

history of hyperlipidemia, BP, BMI, and serum creatinine. Additional multivariable 
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adjustments were made for the following risk factors in Model 2: Model 1 + history of 

DM, level of education, marital status, NYHA symptoms, and presence of device 

therapy. Data were analyzed with the use of SAS statistical software version 9.4 (SAS 

Institute Inc, Cary, NC).  

Bioinformatics analyses. Feature and sample filtering retained m/z features that had a 

median coefficient of variation (CV) <50%, a Pearson correlation >0.7 among technical 

replicates, and <30% missing values. We identified 7,208 m/z features with mean CV 

14.2%. Multiple linear regression was performed to adjust for the covariates identified in 

Model 1. The Benjamini and Hochberg false discovery rate (FDR) method was used to 

correct for multiple comparisons.(31) Because this study was developed to discover 

potentially important associations with race, we used q = 0.2 (where the q value is the 

FDR adjusted p value) as a reference cut-off to minimize type 2 statistical errors (i.e., 

failure to reject a false null hypothesis). At q = 0.2, 80 % of values are expected to be 

correct and 20 % are expected to be false discovery. Features were annotated by 

searching Metlin with m/z tolerance of 10 ppm. Correlation analysis was performed using 

Pearson’s correlation method.  Hierarchical clustering was performed using the built-in 

hclust() function in R that uses the complete-linkage method for clustering. Data were 

analyzed with the use of R statistical software. Metabolites differentially expressed 

between Blacks and Whites were added to the risk factors in Model 1 using Cox 

proportional hazards regression.  
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RESULTS 

 

Study population. During the study period, 333 participants enrolled in the TACC trial. 

Of these, 108 had HF with preserved ejection fraction, so were excluded from the current 

analysis. The remaining 225 participants formed the study cohort.  

Baseline characteristics. The characteristics at enrollment of the 225 participants who 

formed our analytic cohort are shown in Table 1. Compared to White patients, Blacks 

were younger and less likely to be married. Blacks were more likely to have a history of 

nonischemic HF etiology, hypertension, and CKD, and less likely to have a history of 

dyslipidemia.  Blacks had higher BP, and higher serum values for creatinine and BNP. 

There were no differences in optimal HF medical therapy, except for higher use of 

hydralazine and nitrates in Blacks which is expected based on current guidelines.(32) 

There was a trend towards a lower proportion of Blacks having device therapy.  

Clinical factors associated with the primary endpoint. During the study period, 

(median follow-up 1114 days, IQR 710 – 1422 days), the composite primary endpoint 

occurred in 176 (78.2%) patients, including 34 (15.1%) deaths and 174 (77.3%) 

hospitalizations. Median time to the primary endpoint was 392 days, IQR 316 – 504 days. 

The frequency of clinical outcomes is shown in Table 2.  Blacks had a higher frequency 

of hospitalizations, HF clinic visits, and emergency department visits.  

Figure 1 shows the Kaplan-Meier analysis of the primary endpoint stratified by race. 

Black race was associated with an increased risk for the primary endpoint (HR 1.76, 95% 

CI 1.31 – 2.38; P=0.0002). Other factors univariately associated with the primary 

endpoint included history of hypertension (HR 1.52, 95% CI 1.09 – 2.11; P=0.01), 
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history of DM (HR 1.43, 95% CI 1.05 – 1.95; P=0.02), history of CKD (HR 1.90, 95% 

CI 1.39 – 2.61; P<0.0001), college education (reference = high school, HR 0.72, 95% CI 

0.52 – 0.99; P=0.04), creatinine (per 1 mg/dL increase, HR 1.45, 95% CI 1.18 – 1.78; 

P=0.0003), NYHA class (per 1-unit increase, HR 1.44, 95% CI 1.04 – 1.99; P=0.03), 

BNP (per 1-SD increase, HR 1.20, 95% CI 1.03 – 1.39; P=0.02), and LVIDd (per 1-cm 

increase, HR 1.02, 95% CI 1.01 – 1.04; P=0.01). After adjustment for the risk factors in 

Models 1 and 2, Black race remained independently associated with a higher risk for the 

primary endpoint (HR 1.59, 95% CI 1.03 – 2.46; P=0.03). 

Racial differences in metabolites. Raw p values were used in a Manhattan plot (−log2 p 

vs metabolic feature) to visualize the calculated significance for individual metabolite 

correlations with the FDR 0.05 and 0.2 thresholds identified as horizontal lines (Figure 

2). At FDR 0.05, 38 metabolites were identified to be differentially expressed between 

Blacks and Whites after adjustment for the covariates in Model 1, and 86 metabolites 

were identified to be differentially expressed at FDR 0.2. Two way hierarchical clustering 

analysis revealed the 86 metabolites grouped into 33 clusters for Black/White samples 

(Figure 3). Table 3 shows the metabolites identified that are higher in Blacks compared 

to White, their known functions, as well as the associated biologic pathways. 

Metabolites associated with the primary endpoint. Cox modeling was used to examine 

the association of each metabolite shown in Table 4 with the primary endpoint. Although 

levels of betaine/TMAO were higher in Whites, there was no association of 

betaine/TMAO with the primary endpoint in our cohort. Figure 3 represents the Kaplan- 

Meier analysis of the primary endpoint stratified by race and quartiles of salsolinol, 

showing the highest risk for the primary endpoint in Blacks in the highest salsolinol 
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quartile, while the lowest risk for the primary endpoint was in Whites in the lowest 

salsolinol quartile (P=0.06 for race*salsolinol interaction). In race stratified Cox models 

adjusted for the covariates in Model 1, elevated salsolinol levels were associated with 

increased risk for the primary endpoint in Whites (quartile 4 vs. 1: HR 3.07, 95% CI 1.18 

– 7.96; P=0.02) and Blacks (quartile 4 vs. 1: HR 2.24, 95% CI 0.93 – 5.40; P=0.07). 
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DISCUSSION 

 

In a well phenotyped cohort of patients with HFrEF, we have confirmed higher 

risk for death and HF hospitalizations among Black subjects even after adjustment for 

multiple demographic, socioeconomic and clinical variables. Moreover, we have 

identified a number of small molecule metabolites which were differentially expressed 

between Blacks and Whites with HFrEF. Finally, salsolinol, a metabolite related to 

pathways of OS, was associated with a higher risk for death and HF hospitalizations in 

both Blacks and Whites in this cohort. These findings are novel because they represent 

the first comparison of small molecule metabolites between Blacks and Whites with HF, 

in addition to our confirmation of a novel molecule that increases the risk for adverse 

clinical events.  

 Multiple prior studies have documented a higher risk for death and HF 

hospitalizations in Black patients with HF compared to other racial groups. In these 

studies, the authors hypothesized that lower socioeconomic status (18, 33), limited access 

to care (33, 34), poorer social support and self-care practices (35, 36), and/or decreased 

use of HF medical therapy(37) may have contributed to the increased risk for adverse 

events observed in Black patients. Our study is unique because our population was well 

educated, had access to and utilized outpatient specialty HF care, and was on optimal HF 

medical therapy, and yet we were still able to confirm racial differences in the risk for 

adverse clinical events. For example, there were no differences between Blacks and 

Whites in our population with respect to level of education or insurance. Although Blacks 

in our cohort were less likely to be married, there was no difference between races in the 
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likelihood of living alone, suggesting that Black patients had intact social support despite 

differences in marital status. The patterns of health care resource utilization also suggest 

differences. Prior studies have documented increased use of emergency services, and 

lower use of outpatient services in Blacks with HF.(35) Although Blacks in our cohort 

had more frequent ED visits, they also had more frequent HF clinic visits, suggesting that 

the increased risk for the primary endpoint in Blacks was not driven by a lack of access to 

or compliance with primary or specialty outpatient medical care. Although we do not 

have data on compliance with medical therapy, we did not see significant differences in 

the prescription of optimal medical therapy for HF in our cohort.  

 Prior cohort studies have documented metabolites associated with incident HF as 

well as clinical HF outcomes. Investigators from the Atherosclerosis Risk in 

Communities (ARIC) study identified two metabolites, dihydroxy docosatrienoic acid 

and hydroxyleucine/hydroxyisoleucine, associated with incident HF in Blacks, 

independent of traditional CV risk factors and renal function.(9) However, the authors did 

not examine metabolite profiles in White subjects in the ARIC cohort as a comparator 

group, and the analysis did not differentiate metabolites in patients with HFrEF versus 

patients with HF and preserved EF. Tang et al. examined the relationship between fasting 

plasma TMAO and all-cause mortality in 720 patients with stable HF.(24) Over a 5-year 

follow-up period, higher plasma TMAO levels were associated with a 3.4-fold increased 

risk for mortality. Compared to this cohort, our population had less ischemic HF etiology; 

Tang et al. did not report the racial distribution of patients in their cohort, so we are 

unable to compare the racial distribution of our population to theirs.  
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The findings from our metabolome wide association study are the first report of 

racial differences in small molecule metabolites. We did confirm higher levels of 

betaine/TMAO in Whites in our population, presumably related to the higher proportion 

of Whites who had an ischemic HF etiology. However, betaine/TMAO was not related to 

clinical HF outcomes in our cohort. We did find higher levels of metabolites including L-

carnitine, hypoxanthine, serotonin, and serine in Blacks in our cohort. As demonstrated in 

Table 4, many of the metabolites that are upregulated in Blacks appeared to be related to 

pathways associated with vasoconstriction, cardiac fibrosis, and left ventricular 

hypertrophy. This would lend credence to the hypothesis that the higher incidence of 

nonischemic HF and hypertensive heart disease in Black patients is related to a vascular 

diathesis in Blacks.(38)  

We did confirm an association of the metabolite salsolinol with an increased risk 

of death and HF hospitalizations in Blacks and Whites in our cohort.  Salsolinol is an 

endogenously synthesized catechol isoquinoline that has been detected in the brain tissue 

of rats and humans. Salsolinol can be synthesized from dopamine, and has been detected 

in many areas of the brain that are rich in dopaminergic neurons.(39) Much of the data on 

salsolinol is related to its possible role in the pathogenesis of Parkinson’s disease. 

However, there is evidence for the role of dopamine in the periphery, and peripheral 

conversion of dopamine to salsolinol may influence its effects on cardiac myocytes. 

Animal studies have confirmed that salsolinol produces a dose-dependent inotropic effect 

on cardiac tissue; lower concentrations of salsolinol between 10
−7

 and 10
−4

 M caused a 

slight increase in the inotropic effect of rat left atria, but a negative inotropic effect was 

observed at higher concentrations of 3 X 10
−4

–3 X 10
−3

 M.(40) There are no reports of 
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salsolinol as a biomarker associated with incident CVD or HF. Our findings need to be 

confirmed in larger datasets to determine if salsolinol is just a marker of activation of the 

sympathetic nervous system in worsening HF, or whether it acts along the causal pathway 

in HF pathogenesis.  

Our study has several important limitations. Although we were able to adjust for a 

number of socioeconomic variables, we lacked information on other factors such as 

household income and neighborhood that have been shown to affect HF outcomes.(17, 

41) Our metabolomic analysis is also limited by small sample size, and so these data will 

need to be validated in a larger cohort. Similarly, our chosen FDR of 0.2 means that 20% 

of our findings may be false positive associations. However, the raw p-value of 

0.0000055 for salsolinol in Whites certainly suggests that this association is likely not 

due solely to chance, and deserves to be confirmed in follow-up studies.  

In conclusion, in a cohort of Black and White patients with HFrEF, we have confirmed a 

higher risk of death and HF hospitalization in Black patients even after adjustment for a 

number of demographic, socioeconomic and clinical variables. Our analysis has also 

confirmed a number of small molecule metabolites that are differentially expressed 

between Blacks and Whites, even after adjustment for covariates. It is plausible that some 

of these metabolites may be related to the pathogenesis of HFrEF, or could serve as 

biomarkers that could be used for risk stratification. Further investigations are warranted 

to confirm whether racial differences in these and other metabolites influence racial 

disparities in HF outcomes.  
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TABLES AND FIGURES 

 

Table 1. Baseline characteristics of the 225 HFrEF patients in the TACC cohort.  

 

Table 2. Frequency of clinical events among the 225 HFrEF patients in the TACC cohort.  

 

Table 3. m/z features differentially expressed between Blacks and Whites in the TACC 

cohort.  

 

Figure 1. Kaplan-Meier estimates of the composite primary endpoint stratified according 

to race 

 

Figure 2. Manhattan plot of the m/z features differentially expressed between Blacks and 

Whites.  

 

Figure 3. Kaplan-Meier estimates of the composite primary endpoint stratified according 

to race and quartiles of salsolinol.  
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 Black  

N=114 

 

White 

N=111 

P-value 

Age, years 53.6±11.2 59.3±12.2 0.0004 

Female 41 (36.0) 33 (29.7) 0.3 

Education 

•High school 

•College 

•Graduate school 

 

50 (44.3) 

50 (44.3) 

13 (11.4) 

 

 

37 (34.6) 

50 (46.7) 

20 (18.7) 

0.2 

Marital status 

•Never married 

•Married 

•Divorced/Separated 

•Widowed 

 

28 (24.8) 

48 (42.5) 

27 (23.9) 

10 (8.9) 

 

 

11 (10.1) 

66 (60.6) 

26 (23.8) 

6 (5.5) 

0.003 

Insurance 102 (91.9) 98 (92.5) 0.9 

Lives alone 21 (18.9) 25 (23.6) 0.4 

Ischemic HF etiology 38 (33.6) 55 (50.0) 0.01 

Prior CABG 16 (14.3) 27 (25.0) 0.04 

Hypertension 87 (78.4) 62 (56.9) 0.0006 

Diabetes Mellitus 36 (31.9) 35 (33.0) 0.9 

Atrial fibrillation 32 (28.1) 39 (35.1) 0.3 

Dyslipidemia 51 (46.0) 65 (59.6) 0.04 

Chronic kidney disease 49 (44.1) 28 (25.5) 0.004 

Current smoker 13 (11.7) 15 (14.2) 0.6 

Ejection fraction, % 21.0±7.8 22.6±8.6 0.1 

LVIDd*, cm 6.3±1.2 6.1±0.8 0.3 

NYHA class 2.2±0.6 2.2±0.6 0.6 

Systolic BP, mm Hg 114.6±21.7 109.5±15.8 0.04 

Diastolic BP, mm Hg 74.6±12.9 71.4±10.3 0.04 

BMI, kg/m
2

 

32.1±8.0 30.4±6.2 0.07 

Creatinine (mg/dL)
 

1.4±0.7 1.2±0.4 0.02 

BNP* (pg/mL)
 

535 (116.0-950.0) 202.0 (78.0-570.0) 0.003 

Medications 

•ACEi 

•ARB 

•Beta-blocker 

•MCA 

•Hydralazine 

 

95 (83.3) 

28 (24.6) 

109 (95.6) 

58 (50.9) 

42 (36.8) 

 

88 (80.0) 

27 (24.6) 

106 (96.4) 

50 (45.5) 

9 (8.2) 

 

0.5 

0.9 

0.8 

0.4 

<0.0001 
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•Nitrates 

•Diuretics 

37 (32.5) 

101 (88.6) 

 

23 (20.9) 

91 (82.7) 

0.05 

0.2 

ICD/CRT-D 77 (68.1) 87 (79.1) 0.06 

 

Table 1. Baseline characteristics of the 225 HFrEF patients in the TACC cohort. Data are 

mean ± standard deviation, median (interquartile range), or N (%). ACEi, angiotensin 

converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; 

BNP, b-type natriuretic peptide; CABG, coronary artery bypass grafting; CRT-D, cardiac 

resynchronization  therapy-defibrillator; ICD, implantable cardioverter defibrillator; 

MCA, mineralocorticoid receptor antagonist.  LVIDd, left ventricular end-diastolic 

diameter; NYHA, New York Heart Association. 

*Data are missing for >10%. 
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 Black 

N=114 

 

White  

N=111 

P-value 

Death 19 (16.7) 15 (13.5) 0.5 

HF Hospitalizations 

•Total 

•Per patient 

 

95 (83.3) 

1.6±2.7 

 

79 (71.2) 

0.9±1.8 

 

0.03 

0.04 

HF clinic visits (per patient) 0.5±1.2 0.2±0.5 0.01 

Emergency Department visits (per patient) 2.2±3.7 0.9±1.4 0.0003 

 

Table 2. Frequency of clinical events among the 225 HFrEF patients in the TACC cohort. 

Data are mean ± standard deviation, or N (%) 
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Metabolite Function Pathway P-value 

Upregulated in Blacks 
L-Carnitine 

 

AA derivative, constituent of striated muscle and 

liver  transports long-chain fatty acids into the 

mitochondrial matrix  anti-apoptotic activity, 

prevents doxorubucin induced apoptosis of cardiac 

myocytes 

Saturated fatty acids beta-

oxidation; Lysine metabolism; 

Carnitine shuttle; Fatty Acid 

Metabolism 

0.0009 

Hypoxanthine  

 

An intermediate product of uric acid synthesis Purine metabolism 0.0008 

Indole-3-acetaldehyde 

 

Intermediate in degradation of tryptophan to 

serotonin  Left ventricular hypertrophy, cardiac 

fibrosis, vasoconstriction to stop bleeding 

Tryptophan metabolism 0.0079 

N-Hydroxy-1-

aminonaphthalene  

 

Drug metabolism, typically via cytochrome P450 

pathway 

Xenobiotics metabolism 0.0079 

2-Aminoacrylate  

(Dehydroalanine) 

Alpha AA derived from post-transcriptional 

modification of serine and cysteine  

Compensation for MetS  found in food proteins, 

alkylates lysine to form lysinoalanine which is 

thought to cause renal failure in rats 

Glycine, serine, alanine and 

threonine metabolism; Tyrosine 

metabolism; Methionine and 

cysteine metabolism 

0.0075 

Serotonin 

 

Monoamine neurotransmitter derived from 

tryptophan  growth promoting effect on cardiac 

myocytes and stored in platelets  Left ventricular 

hypertrophy, cardiac fibrosis, vasoconstriction to 

stop bleeding, pulmonary hypertension 

Tryptophan metabolism 0.0036 

Serine  

 

Alpha AA that participates in biosynthesis of 

purines and pyrimidines   Compensation for MetS 

 serine is increased in expression in myocytes of 

spontaneously hypertensive HF rats 

 

Glycosphingolipid metabolism; 

Vitamin B9 (folate) metabolism; 

Sialic acid metabolism; Glycine, 

serine, alanine and threonine 

metabolism; Methionine and 

cysteine metabolism; 

Glycerophospholipid metabolism; 

Selenoamino acid metabolism 

0.0151 
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Upregulated inWhites 
Noradrenochrome  

 

Oxidation product (free radical) derived from 

norepinephrine  contribute to redox cycling, 

toxicity, and apoptosis, as well as endothelial 

damage 

Tyrosine metabolism 

 

0.0000089 

Salsolinol  

 

Metabolite of ethanol produced by the condensation 

of dopamine with acetaldehyde  potential 

neurotoxin that increases production of ROS and 

decreased glutathione levels, possibly related to 

alcohol consumption, negative inotropic effect on 

rat left atria 

Tyrosine metabolism 

 

0.0000055 

3-Methoxytyramine  Metabolite of dopamine  regulates 

neurotransmission of norepinephrine and serotonin 

 upregulation of sympathetic nervous system 

Tyrosine metabolism 

 

0.0000043 

Tetradecanoyl carnitine 

 

Involved in β-oxidation of long-chain fatty acids, 

comes from dietary sources including red meat  

accumulation of acyl-carnitines indicates 

deregulated β-oxidation and mitochondrial 

dysfunction 

Carnitine shuttle 0.0054 

L-Alanine  

 

Non-essential AA involved in sugar metabolism, 

provides energy for muscle tissue  alanine levels 

are higher ventricles of CAD hearts compared to 

aortic valve disease  

Alanine and Aspartate 

Metabolism; Glycine, serine, 

alanine and threonine metabolism; 

Glutathione Metabolism; 

Tryptophan metabolism;  

0.0053 

β-Alanine  

 

Rate-limiting precursor for synthesis of the 

dipeptide carnosine which is produced within and 

stored in high concentrations in cardiac muscle  

Compensation for MetS  carnosine is 

cardioprotective from ischaemia-reperfusion 

damage, and doxorubicin-induced cardiomyopathy, 

procontractile 

Pyrimidine metabolism; Beta-

Alanine metabolism; Alanine and 

Aspartate Metabolism; Histidine 

metabolism 

0.0053 

Pantothenate  

 

Protects cells against peroxidative damage by 

increasing the level of glutathione 

CoA Catabolism; Vitamin B5 - 

CoA biosynthesis from 

0.0028 
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pantothenate 

Betaine; 

Trimethylaminoacetate  

(Glycine betaine; N,N,N-

Trimethylglycine; 

Trimethylammonioacetate) 

Betaine participates as a methyl donor in the 

methionine cycle in the liver  alteration in liver 

metabolism contributes to plasma dyslipidemia and 

CAD 

Glycine, serine, alanine and 

threonine metabolism 

 

0.0018 

Kynurenate 

 

endogenous antagonist of the glutamate ionotropic 

excitatory amino acid receptors (NMDA, etc.), 

Neuroprotective and anticonvulsive activities 

demonstrated in animal models of 

neurodegenerative diseases 

Tryptophan metabolism 0.0011 

 

Table 3. m/z features differentially expressed between Blacks and Whites in the TACC cohort. AA, amino acid; CAD, coronary artery 

disease; MetS, metabolic syndrome; NMDA, N-methyl-D-aspartate; ROS, reactive oxygen species. 
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Figure 1. Kaplan-Meier estimates of the composite primary endpoint stratified according 

to race.  
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Figure 2. Type 1 Manhattan plot of the m/z features differentially expressed between 

Blacks and Whites. Data are adjusted for age, gender, heart failure etiology, history of 

hypertension, diabetes, chronic kidney disease, blood pressure, body mass index, and 

serum creatinine.  
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Figure 3. Kaplan-Meier estimates of the composite primary endpoint stratified according 

to race and quartiles of salsolinol. Q1: lowest quartile of salsolinol, Q4: highest quartile 

of salsolinol.  

 

 

 

 


