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Abstract 

Applying an Automated Radiation Therapy Volume Analysis Pipeline to Determine the 

Utility of Spectroscopic MRI-guided Adaptive Radiation Therapy for Glioblastoma 

By Su Hyun Kim 

Due to the infiltrative nature of glioblastoma, tumor characterization is often inadequate 

with clinical imaging alone, resulting in suboptimal radiation therapy (RT) targeting. 

Precise targeting by whole-brain spectroscopic MRI (sMRI), which maps tumors using 

metabolites including choline (Cho) and N-acetylaspartate (NAA), can quantify early 

treatment-induced molecular changes that other modalities cannot measure. We have 

developed a pipeline to determine the degree of sMRI changes during early stages of RT 

and its association with patient outcomes. Such information can provide insight into the 

potential utility of adaptive RT (ART).  

Data was obtained from a study (NCT03137888) where glioblastoma patients received 

high-dose RT guided by the pre-RT Cho/NAA twice normal (Cho/NAA ≥ 2x) volume, 

and received spectroscopic MRI scans pre- and mid-RT. After co-registering pre- and 

mid-RT Cho/NAA ≥2 volumes, spatial overlap statistics between the volumes for each 

patient (n=27) were calculated to quantify metabolic activity changes after two weeks of 

RT. Overall and progression-free survival (OS/PFS) Kaplan-Meier curves were 

generated, stratified by the median statistic begin plotted, and Log-rank tests were used 

to quantify the relationships between imaging metrics and OS/PFS. 

Between the pre- and mid-RT Cho/NAA ≥ 2x volumes of all 27 patients, the median 

total overlap was 0.796 (range: 0 – 0.964), median Jaccard coefficient was 0.224 (0 – 

0.723), median Dice coefficient was 0.365 (0 – 0.839), median volume similarity was -

0.142 (-1.54 – 1.77), and median Hausdorff distance was 20.8 mm (8.54 – 92.2 mm). 

Patients with lower Jaccard/Dice coefficients had longer PFS (p=0.045 for both), and 

patients with lower Jaccard/Dice coefficients had higher OS trending towards 

significance (p=0.060 for both). Cho/NAA ≥ 2x volumes changed significantly during 

early RT, putting healthy tissue at risk of irradiation, and warranting further study into 

using adaptive RT planning. 
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1. Introduction 

Glioblastoma is an aggressive brain cancer and is the most common primary brain 

malignancy [1,2]. Despite aggressive standard of care treatment for glioblastomas, the 

median survival is 15-16 months with frequent recurrence within 4-6 months [3]. One of 

the challenges that arises during glioblastoma treatment is precisely defining the 

radiation therapy (RT) target. Conventional imaging involves T1-weighted contrast 

enhanced (T1w-CE) MRI and T2-weighted fluid-attenuated inversion recovery (FLAIR) 

MRI. T1w-CE identifies glioblastoma by a gadolinium-based contrast agent but fails to 

identify non-enhancing infiltrative tumor regions. FLAIR is not specific to tumor in that 

it identifies abnormalities including edema, inflammation, and radiation effects [4-6]. 

Standard of care RT typically involves treating the resection cavity and the residual 

contrast enhancement on the T1w-CE MRI to a dose of 60 Gy and treating FLAIR 

hyperintensity to a dose of 45 – 54 Gy, followed by adjuvant temozolomide [3,7]. In a 

standard of care treatment course, the dosage and the treatment volumes are 

determined when the treatment is initiated, and are not altered during the course of 

treatment. However, for treating glioblastomas, the combination of T1w-CE and FLAIR 

MRIs to identify the RT target may not sufficiently identify infiltrative tumor and can 

thus result in undertreatment.  

Combined with clinical imaging, magnetic resonance spectroscopy (MRS) measures 

metabolic concentrations that can identify infiltrative tumor without the use of contrast 

agents. An advanced form of MRS imaging, termed spectroscopic MRI, is a 3D whole-

brain magnetic resonance spectroscopic imaging technique that identifies infiltrative, 
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non-enhancing tumor with high specificity [8-11]. For glioblastoma, two metabolites of 

interest include choline (Cho) and N-acetylaspartate (NAA). Compared to healthy tissue, 

Cho levels are elevated in tumor tissue due to increased membrane synthesis in 

proliferating cells, and NAA levels are decreased due to loss of healthy neuronal 

function. Image-histology correlation studies have shown that the Cho/NAA ratio is a 

highly specific tumor biomarker [12].  

Changes in metabolically abnormal regions throughout the course of radiation 

therapy may be useful to provide insight into response to treatment. To monitor 

volumetric changes, we have developed a pipeline that quantifies the change in 

treatment volumes during treatment and analyzes how this change is related to patient 

outcomes. In this report, we show the results of using our tool on a cohort of patients 

enrolled in a recently completed multisite clinical study (NCT03137888).  

Information about volumetric changes in metabolic abnormality during treatment 

can provide insight into the potential utility of adaptive RT planning, a method not 

commonly used in glioblastoma treatment [13-17]. Adaptive RT planning is a strategy 

which modifies the radiation plan to accommodate changes in tumor and brain 

morphology during treatment to maximize the benefit of radiation fractions later in the 

therapy course [13]. The process involves modifying dose, field margin, field shape, and 

beam intensity according to variations in the treatment target during the early stages of 

RT. A key component to adaptive RT is the use of an imaging modality that can detect 

changes due to treatment early on. Since spectroscopic MRI directly images metabolic 

changes, it is ideally suited for this task compared to conventional imaging. The 
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application of our pipeline in this context will attempt to demonstrate the outcome 

prediction capability of spectroscopic MRI after two weeks of treatment (during week 3), 

determining the potential utility of using this modality to guide adaptive RT planning. 

 

2. Materials and Methods 

To perform analysis of clinical and spectroscopic MRIs, we have developed a 

quantitative tool that can provide volumetric and statistical comparisons of different RT 

volumes and metabolite maps. It is fully implemented in Python, primarily using 

pydicom and SimpleITK for reading DICOM files and performing image registration, 

lifelines for all statistical analysis, NumPy for all basic image operations, and matplotlib 

and The Visual Toolkit (VTK) for visualization [18-21]. 

 

2.1. Data Acquisition and RT Planning 

The data used in this study were acquired as part of our multisite pilot study 

(NCT03137888) in which 30 newly diagnosed WHO grade IV glioblastoma patients 

were treated to an escalated dose of 75 Gy guided by metabolic abnormality identified 

on spectroscopic MRI. Details regarding enrollment and initial survival outcomes have 

been previously reported [22]. In this study, data from one patient was unavailable. 

Additionally, two patients had IDH mutations, which is no longer considered to be 

glioblastoma as of 2021 [23]. As a result, 27 patients were used for the analysis 

presented in this report. Of these 27 patients, 7 were MGMT promoter hypermethylated.  
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Approximately 3-4 weeks after resection and one week prior to starting RT (pre-

RT), clinical (T1w-CE and FLAIR) and spectroscopic MRIs were acquired. After each 

patient had completed two weeks of RT (mid-RT), spectroscopic, pre-contrast T1, and 

FLAIR MRIs were acquired. Post-contrast T1 MRIs were not acquired at mid-RT to 

avoid the cost and risk of an additional contrast injection. All scans were processed and 

registered to T1 MRIs for each patient. At each site, spectroscopic MRIs were acquired 

on a Siemens 3T scanner with GRAPPA-accelerated echo planar spectroscopic imaging. 

A 20- or 32-channel head and neck coil was used, and the data was acquired with 50 ms 

echo time (TE), 1551 ms repetition time (TR), and 71° flip angle [22]. Raw MRS data in 

DICOM files were processed using MIDAS software suite (University of Miami, Miami, 

FL, USA). MIDAS contains an automated MRSI processing pipeline, which includes 

lipid artifact removal by k-space extrapolation, fitting spectral analysis for metabolites 

of interest that are NAA, creatine, choline, signal normalization based on tissue water 

signal [27]. This pipeline eventually outputs 3D whole brain metabolite maps. These 

maps are then imported to Brain Imaging Collaboration Suite (BrICS), in which 

metabolite heat maps are visualized for RT planning.  

 

2.2. RT Planning 

Pre- and mid-RT Cho/NAA abnormal volumes were created by contouring 

regions greater than or equal to two times the average Cho/NAA (Cho/NAA ≥ 2x) value 

in normal appearing white matter that is contralateral to the tumor. Volumes were 

generated automatically in BrICS from each patients’ spectroscopic MRI scans acquired 
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pre- and mid-RT [24]. Both contours were manually edited and checked by MRS experts 

based on spectral quality [24]. The pre-RT anatomic image used for registration was the 

T1w-CE, and the mid-RT anatomic image used the pre-contrast T1, since T1w-CE was 

not collected mid-RT. To perform the analysis depicted in Figure 1, the Cho/NAA ≥ 2x 

contours and the corresponding T1s and metabolite maps are inputted to the pipeline 

after being exported from BrICS as a series of DICOM files. 

 

Figure 1. A flowchart detailing every component of the pipeline described in this 

report. The user first inputs a pair of contours, T1s, and metabolite maps. All images 

from the second scan are registered to the first scan either in Velocity (Varian Medical 

Systems) or within the program using SimpleITK. After approval of registration, if 

metabolite maps have varying coverage in the vicinity around the tumor, then the 

quality map for the lower coverage scan is applied to both scans to maintain coverage 

across both metabolite maps. Overlap statistics between the two contours are then 

calculated, and difference maps are generated for each axial slice based on the new, 
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modified metabolite maps. After this step, 2D and 3D renderings of the contours can be 

generated. The steps within the dashed box must be repeated for each pair of contours 

within a cohort of patients. The final step is to generate Kaplan-Meier curves for OS and 

PFS for each overlap statistic, stratifying the groups by the median value of the statistic 

of interest. A log-rank test is performed on each pair of Kaplan-Meier curves to 

determine if the overlap statistic used is a statistically significant biomarker of survival. 

The pre-RT volume combined with the residual contrast enhancement from the 

T1w-CE received an escalated dose of 75 Gy, while the FLAIR abnormal regions received 

50.1 Gy and the resection cavity received 60 Gy. More details regarding patient 

treatment have been previously reported [22]. Upon completing RT, follow-up imaging 

acquired every 2-3 months was used to determine PFS [25]. OS was determined based 

on communication with the patients and their oncology team as well as chart review. 

 

2.3. Registration 

Rigid and/or deformable registration was performed either using the Velocity 

software (Varian Medical Systems) or our SimpleITK registration implemented in 

Python. Both Velocity and our implementation have options to perform linear 

registration and deformable registration. Registration can be checked visually with a 

blend of the two images. Depending on the time between scans and degree of 

morphology change, linear registration may be sufficient. In order to proceed with the 

automatic analysis, every subject’s registration must be approved by the user, after 

which the second scan is re-sampled with the registration transform applied and saved.  
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The T1 from the mid-RT scan was first registered to the T1w-CE from the pre-RT 

scan. Once approved, the transformation was applied to all remaining data (contours 

and metabolite maps) associated with the mid-RT scan. All results were carefully 

inspected by two authors (A.G.T. and S.K.) and approved by the board-certified medical 

physicist (E.S.) who is specialized in image registration. The registered images were 

resampled and then stored in addition to the original images and were used for all 

remaining analyses.   

 

2.4. Metabolite Map Coverage 

For spectroscopic MRI maps, during initial data processing, poor quality spectra 

were removed based on various criteria [26-31]. Voxels with a metabolite linewidth 

greater than 18 Hz were removed due to poor quality as an initial filtering step. This 

process generates a quality map, which is a mask that identifies the voxels that passed 

all criteria. For data acquired during this trial, the brain coverage was 70-75% after 

automatic artifact filtration to remove poor quality spectra. 

Such filtering may result in differences in coverage between two scans of a patient 

in areas surrounding tumor. To allow for an unbiased comparative analysis, the quality 

maps of pre- and mid-RT scans of each patient were applied to one another to only 

include voxels that passed all spectra quality criteria in both scans. This was achieved by 

exporting each quality map as a binary NumPy array, then applying pre- and mid-RT 

quality maps to one another for each patient. This process created a lower coverage 
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mask for each patient, which was then applied to the metabolite maps and contours 

generated based on metabolic abnormality for both scans.  

 

2.5. Overlap Statistics 

To quantify volumetric differences in contours, we calculate a variety of spatial 

overlap statistics [32]. For binary mask contours A (earlier scan) and B (later scan), total 

overlap is calculated by identifying the number of pixels in the intersection of A and B 

divided by the number of pixels in B. Jaccard coefficient (union overlap) is two times the 

number of pixels in the intersection of A and B divided by the number of pixels in the 

union of A and B. Dice coefficient (mean overlap) is two times the number of pixels in 

the intersection of A and B divided by the sum of the total pixels in A and the total pixels 

in B. The final metric calculated is Hausdorff distance, which represents the maximum 

distance of A to the nearest point in B [33]. The final quantities calculated are the 

direction and percentage of volume change. Neither quantity takes any spatial 

information into account, they only consider the change in volume. Volume change is 

calculated by taking the absolute value of the difference between the volume of A and B 

divided by volume of A. Direction information is preserved by not taking the absolute 

value of the volume differences.  

 

2.6. Visualization 
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To visually validate the results of the overlap statistics, 2D and 3D visualizations 

of the inputted contours and metabolite maps are generated. 2D visualization involves 

overlaying the contour on top of the corresponding T1 and metabolite map, and 3D 

visualization renders the two contours on the same plane so that differences in the 

contours can be identified. Additionally, the difference between normalized maps can be 

visualized, and are saved as 3D NumPy arrays. An example of 2D and 3D visualization, 

including a difference map, is shown in Figure 2. When running the 3D visualization 

code, contours can be rotated and zoomed in/out as well as altered in their opacity. A 

demonstration of the interactive 3D visualization is available in the online Supplemental 

Video 1. 

 

Figure 2. An example of the 2D and 3D visualization generated by the pipeline for a 

given subject. A and B show the pair of contours, T1s, and metabolite maps that were 

inputted by the user. C shows the difference of the two Cho/NAA maps for the same 

axial slice shown in A and B. D shows a 3D overlay of the two contours (pre-RT shown in 

yellow, mid-RT shown in blue), which can be interacted with when the 3D visualization 

code is run. 
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2.7. Statistical Analysis 

To determine if any of the previously described overlap statistics can be used as 

biomarkers of survival, we analyzed each one using Kaplan-Meier curves for OS and PFS 

[34,35]. For each biomarker of interest, the patient population is first stratified by the 

median biomarker value, resulting in two equal sized subgroups. Kaplan-Meier curves 

for OS and PFS are generated for each subgroup, and a log-rank test is used to test for 

the difference between the survival distributions of the two subgroups [36]. A significant 

p-value indicates the overlap statistic being used can be considered a significant 

biomarker of survival [34,35]. 

Excluding information about spatial volume change, OS and PFS Kaplan-Meier 

curves are also generated for subjects with Cho/NAA ≥ 2x volume growth and reduction. 

Percentage of volume change can be tested as an additional biomarker with OS and PFS 

Kaplan-Meier curves stratified by median volume change. 

For an additional assessment of survival, the standard model of Cox Proportional 

Hazard Regression was used. In order to account for the possible effect of age, ethnicity, 

MGMT status, and sex on survival, a multivariate analysis to estimate hazard ratios was 

performed. After measuring the effects of these variables on OS and PFS, only the 

variables that had significant p-values were included in the final model as parameters to 

assess the effect of each biomarker on OS and PFS.  
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2.8. Combined Biomarkers 

 The combination of two biomarkers may result in the identification of a more 

robust biomarker of survival. Each spatial overlap statistic can be combined (multiplied) 

with the direction of volume change (increase or decrease in volume) and the actual 

percentage change in volume. These combinations of biomarkers can also be evaluated 

with Kaplan-Meier curves, log-rank tests, and Cox Proportional Hazard regression to be 

identified as possible biomarkers of survival. 

 

3. Results 

3.1. Spatial Overlap  

Between the pre- and mid-RT Cho/NAA ≥ 2x volumes of all 27 patients, the 

median total overlap was 0.796 (range: 0 – 0.964), median Jaccard coefficient was 

0.224 (0 – 0.723), median Dice coefficient was 0.365 (0 – 0.839), median volume 

similarity was -0.142 (-1.54 – 1.77), and median Hausdorff distance was 20.8 mm (8.54 

– 92.2 mm).  

Statistical analysis between pre- and mid-RT Cho/NAA ≥ 2x volumes showed 

notable volumetric/spatial changes in several cases. One such case is shown in Figure 2. 

Although the difference in volumes was very small (0.85 cc, -2% change indicating a 

slight decrease in volume after two weeks of RT), the total overlap between the two 

contours was only 57.7%. The difference map in Figure 2C depicts regions of positive 

change in blue (improvement in Cho/NAA values) and negative change in red (new or 
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worsening areas of Cho/NAA abnormality). Another case is depicted in Figure 4, where 

the pre-RT scan Cho/NAA ≥ 2x contour volume was 1.00 cc, and after two weeks of 

treatment, this volume had grown to 4.96 cc. These volumes had a 51.6% overlap, 

Jaccard coefficient of 0.063, Dice coefficient of 0.118, volume similarity of -1.54, and 

Hausdorff distance of 13.7 mm. 

 

3.2. Survival Analysis: Kaplan-Meier curves 

Figures 3A and 3B shows Kaplan-Meier curves of OS and PFS with the Dice 

coefficient as a biomarker. In Figure 3A, 27 patients were stratified by those with a Dice 

coefficient below and above the median (0.37) and Kaplan-Meier curves of OS were 

generated for each subgroup. The curves shown in 3A have minimal cross-over and 

large separation between them, indicating that the Dice coefficient may be a good 

biomarker of OS. This is further supported by the p-value trending towards significance 

(p=0.060) calculated by a log-rank test. Similarly in Figure 3B, 27 patients were 

stratified by those with a Dice coefficient below and above the median (0.37) and 

Kaplan-Meier curves of PFS were generated for each subgroup. With no cross-over and 

large separation between the curves, it was found that patients with lower Dice 

coefficient had a higher PFS that was of statistical significance (p=0.045). The same 

result and p-value were observed for the Kaplan-Meier plots for patients stratified by 

median Jaccard coefficient, shown in Figures 3C and 3D, since stratifying by median 

resulted in the same subgroups for both Dice and Jaccard coefficients. 
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Figure 3. (A) Kaplan-Meier curves showing OS stratified by median Dice coefficient. 

Patients with a higher Dice coefficient had a lower OS. The separation between the 

curves was determined to be not significant by a log-rank test; however, the results 

trend towards significance (p=0.060) and may be proven to be significant by a larger 

cohort. (B) Kaplan-Meier curves showing PFS stratified by median Dice coefficient. 

Patients with a higher Dice coefficient had a lower PFS. The separation between the 

curves was determined to be significant by a log-rank test (p=0.045). (C) Same as (A) 

but instead stratifying OS Kaplan-Meier curves by median Jaccard coefficient. (D) Same 

as (B) but instead stratifying OS Kaplan-Meier curves by median Jaccard coefficient. 
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We also assessed combinations of biomarkers with OS and PFS Kaplan-Meier 

curves. Total overlap, Dice coefficient and Jaccard coefficient were each combined with 

1) direction of volume changed and 2) percentage of volume change. Out of the 27 

patients, 13 experienced an increase in Cho/NAA ≥ 2x volume, and 14 experienced a 

decrease in Cho/NAA ≥ 2x volume after completing two weeks of RT. When analyzed as 

potential biomarkers of survival, incorporating directionality resulted in no statistically 

significant difference between groups. 

 

Figure 4. An example of a patient whose Cho/NAA ≥ 2x contour volume increased by 

almost 400%. The top row shows their pre-RT Cho/NAA ≥ 2x contour and Cho/NAA 

map overlaid on the T1, as well as a 3D visualization of the Cho/NAA ≥ 2x contour. The 

bottom row shows their mid-RT contour, Cho/NAA map, and T1. The right-hand side 
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shows the overlap statistics calculated for the two contours displayed. This patient did 

not have an IDH mutation and was not MGMT promoter hypermethylated, and 

experienced progression 8.3 months after resection. 

 

3.3 Survival Analysis: Cox Proportional Hazard Regression 

 Among the variables sex, race, age at the time of enrollment, and MGMT status, 

coupled with Jaccard coefficient or Dice coefficient, only race had a significant effect on 

survival. Patients that were Hispanic or Latino had an increased hazard ratio of 5.08 on 

PFS (p=0.02) and 7.61 on OS (p=0.01), meaning that being Hispanic or Latino was 

associated with a lower survival rate.  

PFS    OS   

Variable Hazard ratio p value  Variable Hazard ratio p value 

Sex 0.62 0.63  Sex 1.34 0.59 

Race 5.08 0.02  Race 7.61 0.01 

Age 0.97 0.34  Age 0.96 0.14 

MGMT status  0.88 0.92  MGMT status  0.35 0.20 

Jaccard 2.82 0.61  Jaccard 3.51 0.55 

Dice 2.72 0.54  Dice 3.36 0.46 

 

Figure 5. Results of multivariable Cox Proportional Hazard regression. The Hazard 

ratios measure the multiplicative change of hazard with time associated with each 

variable. The only significant variable was race with p-values of 0.02 and 0.01 for PFS 
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and OS, respectively. Being Hispanic or Latino was associated with increased hazard, 

suggesting lower survival rates.  

 

Therefore, the final model included race as an extraneous variable. Since Jaccard 

coefficient and Dice coefficient are similar measures of spatial overlap, the final models 

were 1) Jaccard coefficient and race as parameters and 2) Dice coefficient and race as 

parameters of multivariate regression to assess the survival rates measured by OS and 

PFS.  

However, with race taken into account, both Dice coefficient and Jaccard 

coefficient did not have significant effects on PFS or OS. 

 

 

Figure 6. Results of the final model of Cox Proportional Hazard regression. Total of 4 

models were generated: 1) Jaccard coefficient and race as parameters to model hazard 

ratios with PFS 2) Dice coefficient and race as parameters to model hazard ratios with 

PFS 3) Jaccard coefficient and race as parameters to model hazard ratios with OS 4) 

Dice coefficient and race as parameters to model hazard ratios with OS. Dice or Jaccard 

PFS       

Variable Hazard ratio p value  Variable Hazard ratio p value 

Race 5.04 0.01  Race 4.88 0.01 

Jaccard 2.15 0.58  Dice 2.39 0.47 

OS 
  

    

Sex 5.04 0.01  Sex 4.96 0.01 

Jaccard 1.41 0.79  Dice 1.63 0.66 
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coefficients were not statistically significant biomarkers of survival with race taken into 

account (p>0.05).   

 

4. Discussion 

4.1. Significance of overlap statistics  

In this paper, we have used data from a recently completed study that used 

spectroscopic MRI to guide dose-escalated RT to assess the degree of treatment-induced 

metabolic changes in the early stages of therapy and investigate how these changes are 

related to survival outcomes. We use spatial overlap statistics including total overlap, 

Jaccard coefficient, Dice coefficient, volume similarity, and Hausdorff distance to 

quantify how the regions of abnormal metabolic activity change after two weeks of 

treatment. We then used these metrics to identify a relationship between the degree of 

change in abnormal metabolic activity and survival in the context of motivating the use 

of adaptive RT planning.  

Out of the five different spatial overlap statistics we calculated and tested as 

biomarkers of survival, the only statistically significant relationships were between Dice 

coefficient and PFS (p=0.045) and between Jaccard coefficient and PFS (p=0.045). This 

p-value is likely attributed to the early separation of curves (around 6 months), no cross-

over, and large separation beginning around 11 months. As shown in Figure 3B and 3C, 

a Dice coefficient of more than 0.37 or a Jaccard coefficient of more than 0.22 was 

associated with a shorter PFS (median of 18.0 months). This suggests that identifying 



18 

 

tumors that changed more serves as a surrogate for early response to radiation therapy. 

While the relationships between Dice and Jaccard coefficients and OS (p=0.060 for 

both) were not statistically significant, they trended towards significance. Although 

there is separation between the OS curves for the Dice coefficient (Figure 3A) and 

Jaccard coefficient (Figure 3C), the slight cross-over of curves likely resulted in an 

insignificant p-value.  

However, race was an extraneous variable in that patients that are Hispanic or 

Latin had a lower survival rate (p=0.01). Therefore, a multivariate analysis was 

necessary. Combining the effect of races with the possible effects of Dice coefficient and 

Jaccard coefficient as biomarkers in Cox Proportional Hazard regression model, neither 

Dice nor Jaccard coefficient had a statistically significant effect on survival.  

We believe that a larger cohort is necessary to further investigate this 

relationship. Kaplan-Meier curves of the patient cohort stratified by all other overlap 

measures and Cox Proportional Hazards Regression resulted in larger, insignificant p-

values. Additionally, combining direction of volume change (increase or decrease of 

volume) as well as degree of volume change (percentage) with total overlap, Dice 

coefficient and Jaccard coefficient did not result in the identification of statistically 

significant biomarkers, likely due to the small sample size. 

The patient shown in Figure 4 experienced a nearly 400% increase in metabolic 

abnormality volume, indicating that this patient’s tumor was likely resistant to RT. This 

is further supported by a relatively short PFS of 8.3 months and lack of positive 



19 

 

prognostic molecular data; this patient did not have an IDH mutation or MGMT 

promoter hypermethylation [8,37].  

Patients with a decrease in Cho/NAA ≥ 2x volume could potentially have the size 

of their RT treatment field decreased in later treatment. Patients with an increase in 

Cho/NAA ≥ 2 volume could have their treatment altered, either with a larger/different 

treatment field or with experimental therapies such as new chemotherapy. While this 

result suggests evidence of newly proliferating tumor that goes untreated with the 

original RT plan, it also emphasizes the potential value of a spatial volume overlap 

analysis tool for providing more insight into volumetric comparisons and show changes 

due to treatment both quantitatively and visually. This pipeline can be used with other 

MRI modalities and volumes such as T1w-CE, FLAIR, and DWI. It can also be used with 

longitudinal data, providing statistical volume comparisons for more than two studies.  

 

4.2. Limitations 

Limitations of this study include a small cohort and varying spectroscopic MRI 

quality. Since the same quality map had to be applied to both scans, by definition, some 

voxels will be lost, affecting the spatial overlap statistics and all statistical analyses. We 

are currently in the process of developing new shim-RF head coils that aim to overcome 

the issue of B0 field inhomogeneity in order to provide improved brain coverage and 

spectral quality [38]. With only 27 patients, we saw certain trends toward significance, 

and we believe that a larger study would enable us to investigate these trends more. 
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5. Conclusions and Further Direction 

The analysis technique developed and demonstrated in this report can identify 

volumetric changes in the volume of metabolic abnormality during early stages of RT 

and relate these changes to survival outcomes. This pipeline can be applied to a variety 

of modalities such as performing longitudinal voxel level analysis of recurrence patterns. 

In this report we demonstrate this technique with spectroscopic MRI data collected for 

27 patients pre-RT and after two weeks of RT to assess the utility of adaptive RT 

planning. Adaptive RT planning could potentially limit irradiation of healthy tissue over 

the course of RT, however; for this dataset we determined that larger volumetric change 

indicated response to RT rather than evidence that adaptive RT planning could be 

useful. 

 

Institutional Review Board Statement: The study was conducted according to the 

guidelines of the Declaration of Helsinki and approved by the Institutional Review 

Board (or Ethics Committee) of Emory University (IRB00094188 on 4/14/2017). 

Informed Consent Statement: Informed consent was obtained from all subjects 

involved in the study. 
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