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Abstract

Representation Learning on Physical and Information Networks
By Zheng Zhang

Networks, encompassing both physical and information networks, are fundamental
graph structures for modeling relationships among entities across diverse real-world
applications. This thesis aims to advance general representation learning on network
data by addressing several key challenges. Traditional graph representation learning
methods primarily focus on topological structures, often neglecting the rich data
modalities inherent in these networks and lacking theoretical guarantees on expressive
power. Additionally, data quality challenges such as label scarcity, noisy data, and
incompatibility between graph topology and other modalities hinder the development
of robust and generalizable models.

For physical networks, we propose the spatial graph message passing neural net-
work, a novel framework that seamlessly integrates spatial and topological informa-
tion with theoretical guarantees on discriminative power. We enhance computational
efficiency through an accelerated spanning tree sampling algorithm, reducing com-
plexity from O(N3) to O(N) while maintaining expressive capabilities. Furthermore,
we extend the framework to accommodate networks embedded in irregular manifold
spaces and generalize it to handle geometric trees, addressing the unique hierarchical
structures in such data.

For information networks, we introduce a self-supervised learning framework called
text-and-graph multi-view alignment. This framework unifies diverse data domains
by leveraging text-attributed graphs, augmenting traditional graph structures with
natural language descriptions. This framework incorporates a multi-view alignment
module that preserves rich semantic information, topology, and their interplay. An
accelerated algorithm reduces training time complexity from quadratic to linear, facil-
itating scalability to large datasets. We evaluate the framework’s performance under
label-scarce and transfer learning settings, demonstrating its effectiveness without
reliance on extensive labeled data.

To enhance generalizability and robustness, we propose the relational curriculum
learning method. This method improves representation learning on network data
by addressing incompatibilities between graph topology and other data modalities.
It introduces a novel edge selection criterion that quantifies the difficulty of under-
standing graph edges, incorporating them into the training process at appropriate
times. Through extensive experiments on synthetic and real-world datasets, the pro-
posed method demonstrates significant improvements in generalization ability and
robustness.

In summary, this thesis presents novel frameworks and algorithms that advance
representation learning on both physical and information networks. By providing
theoretical guarantees, addressing data quality issues, and enhancing efficiency and
scalability, these contributions hold significant implications for various downstream
applications in chemistry, biomedicine, social sciences, and beyond.
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Chapter 1

Introduction

Networks, encompassing both physical and information systems, serve as essential

data structures for modeling relationships among entities in a wide range of real-

world applications [19, 73, 200]. Physical networks, such as transportation systems

and biological networks, are embedded in the real world and consist of tangible entities

and connections. Conversely, information networks represent abstract systems like in-

formation flow or social interactions, capturing intangible relationships that influence

various phenomena. Combining these two types, networks provide a fundamental

framework for capturing the complexities of interconnected data. In mathematical

terms, networks are typically represented as graphs, where nodes signify entities and

edges represent the connections or relationships between them [8, 149]. Additional at-

tributes specific to the physical or informational context further enrich these graphs,

leading to the term as modality-enriched graphs [58]. Discovering patterns and struc-

tures within these networks is essential for extracting insights and driving predictive,

data-driven decision-making [194, 118].

While traditional studies on graph-structured data have a long history, they often

rely on heuristic rules or domain-specific knowledge [42, 17]. These methods have

limitations in handling diverse graph data and problems across various domains [16].
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In recent years, the advancement of deep learning on graph-structured data has rev-

olutionized the field of network analytics [114, 236]. Deep learning-based methods

have demonstrated exceptional capabilities as a general strategy for learning power-

ful representations over diverse graph domain data [179], which is the core paradigm

in the domain of learning the complex, non-linear relationships inherent in graph-

structured data [210]. This has led to significant advancements in various graph

problems, such as node classification [114], link prediction [78], graph classification

[219], graph clustering [18], community detection [67], and graph generation [220].

Despite these advancements, existing methods often focus solely on studying the

topological structures of networks while overlooking the importance of other rich data

modalities inherent in physical and information networks [23, 14]. They typically treat

additional modality information merely as plain node or edge attributes [74]. These

approaches can be insufficient because other modalities can possess unique properties

that require specialized handling and cannot be appropriately modeled as standard

attributes [212]. For instance, physical networks are embedded in the real-world

space, where nodes and edges are associated with spatial information such as coordi-

nates. Proper handling of spatial information demands considerations of symmetry

invariance or equivariance to accurately reflect geometric relationships inherent in

the data [41, 170]. Moreover, other modalities may be intricately coupled with the

graph’s topology, necessitating the design of specific machine learning modules that

can effectively model the interplay between the graph structure and modality-specific

data properties [96, 223]. Addressing these challenges is crucial for developing more

robust and generalizable graph representation learning techniques [210, 24].

Extracting powerful representations from modality-enriched physical and informa-

tion network data is essential for understanding the underlying network mechanisms

and performing a variety of downstream tasks such as biomedical property predic-

tions [208], social network analysis [194, 68], recommendation systems [218], and
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human mobility analysis [228, 229, 144, 145]. Achieving high-quality learned rep-

resentations with deep learning models requires careful consideration of three main

aspects: data, model, and tasks. Each aspect presents unique challenges, and ef-

fectively addressing these challenges is crucial for obtaining optimal representations.

However, existing representation learning methods on graph data often struggle with

these challenges in each perspective, highlighting the need for approaches that can

integrate rich data modalities, advanced modeling techniques, and task-specific ob-

jectives to enhance performance.

First, there is a lack of considerations for interactions between graph topology

and other data modalities. In real-world scenarios, both physical and information

networks are enriched with additional modalities that describe nodes or edges, such

as spatial coordinates, textual descriptions, or user demographic data. While graph

structures capture the topological relationships among entities, these entities them-

selves and their connections are characterized by diverse forms of data. A significant

challenge about learning representation over graph data is how to jointly handle the

topological structure, the information from other modalities, and their crucial inter-

play. This integration is crucial because it allows for a more comprehensive under-

standing of the data, leading to more expressive and robust learned representations.

Secondly, there is an absence of theoretical guarantees about the expressive power

of representations learned from modality-enriched physical and information network

deep learning models. Considering the complexity and the exponentially large num-

ber of possible sub-structures within graphs, it is challenging to provide theoretical

assurances on the models’ ability to capture and distinguish these modular patterns

effectively. The hierarchical and often overlapping nature of sub-structures adds fur-

ther complexity to modeling efforts. Unfortunately, most existing graph deep learning

models are treated as black boxes, with performance evaluations that are predomi-

nantly empirical and frequently overlook the influence of other modalities. Establish-
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ing theoretical frameworks that explicitly account for modular structures in graphs

is crucial to ensure a reliable and effective deep learning framework.

Third, the data quality issues introduced by modality-enriched physical and infor-

mation networks are often overlooked. Most existing graph representation learning

methods are developed under supervised learning settings, which assume the avail-

ability of high-quality, including large amounts of labeled data and straightforward

node or edge attributes. However, in many real-world applications, modality-enriched

physical and information networks involve diverse types of data that can be of rel-

atively low quality or inconsistently structured. For instance, spatial coordinates

may have varying levels of noise, or require specialized preprocessing to capture their

unique properties. And textual descriptions can include significant amount of miss-

ing values. Additionally, the intricate interplay between the graph’s topology and

modality-specific data demands models that can effectively integrate and process

interaction information. In these scenarios, ensuring the value of representations

learned from complex and potentially lower-quality modality-enriched data remains

a challenging yet promising area of research.

In addition to the main challenges mentioned above from the three core perspec-

tives of an effective physical and information network representation learning frame-

work, there are also minor, yet significant, research challenges to consider. These

include the efficiency and scalability of the developed models, the interpretability of

the designed models, as well as adapting models for specific real-world downstream

applications. These factors are also crucial for the success of a representation learning

model applied to modality-enriched physical and information network data.

Therefore, the primary objective of my research is to advance the general rep-

resentation learning capabilities on network data, which spans both physical and

information networks, by addressing several key issues. This includes to leverage

the interplay between topological structures and other modality data forms in both
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nodes and edges, developing models with theoretically guaranteed expressiveness, and

tackling data quality issues such as label scarcity, noisy data and compatibility be-

tween graph topology and other data modalities. Additionally, my research explores

methods to tailor learned representations for specific downstream applications and

to improve the efficiency and scalability of training and inference processes. Detailed

discussions of each of these issues are presented in the subsequent subsections.

1.1 Research Issues

This thesis focuses on developing general representation learning framework for physi-

cal and information networks. It also aims to develop training strategies for addressing

label scarcity, noisy data and data incompatibility scenarios on graph data, with ap-

plications in the chemical, biomedical, and social science domains. The key research

issues are outlined in the following sections.

1.1.1 Representation Learning on Physical Networks

Physical networks, also known as spatial networks, are networks for which the nodes

and edges are constrained by geometry and embedded in real physical space, which

has crucial effects on their topological properties. Although tremendous success has

been achieved in spatial and network representation separately in recent years, there

exist very little works on the representation of spatial networks. Existing graph rep-

resentation learning research typically only focus on studying the connectivity topol-

ogy information within graph data. However, in real-world application scenarios, the

network structure of graph data are usually embedded in integrating the physical

location of graph data. Extracting powerful representations from spatial networks re-

quires the development of appropriate tools to uncover the pairing of both spatial and

network information in the appearance of node permutation invariant, and rotation
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and translation invariant. Hence it can not be modeled merely with either spatial

or network models individually. Therefore, how to develop a generic framework for

spatial network representation learning that can address these above challenges is

crucial for advancing the research domain of physical networks, as well as many im-

portant downstream tasks such as molecule property predictions and protein structure

analysis. Besides, how to have theoretical guarantees on the quality of learned rep-

resentations is also important for a reliable learning framework, especially for diverse

physical environments such as irregular non-Euclidean space. Finally, how to main-

tain low computational resource given incremental information remains a significant

challenge in designing the learning framework.

1.1.2 Representation Learning on Information Networks

Information networks are networks that are usually abstract and not directly embed-

ded in physical space. In such networks, nodes represent entities such as individuals,

documents, or data sources, while edges signify the relationships or pathways through

which information is shared, transmitted, or connected. A significant challenge in ex-

isting representation learning for information networks lies in the diversity of data

domains such as social networks, citation networks and e-commerce networks. These

domains introduce variations in node and edge features, as well as in predictive tasks,

which complicates the development of a unified learning framework. Recent advance-

ments in natural language processing, particularly the rise of pre-trained language

models, have shown remarkable success in handling diverse data domains. In this

research, we aim to unify various information network data domains through the use

of text descriptions, resulting in a unified structure we refer to as Text-Attributed

Graphs (TAGs). TAGs augment traditional graph structures with natural language

descriptions, facilitating a richer and more detailed representation of data and their

relationships across a wide range of real-world scenarios. However, current approaches
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to TAG representation learning are predominantly supervised, relying heavily on la-

beled data, which limits their applicability in diverse contexts. Our research seeks

to overcome this limitation by developing a fully unsupervised framework for TAG

representation learning. This framework integrates the strengths of pre-trained lan-

guage models, which excel at natural language understanding, with graph models that

effectively capture structural information. By combining these approaches, we aim

to produce high-quality representations from TAGs without the need for extensive

labeled data, thereby broadening their applicability across various domains.

1.1.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

Graph Neural Networks (GNNs) have achieved great success in representing network

data by recursively propagating and aggregating messages along the edges. However,

in real-world applications, the graph topology often does not compatible seamlessly

with other data modalities due to data quality issues. Specifically, since edges typi-

cally represent dependency relationships between data entities, real-world graphs may

contain edges of varying reliability, with some even introducing noise that can hinder

performance on downstream tasks. This inconsistency poses challenges to the gen-

eralizability and robustness of graph representation learning when applied to diverse

and noisy datasets. Unfortunately, existing GNNs may lead to suboptimal learned

representations because they usually treat every edge in the graph equally. On the

other hand, Curriculum Learning (CL), which mimics the human learning principle

of learning data samples in a meaningful order, has been shown to be effective in

improving the generalization ability and robustness of representation learners by pro-

viding learning order on data samples. Specifically, by gradually proceeding from easy

to more difficult samples during training, CL can resolve the challenges associated

with noisy or unreliable data samples, improving the overall learning process. Unfor-
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tunately, existing CL strategies are typically designed for independent data samples

and cannot trivially generalize to handle data dependencies in graphs. How to pro-

pose a novel CL strategy for dependent network data to alleviate the incompatibility

issues between graph topology with other data modalities remains an open challenge.

1.2 Contribution

The major proposed research contributions that have been addressed up to now can

be stated as follows:

1.2.1 Representation Learning on Physical Networks

1. We propose a new Spatial Graph Message Passing neural network

(SGMP) for learning the representations of generic spatial networks.

The new proposed method is equipped with a novel message passing neural net-

work to organically aggregate the spatial and graph information with theoretical

guarantee on discriminative power.

2. We design a new accelerating algorithm for learning on graph-structured

data to enhance efficiency. The time complexity and memory complexity

is reduced from O(N3) to O(N) with respect to the average degree of nodes,

while the accelerated algorithm can still maintain the theoretical guarantees of

representation expressive power for spatial networks.

3. We further propose an enhanced framework capable of generalizing

to spatial networks embedded in irregular manifold spaces. Many

real-world networks are embedded in non-Euclidean spaces, such as manifolds.

The updated framework is designed to consider the coupled graph topological

information and its embedded spatial curve information.
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4. In addition, we further generalize the proposed framework to han-

dle geometric trees. While tree is one special format of graph, its unique

hierarchical structure layout plays a crucial role in the formation mechanism.

To address this, we propose a generalized framework that is tailored for spatial

trees.

1.2.2 Representation Learning on Information Networks

1. We propose a new self-supervised learning framework for text-attributed

graphs, Text-And-Graph Multi-View Alignment (TAGA). This pro-

posal aims at seamlessly integrating TAGs’ structural and semantic dimensions.

The proposed framework is generic for all types of text-attributed graphs, with

the potential to unify diverse information networks in one foundational learning

framework.

2. We propose a multi-view alignment module to preserve rich semantic

information, topology information, and their interplay. We propose to

develop a new Graph2Text method that transforms the text-attributed graph

into a natural hierarchical layout document. Existing Graph2Text methods

often describe all edges within a graph in plain text, which is usually unnatural

and tends to obscure higher-order structure information.

3. We propose an accelerated algorithm to reduce training time com-

plexity from quadratic to linear. In order to support large-scale training,

we present a random walk based algorithm to decrease the time complexity

from quadratic to linear, and approximate the original algorithm without loss

of information.

4. We evaluate the framework performance on label-scarce and transfer

learning settings. Existing works typically evaluate methods in a supervised
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learning setting, where obtaining training labels can be challenging in real-world

applications. Our goal is to enhance performance in label-scarce scenarios, such

as zero-shot and few-shot learning, and even in transfer learning across different

graph domains.

1.2.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

1. We propose a novel CL algorithm named Relational Curriculum Learning

(RCL). The proposed method is aimed to improve the generalization ability

and robustness of representation learners on network data by analyzing and

resolving the incompatibility between graph topology and other modality infor-

mation.

2. We develop a novel graph edge selection criteria for automatically in-

volving graph edges. The proposed method can automatically quantify the

difficulty of understanding graph edges and incorporate them into the training

process at the appropriate time. This strategy aims at involving the proper

topological structures that are compatible with other data modality informa-

tion.

3. We investigate the generalizability and robustness improvement of

proposed curriculum learning strategy. We compare RCL to state-of-the-

art comparison methods through extensive experiments on both synthetic and

real-world datasets.
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1.3 Organization of Thesis

The remainder of this research thesis is organized as follows: Chapter 2 introduces

the problem of graph representation learning on physical networks and proposes a

message-passing-based model to address it. Additionally, this chapter discusses how

to extend the method to non-Euclidean spaces and a special case involving spatial

trees. Chapter 3 presents the work of representation learning on information networks

that aims at designing graph foundation models based on text-attributed graphs, with

a focus on exploring the boundaries of label-scarce graph representation learning and

transfer learning settings. Chapter 4 describes the proposed curriculum learning strat-

egy aimed at improving the generalizability and robustness of network representation

learning models by alleviating the incompatibility issue between graph topology and

other data modalities. Chapter 5 includes conclusions and future work plans.
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Chapter 2

Representation Learning on

Physical Networks

In this chapter, we first introduce the background of research problem of represen-

tation learning on physical networks in Section 2.1 and related works in Section 2.2.

Then in Section 2.3, we propose the designed deep learning model architecture for

handling general Euclidean spatial networks, where the experimental results are pre-

sented in Section 2.4. In addition, we generalize the framework to further consider

non-Euclidean spatial networks in Section 2.5 by including the irregular manifold

surface into model design. In Section 2.6, we present the experimental results on

non-Euclidean spatial networks. Furthermore, the special cases of spatial networks,

which are geometric trees with unique hierarchical properties, are introduced in Sec-

tion 2.7. We propose unique self-supervised learning objectives that are designed for

hierarchical trees and then present experimental analysis in Section 2.8. Finally, this

chapter is ended with a conclusion section in Section 2.9.

This chapter includes three consecutive works. The first work of representation

learning on Euclidean spatial networks [225] was published in The 35th Conference

on Neural Information Processing Systems as a full research track paper, titled “Rep-
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resentation Learning on Spatial Networks”. The second work of representation learn-

ing on non-Euclidean spatial networks [231] was published in SIAM Conference on

Data Mining 2024 as a research paper, titled “Non-Euclidean Spatial Graph Neural

Network”. The third work of representation learning on geometric trees [233] was

published in 30th SIGKDD Conference on Knowledge Discovery and Data Mining as

a full research paper, titled as “Representation Learning of Geometric Trees”.

2.1 Introduction on Physical Networks

Spatial data and network data are both popular types of data in modern big data era.

The study of spatial data focuses on the properties of continuous spatial entities under

specific geometry, while analysis of network data investigates the properties of dis-

crete objects and their pairwise relationship. Spanning these two data types, physical

network, or know as spatial network, are a crucial type of data structure that nodes

occupy positions in a real-world physical space, where spatial patterns and constraints

may have a strong effect on their connectivity patterns [11]. Understanding the mech-

anism of organizing spatial networks has significant importance for a broad range of

fields [55], ranging from micro-scale (e.g., molecule structure [208]), to middle-scale

(e.g., biological neural network [57]), to macro-scale (e.g., mobility networks [37]). Ef-

fectively learning the representations of spatial networks is extremely challenging due

to the close interactions between network and spatial topology, the incompatibility

between the treatments for discrete and continuous data, and particular properties

such as permutation invariant and rotation-translation invariant. Spatial networks

have long been researched in the domains such as physics and mathematics, which

usually extend complex networks and graph theory into spatial networks [173, 12].

They typically rely on network generation principles predefined by human heuristics

and prior knowledge. Such methods usually characterize well on the aspects of the
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Figure 2.1: Spatial network contains not only the information of network topology
and spatial topology but also their interaction.

data that have been covered by the predefined principles, but not on those have not

been covered[11]. However, the underlying network process in complex networks is

largely unknown and extremely difficult to be predefined in simple rules, especially in

crucial and open domains such as brain network modeling [175], network catastrophic

failure [158], and protein folding [53].

Remarkable progress has been made towards generalizing deep representation

learning approaches in spatial data and network data [210, 28, 86, 82, 54], respec-

tively, in recent years. For spatial data, deep learning achieved significant progress in

different commonly used formats such as images [119, 163, 137, 44], point clouds [63,

157, 129], meshes [187, 198], and volumetric grids [209, 143]. On the other hand,

deep learning has also boosted the research of encoding graph structure on net-

work data [86, 114, 85], and downstream applications such as recommender sys-

tems [218, 135], drug discovery [75, 46, 79, 80], FinTech [204], customer care [205],

and natural language processing [139, 13, 206].

Despite the respective progress in representation learning on spatial data and
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G G′

Figure 2.2: The left figure reflects closer nodes tend to connect with each other
(known as the first law of geography [171]), while the right figure reflects a spatial tele-
connecting pattern where faraway nodes tend to connect. Discriminating these two
spatial networks requires new method that can jointly consider spatial and network
properties.

network data in parallel, the representation learning for spatial networks have been

largely underexplored and has just started to attract fast-increasing attention. Merely

combining spatial and graph representations separately cannot handle that for spatial

networks where spatial and network process are deeply coupled together [11, 147, 62].

For example, Fig. 2.2 shows a simple example with a pair of spatial networks, in

which there are different formation rules on the edges relied on the spatial distance,

that is non-distinguishable for spatial and network embedding methods, respectively.

Few recent attempts have been proposed to handle representation learning on

spatial networks but still suffer from key challenges: Spatial network representation

learning is a problem extremely difficult to address due to several unique challenges:

1) Difficult in distinguishing the patterns that require joint spatial and

graph consideration. Examples like Figure. 2.2 that share the same spatial and net-

work topology, respectively, but with significantly different interaction mechanisms,

are non-distinguishable to either spatial or graph methods. 2) Difficult in jointly

maintaining that the learned representation is invariant to node permuta-

tion, and rotation and translation transformations. Notice that spatial and
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graph information confine each other which neutralizes conventional methods to have

either of them. For example, although point clouds representation learning can easily

preserve rotation- and translation-invariant by using spatial nearest neighbors, here

in spatial networks the neighbor is confined also by graph neighbors. Such additional

confinement largely harden our task. 3) High efficiency and scalability in the

graph size. The confinement between spatial and graph information inevitably leads

to taking into account more entities simultaneously to maintain sufficient informa-

tion. The requirement to handle incremental information increases the demand for

model efficiency and scalability.

In order to address all the aforementioned challenges, we propose a new spatial

graph message passing neural network (SGMP) for learning the representations of

generic spatial networks, with theoretical guarantees on discriminative power and

various spatial and network properties, and an accelerating algorithm which adjusts

to our theoretical framework. Specifically, to capture and model the intrinsic coupled

spatial and graph properties, we propose a novel message passing neural network to

organically aggregate the spatial and graph information. To ensure the invariance

of learned representation under rotation and translation transformations, a novel

way to represent the node spatial information by characterizing geometric invariant

features with lossless information is proposed. To alleviate the efficiency issue, we

propose a new accelerating algorithm for learning on graph-structured data. The

proposed accelerating algorithm effectively reduces the time and memory complexity

from O(N3) to O(N), and maintains the theoretical guarantees for spatial networks.

Finally, we demonstrate the strength of our theoretical findings through extensive

experiments on both synthetic datasets and real-world datasets.
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2.2 Related Works

Spatial Networks. There has been a long time of research efforts on the subjects

of spatial networks [11]. In the area of quantitative geography, Haggett and Chor-

ley discussed the relevance of space in the formation and evolution of networks, and

developed models to characterize spatial networks at least fourty years ago [84, 36].

New insights leading to modern quantitative solutions are gained due to the advance

in complex networks [61, 195, 3, 9, 7, 40], and appears in more practical fields such

as transportation networks [5, 121, 122], mobility networks [37, 48], biological net-

works [57, 164], and computational chemistry [74, 160, 70].

Geometric Deep Learning. This is a more recent domain which handles non-

Euclidean structured data such as graphs and manifolds [28].

Geometric Deep Learning on Manifolds. There is a large body of research efforts of

generalizing deep learning models to 3D shapes as manifolds in the computer graphics

community. Many works have been conducted to find a better approach to generalize

convolution-like operations to the non-Euclidean domain [142, 21, 162, 217, 140, 134].

J. Masci et at. proposed the framework of generalizing convolution neural network

paradigm to manifolds by applying filters to extract local patches in polar coordi-

nates [142]. Litany et at. [134] proposed FMNet to learn the dense correspondence

between deformable 3D shapes.

Geometric Deep Learning on Graphs. The earliest attempts we are aware of to gen-

eralize neural networks to graphs are attributed to M. Gori et at. [77]. More re-

cently, a number of approaches encouraged by the success of convolutional neural

networks [119] have attempted to generalize the notion of convolution to graphs.

One important stream of convolution graph neural networks is spectral-based, where

emerges after the pioneering work of Bruna et at. [26] which based on the spec-

tral graph theory. There have been many following works [92, 49, 114, 123]. Another

stream of work define graph convolutions as extracting locally connected regions from
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the graph [56, 131, 150, 85, 211, 146]. Many of these works were formulated in the

family of message passing neural networks [74] which apply parametric functions to

a node and its proximities, and use pooling operations to generate features for the

node. Efficiency and scalability for deep graph learning is very important especially

for large graphs and higher-order operations, which triggers research on accelerat-

ing GNNs [85, 31, 30]. Hamilton et at. [85] first introduced sampling scheme on

neighborhood nodes to restrict the size. Chen et at. [31] proposed a method which

samples vertices rather than neighbors. However, none of these works can guarantee

the sampled graph is connected.

Deep Learning on Spatial Data. Deep learning has also boosted the study on

spatial data. Significant progress has been achieved on deep learning on images since

AlexNet [90, 163]. For 3D point clouds, PointNet [157] is a pioneering work which

addressed the permutation invariance by a symmetric function. PointCNN [129]

transforms the input points into a latent and potentially canonical order by a χ-conv

transformations. Volumetric-based methods usually apply a 3D Convolution Neural

Network (CNN) to 3D grids [209, 143]. Wang et at. [187] first performed shape

segmentation on 3D meshes by taking three low-level geometric features as its input.

Despite the success of generalizing deep learning to network and spatial data sep-

arately, there has been relatively little work that simultaneously characterize both of

them and their interaction. Previous models such as [74, 160, 70] are domain-specific,

[160, 70] treat spatial networks as point clouds which ignores the influence of network

structure, and [189, 188] consider POI (Point of Interest) categories, hence such con-

cept graphs are not physically embedded in a geometric space. In addition, existing

works [193, 47] typically utilize the off-the-shelf deep neural networks with Cartesian

coordinates as inputs and a large amount of rotation-and translation-augmented data,

which is computationally expensive and lacks theoretical guarantee of rotation- and

translation-invariant on the representation. To the best of our knowledge, our pro-
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posed method is the first generic framework of spatial network representation learning

that handles substantial properties of rotation- and translation-invariant and the in-

terplay between spatial and graph patterns with a theoretical guarantee.

2.3 Representation Learning on Euclidean Spatial

Networks

Problem Definition. Spatial graphs (also known as spatial networks [11]) are net-

works for which the nodes and edges are embedded in a geometric space. Spatial

networks is ubiquitous in real world, such as molecular graphs [208], biological neural

networks [57], and mobility networks [37], where the spatial and network properties

are usually coupled together tightly. For example, chemical bonds are derived from

spatially close atoms, and fiber nerves tend to connect neurons close to each other. A

spatial network is typically defined as S = (G,P ), where a graph G = (V,E) denotes

the graph topology such that V is the set of N nodes and E ⊆ V × V is the set

of M edges. eij ∈ E is an edge connecting nodes vi and vj ∈ V . P denotes the

spatial information that is expressed as a set of points P = {(xi, yi, zi)|xi, yi, zi ∈ R}

in Cartesian coordinate system, such that for a node vi ∈ V , its coordinate is de-

noted as (xi, yi, zi) ∈ P . Permutation invariance are crucial to graph structured

data [210]. The collections of permutation-invariant functions on graph-structured

data is defined so that f(π†Sπ) = f(S), for all π ∈ Sn, where Sn is the permutation

group of n elements. Rotation and translation invariance are in natural and common

requirements for spatial data [69, 70]. The collections of rotation- and translation-

invariant functions on spatial networks is defined so that f(G, T (P )) = f(G,P ), for

all T ∈ SE(3), where SE(3) is the continuous Lie group of rotation and translation

transformations in R3.

The main goal of this work is to learn the representation f(S) of spatial network



20

S = (G,P ), with the simultaneous satisfaction of strong discriminative power and

the aforementioned significant symmetry properties.

In order to achieve the novel spatial network representation learning by addressing

the above-mentioned challenges, we propose a new method named spatial graph mes-

sage passing neural network (SGMP) and a new accelerating algorithm which relies

on sampling random spanning trees. Specifically, to discriminate spatial networks

especially for the spatial-graph joint patterns, we propose a new message passing sce-

nario which aggregates the node spatial information via higher-order edges as shown

in Figure 2.3(a) and elaborated in Section 2.3.2. This scenario preserves graph and

spatial information while aggregation with theoretical guarantees. To ensure that

the representation is invariant to rotation and translation transformations, we pro-

pose to characterize several geometric properties in length three path, which is proved

to represent node spatial information with guarantee on the properties of rotation-

invariant, translation-invariant, and information-lossless. This is illustrated in Fig-

ure 2.3(b) and will be detailed in Section 2.3.1. To address the efficiency issue, an

innovative sampling algorithm for accelerating training named Kirchhoff-normalized

graph-sampled random spanning tree is proposed. The algorithm reduces the time

and space complexity from O(N3) to O(N) while still stay equivalent to original

graph, which will be discussed in details in Section 2.3.3.

2.3.1 Node Spatial Information Representation

As mentioned above and in Figure 2.2, we need a novel way to represent the node

spatial information that can preserve all the spatial structure information losslessly

and also maintain rotation and translation invariance. We cannot directly use the

Cartesian coordinates because they are not rotation- and translation-invariant. Al-

though there are conventional node spatial information representation methods that

maintained the rotation and translation invariance in the domain of spatial deep
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Figure 2.3: Illustration of the proposed spatial graph message passing neural network
(SGMP). (a) The process of updating the hidden state embedding h

(ℓ)
i of node vi by

aggregating the spatial-graph message information from length three path. (b) An
example to illustrate each elements in our spatial information representation (Equa-
tion 2.1). Here Lijp is the plane defined by node vi, vj and vp and Lijk is the plane
defined by node vi, vj and vk. (c) This is the spatial path neural network block which
is designed to learn the coupled spatial-graph property. This block also maintains
the invariance to rotation and translation transformations by the spatial information
representation (SIR).

learning [170, 69], we cannot simply use them to handle spatial networks because they

cannot consider the confinement on neighborhood from graph perspective. Otherwise,

the coupled spatial-graph properties cannot be captured. Therefore, we consider to

leverage length n path to represent the node spatial information. The most simplest

way is to just use the distance among nodes and we can have n = 4 to ensure the

spatial information is preserved. However, we want to minimize the length of the

path since the size of the neighborhood grows with a factor of O(N) when one more

length for the path is considered. To achieve this, we successfully reduce n to 3 by

proposing a new spatial information representation on path, where we use geometry

features distance, angle, and torsion as detailed in the following equation and also

illustrated in Figure 2.3(b).
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The spatial information of a spatial network S = (G,P ) with N nodes can be

expressed as a set of Cartesian coordinates P = {(xi, yi, zi)|xi, yi, zi ∈ R}Ni=1. It

can also be represented as P ∈ RN×3 in a matrix form. The set of all length n

path starts from node vi can be represented as Πi
n. Particularly, a length three path

vi → vj → vk → vp can be expressed as πijkp ∈ Πi
3. Given a spatial network S where

its graph G is strongly connected and the longest path ζ ≥ 3, the proposed spatial

information representation can be expressed by one of its length three path πijkp ∈ Πi
3

as

(dij, djk, djp, θijk, θijp, φijkp), (2.1)

where

dij = ||Pij||2, djk = ||Pjk||2, djp = ||Pjp||2,

θijk = arccos(⟨Pij

dij
,
Pjk

djk
⟩), θijp = arccos(⟨Pij

dij
,
Pjp

djp
⟩),

φijkp = Parity · φ̄ijkp,

nijk =
Pij ×Pjk

||Pij ×Pjk||2
,nijp =

Pij ×Pjp

||Pij ×Pjp||2
,

φ̄ijkp = arccos(⟨nijk,njkp⟩),

Parity = ⟨ nijk × nijp

||nijk × nijp||2
,

Pij

||Pij||2
⟩.

(2.2)

Theorem 1. Here the distances dij ∈ [0,∞), angles θijk ∈ [0, π) and torsions φijkp ∈

[−π, π) are rigorously invariant under all rotation and translation transformations

T ∈ SE(3).

The proof of this theorem is straightforward and can be found in Appendix A.1.1.

It is remarkable to mention that the proposed representation in Equation 2.1 not

only satisfies the invariance under rotation and translation transformation but also

retains the necessary information to reconstruct the original spatial networks under

weak conditions, as described in the following theorem.
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Theorem 2. Given a spatial network S = (G,P ), if G is a strongly connected graph

with longest path ζ ≥ 3, then given Cartesian coordinates of three non-collinear con-

nected nodes (vj, vk, vp) in a length three path πijkp of one node vi, the Cartesian

coordinates P can be determined by the representation defined in Equation 2.1.

The proof to this theorem is a consequence of the following lemma.

Lemma 1. Given Cartesian coordinates of three non-collinear connected nodes (vj, vk, vp)

in a length three path πijkp of one node vi, the Cartesian coordinate Pi of node vi can

be determined by the representation defined in Equation 2.1.

The proof of this lemma can be found in Appendix A.1.2.

Now we can prove Theorem 2. As stated in Lemma 1, the Cartesian coordinate

of node vi can be determined by its connected neighbors vj, vk, vp in the path of πijkp.

Due to the property of strong connectivity of graph G = (V,E), we can repeatly

solve the coordinate of a connected node to the set of nodes with known coordinates.

Thus, start from an arbitrary length three path the Cartesian coordinates P of whole

spatial networks is determined. □

2.3.2 Spatial Graph Message Passing Neural Network

Spatial network representation learning requires us to do convolution that aggregates

jointly the graph and spatial information from the graph neighborhood. The most

important issue is to maintain the discriminative power without loss of graph and

spatial information during the aggregation operation. In the meanwhile, we need to

maintain permutation-invariant, rotation- and translation-invariant. To achieve this,

we propose the following operation to update the hidden state embedding h
(ℓ)
i of node

vi by aggregate the messages passing on all its length three path Πi
3:

h
(ℓ+1)
i = σ(ℓ)

(
SUM

({
m(ℓ)(πijkp)|πijkp ∈ Πi

3

}))
, (2.3)
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where σ(ℓ) is a multilayer perceptron (MLP) with ReLU as activation function and

the spatial-graph interacted message m(ℓ)(πijkp) is generated by a spatial path neural

network (SPNN) block:

m(ℓ)(πijkp) = ϕ(ℓ)
(
m̄(ℓ)(πijkp), ψ

(ℓ)
(
m̂(πijkp)

))
,

m̄(ℓ)(πijkp) = (h
(ℓ)
i , h

(ℓ)
j , h

(ℓ)
k , h(ℓ)p ),

m̂(πijkp) = (dij, djk, djp, θijk, θijp, φijkp),

(2.4)

where ϕ(ℓ) and ψ(ℓ) are two nonlinear functions to extract the complicated coupling

relationship between spatial and graph information, in which we use the multilayer

perceptron (MLP) with ReLU as the activation function in our settings.

Finally, the representation of spatial network S can be achieved by applying a

graph aggregation operation: f(S) = AGG({h(K)
i |vi ∈ G}), where AGG is a permu-

tation invariant function such as SUM or MEAN, and K is the number of our message

passing operation layers.

Since the node spatial information is already rotation- and translation-invariant,

these properties can be intrinsically preserved by the operation in Equation 2.3. Node

permutation will also be preserved due to the usage of the permutation invariant func-

tion SUM. Moreover, the following theorem proves that the discriminative power is

also preserved from the perspective of maintaining the necessary spatial information,

when the dimensions of hidden state embedding are sufficiently large.

Theorem 3. Let S denote the collection of spatial networks with N nodes given

the graph G = (V,E), and F denote the class of our SGMP functions while γ is a

continuous function. Suppose g : S → R is a continuous set function. For all ϵ > 0,

there exists a function f ∈ F , such that for any S ∈ S,

|g(S)− γ(f(S))| < ϵ. (2.5)
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The proof of this theorem can be found in Appendix A.1.3.

2.3.3 Accelerate Training through Sampling Random Span-

ning Trees

Note that our model is a high order message passing neural network whose time

and memory consumption is cubic to the average number of node degree. To reduce

the complexity of graph neural networks, a typical way is based on sampling [210].

Many graph-sampling methods have been proposed for accelerating graph neural

network [85, 31], which typically focus on randomly extracting a subgraph from the

original graph. However, they cannot guarantee the generated graph is a strongly

connected graph, which is required by our node spatial information representation

in order to maintain no information loss. To ensure that the sampled graphs are

connected and sparse, we innovatively propose a Kirchhoff-normalized graph-sampled

random spanning tree method for accelerating the training. The proposed method

largely reduces the complexity and maintains the equivalence to the original graph.

Specifically, a spanning tree T = (V,ET ) of an undirected graph G = (V,E) that

is a tree which contains all vertices in G. The number of edges of spanning trees is

|ET | = |V | − 1, which implies that the time and space complexity during training

will not be affected by the number of original edges |E| in graph G. We modify our

updating operation in Equation 2.1 as

h
(ℓ+1)
i = σ(ℓ)

(
SUM

({
m(ℓ)(πijkp)|πijkp ∈ Π̄i

T,3

}))
, (2.6)

where we use Π̄i
T,3 denotes the set of all length three path starts from node vi in a

sampled spanning tree T = (V,ET ). It is noticed in Equation 2.6 that randomly sam-

pling spanning trees T from the original graph G will introduce an uneven probability

distribution for edges, which results in non-uniform weights for path messages in our
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proposed message passing layer. Here we introduce the Kirchhoff-normalized method

to remove the uneven distribution by pre-computing the sampling probability of a

path πijkp in a sampled random spanning tree T . We further modify the Equation 2.6

as

h
(ℓ+1)
i = σ(ℓ)

(
SUM

({m(ℓ)(πijkp)

q(πijkp)
|πijkp ∈ Π̄i

T,3

}))
, (2.7)

where q(πijkp) is the sampled probability of path πijkp in a random spanning tree.

Proposition 1. Let T denote a uniformly random spanning tree of a graph G. Then

for a length three path πijkp = (eij, ejk, ekp) we have that

Pr(πijkp ∈ T ) = det[Yπijkp
], (2.8)

where Y is called the transfer function matrix [20]. The proof is achieved by applying

graph theory theorems including Kirchhoff matrix tree theorem [29] and Burton-

Pemantle theorem [27].

The proof of this proposition can be found in Appendix A.1.4.

The following result establishes that the approximated form in Equation 2.7 is

consistent to original form.

Proposition 2. If σ(ℓ) is continuous, the expectation of the approximated form in

Equation 2.7 converges surely to the original form in Equation 2.3 when the number

of samples is sufficiently large.

The proof is a consequence of the strong law of large numbers and the continuous

mapping theorem, which can be found in Appendix A.1.5.

Complexity analysis of a single layer. Consider a spatial network with N nodes

and dense edge data, our full SGMP layer has O(N3) time and space complexity
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according to the size of the neighborhood. Our accelerating algorithm based on

sampling random spanning tree, however, has only O(N) time and space complexity

as only N − 1 edges exist in the generated spanning trees.

2.4 Experiments on Euclidean Spatial Networks

In this section, the experimental settings are introduced first, then the performance

of the proposed method is presented through a set of comprehensive experiments. All

experiments are conducted on a 64-bit machine with an NVIDIA GPU (GTX 1080

Ti, 11016 MHz, 11 GB GDDR5). The proposed SGMP method is implemented with

Pytorch deep learning framework [155]. The code for the proposed model is available

at https://github.com/rollingstonezz/SGMP_code.

2.4.1 Experiment Setup

Datasets. (i) Synthetic dataset. The spatial growth graph model [11] is a spatial

variant of the preferential attachment model proposed by Albert and Barabasi [3],

which describes that spatial information concerns the formation of networks and long-

range links are usually connecting the hubs (well-connected nodes). The process to

generate such spatial networks starts from an initial connected network of m0 nodes

and introduces a new node n at each time step. The new node is allowed to make

m ≤ m0 connections towards existing nodes with a probability Πn→i ∼ kiF [dE(n, i)],

where ki is the degree of node i and F is an exponential function F (d) = e−d/rc

of the euclidean distance dE(n, i) between the node n and the node i [10]. General

characteristics of spatial networks [11] such as clustering coefficient µ, spatial diam-

eter D, spatial radius r are set as the prediction targets. Besides, we also add the

interaction range rc, which is a significant coupled spatial-graph label that affects

the formation of the spatial networks, as another prediction target. We vary the size

https://github.com/rollingstonezz/SGMP_code
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and other parameters of spatial networks to collect 3, 200 samples in our synthetic

dataset. (ii) Real-world molecular property datasets. We experiment on 5 chemi-

cal molecule benchmark datasets from [208], including both classification (BACE,

BBBP) and regression (ESOL, LIPO, QM9). Particularly, QM9 is a multi-task re-

gression benchmark with 12 quantum mechanics properties. The data is obtained

from the pytorch-geometric library [66]. (iii) Real-world HCP brain network dataset.

We also conducted an experiment using the structural connectivity (SC) of the brain

network to predict the age of the subjects, which is a significant task in understand-

ing the aging process of the human brain [108]. In specific, SC is processed from

the Magnetic Resonance Imaging (MRI) data obtained from the human connectome

project (HCP) [176]. By following the preprocessing procedure in [182], the SC data

is constructed by applying probabilistic tracking on the diffusion MRI data using

the Probtrackx tool from FMRIB Software Library [99] with 68 predefined regions

of interest (ROIs). Then a threshold is applied to SC data to construct the brain

networks [165, 71]. The spatial coordinates of regions are expressed as the center

point of each region.

Comparison methods. To the best of our knowledge, there has been little previ-

ous work to handle the generic spatial networks. Spatial graph convolutional networks

(SGCN) is a recently proposed method to handle generic spatial networks by apply-

ing a convolution operation to learn the spatial-graph interacted information using

the relative coordinates between nodes and their first-order neighbors. In addition,

we compare with three strong graph neural networks (GIN, GAT and Gated GNN)

methods and four spatial neural networks (PointNet, PPFNet, SchNet, and DimeNet)

methods for comparisons. For methods in the class of GNNs, we feed the Cartesian

coordinates as node attributes while we add the node attribute and graph connec-

tivity information to the class of SNNs for a fair comparison. Besides the models



29

above, we also compare our model with a state-of-the-art higher-order graph neural

networks PPGN [141]) in the QM9 benchmark, the results are provided from original

authors. The following describes the details about our comparison models.

Graph Neural Networks (GNNs).

(i) GIN. Graph Isomorphism Networks (GIN) [211] is a variant of GNN, which

has provably powerful discriminating power among the class of 1-order GNNs;

(ii) GAT. Graph Attention Networks (GAT) [179] uses multi-head attention layers

to propagate information;

(iii) Gated GNN. Gated Graph Sequence Neural Networks (Gated GNN) [131] use

gated recurrent units (GRU) [39] as a recurrent function, reducing the recurrence to

a fixed number of steps.

Spatial Neural Networks (SNNs).

(i) PointNet. PointNet [157] learns pointwise features independently with several

MLP layers and extracts global features with a max-pooling layer;

(ii) PPFNet. Point Pair Feature Network (PPFNet) [50] is a spatial deep learning

framework to learn a globally aware 3D descriptor;

(iii) SchNet. SchNet [160] is a domain-specific model for predicting quantum

chemistry. It utilizes a continuous filter function to the distances between nodes and

their first-order neighbors.

(iv) DimeNet. DimeNet [70] is another domain-specific model for predicting quan-

tum chemistry, which includes the directional information by aggregating the length

two path messages based on a physical representation of distances and angles.

Implementation Details. The goal of the experiments is to validate the perfor-

mance of our proposed model on spatial networks. We require all models follow the

same architecture to utilize the same data for a fair comparison. Specifically, a single

MLP layer m1 is applied to the node attributes rather than the spatial information
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Taret µ D r rc
GIN 0.136(.007) 1.015(.047) 0.659(.029) 1.616(.075)
GAT 0.129(.001) 1.291(.049) 0.888(.014) 1.716(.017)
GatedGNN 0.089(.013) 0.753(.074) 0.481(.066) 1.411(.031)
PointNet 0.129(.003) 0.912(.030) 0.615(.020) 1.551(.066)
PPFNet 0.106(.006) 0.747(.037) 0.527(.014) 1.377(.057)
SGCN 0.133(.003) 1.269(.055) 0.856(.044) 1.736(.020)
SchNet 0.128(.001) 1.006(.058) 0.686(.031) 1.691(.039)
DimeNet 0.103(.027) 1.266(.147) 0.556(.094) 1.412(.059)
SGMP 0.068(.005) 0.748(.168) 0.450(.046) 1.332(.031)
SGMP (with st) 0.088(.001) 0.291(.021) 0.252(.023) 1.266(.019)

Table 2.1: Root mean square error (RMSE) results on synthetic dataset. Here µ is
clustering coefficient, D is spatial diameter, r is spatial radius and rc is the interaction
radius in the formation of spatial growth graph.

before the convolution layers. Then another MLP layer m2 with decreasing hidden

unit sizes is applied after the convolution layers. Each dataset excluding QM9 is

split randomly 5 times into 80% : 10% : 10% train, validation, and test. For the QM9

dataset we follow previous work’s split [70]. For each split, we run each model 5 times

to reduce the variance in particular data splits. Test results are according to the best

validation results. For our accelerating method, we pre-sample and store the random

spanning trees before the training phase. Note that even though we provide a novel

Kirchhoff-normalized method to equivalent our sampled spanning trees to the origi-

nal graph, the un-normalized version of our algorithm could also achieve competitive

results in the experiments.

2.4.2 Experimental Performance

In this section, the performance of the proposed method and its accelerated algo-

rithm with sampling random spanning tree (with st), as well as other methods on

both synthetic and real-world datasets are presented first. Then we present the effi-

ciency test on our sampling random spanning trees method. In addition, we measure

the exactness of invariance of our proposed model under translation and rotation
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Task Regression Classification
Dataset ESOL LIPO HCP BACE BBBP
GIN 0.776(.021) 0.699(.047) 0.792(.133) 0.792(.025) 0.864(.020)
GAT 0.783(.053) 0.757(.049) 0.561(.037) 0.780(.035) 0.854(.025)
GatedGNN 0.675(.050) 0.630(.034) 0.566(.036) 0.816(.023) 0.858(.020)
PointNet 0.716(.036) 0.708(.030) 0.720(.123) 0.799(.023) 0.843(.027)
PPFNet 0.731(.054) 0.720(.037) 0.680(.065) 0.805(.032) 0.869(.023)
SGCN 0.743(.056) 0.726(.055) 0.674(.059) 0.778(.030) 0.849(.021)
SchNet 0.697(.051) 0.691(.058) 0.593(.037) 0.803(.032) 0.864(.036)
DimeNet 0.730(.047) 0.666(.047) 0.818(.127) 0.791(.031) 0.864(.036)
SGMP 0.646(.049) 0.695(.027) 0.524(.046) 0.830(.021) 0.880(.020)
SGMP (with st) 0.612(.054) 0.699(.021) 0.555(.045) 0.811(.024) 0.873(.024)

Table 2.2: Results for four molecule property datasets and the HCP brain network.
We report accuracy score for BACE and BBBP datasets, root mean square error
(RMSE) for ESOL and LIPO, and mean average error (MAE) for HCP brain network
dataset.

transformations.

Effectiveness Results. (i) Synthetic Dataset. Table 2.1 summarizes the effec-

tiveness comparison for the synthetic dataset, where our proposed SGMP model

with sampling spanning tree outperforms the best benchmark model (GatedGNN)

by 35.7% on average. Especially, our model achieves lower error on the target of

interaction radius (rc), which proves that our proposed model can better capture and

exploit the significant coupled spatial-graph characteristics in spatial networks.

(ii) Real-world Datasets. Table 2.2 presents the results of four molecule property

datasets and the HCP brain network dataset, where our proposed method achieves

the best results in 4 out of 5 datasets. The results for the QM9 dataset are presented

in Table 2.3, where our proposed method demonstrates its strength through outper-

forming the benchmark methods in 10 out of 12 targets, which is an improvement

by over 14% on average. Particularly, we notice that the performance of the class

of SNNs achieved significantly better results than the class of GNNs by a 38% im-

provement on average, which arguably implies that the quantum mechanics targets

of the QM9 dataset are dominated by the spatial information. In addition, the group
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Target GIN GAT Gated PointNet PPFNet SGCN PPGN SchNet DimeNet SGMP SGMP (with st)

µ 0.583 0.661 0.543 0.465 0.503 0.503 0.093 0.452 0.360 0.130 0.187
α 0.652 0.952 0.609 0.453 0.459 0.531 0.318 0.347 0.189 0.113 0.174
ϵHOMO 269.5 326.7 206.2 158.6 151.9 193.8 47.3 347.4 78.6 64.7 45.7
ϵLOMO 175.4 237.1 135.4 123.8 136.9 141.7 57.1 151.6 61.0 44.7 67.9
δϵ 361.4 510.3 314.4 245.5 221.9 275.5 78.9 120.6 103.7 83.7 98.8
⟨R2⟩ 63.7 97.1 63.1 34.5 27.8 34.9 3.8 213.2 14.13 5.9 3.6
ZPVE 12.3 15.7 12.0 7.0 7.4 7.4 10.8 34.3 3.1 2.3 2.0
U0 260.1 335.9 222.5 112.7 153.5 201.3 36.8 101.7 26.8 26.1 31.9
U 262.9 326.1 244.7 115.5 160.5 210.1 36.8 107.5 27.8 25.2 34.8
H 269.0 329.7 239.2 123.1 157.6 199.2 36.8 107.0 27.9 27.5 31.3
G 252.7 314.1 221.1 124.3 158.4 207.8 36.4 95.0 25.8 24.6 28.2
cV 0.344 0.430 0.283 0.196 0.221 0.277 0.055 0.452 0.064 0.043 0.064

Table 2.3: The mean average error (MAE) results for QM9 dataset. Here “with st”
denotes with spanning tree sampling algorithm.

Figure 2.4: Efficiency analysis of our proposed models and all benchmark models.
Note that our proposed algorithm with sampling random spanning tree significantly
improves the scalability and efficiency.

of jointly-spatial-graph-based methods achieved a 68.9% improvement compared to

the group of point-cloud-based methods. The twelve quantum mechanical properties

in the QM9 dataset seems highly related to the spatial geometry properties between

nodes. For example, the formation energy (U) is related to the distances, angles,

and torsions among nodes. In this situation, we notice that the performance of the

group of point-cloud-based methods is significantly better than the group of GNN

based methods, and jointly-spatial-graph-based methods can better explore the cou-

pled spatial-graph property.
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ADR (%) wo st w st speed up
2 0.203s 0.158s 1.3×
5 0.323s 0.184s 1.7×
10 7.52s 0.225s 33.4×
15 31.43s 0.209s 150.3×
20 80.96s 0.213s 379.7×
50 - 0.193s -
100 - 0.214s -

Table 2.4: Training time per epoch for our full model without sampling spanning tree
(wo st) and accelerating method with sampling spanning tree (w st). (-) indicates
an out-of-memory error. The sampling algorithm is on average 113 times faster than
our full method. ADR is short for the average degree ratio.

Figure 2.5: Robustness test of rotation and translation invariant: x-axis shows data
augmentation on the test set. The x-value corresponds to the magnitude of rotation
angle (left) or translation distance (right). The y-axis shows the accuracy score on
the test set.

Efficiency Analysis. To validate the efficiency of the proposed sampling random

spanning tree algorithm, we use our HCP brain network dataset with different thresh-

olds on structural connectivity (SC) to obtain different average degrees for the nodes.

The number of nodes is a fixed number (68) while we vary the average of degrees

ratio (ADR= E
Ef

, where E is the number of edges and Ef is the number of edges

in complete graphs, e.g. ADR= 100% indicates a complete graph). We report the

results of the average training time per epoch among all models for 20 epochs. As

shown in Figure 2.4 and Table 2.4, our accelerating algorithm achieves significant

improvements in training efficiency. Note that our method is even faster than most
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of the first-order methods when the graph connections are dense (ADR over 50%).

Notice that higher-order methods (e.g. our full method is third-order and DimeNet is

second-order) are unable to handle complete graphs due to the limits of GPU memory.

The scalability of our sampling method is remarkable, which can maintain a constant

time and space complexity with the increasing number of connected edges.

Rotation and translation invariant test. Similar to previous work [69], we also

measure the rotation and translation robustness by uniformly adding translation and

rotation transformations to the input Cartesian coordinates. Here we only report the

accuracy results of classification task on the molecular dataset BACE due to the space

limit while the results are similar on all datasets. According to Figure 2.5, we can note

that the performance of our proposed model stays invariant under both translation

and rotation transformations. SchNet and DimeNet can also achieve invariance un-

der transformations because they also only use the rotation- and translation-invariant

spatial features in their models. PPFNet can stay invariant under rotation transfor-

mations but not translation transformations because it preserves the origin in the

model. On the other hand, SGCN can stay invariant under translation transforma-

tions but not rotation invariant because it only utilizes relative coordinates. This

experiment validates the importance of applying a rotation- and translation-invariant

model since we can observe that the performance of models without a theoretical

guarantee drop significantly under adding rotation and translation transformations.

2.5 Representation Learning on Non-Euclidean Spa-

tial Networks

In this section, we further generalize the previous proposed representation learning

framework on Euclidean spatial networks to non-Euclidean space.
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𝐺𝐺′𝐺𝐺
Figure 2.6: Two spatial networks with different connectivity mechanisms on a holo-
morphic manifold. The left figure reflects that nodes tend to be connected by the
shortest distance (called the first law of geography [171]), while the right figure re-
flects the spatial pattern in which nodes tend to be connected by circuitous lines.
Distinguishing these two spatial networks requires new approaches to jointly consider
the spatial curves on the manifold and network topology.

2.5.1 Background on Non-Euclidean Spatial Networks

Although some efforts [61, 195, 3, 7] have been put toward understanding the mech-

anism of spatial networks in some traditional research domains such as physics or

mathematics, they usually require predefined human heuristics and prior knowledge

of the analytical formulation of embedded spatial manifolds, which is usually unavail-

able in many real-world cases. In the era of deep learning, existing representation

learning works on spatial networks [160, 70, 225] can only consider networks that are

embedded in Euclidean space, where edge connections between nodes are described

as straight lines. However, many real-world networks are embedded in non-Euclidean

spaces, such as manifolds. The oversimplified approximations in flat Euclidean space

will inevitably lose the rich geometric information carried by the irregular manifolds.

Examples in Figure 2.6 that share the same network topology and nodes’ spatial

coordinates, respectively, but with significantly different connecting curves between

nodes, are non-distinguishable for existing representation learning methods on spatial

networks. Therefore, jointly taking the irregularity of the embedded manifold with

the network topology into account is crucial to extract powerful representations for

spatial networks.

Unfortunately, there is no trivial way to simply combine previous representation

learning methods on network data and spatial data together to accomplish the task
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of representation learning on spatial networks due to several unique challenges: (1)

Difficulty in jointly considering discrete network and continuous spatial

manifolds information, and their coupled interactions. As shown in the ex-

ample in Figure 2.6, some spatial networks may share the same spatial and network

properties, respectively, but have significantly different interaction mechanisms. Sim-

ply combining spatial and graphical methods cannot distinguish these spatial net-

works. (2) Difficulty in extracting the geometric information of nodes and

edges embedded in the irregular manifold. In real-world situations, the mani-

folds that networks embed in are often irregular and inhomogeneous in space, where

an explicit analytical form is usually infeasible. Thus, how to represent the geometric

information of nodes and edges that are embedded in the manifold is challenging.

Problem Formulation. Here we consider the connected smooth compact two-

dimensional surface M , which is most commonly observed in our real-world 3D space.

Locally around each point x the manifold is homeomorphic to a two-dimensional

Euclidean space referred to as the tangent plane and denoted by TxM . Given the

manifold M , a spatial network is typically defined as GM = (V,E,MV ,ME) such that

V is the set of nodes and E ⊆ V ×V is the set of edges. eij ∈ E is an edge connecting

nodes vi and vj ∈ V . MV and ME denote the subset of the manifold M that nodes

and edges embed in, which is defined as MV ⊆ M,ME ⊆ M . Particularly, MV can

be described as a set of 3D Cartesian coordinate points where we have pi ∈ M for

each point pi representing the coordinates of node vi. ME can be described as a set

of curved lines that connect the nodes on the manifold, where for each eij ∈ E we

have its corresponding curved line as lij ∈ ME. Specifically, a smooth curved line

can be defined as a mapping function l : [0, T ]→ ME. The main goal is to learn the

representation mapping function f : GM → RD to map an input spatial network to a

high-dimensional vector, with the simultaneous satisfaction of strong discriminative

power and significant symmetry properties.
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Figure 2.7: Illustration of the overall proposed framework. (a) The discretization
process of the continuous manifold and convolutional neural networks for passing
and aggregating the geometric information on spatial curves. (b) The RNN module
extracts the geometric information along the irregular spatial curves between nodes.

2.5.2 Generalized Framework for Non-Euclidean Spatial Net-

works

In order to design an effective method for learning powerful representations on non-

Euclidean spatial networks by addressing the above-mentioned challenges, we pro-

pose a novel method named Manifold Space Graph Neural Network (MSGNN).

To jointly learn network information and its embedded spatial manifold information,

we propose a general learning message-passing framework. As shown in Figure 2.7(a),

in order to represent a continuous curve on a manifold, we first discretize the manifold

into a mesh tessellation, and then learn the representation of curves through a se-

quential model of mesh units. Curve representations are then treated as messages on

edges, and coupled spatial graph information is learned by passing and aggregating
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messages to nodes with graph convolutional layers. As shown in Figure 2.7(b), to deal

with the irregularities of spatial curves and their embedded geometric manifolds, we

propose to characterize several geometric features on each mesh unit of the curvilinear

paths. Finally, we theoretically prove that the extracted spatial curve representations

with a guarantee on the properties of rotation-invariant, translation-invariant, and

geometric information-lossless. To demonstrate the strength of our theoretical find-

ings, extensive experiments are performed on both synthetic and real-world datasets.

Manifold Space Graph Neural Network

Due to the incompatibility between discrete network data and continuous spatial

data, the first question is how to combine these two data in one end-to-end frame-

work. Besides, the explicit analytical format function of the spatial manifold is usually

extremely difficult to obtain because of the irregularity and non-uniformity of the real-

world manifold surfaces. To address this problem, we first propose to discretize the

continuous manifold space into discrete mesh data. Triangular mesh, which preserves

shape surfaces and topology, is a popular format for efficiently approximating mani-

fold shapes. Specifically, a triangular mesh can be defined as a collection of C triangle

faces F = {f (1), f (2), . . . , f (C)}, where the vertices of each f (c) ∈ F are located on the

surface of manifold M .

Given the discretized mesh to describe the embedded spatial surface, we can de-

scribe the spatial curved lines between nodes as a sequence of discrete units. As

shown in Figure 2.7(b), the sequence consists of triangular faces that the curve line

passes. Therefore, the spatial information of each edge can be represented as a se-

quence of mesh units and line segments embedded on them. More concretely, for each

edge eij ∈ E exists in the given spatial graph, it corresponds to a curved spatial line

lij embedded on manifold M . Given the discretized triangular mesh, the embedded

line lij can be represented as a set of K line segments lij = {l(1)ij , l
(2)
ij , . . . , l

(K)
ij } with
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their corresponding embedded triangle faces Fij = {f (1)
ij , f

(2)
ij , . . . f

(K)
ij }, where K is

the number of faces on this spatial path and each line segment l
(k)
ij is embedded in

its corresponding face f
(k)
ij . In summary, we can represent the spatial information on

edge eij as a sequence of pairs ((l
(1)
ij , f

(1)
ij ), (l

(2)
ij , f

(2)
ij ), . . . , (l

(K)
ij , f

(K)
ij )).

Given the sequences of pairs of faces and their embedded line segments, the

next question is to incorporate them with the graph topology in a general model

to learn the coupled spatial-graph representations. Since the length of the sequence

may vary on different edges, some common methods such as MLP or CNN can-

not be easily generalized to extract representations here. To address this issue,

we propose a novel approach that mimics natural language processing approaches

by analogizing each pair of spatial units as a token in a sentence, which is shown

in Figure 2.7(b). Therefore, a recurrent graph neural network (RNN) model such

as GRU or LSTM is a natural choice to extract latent embeddings from these se-

quences. Formally, the extracted latent embedding h(eij) on edge eij can be denoted

as RNN(π(l
(1)
ij , f

(1)
ij ), π(l

(2)
ij , f

(2)
ij ), . . . , π(l

(K)
ij , f

(K)
ij )), where π(·) denotes the geometric

information of the unit and will be introduced in Section 2.5.2. The extracted spatial

information can then be treated as the message on graph edges. A graph message

passing neural network model is then performed to jointly combine node information

and all incoming messages on edges into updated node embeddings, where the update

function is as follows:

ĥ(vi) = AGGREGATE{ξ(h(vj), h(eij))|j ∈ N (i)},

h(eij) = RNN(π(l
(1)
ij , f

(1)
ij ), . . . , π(l

(K)
ij , f

(K)
ij )),

where h represents latent embeddings and ξ denotes a nonlinear function such as

multiple layer perceptron (MLP). AGGREGATE denotes any feasible set aggregate

function.



40

Manifold-Constrained Spatial Curve Representation

Given the above framework, a key question is how to define the spatial information

extractor π(·) on each unit of a line segment and its embedded triangular mesh. As

mentioned previously, we need a novel way to represent the spatial path information

of the network edge that can preserve all the geometric shape information, and simul-

taneously maintain rotation- and translation-invariance. Obviously, simply feeding

the Cartesian coordinates of each line segment in units can not guarantee invariance

to the important symmetries such as rotation-and translation-transformations. Al-

though there exist a few spatial information representation methods in the domain of

spatial deep learning that can guarantee rotation and translation invariant features,

we can not directly use them because they either can not capture the coupled spatial-

graph properties because they are purely spatial-based methods, or can not guarantee

all the geometric structure information is preserved because the information they ex-

tracted is not lossless. Here, the term lossless information means given the extracted

geometric features, the information is sufficient to recover the input geometric struc-

ture. To handle this issue, for each sequence of spatial path line segments and their

embedded meshes, we propose to extract a combination of geometric features on each

mesh unit and the relative spatial relationship with their neighboring units. We the-

oretically guarantee the extracted information is sufficient to recover the full original

geometries and also stay invariant to rotation and translation transformations.

Without loss of generality, we consider the spatial path between node vi and

node vj in the given node set V of graph that there exists an edge eij between them.

Formally, for each unit (l
(k)
ij , f

(k)
ij ) belongs to the sequence of edge eij, where k ∈ [1, K],

we use π(l
(k)
ij , f

(k)
ij ) to represent the extracted geometric features on this unit. The

sequence of spatial information on edge eij is denoted as ((l
(1)
ij , f

(1)
ij ), (l

(2)
ij , f

(2)
ij ), . . . ,

(l
(K)
ij , f

(K)
ij )). For the purpose of simplicity, we omit the subscript symbol ij in the

rest of this section.
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To extract the necessary spatial information, we consider both the spatial informa-

tion along the line segment and its embedded triangle mesh. The spatial information

on the line segment, denoted as π(l(k)), and the embedded mesh face, denoted as

π(f (k)), capture important geometric structure and relative orientation directions.

For the line segment l(k), we extract its length d(k) and angle θ(k) with respect to the

connecting line L between nodes vi and vj. These features confine the relative posi-

tion to a sphere in 3D space, allowing rotation around L. To fix the relative position,

we further extract the torsion angles ϕ(k,k−1) and ϕ(k,k+1) between the current line

segment l(k) and its neighboring segments l(k−1) and l(k+1).

For the embedded mesh faces π(f (k)), we consider the curvature vector direction

to understand the spatial information of the surface environment. However, simply

calculating the orientation n(k) of the curvature vector does not guarantee rotation

and translation invariance. To address this, we calculate the relative angles φ(k,k−1)

and φ(k,k+1) between the curvature vectors of the given face and its neighboring faces.

Additionally, we compute the angle φ(k−1,k+1) between the two neighboring curvature

vectors. These angles form a triangle, ensuring fixed relative orientation. Mathemat-

ically, the representation of spatial information for the k-th mesh unit on the spatial

path sequence that forms the edge eij between nodes vi and vj can be denoted as:

π(l(k), f (k)) =(d(k), θ(k), ϕ(k,k−1), ϕ(k,k+1),

φ(k,k−1), φ(k,k+1), φ(k−1,k+1)),

(2.9)
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where

d(k) = ||l(k)||2, θ(k) = arccos ⟨ l
(k)

d(k)
,
Li,j

di,j
⟩,

Li,j = pj − pi, di,j = ||Li,j||2

ϕ(k,k−1) = ⟨ c(k−1) × c(k)

||c(k−1) × c(k)||2
,

Lij

||Lij||2
⟩ · ϕ̄(k,k−1),

ϕ(k,k+1) = ⟨ c(k) × c(k+1)

||c(k) × c(k+1)||2
,

Lij

||Lij||2
⟩ · ϕ̄(k,k+1),

ϕ̄(k,k−1) = arccos⟨c(k), c(k−1)⟩,

ϕ̄(k,k+1) = arccos⟨c(k), c(k+1)⟩,

c(k) =
Lij × l(k)

||Lij × l(k)||2
, φ(k−1,k+1) = arccos ⟨n(k−1),n(k+1)⟩,

c(k−1) =
Lij × l(k−1)

||Lij × l(k−1)||2
, φ(k−1,k) = arccos ⟨n(k−1),n(k)⟩,

c(k+1) =
Lij × l(k+1)

||Lij × l(k+1)||2
, φ(k,k+1) = arccos ⟨n(k),n(k+1)⟩

Theorem 4. Here the distances d ∈ [0,∞), angle θ ∈ [0, π), torsions ϕ ∈ [−π, π),

and relative orientation angle φ ∈ [0, π) are rigorously invariant under all rotation

and translation transformations T ∈ SE(3).

The proof is straightforward and can be found in Appendix A.2.1. Intuitively,

distance, angle, torsion, and orientation angle are invariant to translation and ro-

tation transformations, since only relative coordinates are used in the formula. It

is remarkable to mention that the proposed representation in Equation 2.9 not only

satisfies the invariance under rotation and translation transformation but also retains

the necessary information to recover the entire geometric structure of original spatial

networks under weak conditions, as described in the following theorem.

Theorem 5. Given a spatial network GM = (V,E,MV ,ME), if GM is a connected

graph, then for any edge eij with spatial curve sequence that has length of sequence

τ ≥ 3, given Cartesian coordinates of two endpoints and one arbitrary point, the
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whole Cartesian coordinates of the given spatial networks can be determined by the

spatial representation defined in Equation 2.9.

The proof can be found in Appendix A.2.2.

Complexity analysis. The time complexity of an L-layer GNN is O(L |E| b +

L |V| b2), where b is the number of latent dimensions. Second, the time complexity

of extracting geometric features from edge trajectory by LSTM is O(L |E| (Kb2 +

Kbd)) where K is the average length of spatial trajectories and d is the number of

computed geometric features. Therefore, the total time complexity of our algorithm

is O(L |E| (Kb2 +Kbd+ b) + L |V| b2).

2.6 Experimental Results on Non-Euclidean Spa-

tial Networks

In this section, we first introduce the experimental settings, then the effectiveness of

our proposed framework on both synthetic and real-world datasets is presented. The

link to our code is at the GitHub repository https://github.com/rollingstonezz/

SDM24_Manifold_spatial_networks.

2.6.1 Experimental Settings.

Synthetic datasets. In order to examine the effectiveness of our proposed MSGNN

method in learning the coupled network and spatial manifold information, we fol-

low previous works [11] to generate a set of synthetic datasets. We generalize the

preferential attachment model [3] to a spatial variant that all nodes and edges are

embedded in a defined spatial manifold surface. Specifically, we first randomly gen-

erate a manifold surface in 3D space from a designed candidate pool of geometric

shapes such as sphere or paraboloid. The process to generate such spatial networks

https://github.com/rollingstonezz/SDM24_Manifold_spatial_networks
https://github.com/rollingstonezz/SDM24_Manifold_spatial_networks


44

starts from an initial connected network of m0 nodes that are randomly sampled on

the manifold surface. Then we introduce a new node vj to connect to the existing

network at each iteration step. The new node is allowed to make m ≤ m0 connections

towards existing nodes with a probability Πj→i ∼ kiF [dg(i, j)], where ki is the degree

of node vi and F is an exponential function F (dg) = e−dg/rc of the geodesic distance

dg(i, j) between the newly added node vj and the node vi on the manifold. Therefore,

the formation mechanism of generated spatial networks is jointly determined by the

spatial and network information. General characteristics of spatial networks [11] such

as spatial diameter D, and spatial radius r are set as the prediction targets. Besides,

we also add the interaction range rc, which is a significant coupled spatial-graph label

that affects the formation of the spatial networks, as another prediction target. We

vary the type of embedded manifolds and other parameters of spatial networks to

collect 5, 000 samples.

Real-world datasets. To further evaluate the performance of our proposed MSGNN

and comparison methods in real-world scenarios, five public benchmark real-world

spatial network datasets with different application domains are utilized as benchmark

datasets in our experiments. Specifically, we include one brain network dataset and

two 3D shapes datasets for graph classification task, and two airline transportation

networks for link prediction task. We provide a brief description of these datasets as

follow.

(1) HCP brain networks. Classify the activity states of subjects based on pro-

cessed functional connectivity (FC) networks derived from the human brain manifold

environment. Each data sample is associated with an activity state (e.g., rest, gam-

ble) as the target for prediction. To construct brain networks, a threshold is applied

to the FC values to filter out highly correlated edges. The spatial trajectories of

interest are defined as geodesic paths between the centers of the ROIs.

(2) Air transportation networks. We adopt two publicly available flight networks
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Target GCN GIN PointNet PPFNet MeshCNN CurvaNet SchNet SGMP MSGNN
rc 3.35±0.14 2.55±0.18 2.45±0.08 2.68±0.11 2.06±0.13 1.54±0.10 0.97±0.06 1.08±0.05 0.83±0.04
D 2.20±0.15 2.73±0.21 1.82±0.06 1.98±0.12 1.87±0.06 1.93±0.11 1.94±0.10 1.86±0.05 1.67±0.05
r 2.63±0.14 2.60±0.26 1.95±0.09 2.07±0.09 1.60±0.07 1.74±0.06 1.98±0.07 1.88±0.05 1.47±0.11

Table 2.5: The RMSE results of the synthetic dataset. The best performance for each
predictive target is shown in bold, while we also underline the second-best performing
models.

Flight-NA and Flight-GL, where Flight-NA contains 456 airports and 71,959 airlines in

the North America and Flight-GL contains 3,214 airports and 66,771 airlines spanning

the globe. The earth surface is considered as the manifold to include the curved airline

trajectory.

(3) 3D shapes classification. We further conduct experiments on classifying 3D

shapes in two datasets SHREC and FAUST. We follow previous studies [89] to sam-

ple a lower resolution (∼500 faces) from a higher solution. The vertices of the lower-

resolution triangle tessellation are then treated as the nodes and their geodesic tra-

jectories are treated as the spatial curves.

Comparison models. We compare our proposed MSGNN against several cate-

gories of competitive methods, spanning two graph neural networks methods GCN [114]

and GIN [211], two spatial deep learning methods on point clouds PointNet [157]

and PPFNet [50], two spatial deep learning methods on mesh MeshCNN [89] and

CurvaNet [91]. We also include two state-of-the-art deep learning methods on Eu-

clidean spatial networks SchNet [160] and SGMP [225]. To ensure a fair comparison,

we provided Cartesian coordinates as node attributes for GNN-based methods. For

spatial deep learning methods on point clouds and mesh, we augmented the node

attributes with graph connectivity information obtained from a trained Node2Vec

model [78]. Additionally, we established a consistent search range for model hyperpa-

rameters, such as the number of convolutional layers or the dimensionality of hidden

embeddings, to maintain fairness across all models.
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2.6.2 Effectiveness Results

Synthetic datasets results. Here we report the root mean squared error (RMSE)

results of our proposed MSGNN with comparison methods on the synthetic dataset

in Table 2.5. We summarize our observations on the model effectiveness below:

(1) The results demonstrate the strength of our proposed MSGNN by consistently

achieving the best results in predicting all three coupled spatial-graph targets. Specif-

ically, our model outperformed all the benchmark models by over 38.0% on average,

as well as outperformed the second-best model by 17.6% on average.

(2) Our proposed MSGNN method consistently achieves superior performance with

respect to all predictive targets, which proves the robustness of MSGNN. In compar-

ison, the spatial neural network methods on point clouds and mesh have significantly

different performances on different tasks. For example, they shows competitive per-

formance to spatial network methods on targets spatial diameter D, and spatial radius

r. While their performance on predicting interaction range rc is significantly worse

than spatial network methods by over 53.0% on average, which may indicate that

simply combining graph and spatial representation can not capture the interactions

between these two data sources.

(3) It is also worth noting that the category of methods on spatial networks (SchNet,

SGMP, and MSGNN) show a more competitive performance than methods in other

categories, by over 34.2% on average, which indicates that either graph neural network

or spatial neural network methods have limited capability to effectively learn coupled

spatial-graph properties. MSGNN shows a stronger performance compared to other

methods on spatial networks by 18.2% on average, which demonstrates our method

takes advantage of the irregular manifold information within the context of the spatial

paths to acquire a more competitive performance.

Real-world datasets results. Here we report the accuracy results of our proposed

MSGNN with comparison methods on the real-world dataset in Table 2.6.
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GCN GIN PointNet PPFNet MeshCNN CurvaNet SchNet SGMP MSGNN
HCP 0.835±0.014 0.920±0.007 0.845±0.027 0.876±0.008 0.784±0.031 0.759±0.025 0.896±0.012 0.927±0.004 0.951±0.005

Flight-NA 0.674±0.015 0.706±0.006 0.694±0.011 0.698±0.004 0.521±0.023 0.597±0.019 0.710±0.008 0.719±0.004 0.730±0.005
Flight-GL 0.722±0.003 0.756±0.014 0.737±0.010 0.715±0.012 0.556±0.032 0.628±0.025 0.750±0.008 0.761±0.009 0.785±0.005
SHREC 0.525±0.042 0.533±0.034 0.567±0.007 0.887±0.010 0.910±0.003 0.902±0.004 0.575±0.012 0.896±0.005 0.918±0.004
FAUST 0.535±0.010 0.783±0.013 0.905±0.010 0.918±0.005 0.903±0.008 0.923±0.004 0.865±0.023 0.840±0.035 0.925±0.005

Table 2.6: The accuracy results of the real-world datasets. The best performance
for each predictive target is shown in bold, while we also underline the second-best
performing models.

(1) Our proposed MSGNN method consistently achieved the best results among all

methods in all five real-world datasets. Specifically, our results outperformed all

the benchmark models by over 14.1% on average and outperformed the second-best

model by 4.2% on average. The superior performance demonstrates the effectiveness

of MSGNN for learning powerful representations in complex real-world scenarios.

(2) In two air transportation networks, our method achieves more considerable perfor-

mance gains on the global network (Flight-GL) than on the North American network

(Flight-NA). One possible reason is that North America is relatively small compared

to the globe, and the curved effect on the surface is not significant. This may indicate

that our method can exploit the curvature of the embedded surface to further improve

the representation ability.

(3) Different classes of methods perform significantly differently on different datasets.

For example, the class of spatial neural networks on mesh (MeshCNN and CurvaNet)

have achieved competitive results in 3D shapes classification tasks (SHREC and

FAUST) by outperforming other benchmark models by 13.1% on average. However,

they also performed poorly on air transportation and brain datasets by achieving the

worst performance among all classes of methods. Such behavior indicates that these

methods can not well handle generic spatial networks.

(4) It is also worth noting that on the SHREC dataset, only methods that consider

orientation information achieved competitive results, which may arguably indicate

that orientation information is important in the prediction task on this dataset.
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Figure 2.8: Accuracy trend results for our proposed MSGNN model and all competing
models against varying degree of manifold irregularity. The performance of models
at the lowest degree of irregularity (ω = 1) is set as the base value.

2.6.3 Effect of Manifold Irregularity Analysis

Compared to existing representation learning methods on spatial networks, a con-

tribution of our work is that our method can handle irregular geometric manifolds,

rather than simply using Euclidean space approximations. To investigate the impact

of manifold irregularity on model performance, we further introduce a series of exper-

iments to vary the degree of irregularity of the manifold embedded by the network.

Specifically, in our synthetic dataset setting, we choose a sinusoidal surface as the

manifold for embedding the network, and we use a frequency parameter ω to control

the irregularity of the generated manifold surface. The mathematical formulation of

the sinusoidal surface can be written as z = sin(ω
√
x2 + y2). Larger values of ω here

indicate that the resulting manifold surface will have a larger degree of irregularity.

We vary the value of ω from 1 to 32 to generate a total of 6 datasets, and we compare

the performance of predicting three targets on our method and competing methods.

Particularly, we set the RMSE performance of all models at ω = 1 as a benchmark,

and then calculate the increasing rate of RMSE when ω increases. The results are

shown in Figure 2.8. According to the figure, compared to all baseline models, our
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Number of faces 1,000 2,000 4,000 8,000 16,000 32,000
HCP 0.928 0.939 0.944 0.947 0.950 0.951
Flight-GL 0.773 0.780 0.782 0.784 0.785 0.785

Table 2.7: Sensitivity analysis of model performance against the number of discretized
mesh units.

model consistently shows a significantly slower increasing trend of the RMSE error as

the degree of manifold irregularity increases. Such model behavior demonstrates that

our model can effectively handle the irregularity in geometric manifolds. More inter-

estingly, our model also shows a convergence trend in predicting the spatial radius r

and the interaction range rc, which arguably further demonstrates the robustness of

our model to extremely irregular manifold environments.

2.6.4 Sensitivity Analysis

We investigate the impact of the number of triangle mesh tessellations on our method

to test the sensitivity of our model. We vary the number of mesh faces from high-

resolution 32, 000 to low-resolution 1, 000 on two real-world datasets as shown in Table

2.7 (1) According to Table 2.7, with the increase of triangular mesh subdivision num-

ber, the accuracy scores on all datasets show a upward and converging trend. The

convergent performance trends demonstrate the effectiveness of using mesh tessella-

tions to approximate spatial manifold surfaces. Specifically, as the resolution of the

mesh tessellations increases, the approximate discrete surface is approaching the un-

derlying continuous manifold space. (2) It is also worth noting that as the number of

mesh tessellations decreases, the performance of our proposed MSGNN on all meth-

ods gradually approaches and converges to the spatial network method on Euclidean

space. The reason is that as the resolution of the mesh subdivision decreases, the

approximate spatial path between nodes eventually converges to a Euclidean approx-

imation.
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Figure 2.9: (a) Illustration of a neuron’s geometric tree-like structure; (b) Represen-
tation of a river network exhibiting a tree structure embedded within a geometric
landscape; (c) Three different geometric trees with isomorphic network connectivity
and identical spatial coordinates. Distinguishing these geometric trees requires jointly
considering spatial, topology, and hierarchical layout information.

2.7 Representation Learning on Spatial Trees

In this section, we further consider representation learning on spatial trees (or geo-

metric trees), which is a special case of spatial networks but with significantly unique

hierarchical layout properties.

2.7.1 Background on Spatial Trees

A geometric tree is a hierarchically arranged, tree-structured graph with nodes and

edges that are spatially constrained, influencing their connectivity patterns. It is a

particularly important data structure that is ubiquitous in different domains such as

river geomorphology [22, 202], neuron morphology [4, 154], and vascular vessels [57].

Geometric trees are highly complex, non-linear structures and thus cannot be pro-
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cessed directly by common math and statistical tools. This makes representation

learning on geometric trees a fundamental necessity in order to further apply them

to downstream tasks such as classification, clustering, and generation. Although

tree-structure representation learning has been extensively researched by techniques

including sequence-based models, such as Tree-LSTM [167], and graph neural net-

works [28, 85, 86, 114], they are not able to jointly consider the geometric information

that is coupled with the hierarchy and topology that are core properties of geometric

trees. As shown in Figure 2.9(a), for a pyramidal neuronal cell, the closer to the cell

body a branch is, the more curvature it exhibits. Similarly, as shown in Figure 2.9(b),

the node degree within a watershed’s tree structure is indicative of the breadth of its

corresponding subtree’s expansion. Furthermore, on a theoretical level, as shown in

Figure 2.9(c), the three geometric trees are isomorphic if geometric information and

hierarchy information about the levels from the root are not jointly considered.

Although recently some progress has been made with spatial graphs [160, 70, 225],

they cannot be used to directly handle geometric trees as they overlook the hierar-

chical ordering of nodes and edges, which, as mentioned above, is crucial. Therefore,

this paper focuses on developing a method that can learn the representations of ge-

ometric trees by preserving their geometric, topological, and hierarchical ordering as

well as their interplay. To achieve this, three aspects need to be addressed: 1. How

to reflect the hierarchical patterns of geometric trees in the learned repre-

sentations? Existing methods tend to be either fully permutable or non-permutable;

however, the hierarchical nature of geometric tree structures requires a partially per-

mutable pattern. This pattern requires the preservation of parent-child ordering,

whereas the ordering among siblings, for instance, does not need to be as rigidly

preserved. To tackle this issue, we introduce a partial ordering constraint module

that enforces a strict directional relationship in the embedding space for parent-child

pairs to reflect their hierarchical order. 2. How to learn the representation
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with a scarcity of labels? Unsupervised or self-supervised learning is often used

nowadays for geometric data (e.g., graphs, images, spatial, etc.) representation learn-

ing. However, the inductive bias for self-supervised learning needs to be customized

to specific geometric data types, and those pertaining to geometric trees are signifi-

cantly underexplored. To address this issue, a novel Geometric Tree Self-Supervised

Learning (GT-SSL) framework is introduced through an innovative subtree-growing-

guided objective, which aims to align the observed subtree and the expected subtree

by its root.

Problem Formulation

A geometric tree can be formally represented as S = (T, P ), where T = (V,E)

symbolizes the tree-structured graph. In this representation, V is the set of N nodes,

and E, a subset of V × V with |E| = |V | − 1, represents the N − 1 edges. Each edge

eij ∈ E connects a parent node vi to a child node vj in V , establishing a hierarchical

relationship where vi is the parent of vj. In this structure, starting from any node

vi ∈ V , it is impossible to traverse a path (e.g., vi → vi1 → vi2 → vi) that forms a

loop, ensuring the acyclic nature of the tree. A rooted tree, denoted as Ti, originates

from any node vi. If a node vj is a descendant of node vi, then its rooted tree Tj

forms a subtree within the larger rooted tree Ti. In this hierarchical arrangement,

node vi is recognized as the ancestor of node vj. The set P represents the spatial

coordinates, defined as P = {(xi, yi, zi)|xi, yi, zi ∈ R}, within the Cartesian coordinate

system. For each node vi ∈ V , its spatial position is denoted by the coordinate tuple

(xi, yi, zi) ∈ P .

The primary objective is to learn the representation f(S) for geometric trees

S = (T, P ), aiming to achieve a strong discriminative capability for unique geometric

tree structures and to capture significant symmetry properties.
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2.7.2 Self-Supervised Geometric Tree Representation Learn-

ing

In order to develop a novel geometric tree representation learning method by ad-

dressing the challenges outlined above, we propose a new representation learning

model named Geometric Tree Branch Message Passing (GTMP) to fully exploit the

interplay between geometric and tree-topological structures. In addition, a novel Ge-

ometric Tree Self-Supervised Learning (GT-SSL) framework is introduced to extract

the customized geometric tree properties without any supervision labels. Specifically,

to discriminate geometric trees, especially for the spatial tree joint patterns, we gener-

alize the proposed spatial networks message passing method SGMP to aggregate the

geometric information via tree branches, which is elaborated on in Section 2.7.3. This

scenario preserves the geometric structure of tree information with theoretical guar-

antees on the invariance to SE(3)-symmetric transformations and spatial-information-

lossless. To address the issue of insufficient labels, we developed two self-supervised

learning objectives that are tailored for intrinsic geometric tree structures. Specifi-

cally, to incorporate the underlying hierarchical relationships, a partial ordering con-

straint over the parent-child pair embeddings is introduced in Section 2.7.4. This

implies that a node’s embedding should maintain a clear directional relationship with

its subtree nodes to accurately represent the hierarchical structure. To introduce

geometric tree-specific inductive bias as self-supervised learning target, we further

propose a top-down subtree growth learning process. As discussed in Section 2.7.5,

our goal is to align the observed geometric structure of the subtree with the structure

anticipated by its root.
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2.7.3 Tree Branch Geometric-Topology Information Repre-

sentation Learning

To effectively tackle the complexities of geometric tree representation learning, we

generalize SGMP to Geometric Tree Branch Message Passing (GTMP). As illus-

trated in Figure 2.10, this approach first harnesses the interplay between geometric

properties and topological structures, enabling the computation of a comprehensive

geometric-topology information representation for all branches originating from a tree

node. Subsequently, we employ a neural network designed in a message-passing fash-

ion, tailored specifically to account for the hierarchical ordering inherent in the tree

branch structure. Our method systematically aggregates spatial information along

an ordered tree branch. This strategy not only maintains the integrity of the tree’s

geometric structure but also assures robustness against SE(3)-symmetric transforma-

tions, thereby enhancing the discriminative power of the process.

Formally, the spatial information of a geometric tree with N nodes can be ex-

pressed as a set of Cartesian coordinates P = {(xi, yi, zi)|xi, yi, zi ∈ R}Ni=1. It can also

be represented as P ∈ RN×3 in a matrix form. The set of all length n tree paths start-

ing from node vi to its descendant nodes can be represented as πi
n. In particular, a

length three branch vi → vj → vk → vp can be expressed as πijkp ∈ Πi
3, where vi is the

parent node of vj, vj is the parent node of vk, and vk is the parent node of vp. Given

a length three branch πijkp ∈ Πi
3, the proposed spatial information representation can

be expressed in the format of Equation 2.1:

(dij, djk, djp, θijk, θijp, φijkp).

Upon extracting geometric features as outlined in Equation 2.1, the next step

involves creating a convolutional strategy. This strategy aims to merge tree-topology

and spatial information derived from both the geometric representation of branches
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Figure 2.10: Illustration of the GTMP model. The geometric information is first
extracted on each length-three branch starting from node vi, then they are aggregated
with other node information to update the node embedding hi.

and their structural layouts into a comprehensive tree node representation. The

essential challenge lies in preserving the model’s ability to discriminate, while also

maintaining the integrity of the tree’s structure and its geometric details during the

aggregation process.

To achieve this, we propose the following operation to update the hidden state

embeddings hℓi by aggregating the message passing along all length three branches Πi
3

originating from node vi:

h
(ℓ+1)
i = σ(ℓ)

(
AGG

({
m(ℓ)(πijkp)|πijkp ∈ Πi

3

}))
, (2.10)

where σ(ℓ) is an arbitrary nonlinear transformation function (e.g. multilayer percep-

tron) and AGG denotes a set aggregation function.

In our model, the representation of a branch πijkp at layer ℓ integrates both topo-

logical and geometric information to produce a comprehensive message. The foun-

dation of this approach lies in the aggregation of node features and the geometric

configuration of the branch.

The integration of node features with geometric data is accomplished through a
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function ϕ(ℓ), which combines the aggregated node features m̄(ℓ) with a transforma-

tion of the geometric information ψ(ℓ)(m̂(πijkp)). The final message for the branch,

m(ℓ)(πijkp), is thus given by:

m(ℓ)(πijkp) = ϕ(ℓ)
(
m̄(ℓ)(πijkp), ψ

(ℓ)
(
m̂(πijkp)

))
,

m̄(ℓ)(πijkp) = (h
(ℓ)
i , α1h

(ℓ)
j , α2h

(ℓ)
k , α3h

(ℓ)
p ),

m̂(πijkp) = (dij, djk, djp, θijk, θijp, φijkp),

(2.11)

where ϕ(ℓ) and ψ(ℓ) are two nonlinear functions to extract the complicated coupling

relationship between geometric and tree topology information. The aggregated node

features, m̄(ℓ)(πijkp), are computed as a weighted combination of the features from

node vi and its descendants in order: vj, vk, and vp. Here α1, α2, and α3 adjust the

influence of each ancestor’s features at layer ℓ.

2.7.4 Hierarchical Relationship Modeling through Partial Or-

dering Objective Function

To accurately represent the inherent hierarchical relationships among nodes in tree

structures, we introduce a partial ordering constraint module. The fundamental con-

cept behind this function is to constrain embeddings in such a way that the embed-

ding of a node in the tree not only represents itself but also maintains a structured

relationship over its subtree nodes in the embedding space.

To formally define the ordering constraint between node embeddings, we introduce

the concept of partial ordering in the embedding space, ensuring that hierarchical

relationships are accurately represented: as shown in Fig. 2.11, if Tj is a subtree of

Ti, then the embedding hj of node j has to be within the ”lower-left” region of node

i’ embedding hi:

hj[b] ≤ hi[b],∀Db=1 iff Tj ⊆ Ti, (2.12)
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Figure 2.11: Illustration of the hierarchical relationship between tree nodes through
partial ordering. In this scenario, Tk is a subtree of Tj, establishing a partial ordering
relationship between their respective subtree embeddings. Conversely, since Tk′ does
not constitute a subtree of Tj, there is no requirement for a partial ordering relation-
ship between the embeddings of these two subtrees.

where D is the dimension of hidden embeddings and [b] denotes the b-th dimension

of hidden embeddings.

To operationalize the above constraint into a function that can be optimized, we

accordingly define the objective function for generating embeddings to utilize the max

margin loss:

Lorder =
∑

(hi,hj)∈P
max(0, hj − hi) +

∑
(hi,hj)∈N

max(0, δ − ∥hi − hj∥2), (2.13)

where P and N denote the set of positive pairs and negative pairs in the minibatch

where tree Tj is a subtree of tree Ti. The term δ represents a margin that enforces

a minimum distance between the embeddings of negative pairs compared to positive

pairs, ensuring that hj (the embedding of the lower hierarchical node) is within the

lower-left space to hi (the embedding of the higher hierarchical node), and by at least

a margin distance δ apart for negative pairs.
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2.7.5 Self-Supervised Learning via Subtree Growth Learning

To tackle the challenge of insufficient training labels in real-world scenarios, we intro-

duce an innovative Geometric Tree Self-Supervised Learning (GT-SSL) framework.

While there are existing self-supervised learning objectives aimed at general graph

data, they are insufficient when applied to geometric trees. The primary limitation

is their inability to incorporate both intrinsic hierarchical relationships and coupled

geometric-tree topology information into the self-supervised learning objectives. Our

GT-SSL framework, by contrast, is specifically tailored to address these complex-

ities, ensuring that the resulting representations fully reflect the unique structural

and spatial characteristics of geometric trees.

Our approach focuses on growing the geometric tree information from its root

node. We introduce a unique subtree-growth learning goal, which generates the entire

geometric structure from top to bottom. Specifically, this process unfolds iteratively,

with each step predicting the geometric configuration of a node’s subtree based on

the geometric structure of its ancestors. This approach is inspired by the observed

natural growth patterns in geometric trees, where evolution occurs in a hierarchical

manner, cascading from higher-level nodes down to lower-level ones. An illustrative

example can be found in river systems, where the configuration of a tributary is largely

influenced by the main river’s structure and the characteristics of the surrounding

geometric environment.

To formalize our approach, for a node vi within a geometric tree T , we denote

C(vi) as the set of its child nodes and A(vi) as the set of its ancestor nodes within

the tree’s hierarchy. The objective of our subtree growing process is to accurately

predict the geometric structure of the child nodes, G̃(C(vi)), given both the geometric

structures of the node itself and that of its ancestors. This can be mathematically

expressed as:

G̃(C(vi)) = g (G (vi ∪ A(vi))) , (2.14)
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where g represents a learnable function designed to synthesize the geometric details of

the child nodes based on the aggregated geometric information of vi and its ancestors.

In our study, we prioritize predicting essential geometric features such as the distances

between a node and its child nodes as well as the angles between the parent node,

the current node, and its child nodes.

Unfortunately, to feasibly represent the geometric structure information as G, a

significant challenge arises from the variable number of child nodes associated with any

given node in a tree-structured graph, complicating the prediction of these geometric

features. Although predicting simple aggregated indicators, such as averaging the

distances, could be employed, but they risk obscuring the comprehensive geometric

structure of the child nodes.

To overcome this limitation, we introduce an approach that involves converting

the geometric features into the frequency domain. This transformation enables us

to focus on predicting the frequency distribution of the geometric features across the

child nodes, rather than attempting to directly predict specific values of the geometric

features, thus avoiding the issue posed by the uncertain number of child nodes.

Formally, to represent the geometric information in a form that is amenable to

pattern recognition and prediction, we expand these geometric features into the fre-

quency space with radial basis functions. Mathematically, for a given node vi with

child nodes C(vi) = {vi1, vi2, . . . , vin}, the distances {di1, di2, . . . , din} are expanded as

follows:

ek(vi) =
∑

vij∈C(vi)
exp(−γ∥dij − µk∥2), (2.15)

where ek denotes the k-th radial basis and µk is the corresponding distances. To

obtain the distribution of geometric features over the radial basis, the ground truth

distribution can be denoted as:
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G(C(vi)) =

 ∑
vij∈C(vi)

ek(vi)

K

k=1

, (2.16)

where K is the total number of radial basis functions employed. Thus, the estimated

distribution can be written as:

Ĝ(C(vi)) = g

 ∑
vij∈A(vi)∪vi

ek(vi)

K

k=1

 . (2.17)

Therefore, we formulate the objective function using the Earth Mover’s Distance

(EMD) to measure the discrepancy between the estimated distribution G̃(C(vi)) and

the ground truth distribution G(C(vi)):

Lgenerative =
∑
vi∈V

EMD
(
G̃(C(vi)),G(C(vi))

)
, (2.18)

where EMD denotes the Earth Mover’s Distance to quantify the cost of transforming

the estimated distribution into the ground truth distribution.

Finally, the overall self-supervised learning objective function can be written as

the combination of the subtree generative objective and the partial ordering function:

LGT−SSL = Lgenerative + Lorder (2.19)

2.8 Experiments on Spatial Trees

All experiments are conducted on a 64-bit machine with four NVIDIA A4000 GPUs

(16 GB GDDR5). The proposed method is implemented with PyTorch [155] and

the PyTorch-Geometric [65] deep learning framework. The code to our work can

be found in the Github repository: https://github.com/rollingstonezz/KDD24_

geometric_trees.

https://github.com/rollingstonezz/KDD24_geometric_trees
https://github.com/rollingstonezz/KDD24_geometric_trees
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2.8.1 Experimental Settings

Datasets. To evaluate the performance of our proposed GTMP and comparison

methods in real-world scenarios, eight geometric tree datasets are used in our exper-

iments, which includes five neuron morphology datasets and three river flow network

datasets across multiple tasks.

1) Neuron morphology: We conducted classification experiments using neuronal

morphology data from NeuroMorpho.org, the largest online collection of 3D neural cell

reconstructions contributed by hundreds of laboratories around the world [2]. Specif-

ically, we constructed binary classification tasks between control cells and cells from

two experimental conditions, 5xFAD and lipopolysaccharide injection (lps), where ex-

perimental condition was the target for prediction. All cells were mouse neural cells

but tasks were split across three cell types: glia, interneurons (inter), and principal

cells (pc). In total, we constructed five tasks: mouse 5xFAD glia versus mouse control

glia; 5xFAD primary cells versus control primary cells; lps glia versus control glia; lps

interneurons versus control interneurons; and lps primary cells versus control primary

cells. A statistical description of the datasets is shown in Table 2.9.

2) River flow networks: We also conducted regression experiments using publicly

available river flow network data from the United States Geological Survey’s (USGS)

National Hydrography Dataset (NHD) [174, 72]. We incorporated 2,231 river flow

network tree samples with an average node count of 11,141 per tree. To facilitate

prediction, we established three key geometric topology-coupled metrics as targets:

the clustering coefficient, spatial diameter, and spatial radius.

Comparison Methods. To the best of our knowledge, there has been little previ-

ous work to directly handle geometric trees. Several advanced spatial graph networks

have been developed to address generic spatial networks; among these, SchNet [160],

DimeNet [70], and SGMP [225] are some of the closest related works to our ap-

proach and selected as comparison methods. Additionally, we benchmark our ap-



62

proach against three prominent graph neural network (GNN) methods— GCN [114],

GAT [179], and GIN [211]— and two spatial neural network (SNN) techniques, Point-

Net [157] and SpatialNet [47]. For GNN methods, Cartesian coordinates are provided

as node attributes, while for SNN methods, both node attribute and graph connec-

tivity information are incorporated to ensure an equitable comparison.

Implementation Details. In the supervised learning configuration, all models uti-

lize an identical architecture comprising three convolutional layers, with the hidden

dimension size set to 64. During the self-supervised representation learning pretrain-

ing phase, this architecture is maintained with three convolutional layers leading to

final embeddings of 64 dimensions. For subsequent fine-tuning on specific tasks, a

three-layer Multilayer Perceptron (MLP) is appended to the convolutional base, uti-

lizing ReLU activation functions to enhance non-linear processing capabilities. To

ensure a balanced evaluation across our proposed message passing mechanism and

other GNN methods under comparison, we standardized the hyperparameter selec-

tion process.

We executed each experiment five times, subsequently averaging the results and

computing the standard deviation. We adopted AUC score as the evaluation metric

for the classification tasks on the neuron datasets due to the imbalanced distributions

of all classes. On all runs in all tasks, the datasets were randomly divided into training,

validation, and test sets with an 80:10:10 ratio, and identical hyperparameters were

employed across all tasks for each dataset, except for the random seed that was

responsible for the data split.

2.8.2 Effectiveness Results

In this section, we first assess the performance of our GTMP method against compet-

ing approaches across the real-world datasets within a supervised learning manner.

Additionally, we explore the efficacy of our GT-SSL framework to evaluate the quality
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Neuron - Classification (↑) River - Regression (↓)

lps-glia lps-inter lps-pc 5xfad-glia 5xfad-pc µ D r

GCN Supervised 0.6063 ± 0.0235 0.5000 ± 0.0000 0.5000 ± 0.0000 0.7934 ± 0.0218 0.7543 ± 0.0611 0.1134 ± 0.0244 172.1041 ± 2.8023 87.6032 ± 1.2830
GT-SSL 0.9798 ± 0.0197 0.9568 ± 0.0134 0.9546 ± 0.0122 0.8131 ± 0.0111 0.8938 ± 0.0134 0.0941 ± 0.0321 95.5785 ± 2.3104 76.4080 ± 1.5892
diff (+/−) 37.35% 45.68% 45.46% 1.97% 13.95% 17.01% 44.46% 12.77%

GIN Supervised 0.6060 ± 0.0326 0.5173 ± 0.0388 0.5351 ± 0.0355 0.8204 ± 0.0083 0.7903 ± 0.0407 0.1872 ± 0.0150 172.5895 ± 3.6765 87.4989 ± 1.0998
GT-SSL 0.9784 ± 0.0147 0.9181 ± 0.0237 0.7943 ± 0.1235 0.8046 ± 0.0258 0.9343 ± 0.0109 0.1135 ± 0.0819 102.9059 ± 2.5516 73.3257 ± 1.3291
diff (+/−) 37.24% 40.08% 25.92% -1.58% 14.4% 39.37% 40.38% 16.20%

GAT Supervised 0.5878 ± 0.0411 0.5221 ± 0.0231 0.5000 ± 0.0000 0.8101 ± 0.0232 0.6576 ± 0.0981 0.2335 ± 0.0731 171.1645 ± 2.2507 89.0507 ± 2.5466
GT-SSL 0.5032 ± 0.0048 0.5000 ± 0.0000 0.5000 ± 0.0000 0.8318 ± 0.0177 0.8726 ± 0.0390 0.2752 ± 0.1201 141.8387 ± 5.1076 76.5700 ± 1.9842
diff (+/−) -8.46% -2.21% 0% 2.17% 21.5% -17.86% 17.13% 14.02%

PointNet Supervised 0.6308 ± 0.0835 0.7295 ± 0.0310 0.5508 ± 0.0431 0.8108 ± 0.0078 0.8960 ± 0.0140 0.1244 ± 0.0102 169.0530 ± 2.0981 85.9079 ± 2.4306
GT-SSL 0.9733 ± 0.0102 0.9543 ± 0.0140 0.6432 ± 0.0741 0.7707 ± 0.0316 0.9771 ± 0.0111 0.0754 ± 0.0107 94.3706 ± 2.7810 71.4937 ± 1.8721
diff (+/−) 34.25% 22.48% 9.24% -4.01% 8.11% 39.39% 44.18% 16.78%

SpatialNet Supervised 0.7300 ± 0.0432 0.7445 ± 0.0419 0.5354 ± 0.0796 0.8614 ± 0.0113 0.8243 ± 0.0353 0.2335 ± 0.0418 151.0569 ± 2.5466 86.2461 ± 1.2461
GT-SSL 0.5010 ± 0.0025 0.5003 ± 0.0007 0.9232 ± 0.0460 0.8972 ± 0.0150 0.9764 ± 0.0164 0.0353 ± 0.0381 91.6590 ± 3.2311 66.9319 ± 3.1098
diff (+/−) -22.9% -24.42% 38.78% 3.58% 15.21% 84.88% 39.32% 22.39%

SchNet Supervised 0.7561 ± 0.0319 0.7597 ± 0.0286 0.6178 ± 0.0509 0.8994 ± 0.0105 0.9502 ± 0.0162 0.0342 ± 0.0072 154.4101 ± 3.2536 82.6100 ± 1.2830
GT-SSL 0.9698 ± 0.0120 0.9393 ± 0.0231 0.9612 ± 0.0202 0.9046 ± 0.0092 0.9893 ± 0.0083 0.0112 ± 0.0050 85.0109 ± 2.3832 37.8552 ± 1.4879
diff (+/−) 21.37% 17.96% 34.34% 0.52% 3.91% 67.25% 44.94% 54.18%

DimeNet Supervised 0.7049 ± 0.0620 0.8338 ± 0.0226 0.5601 ± 0.1020 0.9123 ± 0.0089 0.9544 ± 0.0120 0.0196 ± 0.0053 134.4048 ± 2.4952 80.9102 ± 1.2827
GT-SSL 0.9351 ± 0.0194 0.9627 ± 0.0176 0.9345 ± 0.0131 0.9540 ± 0.0059 0.9902 ± 0.0015 0.0077 ± 0.0033 80.2417 ± 2.0114 35.3140 ± 0.9910
diff (+/−) 23.02% 12.89% 37.44% 4.17% 3.58% 60.71% 40.30% 56.35%

SGMP Supervised 0.7599 ± 0.0442 0.8078 ± 0.0382 0.6231 ± 0.0512 0.8917 ± 0.0123 0.9839 ± 0.0034 0.0087 ± 0.0031 123.3789 ± 3.8385 68.0974 ± 2.1300
GT-SSL 0.9568 ± 0.0170 0.9709 ± 0.0142 0.9952 ± 0.0009 0.9333 ± 0.0085 0.9814 ± 0.0072 0.0033 ± 0.0012 76.7912 ± 1.4728 36.0287 ± 1.3890
diff (+/−) 19.69% 16.31% 37.21% 4.16% -0.25% 62.07% 37.76% 47.09%

GTMP Supervised 0.7996 ± 0.0392 0.8529 ± 0.0370 0.6560 ± 0.0621 0.9417 ± 0.0123 0.9887 ± 0.0063 0.0052 ± 0.0024 125.4951 ± 2.8295 61.2353 ± 1.3177
GT-SSL 0.9836 ± 0.0096 0.9996 ± 0.0106 0.9872 ± 0.0013 0.9011 ± 0.0192 0.9992 ± 0.0004 0.0041 ± 0.0019 76.7699 ± 1.8740 33.0287 ± 0.7680
diff (+/−) 18.4% 11.87% 33.12% -4.06% 1.05% 21.15% 38.83% 46.06%

Table 2.8: The main experimental results on neuron morphology and river flow net-
work datasets. Here we present the performance of our GTMP method alongside
other comparative methods within both supervised learning and our GT-SSL train-
ing approach. For each dataset, we highlight in bold both the best performance in the
supervised learning context across all methods, and also the top performer within our
GT-SSL training framework. Additionally, we show the percentage improvement in
performance of all methods when leveraging our GT-SSL over traditional supervised
learning settings. Specifically for the river flow network dataset, we use µ to represent
the clustering coefficient, D for spatial diameter, and r for spatial radius.

of the generated representations in a pretrain-finetune manner over the same dataset.

Given that the GT-SSL framework is designed to be a general approach applicable

to various representation learning methods, we present the outcomes for both our

GTMP approach and all other methods being compared. In this section, we pretrain

and finetune the same datasets for implementing the GT-SSL framework, ensuring a

fair comparison with the supervised learning results.

The comparison of AUC scores for the neuron morphology datasets and MAE

results for the river datasets is provided in Table 2.8. We summarize our observations

on the effectiveness of the GTMP model and the GT-SSL training framework below:

(1) Strength of GTMP model in learning effective geometric tree represen-

tations. The supervised learning results demonstrate the strength of our proposed

method, which consistently achieved the best results in seven out of eight datasets and
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securing the second-best result in the only dataset where the best performance was

not attained. Specifically, our results outperformed the other comparative models by

over 12.7% on average for the neuron morphology datasets and 22.1% on average for

the river flow network datasets. The outcomes demonstrate that our GTMP model

successfully leverages the specially designed branch message passing mechanism to

generate representations, which significantly enhances performance on downstream

supervised learning tasks.

(2) Benefits of utilizing GT-SSL framework to enhance the quality of geo-

metric tree representations. Table 2.8 reveals that the GT-SSL’s pretrain-finetune

approach consistently enhances the performance of all representation learning models

on 62 of the 72 total prediction tasks when compared to traditional supervised learning

settings. Notably, the GT-SSL method surpasses supervised learning by an average

margin of over 23.02% across all tasks. This substantial improvement underscores

the effectiveness of the GT-SSL pretraining framework in significantly enhancing the

quality of learned representations via self-supervised learning objectives tailored to

geometric tree structures.

(3) Integrating the GTMP model with the GT-SSL framework results in

superior overall performance. It is worth noting that the combination of our pro-

posed GTMP model and GT-SSL framework shows a more competitive performance

than any other combination of methods by achieving the best performance in six out

of eight datasets. Specifically, our results outperformed the other comparative models

by over 10.0% on average for the neuron morphology datasets, and 29.3% on average

for the river flow network datasets. The results demonstrate that integrating the

GTMP model with the GT-SSL framework can successfully lead to state-of-the-art

representation learning performance on geometric tree datasets.

(4) Advantage of specialized spatial network representation learning meth-

ods over conventional graph and spatial neural networks. It is also worth
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Source
lps-glia lps-inter lps-pc 5xfad-glia 5xfad-pc

# of Trees 28,687 8,092 28,224 33,757 28,086
Average # of Nodes 2,025 4,488 3,146 1,994 3,152

Target

lps-glia 0.9836 0.9983 0.9987 0.9231 0.9999
lps-inter 0.9111 0.9996 0.9936 0.8627 0.9999
lps-pc 0.9995 0.9964 0.9872 0.9705 0.9969
5xfad-glia 0.9357 0.9981 0.9399 0.9011 0.9740
5xfad-pc 0.9798 0.9969 0.9959 0.8993 0.9992

Table 2.9: Transfer learning results. We underline the results where the source and
target datasets are the same. Additionally, we highlight the best results for each
target dataset.

noting that the specialized spatial network representation learning methods (SchNet,

DimeNet, SGMP, and GTMP) show a more competitive performance than both the

vanilla graph neural network-based methods (GCN, GIN, and GAT) and the spatial

network-based methods (PointNet and SpatialNet). Specifically, these specialized

methods surpass traditional graph neural networks by an average of over 19.3% in su-

pervised learning contexts and 22.3% when integrated with the GT-SSL framework;

against spatial neural network approaches, they demonstrate an average improve-

ment of 11.1% in supervised settings and 23.7% with GT-SSL. These results indicate

that standard graph neural network and spatial neural network methods have lim-

ited capability to effectively discriminate patterns that require joint consideration of

geometric information and tree topological information.

2.8.3 Transfer Ability Analysis

We further investigate the transferability of our GT-SSL framework. In practical

settings, the ability to deploy a model trained on one dataset to a new, unseen dataset

without requiring retraining is highly beneficial. This strategy aims to address two

main goals: (1) overcoming the obstacle posed by insufficient data in the new dataset,

which might hinder effective model training, and (2) saving computational resources,
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as developing a model from the ground up demands significant time and resources. To

assess how well our model adapts to new datasets, we initially pretrain the GTMP

model using self-supervised learning objectives on source datasets. Subsequently,

we finetune this pretrained model on target datasets to evaluate its performance in

downstream task predictions.

The experimental results and sizes of datasets are shown in Table 2.9. (1) Strong

transfer ability across different source and target datasets. It is evident that

the transfer model, when applied from the source to the target dataset, can achieve

performance on par with, or in some instances even surpassing, the model directly

trained on the source dataset. Specifically, the discrepancy in average performance

between scenarios where the source and target datasets are identical and those where

they differ is a mere 0.91%. (2) Correlation between tree sizes and transfer

performance. More importantly, our findings reveal that pretraining on datasets

with larger average tree sizes can significantly enhance transfer performance on tar-

get datasets. In particular, the average performance when pretraining on datasets

characterized by relatively larger tree sizes (such as lps-inter, lps-pc, and 5xfad-pc)

surpassed that of datasets with smaller tree sizes (such as lps-glia and 5xfad-glia) by

an average of 5.51%. Notably, the dataset with the largest average tree size, lps-inter,

achieved an impressive average AUC score of 0.9979 across all datasets. These re-

sults underscore the ability of our proposed model to leverage larger dataset sizes for

improving performance on unseen, relatively smaller-sized datasets. This capability

presents a strategic advantage in addressing challenges related to data scarcity and

computational constraints.

2.8.4 Ablation Studies

This paper primarily concentrates on exploring the fundamental question of how effec-

tively representation learning can leverage uniquely designed properties of geometric
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Neuron (↑) River (↓)
lps-glia lps-inter 5xfad-pc Diameter Radius

Supervised 0.7996 0.8529 0.9887 125.4951 61.2353
GT-SSL 0.9836 0.9996 0.9992 76.7699 33.0287
No Ordering 0.9769 0.9922 0.9981 78.8122 33.8345
No Generative 0.8235 0.8834 0.9847 108.5359 60.5332

Table 2.10: Ablation study results. NO Ordering refers to a variant that removes
the partial ordering constraint module. NO Generative refers to another variant
that removes the subtree growth learning module. The best result of each dataset is
highlighted in bold.

trees. Here, we investigate the impact of the proposed two self-supervised learning

components of GT-SSL framework. We first consider a variant No Ordering that

removes the Partial Ordering module. To study the effectiveness of the proposed

subtree growth learning module, we further construct a variant No Generative that

removes the corresponding module. Due to length constraints, we only present the

results of five real-world datasets in Table 2.10.

(1) Our full GT-SSL framework achieved the best performance on all five datasets.

Specifically, the full model outperforms the variants No Ordering and No Gener-

ative by 10.3% on average. In turn, these two variants exceeded the performance

of the supervised learning model by an average of 13.3%. These outcomes confirm

that incorporating partial ordering and subtree growth learning modules significantly

enhances geometric tree representation learning tasks.

(2) The performance drops significantly when we remove the subtree growth learning

module, in comparison to removing the partial ordering module, which may indicate

that this module plays a more critical role in understanding the joint geometric and

tree topological properties towards learning powerful representations.
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2.9 Conclusion

We first focus on the crucial problem of learning powerful representations from phys-

ical networks, which has tightly coupled spatial and graph information that can not

be addressed by applying spatial and network methods separately. The proposed

Spatial Graph Message Passing neural network (SGMP) effectively addresses the

unique challenges in spatial networks by jointly considering the spatial and graph

properties, and still maintain the invariance to node permutations, as well as rotation

and translation transformations. In addition, our proposed accelerating algorithm

largely alleviates the efficiency issue in solving spatial network issues. Experimental

results on synthetic and real-world datasets demonstrate the outstanding discrimina-

tive power of our model, and the efficiency test shows a remarkable improvement in

training time and scalability of our proposed accelerating method.

Besides, we generalize the problem to learning representations from spatial net-

works embedded in non-Euclidean manifolds, which is an underexplored area and can

not be well handled by existing works. The proposed framework Manifold Space

Graph Neural Network (MSGNN) effectively addresses the unique challenges of

representing irregular spatial networks by first converting the manifold space into

a discrete mesh tessellation, and then converting the geometric information of the

curves between nodes into messages on edges. Theoretical guarantees are given to

prove that our learned representations are invariant to important symmetries such as

rotation and translation, and simultaneously maintain strong distinguish power in ge-

ometric structures. Extensive experimental results on both synthetic and real-world

datasets demonstrate the strength of our theoretical findings.

Finally, we propose the Geometric Tree Message Passing (GTMP) model, de-

signed to efficiently learn coupled spatial-topology representations from geometric

tree-structured data. Theoretical guarantees are given to assure its ability to preserve

essential geometric structure information. To overcome the challenge of insufficient
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labeled data and to enhance transferability, we also introduce the Self-Supervised

Learning Framework for Geometric Trees (GT-SSL). This framework significantly

improves geometric tree representations by leveraging their inherent hierarchies and

tree-oriented geometric structures. The integration of the GTMP model with the

GT-SSL framework further accentuates its effectiveness, leading to state-of-the-art

performance on various datasets.
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Chapter 3

Representation Learning on

Information Networks

In this chapter, we introduce our proposed deep learning framework designed to unify

various information network domains through text-attributed graphs. We begin with

the background in Section 3.1 and review related works in Section 3.2. The proposed

self-supervised learning framework is detailed in Section 3.3, followed by extensive

experimental results in Section 3.4. We conclude the chapter in Section 3.5.

This chapter features a work currently under submission [230], titled “TAGA:

Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mu-

tual Transformations.”

3.1 Introduction on Information Networks

Information networks [6], which represent abstract relationships between entities such

as individuals, documents, or data sources, play a crucial role in a wide range of

applications, including social networks [153, 148], citation networks [136], and rec-

ommendation systems [207, 98]. These networks are characterized by complex and

diverse data domains, each introducing unique node and edge features, as well as dis-
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tinct predictive tasks. This diversity presents significant challenges for developing a

unified representation learning framework capable of generalizing across multiple do-

mains. Existing approaches often struggle to accommodate such variations, limiting

their effectiveness in diverse network types.

Recent advances in natural language processing (NLP), particularly with the ad-

vent of pre-trained language models [177, 113, 25], have demonstrated remarkable

success in handling data from various domains, offering potential solutions to these

challenges. In this research, we seek to unify the representation of information net-

works across diverse domains by leveraging textual descriptions of network elements.

We introduce a novel structure, Text-Attributed Graphs (TAGs), that integrates

textual attributes into graph representations, thereby providing a unified framework

capable of learning from and generalizing across a wide range of information networks.

This approach represents a significant step towards more robust and adaptable rep-

resentation learning for complex, multi-domain information networks.

Text-Attributed Graphs are text documents that are connected in graph struc-

tures, allowing for deeper analysis and interpretation of complex relationships [224,

105, 106]. TAGs are prevalently used in numerous real-world applications, such as

social networks [153], citation networks [136], and recommendation systems [207].

TAGs encompass textual content in both nodes and edges that elucidate the meaning

of individual documents and who they are semantically correlated with. For instance,

a scientific article network is a type of TAG that stores the texts of research papers

and details about how they cite, criticize, and summarize each other within para-

graphs. As shown in Figure 2.1(a), extracting knowledge like “the first law proposed

in Paper A is a special case of Paper B’s Theorem 1 when under macro scale and low

velocity” from this scientific article network requires jointly considering semantics,

topology, and their entanglement in the TAG.

Representation learning on TAGs is a promising, yet open research area that starts
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to attract fast-increasing attention [216, 181, 35, 95, 64, 168, 130]. Existing TAG

representation learning methods typically treat each text document as an independent

node embedding and then rely entirely on message passing mechanisms to model

the interaction between different texts. These approaches ignore the semantic-level

textual connections between different nodes. Additionally, existing works are typically

only applicable for supervised learning, which require extensively labeled data that is

often unavailable in real-world scenarios. Moreover, the reliance on supervised tasks

means that models are usually optimized for specific tasks and domains reflected in the

training dataset, which significantly constrains their applicability to new domains or

broader tasks. This limitation undermines the unique advantage of TAGs to leverage

their universal linguistic attributes effectively. Although there are some graph pre-

training models [93, 178, 221, 130] operate in an unsupervised manner, they often

focus on either graph topology or node features independently, neglecting the crucial

interplay between textual semantics and structural information inherent in TAGs.

Therefore, there is a pressing need for a method that comprehensively addresses

the unique nature of TAGs, seamlessly integrating both their structural and seman-

tic dimensions within a unified unsupervised framework. This presents a significant

research challenge with several substantial hurdles to overcome. Primarily, develop-

ing a representation that can simultaneously leverage the textual semantic content,

the graph structure, and their complex interplay presents significant difficulties. The

scarcity of labeled training data further exacerbates this issue, making traditional su-

pervised approaches impractical and necessitating innovative unsupervised strategies.

Furthermore, the computational demands of such representation learning are substan-

tial. The integration of large PLMs for textual corpus processing to be considered in

TAGs creates a significant computational burden.

In order to address the aforementioned challenges, this paper proposes a new

self-supervised learning framework named Text-And-Graph Multi-View Alignment



73

Ø Galileo develops the theory of projectile 
trajectories, which discusses …
Ø [1] Newton’s theory consists of …

Ø [1.1] First law of motion is …
Ø [1.1.1] Follows by first law, 

here we further …
Ø [1.2] Second law of motion 

describes …
Ø [2] Newton's laws in Sec. 1 are only 

valid only for low velocity and macro 
scale. Conversely, Einstein’s relativity 
generalize the laws to the cases …
Ø [2.1] Revolution of relativity starts.. 

Ø [2.1.1] The second law 
discussed in Sec.1.2 is invalid 
when approaching the speed 
of light. Special relativity ... 

Ø [2.1.2] General relativity is …

Only valid for
 low velocity 
and macro scale

Equivalent

Graph to Text

Text to Graph

invalid when 
approaching the 
speed of light

(a) Graph-of-Text view by networked corpus (b) Text-of-Graph view by structured text document

Galileo develops the theory of 
projectile trajectories, which …

Newton’s theory 
consists of …

First law of 
motion is …

Second law of 
motion is …

Einstein’s relativity 
generalize the laws 
to the cases …

Revolution of 
relativity starts..

Follows by first law, 
here we further …

General 
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Special 
relativity 
describes …

Paper A Paper B

Figure 3.1: Illustration of the two distinct views of TAGs: (left) Graph-of-Text and
(right) Text-of-Graph. Graph-of-Text view constructs a graph-structured data over
the individual text corpora, while Text-of-Graph view organizes the text node and
their connection description in a hierarchical layout document. These two views can
be mutually transformed to each other.

(TAGA). TAGA jointly preserves rich semantic information, topology information,

and their interplay by aligning representations of TAGs from two complementary

views: the Text-of-Graph view and the Graph-of-Text view. As illustrated in Fig-

ure 3.1, these two views offer different representation formats of a TAG yet contain

equivalent information. Specifically, the Text-of-Graph view organizes node texts into

a structured textual document according to the TAG’s topology. As exemplified in

Figure 3.1(b), structured textual documents are universal ways to represent the re-

lations among different text pieces in large corpus, especially in books, long articles,

web files, etc. Here we propose a novel Graph2Text encoding module to automatically

transfer a TAG to a structured textual document, which is readily to be processed by

language models. Conversely, the Graph-of-Text view transforms textual nodes and

topology into graph-structured data, which is then processed by a graph representa-

tion learning module (e.g. graph neural network). By aligning the representations

learned from these two views, we encourage the learned representation to capture both

textual and structural information, resulting in a unified, comprehensive representa-
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tion of the TAG. Furthermore, to accelerate the training process, we propose a novel

structure-preserving random walk algorithm. Finally, we demonstrate the strength

of our proposed representation learning framework through extensive experiments on

eight real-world datasets in zero-shot and few-shot prediction scenarios.

3.2 Related Works

3.2.1 Text-Attributed Graphs Representation Learning

Existing methods typically focus on supervised learning. GraphFormers [214] in-

troduce GNN-nested Transformers to simultaneously capture graph topology and

textual semantics, enhancing interactions between textual content and graph struc-

ture. Learning on Large-scale Text-attributed Graphs via Variational Inference [234]

presents a variational inference framework that efficiently learns node representa-

tions on large-scale TAGs. Patton [104] pretrains language models on text-rich net-

works to capture semantic relationships. Recent developments have also seen ef-

forts [199, 168, 130] in aligning graph representations with textual representations.

For instance, G2P2 [199] employs contrastive learning to align GNN representations

with text encoder outputs by averaging individual node text embeddings across var-

ious neighborhood hops during its pre-training phase. However, these methods often

simplify the treatment of textual encoder embeddings for neighborhoods by averag-

ing the embeddings of individual nodes. Similarly, GRENADE [130] implements a

dual-level alignment strategy. This approach overlooks the underlying interactions

within neighborhoods, leading to a loss of information that could be crucial for the

contrastive objectives of alignment models.
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3.2.2 Unsupervised Graph Pre-Train Methods

Existing unsupervised graph pre-training methods can be categorized into several

categories based on their objectives and architectures. Graph autoencoder meth-

ods, graph autoencoder methods [115, 93] convert node and edge features into low-

dimensional embeddings, which are then used to reconstruct the original graph data.

Contrastive learning approaches, like DGI [178], GraphCL [221], GRACE [238], and

S3-CL [52], generate perturbed graph pairs by altering structural features, such as

adding or removing nodes and edges or masking features, aiming to align the em-

beddings of these modified graphs closer in the embedding space. However, these

methods often produce domain-specific embeddings with limited generalization abil-

ity across different domains, reducing their effectiveness in data-scarce or label-limited

scenarios.

Recent developments have also seen efforts [199, 168, 130] in aligning graph repre-

sentations with textual representations. For instance, G2P2 [199] employs contrastive

learning to align GNN representations with text encoder outputs by averaging indi-

vidual node text embeddings across various neighborhood hops during its pre-training

phase. However, these methods often simplify the treatment of textual encoder em-

beddings for neighborhoods by averaging the embeddings of individual nodes. Sim-

ilarly, GRENADE [130] implements a dual-level alignment strategy. This approach

not only aligns GNN and text encoder embeddings but also encourages embeddings

of connected node pairs to exhibit similarity. This approach overlooks the underly-

ing interactions within neighborhoods, leading to a loss of information that could be

crucial for the contrastive objectives of alignment models.

3.2.3 Graph2Text Encoding Methods

Recently, research include approaches [216, 181, 35, 95, 97, 64] that first transform

the text-attributed graph into text sequence and then directly utilize LLMs as the
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predictor given the transformed text and corresponding question as input prompt.

These methods typically designs text templates to explicitly describe local graph

structure by stating nodes and how they are connected in plain text. For example,

“The first node is . . . . The second node is . . . . . . . . First node connects to third node.

Second node connects to . . . ”. However, these methods do not present the structure

in a natural language-speaking manner, which fails to fully leverage the pretrained

capabilities of language models. This is due to the distributional shift between the

transformed text from the graph and the original pretrained corpus, resulting in lower

quality embeddings and high variance of performance [64].

3.2.4 Efficient and Scalable Methods for Large-Size Graph

Neighborhoods

Efficiency and scalability are crucial for deep graph learning, particularly when dealing

with large graphs or high-order interactions. Traditional graph sampling techniques,

such as node sampling [31], edge sampling [85], or subgraph sampling [222], aim to

reduce neighborhood size. However, these methods may not be suitable for TAGs, as

they can result in the loss of important hierarchical interactive connection during the

random sampling process. Meanwhile, in the NLP domain, some efforts [156, 88, 32,

100, 51] have been made to address the long context issue of PLMs. These approaches

typically involve compressing input tokens into latent vectors [100] or modifying the

attention mask [34, 88, 51] to reduce significant interactions. However, these methods

often fail to preserve the original structure of the input corpus and might alter the

hierarchical layout.
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3.3 Self-Supervised Learning Framework on TAGs

To effectively address the substantial challenges of unsupervised representation learn-

ing on TAGs, we propose a novel self-supervised learning framework called Text-

And-Graph Multi-View Alignment (TAGA). Specifically, to jointly preserve both

rich semantic information, topology information, and their interplay, we propose to

learn and align the representations of TAG in two complementary views, namely text

view and graph view. In particular, the text view is a Text-of-Graph, where the TAG’s

node texts are organized according to the TAG’s topology into a collective textual hi-

erarchical document, which inherently has the power to encompass logic and relational

information among different node texts. The graph view is a Graph-of-Text, where the

TAG’s nodes and topology are turned into a graph structured data. These two views

contain equivalent information but in different formats, allowing them to mutually su-

pervise each other. Then the text view can be transformed by PLMs, which are adept

at preserving textual information, while the graph view can be transformed by GNN,

which are designed to guarantee preserving graph information. Therefore, by align-

ing the representations learned from these two views, we encourage the graph view’s

representation to also capture textual information and the text view’s representation

to also capture graph information. The above new idea is shown in Figure 2.3, where

Figure 2.3(a) illustrates construction of Graph-of-Text view while Figure 2.3(b) illus-

trates Text-of-Graph view, as detailed in Section 3.3.1. In Section 3.3.2, we propose

the Graph2Text module that can information loselessly transform the Graph-of-Text

view to Text-of-Graph view. Their respectively transformed embeddings are aligned

by our proposed TAG-hierarchical self-supervised learning framework, which is elab-

orated in Section 3.3.3. Finally, a novel acceleration algorithm of our learning process

to reduce computational complexity to near linear is detailed in Section 3.3.4.
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Figure 3.2: Illustration of the proposed self-supervised learning framework. (a) Gen-
eration of different orders of Graph-of-Text views; (b) The Graph2Text module that
transforms a Graph-of-Text view into a Graph-of-Text view; (c) The alignment mod-
ule via hierarchical self-supervised learning.

3.3.1 Text-and-Graph Multi-View Construction

Existing methods for learning representations on TAGs typically simply use GNNs to

aggregate individual node embeddings generated from node texts. These methods lack

the ability to consider the textual semantic relationship between different node texts

in a joint document, and usually require supervised labels for training. Moreover,

the resulting embeddings often lack generalization capabilities beyond the specific

domain and task of their training data. To address these, our proposed framework

TAGA first leverages two views of a TAG: Text-of-Graph (TofG) and Graph-of-Text

(GofT ). Each view can be defined at different neighborhood orders, allowing for a

multi-order hierarchical representation. Specifically, a k-order TofG view represents a

node’s k-hop neighborhood as a single textual corpus that encompasses all nodes and

their connections within that neighborhood. This corpus is then processed by a PLM

to extract semantic embeddings that capture the combined content and structure

within that k-hop neighborhood. In contrast, the corresponding k-order GofT view
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is constructed as a graph structure, where nodes represent lower order TofGs within

the k-hop neighborhood. A GNN model is then applied to aggregate information

from these connected lower order TofGs, capturing the overall neighborhood context.

This ensures that both TofG and GofT views at the same order encode equivalent

information about the neighborhood.

To illustrate, consider a node with a 3-hop neighborhood, as shown in Figure 2.3(a).

Its 3-order TofG is constructed by transforming the entire 3-hop neighborhood as a

single text corpus. Three distinct 3-order GofT views can then be created using

TofGs of orders 0, 1, and 2 as nodes in the graph structure. To maintain information

consistency, the number of GNN aggregation layers decreases with increasing TofG

order: 3 layers for 0-order TofGs, 2 for 1-order TofGs, and 1 for 2-order TofGs. This

ensures that each 3-order GofT view captures the same 3-hop neighborhood infor-

mation as the 3-order TofG view, facilitating information equivalent views to enable

further self-supervised learning alignment.

3.3.2 Represent Text Neighborhood Information via Hierar-

chical Document Layout

The key to our proposed self-supervised learning framework is ensuring that the two

distinct graph views (TofG and GofT ) contain equivalent information. This neces-

sitates constructing a TofG view through the Graph2Text module that preserves all

connectivity information present in the original TAG. Existing methods [64, 97, 199,

168] often struggle to effectively represent the structural information of graphs in a

way that is both comprehensive and natural to language model understanding. These

methods typically designs text templates to explicitly describe local graph structure

by stating nodes and how they are connected in plain text. For example, “The first

node is . . . . The second node is . . . . First node connects to third node. Second node

connects . . . ”. However, these methods usually fails to fully leverage the pretrained
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capabilities of language models because they do not present the structure in a nat-

ural language-speaking manner. This discrepancy between the transformed graph

text and the original pre-training corpus leads to a distributional shift, hindering the

PLM’s ability to generate high-quality embeddings that accurately reflect both the

semantic and structural aspects of the TAG.

To address this issue, we introduce a novel Graph2Text approach that transforms

a graph neighborhood into a hierarchical text document. This hierarchical structure

mirrors the original graph’s topology, ensuring that the document’s latent structure is

equivalent to the graph itself. Crucially, the resulting document resembles a natural

document, aligning with the distribution of majority text data used to pre-train

PLMs. This alignment mitigates the distributional shift issue, allowing PLMs to

generate embeddings that accurately reflect both the semantic and structural aspects

of the graph.

Specifically, the structure of a node and its k-hop neighborhood can be repre-

sented as an ego graph, with the node itself as the root. This ego graph can be

decomposed into a hierarchical tree backbone and a set of cross-edges, as illustrated

in Figure 2.3(b). The reading order is established for the TofG document through

a pre-order traversal of this tree structure (first visit the root, then the left subtree,

then the right subtree), capturing the hierarchical relationships between nodes. To

fully represent the neighborhood’s structure, we then incorporate cross-edges into the

document. These cross-edges indicate connections from later sections of the docu-

ment back to earlier ones, effectively mirroring the original graph’s topology within

the text format.

As shown in Algorithm 1, the k-hop neighborhood of a target node v in graph G is

represented as an ego-graph G(v, k). A breadth-first search (BFS) tree T̂ (v, k), rooted

at v, provides a hierarchical structure for the document, while cross-edges (edges

outside the BFS tree) are identified. A pre-order traversal of T̂ (v, k) establishes the
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document’s hierarchical layout, assigning each node a section number. Cross-edges are

then integrated by adding references at source nodes to the sections containing their

respective destination nodes, if the destination node appears earlier in the traversal.

This approach ensures that the document faithfully reflects the graph’s structure.

3.3.3 Multi-View Alignment via TAGHierarchical Self-Supervised

Learning

Upon construction of both views at different orders, a hierarchical self-supervised

learning module is proposed to align the embeddings from both views. Given a TAG G

with at most K-hop neighborhood size, for each node vi ∈ V , its k-hop neighborhood

can be denoted as Nk(vi) and its corresponding k-order TofG view embedding can

be represented as:

hk(vi) = PLM (TofG(vi; k)) ,

TofG(vi; k) = Graph2Text (vi ∪N (vi, k)) ,

(3.1)

where PLM is a pre-trained language model (e.g. BERT [112] or LlaMA [172]).

Graph2Text is an encoding template function that can transform individual nodes

and edges text into a textual corpus. Meanwhile, its corresponding k-order GofT

views embeddings can be denoted as GNN aggregated representations of lower order

TofGs:

bl
k(vi) = f (k−l) ({hl(vb)|vb ∈ vi ∪N (vi, k − l)}) , (3.2)

where l covers from 0 to k − 1 and f (k−l) denotes the GNN model with k − l layers.

By aggregating k − l layers of information over the connected l-order TofGs, the

obtained k-order GofT embeddings cover equivalent information with the k-order

TofG view embedding. Therefore, given all the embeddings from level 1 to K, the
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Algorithm 1 Hierarchical Document Layout
(HDL) for Graph2Text

Input: Graph G, target node v, hop count k
Output: Hierarchical text document D

1: Ĝ(v, k)← Construct ego-graph of v up to
k hops in G

2: T̂ (v, k)← BFS tree of Ĝ(v, k) rooted at v
3: Êcross(v, k)← Cross-edges in Ĝ(v, k)
4: D ← Assign document sections to nodes

following pre-order traversal
5: for each cross-edge e = (u,w) do
6: if w precedes u then
7: Add reference at u to section con-

taining w in D
8: end if
9: end for
10: return D

Algorithm 2 Structure-Preserving
Random Walk Traversal
Input: Root node v, cross-edge
probability p, maximum length L
Output: Traversal path P

1: P ← [v]
2: while |P | < L and v has chil-

dren do
3: if random() ¡ p and v has

cross-edges then
4: v ← Random neighbor by

cross-edge
5: else
6: v ← Random child of v
7: end if
8: P ← P + [v]
9: end while

10: return P

supervision objective function can be written as:

Lpositive = − 1

K|B|
∑
vi∈B

∑
k∈[1,K]

∑
l∈[0,k−1]

ρ
(
bl
k(vi),hk(vi)

)
, (3.3)

where B represents the minibatch and ρ denotes a similarity function, such as

cosine similarity. Additionally, we include the negative samples that chosen from

other nodes within the minibatch:

Lnegative =
1

K|B|
∑

vi,vj∈B,v1 ̸=v2

∑
k∈[1,K]

∑
l∈[0,k−1]

ρ
(
bl
k(vi),hk(vj)

)
, (3.4)

Thus, the overall objective function can be denoted as:

L = Lpositive + Lnegative (3.5)

Time Complexity Analysis. Consider a TAG with a maximum K-hop neigh-

borhood size, where each node has an average degree d and text attribute length
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L. Assume the feature dimensionality is F . In the case of transformer-based PLMs,

the time complexity for processing the TofG view of a node would be O((dL)2K2),

due to the quadratic complexity of self-attention mechanisms with respect to input

sequence length. In contrast, our method employs a GNN to aggregate information

from lower-order TofGs, each of length dL. Assuming a GNN with constant complex-

ity per layer, the time complexity for aggregating information from all K levels of the

GofT view would be O(L2dK). Our method achieves significantly higher efficiency

than directly using PLMs for TofG views, with details available in the Appendix B.2.

3.3.4 Accelerating Training on Large TAGs with Structure-

Preserving Random Walk

While TAGA significantly improves efficiency during inference by transferring knowl-

edge from the PLM to a GNN model, the pre-training stage still encounters com-

putational bottlenecks due to the quadratic complexity of transformers with respect

to context length when generating TofG view embeddings. Existing graph sampling

methods (e.g., node or edge dropping) can partially alleviate this issue, but at the

cost of sacrificing valuable structure information, which is crucial for capturing the

intricate relationships within TAGs.

To address this issue while preserving the structure of corpus, we propose a novel

approach inspired by human reading patterns. Our method segments the hierarchical

corpus into multiple related sub-corpora, mirroring how humans naturally engage

with complex documents: starting with a general overview (top of the hierarchy)

and delving into specific sections (sub-corpora). By navigating the corpus multiple

times, focusing on different sub-corpora each time, the combined insights gained can

effectively approximate the understanding achieved from processing the entire corpus.

To facilitate this behavior, we introduce a random walk-based neighborhood traver-

sal algorithm. It simulates a reader starting at the root node and progressing towards



84

leaf nodes in the BFS tree, transitioning from general to specific information. Ad-

ditionally, at each step, there is a probability p of jumping to another node via

cross-edges, imitating the non-linear navigation often observed in human reading

(e.g., jumping to related topics or backtracking). By averaging multiple random walk

traversals, the generated paths can approximate the complete corpus. As detailed in

Algorithm 2, each traversal begins at the root node v and iteratively samples child

nodes to form a path down the hierarchy. At each step, a jump to another node via

cross-edges is possible with probability p. This traversal continues until reaching a

predefined length or a leaf node.

3.4 Experiments

In this section, the experimental settings are introduced first in Section 3.4.1, then the

zero-shot and few-shot node classification performances are presented in Section 3.4.2,

and link prediction performance is presented in Appendix B.1.2. We further present

the effectiveness under transfer learning settings in Section 3.4.3. We measure model

efficiency in Section 3.4.6. The effectiveness of framework components through abla-

tion studies is in Section 3.4.4. The parameter sensitivity experiments are present in

Section 3.4.5.

3.4.1 Experimental Settings

Datasets. We evaluate on eight real-world text-attributed graph datasets across

different domains. Specifically, three citation networks Cora [215], Pubmed [215] and

Arxiv [94], two book networks Children [125] and History [125], and three E-commerce

networks Computers [125], Photo [125], and Sports [213] are chosen as our evaluation

datasets. Datasets statistics can be found in Table 3.1.

Comparison Methods. We choose the textual embedding of the text corpus as the
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baseline, which is denoted as “PLM” in our experimental results tables. Addition-

ally, we compare our proposed framework with six state-of-the-art graph pre-train

methods. Specifically, GraphMAE [115] — utilizes masked autoencoder technique to

predict of graph structure and node features. GraphCL [221] and GRACE [238] ap-

plies various graph augmentations to generate contrastive pairs. GraphFormers [214]

and Patton [104] insert GNN layer into transformers architecture. G2P2 [199] aligns

GNN embeddings and text encoder embeddings through contrastive learning.

Implementation Details. We choose two different pre-trained language models

(OpenAI’s text-embedding-3-small [151] and UAE-Large-V1 [127]) to gen-

erate text embeddings for robust results. Commonly used GNN models (GCN [116],

GIN [85], GraphSAGE [211]) are chosen as the backbone model as the backbone

model for both our method and all comparison methods. For a fair comparison, all

models are required to adhere to the same GNN architecture, including the number of

convolution layers and hidden dimensions. More details about hyperparameters can

be found in Appendix B.1.1. Further technical details can be found in Appendix B.2.

Our code can be found at anonymous link https://anonymous.4open.science/r/

TAGA-32B7/.

3.4.2 Effectiveness Results

In this section, we assess the effectiveness of our proposed unsupervised representation

learning framework compared to other methods under conditions of label scarcity. Our

representation learning models are initially pre-trained on each TAG dataset without

any supervised labels. After the pre-training phase, we evaluate the quality of the

obtained node embeddings under zero-shot conditions by measuring the similarity

between these embeddings and the corresponding text label embeddings. To further

gauge performance in scenarios with limited labeled data, we conduct evaluations us-

ing 1, 3, 5, 10, 20, 50, and 100-shot settings. Due to space limitation, the results with

https://anonymous.4open.science/r/TAGA-32B7/
https://anonymous.4open.science/r/TAGA-32B7/
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k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports

# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055
# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594

Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8

0

PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001

GraphFormers 0.465 ± 0.003 0.076 ± 0.001 0.147 ± 0.001 0.641 ± 0.004 0.185 ± 0.005 0.192 ± 0.003 0.441 ± 0.005 0.368 ± 0.002
PATTON 0.496 ± 0.005 0.027 ± 0.001 0.106 ± 0.003 0.579 ± 0.003 0.096 ± 0.003 0.118 ± 0.002 0.329 ± 0.005 0.421 ± 0.005

G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

TAGA-rw 0.530 ± 0.001 0.221 ± 0.001 0.494 ± 0.001 0.680 ± 0.002 0.301 ± 0.003 0.394 ± 0.001 0.599 ± 0.002 0.434 ± 0.002

1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042
GraphCL 0.123 ± 0.031 0.157 ± 0.066 0.256 ± 0.039 0.402 ± 0.059 0.371 ± 0.124 0.325 ± 0.079 0.414 ± 0.040 0.347 ± 0.079
GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045

GraphFormers 0.233 ± 0.042 0.131 ± 0.038 0.247 ± 0.052 0.463 ± 0.069 0.231 ± 0.055 0.284 ± 0.043 0.471 ± 0.054 0.284 ± 0.057
PATTON 0.217 ± 0.059 0.127 ± 0.042 0.305 ± 0.048 0.487 ± 0.057 0.286 ± 0.078 0.318 ± 0.053 0.523 ± 0.051 0.243 ± 0.068

G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

TAGA-rw 0.307 ± 0.050 0.171 ± 0.013 0.365 ± 0.042 0.561 ± 0.063 0.383 ± 0.078 0.380 ± 0.037 0.548 ± 0.073 0.498 ± 0.084

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037
GraphCL 0.231 ± 0.015 0.201 ± 0.040 0.397 ± 0.040 0.641 ± 0.044 0.531 ± 0.047 0.462 ± 0.041 0.584 ± 0.037 0.477 ± 0.048
GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040

GraphFormers 0.461 ± 0.022 0.230 ± 0.031 0.374 ± 0.031 0.731 ± 0.029 0.458 ± 0.045 0.498 ± 0.032 0.619 ± 0.039 0.568 ± 0.053
PATTON 0.471 ± 0.039 0.227 ± 0.040 0.405 ± 0.032 0.699 ± 0.025 0.466 ± 0.038 0.518 ± 0.030 0.605 ± 0.042 0.532 ± 0.048

G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

TAGA-rw 0.471 ± 0.031 0.276 ± 0.053 0.508 ± 0.019 0.764 ± 0.027 0.621 ± 0.076 0.594 ± 0.025 0.684 ± 0.027 0.675 ± 0.070

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028
GraphCL 0.301 ± 0.018 0.233 ± 0.029 0.488 ± 0.031 0.702 ± 0.025 0.566 ± 0.043 0.523 ± 0.044 0.632 ± 0.025 0.531 ± 0.035
GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033

GraphFormers 0.482 ± 0.019 0.248 ± 0.030 0.447 ± 0.028 0.778 ± 0.022 0.498 ± 0.035 0.538 ± 0.026 0.633 ± 0.034 0.601 ± 0.040
PATTON 0.501 ± 0.028 0.247 ± 0.024 0.451 ± 0.026 0.738 ± 0.020 0.533 ± 0.029 0.539 ± 0.028 0.643 ± 0.028 0.564 ± 0.041

G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

TAGA-rw 0.518 ± 0.010 0.288 ± 0.040 0.595 ± 0.024 0.806 ± 0.011 0.652 ± 0.046 0.626 ± 0.020 0.679 ± 0.013 0.662 ± 0.056

Table 3.1: Performance in zero-shot and few-shot node classification for each dataset
and setting. The best-performing model is highlighted in bold, and the second-best
performing model is underlined.

text encoder UAE-Large-V1 under zero-shot and 1, 5, 10-shot settings is reported

in Table 3.1. Our acceleration method with random walk is denoted as “TAGA-rw”.

The results with text-embedding-3-small and other few-shot settings can be

found in Appendix B.1.3. We also present zero-shot link prediction performance in

Appendix B.1.2.

Zero-shot performance. Table 3.1 presents node classification accuracy un-

der zero-shot conditions, where our method consistently outperforms all comparison

methods in seven out of eight datasets. On average, our method surpasses other graph

pre-training methods by 47.84% and exceeds the second-best model by 6.78%. These

findings demonstrate the enhanced ability of our pre-trained model to effectively learn

representations that enable zero-shot predictions. Furthermore, compared to direct
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textual embeddings from the PLM, our method improves zero-shot performance by an

average of 20.76%. This demonstrates our method’s capacity in integrating structural

and textual information from neighborhoods over directly using the PLM. Interest-

ingly, our method exhibits a stronger performance advantage when dealing with data

rich in textual information. Specifically, for the two citation networks (Arxiv and

Cora), which possess significantly longer text attributes compared to other datasets,

our method surpasses the second-best performing graph pretrained model by an av-

erage of 10.33%. This proves our method can effectively leverage the rich textual

information.

Few-shot performance. For few-shot experiments, our method consistently

outperforms all comparison methods, achieving a 15.55% average improvement and

surpassing the second-best model by 6.28% on average. Notably, our method exhibits

a more pronounced advantage in scenarios with limited labeled data (¡=5 shots),

where it outperforms all other methods by an average of 19.79% and exceeds the

second-best model by 7.91% on average. This underscores the effectiveness of our

method, particularly in settings where few-shot learning is essential due to data labels

constraints.

Remarks. It is worth noting that for some datasets, the zero-shot performance of

our method can match or even exceed few-shot predictive results, particularly when

the number of training samples for few-shot learning is limited. For example, on

five datasets (Arxiv, Children, Computers, Cora, and Pubmed), the zero-shot per-

formance surpasses 1-shot performance by an average of 23.54%. Remarkably, the

zero-shot performance can even be comparable to that of 5-shot. This demonstrates

the strong potential of our method in scenarios where labeled data is scarce or un-

reachable.
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Source Cora Arxiv Cora Pubmed Children History Computers Photo
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Target Arxiv Cora Pubmed Cora History Children Photo Computers

0-shot

GRACE 0.021 0.173 0.360 0.302 0.073 0.065 0.099 0.070
GraphMAE 0.012 0.153 0.434 0.239 0.009 0.030 0.082 0.004
GraphCL 0.015 0.232 0.368 0.178 0.045 0.024 0.094 0.135

G2P2 0.241 0.647 0.421 0.533 0.204 0.100 0.297 0.340
TAGA 0.406 0.679 0.484 0.559 0.184 0.200 0.452 0.372

TAGA-rw 0.398 0.624 0.408 0.526 0.176 0.203 0.455 0.348

5-shot

GRACE 0.426 0.721 0.591 0.657 0.609 0.219 0.483 0.382
GraphMAE 0.426 0.645 0.578 0.515 0.527 0.160 0.367 0.294
GraphCL 0.107 0.678 0.436 0.416 0.598 0.178 0.395 0.345

G2P2 0.395 0.749 0.633 0.708 0.623 0.239 0.509 0.429
TAGA 0.475 0.754 0.655 0.734 0.651 0.257 0.528 0.448

TAGA-rw 0.443 0.764 0.644 0.674 0.617 0.250 0.482 0.436

Table 3.2: Transfer learning results for node classification. The best-performing model
is highlighted in bold.

3.4.3 Transfer Ability Analysis

In real-world applications, not only labels are difficult to obtain, but the data it-

self is also scarce. This necessitates the generalization of a pre-trained model to a

data domain distinct from the pre-training data. Here we evaluate the zero-shot

and few-shot performance under transfer learning settings. Specifically, the model is

unsupervisedly pre-trained on the source data domain and then transferred to the

target data domain. No further fine-tuning is performed for zero-shot prediction, and

is fine-tuned using the limited training samples for few-shot prediction.

In Table 3.2, we present the performance of zero-shot and five-shot predictions

across eight pairs of source and target datasets. The results demonstrate a clear

advantage for our method in the zero-shot setting, where it consistently outperforms

all other methods across all dataset pairs. Notably, our method achieves an average

improvement of 26.5% over the second-best performing method. In the five-shot

setting, our method continues outperforming the second-best performing method by

4.53% on average. Particularly when transferring from Cora to Arxiv and Pubmed,

and Children to History, our method achieves significant performance gain by 6.30%

on average, demonstrating its ability to effectively leverage limited labeled data in
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Method arxiv children computers cora history photo pubmed sports

0-shot

Full 0.537 0.224 0.498 0.682 0.351 0.419 0.616 0.448
TofG-0 0.500 0.099 0.423 0.575 0.318 0.392 0.471 0.318
TofG-1 0.521 0.102 0.544 0.601 0.349 0.336 0.512 0.444
TofG-2 0.519 0.098 0.556 0.606 0.348 0.327 0.532 0.448

Glo-GofT 0.533 0.205 0.482 0.657 0.329 0.407 0.522 0.417

5-shot

Full 0.483 0.263 0.543 0.752 0.636 0.602 0.649 0.664
TofG-0 0.500 0.210 0.377 0.641 0.557 0.420 0.632 0.478
TofG-1 0.496 0.234 0.549 0.709 0.598 0.582 0.631 0.615
TofG-2 0.490 0.234 0.558 0.706 0.589 0.590 0.631 0.654

Glo-GofT 0.479 0.257 0.512 0.726 0.623 0.592 0.635 0.629

Figure 3.3: Ablation studies results of zero- and five-shot settings. Here “Full” denotes
our full model.

the target domain.

3.4.4 Ablation Study

To investigate the effectiveness of our proposed model compared to simpler heuristics,

we conducted a series of ablation analyses. We began by considering textual embed-

dings obtained directly by applying the PLM to the Text of Graph views’ corpus

at different orders. This allowed us to assess the impact of our training procedure

compared to a simpler approach that relies solely on Text-of-Graph view representa-

tions. In addition, we compare our full model with a variant, Glo-GofT, which only

aligns the GNN embeddings that aggregate individual node’s text embeddings but

removes all higher-order Graph-of-Text embeddings. The results of these ablation

studies are presented in Table 3.3, which reveals that removing components of our

full model generally leads to a decrease in performance. In the zero-shot setting, the

full model outperforms the variant models by 2.79% to 8.49% on average, and ranges

from 1.74% to 9.71% in the five-shot setting. These results underscore the contribu-

tion of each component to TAGA’s overall effectiveness. In Appendix B.1.4, we have

shown additional ablation studies that evaluate how will aligning on different orders

of hierarchies will influence the representation due to space limitation.
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Figure 3.4: Comparison of five-shot performance between (top) different GNN encoder
choices, and (middle) varying jumping ratio, and (bottom) maximum walk length of
random walks.

3.4.5 Sensitivity Analysis

In this section, we investigate the sensitivity of the key hyperparameters and their

impact on TAGA’s performance. Specifically, we first evaluate how different GNN

backbones (GCN, GIN, and GraphSAGE) affect performance. Then we evaluate how

jumping ratio (p) and maximum walk length (L) would affect random walk’s perfor-

mance. The results are presented in Figure 3.4. The sensitivity analysis conducted on

TAGA’s performance demonstrates that the method is robust across a range of hyper-

parameters. Specifically, the variance in performance across different GNN backbones

is 0.84%, indicating a stable behavior regardless of the backbone employed. Similarly,

adjustments in the jumping ratio (p) and maximum walk length (L) exhibit 0.33%

and 0.76% variance on average, which underscores that our method is not sensitive

to the hyperparameters chosen.
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Figure 3.5: (top) Comparison of the full method and the random walk algorithm in
terms of the number of words, and (middle) training time, and (bottom) inference
time comparison between PLM and TAGA in terms of the number of hops.

3.4.6 Efficiency Analysis

To validate the efficiency and scalability of our proposed full method and random walk

algorithm during both training and inference phases, we conduct experiments on the

Cora dataset. We vary the number of hops from 0 to 5 and record the number of words

in the input corpus, training time, and inference time. The results are presented in

Figure 3.5. As depicted in top figure, the exponential growth in input size for the full

method compared to the near-linear growth of the random walk method demonstrates

the our’s superior scalability in managing larger graph neighborhoods. The middle

figure further demonstrates the efficiency advantage of the random walk algorithm,

as its training time increases linearly with the number of hops, whereas the full

method experiences a much steeper increase, becoming infeasible beyond 3 hops due

to out-of-memory (OOM) errors. Finally, the bottom figure highlights the speedup
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achieved by our proposed method during inference compared to directly using a PLM.

The inference time for our method remains linear growth trend across different hops,

while the PLM-based approach suffers from rapidly increasing inference time with

the hops number.

3.5 Conclusions

In this work, we study the problem of representation learning on information net-

works. We propose to use text description to unify diverse information network

domains to construct text-attributed graph structures. We introduce TAGA, a novel

self-supervised learning framework designed to address the challenges of unsupervised

representation learning on TAGs. TAGA integrates both textual and structural in-

formation within TAGs by aligning representations from two complementary views:

Text-of-Graph and Graph-of-Text. To enhance the preservation of structural informa-

tion in the Text-of-Graph view, we propose a natural hierarchical document layout

that mirrors the graph’s topology. Additionally, we introduce a structure-preserving

random walk algorithm to accelerate the training process on large TAGs. Extensive

experiments on eight real-world datasets demonstrate TAGA’s superior performance

in zero-shot and few-shot learning scenarios, showcasing its strong generalization ca-

pabilities across diverse domains.
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Chapter 4

Enhancing Generalizability and

Robustness of Learning Network

Representations

In this chapter, we introduce our proposed curriculum learning strategy to handle

the incompatibility between graph topological structure and other including data

modalities. Specifically, we introduce the background in Section 4.1 and related

works in Section 4.2. The proposed curriculum learning framework is presented in

Section 4.3. Extensive experiments are shown in Section 4.4. The conclusions are

presented in Section 4.5.

This chapter includes one published work [232], which was published in The 37th

Conference on Neural Information Processing Systems as a full research track paper,

titled “Curriculum learning for graph neural networks: Which edges should we learn

first”.
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4.1 Introduction

In real-world applications, the incompatibility between graph topology and other data

modalities often arises due to discrepancies and imperfections in how different types

of data represent relationships among entities [107, 111]. While the graph topology

captures structural connections through edges, other data modalities from physical

and information networks—such as spatial information or textual descriptions—may

reflect additional or alternative relationships not encoded in the graph [179]. This

misalignment can occur because of data quality issues like noise, missing values, or

outdated information, leading to edges that are unreliable or not representative of the

true underlying interactions. For example, in a citation network, the co-authorship

graph may not fully align with the topical similarities derived from the content of the

papers [169]. Such incompatibility poses significant challenges for graph representa-

tion learning, as traditional Graph Neural Networks (GNNs) assume that all edges

are equally informative and reliable [212]. Studying this incompatibility is crucial

for obtaining high quality representations that can intelligently reconcile differences

between the graph structure and other data modalities [210]. By addressing these

challenges, we can enhance the generalizability and robustness of GNNs, leading to

more accurate and meaningful representations in physical and information networks.

This, in turn, improves performance on downstream tasks like node classification,

link prediction, and community detection, ultimately enabling better insights and

decision-making in complex networked systems.

Inspired by cognitive science studies [59, 159] that humans can benefit from the

sequence of learning basic (easy) concepts first and advanced (hard) concepts later,

curriculum learning (CL) [15] suggests training a machine learning model with easy

data samples first and then gradually introducing more hard samples into the model

according to a designed pace, where the difficulty of samples can usually be measured

by their training loss [120]. Many previous studies have shown that this easy-to-hard
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learning strategy can effectively improve the generalization ability of the model [15,

103, 87, 76, 161, 197], and some studies [103, 87, 76] have shown that CL strategies

can also increase the robustness of the learned model against noisy training samples.

An intuitive explanation is that in CL settings noisy data samples correspond to

harder samples, and CL learner spends less time with the harder (noisy) samples to

achieve better generalization performance and robustness.

Although CL strategies have achieved great success in many fields such as com-

puter vision and natural language processing, existing methods are designed for

independent data (such as images) while designing effective CL methods for data

with dependencies has been largely underexplored. For example, in a citation net-

work, two researchers with highly related research topics (e.g. machine learning and

data mining) are more likely to collaborate with each other, while the reason be-

hind a collaboration of two researchers with less related research topics (e.g. com-

puter architecture and social science) might be more difficult to understand. Pre-

diction on one sample impacts that of another, forming a graph structure that en-

compasses all samples connected by their dependencies. There are many machine

learning techniques for such graph-structured data, ranging from traditional models

like conditional random field [166], graph kernels [180], to modern deep models like

GNNs [132, 133, 225, 184, 210, 81, 226, 190]. However, traditional CL strategies are

not designed to handle the curriculum of the dependencies between nodes in graph

data, which are insufficient. Handling graph-structured data require not only consid-

ering the difficulty in individual samples, but also the difficulty of their dependencies

to determine how to gradually composite correlated samples for learning.

As previous CL strategies indicated that an easy-to-hard learning sequence on

data samples can improve the generalization and robustness performance, an intuitive

question is whether a similar strategy on data dependencies that iteratively involves

easy-to-hard edges in learning can also benefit. Unfortunately, there exists no trivial
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way to directly generalize existing CL strategies on independent data to handle data

dependencies due to several unique challenges: (1) Difficulty in quantifying edge

selection criteria. Existing CL studies on independent data often use supervised

computable metrics (e.g. training loss) to quantify sample difficulty, but how to quan-

tify the difficulties of understanding the dependencies between data samples which

has no supervision is challenging. (2) Difficulty in designing an appropriate

curriculum to gradually involve edges. Similar to the human learning process,

the model should ideally retain a certain degree of freedom to adjust the pacing of

including edges according to its own learning status. As existing CL methods for

graph data typically use fixed pacing function to involve samples, they can not pro-

vide this flexibility. Designing an adaptive pacing function for handling graph data

is difficult since it requires joint optimization of both supervised learning tasks on

nodes and the number of chosen edges. (3) Difficulty in ensuring convergence

and a numerical steady process for CL in graphs. Discrete changes in the

number of edges can cause drift in the optimal model parameters between training

iterations. How to guarantee a numerically stable learning process for CL on edges is

challenging.

In order to address the aforementioned challenges, in this paper, we propose a

novel CL algorithm named Relational Curriculum Learning (RCL) to improve the

generalization ability and robustness of representation learners on data with depen-

dencies. To address the first challenge, we propose an approach to select the edges

by quantifying their corresponding difficulties in a self-supervised learning manner.

Specifically, for each training iteration, we choose K easiest edges whose correspond-

ing relations are most well-expected by the current model. Second, to design an

appropriate learning pace for gradually involving more edges in training, we present

the learning process as a concise optimization model, which automatically lets the

model gradually increase the number K to involve more edges in training according
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to its own status. Third, to ensure convergence of optimizing the model, we propose

an alternative optimization algorithm with a theoretical convergence guarantee and

an edge reweighting scheme to smooth the graph structure transition. Finally, we

demonstrate the superior performance of RCL compared to state-of-the-art methods

through extensive experiments on both synthetic and real-world datasets.

4.2 Related Works

Curriculum Learning (CL). Bengio et al.[15] pioneered the concept of Curricu-

lum Learning (CL) within the machine learning domain, aiming to improve model

performance by gradually including easy to hard samples in training the model. Self-

paced learning [120] measures the difficulty of samples by their training loss, which

addressed the issue in previous works that difficulties of samples are generated by

prior heuristic rules. Therefore, the model can adjust the curriculum of samples ac-

cording to its own training status. Following works [102, 101, 237] further proposed

many supervised measurement metrics for determining curriculums, for example, the

diversity of samples [101] or the consistency of model predictions [237]. Meanwhile,

many empirical and theoretical studies were proposed to explain why CL could lead

to generalization improvement from different perspectives. For example, studies such

as MentorNet [103] and Co-teaching [87] empirically found that utilizing CL strategy

can achieve better generalization performance when the given training data is noisy.

[76] provided theoretical explanations on the denoising mechanism that CL learners

waste less time with the noisy samples as they are considered harder samples. Some

studies [15, 161, 197, 83, 117] also realized that CL can help accelerate the optimiza-

tion process of non-convex objectives and improve the speed of convergence in the

early stages of training.

Despite great success, most of the existing designed CL strategies are for inde-
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pendent data such as images, and there is little work on generalizing CL strategies

to handle samples with dependencies. Few existing attempts on graph-structured

data [124, 109, 128], such as [192, 38, 196, 128], simply treat nodes as independent

samples and then apply CL strategies on independent data, which ignore the fun-

damental and unique dependency information carried by the structure in data, and

thus can not well handle the correlation between data samples. Furthermore, these

models are mostly based on heuristic-based sample selection strategies [38, 196, 128],

which largely limit the generalizability of these methods.

Graph structure learning. Another stream of existing studies that are related

to our work is graph structure learning. Recent studies have shown that GNN mod-

els are vulnerable to adversarial attacks on graph structure [45, 203]. In order to

address this issue, studies in graph structure learning usually aim to jointly learn

an optimized graph structure and corresponding graph representations. Existing

works [60, 33, 107, 235, 138] typically consider the hypothesis that the intrinsic graph

structure should be sparse or low rank from the original input graph by pruning “ir-

relevant” edges. Thus, they typically use pre-deterministic methods [45, 239, 60] to

preprocess graph structure such as singular value decomposition (SVD), or dynam-

ically remove “redundant” edges according to the downstream task performance on

the current sparsified structure [33, 107, 138]. However, modifying the graph topology

will inevitably lose potentially useful information lying in the removed edges. More

importantly, the modified graph structure is usually optimized for maximizing the

performance on the training set, which can easily lead to overfitting issues.
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4.3 Relational Curriculum Learning

4.3.1 Preliminaries

Graph neural networks (GNNs) are a class of methods that have shown promising

progress in representing structured data in which data samples are correlated with

each other. Typically, the data samples are treated as nodes while their dependencies

are treated as edges in the constructed graph. Formally, we denote a graph as G =

(V , E), where V = {v1, v2, . . . , vN} is a set of nodes that N = |V| denotes the number

of nodes in the graph and E ⊆ V × V is the set of edges. We also let X ∈ RN×b

denote the node attribute matrix and let A ∈ RN×N represent the adjacency matrix.

Specifically, Aij = 1 denotes that there is an edge connecting nodes vi and vj ∈ V ,

otherwise Aij = 0. A GNN model f maps the node feature matrix X associated

with the adjacency matrix A to the model predictions ŷ = f(X,A), and get the loss

LGNN = L(ŷ,y), where L is the objective function and y is the ground-truth label of

nodes. The loss on one node vi is denoted as li = L(ŷi, yi).

As previous CL methods have shown that an easy-to-hard learning sequence of

independent data samples can improve the generalization ability and robustness of the

representation learner, the goal of this paper is to develop an effective CL method on

data with dependencies, which is extremely difficult due to several unique challenges:

(1) Difficulty in designing a feasible principle to select edges by properly quantifying

their difficulties. (2) Difficulty in designing an appropriate pace of curriculum to

gradually involve more edges in training based on model status. (3) Difficulty in

ensuring convergence and a numerical steady process for optimizing the CL model.

In order to address the above challenges, we propose a novel CL method named

Relational Curriculum Learning (RCL). The sequence, which gradually includes

edges from easy to hard, is called curriculum and learned in different grown-up stages

of training. In order to address the first challenge, we propose a self-supervised mod-
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Figure 4.1: The overall framework of RCL. (a) The Incremental Edge Selection mod-
ule first extracts the latent node embedding by the GNN model given the current
training structure, then jointly learns the node prediction label y and reconstructs
the input structure by a decoder. A small residual error on an edge indicates the corre-
sponding dependency is well expected and thus can be added to the refined structure
for the next iteration. (b) The iterative learning process of RCL. The model starts
with an empty structure and gradually includes more edges until the training struc-
ture converges to the input structure.

ule Incremental Edge Selection (IES), which is shown in Figure 4.1(a), to select the

K easiest edges at each training iteration that are mostly expected by the current

model. The details are elaborated in Section 4.3.2. To address the second challenge,

we present a joint optimization framework to automatically increase the number of

selected edges K given its own training status. The framework is elaborated in Fig-

ure 4.1(b) and details can be found in Section 4.3.3. Finally, to ensure convergence of

optimization and steady the numerical process, we propose an EM-style alternative

optimization algorithm with a theoretical convergence guarantee in Section 4.3.3 Al-

gorithm 1 and an edge reweighting scheme to smooth the discrete edge incrementing

process in Section 4.3.4.
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4.3.2 Incremental Edge Selection by Quantifying Difficulties

of Sample Dependencies

Here we propose a novel way to select edges by first quantifying their difficulty levels.

Existing works on independent data typically use supervised metrics such as training

loss of samples to quantify their difficulty level, but there exists no supervised metrics

on edges. To address this issue, we propose a self-supervised module Incremental

Edge Selection (IES). We first quantify the difficulty of edges by measuring how well

the edges are expected from the currently learned embeddings of their connected

nodes. Then the most well-expected edges are selected as the easiest edges for the

next iteration of training. As shown in Figure 4.1(a), given the currently selected

edges at iteration t, we first feed them to the GNN model to extract the latent

node embeddings. Then we restore the latent node embeddings to the original graph

structure through a decoder, which is called the reconstruction of the original graph

structure. The residual graph R, which is defined as the degree of mismatch between

the original adjacency matrix A and the reconstructed adjacency matrix Ã(t), can be

considered a strong indicator for describing how well the edges are expected by the

current model. Specifically, a smaller residual error indicates a higher probability of

being a well-expected edge.

With the developed self-supervised method to measure the difficulties of edges,

here we formulate the key learning paradigm of selecting the top K easiest edges. To

obtain the training adjacency matrix A(t) that will be fed into the GNN model f (t), we

introduce a learnable binary mask matrix S with each element Sij ∈ {0, 1}. Thus, the

training adjacency matrix at iteration t can be represented as A(t) = S(t)⊙A. To filter

out the edges with K smallest residual error, we penalize the summarized residual

errors over the selected edges, which can be represented as
∑

i,j SijRij. Therefore,

the learning objective can be presented as follows:
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min
w
LGNN + β

∑
i,j

SijRij,

s.t. ∥S∥1 ≥ K,

(4.1)

where the first term LGNN = L(f(X,A(t);w),y) is the node-level predictive loss,

e.g. cross-entropy loss for the node classification task. The second term
∑

i,j SijRij

aims at penalizing the residual errors over the edges selected by the mask matrix

S. β is a hyperparameter to tune the balance between terms. The constraint is to

guarantee only the most K well-expected edges are selected.

More concretely, the value of a residual edge Ã
(t)
ij ∈ [0, 1] can be computed by a

non-parametric kernel function κ(z
(t)
i , z

(t)
j ), e.g. the inner product kernel. Then the

residual error Rij between the input structure and the reconstructed structure can

be defined as
∥∥∥Ã(t)

ij −Aij

∥∥∥, where ∥·∥ is commonly chosen to be the squared ℓ2-norm.

4.3.3 Automatically Control the Pace of Increasing Edges

In order to dynamically include more edges into training, an intuitive way is to iter-

atively increase the value of K in Equation 4.1 to allow more edges to be selected.

However, it is difficult to determine an appropriate value of K with respect to the

training status of the model. Besides, directly solving Equation 4.1 is difficult since

S is a binary matrix where each element Sij ∈ {0, 1}, optimizing S would require

solving a discrete constraint program at each iteration. To address this issue, we first

relax the problem into continuous optimization so that each Sij can be allowed to

take any value in the interval [0, 1]. Note that the inequality ||S||1 ≥ K in Eqn. 4.1

is equivalent to the equality ||S||1 = K. This is because the second term in the loss

function would always encourage fewer selected edges by the mask matrix S, as all

values in the residual error matrix R and mask matrix S are nonnegative. Given
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Algorithm 3 Alternating Minimization Algorithm for Equation 4.2

Input Node features X, adjacency matrix A, a stepsize µ and hyperparameter γ
Output The model parameter w of GNN model f .

1: Initialize w(0), S(0), λ
2: while Not Converged do

3: w(t) = arg minw L(f(X,A(t−1);w),y) + β
∑

i,j Sij

∥∥∥Ã(t−1)
ij −Aij

∥∥∥ +
γ
2

∥∥w −w(t−1)
∥∥

4: Given w(t), extract latent nodes embedding Z(t) from GNN model f
5: Calculate reconstructed structure Ã

(t)
ij = κ(z

(t)
i , z

(t)
j ) for all pairs of i, j

6: S(t) = arg minS β
∑

i,j Sij

∥∥∥Aij − Ã
(t)
ij

∥∥∥ + g(S;λ) + γ
2

∥∥S− S(t−1)
∥∥

7: Compute A(t) = S(t) ⊙A
8: if A(t) ̸= A then increase λ by stepsize µ
9: end while
10: return w

this, we can incorporate the equality constraint as a Lagrange multiplier and rewrite

the loss function as L = LGNN + β
∑

i,j SijRij − λ(||S||1 −K). Considering that K

remains constant, the optimization of the loss function can be equivalently framed by

substituting the given constraint with a regularization term denoted as g(S;λ). As

such, the overall loss function can be reformulated as:

min
w,S

LGNN + β
∑
i,j

SijRij + g(S;λ), (4.2)

where g(S;λ) = λ ∥S−A∥ and ∥·∥ is commonly chosen to be the squared ℓ2-norm.

Since the training adjacency matrix A(t) = S(t) ⊙A, as λ → ∞, more edges in the

input structure are included until the training adjacency matrix A(t) converges to

the input adjacency matrix A. Specifically, the regularization term g(S;λ) controls

the learning scheme by the age parameter λ, where λ = λ(t) grows with the number

of iterations. By monotonously increasing the value of λ, the regularization term

g(S;λ) will push the mask matrix gradually converge to the input adjacency matrix

A, resulting in more edges automatically involved in the training structure.

Optimization of learning objective. In optimizing the objective function
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in Equation 4.2, we need to jointly optimize parameter w for GNN model f and

the mask matrix S. To tackle this, we introduce an EM-style optimization scheme

(detailed in Algorithm 3) that iteratively updates both. The algorithm uses the node

feature matrix X, the original adjacency matrix A, a step size µ to control the age

parameter λ increase rate, and a hyperparameter γ for regularization adjustments.

Post initialization of w and S, it alternates between: optimizing GNN model f (Step

3), extracting latent node embeddings and reconstructing the adjacency matrix (Steps

4 & 5), refining the mask matrix using the reconstructed matrix and regularization,

and results in more edges are gradually involved (Step 6), updating the training

adjacency matrix (Step 7), and incrementing λ when the training matrix A(t) differs

from input matrix A, incorporating more edges in the next iteration.

Theorem 6. We have the following convergence guarantees for Algorithm 3:

• Avoidance of Saddle Points. If the second derivatives of L(f(X,A(t);w),y) and

g(S;λ) are continuous, then for sufficiently large γ, any bounded sequence (w(t),S(t))

generated by Algorithm 3 with random initializations will not converge to a strict

saddle point of F almost surely.

• Second Order Convergence. If the second derivatives of L(f(X,A(t);w),y)

and g(S;λ) are continuous, and L(f(X,A(t);w),y) and g(S;λ) satisfy the Kurdyka-

 Lojasiewicz (KL) property [183], then for sufficiently large γ, any bounded sequence

(w(t),S(t)) generated by Algorithm 3 with random initialization will almost surely

converge to a second-order stationary point of F .

The proof of this theorem can be found in Appendix C.1.

4.3.4 Smooth Structure Transition by Edge Reweighting

Note that in the Algorithm 1, the optimization process requires iteratively updating

the parameters w of the GNN model f and current adjacency matrix A(t), where
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A(t) varies discretely between iterations. However, GNN models mostly work in a

message-passing fashion, which computes node representations by iteratively aggre-

gating information along edges from neighboring nodes. Discretely modifying the

number of edges will result in a great drift of the optimal model parameters between

iterations. In Appendix Figure , we demonstrate that a shift in the optimal parame-

ters of the GNN results in a spike in the training loss. Therefore, it can increase the

difficulty of finding optimal parameters and even hurt the generalization ability of the

model in some cases. Besides the numerical problem caused by discretely increasing

the number of edges, another issue raised by the CL strategy in Section 4.3.2 is the

trustworthiness of the estimated edge difficulty, which is inferred by the residual er-

ror on the edges. Although the residual error can reflect how well edges are expected

in the ideal case, the quality of the learned latent node embeddings may affect the

validity of this metric and compromise the quality of the designed curriculum by the

CL strategy.

To address both issues, we propose a novel edge reweighting scheme to (1) smooth

the transition of the training structure between iterations, and (2) reduce the weight

of edges that connect nodes with low-confidence latent embeddings. Formally, we use

a smoothed version of structure Ā(t) to substitute A(t) for training the GNN model f

in step 3 of Algorithm 3, where the mapping from A(t) to Ā(t) can be represented as:

Ā
(t)
ij = π

(t)
ij A

(t)
ij , (4.3)

where π
(t)
ij is the weight imposed on edge eij at iteration t. π

(t)
ij is calculated by

considering the counted occurrences of edge eij until the iteration t and the confidence

of the latent embedding for the connected pair of nodes vi and vj:

π
(t)
ij = ψ(eij)ρ(vi)ρ(vj), (4.4)
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where ψ is a function that reflects the number of edge occurrences and ρ is a function

to reflect the degree of confidence for the learned latent node embedding. The details

of these two functions are described as follow.

Smooth the transition of the training structure between iterations. In

order to obtain a smooth transition of the training structure between iterations, we

take the learned curriculum of selected edges into consideration. Formally, we model

ψ by a smooth function of the edge selected occurrences compared to the model

iteration occurrences before the current iteration:

ψ(eij) = t(eij)/t, (4.5)

where t is the number of current iterations and t(eij) represents the counting number

of selecting edge eij. Therefore, we transform the original discretely changing train-

ing structure into a smoothly changing one by taking the historical edge selection

curriculum into consideration.

Reduce the influence of nodes with low confidence latent embeddings.

As introduced in our Algorithm 1 line 6, the estimated structure Ã is inferred from

the latent embedding Z, which is extracted from the trained GNN model f . Such

estimated latent embedding may possibly differ from the true underlying embedding,

which results in the inaccurately reconstructed structure around the node. In order

to alleviate this issue, we model the function ρ by the training loss on nodes, which

indicates the confidence of their learned latent embeddings. This idea is similar to

previous CL strategies on inferring the difficulty of data samples by their supervised

training loss. Specifically, a larger training loss indicates a low confident latent node

embedding. Mathematically, the weights ρ(vi) on node vi can be represented as a

distribution of their training loss:

ρ(vi) ∼ e−li (4.6)
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where li is the training loss on node vi. Therefore, a node with a larger training loss

will result in a smaller value of ρ(vi), which reduces the weight of its connecting edges.

4.4 Experimental Results of RCL

In this section, the experimental settings are introduced first in Section 4.4.1, then

the performance of the proposed method on both synthetic and real-world datasets

are presented in Section 4.4.2. We further present the robustness test on our CL

method against topological structure noise in Section 4.4.3. We verify the effective-

ness of framework components through ablation studies in Section 4.4.4. Intuitive

visualizations of the edge selection curriculum are shown in Section 4.4.5. In addi-

tion, we measure the parameter sensitivity in Section 4.4.6 and running time analysis

in Section 4.4.7.

4.4.1 Experimental Settings

Synthetic datasets. To evaluate the effectiveness of our proposed method on

datasets with ground-truth difficulty labels on structure, we first follow previous

studies [110, 1] to generate a set of synthetic datasets, where the difficulty of edges

in generated graphs are indicated by their formation probability. Specifically, as

shown in Figure 4.2, each generated graph is with 5,000 nodes, which are divided

into 10 equally sized node classes 1, 2, . . . , 10. The node features are sampled from

overlapping multi-Gaussian distributions. Each generated graph is associated with a

homophily coefficient (homo) which indicates the likelihood of a node forming a con-

nection to another node with the same label (same color in Figure 4.2). For example,

a generated graph with homo = 0.5 will have on average half of the edges formed be-

tween nodes with the same label. For the rest edges that are formed between nodes

with different labels (different colors in Figure 4.2), the probability of forming an edge
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Figure 4.2: Visualization of synthetic datasets. Each color represents a class of nodes.
Node attributes are sampled from overlapping multi-Gaussian distributions, where the
attributes of nodes with close labels are likely to have short distances. Homogeneous
edges represent edges that connect nodes of the same class (with the same color).
The probability of connecting two nodes of different classes decreases with the dis-
tance between the center points of their class distribution. Therefore, the formation
probability of a node denotes the edge difficulty, since edges between nodes with close
classes are more likely to positively contribute to the prediction under the homoge-
neous assumption.

is inversely proportional to the distances between their labels. Mathematically, the

probability of forming an edge between node u and node v follows pu→v ∝ e−|cu−cv |,

where the distances between labels |cu−cv| means shortest distance of two classes on a

circle. Therefore, the probability of forming an edge in the synthetic graph can reflect

how well this edge is expected. Specifically, edges with a higher formation probability,

e.g. connecting nodes with the same label or close labels, meaning that there is a

higher chance that this connection will positively contribute to the prediction (less

chance to be a noisy edge). Conversely, edges with a lower formation probability, e.g.,

connecting nodes with faraway labels, mean that there is a higher chance that this

connection will negatively contribute to the prediction (higher chance to be a noisy

edge). We vary the value of homo from 0.1, 0.2, . . . , 0.9 to generate nine graphs in
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total. Similar to previous works [110, 1], we randomly partition each synthetic graph

into equal-sized train, validation, and test node splits.

Real-world datasets. To further evaluate the performance of our proposed method

in real-world scenarios, nine benchmark real-world attributed network datasets, in-

cluding four citation network datasets Cora, Citeseer, Pubmed [215] and ogbn-arxiv [94],

two coauthor network datasets CS and Physics [125], two Amazon co-purchase net-

work datasets Photo and Computers [125], and one protein interation network ogbn-

proteins [94]. We follow the data splits from [31] on citation networks and use a

5-fold cross-validation setting on coauthor and Amazon co-purchase networks. All

datasets are publicly available from Pytorch-geometric library [66] and Open Graph

Benchmark (OGB) [94], where basic statistics are reported in Table 4.2.

Comparison methods. We incorporate three commonly used GNN models, in-

cluding GCN [116], GraphSAGE [85], and GIN [211], as the baseline model and also

the backbone model for RCL. In addition to evaluating our proposed method against

the baseline GNNs, we further leverage two categories of state-of-the-art comparison

methods in the experiments: (1) We incorporate four graph structure learning meth-

ods GNNSVD [60], ProGNN [107], NeuralSparse [235], and PTDNet [138]; (2) We

further compare with a curriculum learning method named CLNode [196] which grad-

ually select nodes in the order of the difficulties defined by a heuristic-based strategy.

The following describes the details of our comparison models.

Graph Neural Networks (GNNs). We first introduce three baseline GNN

models as follows.

(i) GCN. Graph Convolutional Networks (GCN) [116] is a commonly used GNN,

which introduces a first-order approximation architecture of the Chebyshev spectral

convolution operator;

(ii) GIN. Graph Isomorphism Networks (GIN) [211] is a variant of GNN, which
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has provably powerful discriminating power among the class of 1-order GNNs;

(iii) GraphSage. GraphSage [85] is a GNN method that computes the hid-

den representation of the root node by aggregating the hidden node representations

hierarchically from bottom to top.

Graph structure learning. We then introduce four state-of-the-art methods

for jointly learning the optimal graph structure and downstream tasks.

(i) GNNSVD. GNNSVD [60] first apply singular value decomposition (SVD) on

the graph adjacency matrix to obtain a low-rank graph structure and apply GNN on

the obtained low-rank structure;

(ii) ProGNN. ProGNN [107] is a method to defend against graph adversarial

attacks by obtaining a sparse and low-rank graph structure from the input structure;

(iii) NeuralSparse. NeuralSparse [235] is a method to learn robust graph rep-

resentations by iteratively sampling k-neighbor subgraphs for each node and sparsing

the graph according to the performance on the node classification;

(iv) PTDNet. PTDNet [138] learns a sparsified graph by pruning task-irrelevant

edges, where sparsity is controlled by regulating the number of edges.

Curriculum learning on graph data. We introduce a recent curriculum learn-

ing work on node classification as follows.

(i) CLNode. CLNode [196] regards nodes as data samples and gradually incor-

porates more nodes into training according to their difficulty. They apply a heuristic-

based strategy to measure the difficulty of nodes, where the nodes that connect neigh-

boring nodes with different classes are considered difficult.

Initializing graph structure by a pre-trained model. It is worth noting that

the model needs an initial training graph structure A(0) in the initial stage of training.

An intuitive way is that we can initialize the model to work in a purely data-driven

scenario that starts only with isolated nodes where no edges exist. However, an
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instructive initial structure can greatly reduce the search cost and computational

burden. Inspired by many previous CL works [197, 83, 103, 237] that incorporate

prior knowledge of a pre-trained model into designing curriculum for the current

model, we initialize the training structure A(0) by a pre-trained vanilla GNN model

f ∗. Specifically, we follow the same steps from line 4 to line 7 in the algorithm 1 to

obtain the initial training structure A(0) but the latent node embedding is extracted

from the pre-trained model f ∗.

Implementation Details. We use the baseline model (GCN, GIN, GraphSage) as

the backbone model for both our RCL method and all comparison methods. For a

fair comparison, we require all models follow the same GNN architecture with two

convolution layers. For each split, we run each model 10 times to reduce the variance

in particular data splits. Test results are according to the best validation results.

General training hyperparameters (such as learning rate or the number of training

epochs) are equal for all models. For the pre-trained model to initialize the training

structure, we utilize the same model as the backbone model utilized by our method.

For example, if we use GCN as the backbone model for RCL, the pre-trained model

to initialize is also GCN. All experiments are conducted on a 64-bit machine with

four NVIDIA Quadro RTX 8000 GPUs. The proposed method is implemented with

Pytorch deep learning framework [155].

4.4.2 Effectiveness Results

Table 4.1 presents the node classification results of the synthetic datasets. We re-

port the average accuracy and standard deviation for each model against the homo

of generated graphs. From the table, we observe that our proposed method RCL

consistently achieves the best or most competitive performance to all the compari-

son methods over three backbone GNN architectures. Specifically, RCL outperforms
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Homo ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GCN 50.84±1.03 56.50±0.50 65.17±0.48 77.94±0.54 87.15±0.44 93.27±0.24 97.48±0.25 99.10±0.17 99.93±0.03

GNNSVD 54.96±0.76 58.45±0.56 63.06±0.63 70.23±0.61 80.51±0.41 85.02±0.46 90.31±0.27 94.23±0.22 96.74±0.23
ProGNN 47.87±0.87 54.59±0.55 65.39±0.44 76.96±0.49 87.76±0.51 93.16±0.34 97.60±0.31 99.04±0.19 99.94±0.03

NeuralSparse 51.42±1.35 57.99±0.69 65.10±0.43 75.37±0.34 87.40±0.29 93.54±0.28 97.16±0.15 99.01±0.22 99.83±0.07
PTDNet 48.21±1.98 55.52±2.82 65.82±0.94 79.37±0.45 89.17±0.39 94.19±0.18 98.61±0.12 99.51±0.09 99.81±0.05
CLNodes 50.37±0.73 56.64±0.56 65.04±0.66 77.52±0.48 86.85±0.44 93.10±0.47 97.34±0.25 99.02±0.18 99.88±0.04

RCL 57.57±0.43 62.06±0.28 73.98±0.55 84.54±0.75 92.69±0.09 97.42±0.17 99.62±0.05 99.89±0.02 99.93±0.06
GIN 48.33±1.89 53.62±1.39 64.08±0.99 77.55±1.10 85.31±0.75 90.57±0.36 97.82±0.18 99.59±0.11 99.91±0.02

GNNSVD 43.21±1.60 45.68±1.66 54.90±1.16 68.29±0.79 79.76±0.52 85.63±0.44 93.65±0.39 97.22±0.17 98.94±0.17
ProGNN 45.76±1.40 52.96±1.01 64.12±1.07 76.95±0.87 85.13±0.71 89.96±0.55 96.54±0.48 99.51±0.12 99.78±0.05

NeuralSparse 50.23±2.05 54.12±1.52 62.81±0.75 76.98±1.17 85.14±0.94 92.57±0.44 98.02±0.20 99.61±0.12 99.91±0.05
PTDNet 53.23±2.76 56.12±2.03 65.81±1.38 77.81±1.02 86.14±0.65 93.21±0.74 97.08±0.41 99.51±0.18 99.91±0.03
CLNodes 45.36±1.42 51.10±1.15 62.53±0.88 75.83±1.07 87.76±0.90 94.25±0.44 98.30±0.26 99.60±0.09 99.92±0.03

RCL 57.63±0.66 62.08±1.17 71.02±0.61 80.61±0.69 88.62±0.43 94.88±0.36 98.19±0.19 99.32±0.08 99.89±0.04
GraphSAGE 62.57±0.55 67.33±0.64 71.06±0.74 80.88±0.54 85.88±0.51 91.42±0.37 95.26±0.33 97.78±0.16 99.52±0.13

GNNSVD 64.42±0.80 65.71±0.39 67.12±0.58 68.47±0.50 77.70±0.65 82.86±0.50 87.81±0.71 91.61±0.55 95.01±0.50
ProGNN 58.57±2.09 66.75±0.91 72.14±0.64 81.27±0.44 86.89±0.47 92.10±0.39 95.21±0.30 97.51±0.23 99.50±0.11

NeuralSparse 61.70±0.77 66.65±0.66 70.60±0.79 79.65±0.45 84.19±0.91 91.31±0.54 94.86±0.53 97.16±0.23 99.55±0.19
PTDNet 65.72±1.08 69.25±0.92 72.60±0.77 79.65±0.45 86.54±0.56 91.79±0.53 96.10±0.58 97.98±0.13 99.78±0.08
CLNodes 69.41±0.66 70.83±0.58 75.51±0.36 82.65±0.43 87.08±0.56 91.58±0.41 95.91±0.38 98.33±0.26 99.57±0.14

RCL 68.03±0.37 71.39±0.51 76.99±0.99 83.76±0.55 88.24±0.30 93.34±0.56 97.66±0.52 98.86±0.28 99.64±0.08

Table 4.1: Node classification accuracy on synthetic datasets (%). The best-
performing method on each backbone GNN model is highlighted in bold, while the
second-best method is underlined. In situations where RCL’s performance is not
strictly the best among all methods, we can see that almost all methods can achieve
a near-perfect performance and RCL is still close to the best methods.

the second best method on average by 4.17%, 2.60%, and 1.06% on GCN, GIN, and

GraphSAGE backbones, respectively. More importantly, the proposed RCL method

performs significantly better than the second best model when the homo of gener-

ated graphs is low (≤ 0.5), on average by 6.55% on GCN, 4.17% on GIN, and 2.93%

on GraphSAGE backbones. These demonstrate that our proposed RCL method sig-

nificantly improves the model’s capability of learning an effective representation to

downstream tasks especially when the edge difficulties vary largely in the data.

We report the experimental results of the real-world datasets in Table 4.2. The

results demonstrate the strength of our proposed method by consistently achieving

the best results in all 9 datasets by GCN backbone architecture, all 9 datasets by

GraphSAGE backbone architecture, and 8 out of 9 datasets by GIN backbone ar-

chitecture. Specifically, our proposed method improved the performance of baseline

models on average by 1.86%, 2.83%, and 1.62% over GCN, GIN, and GraphSAGE,

and outperformed the second best models model on average by 1.37%, 2.49%, and

1.22% over the three backbone models, respectively. The results demonstrate that
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Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-proteins
# nodes 2,708 3,327 19,717 18,333 34,493 7,650 13,752 169,343 132,534
# edges 10,556 9,104 88,648 163,788 495,924 238,162 491,722 1,166,243 39,561,252

# features 1,433 3,703 500 6,805 8,415 745 767 100 8
GCN 85.74±0.42 78.93±0.32 87.91±0.09 93.03±0.32 96.55±0.15 93.25±0.70 88.09±0.40 71.74±0.29 72.51±0.35

GNNSVD 83.24±1.03 74.80±0.87 88.81±0.38 93.79±0.11 96.11±0.13 89.63±0.73 86.49±0.77 67.44±0.51 66.92±0.64
ProGNN 85.66±0.61 74.78±0.55 87.22±0.33 94.04±0.19 96.75±0.26 92.07±0.67 88.72±0.59 (OOM) (OOM)

NeuralSparse 85.95±0.98 76.24±0.48 86.83±0.40 92.31±0.47 95.56±0.30 90.57±0.90 88.62±0.83 (OOM) (OOM)
PTDNet 83.84±0.95 77.54±0.42 87.89±0.08 93.60±0.43 96.56±0.09 88.92±0.87 87.52±0.70 (OOM) (OOM)
CLNode 85.67±0.33 78.99±0.57 89.50±0.28 93.83±0.24 95.76±0.16 93.39±0.83 89.28±0.38 70.95±0.18 71.40±0.32

RCL 87.15±0.44 79.79±0.55 89.79±0.12 94.66±0.32 97.02±0.23 94.41±0.76 90.23±0.23 74.08±0.33 75.19±0.26
GIN 84.43±0.65 74.87±0.20 85.72±0.40 91.48±0.36 95.62±0.30 93.02±0.91 86.94±1.58 69.26±0.34 74.51±0.32

GNNSVD 82.23±0.65 72.11±0.70 88.31±0.15 91.40±0.87 95.30±0.29 89.49±1.11 82.66±2.26 67.79±0.41 70.65±0.53
ProGNN 85.02±0.41 78.12±0.93 87.82±0.51 (OOM) (OOM) 92.23±0.67 83.54±1.48 (OOM) (OOM)

NeuralSparse 84.92±0.58 75.44±0.87 86.11±0.49 89.66±0.82 95.05±0.57 93.28±0.83 87.22±0.54 (OOM) (OOM)
PTDNet 83.02±1.01 75.00±0.74 88.04±0.29 91.01±0.21 95.57±0.40 90.70±0.76 87.08±0.65 (OOM) (OOM)
CLNode 83.52±0.77 75.82±0.58 86.92±0.61 91.71±0.41 95.75±0.46 92.78±0.90 85.93±1.53 70.58±0.17 73.97±0.31

RCL 86.64±0.39 77.60±0.18 89.17±0.29 93.92±0.27 96.75±0.17 93.88±0.51 89.76±0.19 72.55±0.15 78.76±0.22
GraphSAGE 86.22±0.27 77.27±0.23 88.50±0.16 94.22±0.18 96.26±0.34 93.82±0.51 88.62±0.21 71.49±0.27 77.68±0.20

GNNSVD 83.11±0.82 73.19±0.49 88.42±0.38 93.86±0.36 95.96±0.12 89.31±0.53 81.46±1.15 69.82±0.34 71.82±0.39
ProGNN 86.23±0.42 74.45±0.83 88.52±0.45 (OOM) (OOM) 90.89±0.69 89.34±0.54 (OOM) (OOM)

NeuralSparse 84.60±0.52 76.32±0.55 89.02±0.39 93.89±0.58 96.67±0.20 90.78±1.06 88.37±0.37 (OOM) (OOM)
PTDNet 86.03±0.60 76.07±0.58 86.78±0.45 93.78±0.43 95.32±0.31 92.96±0.87 84.89±1.47 (OOM) (OOM)
CLNode 86.60±0.64 77.23±0.54 88.76±0.57 94.13±0.34 96.87±0.45 93.90±0.42 89.57±0.62 71.54±0.20 78.40±0.41

RCL 86.90±0.39 78.95±0.18 90.14±0.43 95.05±0.23 96.88±0.19 95.06±0.52 90.47±0.38 73.13±0.14 79.89±0.35

Table 4.2: Node classification results on real-world datasets (%). The best-performing
method on each backbone is highlighted in bold and second-best is underlined.
(OOM) shorts for out-of-memory.

the proposed RCL method consistently improves the performance of GNN models in

real-world scenarios.

Our experimental results are statically sound. In 43 out of 48 tasks our method

outperforms the second-best performing model with strong statistical significance.

Specifically, we have in 30 out of 43 cases with a significance p < 0.001, in 8 out of

43 cases with a significance p < 0.01, and in 5 out of 43 cases with a significance

p < 0.05. Such statistical significance results can demonstrate that our proposed

method can consistently perform better than the baseline models in both scenarios.

4.4.3 Robustness Analysis Against Topological Noise

To further examine the robustness of the RCL method on extracting powerful repre-

sentation from correlated data samples, we follow previous works [107, 138] to ran-

domly inject fake edges into real-world graphs. This adversarial attack can be viewed

as adding random noise to the topological structure of graphs. Specifically, we ran-

domly connect M pairs of previously unlinked nodes in the real-world datasets, where
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Figure 4.3: Node classification accuracy (%) on Cora and Citeseer under random
structure attack. The attack edge ratio is computed versus the original number of
edges, where 100% means that the number of inserted edges is equal to the number
of original edges.

the value of M varies from 10% to 100% of the original edges. We then train RCL and

all the comparison methods on the attacked graph and evaluate the node classification

performance. The results are shown in Figure 4.3, we can observe that RCL shows

strong robustness to adversarial structural attacks by consistently outperforming all

compared methods on all datasets. Especially, when the proportion of added noisy

edges is large (> 50%), the improvement becomes more significant. For instance,

under the extremely noisy ratio at 100%, RCL outperforms the second best model

by 4.43% and 2.83% on Cora dataset, and by 6.13%, 3.47% on Citeseer dataset, with

GCN and GIN backbone models, respectively.

To investigate the effectiveness of our proposed model with some simpler heuris-

tics, we deploy a series of abalation analysis. We first train the model with node

classification task purely and select the top K expected edges as suggested by the re-

viewer. Specifically, we follow previous works [191, 196] using two classical selection

pacing functions as follows:

Linear : Klinear(t) =
t

T
|E|; Root : Kroot(t) =

√
t

T
|E|,

where t is the number of current iterations and T is the number of total iterations,
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Synthetic1 Synthetic2 Citeseer CS Computers
Full 73.98±0.55 97.42±0.17 79.79±0.55 94.66±0.22 90.23±0.23

Curriculum-linear 70.93±0.54 95.19±0.19 79.04±0.38 94.14±0.26 89.28±0.21
Curriculum-root 70.13±0.72 95.50±0.18 78.27±0.54 94.47±0.34 89.27±0.15
Random-linear 58.76±0.46 89.78±0.11 77.43±0.49 92.76±0.14 88.76±0.18
Random-root 61.04±0.20 91.04±0.09 76.81±0.35 92.92±0.15 88.81±0.28
w/o edge appearance 70.70±0.43 95.77±0.16 77.77±0.65 94.39±0.21 89.56±0.30
w/o node confidence 72.38±0.41 96.86±0.17 78.72±0.72 94.34±0.13 90.03±0.62

w/o pre-trained model 72.56±0.69 93.89±0.14 78.28±0.77 94.50±0.14 89.80±0.55

Table 4.3: Ablation study. Here “Full” represents the original method without re-
moving any component. The best-performing method on each dataset is highlighted
in bold.

and |E| is the number of total edges. We name these two variants Curriculum-linear

and Curriculum-root, respectively. In addition, we also remove the edge difficulty

measurement module and use random selection instead. Specifically, we gradually

incorporate more edges into training in random order to verify the effectiveness of the

learned curriculum. We name two variants as Random-linear and Random-root with

the above two mentioned pacing functions, respectively.

In order to further investigate the impact of the proposed components of RCL. We

also first consider variants of removing the edge smoothing components mentioned

in Section 4.3.4. Specifically, we consider two variants w/o EC and w/o NC, which

remove the smoothing function of the edge occurrence ratio and the component to

reflect the degree of confidence for the latent node embedding in RCL, respectively.

In addition to examining the effectiveness of edge smoothing components, we further

consider a variant w/o pre-trained model that avoids using a pre-trained model to

initialize model, which is mentioned in Section 4.4.1, to initialize the training structure

by a pre-trained model and instead starts with inferred structure from isolated nodes

with no connections.
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Figure 4.4: Visualization of edge selection process during training.

4.4.4 Ablation Study

We present the results of two synthetic datasets (homophily coefficient= 0.3, 0.6)

and three real-world datasets in Table 4.3. We summarize our findings from the

above table as below: (i) Our full model consistently outperforms the two variants

Curriculum-linear and Curriculum-root by an average of 1.59% on all datasets, sug-

gesting that our pacing module can benefit model training. It is worth noting that

these two variants also outperform the baseline vanilla GNN model Vanilla by an av-

erage of 1.92%, which supports the assumption that even a simple curriculum learning

strategy can still improve model performance. (ii) We observe that the performance

of the two variants Random-linear and Random-root on all datasets drops by 3.86%

on average compared to the variants Curriculum-linear and Curriculum-root. Such

behavior demonstrates the effectiveness of our proposed edge difficulty quantifica-

tion module by showing that randomly involving edges into training cannot benefit

model performance. (iii) We can observe a significant performance drop consistently

for all variants that remove the structural smoothing techniques and initialization

components. The results validate that all structural smoothing and initialization

components can benefit the performance of RCL on the downstream tasks.
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4.4.5 Visualization of Learned Edge Selection Curriculum

Besides the effectiveness and robustness of the RCL method on downstream clas-

sification results, it is also interesting to verify whether the learned edge selection

curriculum satisfies the rule from easy to hard. Since real-world datasets do not have

ground-truth labels of difficulty on edges, we conduct visualization experiments on

synthetic datasets, where the difficulty of each edge can be indicated by its formation

probability. Specifically, we classify edges into three balanced categories according

to their difficulty: easy, medium, and hard. Here, we define all homogenous edges

that connect nodes with the same class as easy, edges connecting nodes with adjacent

classes as medium, and the remaining edges connecting nodes with far away classes

as hard. We report the proportion of edges selected for each category during training

in Figure 4.4. We can observe that RCL can effectively select most of the easy edges

at the early stage of training, then more easy edges and most medium edges are grad-

ually included during training, and most hard edges are left unselected until the end

stage of training. Such edge selection behavior is highly consistent with the core idea

of designing a curriculum for edge selection, which verifies that our proposed method

can effectively design curriculums to select edges according to their difficulty from

easy to hard.

4.4.6 Effectiveness Experiments on Heterophilic Datasets

In order to further verify the effectiveness of our proposed strategy on heterophilic

graph datasets, we have included new experiments on six real-world heterophilic

datasets. As shown in Table 4.4, our method consistently improve performance of

backbone GNN models on these heterophilic datasets. Secifically, RCL outperforms

the second best method on average by 5.04%, and 4.55%, on GCN and GIN backbones,

respectively. The results can demonstrate our method is not limited to homophily
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Dataset Edge homo ratio GCN GCN-RCL GIN GIN-RCL

Texas 0.11 0.5645 0.6006 0.5885 0.6156
Cornell 0.30 0.4084 0.5045 0.4234 0.4925
Wisconsin 0.21 0.4923 0.5294 0.5141 0.5599
Actor 0.22 0.2868 0.3186 0.2678 0.3006
Squirrel 0.22 0.2743 0.2999 0.2347 0.2519
Chameleon 0.23 0.3625 0.4385 0.3233 0.4033

Table 4.4: Node classfication results for six real-world heterophilic datasets, where
the best performance of each model category in one dataset is highlighted.

Synthetic Citeseer Computers ogbn-arxiv ogbn-proteins
Vanilla 7.32s 3.90s 16.88s 55.22s 1438.23s
GNNSVD 11.49s 3.82s 35.96s 135.72s 2632.42s
CLNode 6.29s 3.96s 17.02s 58.53s 1545.53s
ProGNN 220.25s 72.42s 1953.23s (-) (-)
NeuralSparse 310.02s 88.91s 6553.34s (-) (-)
PTDNet 153.43s 48.42s 2942.02s (-) (-)
Ours 4.07s 2.42s 14.62s 71.49s 2239.05s

Table 4.5: Running time of our method and comparison methods. Here (-) denotes
an out-of-memory error and Vanilla denotes the standard GNN model.

graphs.

Although the inner product decoder utilized in experiments might imply an un-

derlying homophily assumption, our method can still benefit from leveraging the

edge curriculum present within the input datasets. A reasonable explanation is that

standard GNN models are usually struggled with the heterophily edges, while our

methodology designs a curriculum allowing more focus on homophily edges, which

potentially leads to the observed performance boost.

4.4.7 Time Complexity Analysis

Here we consider GCN as the backbone. First, the time complexity of an L-layer

GCN is O(L|E|b + L|V|b2) , where b is the number of node attributes. Second, the

time complexity of measuring the difficulty levels of edges by reconstruction is O(|E|d)

where d is the number of latent embedding dimensions. Third, the time complexity
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Figure 4.5: Parameter sensitivity analysis on four datasets. Here a larger value of
λ means the training structure will converge to the original structure at an earlier
training stage.

of selecting the edges to add is O(|E|) . Therefore, the total time complexity of our

algorithm is O(|E|(Lb+ d) + L|V|b2) .

In addition, we compare the total running time of our method and all comparison

methods in the Table 4.5. We can observe that the running time of our proposed

method is comparable to that of standard GNN models in all datasets. Notably, our

method is even faster than standard GNN models in some datasets. One possible

reason is that at the beginning of training, the graphs in our model have much fewer

edges than those in standard GNN models. Therefore, the computational cost of the

GNN model is also reduced.

4.4.8 Parameter Sensitivity Analysis

Recall that RCL learns a curriculum to gradually add edges in a given input graph

structure to the training process until all edges are included. An interesting question

is how the speed of adding edges will affect the performance of the model. Here we

conduct experiments to explore the impact of age parameter λ which controls the

speed of adding edges to the model performance. Here a larger value of λ means that

the training structure will converge to the input structure earlier. For example, λ = 1

means that the training structure will probably not converge to the input structure

until the last iteration, and λ = 5 means that the training structure will converge to

the input structure around half of the iterations are complete, and then the model will
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Figure 4.6: The comparison between our full model and the version without smoothing
technique on the training loss trend.

be trained with the full input structure for the remaining iterations. We present the

results on two synthetic datasets (homophily coefficient= 0.3, 0.6) and two real-world

datasets in Figure 4.5. As can be seen from the figure, the classification results are

steady that the average standard deviation is only 0.41%. It is also worth noting that

the peak values for all datasets consistently appear around λ = 3, which indicates

that the best performance is when the training structure converges to the full input

structure around two-thirds of the iterations are completed.

4.4.9 Visualization of Importance on Smoothing Component

Our experimental results demonstrated the importance of applying our smoothing

component in stablizing the optimization process of training. Figure 4.6 shows that

without the smoothing technique, the training loss spiked that reflects the GNN pa-

rameter shifts, which was caused by the number of edges discretely changed. However,

after adding the smoothing technique, the training loss can smoothly converge, hence,

the smoothing technique plays an important role in stabilizing the training process.
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Dataset PNA PNA-RCL PNA-linear PNA-root GCN GCN-RCL GCN-linear GCN-root

Synthetic-0.3 0.6982 0.7667 0.7463 0.7445 0.6517 0.7398 0.6641 0.6533
Synthetic-0.5 0.8742 0.9016 0.8476 0.8704 0.8715 0.9269 0.8494 0.8854
Synthetic-0.7 0.9658 0.9821 0.9514 0.9766 0.9748 0.9962 0.9712 0.9796
Cora 0.8310 0.8521 0.8145 0.8254 0.8574 0.8715 0.8327 0.8553
Citeseer 0.7478 0.7652 0.7482 0.7505 0.7893 0.7979 0.7723 0.7814
Computers 0.8989 0.9096 0.8866 0.8975 0.8809 0.9023 0.8713 0.8985
ogbn-arxiv 0.7175 0.7441 0.6980 0.7242 0.7174 0.7408 0.7288 0.7359

Table 4.6: Node classfication results for our method and traditional CL methods
using PNA and GCN as backbone. Here ‘-RCL’ denotes our method, while ‘-linear’
and ‘-root’ denotes two traditional CL methods with different pacing functions.

4.4.10 Effectiveness Experiments on PNA Backbone Model

In Table 4.6, new experiments that adopt modern GNN architecture - PNA model [43]

have been added. From the table we can observe that our proposed method improves

the performance of PNA backbone by 2.54% on average, which further verified the

effectiveness of our method under different choices of backbone GNN model.

In addition, in Table 4.6 we further include two traditional CL methods for inde-

pendent data as additional baselines, following classical works [15, 120]. We employed

the supervised training loss of a pretrained GNN model as the difficulty metric, and

selected two well-established pacing functions for curriculum design: linear and root

pacing, defined as follows:

Linear : Klinear(t) =
t

T
|V |;

Root : Kroot(t) =

√
t

T
|V |,

where t is the number of current iterations and T is the number of total iterations,

and |V | is the number of nodes.

We utilized GCN and PNA as backbone architectures, identified by the suffixes

’-linear’ and ’-root’. Across all datasets, the results consistently demonstrate that our

proposed method outperforms traditional CL approaches.
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Dataset Method 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cora PNA 0.8310 0.7911 0.7621 0.7402 0.7331 0.7210 0.6894 0.7042 0.6792 0.6617
Cora PNA-RCL 0.8521 0.8315 0.8162 0.7969 0.7992 0.7951 0.7571 0.7642 0.7457 0.7371
Citeseer PNA 0.7478 0.7195 0.7184 0.6934 0.6952 0.6920 0.6852 0.6552 0.6481 0.6327
Citeseer PNA-RCL 0.7652 0.7422 0.7222 0.7254 0.7041 0.7012 0.6953 0.6921 0.6884 0.6794

Table 4.7: Further robustness test using PNA as backbone model. Here the percent-
age denotes the ratio of number of added random edges to the original edges.

4.4.11 Robustness Experiments on PNA Backbone Model

We present further robustness test against random noisy edges by using the PNA

backbone model. The results are shown in Table 4.7, which further proves that our

curriculum learning approach improves the robustness against edge noise with the

advanced PNA model as the backbone.

4.5 Conclusion

We focus on developing a novel CL method to improve the generalization ability and

robustness of GNN models on learning representations of data samples with depen-

dencies. The proposed method Relational Curriculum Learning (RCL) effectively

addresses the unique challenges in designing CL strategy for handling dependen-

cies. First, a self-supervised learning module is developed to select appropriate edges

that are expected by the model. Then an optimization model is presented to itera-

tively increment the edges according to the model training status and a theoretical

guarantee of the convergence on the optimization algorithm is given. Finally, an

edge reweighting scheme is proposed to steady the numerical process by smoothing

the training structure transition. Extensive experiments on synthetic and real-world

datasets demonstrate the strength of RCL in improving the generalization ability and

robustness.
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Chapter 5

Conclusions

The main goal of this dissertation research is to advance representation learning meth-

ods for both physical and information networks by jointly incorporating additional

physical or abstract information, the graph’s topological structure, and their critical

interplay. Our aim is to develop a general foundational model that can be applied

across diverse data domains. Additionally, we seek to address significant real-world

challenges in foundational models, including issues related to data quality, such as

label scarcity, noisy data, and the incompatibility between topological structures and

other modalities. To achieve this primary goal, there are three sub-goals focused on

different aspects of representation learning for graph-structured data: Data, Model

and Task. As illustrated in Figure 5.1, these three key components form the general

working pipeline for extract high quality representations from graph structured data.

First, from the data perspective, we aim to combine graph data with other key

data modalities to enrich the semantic information of the learned representations.

This will be achieved by leveraging the incremental information provided by the

graph structure, other data modalities, and their crucial interplay. In my proposed

research, we focus on two fundamental data modalities to equipped with graph data:

spatial data and textual data.
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Data Model Task
Architecture design Learning objective

• Multiple modality
• Spatial
• Textual
• …

• Structure properties
• Hierarchies
• Correlations
• …

• Graph kernels
• Graph neural networks

• GCN
• GAT
• GraphSAGE
• …

• Supervised learning
• Unsupervised learning
• Semi-supervised learning
• Transfer learning
• …

Figure 5.1: Illustration of general work pipeline of representation learning on graphs
structured data.

1. For physical networks that combine graph and spatial data, our proposed SGMP

method has demonstrated strong discriminative power on Euclidean spatial

networks, achieving high predictive performance on extensive biomedical and

chemical benchmark datasets. Additionally, we have extended the framework

to handle non-Euclidean spatial networks in manifold spaces. The method can

also be generalized to special cases such as spatial trees, significantly improving

predictive performance in neuron cell prediction and river network prediction.

2. Text data serves as a fundamental modality with the potential to unify different

graph data domains into a general format, paving the way for foundational

graph representation models. For text-attributed graphs that combine graph

and textual data, we propose the TAGA framework, which leverages the unique

properties of both structural and textual semantic information to ensure strong

expressive power.

Second, from the model perspective, our goal is to design corresponding model

architecture that preserves the maximum amount of information from the input data
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while maintaining strong expressive power with certain theoretical guarantees. For

the proposed SGMP and subsequent frameworks on physical networks, we can theo-

retically ensure that the model architecture preserves all input geometric structures

without information loss. Similarly, the TAGA framework for information networks is

designed to transform information losslessly between the two data modalities, thereby

ensuring the strong expressive power of the learned representations. Additionally, we

have developed accelerated algorithms for each framework to reduce time and memory

complexity to linear without compromising the theoretical guarantees of information

preservation.

Third, from the perspective of training strategies, our primary goal is to en-

hance the generalizability and robustness of the learned representations. We have

developed a curriculum learning strategy that aims at resolving the incompatibility

between noisy graph topology and features from other data modalities. The pro-

posed method gradually incorporates edges based on their difficulty and noise level,

demonstrating superior performance compared to state-of-the-art methods in tasks

like node classification. Furthermore, our ongoing objective is to advance the field of

graph representation learning to address more practical and challenging application

scenarios, including label-scarce environments, noisy data, and transfer learning. Fu-

ture work will focus on extending the proposed framework to tackle complex tasks on

graph data, such as zero-shot and few-shot node classification, link prediction, graph

clustering, and transfer learning.

5.1 Research Contributions

The major research contributions are described as follows.
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5.1.1 Representation Learning on Physical Networks

1. A novel generic framework for learning expressive representations on

physical networks. We propose generic framework SGMP with theoretical

guarantees on discriminative power and various spatial and network properties.

The proposed framework can capture and model the intrinsic coupled spatial

and graph properties and ensure the invariance of learned representation under

rotation and translation transformations.

2. An accelerating algorithm for efficiency. The proposed accelerating al-

gorithm effectively reduces the time and memory complexity from O(N3) to

O(N), and maintains the theoretical guarantees for spatial networks.

3. A novel generalized framework to handle spatial networks in non-

Euclidean space. The generalized framework effectively addresses the unique

challenges of representing irregular spatial networks by first converting the man-

ifold space into a discrete mesh tessellation, and then converting the geometric

information of the curves between nodes into messages on edges.

4. A novel specialized framework to handle geometric trees. This frame-

work significantly improves geometric tree representations by leveraging their

inherent hierarchies and tree-oriented geometric structures.

5. Extensive experiments to evaluate the performance on synthetic and

real-world datasets. The strength of our theoretical findings through ex-

tensive experiments should be demonstrated on both synthetic datasets and

real-world datasets across biomedical, chemical, neuroscience and river network

domains.
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5.1.2 Representation Learning on Information Networks

1. The proposal of a novel generic self-supervised learning framework

for representation learning on information networks through text-

attributed graphs representing format. The proposed framework TAGA

jointly preserves rich semantic information, topology information, and their

interplay by aligning representations of TAGs from both graph and text data

modalities.

2. The proposal of a novel graph-to-text transformation module. This

transformation module requires to maintain the information lossless transforma-

tion between graph and text domains, which ensures the equivalent information

of alignment process.

3. Extensive experiments on label scarce scenarios. We have demonstrated

the performance of the proposed framework in label-scarce application settings,

such as zero-shot and few-shot predictions. These are challenging tasks where

few existing works have demonstrated significant results.

4. Extension to diverse graph tasks. We have extended the experiments to

several significantly important graph tasks, such as node classification and link

prediction.

5. Extension to transfer learning settings. Transferring learned knowledge

from one graph domain to a new graph domain without strong supervision is a

crucial yet extremely challenging task in the field of graph deep learning. This is

also a key step toward developing a graph foundation model. We have validated

the proposed framework under these challenging settings under zero-shot, few-

shot and transfer learning scenarios.
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5.1.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

1. The development of a novel generic curriculum learning framework

for representation learning on graph structured data. The framework is

aimed at improving the generalization ability and robustness of representation

learners on data with dependencies.

2. The proposal of a novel graph edge selection criteria based on their

difficulty level. The proposed method select the edges by quantifying their

corresponding difficulties in a self-supervised learning manner, thus without the

need of extra labels or external human knowledge.

3. A novel automatic curriculum pacing function. We present the learning

process as a concise optimization model, which automatically lets the model

gradually increase the number of including edges to involve more edges in train-

ing according to its own status.

4. A novel edge reweighting scheme. In order to guarantee a numerical steady

process for curriculum learning in graphs, a novel edge reweighting scheme is

proposed to smooth the graph structure transition process.

5. Extensive experiments to evaluate the generalizability and robustness

on synthetic and real-world datasets. The performance of the proposed

relational curriculum learning strategy needs to be compared to state-of-the-

art comparison methods through extensive experiments on both synthetic and

real-world datasets.
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Appendix A

Representation Learning on

Physical Networks

A.1 Representation Learning on Euclidean Spatial

Networks

A.1.1 Proof of Theorem 1

It is obvious to show that distances, angles, and torsions are invariant to translation

transformations since only relative coordinates are using in the formulation.

For rotation transformations R ∈ SO(3) (the rotation group in 3D space), we

show two identity equations first:

⟨Rx, Ry⟩ = ⟨x,y⟩

(Rx)× (Ry) = R(x× y)

(A.1)
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Thus we have

dij = ||Pij||2 = ⟨Pij,Pij⟩ = ⟨RPij, RPij⟩,

θijk = arccos(⟨Pij

dij
,
Pjk

djk
⟩) = arccos(⟨RPij

dij
,
RPjk

djk
⟩),

φ̄ijkp = arccos(⟨nijk,njkp⟩) = arccos(⟨Rnijk, Rnjkp⟩),

Parity = ⟨ nijk × nijp

||nijk × nijp||2
,

Pij

||Pij||2
⟩

= ⟨ R(nijk × nijp)

||R(nijk × nijp)||2
,

RPij

||RPij||2
⟩

= ⟨ (Rnijk)× (Rnijp)

||(Rnijk)× (Rnijp)||2
,

RPij

||RPij||2
⟩.

All elements are invariant under rotation and translation transformations. □

A.1.2 Proof of Lemma 1

Note that from Equation 2.2 we have

||Pij ×Pjk||2 = dijdjk sin θijk,

nijk × nijp =
1

d2ijdjkdjp sin θijk sin θijp
(Pij ×Pjk)× (Pij ×Pjp)

=
1

d2ijdjkdjp sin θijk sin θijp
(Pij · (Pjk ×Pjp))Pij,

⟨nijk,nijp⟩ = cos φ̄ijkp = cosφijkp,

Parity =
⟨nijk × nijp,Pij⟩
dij sin φ̄ijkp

=
Pij · (Pjk ×Pjp)

dijdjkdjp sin θijk sin θijp sin φ̄ijkp

.

Suppose that the solution set of the Equation 2.1 contains two different solutions

vi and v′i, then the Equation 2.2 implies that due to the same representation, we have

Parity(i) = Parity(i′)

Pij · (Pjk ×Pjp)

dijdjkdjp sin θijk sin θijp sin φ̄ijkp

=
Pi′j · (Pjk ×Pjp)

di′jdjkdjp sin θi′jk sin θi′jp sin φ̄i′jkp

0 = Pii′ · (Pjk ×Pjp).
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Since vj, vk, vp is non-colinear, Pjk ×Pjp is nonzero, the equation causes a contradic-

tion. Thus, the Cartesian coordinate of node vi can be uniquely determined by the

Equation 2.1. □

A.1.3 Proof of Theorem 3

In this theorem we denote S as the representation of spatial network in Equation 2.1.

Due to the continuity of g, we take δϵ so that |g(S)−g(S ′)| < ϵ for any S, S ′ ∈ S if the

Hausdorff distance between spatial information dH(S, S ′) < δϵ. Define the Kd,Kθ,Kφ

as the resolution of geometric features d, θ, φ, and without lossing generality, we can

suppose K = Kd = Kθ = Kφ = ⌈ 1
δϵ
⌉. Let the mapping function Λ as Λ(S) = ⌊KS⌋

K

which maps all the elements in an interval to the left end of the interval, such that

we have |g(S)− g(Λ(S))| < ϵ for any S ∈ S.

Let f(S) ∈ RI , where I is the number of dimension of embedding vectors for

S. Then consider fι(S) = e||S−Ŝι||2 , ι ∈ [1, ..., I], where Ŝι is one unit space in the

transformed space of the mapping function Λ. Intuitively, we can consider each

fι(S) measures if S is located in a unit Ŝι of the discretized space by a smooth

indicator. Similarly, we can define another mapping ξ̃ with discretize value as ξ̃(S) =

[ξ̃1(S); . . . ; ξ̃I(S)] with each ξ̃ι(S) = 1 indicating S is located in the ι-th unit, otherwise

0. The mapping from fι(S) to ξ̃ι(S) can be easily learned by a linear function with

ReLU as the activation function, which is exactly the setting in our framework. We

denote this function as ω. We finally have ξ̃(S) = ω(f(S)).

It is obvious that ξ̃(S) is equivalent to Λ(S). Let γ̄ be a continuous function from

RI to R such that γ̄(ξ̃(S)) = g(ξ̃(S)) and we can rewrite γ = γ̄ ◦ ω Then

|γ̄(ξ̃(S))− g(S)|

=|γ̄(ω(f(S)))− g(S)|

=|γ(f(S))− g(S)| < ϵ
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The proof is complete here. □

A.1.4 Proof of Proposition 1

The number of spanning trees in a graph G is given by Kirchhoff’s matrix tree theo-

rem [29], showing that the number can be computed as KMT(G) = det
[
L[u]

]
, where

L[u] is the graph Laplacian matrix L with its uth row and column removed, and u de-

notes a randomly chosen vertice. Obviously, the probability Pr(eij ∈ T ) of sampling

one edge eij in a random spanning tree T can be computed as

Pr(eij ∈ T ) =
KMT (G)−KMT (G̃eij)

KMT (G)
,

where G̃eij is the graph G removed edge eij. Then we write

Pr(πijkp ∈ T ) = Pr(eij ∈ T |ejk, ekp ∈ T )Pr(ejk, ekp ∈ T )

= Pr(eij ∈ T |ejk, ekp ∈ T )Pr(ejk|ekp ∈ T )Pr(ekp ∈ T ),

which can be formulated as

Pr(πijkp ∈ T ) = det[Yπijkp
],

given by Burton-Pemantle theorem [27]. We do not give the proof of Burton-Pemantle

theorem here since it is not the focus of this paper. □

A.1.5 Proof of Proposition 2

Because the random spanning trees are sampled i.i.d. from a uniform distribution,

by the strong law of large number,

h̃
(ℓ+1)
i = SUM

({m(ℓ)(πijkp)

q(πijkp)
|πijkp ∈ Π̄i

T,3

})
,
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converges almost surely to the expected value SUM(m(ℓ)(πijkp)). Then since σ(ℓ) is

continuous, by the continuous mapping theorem, the limits are preserved such that

Equation 2.1

h
(ℓ+1)
i = σ(ℓ)

(
SUM

({m(ℓ)(πijkp)

q(πijkp)
|πijkp ∈ Π̄i

T,3

}))
,

converges almost surely to Equation 2.3. □

A.2 Representation Learning on Non-Euclidean Spa-

tial Networks

A.2.1 Proof of Theorem 4

Proof. Intuitively, distance, angle, torsion, and orientation angle are invariant to

translation and rotation transformations, since only relative coordinates are used

in the formula. Formally, for translation transformations T ∈ SE(3) and rotation

transformations R ∈ SE(3), the following identity equations hold:

T (x− y) = x− y,

⟨R(x),R(y)⟩ = ⟨x,y⟩

R(x)×R(y) = R(x× y)

(A.2)
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Thus we have

d = ||l||2 = ||p− p′||2 = ||T (p)− T (p′)||2,

d = ||l||2 = ⟨l, l⟩ = ⟨R(l),R(l)⟩,

θ = arccos(⟨ l
d
,
Lij

d
⟩)

= arccos(⟨R(l)

d
,
R(Lij)

d
⟩),

ϕ(k,k+1) = ⟨ c(k) × c(k+1)

||c(k) × c(k+1)||2
,

Lij

||Lij||2
⟩ · ϕ̄(k,k+1)

where c =
Lij × l

||Lij × l||2
,

c(k) × c(k+1) =
(Lij × l(k))× (Lij × l(k+1))

||Lij × l(k)||2||Lij × l(k+1)||2
,

=
(Lij · (l(k) × l(k+1)))Lij

||Lij × l(k)||2||Lij × l(k+1)||2
,

thus ⟨ c(k) × c(k+1)

||c(k) × c(k+1)||2
,

Lij

||Lij||2
⟩

=⟨ (Lij · (l(k) × l(k+1)))Lij

||c(k) × c(k+1)||2||Lij × l(k)||2||Lij × l(k+1)||2
,

Lij

||Lij||2
⟩

=
Lij · (l(k) × l(k+1))

||c(k) × c(k+1)||2||Lij × l(k)||2||Lij × l(k+1)||2

=
R(Lij) · (R(l(k) × l(k+1)))

||c(k) × c(k+1)||2||Lij × l(k)||2||Lij × l(k+1)||2

φ(k−1,k) = arccos(⟨n(k−1),n(k)⟩),

= = arccos(R(⟨n(k−1),n(k)⟩)).

All extracted geometric features are invariant under rotation and translation trans-

formations.

A.2.2 Proof of Theorem 5

The proof of Theorem 5 is a consequence of the Lemma 1.

Then we provide the proof for Theorem 5.
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Proof. As stated in Lemma 1, the Cartesian coordinates of a point p(k) can be derived

from its two endpoints and their connected neighbor points p(k−1). Leveraging the

connectivity of the spatial graph, we can iteratively compute the coordinates of a

connected point based on the set of points with known coordinates. By initiating the

process from any arbitrary point, we can determine the Cartesian coordinates for the

entire spatial network.

Proof. Note that from Equation 2.1 we have followings:

||Li,j × l(k)||2 = ||(pi − pj)× (p(k) − p(k−1))||2 = dkdi,j sin θ(k),

c(k) × c(k−1) =
(Li,j × (p(k) − pj))× (Li,j × (p(k−1) − pj))

d2i,jd
(k)d(k−1) sin θ(k) sin θ(k−1)

=
(Li,j · ((p(k) − pj)× (p(k−1) − pj)))Li,j

d2i,jd
(k)d(k−1) sin θ(k) sin θ(k−1)

⟨c(k), c(k−1)⟩ = cos ϕ̄(k,k−1) = cosϕ(k,k−1),

⟨c(k) × c(k−1),Li,j⟩
di,j sin ϕ̄(k,k−1)

=
Li,j · ((pj − p(k))× (pj − p(k−1)))

di,jd(k)d(k−1) sin θ(k) sin θ(k−1) sin ϕ̄(k,k−1)
.

Suppose there exists two different positions of point p(k) and p(k)′ that satisfy Equa-

tion 2.1, then it implies that

Li,j · ((pj − p(k))× (pj − p(k−1)))

di,jd(k)d(k−1) sin θ(k) sin θ(k−1) sin ϕ̄(k,k−1)

=
Li,j · ((pj − p(k)′)× (pj − p(k−1)))

di,jd(k)d(k−1) sin θ(k) sin θ(k−1) sin ϕ̄(k,k−1)

0 = (p(k) − p(k)′) · ((pj − p(k))× (pj − p(k−1))).

Here ((pj−p(k))× (pj−p(k−1))) is nonzero as long as pj, p
(k), p(k−1) is non-colinear.

Therefore, the above equation causes a contradiction which proves that p(k) can not

have two different positions given the representation in Equation 2.1.
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Appendix B

Representation Learning on

Information Networks

B.1 Additional Experimental Results and Settings

In this section, we present additional experimental settings and results due to the

space limitation of the main paper.

B.1.1 Additional Implementation Settings

All experiments are conducted on a 64-bit machine with four 16GB NVIDIA GPUs.

Each experiment involves running the models 20 times with different random seeds to

minimize variance due to specific data splits. Accuracy is adopted as the evaluation

metric for node classification tasks. Specifically, for smaller datasets such as Cora

and PubMed, we employ 3 convolution layers, while for larger datasets, we utilize 2

layers. Latent dimension is aligned with the PLM embedding dimension. During the

pre-train stage, the model is trained with 40,000 steps on each dataset with minibatch

size 8. The learning rate is initialized as 1e−3 and with decay rate 0.999 each 10 steps.

For zero-shot predictions, we utilize the entire dataset as the test set. In the case of
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k-shot predictions, we randomly select k samples from each class to form the training

set, dividing the remaining data into validation and test sets at a ratio of 1:9. All

models undergo finetune for 100 epochs, and testing is based on the best validation

results.

B.1.2 Additional Link Prediction Experiments

In order to verify the generalizability of our method, the transfer learning setting is

adopted. The representation learning method is pre-trained on source dataset, and

then directly perform link prediction task on target dataset without any finetune

process. The ratio of positive and negative edges is 1:1 and we use cosine similar-

ity to measure the scores. From the Table B.1 we can observe that our proposed

method outperforms all the comparison methods in 15 out of 16 tasks on ROC-AUC

metric, which further verified the effectiveness and generalizability of our proposed

representation learning method.

Source Target GRACE G2P2 TAGA
Pubmed Cora 0.6007 ± 0.0019 0.9964 ± 0.0001 0.9971 ± 0.0005

Pubmed 0.8240 ± 0.0008 0.9564 ± 0.0003 0.9683 ± 0.0002
Sports 0.6094 ± 0.0002 0.9864 ± 0.0000 0.9844 ± 0.0000
Arxiv 0.5318 ± 0.0002 0.9847 ± 0.0000 0.9865 ± 0.0001

Arxiv Cora 0.9170 ± 0.0008 0.9928 ± 0.0002 0.9947 ± 0.0003
Pubmed 0.8047 ± 0.0006 0.9563 ± 0.0003 0.9662 ± 0.0004
Sports 0.7636 ± 0.0001 0.9907 ± 0.0000 0.9940 ± 0.0000
Arxiv 0.9386 ± 0.0001 0.9857 ± 0.0000 0.9886 ± 0.0000

Cora Cora 0.9646 ± 0.0005 0.9886 ± 0.0004 0.9959 ± 0.0002
Pubmed 0.9363 ± 0.0006 0.9508 ± 0.0005 0.9634 ± 0.0002
Sports 0.9727 ± 0.0000 0.9816 ± 0.0000 0.9913 ± 0.0000
Arxiv 0.9735 ± 0.0001 0.9620 ± 0.0001 0.9901 ± 0.0000

Sports Cora 0.7847 ± 0.0010 0.9911 ± 0.0002 0.9955 ± 0.0002
Pubmed 0.8718 ± 0.0005 0.9611 ± 0.0003 0.9667 ± 0.0005
Sports 0.9353 ± 0.0000 0.9906 ± 0.0000 0.9942 ± 0.0000
Arxiv 0.8990 ± 0.0001 0.9780 ± 0.0000 0.9842 ± 0.0000

Table B.1: The ROC-AUC experimental results of zero-shot link prediction tasks by
transferring from the source dataset to target dataset.
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k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports

# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055
# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594

Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8

0

PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001

G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

TAGA-rw 0.530 ± 0.001 0.221 ± 0.001 0.494 ± 0.001 0.680 ± 0.002 0.301 ± 0.003 0.394 ± 0.001 0.599 ± 0.002 0.434 ± 0.002

1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042
GraphCL 0.123 ± 0.031 0.157 ± 0.066 0.256 ± 0.039 0.402 ± 0.059 0.371 ± 0.124 0.325 ± 0.079 0.414 ± 0.040 0.347 ± 0.079
GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045

G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

TAGA-rw 0.307 ± 0.050 0.171 ± 0.013 0.365 ± 0.042 0.561 ± 0.063 0.383 ± 0.078 0.380 ± 0.037 0.548 ± 0.073 0.498 ± 0.084

3

PLM 0.436 ± 0.036 0.194 ± 0.029 0.318 ± 0.038 0.588 ± 0.036 0.448 ± 0.071 0.352 ± 0.044 0.611 ± 0.051 0.392 ± 0.041
GraphMAE 0.379 ± 0.039 0.182 ± 0.025 0.389 ± 0.035 0.634 ± 0.044 0.362 ± 0.050 0.432 ± 0.051 0.597 ± 0.061 0.363 ± 0.050
GraphCL 0.192 ± 0.029 0.186 ± 0.039 0.343 ± 0.046 0.563 ± 0.044 0.484 ± 0.071 0.382 ± 0.052 0.476 ± 0.038 0.373 ± 0.071
GRACE 0.398 ± 0.031 0.200 ± 0.038 0.442 ± 0.045 0.622 ± 0.043 0.404 ± 0.057 0.447 ± 0.053 0.620 ± 0.055 0.398 ± 0.045

G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.445 ± 0.035 0.241 ± 0.062 0.497 ± 0.035 0.695 ± 0.050 0.551 ± 0.094 0.551 ± 0.045 0.659 ± 0.058 0.586 ± 0.057

TAGA-rw 0.442 ± 0.040 0.222 ± 0.060 0.467 ± 0.025 0.705 ± 0.021 0.558 ± 0.072 0.513 ± 0.070 0.632 ± 0.043 0.569 ± 0.105

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037
GraphCL 0.231 ± 0.015 0.201 ± 0.040 0.397 ± 0.040 0.641 ± 0.044 0.531 ± 0.047 0.462 ± 0.041 0.584 ± 0.037 0.477 ± 0.048
GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040

G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

TAGA-rw 0.471 ± 0.031 0.276 ± 0.053 0.508 ± 0.019 0.764 ± 0.027 0.621 ± 0.076 0.594 ± 0.025 0.684 ± 0.027 0.675 ± 0.070

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028
GraphCL 0.301 ± 0.018 0.233 ± 0.029 0.488 ± 0.031 0.702 ± 0.025 0.566 ± 0.043 0.523 ± 0.044 0.632 ± 0.025 0.531 ± 0.035
GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033

G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

TAGA-rw 0.518 ± 0.010 0.288 ± 0.040 0.595 ± 0.024 0.806 ± 0.011 0.652 ± 0.046 0.626 ± 0.020 0.679 ± 0.013 0.662 ± 0.056

100

PLM 0.592 ± 0.005 0.337 ± 0.013 0.610 ± 0.008 0.753 ± 0.014 0.753 ± 0.008 0.634 ± 0.015 0.771 ± 0.005 0.690 ± 0.013
GraphMAE 0.573 ± 0.005 0.319 ± 0.008 0.650 ± 0.008 0.835 ± 0.007 0.684 ± 0.011 0.655 ± 0.012 0.744 ± 0.010 0.677 ± 0.009
GraphCL 0.435 ± 0.005 0.313 ± 0.024 0.629 ± 0.006 0.804 ± 0.014 0.675 ± 0.026 0.653 ± 0.012 0.737 ± 0.007 0.703 ± 0.016
GRACE 0.579 ± 0.007 0.339 ± 0.009 0.681 ± 0.006 0.838 ± 0.008 0.725 ± 0.014 0.678 ± 0.010 0.753 ± 0.010 0.712 ± 0.014

G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.631 ± 0.008 0.375 ± 0.021 0.731 ± 0.006 0.849 ± 0.008 0.754 ± 0.022 0.738 ± 0.015 0.787 ± 0.007 0.802 ± 0.014

TAGA-rw 0.595 ± 0.010 0.385 ± 0.016 0.704 ± 0.010 0.853 ± 0.005 0.749 ± 0.023 0.716 ± 0.010 0.776 ± 0.011 0.767 ± 0.021

Table B.2: Full table of performance in zero-shot and few-shot node classification for
each dataset and setting. The best-performing model is highlighted in bold, and the
second-best performing model is underlined.

B.1.3 Additional Node Classification Analysis

We present additional zero-shot and few-shot performance under two different text

encoders UAE-Large-V1 and Text-embedding-3-small. The zero-shot results

are present in Table B.3. The few-shot results with text encoder UAE-Large-V1 is

present in Table B.4, and few-shot results with text encoderText-embedding-3-small

is present in Table B.5. From the table, we can observe that our method TAGA con-

sistently achieve the best performance on two different choices of text encoder models.

This demonstrates the effectiveness and robustness of our proposed method.
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Text Encoder Model

UAE-Large-V1 PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001
G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

Text-embedding-3-small PLM 0.351 ± 0.001 0.098 ± 0.002 0.434 ± 0.005 0.561 ± 0.006 0.125 ± 0.001 0.321 ± 0.001 0.306 ± 0.001 0.424 ± 0.002
GraphMAE 0.101 ± 0.001 0.025 ± 0.001 0.108 ± 0.001 0.162 ± 0.003 0.158 ± 0.001 0.033 ± 0.001 0.205 ± 0.001 0.364 ± 0.001
GraphCL 0.127 ± 0.001 0.045 ± 0.001 0.282 ± 0.001 0.197 ± 0.004 0.106 ± 0.001 0.163 ± 0.001 0.383 ± 0.001 0.240 ± 0.003
GRACE 0.023 ± 0.001 0.022 ± 0.001 0.117 ± 0.001 0.085 ± 0.004 0.039 ± 0.001 0.037 ± 0.001 0.319 ± 0.001 0.088 ± 0.001
G2P2 0.332 ± 0.001 0.092 ± 0.001 0.449 ± 0.001 0.637 ± 0.006 0.168 ± 0.001 0.298 ± 0.001 0.569 ± 0.001 0.511 ± 0.003
TAGA 0.369 ± 0.001 0.084 ± 0.001 0.615 ± 0.001 0.668 ± 0.005 0.264 ± 0.001 0.423 ± 0.001 0.639 ± 0.001 0.548 ± 0.003

Table B.3: Zero-shot node classification performance.

B.1.4 Additional Ablation Studies

Here we have included an ablation analysis to verify the effectiveness of neighbor-

hood size. The results in Table B.6 demonstrate that our method achieves stable

performance when using a neighborhood size of 2 or more orders.

B.2 Additional Technical Details

Efficiency Comparison with Directly Using PLM Embeddings. It is worth

noting that the textual embeddings of TofG views h(vi) can directly represent the

entire TAG. However, it may cause significant scalability and efficiency issue during

the inference phase. Existing PLMs typically adopts transformer architecture and it

has a quadratic complexity with the input number of text tokens, this is especially

important to TAGs since the number of input size grows exponentially with the

number of neighborhood hops. By aligning the knowledge from PLM with GNN

model through our framework, we can simultaneously maintain generalization ability

of TAG embeddings and high efficiency and scalability to large-sized graphs.

Enabling Zero-Shot and Few-Shot Predictions. Our pretrained strategy

ensures that the embeddings obtained from the GNN models at each layer remain

aligned within the textual embedding space. This alignment enables direct zero-

shot predictions using the self-supervised trained embeddings without requiring any

additional fine-tuning.
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1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042

GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045
G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

3

PLM 0.436 ± 0.036 0.194 ± 0.029 0.318 ± 0.038 0.588 ± 0.036 0.448 ± 0.071 0.352 ± 0.044 0.611 ± 0.051 0.392 ± 0.041
GraphMAE 0.379 ± 0.039 0.182 ± 0.025 0.389 ± 0.035 0.634 ± 0.044 0.362 ± 0.050 0.432 ± 0.051 0.597 ± 0.061 0.363 ± 0.050

GRACE 0.398 ± 0.031 0.200 ± 0.038 0.442 ± 0.045 0.622 ± 0.043 0.404 ± 0.057 0.447 ± 0.053 0.620 ± 0.055 0.398 ± 0.045
G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.445 ± 0.035 0.241 ± 0.062 0.497 ± 0.035 0.695 ± 0.050 0.551 ± 0.094 0.551 ± 0.045 0.659 ± 0.058 0.586 ± 0.057

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037

GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040
G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028

GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033
G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

20

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.501 ± 0.009 0.264 ± 0.013 0.558 ± 0.015 0.801 ± 0.014 0.597 ± 0.033 0.596 ± 0.016 0.689 ± 0.021 0.572 ± 0.025

GRACE 0.521 ± 0.011 0.277 ± 0.013 0.605 ± 0.017 0.791 ± 0.017 0.640± 0.037 0.615 ± 0.02 0.704 ± 0.029 0.607 ± 0.027
G2P2 0.556 ± 0.010 0.301 ± 0.015 0.649 ± 0.015 0.813 ± 0.012 0.716 ± 0.025 0.672 ± 0.015 0.726 ± 0.025 0.690 ± 0.025
TAGA 0.561 ± 0.010 0.319 ± 0.023 0.673 ± 0.014 0.814 ± 0.012 0.721 ± 0.035 0.694 ± 0.021 0.745 ± 0.022 0.759 ± 0.026

50

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.541 ± 0.007 0.300± 0.010 0.612 ± 0.015 0.815 ± 0.008 0.657 ± 0.012 0.631 ± 0.010 0.729 ± 0.011 0.631 ± 0.018

GRACE 0.553 ± 0.007 0.314 ± 0.012 0.649 ± 0.012 0.818 ± 0.012 0.706 ± 0.017 0.661 ± 0.019 0.732 ± 0.014 0.678 ± 0.022
G2P2 0.578 ± 0.009 0.340 ± 0.011 0.692 ± 0.012 0.827 ± 0.013 0.738 ± 0.009 0.700 ± 0.014 0.758 ± 0.009 0.725 ± 0.014
TAGA 0.586 ± 0.010 0.348 ± 0.015 0.712 ± 0.012 0.836 ± 0.010 0.743 ± 0.022 0.715 ± 0.016 0.771 ± 0.011 0.784 ± 0.016

100

PLM 0.592 ± 0.005 0.337 ± 0.013 0.610 ± 0.008 0.753 ± 0.014 0.753 ± 0.008 0.634 ± 0.015 0.771 ± 0.005 0.690 ± 0.013
GraphMAE 0.573 ± 0.005 0.319 ± 0.008 0.650 ± 0.008 0.835 ± 0.007 0.684 ± 0.011 0.655 ± 0.012 0.744 ± 0.010 0.677 ± 0.009

GRACE 0.579 ± 0.007 0.339 ± 0.009 0.681 ± 0.006 0.838 ± 0.008 0.725 ± 0.014 0.678 ± 0.010 0.753 ± 0.010 0.712 ± 0.014
G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.631 ± 0.008 0.375 ± 0.021 0.731 ± 0.006 0.849 ± 0.008 0.754 ± 0.022 0.738 ± 0.015 0.787 ± 0.007 0.802 ± 0.014

Table B.4: Performance of all few-shot node classification for each dataset. The text
encoder choice is UAE-Large-V1.

Specifically, suppose there are L prediction labels {l1, l2, . . . , lL}. Their textual

embeddings are obtained through the pretrained language model (PLM) as follows:

h(l)(li) = PLM(li) for i ∈ {1, . . . , L} (B.1)

The probability that node vi belongs to class lj is computed in an unsupervised

manner by measuring the cosine similarity (or another appropriate similarity mea-

sure) between the learned GNN embeddings h(g)(vi) and the label textual embeddings

h(l)(lj):

p(vi → lj) =
eρ(h

(g)(vi),h
(l)(lj))∑L

k=1 e
ρ(h(g)(vi),h(l)(lk))

(B.2)
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1

PLM 0.199 ± 0.044 0.106 ± 0.025 0.347 ± 0.084 0.486 ± 0.095 0.285 ± 0.108 0.339 ± 0.055 0.491 ± 0.066 0.443 ± 0.098
GraphMAE 0.167 ± 0.041 0.112 ± 0.052 0.257 ± 0.037 0.447 ± 0.095 0.268 ± 0.063 0.263 ± 0.080 0.456 ± 0.069 0.331 ± 0.090

GRACE 0.224 ± 0.038 0.136 ± 0.034 0.329 ± 0.046 0.403 ± 0.067 0.304 ± 0.096 0.312 ± 0.049 0.513 ± 0.086 0.287 ± 0.039
G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.306 ± 0.057 0.173 ± 0.072 0.430 ± 0.067 0.523 ± 0.101 0.395 ± 0.101 0.431 ± 0.083 0.581 ± 0.073 0.510 ± 0.099

3

PLM 0.322 ± 0.046 0.148 ± 0.024 0.495 ± 0.061 0.66 ± 0.037 0.422 ± 0.075 0.438 ± 0.044 0.608 ± 0.033 0.577 ± 0.082
GraphMAE 0.276 ± 0.033 0.169 ± 0.051 0.339 ± 0.038 0.657 ± 0.038 0.425 ± 0.097 0.347 ± 0.048 0.553 ± 0.060 0.398 ± 0.064

GRACE 0.360 ± 0.030 0.191 ± 0.037 0.455 ± 0.045 0.580 ± 0.041 0.448 ± 0.067 0.461 ± 0.045 0.623 ± 0.064 0.426 ± 0.045
G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.442 ± 0.023 0.248 ± 0.052 0.548 ± 0.058 0.702 ± 0.032 0.523 ± 0.08 0.575 ± 0.047 0.683 ± 0.056 0.67 ± 0.062

5

PLM 0.365 ± 0.037 0.174 ± 0.039 0.55 ± 0.036 0.705 ± 0.02 0.522 ± 0.094 0.502 ± 0.039 0.601 ± 0.032 0.67 ± 0.05
GraphMAE 0.308 ± 0.030 0.196 ± 0.059 0.384 ± 0.026 0.711 ± 0.030 0.511 ± 0.058 0.412 ± 0.032 0.563 ± 0.068 0.484 ± 0.038

GRACE 0.399 ± 0.026 0.223 ± 0.028 0.501 ± 0.043 0.635 ± 0.028 0.513 ± 0.051 0.527 ± 0.040 0.640 ± 0.052 0.521 ± 0.049
G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.468 ± 0.023 0.299 ± 0.034 0.584 ± 0.04 0.74 ± 0.031 0.618 ± 0.067 0.6 ± 0.041 0.676 ± 0.048 0.735 ± 0.063

10

PLM 0.398 ± 0.024 0.189 ± 0.026 0.627 ± 0.025 0.741 ± 0.018 0.586 ± 0.056 0.541 ± 0.022 0.667 ± 0.025 0.708 ± 0.039
GraphMAE 0.375 ± 0.017 0.208 ± 0.011 0.469 ± 0.029 0.763 ± 0.027 0.564 ± 0.047 0.491 ± 0.034 0.613 ± 0.034 0.539 ± 0.028

GRACE 0.449 ± 0.018 0.249 ± 0.019 0.577 ± 0.027 0.714 ± 0.023 0.601 ± 0.047 0.578 ± 0.030 0.682 ± 0.025 0.569 ± 0.039
G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.509 ± 0.020 0.315 ± 0.028 0.661 ± 0.028 0.781 ± 0.018 0.67 ± 0.049 0.646 ± 0.033 0.724 ± 0.022 0.756 ± 0.032

20

PLM 0.434 ± 0.016 0.223 ± 0.032 0.659 ± 0.014 0.767 ± 0.015 0.641 ± 0.04 0.581 ± 0.015 0.712 ± 0.021 0.761 ± 0.026
GraphMAE 0.429 ± 0.011 0.236 ± 0.020 0.535 ± 0.023 0.799 ± 0.014 0.625 ± 0.024 0.559 ± 0.017 0.655 ± 0.030 0.602 ± 0.028

GRACE 0.486 ± 0.014 0.282 ± 0.015 0.613 ± 0.019 0.770 ± 0.017 0.654 ± 0.027 0.629 ± 0.016 0.697 ± 0.022 0.657 ± 0.025
G2P2 0.556 ± 0.010 0.301 ± 0.015 0.649 ± 0.015 0.813 ± 0.012 0.716 ± 0.025 0.672 ± 0.015 0.726 ± 0.025 0.690 ± 0.025
TAGA 0.547 ± 0.010 0.332 ± 0.023 0.691 ± 0.017 0.805 ± 0.011 0.708 ± 0.039 0.682 ± 0.015 0.745 ± 0.027 0.808 ± 0.022

50

PLM 0.480 ± 0.007 0.252 ± 0.022 0.695 ± 0.010 0.785 ± 0.009 0.702 ± 0.02 0.609 ± 0.013 0.749 ± 0.011 0.784 ± 0.014
GraphMAE 0.477 ± 0.010 0.278 ± 0.012 0.603 ± 0.012 0.819 ± 0.011 0.675 ± 0.019 0.630 ± 0.015 0.692 ± 0.016 0.673 ± 0.021

GRACE 0.520 ± 0.006 0.324 ± 0.012 0.664 ± 0.013 0.806 ± 0.014 0.694 ± 0.022 0.668 ± 0.020 0.727 ± 0.015 0.712 ± 0.020
G2P2 0.578 ± 0.009 0.340 ± 0.011 0.692 ± 0.012 0.827 ± 0.013 0.738 ± 0.009 0.700 ± 0.014 0.758 ± 0.009 0.725 ± 0.014
TAGA 0.576 ± 0.009 0.368 ± 0.014 0.734 ± 0.007 0.826 ± 0.009 0.738 ± 0.021 0.717 ± 0.016 0.773 ± 0.009 0.828 ± 0.014

100

PLM 0.508 ± 0.005 0.272 ± 0.010 0.722 ± 0.007 0.800 ± 0.014 0.73 ± 0.015 0.629 ± 0.009 0.772 ± 0.008 0.802 ± 0.006
GraphMAE 0.499 ± 0.008 0.298 ± 0.014 0.634 ± 0.008 0.844 ± 0.010 0.704 ± 0.015 0.652 ± 0.017 0.721 ± 0.007 0.709 ± 0.011

GRACE 0.546 ± 0.007 0.344 ± 0.008 0.693 ± 0.006 0.823 ± 0.013 0.714 ± 0.011 0.688 ± 0.011 0.745 ± 0.006 0.753 ± 0.010
G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.602 ± 0.007 0.400 ± 0.017 0.747 ± 0.009 0.838 ± 0.009 0.755 ± 0.017 0.738 ± 0.010 0.786 ± 0.006 0.846 ± 0.013

Table B.5: Performance of all few-shot node classification for each dataset. The text
encoder choice is Text-embedding-3-small.

The final predicted class of node vi is determined as follows:

l(vi) = argmaxj p(vi → lj) (B.3)

where l(vi) is the predicted class label for node vi, determined by selecting the class

l that maximizes the similarity measure ρ between the GNN embedding of the node

h(g)(vi) and each of the label embeddings h(l)(lj).

Additionally, to further refine the learned embeddings, we introduce a learnable

transformation function for few-shot learning adaptation:

h
(g)
adapted(vi) = g(h(g)(vi),Dsupport) (B.4)
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Method arxiv children computers cora history photo pubmed sports
3-order 0.532 0.223 0.493 0.678 0.351 0.415 0.622 0.387
2-order 0.537 0.224 0.498 0.682 0.344 0.419 0.616 0.408
1-order 0.500 0.197 0.463 0.635 0.318 0.392 0.566 0.448

Glo-GofT 0.533 0.205 0.482 0.657 0.329 0.407 0.522 0.417

Table B.6: Additional ablation studies results of zero-shot settings. Here we show
the results with different orders of alignment at 1, 2 and 3 order. We also show
the results of a variant, Glo-GofT, which only aligns the GNN embeddings that
aggregate individual node’s text embeddings but removes all higher-order Graph-of-
Text embeddings.

where g represents a transformation function with learnable parameters (e.g., a multi-

layer perceptron), andDsupport denotes a set of support examples for few-shot learning.

This adapted embedding h
(g)
adapted is then utilized to compute the updated predictive

probabilities:

p(vi → lj) =
eρ(h

(g)
adapted(vi),h

(l)(lj))∑L
k=1 e

ρ(h
(g)
adapted(vi),h

(l)(lk))
(B.5)

B.3 Limitations

This work aims to pioneer unsupervised representation learning in the text-attributed

graph research domain. Our approach demonstrates significant performance improve-

ments over existing state-of-the-art methods in zero-shot and few-shot prediction

tasks. However, we acknowledge certain limitations. While our work pushes the

boundaries of graph foundation models, the model’s transfer capabilities may be

limited when training and inference domains are vastly different (e.g., from social

networks to chemical networks). We consider the development of a universal graph

foundation model, capable of generalizing across diverse domains, to be an important

direction for future research.
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Appendix C

Enhancing Generalizability and

Robustness of Learning Network

Representations

C.1 Mathematical Proof for Theorem 6

Proof. We prove this theorem by Theorem 10 and Corollary 3 from [126].

[Avoidance of Saddle Points] Because the sequence (w(t),S(t)) is bounded, and

the second derivatives of L and g are continuous, then they are bounded. In other

words, we have max{
∥∥∇2

wL(f(X,A(t);w(t)),y)
∥∥ ,∥∥∇2

Sg(S(t);λ)
∥∥} ≤ p, where p > 0

is a constant. Similarly, it is easy to check that the second derivative of the term∑
i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2

2
is bounded, i.e.,

max{

∥∥∥∥∥∇2
w

∑
i,j

Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2

2

∥∥∥∥∥ ,
∥∥∥∥∥∇2

S

∑
i,j

Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2

2

∥∥∥∥∥} ≤ q,

where q > 0 is constant and Ã is a function of w. Therefore, it means that the

objective F is bi-smooth, i.e. max{∥∇2
wF∥}, ∥∇2

SF∥} ≤ p + q. In other words, F
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satisfies Assumption 4 from [126]. Moreover, the second derivative of F is continuous.

For any γ > p + q, any bounded sequence (w(t),S(t)) generated by Algorithm 3 will

not converge to a strict saddle of F almost surely by Theorem 10 from [126].

[Second Order Convergence] From the above proof of avoidance of saddle points,

we know that F satisfies Assumption 4 from [126]. Moreover, because L and g satisfy

the KL property, and the term
∑

i,j Sij

∥∥∥Ã(t)
ij −Aij

∥∥∥2

2
satisfies the KL property, we

conclude that F satisfy the KL property as well. From the proof above, we also know

that the second derivative of F is continuous. Because continuous differentiability

implies Lipschitz continuity [201], it infers that the first derivative of F is Lipschitz

continuous. As a result, F satisfies Assumption 1 from [126]. Because F satisfies

Assumptions 1 and 4, then for any γ > p + q, any bounded sequence (w(t),S(t))

generated by Algorithm 3 will almost surely converges to a second-order stationary

point of F by Corollary 3 from [126].

While the convergence of Algorithm 3 entails the second-order optimality condi-

tions of f and g, some commonly used f such as the GNN with sigmoid or tanh

activations and some commonly used g such as the squared ℓ2 norm satisfy the KL

property [185, 186], and Algorithm 3 is guaranteed to avoid a strict saddle point and

converges to a second-order stationary point.
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