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Abstract

Representation Learning on Physical and Information Networks
By Zheng Zhang

Networks, encompassing both physical and information networks, are fundamental
graph structures for modeling relationships among entities across diverse real-world
applications. This thesis aims to advance general representation learning on network
data by addressing several key challenges. Traditional graph representation learning
methods primarily focus on topological structures, often neglecting the rich data
modalities inherent in these networks and lacking theoretical guarantees on expressive
power. Additionally, data quality challenges such as label scarcity, noisy data, and
incompatibility between graph topology and other modalities hinder the development
of robust and generalizable models.

For physical networks, we propose the spatial graph message passing neural net-
work, a novel framework that seamlessly integrates spatial and topological informa-
tion with theoretical guarantees on discriminative power. We enhance computational
efficiency through an accelerated spanning tree sampling algorithm, reducing com-
plexity from O(N?) to O(N) while maintaining expressive capabilities. Furthermore,
we extend the framework to accommodate networks embedded in irregular manifold
spaces and generalize it to handle geometric trees, addressing the unique hierarchical
structures in such data.

For information networks, we introduce a self-supervised learning framework called
text-and-graph multi-view alignment. This framework unifies diverse data domains
by leveraging text-attributed graphs, augmenting traditional graph structures with
natural language descriptions. This framework incorporates a multi-view alignment
module that preserves rich semantic information, topology, and their interplay. An
accelerated algorithm reduces training time complexity from quadratic to linear, facil-
itating scalability to large datasets. We evaluate the framework’s performance under
label-scarce and transfer learning settings, demonstrating its effectiveness without
reliance on extensive labeled data.

To enhance generalizability and robustness, we propose the relational curriculum
learning method. This method improves representation learning on network data
by addressing incompatibilities between graph topology and other data modalities.
It introduces a novel edge selection criterion that quantifies the difficulty of under-
standing graph edges, incorporating them into the training process at appropriate
times. Through extensive experiments on synthetic and real-world datasets, the pro-
posed method demonstrates significant improvements in generalization ability and
robustness.

In summary, this thesis presents novel frameworks and algorithms that advance
representation learning on both physical and information networks. By providing
theoretical guarantees, addressing data quality issues, and enhancing efficiency and
scalability, these contributions hold significant implications for various downstream
applications in chemistry, biomedicine, social sciences, and beyond.
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Chapter 1

Introduction

Networks, encompassing both physical and information systems, serve as essential
data structures for modeling relationships among entities in a wide range of real-
world applications [19, 73, 200]. Physical networks, such as transportation systems
and biological networks, are embedded in the real world and consist of tangible entities
and connections. Conversely, information networks represent abstract systems like in-
formation flow or social interactions, capturing intangible relationships that influence
various phenomena. Combining these two types, networks provide a fundamental
framework for capturing the complexities of interconnected data. In mathematical
terms, networks are typically represented as graphs, where nodes signify entities and
edges represent the connections or relationships between them [8, 149]. Additional at-
tributes specific to the physical or informational context further enrich these graphs,
leading to the term as modality-enriched graphs [58]. Discovering patterns and struc-
tures within these networks is essential for extracting insights and driving predictive,
data-driven decision-making [194, 118].

While traditional studies on graph-structured data have a long history, they often
rely on heuristic rules or domain-specific knowledge [42, 17]. These methods have

limitations in handling diverse graph data and problems across various domains [16].



In recent years, the advancement of deep learning on graph-structured data has rev-
olutionized the field of network analytics [114, 236]. Deep learning-based methods
have demonstrated exceptional capabilities as a general strategy for learning power-
ful representations over diverse graph domain data [179], which is the core paradigm
in the domain of learning the complex, non-linear relationships inherent in graph-
structured data [210]. This has led to significant advancements in various graph
problems, such as node classification [114], link prediction [78], graph classification
[219], graph clustering [18], community detection [67], and graph generation [220].
Despite these advancements, existing methods often focus solely on studying the
topological structures of networks while overlooking the importance of other rich data
modalities inherent in physical and information networks [23, 14]. They typically treat
additional modality information merely as plain node or edge attributes [74]. These
approaches can be insufficient because other modalities can possess unique properties
that require specialized handling and cannot be appropriately modeled as standard
attributes [212]. For instance, physical networks are embedded in the real-world
space, where nodes and edges are associated with spatial information such as coordi-
nates. Proper handling of spatial information demands considerations of symmetry
invariance or equivariance to accurately reflect geometric relationships inherent in
the data [41, 170]. Moreover, other modalities may be intricately coupled with the
graph’s topology, necessitating the design of specific machine learning modules that
can effectively model the interplay between the graph structure and modality-specific
data properties [96, 223]. Addressing these challenges is crucial for developing more
robust and generalizable graph representation learning techniques [210, 24].
Extracting powerful representations from modality-enriched physical and informa-
tion network data is essential for understanding the underlying network mechanisms
and performing a variety of downstream tasks such as biomedical property predic-

tions [208], social network analysis [194, 68|, recommendation systems [218], and



human mobility analysis [228, 229, 144, 145]. Achieving high-quality learned rep-
resentations with deep learning models requires careful consideration of three main
aspects: data, model, and tasks. Each aspect presents unique challenges, and ef-
fectively addressing these challenges is crucial for obtaining optimal representations.
However, existing representation learning methods on graph data often struggle with
these challenges in each perspective, highlighting the need for approaches that can
integrate rich data modalities, advanced modeling techniques, and task-specific ob-
jectives to enhance performance.

First, there is a lack of considerations for interactions between graph topology
and other data modalities. In real-world scenarios, both physical and information
networks are enriched with additional modalities that describe nodes or edges, such
as spatial coordinates, textual descriptions, or user demographic data. While graph
structures capture the topological relationships among entities, these entities them-
selves and their connections are characterized by diverse forms of data. A significant
challenge about learning representation over graph data is how to jointly handle the
topological structure, the information from other modalities, and their crucial inter-
play. This integration is crucial because it allows for a more comprehensive under-
standing of the data, leading to more expressive and robust learned representations.

Secondly, there is an absence of theoretical guarantees about the expressive power
of representations learned from modality-enriched physical and information network
deep learning models. Considering the complexity and the exponentially large num-
ber of possible sub-structures within graphs, it is challenging to provide theoretical
assurances on the models’ ability to capture and distinguish these modular patterns
effectively. The hierarchical and often overlapping nature of sub-structures adds fur-
ther complexity to modeling efforts. Unfortunately, most existing graph deep learning
models are treated as black boxes, with performance evaluations that are predomi-

nantly empirical and frequently overlook the influence of other modalities. Establish-



ing theoretical frameworks that explicitly account for modular structures in graphs
is crucial to ensure a reliable and effective deep learning framework.

Third, the data quality issues introduced by modality-enriched physical and infor-
mation networks are often overlooked. Most existing graph representation learning
methods are developed under supervised learning settings, which assume the avail-
ability of high-quality, including large amounts of labeled data and straightforward
node or edge attributes. However, in many real-world applications, modality-enriched
physical and information networks involve diverse types of data that can be of rel-
atively low quality or inconsistently structured. For instance, spatial coordinates
may have varying levels of noise, or require specialized preprocessing to capture their
unique properties. And textual descriptions can include significant amount of miss-
ing values. Additionally, the intricate interplay between the graph’s topology and
modality-specific data demands models that can effectively integrate and process
interaction information. In these scenarios, ensuring the value of representations
learned from complex and potentially lower-quality modality-enriched data remains
a challenging yet promising area of research.

In addition to the main challenges mentioned above from the three core perspec-
tives of an effective physical and information network representation learning frame-
work, there are also minor, yet significant, research challenges to consider. These
include the efficiency and scalability of the developed models, the interpretability of
the designed models, as well as adapting models for specific real-world downstream
applications. These factors are also crucial for the success of a representation learning
model applied to modality-enriched physical and information network data.

Therefore, the primary objective of my research is to advance the general rep-
resentation learning capabilities on network data, which spans both physical and
information networks, by addressing several key issues. This includes to leverage

the interplay between topological structures and other modality data forms in both



nodes and edges, developing models with theoretically guaranteed expressiveness, and
tackling data quality issues such as label scarcity, noisy data and compatibility be-
tween graph topology and other data modalities. Additionally, my research explores
methods to tailor learned representations for specific downstream applications and
to improve the efficiency and scalability of training and inference processes. Detailed

discussions of each of these issues are presented in the subsequent subsections.

1.1 Research Issues

This thesis focuses on developing general representation learning framework for physi-
cal and information networks. It also aims to develop training strategies for addressing
label scarcity, noisy data and data incompatibility scenarios on graph data, with ap-
plications in the chemical, biomedical, and social science domains. The key research

issues are outlined in the following sections.

1.1.1 Representation Learning on Physical Networks

Physical networks, also known as spatial networks, are networks for which the nodes
and edges are constrained by geometry and embedded in real physical space, which
has crucial effects on their topological properties. Although tremendous success has
been achieved in spatial and network representation separately in recent years, there
exist very little works on the representation of spatial networks. Existing graph rep-
resentation learning research typically only focus on studying the connectivity topol-
ogy information within graph data. However, in real-world application scenarios, the
network structure of graph data are usually embedded in integrating the physical
location of graph data. Extracting powerful representations from spatial networks re-
quires the development of appropriate tools to uncover the pairing of both spatial and

network information in the appearance of node permutation invariant, and rotation



and translation invariant. Hence it can not be modeled merely with either spatial
or network models individually. Therefore, how to develop a generic framework for
spatial network representation learning that can address these above challenges is
crucial for advancing the research domain of physical networks, as well as many im-
portant downstream tasks such as molecule property predictions and protein structure
analysis. Besides, how to have theoretical guarantees on the quality of learned rep-
resentations is also important for a reliable learning framework, especially for diverse
physical environments such as irregular non-Euclidean space. Finally, how to main-
tain low computational resource given incremental information remains a significant

challenge in designing the learning framework.

1.1.2 Representation Learning on Information Networks

Information networks are networks that are usually abstract and not directly embed-
ded in physical space. In such networks, nodes represent entities such as individuals,
documents, or data sources, while edges signify the relationships or pathways through
which information is shared, transmitted, or connected. A significant challenge in ex-
isting representation learning for information networks lies in the diversity of data
domains such as social networks, citation networks and e-commerce networks. These
domains introduce variations in node and edge features, as well as in predictive tasks,
which complicates the development of a unified learning framework. Recent advance-
ments in natural language processing, particularly the rise of pre-trained language
models, have shown remarkable success in handling diverse data domains. In this
research, we aim to unify various information network data domains through the use
of text descriptions, resulting in a unified structure we refer to as Text-Attributed
Graphs (TAGs). TAGs augment traditional graph structures with natural language
descriptions, facilitating a richer and more detailed representation of data and their

relationships across a wide range of real-world scenarios. However, current approaches



to TAG representation learning are predominantly supervised, relying heavily on la-
beled data, which limits their applicability in diverse contexts. Our research seeks
to overcome this limitation by developing a fully unsupervised framework for TAG
representation learning. This framework integrates the strengths of pre-trained lan-
guage models, which excel at natural language understanding, with graph models that
effectively capture structural information. By combining these approaches, we aim
to produce high-quality representations from TAGs without the need for extensive

labeled data, thereby broadening their applicability across various domains.

1.1.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

Graph Neural Networks (GNNs) have achieved great success in representing network
data by recursively propagating and aggregating messages along the edges. However,
in real-world applications, the graph topology often does not compatible seamlessly
with other data modalities due to data quality issues. Specifically, since edges typi-
cally represent dependency relationships between data entities, real-world graphs may
contain edges of varying reliability, with some even introducing noise that can hinder
performance on downstream tasks. This inconsistency poses challenges to the gen-
eralizability and robustness of graph representation learning when applied to diverse
and noisy datasets. Unfortunately, existing GNNs may lead to suboptimal learned
representations because they usually treat every edge in the graph equally. On the
other hand, Curriculum Learning (CL), which mimics the human learning principle
of learning data samples in a meaningful order, has been shown to be effective in
improving the generalization ability and robustness of representation learners by pro-
viding learning order on data samples. Specifically, by gradually proceeding from easy
to more difficult samples during training, CL can resolve the challenges associated

with noisy or unreliable data samples, improving the overall learning process. Unfor-



tunately, existing CL strategies are typically designed for independent data samples
and cannot trivially generalize to handle data dependencies in graphs. How to pro-
pose a novel CL strategy for dependent network data to alleviate the incompatibility

issues between graph topology with other data modalities remains an open challenge.

1.2 Contribution

The major proposed research contributions that have been addressed up to now can

be stated as follows:

1.2.1 Representation Learning on Physical Networks

1. We propose a new Spatial Graph Message Passing neural network
(SGMP) for learning the representations of generic spatial networks.
The new proposed method is equipped with a novel message passing neural net-
work to organically aggregate the spatial and graph information with theoretical

guarantee on discriminative power.

2. We design a new accelerating algorithm for learning on graph-structured
data to enhance efficiency. The time complexity and memory complexity
is reduced from O(N?3) to O(N) with respect to the average degree of nodes,
while the accelerated algorithm can still maintain the theoretical guarantees of

representation expressive power for spatial networks.

3. We further propose an enhanced framework capable of generalizing
to spatial networks embedded in irregular manifold spaces. Many
real-world networks are embedded in non-Euclidean spaces, such as manifolds.
The updated framework is designed to consider the coupled graph topological

information and its embedded spatial curve information.



4. In addition, we further generalize the proposed framework to han-
dle geometric trees. While tree is one special format of graph, its unique
hierarchical structure layout plays a crucial role in the formation mechanism.
To address this, we propose a generalized framework that is tailored for spatial

trees.

1.2.2 Representation Learning on Information Networks

1. We propose a new self-supervised learning framework for text-attributed
graphs, Text-And-Graph Multi-View Alignment (TAGA). This pro-
posal aims at seamlessly integrating TAGs’ structural and semantic dimensions.
The proposed framework is generic for all types of text-attributed graphs, with
the potential to unify diverse information networks in one foundational learning

framework.

2. We propose a multi-view alignment module to preserve rich semantic
information, topology information, and their interplay. We propose to
develop a new Graph2Text method that transforms the text-attributed graph
into a natural hierarchical layout document. Existing Graph2Text methods
often describe all edges within a graph in plain text, which is usually unnatural

and tends to obscure higher-order structure information.

3. We propose an accelerated algorithm to reduce training time com-
plexity from quadratic to linear. In order to support large-scale training,
we present a random walk based algorithm to decrease the time complexity
from quadratic to linear, and approximate the original algorithm without loss

of information.

4. We evaluate the framework performance on label-scarce and transfer

learning settings. Existing works typically evaluate methods in a supervised
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learning setting, where obtaining training labels can be challenging in real-world
applications. Our goal is to enhance performance in label-scarce scenarios, such
as zero-shot and few-shot learning, and even in transfer learning across different

graph domains.

1.2.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

1. We propose a novel CL algorithm named Relational Curriculum Learning
(RCL). The proposed method is aimed to improve the generalization ability
and robustness of representation learners on network data by analyzing and
resolving the incompatibility between graph topology and other modality infor-

mation.

2. We develop a novel graph edge selection criteria for automatically in-
volving graph edges. The proposed method can automatically quantify the
difficulty of understanding graph edges and incorporate them into the training
process at the appropriate time. This strategy aims at involving the proper
topological structures that are compatible with other data modality informa-

tion.

3. We investigate the generalizability and robustness improvement of
proposed curriculum learning strategy. We compare RCL to state-of-the-
art comparison methods through extensive experiments on both synthetic and

real-world datasets.
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1.3 Organization of Thesis

The remainder of this research thesis is organized as follows: Chapter 2 introduces
the problem of graph representation learning on physical networks and proposes a
message-passing-based model to address it. Additionally, this chapter discusses how
to extend the method to non-Euclidean spaces and a special case involving spatial
trees. Chapter 3 presents the work of representation learning on information networks
that aims at designing graph foundation models based on text-attributed graphs, with
a focus on exploring the boundaries of label-scarce graph representation learning and
transfer learning settings. Chapter 4 describes the proposed curriculum learning strat-
egy aimed at improving the generalizability and robustness of network representation
learning models by alleviating the incompatibility issue between graph topology and

other data modalities. Chapter 5 includes conclusions and future work plans.
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Chapter 2

Representation Learning on

Physical Networks

In this chapter, we first introduce the background of research problem of represen-
tation learning on physical networks in Section 2.1 and related works in Section 2.2.
Then in Section 2.3, we propose the designed deep learning model architecture for
handling general Fuclidean spatial networks, where the experimental results are pre-
sented in Section 2.4. In addition, we generalize the framework to further consider
non-Euclidean spatial networks in Section 2.5 by including the irregular manifold
surface into model design. In Section 2.6, we present the experimental results on
non-Euclidean spatial networks. Furthermore, the special cases of spatial networks,
which are geometric trees with unique hierarchical properties, are introduced in Sec-
tion 2.7. We propose unique self-supervised learning objectives that are designed for
hierarchical trees and then present experimental analysis in Section 2.8. Finally, this
chapter is ended with a conclusion section in Section 2.9.

This chapter includes three consecutive works. The first work of representation
learning on Euclidean spatial networks [225] was published in The 35th Conference

on Neural Information Processing Systems as a full research track paper, titled “Rep-
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resentation Learning on Spatial Networks”. The second work of representation learn-
ing on non-Euclidean spatial networks [231] was published in SIAM Conference on
Data Mining 202 as a research paper, titled “Non-Euclidean Spatial Graph Neural
Network”. The third work of representation learning on geometric trees [233] was
published in 30th SIGKDD Conference on Knowledge Discovery and Data Mining as

a full research paper, titled as “Representation Learning of Geometric Trees”.

2.1 Introduction on Physical Networks

Spatial data and network data are both popular types of data in modern big data era.
The study of spatial data focuses on the properties of continuous spatial entities under
specific geometry, while analysis of network data investigates the properties of dis-
crete objects and their pairwise relationship. Spanning these two data types, physical
network, or know as spatial network, are a crucial type of data structure that nodes
occupy positions in a real-world physical space, where spatial patterns and constraints
may have a strong effect on their connectivity patterns [11]. Understanding the mech-
anism of organizing spatial networks has significant importance for a broad range of
fields [55], ranging from micro-scale (e.g., molecule structure [208]), to middle-scale
(e.g., biological neural network [57]), to macro-scale (e.g., mobility networks [37]). Ef-
fectively learning the representations of spatial networks is extremely challenging due
to the close interactions between network and spatial topology, the incompatibility
between the treatments for discrete and continuous data, and particular properties
such as permutation invariant and rotation-translation invariant. Spatial networks
have long been researched in the domains such as physics and mathematics, which
usually extend complex networks and graph theory into spatial networks [173, 12].
They typically rely on network generation principles predefined by human heuristics

and prior knowledge. Such methods usually characterize well on the aspects of the
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Figure 2.1: Spatial network contains not only the information of network topology
and spatial topology but also their interaction.

data that have been covered by the predefined principles, but not on those have not
been covered[11]. However, the underlying network process in complex networks is
largely unknown and extremely difficult to be predefined in simple rules, especially in
crucial and open domains such as brain network modeling [175], network catastrophic
failure [158], and protein folding [53].

Remarkable progress has been made towards generalizing deep representation
learning approaches in spatial data and network data [210, 28, 86, 82, 54], respec-
tively, in recent years. For spatial data, deep learning achieved significant progress in
different commonly used formats such as images [119, 163, 137, 44], point clouds [63,
157, 129], meshes [187, 198], and volumetric grids [209, 143]. On the other hand,
deep learning has also boosted the research of encoding graph structure on net-
work data [86, 114, 85], and downstream applications such as recommender sys-
tems [218, 135], drug discovery [75, 46, 79, 80], FinTech [204], customer care [205],
and natural language processing [139, 13, 206].

Despite the respective progress in representation learning on spatial data and
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Figure 2.2: The left figure reflects closer nodes tend to connect with each other
(known as the first law of geography [171]), while the right figure reflects a spatial tele-
connecting pattern where faraway nodes tend to connect. Discriminating these two
spatial networks requires new method that can jointly consider spatial and network
properties.

network data in parallel, the representation learning for spatial networks have been
largely underexplored and has just started to attract fast-increasing attention. Merely
combining spatial and graph representations separately cannot handle that for spatial
networks where spatial and network process are deeply coupled together [11, 147, 62].
For example, Fig. 2.2 shows a simple example with a pair of spatial networks, in
which there are different formation rules on the edges relied on the spatial distance,
that is non-distinguishable for spatial and network embedding methods, respectively.

Few recent attempts have been proposed to handle representation learning on
spatial networks but still suffer from key challenges: Spatial network representation
learning is a problem extremely difficult to address due to several unique challenges:
1) Difficult in distinguishing the patterns that require joint spatial and
graph consideration. Examples like Figure. 2.2 that share the same spatial and net-
work topology, respectively, but with significantly different interaction mechanisms,
are non-distinguishable to either spatial or graph methods. 2) Difficult in jointly
maintaining that the learned representation is invariant to node permuta-

tion, and rotation and translation transformations. Notice that spatial and
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graph information confine each other which neutralizes conventional methods to have
either of them. For example, although point clouds representation learning can easily
preserve rotation- and translation-invariant by using spatial nearest neighbors, here
in spatial networks the neighbor is confined also by graph neighbors. Such additional
confinement largely harden our task. 3) High efficiency and scalability in the
graph size. The confinement between spatial and graph information inevitably leads
to taking into account more entities simultaneously to maintain sufficient informa-
tion. The requirement to handle incremental information increases the demand for
model efficiency and scalability.

In order to address all the aforementioned challenges, we propose a new spatial
graph message passing neural network (SGMP) for learning the representations of
generic spatial networks, with theoretical guarantees on discriminative power and
various spatial and network properties, and an accelerating algorithm which adjusts
to our theoretical framework. Specifically, to capture and model the intrinsic coupled
spatial and graph properties, we propose a novel message passing neural network to
organically aggregate the spatial and graph information. To ensure the invariance
of learned representation under rotation and translation transformations, a novel
way to represent the node spatial information by characterizing geometric invariant
features with lossless information is proposed. To alleviate the efficiency issue, we
propose a new accelerating algorithm for learning on graph-structured data. The
proposed accelerating algorithm effectively reduces the time and memory complexity
from O(N?) to O(N), and maintains the theoretical guarantees for spatial networks.
Finally, we demonstrate the strength of our theoretical findings through extensive

experiments on both synthetic datasets and real-world datasets.
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2.2 Related Works

Spatial Networks. There has been a long time of research efforts on the subjects
of spatial networks [11]. In the area of quantitative geography, Haggett and Chor-
ley discussed the relevance of space in the formation and evolution of networks, and
developed models to characterize spatial networks at least fourty years ago [84, 36].
New insights leading to modern quantitative solutions are gained due to the advance
in complex networks [61, 195, 3, 9, 7, 40|, and appears in more practical fields such
as transportation networks [5, 121, 122], mobility networks [37, 48], biological net-
works [57, 164], and computational chemistry [74, 160, 70].

Geometric Deep Learning. This is a more recent domain which handles non-
Euclidean structured data such as graphs and manifolds [28].

Geometric Deep Learning on Manifolds. There is a large body of research efforts of
generalizing deep learning models to 3D shapes as manifolds in the computer graphics
community. Many works have been conducted to find a better approach to generalize
convolution-like operations to the non-Euclidean domain [142, 21, 162, 217, 140, 134].
J. Masci et at. proposed the framework of generalizing convolution neural network
paradigm to manifolds by applying filters to extract local patches in polar coordi-
nates [142]. Litany et at. [134] proposed FMNet to learn the dense correspondence
between deformable 3D shapes.

Geometric Deep Learning on Graphs. The earliest attempts we are aware of to gen-
eralize neural networks to graphs are attributed to M. Gori et at. [77]. More re-
cently, a number of approaches encouraged by the success of convolutional neural
networks [119] have attempted to generalize the notion of convolution to graphs.
One important stream of convolution graph neural networks is spectral-based, where
emerges after the pioneering work of Bruna et at. [26] which based on the spec-
tral graph theory. There have been many following works [92, 49, 114, 123]. Another

stream of work define graph convolutions as extracting locally connected regions from
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the graph [56, 131, 150, 85, 211, 146]. Many of these works were formulated in the
family of message passing neural networks [74] which apply parametric functions to
a node and its proximities, and use pooling operations to generate features for the
node. Efficiency and scalability for deep graph learning is very important especially
for large graphs and higher-order operations, which triggers research on accelerat-
ing GNNs [85, 31, 30]. Hamilton et at. [85] first introduced sampling scheme on
neighborhood nodes to restrict the size. Chen et at. [31] proposed a method which
samples vertices rather than neighbors. However, none of these works can guarantee
the sampled graph is connected.
Deep Learning on Spatial Data. Deep learning has also boosted the study on
spatial data. Significant progress has been achieved on deep learning on images since
AlexNet [90, 163]. For 3D point clouds, PointNet [157] is a pioneering work which
addressed the permutation invariance by a symmetric function. PointCNN [129]
transforms the input points into a latent and potentially canonical order by a y-conv
transformations. Volumetric-based methods usually apply a 3D Convolution Neural
Network (CNN) to 3D grids [209, 143]. Wang et at. [187] first performed shape
segmentation on 3D meshes by taking three low-level geometric features as its input.
Despite the success of generalizing deep learning to network and spatial data sep-
arately, there has been relatively little work that simultaneously characterize both of
them and their interaction. Previous models such as [74, 160, 70] are domain-specific,
[160, 70] treat spatial networks as point clouds which ignores the influence of network
structure, and [189, 188] consider POI (Point of Interest) categories, hence such con-
cept graphs are not physically embedded in a geometric space. In addition, existing
works [193, 47] typically utilize the off-the-shelf deep neural networks with Cartesian
coordinates as inputs and a large amount of rotation-and translation-augmented data,
which is computationally expensive and lacks theoretical guarantee of rotation- and

translation-invariant on the representation. To the best of our knowledge, our pro-
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posed method is the first generic framework of spatial network representation learning
that handles substantial properties of rotation- and translation-invariant and the in-

terplay between spatial and graph patterns with a theoretical guarantee.

2.3 Representation Learning on Euclidean Spatial

Networks

Problem Definition. Spatial graphs (also known as spatial networks [11]) are net-
works for which the nodes and edges are embedded in a geometric space. Spatial
networks is ubiquitous in real world, such as molecular graphs [208], biological neural
networks [57], and mobility networks [37], where the spatial and network properties
are usually coupled together tightly. For example, chemical bonds are derived from
spatially close atoms, and fiber nerves tend to connect neurons close to each other. A
spatial network is typically defined as S = (G, P), where a graph G = (V| E) denotes
the graph topology such that V' is the set of NV nodes and £ C V x V is the set
of M edges. e;; € E is an edge connecting nodes v; and v; € V. P denotes the
spatial information that is expressed as a set of points P = {(z;, vi, z:)| %, ¥i, 2 € R}
in Cartesian coordinate system, such that for a node v; € V, its coordinate is de-
noted as (x;,v;,2;) € P. Permutation invariance are crucial to graph structured
data [210]. The collections of permutation-invariant functions on graph-structured
data is defined so that f(7'S7) = f(S), for all 7 € S,,, where S,, is the permutation
group of n elements. Rotation and translation invariance are in natural and common
requirements for spatial data [69, 70]. The collections of rotation- and translation-
invariant functions on spatial networks is defined so that f(G,7T(P)) = f(G, P), for
all T € SE(3), where SE(3) is the continuous Lie group of rotation and translation
transformations in R3.

The main goal of this work is to learn the representation f(.S) of spatial network
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S = (G, P), with the simultaneous satisfaction of strong discriminative power and
the aforementioned significant symmetry properties.

In order to achieve the novel spatial network representation learning by addressing
the above-mentioned challenges, we propose a new method named spatial graph mes-
sage passing neural network (SGMP) and a new accelerating algorithm which relies
on sampling random spanning trees. Specifically, to discriminate spatial networks
especially for the spatial-graph joint patterns, we propose a new message passing sce-
nario which aggregates the node spatial information via higher-order edges as shown
in Figure 2.3(a) and elaborated in Section 2.3.2. This scenario preserves graph and
spatial information while aggregation with theoretical guarantees. To ensure that
the representation is invariant to rotation and translation transformations, we pro-
pose to characterize several geometric properties in length three path, which is proved
to represent node spatial information with guarantee on the properties of rotation-
wmvariant, translation-invariant, and information-lossless. This is illustrated in Fig-
ure 2.3(b) and will be detailed in Section 2.3.1. To address the efficiency issue, an
innovative sampling algorithm for accelerating training named Kirchhoff-normalized
graph-sampled random spanning tree is proposed. The algorithm reduces the time
and space complexity from O(N?) to O(N) while still stay equivalent to original

graph, which will be discussed in details in Section 2.3.3.

2.3.1 Node Spatial Information Representation

As mentioned above and in Figure 2.2, we need a novel way to represent the node
spatial information that can preserve all the spatial structure information losslessly
and also maintain rotation and translation invariance. We cannot directly use the
Cartesian coordinates because they are not rotation- and translation-invariant. Al-
though there are conventional node spatial information representation methods that

maintained the rotation and translation invariance in the domain of spatial deep
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Figure 2.3: Illustration of the proposed spatial graph message passing neural network
(SGMP). (a) The process of updating the hidden state embedding hz(»é) of node v; by
aggregating the spatial-graph message information from length three path. (b) An
example to illustrate each elements in our spatial information representation (Equa-
tion 2.1). Here L;;, is the plane defined by node v;,v; and v, and L;j is the plane
defined by node v;, v; and vy. (c) This is the spatial path neural network block which
is designed to learn the coupled spatial-graph property. This block also maintains
the invariance to rotation and translation transformations by the spatial information
representation (SIR).

learning [170, 69], we cannot simply use them to handle spatial networks because they
cannot consider the confinement on neighborhood from graph perspective. Otherwise,
the coupled spatial-graph properties cannot be captured. Therefore, we consider to
leverage length n path to represent the node spatial information. The most simplest
way is to just use the distance among nodes and we can have n = 4 to ensure the
spatial information is preserved. However, we want to minimize the length of the
path since the size of the neighborhood grows with a factor of O(N) when one more
length for the path is considered. To achieve this, we successfully reduce n to 3 by
proposing a new spatial information representation on path, where we use geometry
features distance, angle, and torsion as detailed in the following equation and also

illustrated in Figure 2.3(b).
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The spatial information of a spatial network S = (G, P) with N nodes can be
expressed as a set of Cartesian coordinates P = {(x;, vs, zi)|@i, i, 20 € RV, Tt

can also be represented as P € RV*3

in a matrix form. The set of all length n
path starts from node v; can be represented as IT. Particularly, a length three path
v; —> UV — U — Up can be expressed as i, € Hé. Given a spatial network S where
its graph G is strongly connected and the longest path { > 3, the proposed spatial

information representation can be expressed by one of its length three path m;j, € 114

as

(dz‘j7 djk:, djp7 szm 6ijp7 %j/cp), (2.1)

where

dij = ||Pijll2; djx = ||Pjll2, djp = [|Pjpll2,

P, P, P.. P.
0, — iy Zakyy g — iy 2 p
i = arccos(( dy d ), bijp = arccos(( ' )),
Pijkp = Parity - @ijpp,
njy = ——————— Njip, = ———————
F Py x Pl P [Py x Pyl

Pijkp = arccos((njji, Njkp) ),
Parity = ( Dijie X Nijp , Py ).
s X nyjplla” [Pl 2

Theorem 1. Here the distances d;; € [0,00), angles 6, € [0,7) and torsions @ik, €

[—7, ™) are rigorously invariant under all rotation and translation transformations

T € SE(3).

The proof of this theorem is straightforward and can be found in Appendix A.1.1.
It is remarkable to mention that the proposed representation in Equation 2.1 not
only satisfies the invariance under rotation and translation transformation but also
retains the necessary information to reconstruct the original spatial networks under

weak conditions, as described in the following theorem.
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Theorem 2. Given a spatial network S = (G, P), if G is a strongly connected graph
with longest path ¢ > 3, then given Cartesian coordinates of three non-collinear con-
nected nodes (v;,vg,vp) in a length three path m;;k, of one node v;, the Cartesian

coordinates P can be determined by the representation defined in Equation 2.1.

The proof to this theorem is a consequence of the following lemma.

Lemma 1. Given Cartesian coordinates of three non-collinear connected nodes (v;, v, vp)
in a length three path i, of one node v;, the Cartesian coordinate P; of node v; can
be determined by the representation defined in Equation 2.1.

The proof of this lemma can be found in Appendix A.1.2.

Now we can prove Theorem 2. As stated in Lemma 1, the Cartesian coordinate
of node v; can be determined by its connected neighbors v;, vx, v, in the path of m;j,.
Due to the property of strong connectivity of graph G = (V, E), we can repeatly
solve the coordinate of a connected node to the set of nodes with known coordinates.
Thus, start from an arbitrary length three path the Cartesian coordinates P of whole

spatial networks is determined. 0

2.3.2 Spatial Graph Message Passing Neural Network

Spatial network representation learning requires us to do convolution that aggregates
jointly the graph and spatial information from the graph neighborhood. The most
important issue is to maintain the discriminative power without loss of graph and
spatial information during the aggregation operation. In the meanwhile, we need to
maintain permutation-invariant, rotation- and translation-invariant. To achieve this,
we propose the following operation to update the hidden state embedding hgz) of node
v; by aggregate the messages passing on all its length three path TI4:

B _ (0 (SUM({m( Tiston) [Ty € 11 })) (2.3)

)
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where o) is a multilayer perceptron (MLP) with ReLU as activation function and

the spatial-graph interacted message m(®) (mijip) s generated by a spatial path neural

network (SPNN) block:

m® (mijup) = ¢ (m“) (Tijp) O (e z‘jkp))) ;

m(é)<7rijkp) _ (h(f) h(f) h(e) h(é))’ (2.4)

iajuk;ap

m<77ijkp) = (dz’j7 djk> djp7 Qijlm gijpa %’jkp),

where ¢) and ¥ are two nonlinear functions to extract the complicated coupling
relationship between spatial and graph information, in which we use the multilayer
perceptron (MLP) with ReLLU as the activation function in our settings.

Finally, the representation of spatial network S can be achieved by applying a
graph aggregation operation: f(S) = AGG({hEK)m € G}), where AGG is a permu-
tation invariant function such as SUM or MEAN, and K is the number of our message
passing operation layers.

Since the node spatial information is already rotation- and translation-invariant,
these properties can be intrinsically preserved by the operation in Equation 2.3. Node
permutation will also be preserved due to the usage of the permutation invariant func-
tion SUM. Moreover, the following theorem proves that the discriminative power is
also preserved from the perspective of maintaining the necessary spatial information,

when the dimensions of hidden state embedding are sufficiently large.

Theorem 3. Let S denote the collection of spatial networks with N nodes given
the graph G = (V| E), and F denote the class of our SGMP functions while « is a
continuous function. Suppose g : S — R is a continuous set function. For all € > 0,

there exists a function f € F, such that for any S € S,

9(5) =1 (f(S)] <e (2.5)
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The proof of this theorem can be found in Appendix A.1.3.

2.3.3 Accelerate Training through Sampling Random Span-
ning Trees

Note that our model is a high order message passing neural network whose time
and memory consumption is cubic to the average number of node degree. To reduce
the complexity of graph neural networks, a typical way is based on sampling [210].
Many graph-sampling methods have been proposed for accelerating graph neural
network [85, 31], which typically focus on randomly extracting a subgraph from the
original graph. However, they cannot guarantee the generated graph is a strongly
connected graph, which is required by our node spatial information representation
in order to maintain no information loss. To ensure that the sampled graphs are
connected and sparse, we innovatively propose a Kirchhoff-normalized graph-sampled
random spanning tree method for accelerating the training. The proposed method
largely reduces the complexity and maintains the equivalence to the original graph.
Specifically, a spanning tree T = (V, Er) of an undirected graph G = (V, E) that
is a tree which contains all vertices in G. The number of edges of spanning trees is
|Er| = |V] — 1, which implies that the time and space complexity during training
will not be affected by the number of original edges |E| in graph G. We modify our

updating operation in Equation 2.1 as

P — 0 (SUM({m< Tisto) | Tisip € I 3})) (2.6)

where we use I} 5 denotes the set of all length three path starts from node v; in a
sampled spanning tree T' = (V, Er). It is noticed in Equation 2.6 that randomly sam-
pling spanning trees 7" from the original graph GG will introduce an uneven probability

distribution for edges, which results in non-uniform weights for path messages in our
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proposed message passing layer. Here we introduce the Kirchhoff-normalized method
to remove the uneven distribution by pre-computing the sampling probability of a
path 7z, in a sampled random spanning tree 7. We further modify the Equation 2.6

as

O (r,.
) _ @ m N (Tijip) =
W — g (SUM({—q(mjkp) Imigey € g }) ), (2.7)

where ¢(7;jip) is the sampled probability of path m;jx, in a random spanning tree.

Proposition 1. Let T denote a uniformly random spanning tree of a graph G. Then

for a length three path m;ji, = (€ij, €jk, €xp) we have that
Pr(ﬂ'ijkp € T) = det[yﬂ-ijkp], (28)

where Y is called the transfer function matriz [20]. The proof is achieved by applying
graph theory theorems including Kirchhoff matrix tree theorem [29] and Burton-
Pemantle theorem [27].

The proof of this proposition can be found in Appendix A.1.4.

The following result establishes that the approximated form in Equation 2.7 is

consistent to original form.

Proposition 2. If ¢ is continuous, the expectation of the approximated form in
Equation 2.7 converges surely to the original form in Equation 2.3 when the number
of samples s sufficiently large.

The proof is a consequence of the strong law of large numbers and the continuous

mapping theorem, which can be found in Appendix A.1.5.

Complexity analysis of a single layer. Consider a spatial network with /N nodes

and dense edge data, our full SGMP layer has O(N?) time and space complexity
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according to the size of the neighborhood. Our accelerating algorithm based on
sampling random spanning tree, however, has only O(NN) time and space complexity

as only N — 1 edges exist in the generated spanning trees.

2.4 Experiments on Euclidean Spatial Networks

In this section, the experimental settings are introduced first, then the performance
of the proposed method is presented through a set of comprehensive experiments. All
experiments are conducted on a 64-bit machine with an NVIDIA GPU (GTX 1080
Ti, 11016 MHz, 11 GB GDDRS5). The proposed SGMP method is implemented with
Pytorch deep learning framework [155]. The code for the proposed model is available

at https://github.com/rollingstonezz/SGMP_code.

2.4.1 Experiment Setup

Datasets. (i) Synthetic dataset. The spatial growth graph model [11] is a spatial
variant of the preferential attachment model proposed by Albert and Barabasi [3],
which describes that spatial information concerns the formation of networks and long-
range links are usually connecting the hubs (well-connected nodes). The process to
generate such spatial networks starts from an initial connected network of mg nodes
and introduces a new node n at each time step. The new node is allowed to make
m < mg connections towards existing nodes with a probability II,,_,; ~ k;F[dg(n, )],
where k; is the degree of node i and F is an exponential function F(d) = e~%/"
of the euclidean distance dg(n,) between the node n and the node ¢ [10]. General
characteristics of spatial networks [11] such as clustering coefficient p, spatial diam-
eter D, spatial radius r are set as the prediction targets. Besides, we also add the

interaction range r., which is a significant coupled spatial-graph label that affects

the formation of the spatial networks, as another prediction target. We vary the size
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and other parameters of spatial networks to collect 3,200 samples in our synthetic
dataset. (ii) Real-world molecular property datasets. We experiment on 5 chemi-
cal molecule benchmark datasets from [208], including both classification (BACE,
BBBP) and regression (ESOL, LIPO, QM9). Particularly, QM9 is a multi-task re-
gression benchmark with 12 quantum mechanics properties. The data is obtained
from the pytorch-geometric library [66]. (iii) Real-world HCP brain network dataset.
We also conducted an experiment using the structural connectivity (SC) of the brain
network to predict the age of the subjects, which is a significant task in understand-
ing the aging process of the human brain [108]. In specific, SC is processed from
the Magnetic Resonance Imaging (MRI) data obtained from the human connectome
project (HCP) [176]. By following the preprocessing procedure in [182], the SC data
is constructed by applying probabilistic tracking on the diffusion MRI data using
the Probtrackx tool from FMRIB Software Library [99] with 68 predefined regions
of interest (ROIs). Then a threshold is applied to SC data to construct the brain
networks [165, 71]. The spatial coordinates of regions are expressed as the center

point of each region.

Comparison methods. To the best of our knowledge, there has been little previ-
ous work to handle the generic spatial networks. Spatial graph convolutional networks
(SGCN) is a recently proposed method to handle generic spatial networks by apply-
ing a convolution operation to learn the spatial-graph interacted information using
the relative coordinates between nodes and their first-order neighbors. In addition,
we compare with three strong graph neural networks (GIN, GAT and Gated GNN)
methods and four spatial neural networks (PointNet, PPFNet, SchNet, and DimeNet)
methods for comparisons. For methods in the class of GNNs, we feed the Cartesian
coordinates as node attributes while we add the node attribute and graph connec-

tivity information to the class of SNNs for a fair comparison. Besides the models
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above, we also compare our model with a state-of-the-art higher-order graph neural
networks PPGN [141]) in the QM9 benchmark, the results are provided from original
authors. The following describes the details about our comparison models.

Graph Neural Networks (GNNs).

(i) GIN. Graph Isomorphism Networks (GIN) [211] is a variant of GNN, which
has provably powerful discriminating power among the class of 1-order GNNss;

(i1) GAT. Graph Attention Networks (GAT) [179] uses multi-head attention layers
to propagate information;

(i11) Gated GNN. Gated Graph Sequence Neural Networks (Gated GNN) [131] use
gated recurrent units (GRU) [39] as a recurrent function, reducing the recurrence to
a fixed number of steps.

Spatial Neural Networks (SNNs).

(i) PointNet. PointNet [157] learns pointwise features independently with several
MLP layers and extracts global features with a max-pooling layer;

(i1) PPFNet. Point Pair Feature Network (PPFNet) [50] is a spatial deep learning
framework to learn a globally aware 3D descriptor;

(i11) SchNet. SchNet [160] is a domain-specific model for predicting quantum
chemistry. It utilizes a continuous filter function to the distances between nodes and
their first-order neighbors.

(iv) DimeNet. DimeNet [70] is another domain-specific model for predicting quan-
tum chemistry, which includes the directional information by aggregating the length

two path messages based on a physical representation of distances and angles.

Implementation Details. The goal of the experiments is to validate the perfor-
mance of our proposed model on spatial networks. We require all models follow the
same architecture to utilize the same data for a fair comparison. Specifically, a single

MLP layer m, is applied to the node attributes rather than the spatial information
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Taret I D T Te

GIN 0.136(.007) 1.015(.047) 0.659(.029) 1.616(.075)
GAT 0.129(.001) 1.291(.049) 0.888(.014) 1.716(.017)
GatedGNN 0.089(.013) 0.753(.074) 0.481(.066) 1.411(.031)
PointNet 0.129(.003) 0.912(.030) 0.615(.020) 1.551(.066)
PPFNet 0.106(.006) 0.747(.037) 0.527(.014) 1.377(.057)
SGCN 0.133(.003) 1.269(.055) 0.856(.044) 1.736(.020)
SchNet 0.128(.001) 1.006(.058) 0.686(.031) 1.691(.039)
DimeNet 0.103(.027) 1.266(.147) 0.556(.094) 1.412(.059)
SGMP 0.068(.005) 0.748(.168) 0.450(.046) 1.332(.031)
SGMP (with st) | 0.088(.001) 0.291(.021) 0.252(.023) 1.266(.019)

Table 2.1: Root mean square error (RMSE) results on synthetic dataset. Here p is
clustering coefficient, D is spatial diameter, r is spatial radius and r. is the interaction
radius in the formation of spatial growth graph.

before the convolution layers. Then another MLP layer my with decreasing hidden
unit sizes is applied after the convolution layers. Each dataset excluding QM9 is
split randomly 5 times into 80% : 10% : 10% train, validation, and test. For the QM9
dataset we follow previous work’s split [70]. For each split, we run each model 5 times
to reduce the variance in particular data splits. Test results are according to the best
validation results. For our accelerating method, we pre-sample and store the random
spanning trees before the training phase. Note that even though we provide a novel
Kirchhoff-normalized method to equivalent our sampled spanning trees to the origi-
nal graph, the un-normalized version of our algorithm could also achieve competitive

results in the experiments.

2.4.2 Experimental Performance

In this section, the performance of the proposed method and its accelerated algo-
rithm with sampling random spanning tree (with st), as well as other methods on
both synthetic and real-world datasets are presented first. Then we present the effi-
ciency test on our sampling random spanning trees method. In addition, we measure

the exactness of invariance of our proposed model under translation and rotation
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Task Regression Classification
Dataset ESOL LIPO HCP BACE BBBP
GIN 0.776(.021)  0.699(.047)  0.792(.133) | 0.792(.025)  0.864(.020)
GAT 0.783(.053)  0.757(.049)  0.561(.037) | 0.780(.035)  0.854(.025)
GatedGNN 0.675(.050)  0.630(.034) 0.566(.036) | 0.816(.023)  0.858(.020)
PointNet 0.716(.036)  0.708(.030)  0.720(.123) | 0.799(.023)  0.843(.027)
PPFNet 0.731(.054)  0.720(.037)  0.680(.065) | 0.805(.032)  0.869(.023)
SGCN 0.743(.056)  0.726(.055)  0.674(.059) | 0.778(.030)  0.849(.021)
SchNet 0.697(.051)  0.691(.058)  0.593(.037) | 0.803(.032)  0.864(.036)
DimeNet 0.730(.047)  0.666(.047)  0.818(.127) | 0.791(.031)  0.864(.036)
SGMP 0.646(.049)  0.695(.027)  0.524(.046) | 0.830(.021) 0.880(.020)
SGMP (with st) | 0.612(.054) 0.699(.021)  0.555(.045) | 0.811(.024)  0.873(.024)

Table 2.2: Results for four molecule property datasets and the HCP brain network.
We report accuracy score for BACE and BBBP datasets, root mean square error
(RMSE) for ESOL and LIPO, and mean average error (MAE) for HCP brain network

dataset.

transformations.

Effectiveness Results. (i) Synthetic Dataset. Table 2.1 summarizes the effec-
tiveness comparison for the synthetic dataset, where our proposed SGMP model
with sampling spanning tree outperforms the best benchmark model (GatedGNN)
by 35.7% on average. Especially, our model achieves lower error on the target of
interaction radius (r.), which proves that our proposed model can better capture and
exploit the significant coupled spatial-graph characteristics in spatial networks.

(ii) Real-world Datasets. Table 2.2 presents the results of four molecule property
datasets and the HCP brain network dataset, where our proposed method achieves
the best results in 4 out of 5 datasets. The results for the QM9 dataset are presented
in Table 2.3, where our proposed method demonstrates its strength through outper-
forming the benchmark methods in 10 out of 12 targets, which is an improvement
by over 14% on average. Particularly, we notice that the performance of the class
of SNNs achieved significantly better results than the class of GNNs by a 38% im-
provement on average, which arguably implies that the quantum mechanics targets

of the QM9 dataset are dominated by the spatial information. In addition, the group
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Target ‘ GIN  GAT Gated PointNet PPFNet SGCN PPGN SchNet DimeNet SGMP SGMP (with st)

s 0.583 0.661 0.543 0.465 0.503 0.503  0.093 0.452 0.360 0.130  0.187
e 0.652 0.952 0.609 0.453 0.459 0.531  0.318  0.347 0.189 0.113 0.174
enomo | 269.5 326.7 206.2 158.6 151.9 193.8 473 3474 78.6 64.7 45.7
eLomo | 1754 2371 1354 1238 136.9 1417 571 151.6 61.0 44.7 67.9
Oe 361.4 510.3 3144 2455 221.9 2755  78.9 120.6 103.7 83.7 98.8
(R?) 63.7 971 63.1 34.5 27.8 34.9 3.8 213.2 14.13 5.9 3.6
ZPVE | 123 157 120 7.0 7.4 7.4 10.8 34.3 3.1 2.3 2.0
U 260.1 3359 2225 112.7 153.5 201.3  36.8 101.7 26.8 26.1 31.9
U 262.9 326.1 244.7 1155 160.5 210.1  36.8 107.5 27.8 25.2 34.8
H 269.0 329.7 239.2 123.1 157.6 199.2  36.8 107.0 27.9 27.5 31.3
G 252.7 314.1 221.1 1243 158.4 207.8  36.4 95.0 25.8 24.6 28.2
cy 0.344 0.430 0.283  0.196 0.221 0277 0.055  0.452 0.064 0.043 0.064

Table 2.3: The mean average error (MAE) results for QM9 dataset. Here “with st”
denotes with spanning tree sampling algorithm.
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Figure 2.4: Efficiency analysis of our proposed models and all benchmark models.
Note that our proposed algorithm with sampling random spanning tree significantly
improves the scalability and efficiency.

of jointly-spatial-graph-based methods achieved a 68.9% improvement compared to
the group of point-cloud-based methods. The twelve quantum mechanical properties
in the QM9 dataset seems highly related to the spatial geometry properties between
nodes. For example, the formation energy (U) is related to the distances, angles,
and torsions among nodes. In this situation, we notice that the performance of the
group of point-cloud-based methods is significantly better than the group of GNN
based methods, and jointly-spatial-graph-based methods can better explore the cou-

pled spatial-graph property.
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ADR (%) | wost wst | speed up
2 0.203s 0.158s | 1.3

) 0.323s  0.184s | 1.7x

10 7.52s  0.225s | 33.4%

15 31.43s  0.209s | 150.3 %
20 80.96s 0.213s | 379.7x
20 - 0.193s | -

100 - 0.214s | -

Table 2.4: Training time per epoch for our full model without sampling spanning tree
(wo st) and accelerating method with sampling spanning tree (w st). (-) indicates
an out-of-memory error. The sampling algorithm is on average 113 times faster than
our full method. ADR is short for the average degree ratio.

0.9 0.9
—— GIN
—e— GAT
0.8 0.8 —¥— GatedGNN
: —— PointNet
o~ PPFNet
5’ 0.7 a’ 0.7 SGCN
IS} @
=] 5 —+— SchNet
9 N\ S DimeNet
Q Q
P 0.6 1 < 0.6 SGMP
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0.4 0.4
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Magnitude of rotation angle Magnitude of translation distance

Figure 2.5: Robustness test of rotation and translation invariant: z-axis shows data
augmentation on the test set. The x-value corresponds to the magnitude of rotation
angle (left) or translation distance (right). The y-axis shows the accuracy score on
the test set.

Efficiency Analysis. To validate the efficiency of the proposed sampling random
spanning tree algorithm, we use our HCP brain network dataset with different thresh-
olds on structural connectivity (SC) to obtain different average degrees for the nodes.
The number of nodes is a fixed number (68) while we vary the average of degrees
ratio (ADR= Eﬂf, where £ is the number of edges and £y is the number of edges
in complete graphs, e.g. ADR= 100% indicates a complete graph). We report the
results of the average training time per epoch among all models for 20 epochs. As
shown in Figure 2.4 and Table 2.4, our accelerating algorithm achieves significant

improvements in training efficiency. Note that our method is even faster than most
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of the first-order methods when the graph connections are dense (ADR over 50%).
Notice that higher-order methods (e.g. our full method is third-order and DimeNet is
second-order) are unable to handle complete graphs due to the limits of GPU memory.
The scalability of our sampling method is remarkable, which can maintain a constant

time and space complexity with the increasing number of connected edges.

Rotation and translation invariant test. Similar to previous work [69], we also
measure the rotation and translation robustness by uniformly adding translation and
rotation transformations to the input Cartesian coordinates. Here we only report the
accuracy results of classification task on the molecular dataset BACE due to the space
limit while the results are similar on all datasets. According to Figure 2.5, we can note
that the performance of our proposed model stays invariant under both translation
and rotation transformations. SchNet and DimeNet can also achieve invariance un-
der transformations because they also only use the rotation- and translation-invariant
spatial features in their models. PPFNet can stay invariant under rotation transfor-
mations but not translation transformations because it preserves the origin in the
model. On the other hand, SGCN can stay invariant under translation transforma-
tions but not rotation invariant because it only utilizes relative coordinates. This
experiment validates the importance of applying a rotation- and translation-invariant
model since we can observe that the performance of models without a theoretical

guarantee drop significantly under adding rotation and translation transformations.

2.5 Representation Learning on Non-Euclidean Spa-

tial Networks

In this section, we further generalize the previous proposed representation learning

framework on Euclidean spatial networks to non-Euclidean space.
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Figure 2.6: Two spatial networks with different connectivity mechanisms on a holo-
morphic manifold. The left figure reflects that nodes tend to be connected by the
shortest distance (called the first law of geography [171]), while the right figure re-
flects the spatial pattern in which nodes tend to be connected by circuitous lines.
Distinguishing these two spatial networks requires new approaches to jointly consider
the spatial curves on the manifold and network topology.

2.5.1 Background on Non-Euclidean Spatial Networks

Although some efforts [61, 195, 3, 7] have been put toward understanding the mech-
anism of spatial networks in some traditional research domains such as physics or
mathematics, they usually require predefined human heuristics and prior knowledge
of the analytical formulation of embedded spatial manifolds, which is usually unavail-
able in many real-world cases. In the era of deep learning, existing representation
learning works on spatial networks [160, 70, 225] can only consider networks that are
embedded in Euclidean space, where edge connections between nodes are described
as straight lines. However, many real-world networks are embedded in non-Euclidean
spaces, such as manifolds. The oversimplified approximations in flat Euclidean space
will inevitably lose the rich geometric information carried by the irregular manifolds.
Examples in Figure 2.6 that share the same network topology and nodes’ spatial
coordinates, respectively, but with significantly different connecting curves between
nodes, are non-distinguishable for existing representation learning methods on spatial
networks. Therefore, jointly taking the irregularity of the embedded manifold with
the network topology into account is crucial to extract powerful representations for
spatial networks.

Unfortunately, there is no trivial way to simply combine previous representation

learning methods on network data and spatial data together to accomplish the task



36

of representation learning on spatial networks due to several unique challenges: (1)
Difficulty in jointly considering discrete network and continuous spatial
manifolds information, and their coupled interactions. As shown in the ex-
ample in Figure 2.6, some spatial networks may share the same spatial and network
properties, respectively, but have significantly different interaction mechanisms. Sim-
ply combining spatial and graphical methods cannot distinguish these spatial net-
works. (2) Difficulty in extracting the geometric information of nodes and
edges embedded in the irregular manifold. In real-world situations, the mani-
folds that networks embed in are often irregular and inhomogeneous in space, where
an explicit analytical form is usually infeasible. Thus, how to represent the geometric
information of nodes and edges that are embedded in the manifold is challenging.
Problem Formulation. Here we consider the connected smooth compact two-
dimensional surface M, which is most commonly observed in our real-world 3D space.
Locally around each point x the manifold is homeomorphic to a two-dimensional
Euclidean space referred to as the tangent plane and denoted by T,M. Given the
manifold M, a spatial network is typically defined as Gy = (V, E, My, Mg) such that
V' is the set of nodes and £/ C V' x V is the set of edges. e;; € I is an edge connecting
nodes v; and v; € V. My and Mg denote the subset of the manifold M that nodes
and edges embed in, which is defined as My C M, Mg C M. Particularly, My can
be described as a set of 3D Cartesian coordinate points where we have p; € M for
each point p; representing the coordinates of node v;. Mg can be described as a set
of curved lines that connect the nodes on the manifold, where for each e;; € £ we
have its corresponding curved line as l;; € Mp. Specifically, a smooth curved line
can be defined as a mapping function [ : [0,7] — Mpg. The main goal is to learn the
representation mapping function f : Gy — RP to map an input spatial network to a
high-dimensional vector, with the simultaneous satisfaction of strong discriminative

power and significant symmetry properties.
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Figure 2.7: Illustration of the overall proposed framework. (a) The discretization
process of the continuous manifold and convolutional neural networks for passing
and aggregating the geometric information on spatial curves. (b) The RNN module
extracts the geometric information along the irregular spatial curves between nodes.

2.5.2 Generalized Framework for Non-Euclidean Spatial Net-

works

In order to design an effective method for learning powerful representations on non-
Euclidean spatial networks by addressing the above-mentioned challenges, we pro-
pose a novel method named Manifold Space Graph Neural Network (MSGNN).
To jointly learn network information and its embedded spatial manifold information,
we propose a general learning message-passing framework. As shown in Figure 2.7(a),
in order to represent a continuous curve on a manifold, we first discretize the manifold
into a mesh tessellation, and then learn the representation of curves through a se-
quential model of mesh units. Curve representations are then treated as messages on

edges, and coupled spatial graph information is learned by passing and aggregating
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messages to nodes with graph convolutional layers. As shown in Figure 2.7(b), to deal
with the irregularities of spatial curves and their embedded geometric manifolds, we
propose to characterize several geometric features on each mesh unit of the curvilinear
paths. Finally, we theoretically prove that the extracted spatial curve representations
with a guarantee on the properties of rotation-invariant, translation-invariant, and
geometric information-lossless. To demonstrate the strength of our theoretical find-

ings, extensive experiments are performed on both synthetic and real-world datasets.

Manifold Space Graph Neural Network

Due to the incompatibility between discrete network data and continuous spatial
data, the first question is how to combine these two data in one end-to-end frame-
work. Besides, the explicit analytical format function of the spatial manifold is usually
extremely difficult to obtain because of the irregularity and non-uniformity of the real-
world manifold surfaces. To address this problem, we first propose to discretize the
continuous manifold space into discrete mesh data. Triangular mesh, which preserves
shape surfaces and topology, is a popular format for efficiently approximating mani-
fold shapes. Specifically, a triangular mesh can be defined as a collection of C' triangle
faces F = {fM), f@ ... f{©} where the vertices of each f(° € F are located on the
surface of manifold M.

Given the discretized mesh to describe the embedded spatial surface, we can de-
scribe the spatial curved lines between nodes as a sequence of discrete units. As
shown in Figure 2.7(b), the sequence consists of triangular faces that the curve line
passes. Therefore, the spatial information of each edge can be represented as a se-
quence of mesh units and line segments embedded on them. More concretely, for each
edge e;; € I exists in the given spatial graph, it corresponds to a curved spatial line
l;; embedded on manifold M. Given the discretized triangular mesh, the embedded

W> 1Y with

line /;; can be represented as a set of K line segments l;; = {l;;",;;", ..., l;;
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their corresponding embedded triangle faces Fj; = { 1]2 yen fZ.(JK)}, where K is
the number of faces on this spatial path and each line segment lg-“) is embedded in
its corresponding face fi(f). In summary, we can represent the spatial information on

edge e;; as a sequence of pairs (( i ,f(l))7 ( i i(f))7 e (ZEJK), fi(]K))).

Given the sequences of pairs of faces and their embedded line segments, the
next question is to incorporate them with the graph topology in a general model
to learn the coupled spatial-graph representations. Since the length of the sequence
may vary on different edges, some common methods such as MLP or CNN can-
not be easily generalized to extract representations here. To address this issue,
we propose a novel approach that mimics natural language processing approaches
by analogizing each pair of spatial units as a token in a sentence, which is shown
in Figure 2.7(b). Therefore, a recurrent graph neural network (RNN) model such
as GRU or LSTM is a natural choice to extract latent embeddings from these se-

quences. Formally, the extracted latent embedding h(e;;) on edge e;; can be denoted

as RNN(r (1} fwl ), (1)

i > Y ,W(ZEJK), fi(f())), where 7(-) denotes the geometric

ij
information of the unit and will be introduced in Section 2.5.2. The extracted spatial
information can then be treated as the message on graph edges. A graph message
passing neural network model is then performed to jointly combine node information

and all incoming messages on edges into updated node embeddings, where the update

function is as follows:

h(v;) = AGGREGATE{¢(h(v;), h(ei;))|i € N(i)},

h(ey) = RNN(r(I, f7), .. ol £59),

Iy v

where h represents latent embeddings and & denotes a nonlinear function such as
multiple layer perceptron (MLP). AGGREGATE denotes any feasible set aggregate

function.
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Manifold-Constrained Spatial Curve Representation

Given the above framework, a key question is how to define the spatial information
extractor 7(-) on each unit of a line segment and its embedded triangular mesh. As
mentioned previously, we need a novel way to represent the spatial path information
of the network edge that can preserve all the geometric shape information, and simul-
taneously maintain rotation- and translation-invariance. Obviously, simply feeding
the Cartesian coordinates of each line segment in units can not guarantee invariance
to the important symmetries such as rotation-and translation-transformations. Al-
though there exist a few spatial information representation methods in the domain of
spatial deep learning that can guarantee rotation and translation invariant features,
we can not directly use them because they either can not capture the coupled spatial-
graph properties because they are purely spatial-based methods, or can not guarantee
all the geometric structure information is preserved because the information they ex-
tracted is not lossless. Here, the term lossless information means given the extracted
geometric features, the information is sufficient to recover the input geometric struc-
ture. To handle this issue, for each sequence of spatial path line segments and their
embedded meshes, we propose to extract a combination of geometric features on each
mesh unit and the relative spatial relationship with their neighboring units. We the-
oretically guarantee the extracted information is sufficient to recover the full original
geometries and also stay invariant to rotation and translation transformations.
Without loss of generality, we consider the spatial path between node v; and

node v; in the given node set V' of graph that there exists an edge e;; between them.

/)

iy

f»(-k)) belongs to the sequence of edge e;;, where k € [1, K],

Formally, for each unit ( ;

gf), f-(k)) to represent the extracted geometric features on this unit. The

sequence of spatial information on edge e;; is denoted as ((lg), fi(-l)), (lg), fi(?)), .

we use 7(l

(lgf), fz(]K))) For the purpose of simplicity, we omit the subscript symbol ;; in the

rest of this section.



41

To extract the necessary spatial information, we consider both the spatial informa-
tion along the line segment and its embedded triangle mesh. The spatial information
on the line segment, denoted as 7(I*)), and the embedded mesh face, denoted as
7(f®), capture important geometric structure and relative orientation directions.
For the line segment (%), we extract its length d®) and angle 8%) with respect to the
connecting line L between nodes v; and v;. These features confine the relative posi-
tion to a sphere in 3D space, allowing rotation around L. To fix the relative position,
we further extract the torsion angles ¢®* =1 and ¢*+#+1 between the current line
segment [*) and its neighboring segments [(*~1 and {*+1).

For the embedded mesh faces w(f*)), we consider the curvature vector direction
to understand the spatial information of the surface environment. However, simply
calculating the orientation n® of the curvature vector does not guarantee rotation
and translation invariance. To address this, we calculate the relative angles p*+=1)

kk+1

and ! ) between the curvature vectors of the given face and its neighboring faces.

Additionally, we compute the angle p*~1#+1) between the two neighboring curvature
vectors. These angles form a triangle, ensuring fixed relative orientation. Mathemat-
ically, the representation of spatial information for the k-th mesh unit on the spatial

path sequence that forms the edge e;; between nodes v; and v; can be denoted as:

219, FE) —(d®), 9B, k1) gkh+1), )
(kk—1)  _(kk+1) (k—l,k—l—l)) '

¥ » P P

Y
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where
1% 1, .
d® = |1®)]|5,0%) = arccos <%’ d"?>,
i,
Li,j =P; — piydi,j = ||Li,j 2
Uk — ( cF=1 % ¢ Li; ). Bk
[[e®= x e®]y" || L] 2 ’
¢(k,k+1) _ c®) x cF+) L;; ). &(kz,k-ﬁ-l)

Te® < ], L T
(;B(k’kfl) = arccos(c(k), c(k’l)),

é(k,k—l—l) _ arccos(c(k), C(k+1)>,

k
cF) :Hfijjll((k))H 7(p(k_1,k;+1) — arccos <n(k:—1)’ n(k+1)>
ij 2

)

B Ll X l(k_l) _ _
o :HL.JX 1(k—1)|’2790(k "M = arccos (n(k 1), n(k)>,
ij

L. x l(k+l)
(k+1) __ Hij (kk+1) _ (k) o (k+1)
=L, x 1], = arccos (n*”, n""")

Theorem 4. Here the distances d € [0,00), angle 6 € [0,7), torsions ¢ € [—m, ),
and relative orientation angle ¢ € [0,7) are rigorously invariant under all rotation

and translation transformations 7 € SE(3).

The proof is straightforward and can be found in Appendix A.2.1. Intuitively,
distance, angle, torsion, and orientation angle are invariant to translation and ro-
tation transformations, since only relative coordinates are used in the formula. It
is remarkable to mention that the proposed representation in Equation 2.9 not only
satisfies the invariance under rotation and translation transformation but also retains
the necessary information to recover the entire geometric structure of original spatial

networks under weak conditions, as described in the following theorem.

Theorem 5. Given a spatial network Gy = (V, E, My, Mg), if Gy, is a connected
graph, then for any edge e;; with spatial curve sequence that has length of sequence

T > 3, given Cartesian coordinates of two endpoints and one arbitrary point, the
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whole Cartesian coordinates of the given spatial networks can be determined by the

spatial representation defined in Equation 2.9.

The proof can be found in Appendix A.2.2.

Complexity analysis. The time complexity of an L-layer GNN is O(L |E]b +
L|V|b*), where b is the number of latent dimensions. Second, the time complexity
of extracting geometric features from edge trajectory by LSTM is O(L |E] (Kb* +
Kbd)) where K is the average length of spatial trajectories and d is the number of
computed geometric features. Therefore, the total time complexity of our algorithm

is O(L €| (Kb? + Kbd + b) + L[V|b?).

2.6 Experimental Results on Non-Euclidean Spa-

tial Networks

In this section, we first introduce the experimental settings, then the effectiveness of
our proposed framework on both synthetic and real-world datasets is presented. The
link to our code is at the GitHub repository https://github.com/rollingstonezz/

SDM24_Manifold_spatial_networks.

2.6.1 Experimental Settings.

Synthetic datasets. In order to examine the effectiveness of our proposed MSGNN
method in learning the coupled network and spatial manifold information, we fol-
low previous works [11] to generate a set of synthetic datasets. We generalize the
preferential attachment model [3] to a spatial variant that all nodes and edges are
embedded in a defined spatial manifold surface. Specifically, we first randomly gen-
erate a manifold surface in 3D space from a designed candidate pool of geometric

shapes such as sphere or paraboloid. The process to generate such spatial networks
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starts from an initial connected network of mg nodes that are randomly sampled on
the manifold surface. Then we introduce a new node v; to connect to the existing
network at each iteration step. The new node is allowed to make m < mq connections
towards existing nodes with a probability II;_,; ~ k; F[d,(i, j)], where k; is the degree
of node v; and F is an exponential function F(d,) = e~%/™ of the geodesic distance
dy(i, j) between the newly added node v; and the node v; on the manifold. Therefore,
the formation mechanism of generated spatial networks is jointly determined by the
spatial and network information. General characteristics of spatial networks [11] such
as spatial diameter D, and spatial radius r are set as the prediction targets. Besides,
we also add the interaction range r., which is a significant coupled spatial-graph label
that affects the formation of the spatial networks, as another prediction target. We
vary the type of embedded manifolds and other parameters of spatial networks to
collect 5,000 samples.

Real-world datasets. To further evaluate the performance of our proposed MSGNN
and comparison methods in real-world scenarios, five public benchmark real-world
spatial network datasets with different application domains are utilized as benchmark
datasets in our experiments. Specifically, we include one brain network dataset and
two 3D shapes datasets for graph classification task, and two airline transportation
networks for link prediction task. We provide a brief description of these datasets as
follow.

(1) HCP brain networks. Classify the activity states of subjects based on pro-
cessed functional connectivity (FC) networks derived from the human brain manifold
environment. FEach data sample is associated with an activity state (e.g., rest, gam-
ble) as the target for prediction. To construct brain networks, a threshold is applied
to the FC values to filter out highly correlated edges. The spatial trajectories of
interest are defined as geodesic paths between the centers of the ROIs.

(2) Air transportation networks. We adopt two publicly available flight networks
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Target GCN GIN PointNet ~ PPFNet  MeshCNN CurvaNet  SchNet SGMP MSGNN
Te 3.35£0.14 2.554+0.18 2.454+0.08 2.68+0.11 2.06+0.13 1.54+0.10 0.97£0.06 1.08+£0.05 0.83+0.04
D 2.20+0.15 2.73+0.21 1.82+0.06 1.98+0.12 1.87+£0.06 1.93+£0.11 1.94+0.10 1.8640.05 1.67+0.05
r 2.63+0.14 2.60+0.26 1.95+0.09 2.07£0.09 1.60+£0.07 1.74+0.06 1.98+£0.07 1.884+0.05 1.47+0.11

Table 2.5: The RMSE results of the synthetic dataset. The best performance for each
predictive target is shown in bold, while we also underline the second-best performing
models.

Flight-NA and Flight-GL, where Flight-NA contains 456 airports and 71,959 airlines in
the North America and Flight-GL contains 3,214 airports and 66,771 airlines spanning
the globe. The earth surface is considered as the manifold to include the curved airline
trajectory.

(3) 3D shapes classification. We further conduct experiments on classifying 3D
shapes in two datasets SHREC and FAUST. We follow previous studies [89] to sam-
ple a lower resolution (~500 faces) from a higher solution. The vertices of the lower-
resolution triangle tessellation are then treated as the nodes and their geodesic tra-
jectories are treated as the spatial curves.

Comparison models. We compare our proposed MSGNN against several cate-
gories of competitive methods, spanning two graph neural networks methods GCN [114]
and GIN [211], two spatial deep learning methods on point clouds PointNet [157]
and PPFNet [50], two spatial deep learning methods on mesh MeshCNN [89] and
CurvaNet [91]. We also include two state-of-the-art deep learning methods on Eu-
clidean spatial networks SchiNet [160] and SGMP [225]. To ensure a fair comparison,
we provided Cartesian coordinates as node attributes for GNN-based methods. For
spatial deep learning methods on point clouds and mesh, we augmented the node
attributes with graph connectivity information obtained from a trained Node2Vec
model [78]. Additionally, we established a consistent search range for model hyperpa-
rameters, such as the number of convolutional layers or the dimensionality of hidden

embeddings, to maintain fairness across all models.
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2.6.2 Effectiveness Results

Synthetic datasets results. Here we report the root mean squared error (RMSE)
results of our proposed MSGNN with comparison methods on the synthetic dataset
in Table 2.5. We summarize our observations on the model effectiveness below:

(1) The results demonstrate the strength of our proposed MSGNN by consistently
achieving the best results in predicting all three coupled spatial-graph targets. Specif-
ically, our model outperformed all the benchmark models by over 38.0% on average,
as well as outperformed the second-best model by 17.6% on average.

(2) Our proposed MSGNN method consistently achieves superior performance with
respect to all predictive targets, which proves the robustness of MSGNN. In compar-
ison, the spatial neural network methods on point clouds and mesh have significantly
different performances on different tasks. For example, they shows competitive per-
formance to spatial network methods on targets spatial diameter D, and spatial radius
r. While their performance on predicting interaction range r. is significantly worse
than spatial network methods by over 53.0% on average, which may indicate that
simply combining graph and spatial representation can not capture the interactions
between these two data sources.

(3) It is also worth noting that the category of methods on spatial networks (SchNet,
SGMP, and MSGNN) show a more competitive performance than methods in other
categories, by over 34.2% on average, which indicates that either graph neural network
or spatial neural network methods have limited capability to effectively learn coupled
spatial-graph properties. MSGNN shows a stronger performance compared to other
methods on spatial networks by 18.2% on average, which demonstrates our method
takes advantage of the irregular manifold information within the context of the spatial
paths to acquire a more competitive performance.

Real-world datasets results. Here we report the accuracy results of our proposed

MSGNN with comparison methods on the real-world dataset in Table 2.6.
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GCN GIN PointNet PPFNet MeshCNN CurvaNet SchNet SGMP MSGNN
HCP 0.8354+0.014 0.92040.007 0.84540.027 0.876+0.008 0.784+0.031 0.759+0.025 0.896+0.012 0.9274+0.004 0.951+0.005
Flight-NA | 0.674£0.015 0.706+£0.006 0.694+0.011 0.698+0.004 0.5214+0.023 0.5974+0.019 0.71040.008 0.71940.004 0.730+0.005
Flight-GL | 0.7224+0.003 0.756+0.014 0.7374+0.010 0.7154+0.012 0.556+0.032 0.628+0.025 0.750£0.008 0.761+0.009 0.785+0.005
SHREC | 0.5254£0.042 0.533+0.034 0.567£0.007 0.887+0.010 0.9104+0.003 0.9024+0.004 0.5754+0.012 0.896+0.005 0.918+0.004
FAUST | 0.53540.010 0.78340.013 0.90540.010 0.918+0.005 0.903+£0.008 0.923+0.004 0.865+0.023 0.840+0.035 0.925+0.005

Table 2.6: The accuracy results of the real-world datasets. The best performance
for each predictive target is shown in bold, while we also underline the second-best
performing models.

(1) Our proposed MSGNN method consistently achieved the best results among all
methods in all five real-world datasets. Specifically, our results outperformed all
the benchmark models by over 14.1% on average and outperformed the second-best
model by 4.2% on average. The superior performance demonstrates the effectiveness
of MSGNN for learning powerful representations in complex real-world scenarios.
(2) In two air transportation networks, our method achieves more considerable perfor-
mance gains on the global network (Flight-GL) than on the North American network
(Flight-NA). One possible reason is that North America is relatively small compared
to the globe, and the curved effect on the surface is not significant. This may indicate
that our method can exploit the curvature of the embedded surface to further improve
the representation ability.

(3) Different classes of methods perform significantly differently on different datasets.
For example, the class of spatial neural networks on mesh (MeshCNN and CurvaNet)
have achieved competitive results in 3D shapes classification tasks (SHREC and
FAUST) by outperforming other benchmark models by 13.1% on average. However,
they also performed poorly on air transportation and brain datasets by achieving the
worst performance among all classes of methods. Such behavior indicates that these
methods can not well handle generic spatial networks.

(4) It is also worth noting that on the SHREC dataset, only methods that consider
orientation information achieved competitive results, which may arguably indicate

that orientation information is important in the prediction task on this dataset.
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Figure 2.8: Accuracy trend results for our proposed MSGNN model and all competing
models against varying degree of manifold irregularity. The performance of models
at the lowest degree of irregularity (w = 1) is set as the base value.

2.6.3 Effect of Manifold Irregularity Analysis

Compared to existing representation learning methods on spatial networks, a con-
tribution of our work is that our method can handle irregular geometric manifolds,
rather than simply using Euclidean space approximations. To investigate the impact
of manifold irregularity on model performance, we further introduce a series of exper-
iments to vary the degree of irregularity of the manifold embedded by the network.
Specifically, in our synthetic dataset setting, we choose a sinusoidal surface as the
manifold for embedding the network, and we use a frequency parameter w to control
the irregularity of the generated manifold surface. The mathematical formulation of
the sinusoidal surface can be written as z = sin(w \/W) Larger values of w here
indicate that the resulting manifold surface will have a larger degree of irregularity.
We vary the value of w from 1 to 32 to generate a total of 6 datasets, and we compare
the performance of predicting three targets on our method and competing methods.
Particularly, we set the RMSE performance of all models at w = 1 as a benchmark,
and then calculate the increasing rate of RMSE when w increases. The results are

shown in Figure 2.8. According to the figure, compared to all baseline models, our
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Number of faces | 1,000 2,000 4,000 8,000 16,000 32,000
HCP 0.928 0.939 0.944 0.947 0.950 0.951
Flight-GL 0.773 0.780 0.782 0.784 0.785  0.785

Table 2.7: Sensitivity analysis of model performance against the number of discretized
mesh units.

model consistently shows a significantly slower increasing trend of the RMSE error as
the degree of manifold irregularity increases. Such model behavior demonstrates that
our model can effectively handle the irregularity in geometric manifolds. More inter-
estingly, our model also shows a convergence trend in predicting the spatial radius r
and the interaction range r., which arguably further demonstrates the robustness of

our model to extremely irregular manifold environments.

2.6.4 Sensitivity Analysis

We investigate the impact of the number of triangle mesh tessellations on our method
to test the sensitivity of our model. We vary the number of mesh faces from high-
resolution 32, 000 to low-resolution 1, 000 on two real-world datasets as shown in Table
2.7 (1) According to Table 2.7, with the increase of triangular mesh subdivision num-
ber, the accuracy scores on all datasets show a upward and converging trend. The
convergent performance trends demonstrate the effectiveness of using mesh tessella-
tions to approximate spatial manifold surfaces. Specifically, as the resolution of the
mesh tessellations increases, the approximate discrete surface is approaching the un-
derlying continuous manifold space. (2) It is also worth noting that as the number of
mesh tessellations decreases, the performance of our proposed MSGNN on all meth-
ods gradually approaches and converges to the spatial network method on Euclidean
space. The reason is that as the resolution of the mesh subdivision decreases, the
approximate spatial path between nodes eventually converges to a Euclidean approx-

imation.
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Figure 2.9: (a) [lustration of a neuron’s geometric tree-like structure; (b) Represen-
tation of a river network exhibiting a tree structure embedded within a geometric
landscape; (¢) Three different geometric trees with isomorphic network connectivity
and identical spatial coordinates. Distinguishing these geometric trees requires jointly
considering spatial, topology, and hierarchical layout information.

2.7 Representation Learning on Spatial Trees

In this section, we further consider representation learning on spatial trees (or geo-
metric trees), which is a special case of spatial networks but with significantly unique

hierarchical layout properties.

2.7.1 Background on Spatial Trees

A geometric tree is a hierarchically arranged, tree-structured graph with nodes and
edges that are spatially constrained, influencing their connectivity patterns. It is a
particularly important data structure that is ubiquitous in different domains such as
river geomorphology [22, 202], neuron morphology [4, 154], and vascular vessels [57].

Geometric trees are highly complex, non-linear structures and thus cannot be pro-
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cessed directly by common math and statistical tools. This makes representation
learning on geometric trees a fundamental necessity in order to further apply them
to downstream tasks such as classification, clustering, and generation. Although
tree-structure representation learning has been extensively researched by techniques
including sequence-based models, such as Tree-LSTM [167], and graph neural net-
works [28, 85, 86, 114], they are not able to jointly consider the geometric information
that is coupled with the hierarchy and topology that are core properties of geometric
trees. As shown in Figure 2.9(a), for a pyramidal neuronal cell, the closer to the cell
body a branch is, the more curvature it exhibits. Similarly, as shown in Figure 2.9(b),
the node degree within a watershed’s tree structure is indicative of the breadth of its
corresponding subtree’s expansion. Furthermore, on a theoretical level, as shown in
Figure 2.9(c), the three geometric trees are isomorphic if geometric information and
hierarchy information about the levels from the root are not jointly considered.
Although recently some progress has been made with spatial graphs [160, 70, 225],
they cannot be used to directly handle geometric trees as they overlook the hierar-
chical ordering of nodes and edges, which, as mentioned above, is crucial. Therefore,
this paper focuses on developing a method that can learn the representations of ge-
ometric trees by preserving their geometric, topological, and hierarchical ordering as
well as their interplay. To achieve this, three aspects need to be addressed: 1. How
to reflect the hierarchical patterns of geometric trees in the learned repre-
sentations? Existing methods tend to be either fully permutable or non-permutable;
however, the hierarchical nature of geometric tree structures requires a partially per-
mutable pattern. This pattern requires the preservation of parent-child ordering,
whereas the ordering among siblings, for instance, does not need to be as rigidly
preserved. To tackle this issue, we introduce a partial ordering constraint module
that enforces a strict directional relationship in the embedding space for parent-child

pairs to reflect their hierarchical order. 2. How to learn the representation
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with a scarcity of labels? Unsupervised or self-supervised learning is often used
nowadays for geometric data (e.g., graphs, images, spatial, etc.) representation learn-
ing. However, the inductive bias for self-supervised learning needs to be customized
to specific geometric data types, and those pertaining to geometric trees are signifi-
cantly underexplored. To address this issue, a novel Geometric Tree Self-Supervised
Learning (GT-SSL) framework is introduced through an innovative subtree-growing-
guided objective, which aims to align the observed subtree and the expected subtree

by its root.

Problem Formulation

A geometric tree can be formally represented as S = (T, P), where T' = (V, E)
symbolizes the tree-structured graph. In this representation, V' is the set of N nodes,
and E, a subset of V' x V with |E| = |V| — 1, represents the N — 1 edges. Each edge
ei; € E connects a parent node v; to a child node v; in V', establishing a hierarchical
relationship where v; is the parent of v;. In this structure, starting from any node
v; € V, it is impossible to traverse a path (e.g., v; = v;1 — vz — v;) that forms a
loop, ensuring the acyclic nature of the tree. A rooted tree, denoted as T}, originates
from any node v;. If a node v; is a descendant of node v;, then its rooted tree 7}
forms a subtree within the larger rooted tree T;. In this hierarchical arrangement,
node v; is recognized as the ancestor of node v;. The set P represents the spatial
coordinates, defined as P = {(x;, y;, z;)|%i, yi, z; € R}, within the Cartesian coordinate
system. For each node v; € V, its spatial position is denoted by the coordinate tuple
(xi,yi,2) € P.

The primary objective is to learn the representation f(S) for geometric trees
S = (T, P), aiming to achieve a strong discriminative capability for unique geometric

tree structures and to capture significant symmetry properties.
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2.7.2 Self-Supervised Geometric Tree Representation Learn-
ing
In order to develop a novel geometric tree representation learning method by ad-
dressing the challenges outlined above, we propose a new representation learning
model named Geometric Tree Branch Message Passing (GTMP) to fully exploit the
interplay between geometric and tree-topological structures. In addition, a novel Ge-
ometric Tree Self-Supervised Learning (GT-SSL) framework is introduced to extract
the customized geometric tree properties without any supervision labels. Specifically,
to discriminate geometric trees, especially for the spatial tree joint patterns, we gener-
alize the proposed spatial networks message passing method SGMP to aggregate the
geometric information via tree branches, which is elaborated on in Section 2.7.3. This
scenario preserves the geometric structure of tree information with theoretical guar-
antees on the invariance to SE(3)-symmetric transformations and spatial-information-
lossless. To address the issue of insufficient labels, we developed two self-supervised
learning objectives that are tailored for intrinsic geometric tree structures. Specifi-
cally, to incorporate the underlying hierarchical relationships, a partial ordering con-
straint over the parent-child pair embeddings is introduced in Section 2.7.4. This
implies that a node’s embedding should maintain a clear directional relationship with
its subtree nodes to accurately represent the hierarchical structure. To introduce
geometric tree-specific inductive bias as self-supervised learning target, we further
propose a top-down subtree growth learning process. As discussed in Section 2.7.5,
our goal is to align the observed geometric structure of the subtree with the structure

anticipated by its root.
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2.7.3 Tree Branch Geometric-Topology Information Repre-

sentation Learning

To effectively tackle the complexities of geometric tree representation learning, we
generalize SGMP to Geometric Tree Branch Message Passing (GTMP). As illus-
trated in Figure 2.10, this approach first harnesses the interplay between geometric
properties and topological structures, enabling the computation of a comprehensive
geometric-topology information representation for all branches originating from a tree
node. Subsequently, we employ a neural network designed in a message-passing fash-
ion, tailored specifically to account for the hierarchical ordering inherent in the tree
branch structure. Our method systematically aggregates spatial information along
an ordered tree branch. This strategy not only maintains the integrity of the tree’s
geometric structure but also assures robustness against SE(3)-symmetric transforma-
tions, thereby enhancing the discriminative power of the process.

Formally, the spatial information of a geometric tree with N nodes can be ex-
pressed as a set of Cartesian coordinates P = {(x;, yi, 2;)|%i, Yi, 2 € R}, Tt can also
be represented as P € RV*3 in a matrix form. The set of all length n tree paths start-
ing from node v; to its descendant nodes can be represented as 7. In particular, a
length three branch v; — v; — v, — v, can be expressed as 7k, € Hg, where v; is the
parent node of v;, v; is the parent node of vy, and vy, is the parent node of v,. Given
a length three branch i, € 114, the proposed spatial information representation can

be expressed in the format of Equation 2.1:

(dija djka djp7 eijky eijjn %’jkp)-

Upon extracting geometric features as outlined in Equation 2.1, the next step
involves creating a convolutional strategy. This strategy aims to merge tree-topology

and spatial information derived from both the geometric representation of branches
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Figure 2.10: Ilustration of the GTMP model. The geometric information is first
extracted on each length-three branch starting from node v;, then they are aggregated
with other node information to update the node embedding h,.

and their structural layouts into a comprehensive tree node representation. The
essential challenge lies in preserving the model’s ability to discriminate, while also
maintaining the integrity of the tree’s structure and its geometric details during the
aggregation process.

To achieve this, we propose the following operation to update the hidden state
embeddings h¢ by aggregating the message passing along all length three branches IT}

originating from node v;:

h§e+1) —s® (AGG({mw)(Trijkp”ﬂ—ijkp c Hg})>’ (2.10)

where o) is an arbitrary nonlinear transformation function (e.g. multilayer percep-
tron) and AGG denotes a set aggregation function.

In our model, the representation of a branch ;;z, at layer ¢ integrates both topo-
logical and geometric information to produce a comprehensive message. The foun-
dation of this approach lies in the aggregation of node features and the geometric
configuration of the branch.

The integration of node features with geometric data is accomplished through a
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function ¢, which combines the aggregated node features m) with a transforma-
tion of the geometric information 19 (M (mij,)). The final message for the branch,

m(mij1p), is thus given by:
m (Wijkp) = ¢(€) (m(e) (Wijkp), @N) (m(mjkp))> )

O (1) = (0", b, ashl?, azhD),
(2.11)

(mijp) = (dig, din, dip, Oijis Oijp, Pijip),
where ¢® and ¢© are two nonlinear functions to extract the complicated coupling
relationship between geometric and tree topology information. The aggregated node
features, m(@)(mjkp), are computed as a weighted combination of the features from
node v; and its descendants in order: vj, vy, and v,. Here oy, as, and as adjust the

influence of each ancestor’s features at layer /.

2.7.4 Hierarchical Relationship Modeling through Partial Or-

dering Objective Function

To accurately represent the inherent hierarchical relationships among nodes in tree
structures, we introduce a partial ordering constraint module. The fundamental con-
cept behind this function is to constrain embeddings in such a way that the embed-
ding of a node in the tree not only represents itself but also maintains a structured
relationship over its subtree nodes in the embedding space.

To formally define the ordering constraint between node embeddings, we introduce
the concept of partial ordering in the embedding space, ensuring that hierarchical
relationships are accurately represented: as shown in Fig. 2.11, if 7} is a subtree of
T;, then the embedding h; of node j has to be within the ”lower-left” region of node
1" embedding h;:

B < hilbLVE, i Ty C T, (2.12)
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Figure 2.11: Illustration of the hierarchical relationship between tree nodes through
partial ordering. In this scenario, T} is a subtree of Tj, establishing a partial ordering
relationship between their respective subtree embeddings. Conversely, since Ty does
not constitute a subtree of 7}, there is no requirement for a partial ordering relation-
ship between the embeddings of these two subtrees.

where D is the dimension of hidden embeddings and [b] denotes the b-th dimension
of hidden embeddings.

To operationalize the above constraint into a function that can be optimized, we
accordingly define the objective function for generating embeddings to utilize the max

margin loss:

Lorger = Y max(0,h; — h;) + max(0, 8 — ||h; — hy|%), (2.13)
(hih;)EP (hih)EN

where P and N denote the set of positive pairs and negative pairs in the minibatch

where tree T} is a subtree of tree T;. The term J represents a margin that enforces

a minimum distance between the embeddings of negative pairs compared to positive

pairs, ensuring that h; (the embedding of the lower hierarchical node) is within the

lower-left space to h; (the embedding of the higher hierarchical node), and by at least

a margin distance § apart for negative pairs.
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2.7.5 Self-Supervised Learning via Subtree Growth Learning

To tackle the challenge of insufficient training labels in real-world scenarios, we intro-
duce an innovative Geometric Tree Self-Supervised Learning (GT-SSL) framework.
While there are existing self-supervised learning objectives aimed at general graph
data, they are insufficient when applied to geometric trees. The primary limitation
is their inability to incorporate both intrinsic hierarchical relationships and coupled
geometric-tree topology information into the self-supervised learning objectives. Our
GT-SSL framework, by contrast, is specifically tailored to address these complex-
ities, ensuring that the resulting representations fully reflect the unique structural
and spatial characteristics of geometric trees.

Our approach focuses on growing the geometric tree information from its root
node. We introduce a unique subtree-growth learning goal, which generates the entire
geometric structure from top to bottom. Specifically, this process unfolds iteratively,
with each step predicting the geometric configuration of a node’s subtree based on
the geometric structure of its ancestors. This approach is inspired by the observed
natural growth patterns in geometric trees, where evolution occurs in a hierarchical
manner, cascading from higher-level nodes down to lower-level ones. An illustrative
example can be found in river systems, where the configuration of a tributary is largely
influenced by the main river’s structure and the characteristics of the surrounding
geometric environment.

To formalize our approach, for a node v; within a geometric tree T', we denote
C(v;) as the set of its child nodes and A(v;) as the set of its ancestor nodes within
the tree’s hierarchy. The objective of our subtree growing process is to accurately
predict the geometric structure of the child nodes, G (C(v;)), given both the geometric
structures of the node itself and that of its ancestors. This can be mathematically

expressed as:

G(C(vi)) = g (G (v: UA(vi))), (2.14)
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where g represents a learnable function designed to synthesize the geometric details of
the child nodes based on the aggregated geometric information of v; and its ancestors.
In our study, we prioritize predicting essential geometric features such as the distances
between a node and its child nodes as well as the angles between the parent node,
the current node, and its child nodes.

Unfortunately, to feasibly represent the geometric structure information as G, a
significant challenge arises from the variable number of child nodes associated with any
given node in a tree-structured graph, complicating the prediction of these geometric
features. Although predicting simple aggregated indicators, such as averaging the
distances, could be employed, but they risk obscuring the comprehensive geometric
structure of the child nodes.

To overcome this limitation, we introduce an approach that involves converting
the geometric features into the frequency domain. This transformation enables us
to focus on predicting the frequency distribution of the geometric features across the
child nodes, rather than attempting to directly predict specific values of the geometric
features, thus avoiding the issue posed by the uncertain number of child nodes.

Formally, to represent the geometric information in a form that is amenable to
pattern recognition and prediction, we expand these geometric features into the fre-
quency space with radial basis functions. Mathematically, for a given node v; with
child nodes C(v;) = {vi1, via, . . ., Uin }, the distances {d;1, d;o, . .., d;, } are expanded as
follows:

ex(vi) = Y exp(—=7lldi; — ), (2.15)

UUEC(’U,')
where e, denotes the k-th radial basis and uy is the corresponding distances. To
obtain the distribution of geometric features over the radial basis, the ground truth

distribution can be denoted as:
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K

Gew) = Y, elw)| (2.16)

Vij EC(Ui) k=1
where K is the total number of radial basis functions employed. Thus, the estimated

distribution can be written as:

K

G(Cw) =g > enlw) . (2.17)
vijEA(vi)Uvi k=1

Therefore, we formulate the objective function using the Earth Mover’s Distance
(EMD) to measure the discrepancy between the estimated distribution G(C(v;)) and

the ground truth distribution G(C(v;)):

»Cgenerative = Z EMD (g~<6<1}1>>, g(C(v»)) ’ (218>

v EV
where EMD denotes the Earth Mover’s Distance to quantify the cost of transforming
the estimated distribution into the ground truth distribution.
Finally, the overall self-supervised learning objective function can be written as

the combination of the subtree generative objective and the partial ordering function:

'CGTfSSL = ﬁgenerative + Eorder (219)

2.8 Experiments on Spatial Trees

All experiments are conducted on a 64-bit machine with four NVIDIA A4000 GPUs
(16 GB GDDR5). The proposed method is implemented with PyTorch [155] and
the PyTorch-Geometric [65] deep learning framework. The code to our work can
be found in the Github repository: https://github.com/rollingstonezz/KDD24_

geometric_trees.


https://github.com/rollingstonezz/KDD24_geometric_trees
https://github.com/rollingstonezz/KDD24_geometric_trees
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2.8.1 Experimental Settings

Datasets. To evaluate the performance of our proposed GTMP and comparison
methods in real-world scenarios, eight geometric tree datasets are used in our exper-
iments, which includes five neuron morphology datasets and three river flow network
datasets across multiple tasks.

1) Neuron morphology: We conducted classification experiments using neuronal
morphology data from NeuroMorpho.org, the largest online collection of 3D neural cell
reconstructions contributed by hundreds of laboratories around the world [2]. Specif-
ically, we constructed binary classification tasks between control cells and cells from
two experimental conditions, 5xFAD and lipopolysaccharide injection (Ips), where ex-
perimental condition was the target for prediction. All cells were mouse neural cells
but tasks were split across three cell types: glia, interneurons (inter), and principal
cells (pc). In total, we constructed five tasks: mouse 5xFAD glia versus mouse control
glia; 5xFAD primary cells versus control primary cells; Ips glia versus control glia; Ips
interneurons versus control interneurons; and lps primary cells versus control primary
cells. A statistical description of the datasets is shown in Table 2.9.

2) River flow networks: We also conducted regression experiments using publicly
available river flow network data from the United States Geological Survey’s (USGS)
National Hydrography Dataset (NHD) [174, 72]. We incorporated 2,231 river flow
network tree samples with an average node count of 11,141 per tree. To facilitate
prediction, we established three key geometric topology-coupled metrics as targets:
the clustering coefficient, spatial diameter, and spatial radius.

Comparison Methods. To the best of our knowledge, there has been little previ-
ous work to directly handle geometric trees. Several advanced spatial graph networks
have been developed to address generic spatial networks; among these, SchNet [160],
DimeNet [70], and SGMP [225] are some of the closest related works to our ap-

proach and selected as comparison methods. Additionally, we benchmark our ap-
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proach against three prominent graph neural network (GNN) methods— GCN [114],
GAT [179], and GIN [211]— and two spatial neural network (SNN) techniques, Point-
Net [157] and SpatialNet [47]. For GNN methods, Cartesian coordinates are provided
as node attributes, while for SNN methods, both node attribute and graph connec-
tivity information are incorporated to ensure an equitable comparison.
Implementation Details. In the supervised learning configuration, all models uti-
lize an identical architecture comprising three convolutional layers, with the hidden
dimension size set to 64. During the self-supervised representation learning pretrain-
ing phase, this architecture is maintained with three convolutional layers leading to
final embeddings of 64 dimensions. For subsequent fine-tuning on specific tasks, a
three-layer Multilayer Perceptron (MLP) is appended to the convolutional base, uti-
lizing ReLLU activation functions to enhance non-linear processing capabilities. To
ensure a balanced evaluation across our proposed message passing mechanism and
other GNN methods under comparison, we standardized the hyperparameter selec-
tion process.

We executed each experiment five times, subsequently averaging the results and
computing the standard deviation. We adopted AUC score as the evaluation metric
for the classification tasks on the neuron datasets due to the imbalanced distributions
of all classes. On all runs in all tasks, the datasets were randomly divided into training,
validation, and test sets with an 80:10:10 ratio, and identical hyperparameters were
employed across all tasks for each dataset, except for the random seed that was

responsible for the data split.

2.8.2 [Effectiveness Results

In this section, we first assess the performance of our GTMP method against compet-
ing approaches across the real-world datasets within a supervised learning manner.

Additionally, we explore the efficacy of our GT-SSL framework to evaluate the quality
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‘ ‘ Neuron - Classification (1) ‘ River - Regression (1)
‘ ‘ Ips-glia Ips-inter Ips-pc 5xfad-glia 5xfad-pc ‘ m D r
GCN Supervised | 0.6063 + 0.0235 0.5000 £ 0.0000 0.5000 £ 0.0000  0.7934 £ 0.0218  0.7543 % 0.0611 0.1134 £ 0.0244 1721041 £ 2.8023 87.6032 + 1.2830
GT-SSL 0.9798 + 0.0197 0.9568 £ 0.0134 0.9546 &+ 0.0122  0.8131 £ 0.0111 0.8938 = 0.0134 0.0941 = 0.0321 95.5785 + 2.3104 76.4080 + 1.5892
diff (+/-) 37.35% 45.68% 45.46% 1.97% 13.95% 17.01% 44.46% 12.77%
GIN Supervised | 0.6060 + 0.0326 0.5173 £ 0.0388 0.5351 & 0.0355  0.8204 £ 0.0083  0.7903 & 0.0407 | 0.1872 & 0.0150 172.5895 =+ 3.6765 87.4989 + 1.0998
GT-SSL 0.9784 + 0.0147 0.9181 =+ 0.0237 0.7943 £ 0.1235  0.8046 £ 0.0258  0.9343 % 0.0109 0.1135 £ 0.0819 102.9059 =+ 2.5516 73.3257 + 1.3291
diff (+/-) 37.24% 40.08% 25.92% -1.58% 14.4% 39.37% 40.38% 16.20%
GAT Supervised | 0.5878 =+ 0.0411 0.5221 =+ 0.0231 0.5000 £ 0.0000  0.8101 £ 0.0232  0.6576 + 0.0981 0.2335 £ 0.0731 171.1645 + 2.2507 89.0507 + 2.5466
GT-SSL 0.5032 + 0.0048 0.5000 = 0.0000 0.5000 £ 0.0000  0.8318 £ 0.0177  0.8726 + 0.0390 0.2752 £ 0.1201 141.8387 =+ 5.1076 76.5700 + 1.9842
diff (+/-) -8.46% -2.21% 0% 2.17% 21.5% -17.86% 17.13% 14.02%
PointNet | Supervised | 0.6308 + 0.0835 0.7295 + 0.0310 0.5508 = 0.0431 0.8108 & 0.0078  0.8960 =+ 0.0140 0.1244 £ 0.0102 169.0530 =+ 2.0981 85.9079 + 2.4306
GT-SSL 0.9733 + 0.0102 0.9543 £ 0.0140 0.6432 £ 0.0741 0.7707 £ 0.0316 ~ 0.9771 £ 0.0111 0.0754 £ 0.0107 94.3706 + 2.7810 71.4937 + 1.8721
diff (+/-) 34.25% 22.48% 9.24% -4.01% 8.11% 39.39% 44.18% 16.78%

SpatialNet | Supervised | 0.7300 4+ 0.0432 0.7445 £ 0.0419 0.5354 & 0.0796 0.8614 + 0.0113 0.8243 + 0.0353 0.2335 & 0.0418 151.0569 + 2.5466 86.2461 £ 1.2461
GT-SSL 0.5010 + 0.0025 0.5003 £ 0.0007 0.9232 £ 0.0460 0.8972 £ 0.0150 0.9764 + 0.0164 0.0353 & 0.0381 91.6590 £ 3.2311 66.9319 £ 3.1098
diff (+/-) -22.9% -24.42% 38.78% 3.58% 15.21% 84.88% 39.32% 22.39%

SchNet Supervised | 0.7561 £ 0.0319 0.7597 £ 0.0286 0.6178 & 0.0509 0.8994 = 0.0105 0.9502 = 0.0162 0.0342 % 0.0072 154.4101 £ 3.2536 82.6100 £ 1.2830
GT-SSL 0.9698 + 0.0120 0.9393 + 0.0231 0.9612 + 0.0202 0.9046 % 0.0092 0.9893 + 0.0083 0.0112 £ 0.0050 85.0109 =+ 2.3832 37.8552 £ 1.4879
diff (+/-) 21.37% 17.96% 34.34% 0.52% 3.91% 67.25% 44.94% 54.18%
DimeNet | Supervised | 0.7049 £ 0.0620 0.8338 £ 0.0226 0.5601 = 0.1020 0.9123 = 0.0089 0.9544 % 0.0120 0.0196 % 0.0053 134.4048 £ 2.4952 80.9102 + 1.2827
35.3140

GT-SSL 0.9351 + 0.0194 0.9627 & 0.0176 0.9345 = 0.0131  0.9540 = 0.0059  0.9902 % 0.0015 0.0077 % 0.0033 80.2417 £ 2.0114
diff (+/-) 23.02% 12.89% 37.44% 4.17% 3.58% 60.71% 40.30%
SGMP Supervised | 0.7599 £ 0.0442 0.8078 £ 0.0382 0.6231 = 0.0512 0.8917 = 0.0123 0.9839 = 0.0034 0.0087 = 0.0031  123.3789 + 3.8385  (68.0974 + 2.1300
GT-SSL 0.9568 + 0.0170 0.9709 + 0.0142  0.9952 + 0.0009  0.9333 + 0.0085 0.9814 + 0.0072 | 0.0033 £ 0.0012 76.7912 £ 1.4728 36.0287 £ 1.3890
diff (+/-) 19.69% 16.31% 37.21% 4.16% -0.25% 62.07% 37.76% 47.09%
GTMP Supervised | 0.7996 + 0.0392 0.8529 + 0.0370 0.6560 = 0.0621 0.9417 = 0.0123 0.9887 + 0.0063 | 0.0052 £ 0.0024 1254951 + 2.8295 61.2353 + 1.3177
GT-SSL 0.9836 + 0.0096 0.9996 + 0.0106  0.9872 £ 0.0013 0.9011 + 0.0192  0.9992 + 0.0004 | 0.0041 £ 0.0019  76.7699 + 1.8740 33.0287 + 0.7680
diff (+/-) 18.4% 11.87% 33.12% -4.06% 1.05% 21.15% 38.83% 46.06%

Table 2.8: The main experimental results on neuron morphology and river flow net-
work datasets. Here we present the performance of our GTMP method alongside
other comparative methods within both supervised learning and our GT-SSL train-
ing approach. For each dataset, we highlight in bold both the best performance in the
supervised learning context across all methods, and also the top performer within our
GT-SSL training framework. Additionally, we show the percentage improvement in
performance of all methods when leveraging our GT-SSL over traditional supervised
learning settings. Specifically for the river low network dataset, we use u to represent
the clustering coefficient, D for spatial diameter, and r for spatial radius.

of the generated representations in a pretrain-finetune manner over the same dataset.
Given that the GT-SSL framework is designed to be a general approach applicable
to various representation learning methods, we present the outcomes for both our
GTMP approach and all other methods being compared. In this section, we pretrain
and finetune the same datasets for implementing the GT-SSL framework, ensuring a
fair comparison with the supervised learning results.

The comparison of AUC scores for the neuron morphology datasets and MAE
results for the river datasets is provided in Table 2.8. We summarize our observations
on the effectiveness of the GTMP model and the GT-SSL training framework below:
(1) Strength of GTMP model in learning effective geometric tree represen-
tations. The supervised learning results demonstrate the strength of our proposed

method, which consistently achieved the best results in seven out of eight datasets and
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securing the second-best result in the only dataset where the best performance was
not attained. Specifically, our results outperformed the other comparative models by
over 12.7% on average for the neuron morphology datasets and 22.1% on average for
the river flow network datasets. The outcomes demonstrate that our GTMP model
successfully leverages the specially designed branch message passing mechanism to
generate representations, which significantly enhances performance on downstream
supervised learning tasks.

(2) Benefits of utilizing GT-SSL framework to enhance the quality of geo-
metric tree representations. Table 2.8 reveals that the GT-SSL’s pretrain-finetune
approach consistently enhances the performance of all representation learning models
on 62 of the 72 total prediction tasks when compared to traditional supervised learning
settings. Notably, the GT-SSL method surpasses supervised learning by an average
margin of over 23.02% across all tasks. This substantial improvement underscores
the effectiveness of the GT-SSL pretraining framework in significantly enhancing the
quality of learned representations via self-supervised learning objectives tailored to
geometric tree structures.

(3) Integrating the GTMP model with the GT-SSL framework results in
superior overall performance. It is worth noting that the combination of our pro-
posed GTMP model and GT-SSL framework shows a more competitive performance
than any other combination of methods by achieving the best performance in six out
of eight datasets. Specifically, our results outperformed the other comparative models
by over 10.0% on average for the neuron morphology datasets, and 29.3% on average
for the river flow network datasets. The results demonstrate that integrating the
GTMP model with the GT-SSL framework can successfully lead to state-of-the-art
representation learning performance on geometric tree datasets.

(4) Advantage of specialized spatial network representation learning meth-

ods over conventional graph and spatial neural networks. It is also worth
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Source
Ips-glia  Ips-inter Ips-pc  bxfad-glia 5xfad-pc
# of Trees 28,687 8,092 28,224 33,757 28,086

Average # of Nodes 2,025 4,488 3,146 1,994 3,152
Ips-glia 0.9836 0.9983 0.9987  0.9231 0.9999
Ips-inter 0.9111  0.9996 0.9936  0.8627 0.9999

Target | Ips-pc 0.9995 0.9964 0.9872  0.9705 0.9969

oxfad-glia 0.9357 0.9981 0.9399  0.9011 0.9740
Sxfad-pc 09798  0.9969 0.9959  0.8993 0.9992

Table 2.9: Transfer learning results. We underline the results where the source and
target datasets are the same. Additionally, we highlight the best results for each
target dataset.

noting that the specialized spatial network representation learning methods (SchNet,
DimeNet, SGMP, and GTMP) show a more competitive performance than both the
vanilla graph neural network-based methods (GCN, GIN, and GAT) and the spatial
network-based methods (PointNet and SpatialNet). Specifically, these specialized
methods surpass traditional graph neural networks by an average of over 19.3% in su-
pervised learning contexts and 22.3% when integrated with the GT-SSL framework;
against spatial neural network approaches, they demonstrate an average improve-
ment of 11.1% in supervised settings and 23.7% with GT-SSL. These results indicate
that standard graph neural network and spatial neural network methods have lim-
ited capability to effectively discriminate patterns that require joint consideration of

geometric information and tree topological information.

2.8.3 Transfer Ability Analysis

We further investigate the transferability of our GT-SSL framework. In practical
settings, the ability to deploy a model trained on one dataset to a new, unseen dataset
without requiring retraining is highly beneficial. This strategy aims to address two
main goals: (1) overcoming the obstacle posed by insufficient data in the new dataset,

which might hinder effective model training, and (2) saving computational resources,
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as developing a model from the ground up demands significant time and resources. To
assess how well our model adapts to new datasets, we initially pretrain the GTMP
model using self-supervised learning objectives on source datasets. Subsequently,
we finetune this pretrained model on target datasets to evaluate its performance in
downstream task predictions.

The experimental results and sizes of datasets are shown in Table 2.9. (1) Strong
transfer ability across different source and target datasets. It is evident that
the transfer model, when applied from the source to the target dataset, can achieve
performance on par with, or in some instances even surpassing, the model directly
trained on the source dataset. Specifically, the discrepancy in average performance
between scenarios where the source and target datasets are identical and those where
they differ is a mere 0.91%. (2) Correlation between tree sizes and transfer
performance. More importantly, our findings reveal that pretraining on datasets
with larger average tree sizes can significantly enhance transfer performance on tar-
get datasets. In particular, the average performance when pretraining on datasets
characterized by relatively larger tree sizes (such as lps-inter, lps-pc, and 5xfad-pc)
surpassed that of datasets with smaller tree sizes (such as lps-glia and 5xfad-glia) by
an average of 5.51%. Notably, the dataset with the largest average tree size, lps-inter,
achieved an impressive average AUC score of 0.9979 across all datasets. These re-
sults underscore the ability of our proposed model to leverage larger dataset sizes for
improving performance on unseen, relatively smaller-sized datasets. This capability
presents a strategic advantage in addressing challenges related to data scarcity and

computational constraints.

2.8.4 Ablation Studies

This paper primarily concentrates on exploring the fundamental question of how effec-

tively representation learning can leverage uniquely designed properties of geometric
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Neuron (1) River ({)
Ips-glia lps-inter 5xfad-pc | Diameter = Radius
Supervised 0.7996  0.8529 0.9887 | 125.4951 61.2353
GT-SSL 0.9836 0.9996 0.9992 | 76.7699 33.0287
No Ordering 0.9769  0.9922 0.9981 78.8122  33.8345
No Generative | 0.8235  0.8834 0.9847 | 108.5359  60.5332

Table 2.10: Ablation study results. NO Ordering refers to a variant that removes
the partial ordering constraint module. NO Generative refers to another variant
that removes the subtree growth learning module. The best result of each dataset is

highlighted in bold.

trees. Here, we investigate the impact of the proposed two self-supervised learning
components of GT-SSL framework. We first consider a variant No Ordering that
removes the Partial Ordering module. To study the effectiveness of the proposed
subtree growth learning module, we further construct a variant No Generative that
removes the corresponding module. Due to length constraints, we only present the
results of five real-world datasets in Table 2.10.

(1) Our full GT-SSL framework achieved the best performance on all five datasets.
Specifically, the full model outperforms the variants No Ordering and No (Gener-
ative by 10.3% on average. In turn, these two variants exceeded the performance
of the supervised learning model by an average of 13.3%. These outcomes confirm
that incorporating partial ordering and subtree growth learning modules significantly
enhances geometric tree representation learning tasks.

(2) The performance drops significantly when we remove the subtree growth learning
module, in comparison to removing the partial ordering module, which may indicate
that this module plays a more critical role in understanding the joint geometric and

tree topological properties towards learning powerful representations.
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2.9 Conclusion

We first focus on the crucial problem of learning powerful representations from phys-
ical networks, which has tightly coupled spatial and graph information that can not
be addressed by applying spatial and network methods separately. The proposed
Spatial Graph Message Passing neural network (SGMP) effectively addresses the
unique challenges in spatial networks by jointly considering the spatial and graph
properties, and still maintain the invariance to node permutations, as well as rotation
and translation transformations. In addition, our proposed accelerating algorithm
largely alleviates the efficiency issue in solving spatial network issues. Experimental
results on synthetic and real-world datasets demonstrate the outstanding discrimina-
tive power of our model, and the efficiency test shows a remarkable improvement in
training time and scalability of our proposed accelerating method.

Besides, we generalize the problem to learning representations from spatial net-
works embedded in non-Euclidean manifolds, which is an underexplored area and can
not be well handled by existing works. The proposed framework Manifold Space
Graph Neural Network (MISGINN) effectively addresses the unique challenges of
representing irregular spatial networks by first converting the manifold space into
a discrete mesh tessellation, and then converting the geometric information of the
curves between nodes into messages on edges. Theoretical guarantees are given to
prove that our learned representations are invariant to important symmetries such as
rotation and translation, and simultaneously maintain strong distinguish power in ge-
ometric structures. Extensive experimental results on both synthetic and real-world
datasets demonstrate the strength of our theoretical findings.

Finally, we propose the Geometric Tree Message Passing (GTMP) model, de-
signed to efficiently learn coupled spatial-topology representations from geometric
tree-structured data. Theoretical guarantees are given to assure its ability to preserve

essential geometric structure information. To overcome the challenge of insufficient
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labeled data and to enhance transferability, we also introduce the Self-Supervised
Learning Framework for Geometric Trees (GT-SSL). This framework significantly
improves geometric tree representations by leveraging their inherent hierarchies and
tree-oriented geometric structures. The integration of the GTMP model with the
GT-SSL framework further accentuates its effectiveness, leading to state-of-the-art

performance on various datasets.
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Chapter 3

Representation Learning on

Information Networks

In this chapter, we introduce our proposed deep learning framework designed to unify
various information network domains through text-attributed graphs. We begin with
the background in Section 3.1 and review related works in Section 3.2. The proposed
self-supervised learning framework is detailed in Section 3.3, followed by extensive
experimental results in Section 3.4. We conclude the chapter in Section 3.5.

This chapter features a work currently under submission [230], titled “TAGA:
Text-Attributed Graph Self-Supervised Learning by Synergizing Graph and Text Mu-

tual Transformations.”

3.1 Introduction on Information Networks

Information networks [6], which represent abstract relationships between entities such
as individuals, documents, or data sources, play a crucial role in a wide range of
applications, including social networks [153, 148], citation networks [136], and rec-
ommendation systems [207, 98]. These networks are characterized by complex and

diverse data domains, each introducing unique node and edge features, as well as dis-
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tinct predictive tasks. This diversity presents significant challenges for developing a
unified representation learning framework capable of generalizing across multiple do-
mains. Existing approaches often struggle to accommodate such variations, limiting
their effectiveness in diverse network types.

Recent advances in natural language processing (NLP), particularly with the ad-
vent of pre-trained language models [177, 113, 25], have demonstrated remarkable
success in handling data from various domains, offering potential solutions to these
challenges. In this research, we seek to unify the representation of information net-
works across diverse domains by leveraging textual descriptions of network elements.
We introduce a novel structure, Text-Attributed Graphs (TAGs), that integrates
textual attributes into graph representations, thereby providing a unified framework
capable of learning from and generalizing across a wide range of information networks.
This approach represents a significant step towards more robust and adaptable rep-
resentation learning for complex, multi-domain information networks.

Text-Attributed Graphs are text documents that are connected in graph struc-
tures, allowing for deeper analysis and interpretation of complex relationships [224,
105, 106]. TAGs are prevalently used in numerous real-world applications, such as
social networks [153], citation networks [136], and recommendation systems [207].
TAGs encompass textual content in both nodes and edges that elucidate the meaning
of individual documents and who they are semantically correlated with. For instance,
a scientific article network is a type of TAG that stores the texts of research papers
and details about how they cite, criticize, and summarize each other within para-
graphs. As shown in Figure 2.1(a), extracting knowledge like “the first law proposed
in Paper A is a special case of Paper B’s Theorem 1 when under macro scale and low
velocity” from this scientific article network requires jointly considering semantics,
topology, and their entanglement in the TAG.

Representation learning on TAGs is a promising, yet open research area that starts
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to attract fast-increasing attention [216, 181, 35, 95, 64, 168, 130]. Existing TAG
representation learning methods typically treat each text document as an independent
node embedding and then rely entirely on message passing mechanisms to model
the interaction between different texts. These approaches ignore the semantic-level
textual connections between different nodes. Additionally, existing works are typically
only applicable for supervised learning, which require extensively labeled data that is
often unavailable in real-world scenarios. Moreover, the reliance on supervised tasks
means that models are usually optimized for specific tasks and domains reflected in the
training dataset, which significantly constrains their applicability to new domains or
broader tasks. This limitation undermines the unique advantage of TAGs to leverage
their universal linguistic attributes effectively. Although there are some graph pre-
training models [93, 178, 221, 130] operate in an unsupervised manner, they often
focus on either graph topology or node features independently, neglecting the crucial
interplay between textual semantics and structural information inherent in TAGs.

Therefore, there is a pressing need for a method that comprehensively addresses
the unique nature of TAGs, seamlessly integrating both their structural and seman-
tic dimensions within a unified unsupervised framework. This presents a significant
research challenge with several substantial hurdles to overcome. Primarily, develop-
ing a representation that can simultaneously leverage the textual semantic content,
the graph structure, and their complex interplay presents significant difficulties. The
scarcity of labeled training data further exacerbates this issue, making traditional su-
pervised approaches impractical and necessitating innovative unsupervised strategies.
Furthermore, the computational demands of such representation learning are substan-
tial. The integration of large PLMs for textual corpus processing to be considered in
TAGs creates a significant computational burden.

In order to address the aforementioned challenges, this paper proposes a new

self-supervised learning framework named Text-And-Graph Multi-View Alignment
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(a) Graph-of-Text view by networked corpus (b) Text-of-Graph view by structured text document

Figure 3.1: Illustration of the two distinct views of TAGs: (left) Graph-of-Text and
(right) Text-of-Graph. Graph-of-Text view constructs a graph-structured data over
the individual text corpora, while Text-of-Graph view organizes the text node and
their connection description in a hierarchical layout document. These two views can
be mutually transformed to each other.

(TAGA). TAGA jointly preserves rich semantic information, topology information,
and their interplay by aligning representations of TAGs from two complementary
views: the Text-of-Graph view and the Graph-of-Text view. As illustrated in Fig-
ure 3.1, these two views offer different representation formats of a TAG yet contain
equivalent information. Specifically, the Text-of-Graph view organizes node texts into
a structured textual document according to the TAG’s topology. As exemplified in
Figure 3.1(b), structured textual documents are universal ways to represent the re-
lations among different text pieces in large corpus, especially in books, long articles,
web files, etc. Here we propose a novel Graph2Text encoding module to automatically
transfer a TAG to a structured textual document, which is readily to be processed by
language models. Conversely, the Graph-of-Text view transforms textual nodes and
topology into graph-structured data, which is then processed by a graph representa-
tion learning module (e.g. graph neural network). By aligning the representations
learned from these two views, we encourage the learned representation to capture both

textual and structural information, resulting in a unified, comprehensive representa-
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tion of the TAG. Furthermore, to accelerate the training process, we propose a novel
structure-preserving random walk algorithm. Finally, we demonstrate the strength
of our proposed representation learning framework through extensive experiments on

eight real-world datasets in zero-shot and few-shot prediction scenarios.

3.2 Related Works

3.2.1 Text-Attributed Graphs Representation Learning

Existing methods typically focus on supervised learning. GraphFormers [214] in-
troduce GNN-nested Transformers to simultaneously capture graph topology and
textual semantics, enhancing interactions between textual content and graph struc-
ture. Learning on Large-scale Text-attributed Graphs via Variational Inference [234]
presents a variational inference framework that efficiently learns node representa-
tions on large-scale TAGs. Patton [104] pretrains language models on text-rich net-
works to capture semantic relationships. Recent developments have also seen ef-
forts [199, 168, 130] in aligning graph representations with textual representations.
For instance, G2P2 [199] employs contrastive learning to align GNN representations
with text encoder outputs by averaging individual node text embeddings across var-
ious neighborhood hops during its pre-training phase. However, these methods often
simplify the treatment of textual encoder embeddings for neighborhoods by averag-
ing the embeddings of individual nodes. Similarly, GRENADE [130] implements a
dual-level alignment strategy. This approach overlooks the underlying interactions
within neighborhoods, leading to a loss of information that could be crucial for the

contrastive objectives of alignment models.
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3.2.2 Unsupervised Graph Pre-Train Methods

Existing unsupervised graph pre-training methods can be categorized into several
categories based on their objectives and architectures. Graph autoencoder meth-
ods, graph autoencoder methods [115, 93] convert node and edge features into low-
dimensional embeddings, which are then used to reconstruct the original graph data.
Contrastive learning approaches, like DGI [178], GraphCL [221], GRACE [238], and
S3-CL [52], generate perturbed graph pairs by altering structural features, such as
adding or removing nodes and edges or masking features, aiming to align the em-
beddings of these modified graphs closer in the embedding space. However, these
methods often produce domain-specific embeddings with limited generalization abil-
ity across different domains, reducing their effectiveness in data-scarce or label-limited
scenarios.

Recent developments have also seen efforts [199, 168, 130] in aligning graph repre-
sentations with textual representations. For instance, G2P2 [199] employs contrastive
learning to align GNN representations with text encoder outputs by averaging indi-
vidual node text embeddings across various neighborhood hops during its pre-training
phase. However, these methods often simplify the treatment of textual encoder em-
beddings for neighborhoods by averaging the embeddings of individual nodes. Sim-
ilarly, GRENADE [130] implements a dual-level alignment strategy. This approach
not only aligns GNN and text encoder embeddings but also encourages embeddings
of connected node pairs to exhibit similarity. This approach overlooks the underly-
ing interactions within neighborhoods, leading to a loss of information that could be

crucial for the contrastive objectives of alignment models.

3.2.3 Graph2Text Encoding Methods

Recently, research include approaches [216, 181, 35, 95, 97, 64] that first transform

the text-attributed graph into text sequence and then directly utilize LLMs as the
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predictor given the transformed text and corresponding question as input prompt.
These methods typically designs text templates to explicitly describe local graph
structure by stating nodes and how they are connected in plain text. For example,
“The first node is . ... The second nodeis .... .... First node connects to third node.
Second node connects to ...”. However, these methods do not present the structure
in a natural language-speaking manner, which fails to fully leverage the pretrained
capabilities of language models. This is due to the distributional shift between the
transformed text from the graph and the original pretrained corpus, resulting in lower

quality embeddings and high variance of performance [64].

3.2.4 Efficient and Scalable Methods for Large-Size Graph

Neighborhoods

Efficiency and scalability are crucial for deep graph learning, particularly when dealing
with large graphs or high-order interactions. Traditional graph sampling techniques,
such as node sampling [31], edge sampling [85], or subgraph sampling [222], aim to
reduce neighborhood size. However, these methods may not be suitable for TAGs, as
they can result in the loss of important hierarchical interactive connection during the
random sampling process. Meanwhile, in the NLP domain, some efforts [156, 88, 32,
100, 51] have been made to address the long context issue of PLMs. These approaches
typically involve compressing input tokens into latent vectors [100] or modifying the
attention mask [34, 88, 51| to reduce significant interactions. However, these methods
often fail to preserve the original structure of the input corpus and might alter the

hierarchical layout.
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3.3 Self-Supervised Learning Framework on TAGs

To effectively address the substantial challenges of unsupervised representation learn-
ing on TAGs, we propose a novel self-supervised learning framework called Text-
And-Graph Multi-View Alignment (TAGA). Specifically, to jointly preserve both
rich semantic information, topology information, and their interplay, we propose to
learn and align the representations of TAG in two complementary views, namely text
view and graph view. In particular, the text view is a Tezt-of-Graph, where the TAG’s
node texts are organized according to the TAG’s topology into a collective textual hi-
erarchical document, which inherently has the power to encompass logic and relational
information among different node texts. The graph view is a Graph-of-Text, where the
TAG’s nodes and topology are turned into a graph structured data. These two views
contain equivalent information but in different formats, allowing them to mutually su-
pervise each other. Then the text view can be transformed by PLMs, which are adept
at preserving textual information, while the graph view can be transformed by GNN,
which are designed to guarantee preserving graph information. Therefore, by align-
ing the representations learned from these two views, we encourage the graph view’s
representation to also capture textual information and the text view’s representation
to also capture graph information. The above new idea is shown in Figure 2.3, where
Figure 2.3(a) illustrates construction of Graph-of-Text view while Figure 2.3(b) illus-
trates Text-of-Graph view, as detailed in Section 3.3.1. In Section 3.3.2, we propose
the Graph2Text module that can information loselessly transform the Graph-of-Text
view to Text-of-Graph view. Their respectively transformed embeddings are aligned
by our proposed TAG-hierarchical self-supervised learning framework, which is elab-
orated in Section 3.3.3. Finally, a novel acceleration algorithm of our learning process

to reduce computational complexity to near linear is detailed in Section 3.3.4.
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Figure 3.2: Illustration of the proposed self-supervised learning framework. (a) Gen-
eration of different orders of Graph-of-Text views; (b) The Graph2Text module that
transforms a Graph-of-Text view into a Graph-of-Text view; (¢) The alignment mod-
ule via hierarchical self-supervised learning.

3.3.1 Text-and-Graph Multi-View Construction

Existing methods for learning representations on TAGs typically simply use GNNs to
aggregate individual node embeddings generated from node texts. These methods lack
the ability to consider the textual semantic relationship between different node texts
in a joint document, and usually require supervised labels for training. Moreover,
the resulting embeddings often lack generalization capabilities beyond the specific
domain and task of their training data. To address these, our proposed framework
TAGA first leverages two views of a TAG: Text-of-Graph (TofG) and Graph-of-Text
(GofT). Each view can be defined at different neighborhood orders, allowing for a
multi-order hierarchical representation. Specifically, a k-order TofG view represents a
node’s k-hop neighborhood as a single textual corpus that encompasses all nodes and
their connections within that neighborhood. This corpus is then processed by a PLM
to extract semantic embeddings that capture the combined content and structure

within that k-hop neighborhood. In contrast, the corresponding k-order GofT view
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is constructed as a graph structure, where nodes represent lower order TofG's within
the k-hop neighborhood. A GNN model is then applied to aggregate information
from these connected lower order TofG's, capturing the overall neighborhood context.
This ensures that both TofG and GofT views at the same order encode equivalent
information about the neighborhood.

To illustrate, consider a node with a 3-hop neighborhood, as shown in Figure 2.3(a).
Its 3-order TofG is constructed by transforming the entire 3-hop neighborhood as a
single text corpus. Three distinct 3-order GofT views can then be created using
TofG's of orders 0, 1, and 2 as nodes in the graph structure. To maintain information
consistency, the number of GNN aggregation layers decreases with increasing TofG
order: 3 layers for O-order TofG's, 2 for 1-order TofGs, and 1 for 2-order TofG's. This
ensures that each 3-order GofT view captures the same 3-hop neighborhood infor-
mation as the 3-order TofG view, facilitating information equivalent views to enable

further self-supervised learning alignment.

3.3.2 Represent Text Neighborhood Information via Hierar-

chical Document Layout

The key to our proposed self-supervised learning framework is ensuring that the two
distinct graph views (7TofG and GofT') contain equivalent information. This neces-
sitates constructing a TofG view through the Graph2Text module that preserves all
connectivity information present in the original TAG. Existing methods [64, 97, 199,
168] often struggle to effectively represent the structural information of graphs in a
way that is both comprehensive and natural to language model understanding. These
methods typically designs text templates to explicitly describe local graph structure
by stating nodes and how they are connected in plain text. For example, “The first
node is . ... The second node is . ... First node connects to third node. Second node

connects ...”. However, these methods usually fails to fully leverage the pretrained
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capabilities of language models because they do not present the structure in a nat-
ural language-speaking manner. This discrepancy between the transformed graph
text and the original pre-training corpus leads to a distributional shift, hindering the
PLM’s ability to generate high-quality embeddings that accurately reflect both the
semantic and structural aspects of the TAG.

To address this issue, we introduce a novel Graph2Text approach that transforms
a graph neighborhood into a hierarchical text document. This hierarchical structure
mirrors the original graph’s topology, ensuring that the document’s latent structure is
equivalent to the graph itself. Crucially, the resulting document resembles a natural
document, aligning with the distribution of majority text data used to pre-train
PLMs. This alignment mitigates the distributional shift issue, allowing PLMs to
generate embeddings that accurately reflect both the semantic and structural aspects
of the graph.

Specifically, the structure of a node and its k-hop neighborhood can be repre-
sented as an ego graph, with the node itself as the root. This ego graph can be
decomposed into a hierarchical tree backbone and a set of cross-edges, as illustrated
in Figure 2.3(b). The reading order is established for the TofG document through
a pre-order traversal of this tree structure (first visit the root, then the left subtree,
then the right subtree), capturing the hierarchical relationships between nodes. To
fully represent the neighborhood’s structure, we then incorporate cross-edges into the
document. These cross-edges indicate connections from later sections of the docu-
ment back to earlier ones, effectively mirroring the original graph’s topology within
the text format.

As shown in Algorithm 1, the £-hop neighborhood of a target node v in graph G is
represented as an ego-graph G(v, k). A breadth-first search (BFS) tree 7 (v, k), rooted
at v, provides a hierarchical structure for the document, while cross-edges (edges

outside the BFS tree) are identified. A pre-order traversal of 7 (v, k) establishes the
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document’s hierarchical layout, assigning each node a section number. Cross-edges are
then integrated by adding references at source nodes to the sections containing their
respective destination nodes, if the destination node appears earlier in the traversal.

This approach ensures that the document faithfully reflects the graph’s structure.

3.3.3 Multi-View Alignment via TAG Hierarchical Self-Supervised

Learning

Upon construction of both views at different orders, a hierarchical self-supervised
learning module is proposed to align the embeddings from both views. Given a TAG G
with at most K-hop neighborhood size, for each node v; € V, its k-hop neighborhood
can be denoted as Nj(v;) and its corresponding k-order TofG view embedding can

be represented as:
(3.1)
TofG (v;; k) = Graph2Text (v; UN (v, k))
where PLM is a pre-trained language model (e.g. BERT [112] or LlaMA [172]).
Graph2Text is an encoding template function that can transform individual nodes
and edges text into a textual corpus. Meanwhile, its corresponding k-order GofT

views embeddings can be denoted as GNN aggregated representations of lower order

TofGs:

bl (v;) = fED ({hy(vy)|vy € v UN (05, k —1)}), (3.2)

where [ covers from 0 to k — 1 and f*~) denotes the GNN model with k — [ layers.
By aggregating k — [ layers of information over the connected [-order TofGs, the
obtained k-order GofT embeddings cover equivalent information with the k-order

TofG view embedding. Therefore, given all the embeddings from level 1 to K, the
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Algorithm 2 Structure-Preserving

Random Walk Traversal
Input: Root node v, cross-edge

probability p, maximum length L
Output: Traversal path P

Algorithm 1 Hierarchical Document Layout
(HDL) for Graph2Text

Input: Graph G, target node v, hop count k
Output: Hierarchical text document D

1: Q(v, k) < Construct ego-graph of v up to

s G 1: P+ [U]
L 1ops 1 5 2: while |P| < L and v has chil-
2: T(v, k) <= BFS tree of G(v, k) rooted at v dren do
3. gcrobb(v’k) + Cross-edges m.Q(v,k) 5. if random() | p and v has
4: D <+ Assign document sections to nodes
) cross-edges then
following pre-order traversal 4 v < Random neighbor by
5: for each cross-edge e = (u,w) do q
. cross-edge
6: if w precedes u then 5. else
7 N Adq reference at u to section con- 6 v < Random child of v
taining w in D . .
d if 7 end if
s ondi s Pe Pl
9: end for 9: end while

10: return D 10: return P

supervision objective function can be written as:

£positive = Z Z Z bl UZ hk(vl))7 (33)

veBkelK]ZGOk 1]

where B represents the minibatch and p denotes a similarity function, such as
cosine similarity. Additionally, we include the negative samples that chosen from

other nodes within the minibatch:

Enegative = ﬁ[)” Z Z Z bk U@ hk(U])> (34)

03,0 €801 #v2 ke[1,K] 1€[0,k—1]

Thus, the overall objective function can be denoted as:
L= Lpositivc + Encgativc (35)

Time Complexity Analysis. Consider a TAG with a maximum K-hop neigh-

borhood size, where each node has an average degree d and text attribute length
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L. Assume the feature dimensionality is F. In the case of transformer-based PLMs,
the time complexity for processing the TofG view of a node would be O((dL)*K?),
due to the quadratic complexity of self-attention mechanisms with respect to input
sequence length. In contrast, our method employs a GNN to aggregate information
from lower-order TofGs, each of length dL. Assuming a GNN with constant complex-
ity per layer, the time complexity for aggregating information from all K levels of the
GofT view would be O(L?dK). Our method achieves significantly higher efficiency

than directly using PLMs for TofG views, with details available in the Appendix B.2.

3.3.4 Accelerating Training on Large TAGs with Structure-

Preserving Random Walk

While TAGA significantly improves efficiency during inference by transferring knowl-
edge from the PLM to a GNN model, the pre-training stage still encounters com-
putational bottlenecks due to the quadratic complexity of transformers with respect
to context length when generating TofG view embeddings. Existing graph sampling
methods (e.g., node or edge dropping) can partially alleviate this issue, but at the
cost of sacrificing valuable structure information, which is crucial for capturing the
intricate relationships within TAGs.

To address this issue while preserving the structure of corpus, we propose a novel
approach inspired by human reading patterns. Our method segments the hierarchical
corpus into multiple related sub-corpora, mirroring how humans naturally engage
with complex documents: starting with a general overview (top of the hierarchy)
and delving into specific sections (sub-corpora). By navigating the corpus multiple
times, focusing on different sub-corpora each time, the combined insights gained can
effectively approximate the understanding achieved from processing the entire corpus.

To facilitate this behavior, we introduce a random walk-based neighborhood traver-

sal algorithm. It simulates a reader starting at the root node and progressing towards
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leaf nodes in the BFS tree, transitioning from general to specific information. Ad-
ditionally, at each step, there is a probability p of jumping to another node via
cross-edges, imitating the non-linear navigation often observed in human reading
(e.g., jumping to related topics or backtracking). By averaging multiple random walk
traversals, the generated paths can approximate the complete corpus. As detailed in
Algorithm 2, each traversal begins at the root node v and iteratively samples child
nodes to form a path down the hierarchy. At each step, a jump to another node via
cross-edges is possible with probability p. This traversal continues until reaching a

predefined length or a leaf node.

3.4 Experiments

In this section, the experimental settings are introduced first in Section 3.4.1, then the
zero-shot and few-shot node classification performances are presented in Section 3.4.2,
and link prediction performance is presented in Appendix B.1.2. We further present
the effectiveness under transfer learning settings in Section 3.4.3. We measure model
efficiency in Section 3.4.6. The effectiveness of framework components through abla-
tion studies is in Section 3.4.4. The parameter sensitivity experiments are present in

Section 3.4.5.

3.4.1 Experimental Settings

Datasets. We evaluate on eight real-world text-attributed graph datasets across
different domains. Specifically, three citation networks Cora [215], Pubmed [215] and
Arxiv [94], two book networks Children [125] and History [125], and three E-commerce
networks Computers [125], Photo [125], and Sports [213] are chosen as our evaluation
datasets. Datasets statistics can be found in Table 3.1.

Comparison Methods. We choose the textual embedding of the text corpus as the
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baseline, which is denoted as “PLM” in our experimental results tables. Addition-
ally, we compare our proposed framework with six state-of-the-art graph pre-train
methods. Specifically, GraphMAE [115] — utilizes masked autoencoder technique to
predict of graph structure and node features. GraphCL [221] and GRACE [238] ap-
plies various graph augmentations to generate contrastive pairs. GraphFormers [214]
and Patton [104] insert GNN layer into transformers architecture. G2P2 [199] aligns
GNN embeddings and text encoder embeddings through contrastive learning.

Implementation Details. We choose two different pre-trained language models
(OpenAl’s text—embedding-3-small [151] and UAE-Large-V1 [127]) to gen-
erate text embeddings for robust results. Commonly used GNN models (GCN [116],
GIN [85], GraphSAGE [211]) are chosen as the backbone model as the backbone
model for both our method and all comparison methods. For a fair comparison, all
models are required to adhere to the same GNN architecture, including the number of
convolution layers and hidden dimensions. More details about hyperparameters can
be found in Appendix B.1.1. Further technical details can be found in Appendix B.2.
Our code can be found at anonymous link https://anonymous.4open.science/r/

TAGA-32B7/.

3.4.2 Effectiveness Results

In this section, we assess the effectiveness of our proposed unsupervised representation
learning framework compared to other methods under conditions of label scarcity. Our
representation learning models are initially pre-trained on each TAG dataset without
any supervised labels. After the pre-training phase, we evaluate the quality of the
obtained node embeddings under zero-shot conditions by measuring the similarity
between these embeddings and the corresponding text label embeddings. To further
gauge performance in scenarios with limited labeled data, we conduct evaluations us-

ing 1, 3, 5, 10, 20, 50, and 100-shot settings. Due to space limitation, the results with


https://anonymous.4open.science/r/TAGA-32B7/
https://anonymous.4open.science/r/TAGA-32B7/
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k-Shot ‘ Model ‘ Arxiv Children Computers Cora History Photo Pubmed Sports

# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055

# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594

Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8

PLM 0.500 £ 0.001 0.094 £ 0.003 0.427 £ 0.001 0.624 £ 0.005 0.169 + 0.001 0.387 £ 0.009 0.475 £ 0.008 0.316 £ 0.002
GraphMAE 0.104 £ 0.001 0.021 £ 0.001 0.049 + 0.001 0.194 £ 0.006 0.019 £ 0.001 0.152 £ 0.001 0.438 £ 0.001 0.112 £ 0.001
0 GraphCL 0.089 £ 0.001 0.037 £ 0.001 0.173 £ 0.001 0.176 £ 0.003 0.191 =+ 0.001 0.174 £ 0.001 0.368 £ 0.001 0.140 £ 0.001
GRACE 0.045 £ 0.001 0.034 £ 0.001 0.169 =+ 0.001 0.146 £ 0.004 0.079 £ 0.001 0.025 £ 0.001 0.335 £ 0.001 0.057 £ 0.001
GraphFormers | 0.465 £ 0.003 0.076 £ 0.001 0.147 £ 0.001 0.641 £ 0.004 0.185 £ 0.005 0.192 £ 0.003 0.441 £ 0.005 0.368 £ 0.002
PATTON 0.496 £ 0.005 0.027 £ 0.001 0.106 £ 0.003 0.579 £ 0.003 0.096 £ 0.003 0.118 £ 0.002 0.329 £ 0.005 0.421 £ 0.005
G2P2 0.453 £+ 0.002 0.201 £ 0.001 0.453 £ 0.001 0.644 £ 0.004 0.322 £ 0.003  0.452 + 0.001  0.576 = 0.006 0.436 £ 0.001
TAGA 0.537 + 0.003 0.224 + 0.001 0.498 + 0.004 0.682 + 0.005 0.351 + 0.009 0.419 + 0.001 0.616 + 0.009 0.448 + 0.003
TAGA-rw 0.530 £ 0.001 0.221 £ 0.001 0.494 + 0.001 0.680 £ 0.002 0.301 £ 0.003 0.394 £ 0.001 0.599 &£ 0.002 0.434 £+ 0.002
PLM 0.280 £ 0.044 0.122 £ 0.042 0.238 £ 0.039 0.412 £ 0.080 0.284 £ 0.078 0.230 £ 0.051 0.503 £ 0.067 0.282 £ 0.068
GraphMAE 0.255 & 0.041 0.128 £ 0.028 0.300 £ 0.052 0.474 £ 0.058 0.231 £ 0.052 0.304 £ 0.066 0.492 £ 0.076 0.270 £ 0.042
1 GraphCL 0.123 £+ 0.031 0.157 £ 0.066 0.256 £ 0.039 0.402 £ 0.059 0.371 £ 0.124 0.325 £+ 0.079 0.414 £ 0.040 0.347 = 0.079
GRACE 0.263 = 0.034 0.138 £ 0.035 0.336 £ 0.051 0.435 £+ 0.071 0.266 £ 0.085 0.295 £ 0.053 0.514 £ 0.095 0.282 £ 0.045
GraphFormers | 0.233 £ 0.042 0.131 £ 0.038 0.247 £ 0.052 0.463 £ 0.069 0.231 £ 0.055 0.284 £ 0.043 0.471 £ 0.054 0.284 £ 0.057
PATTON 0.217 £+ 0.059 0.127 £ 0.042 0.305 £ 0.048 0.487 £ 0.057 0.286 £ 0.078 0.318 £ 0.053 0.523 £ 0.051 0.243 £ 0.068
G2P2 0.308 + 0.052 0.145 £ 0.029 0.359 + 0.044 0.477 £ 0.082 0.361 + 0.092 0.372 £ 0.066 0.522 + 0.085 0.356 + 0.042
TAGA 0.323 + 0.040 0.180 + 0.073 0.380 + 0.062 0.509 4+ 0.089 0.413 + 0.114 0.417 + 0.077 0.563 £ 0.062 0.440 + 0.070
TAGA-rw 0.307 £ 0.050 0.171 £ 0.013 0.365 £ 0.042 0.561 + 0.063 0.383 & 0.078 0.380 £ 0.037 0.548 £+ 0.073  0.498 + 0.084
PLM 0.500 = 0.019 0.210 £ 0.025 0.377 £ 0.027 0.641 £ 0.031 0.557 £ 0.040 0.420 £ 0.037 0.632 £ 0.040 0.478 £ 0.056
GraphMAE 0.425 £+ 0.028 0.212 £ 0.029 0.434 £ 0.036 0.704 £ 0.038 0.459 £ 0.038 0.489 £ 0.038 0.625 £ 0.049 0.452 + 0.037
5 GraphCL 0.231 £+ 0.015 0.201 £ 0.040 0.397 £ 0.040 0.641 £ 0.044 0.531 £ 0.047 0.462 £ 0.041 0.584 £ 0.037 0.477 £+ 0.048
GRACE 0.445 + 0.028 0.227 £ 0.031 0.472 £ 0.040 0.685 £ 0.027 0.481 + 0.061 0.515 £ 0.042 0.628 £ 0.047 0.482 £ 0.040
GraphFormers | 0.461 + 0.022 0.230 £ 0.031 0.374 £ 0.031 0.731 £ 0.029 0.458 + 0.045 0.498 + 0.032 0.619 £ 0.039 0.568 + 0.053
PATTON 0.471 £+ 0.039 0.227 £ 0.040 0.405 £ 0.032 0.699 £ 0.025 0.466 + 0.038 0.518 £ 0.030 0.605 £ 0.042 0.532 £ 0.048
G2P2 0.466 £ 0.025 0.240 £ 0.034 0.510 £ 0.039 0.703 £ 0.032 0.617 £ 0.053 0.583 £ 0.051 0.640 £ 0.051 0.565 £ 0.055
TAGA 0.483 £ 0.022 0.263 £ 0.031 0.543 = 0.038 0.752 + 0.028 0.636 + 0.046 0.602 £ 0.041 0.649 £ 0.044 0.664 £ 0.061
TAGA-rw 0.471 £ 0.031  0.276 + 0.053 0.508 = 0.019 0.764 + 0.027 0.621 £ 0.076 0.594 + 0.025 0.684 + 0.027 0.675 = 0.070
PLM 0.526 £+ 0.013 0.240 £ 0.018 0.463 + 0.029 0.690 £ 0.017 0.639 + 0.038 0.491 £ 0.028 0.679 £ 0.023 0.535 £+ 0.038
GraphMAE 0.461 + 0.017 0.234 £ 0.014 0.511 + 0.028 0.761 + 0.023 0.535 £ 0.042 0.543 £ 0.035 0.659 + 0.028 0.508 £ 0.028
10 GraphCL 0.301 £+ 0.018 0.233 £ 0.029 0.488 + 0.031 0.702 £ 0.025 0.566 + 0.043 0.523 £ 0.044 0.632 £ 0.025 0.531 £ 0.035
GRACE 0.488 + 0.018 0.251 £ 0.015 0.552 £ 0.028 0.754 £+ 0.018 0.567 £ 0.054 0.567 £ 0.031 0.670 £ 0.025 0.529 £ 0.033
GraphFormers | 0.482 + 0.019 0.248 £ 0.030 0.447 £ 0.028 0.778 £ 0.022 0.498 £ 0.035 0.538 £ 0.026 0.633 £ 0.034 0.601 £ 0.040
PATTON 0.501 £+ 0.028 0.247 £ 0.024 0.451 £ 0.026 0.738 £ 0.020 0.533 £ 0.029 0.539 £ 0.028 0.643 £ 0.028 0.564 £ 0.041
G2P2 0.527 £ 0.014  0.269 + 0.018 0.598 + 0.031 0.753 £ 0.020 0.649 £ 0.046 0.632 £ 0.037 0.691 £ 0.029 0.618 £ 0.037
TAGA 0.521 £+ 0.017 0.288 £+ 0.025 0.622 + 0.025 0.788 + 0.021  0.679 + 0.041 0.651 + 0.048 0.714 £+ 0.024 0.705 + 0.045
TAGA-rw 0.518 = 0.010  0.288 £ 0.040 0.595 + 0.024 0.806 + 0.011  0.652 + 0.046 0.626 £ 0.020 0.679 £+ 0.013 0.662 £ 0.056

Table 3.1: Performance in zero-shot and few-shot node classification for each dataset
and setting. The best-performing model is highlighted in bold, and the second-best
performing model is underlined.

text encoder UAE-Large—-V1 under zero-shot and 1, 5, 10-shot settings is reported
in Table 3.1. Our acceleration method with random walk is denoted as “TAGA-rw”.
The results with text-embedding—3-small and other few-shot settings can be
found in Appendix B.1.3. We also present zero-shot link prediction performance in
Appendix B.1.2.

Zero-shot performance. Table 3.1 presents node classification accuracy un-
der zero-shot conditions, where our method consistently outperforms all comparison
methods in seven out of eight datasets. On average, our method surpasses other graph
pre-training methods by 47.84% and exceeds the second-best model by 6.78%. These
findings demonstrate the enhanced ability of our pre-trained model to effectively learn

representations that enable zero-shot predictions. Furthermore, compared to direct
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textual embeddings from the PLM, our method improves zero-shot performance by an
average of 20.76%. This demonstrates our method’s capacity in integrating structural
and textual information from neighborhoods over directly using the PLM. Interest-
ingly, our method exhibits a stronger performance advantage when dealing with data
rich in textual information. Specifically, for the two citation networks (Arxiv and
Cora), which possess significantly longer text attributes compared to other datasets,
our method surpasses the second-best performing graph pretrained model by an av-
erage of 10.33%. This proves our method can effectively leverage the rich textual
information.

Few-shot performance. For few-shot experiments, our method consistently
outperforms all comparison methods, achieving a 15.55% average improvement and
surpassing the second-best model by 6.28% on average. Notably, our method exhibits
a more pronounced advantage in scenarios with limited labeled data (j=5 shots),
where it outperforms all other methods by an average of 19.79% and exceeds the
second-best model by 7.91% on average. This underscores the effectiveness of our
method, particularly in settings where few-shot learning is essential due to data labels
constraints.

Remarks. It is worth noting that for some datasets, the zero-shot performance of
our method can match or even exceed few-shot predictive results, particularly when
the number of training samples for few-shot learning is limited. For example, on
five datasets (Arxiv, Children, Computers, Cora, and Pubmed), the zero-shot per-
formance surpasses 1-shot performance by an average of 23.54%. Remarkably, the
zero-shot performance can even be comparable to that of 5-shot. This demonstrates
the strong potential of our method in scenarios where labeled data is scarce or un-

reachable.



88

Source Cora  Arxiv Cora  Pubmed Children History Computers Photo
1 1 \ \ 1 \: \ 1
Target Arxiv  Cora  Pubmed Cora History  Children Photo Computers
GRACE 0.021  0.173 0.360 0.302 0.073 0.065 0.099 0.070
GraphMAE | 0.012  0.153 0.434 0.239 0.009 0.030 0.082 0.004
0-shot | GraphCL | 0.015  0.232 0.368 0.178 0.045 0.024 0.094 0.135
G2P2 0.241  0.647 0.421 0.533 0.204 0.100 0.297 0.340
TAGA 0.406 0.679 0.484 0.559 0.184 0.200 0.452 0.372
TAGA-rw | 0.398 0.624 0.408 0.526 0.176 0.203 0.455 0.348
GRACE 0.426  0.721 0.591 0.657 0.609 0.219 0.483 0.382
GraphMAE | 0.426  0.645 0.578 0.515 0.527 0.160 0.367 0.294
5-shot | GraphCL | 0.107 0.678 0.436 0.416 0.598 0.178 0.395 0.345
G2P2 0.395  0.749 0.633 0.708 0.623 0.239 0.509 0.429
TAGA 0.475 0.754 0.655 0.734 0.651 0.257 0.528 0.448
TAGA-rw | 0.443 0.764 0.644 0.674 0.617 0.250 0.482 0.436

Table 3.2: Transfer learning results for node classification. The best-performing model
is highlighted in bold.

3.4.3 Transfer Ability Analysis

In real-world applications, not only labels are difficult to obtain, but the data it-
self is also scarce. This necessitates the generalization of a pre-trained model to a
data domain distinct from the pre-training data. Here we evaluate the zero-shot
and few-shot performance under transfer learning settings. Specifically, the model is
unsupervisedly pre-trained on the source data domain and then transferred to the
target data domain. No further fine-tuning is performed for zero-shot prediction, and
is fine-tuned using the limited training samples for few-shot prediction.

In Table 3.2, we present the performance of zero-shot and five-shot predictions
across eight pairs of source and target datasets. The results demonstrate a clear
advantage for our method in the zero-shot setting, where it consistently outperforms
all other methods across all dataset pairs. Notably, our method achieves an average
improvement of 26.5% over the second-best performing method. In the five-shot
setting, our method continues outperforming the second-best performing method by
4.53% on average. Particularly when transferring from Cora to Arxiv and Pubmed,
and Children to History, our method achieves significant performance gain by 6.30%

on average, demonstrating its ability to effectively leverage limited labeled data in
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‘ Method ‘ arxiv  children computers cora history photo pubmed sports

Full 0.537 0.224 0.498 0.682 0.351 0.419 0.616 0.448
TofG-0 | 0.500  0.099 0.423 0.575 0318  0.392 0.471 0.318
0-shot | TofG-1 0.521 0.102 0.544 0.601 0349 0.336 0.512 0.444

TofG-2 | 0.519  0.098 0.556 0.606 0348 0.327  0.532  0.448
Glo-GofT | 0.533  0.205 0.482 0.657 0.329  0.407  0.522 0.417

Full 0.483 0.263 0.543 0.752 0.636 0.602 0.649 0.664
TofG-0 | 0.500  0.210 0.377 0.641  0.557  0.420 0.632 0.478
5-shot | TofG-1 0.496  0.234 0.549 0.709  0.598  0.582 0.631 0.615

TofG-2 | 0.490  0.234 0.558 0.706  0.589  0.590 0.631 0.654
Glo-GofT | 0.479  0.257 0.512 0.726  0.623  0.592 0.635 0.629

Figure 3.3: Ablation studies results of zero- and five-shot settings. Here “Full” denotes
our full model.

the target domain.

3.4.4 Ablation Study

To investigate the effectiveness of our proposed model compared to simpler heuristics,
we conducted a series of ablation analyses. We began by considering textual embed-
dings obtained directly by applying the PLM to the Text of Graph views’ corpus
at different orders. This allowed us to assess the impact of our training procedure
compared to a simpler approach that relies solely on Text-of-Graph view representa-
tions. In addition, we compare our full model with a variant, Glo-GofT, which only
aligns the GNN embeddings that aggregate individual node’s text embeddings but
removes all higher-order Graph-of-Text embeddings. The results of these ablation
studies are presented in Table 3.3, which reveals that removing components of our
full model generally leads to a decrease in performance. In the zero-shot setting, the
full model outperforms the variant models by 2.79% to 8.49% on average, and ranges
from 1.74% to 9.71% in the five-shot setting. These results underscore the contribu-
tion of each component to TAGA’s overall effectiveness. In Appendix B.1.4, we have
shown additional ablation studies that evaluate how will aligning on different orders

of hierarchies will influence the representation due to space limitation.
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Figure 3.4: Comparison of five-shot performance between (top) different GNN encoder
choices, and (middle) varying jumping ratio, and (bottom) maximum walk length of
random walks.

3.4.5 Sensitivity Analysis

In this section, we investigate the sensitivity of the key hyperparameters and their
impact on TAGA’s performance. Specifically, we first evaluate how different GNN
backbones (GCN, GIN, and GraphSAGE) affect performance. Then we evaluate how
jumping ratio (p) and maximum walk length (L) would affect random walk’s perfor-
mance. The results are presented in Figure 3.4. The sensitivity analysis conducted on
TAGA’s performance demonstrates that the method is robust across a range of hyper-
parameters. Specifically, the variance in performance across different GNN backbones
is 0.84%, indicating a stable behavior regardless of the backbone employed. Similarly,
adjustments in the jumping ratio (p) and maximum walk length (L) exhibit 0.33%
and 0.76% variance on average, which underscores that our method is not sensitive

to the hyperparameters chosen.
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Figure 3.5: (top) Comparison of the full method and the random walk algorithm in
terms of the number of words, and (middle) training time, and (bottom) inference
time comparison between PLM and TAGA in terms of the number of hops.

3.4.6 Efficiency Analysis

To validate the efficiency and scalability of our proposed full method and random walk
algorithm during both training and inference phases, we conduct experiments on the
Cora dataset. We vary the number of hops from 0 to 5 and record the number of words
in the input corpus, training time, and inference time. The results are presented in
Figure 3.5. As depicted in top figure, the exponential growth in input size for the full
method compared to the near-linear growth of the random walk method demonstrates
the our’s superior scalability in managing larger graph neighborhoods. The middle
figure further demonstrates the efficiency advantage of the random walk algorithm,
as its training time increases linearly with the number of hops, whereas the full
method experiences a much steeper increase, becoming infeasible beyond 3 hops due

to out-of-memory (OOM) errors. Finally, the bottom figure highlights the speedup
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achieved by our proposed method during inference compared to directly using a PLM.
The inference time for our method remains linear growth trend across different hops,
while the PLM-based approach suffers from rapidly increasing inference time with

the hops number.

3.5 Conclusions

In this work, we study the problem of representation learning on information net-
works. We propose to use text description to unify diverse information network
domains to construct text-attributed graph structures. We introduce TAGA, a novel
self-supervised learning framework designed to address the challenges of unsupervised
representation learning on TAGs. TAGA integrates both textual and structural in-
formation within TAGs by aligning representations from two complementary views:
Tezxt-of-Graph and Graph-of-Text. To enhance the preservation of structural informa-
tion in the Text-of-Graph view, we propose a natural hierarchical document layout
that mirrors the graph’s topology. Additionally, we introduce a structure-preserving
random walk algorithm to accelerate the training process on large TAGs. Extensive
experiments on eight real-world datasets demonstrate TAGA’s superior performance
in zero-shot and few-shot learning scenarios, showcasing its strong generalization ca-

pabilities across diverse domains.
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Chapter 4

Enhancing (Generalizability and
Robustness of Learning Network

Representations

In this chapter, we introduce our proposed curriculum learning strategy to handle
the incompatibility between graph topological structure and other including data
modalities. Specifically, we introduce the background in Section 4.1 and related
works in Section 4.2. The proposed curriculum learning framework is presented in
Section 4.3. Extensive experiments are shown in Section 4.4. The conclusions are
presented in Section 4.5.

This chapter includes one published work [232], which was published in The 37th
Conference on Neural Information Processing Systems as a full research track paper,
titled “Curriculum learning for graph neural networks: Which edges should we learn

first”.
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4.1 Introduction

In real-world applications, the incompatibility between graph topology and other data
modalities often arises due to discrepancies and imperfections in how different types
of data represent relationships among entities [107, 111]. While the graph topology
captures structural connections through edges, other data modalities from physical
and information networks—such as spatial information or textual descriptions—may
reflect additional or alternative relationships not encoded in the graph [179]. This
misalignment can occur because of data quality issues like noise, missing values, or
outdated information, leading to edges that are unreliable or not representative of the
true underlying interactions. For example, in a citation network, the co-authorship
graph may not fully align with the topical similarities derived from the content of the
papers [169]. Such incompatibility poses significant challenges for graph representa-
tion learning, as traditional Graph Neural Networks (GNNs) assume that all edges
are equally informative and reliable [212]. Studying this incompatibility is crucial
for obtaining high quality representations that can intelligently reconcile differences
between the graph structure and other data modalities [210]. By addressing these
challenges, we can enhance the generalizability and robustness of GNNs, leading to
more accurate and meaningful representations in physical and information networks.
This, in turn, improves performance on downstream tasks like node classification,
link prediction, and community detection, ultimately enabling better insights and
decision-making in complex networked systems.

Inspired by cognitive science studies [59, 159] that humans can benefit from the
sequence of learning basic (easy) concepts first and advanced (hard) concepts later,
curriculum learning (CL) [15] suggests training a machine learning model with easy
data samples first and then gradually introducing more hard samples into the model
according to a designed pace, where the difficulty of samples can usually be measured

by their training loss [120]. Many previous studies have shown that this easy-to-hard
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learning strategy can effectively improve the generalization ability of the model [15,
103, 87, 76, 161, 197], and some studies [103, 87, 76] have shown that CL strategies
can also increase the robustness of the learned model against noisy training samples.
An intuitive explanation is that in CL settings noisy data samples correspond to
harder samples, and CL learner spends less time with the harder (noisy) samples to
achieve better generalization performance and robustness.

Although CL strategies have achieved great success in many fields such as com-
puter vision and natural language processing, existing methods are designed for
independent data (such as images) while designing effective CL methods for data
with dependencies has been largely underexplored. For example, in a citation net-
work, two researchers with highly related research topics (e.g. machine learning and
data mining) are more likely to collaborate with each other, while the reason be-
hind a collaboration of two researchers with less related research topics (e.g. com-
puter architecture and social science) might be more difficult to understand. Pre-
diction on one sample impacts that of another, forming a graph structure that en-
compasses all samples connected by their dependencies. There are many machine
learning techniques for such graph-structured data, ranging from traditional models
like conditional random field [166], graph kernels [180], to modern deep models like
GNN s [132, 133, 225, 184, 210, 81, 226, 190]. However, traditional CL strategies are
not designed to handle the curriculum of the dependencies between nodes in graph
data, which are insufficient. Handling graph-structured data require not only consid-
ering the difficulty in individual samples, but also the difficulty of their dependencies
to determine how to gradually composite correlated samples for learning.

As previous CL strategies indicated that an easy-to-hard learning sequence on
data samples can improve the generalization and robustness performance, an intuitive
question is whether a similar strategy on data dependencies that iteratively involves

easy-to-hard edges in learning can also benefit. Unfortunately, there exists no trivial
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way to directly generalize existing CL strategies on independent data to handle data
dependencies due to several unique challenges: (1) Difficulty in quantifying edge
selection criteria. Existing CL studies on independent data often use supervised
computable metrics (e.g. training loss) to quantify sample difficulty, but how to quan-
tify the difficulties of understanding the dependencies between data samples which
has no supervision is challenging. (2) Difficulty in designing an appropriate
curriculum to gradually involve edges. Similar to the human learning process,
the model should ideally retain a certain degree of freedom to adjust the pacing of
including edges according to its own learning status. As existing CL methods for
graph data typically use fixed pacing function to involve samples, they can not pro-
vide this flexibility. Designing an adaptive pacing function for handling graph data
is difficult since it requires joint optimization of both supervised learning tasks on
nodes and the number of chosen edges. (3) Difficulty in ensuring convergence
and a numerical steady process for CL in graphs. Discrete changes in the
number of edges can cause drift in the optimal model parameters between training
iterations. How to guarantee a numerically stable learning process for CL on edges is
challenging.

In order to address the aforementioned challenges, in this paper, we propose a
novel CL algorithm named Relational Curriculum Learning (RCL) to improve the
generalization ability and robustness of representation learners on data with depen-
dencies. To address the first challenge, we propose an approach to select the edges
by quantifying their corresponding difficulties in a self-supervised learning manner.
Specifically, for each training iteration, we choose K easiest edges whose correspond-
ing relations are most well-expected by the current model. Second, to design an
appropriate learning pace for gradually involving more edges in training, we present
the learning process as a concise optimization model, which automatically lets the

model gradually increase the number K to involve more edges in training according



97

to its own status. Third, to ensure convergence of optimizing the model, we propose
an alternative optimization algorithm with a theoretical convergence guarantee and
an edge reweighting scheme to smooth the graph structure transition. Finally, we
demonstrate the superior performance of RCL compared to state-of-the-art methods

through extensive experiments on both synthetic and real-world datasets.

4.2 Related Works

Curriculum Learning (CL). Bengio et al.[15] pioneered the concept of Curricu-
lum Learning (CL) within the machine learning domain, aiming to improve model
performance by gradually including easy to hard samples in training the model. Self-
paced learning [120] measures the difficulty of samples by their training loss, which
addressed the issue in previous works that difficulties of samples are generated by
prior heuristic rules. Therefore, the model can adjust the curriculum of samples ac-
cording to its own training status. Following works [102, 101, 237] further proposed
many supervised measurement metrics for determining curriculums, for example, the
diversity of samples [101] or the consistency of model predictions [237]. Meanwhile,
many empirical and theoretical studies were proposed to explain why CL could lead
to generalization improvement from different perspectives. For example, studies such
as MentorNet [103] and Co-teaching [87] empirically found that utilizing CL strategy
can achieve better generalization performance when the given training data is noisy.
[76] provided theoretical explanations on the denoising mechanism that CL learners
waste less time with the noisy samples as they are considered harder samples. Some
studies [15, 161, 197, 83, 117] also realized that CL can help accelerate the optimiza-
tion process of non-convex objectives and improve the speed of convergence in the
early stages of training.

Despite great success, most of the existing designed CL strategies are for inde-
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pendent data such as images, and there is little work on generalizing CL strategies
to handle samples with dependencies. Few existing attempts on graph-structured
data [124, 109, 128], such as [192, 38, 196, 128], simply treat nodes as independent
samples and then apply CL strategies on independent data, which ignore the fun-
damental and unique dependency information carried by the structure in data, and
thus can not well handle the correlation between data samples. Furthermore, these
models are mostly based on heuristic-based sample selection strategies [38, 196, 128],

which largely limit the generalizability of these methods.

Graph structure learning. Another stream of existing studies that are related
to our work is graph structure learning. Recent studies have shown that GNN mod-
els are vulnerable to adversarial attacks on graph structure [45, 203]. In order to
address this issue, studies in graph structure learning usually aim to jointly learn
an optimized graph structure and corresponding graph representations. Existing
works [60, 33, 107, 235, 138] typically consider the hypothesis that the intrinsic graph
structure should be sparse or low rank from the original input graph by pruning “ir-
relevant” edges. Thus, they typically use pre-deterministic methods [45, 239, 60] to
preprocess graph structure such as singular value decomposition (SVD), or dynam-
ically remove “redundant” edges according to the downstream task performance on
the current sparsified structure [33, 107, 138]. However, modifying the graph topology
will inevitably lose potentially useful information lying in the removed edges. More
importantly, the modified graph structure is usually optimized for maximizing the

performance on the training set, which can easily lead to overfitting issues.
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4.3 Relational Curriculum Learning

4.3.1 Preliminaries

Graph neural networks (GNNs) are a class of methods that have shown promising
progress in representing structured data in which data samples are correlated with
each other. Typically, the data samples are treated as nodes while their dependencies
are treated as edges in the constructed graph. Formally, we denote a graph as G =
(V,E), where V = {v,vg,...,un} is a set of nodes that N = |V| denotes the number
of nodes in the graph and £ C V x V is the set of edges. We also let X € RNV*?
denote the node attribute matrix and let A € RV*V represent the adjacency matrix.
Specifically, A;; = 1 denotes that there is an edge connecting nodes v; and v; € V,
otherwise A;; = 0. A GNN model f maps the node feature matrix X associated
with the adjacency matrix A to the model predictions y = f(X, A), and get the loss
Lony = L(y,y), where L is the objective function and y is the ground-truth label of
nodes. The loss on one node v; is denoted as l; = L(y;, y;)-

As previous CL methods have shown that an easy-to-hard learning sequence of
independent data samples can improve the generalization ability and robustness of the
representation learner, the goal of this paper is to develop an effective CL method on
data with dependencies, which is extremely difficult due to several unique challenges:
(1) Difficulty in designing a feasible principle to select edges by properly quantifying
their difficulties. (2) Difficulty in designing an appropriate pace of curriculum to
gradually involve more edges in training based on model status. (3) Difficulty in
ensuring convergence and a numerical steady process for optimizing the CL model.

In order to address the above challenges, we propose a novel CL. method named
Relational Curriculum Learning (RCL). The sequence, which gradually includes
edges from easy to hard, is called curriculum and learned in different grown-up stages

of training. In order to address the first challenge, we propose a self-supervised mod-
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Figure 4.1: The overall framework of RCL. (a) The Incremental Edge Selection mod-
ule first extracts the latent node embedding by the GNN model given the current
training structure, then jointly learns the node prediction label y and reconstructs
the input structure by a decoder. A small residual error on an edge indicates the corre-
sponding dependency is well expected and thus can be added to the refined structure
for the next iteration. (b) The iterative learning process of RCL. The model starts
with an empty structure and gradually includes more edges until the training struc-
ture converges to the input structure.

ule Incremental Edge Selection (IES), which is shown in Figure 4.1(a), to select the
K easiest edges at each training iteration that are mostly expected by the current
model. The details are elaborated in Section 4.3.2. To address the second challenge,
we present a joint optimization framework to automatically increase the number of
selected edges K given its own training status. The framework is elaborated in Fig-
ure 4.1(b) and details can be found in Section 4.3.3. Finally, to ensure convergence of
optimization and steady the numerical process, we propose an EM-style alternative
optimization algorithm with a theoretical convergence guarantee in Section 4.3.3 Al-
gorithm 1 and an edge reweighting scheme to smooth the discrete edge incrementing

process in Section 4.3.4.
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4.3.2 Incremental Edge Selection by Quantifying Difficulties

of Sample Dependencies

Here we propose a novel way to select edges by first quantifying their difficulty levels.
Existing works on independent data typically use supervised metrics such as training
loss of samples to quantify their difficulty level, but there exists no supervised metrics
on edges. To address this issue, we propose a self-supervised module Incremental
FEdge Selection (IES). We first quantify the difficulty of edges by measuring how well
the edges are expected from the currently learned embeddings of their connected
nodes. Then the most well-expected edges are selected as the easiest edges for the
next iteration of training. As shown in Figure 4.1(a), given the currently selected
edges at iteration t, we first feed them to the GNN model to extract the latent
node embeddings. Then we restore the latent node embeddings to the original graph
structure through a decoder, which is called the reconstruction of the original graph
structure. The residual graph R, which is defined as the degree of mismatch between
the original adjacency matrix A and the reconstructed adjacency matrix A®, can be
considered a strong indicator for describing how well the edges are expected by the
current model. Specifically, a smaller residual error indicates a higher probability of
being a well-expected edge.

With the developed self-supervised method to measure the difficulties of edges,
here we formulate the key learning paradigm of selecting the top K easiest edges. To
obtain the training adjacency matrix A®) that will be fed into the GNN model f®, we
introduce a learnable binary mask matrix S with each element S;; € {0, 1}. Thus, the
training adjacency matrix at iteration ¢ can be represented as A® = SO © A To filter
out the edges with K smallest residual error, we penalize the summarized residual
errors over the selected edges, which can be represented as ZZ ;SijRij. Therefore,

the learning objective can be presented as follows:
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minLgny + 8 Z SiiRij,
" (4.1)
st I8l 2 K,

where the first term Lgny = L(f(X, A®; w),y) is the node-level predictive loss,
e.g. cross-entropy loss for the node classification task. The second term ZZ i SijRi;
aims at penalizing the residual errors over the edges selected by the mask matrix
S. [ is a hyperparameter to tune the balance between terms. The constraint is to
guarantee only the most K well-expected edges are selected.

More concretely, the value of a residual edge AS) € [0,1] can be computed by a
MO0

z:’), e.g. the inner product kernel. Then the

non-parametric kernel function x(z;’, z;

residual error R;; between the input structure and the reconstructed structure can

be defined as HAS) — A

, where ||-|| is commonly chosen to be the squared ¢5-norm.

4.3.3 Automatically Control the Pace of Increasing Edges

In order to dynamically include more edges into training, an intuitive way is to iter-
atively increase the value of K in Equation 4.1 to allow more edges to be selected.
However, it is difficult to determine an appropriate value of K with respect to the
training status of the model. Besides, directly solving Equation 4.1 is difficult since
S is a binary matrix where each element S;; € {0,1}, optimizing S would require
solving a discrete constraint program at each iteration. To address this issue, we first
relax the problem into continuous optimization so that each S;; can be allowed to
take any value in the interval [0, 1]. Note that the inequality ||S||; > K in Eqn. 4.1
is equivalent to the equality ||S||; = K. This is because the second term in the loss
function would always encourage fewer selected edges by the mask matrix S, as all

values in the residual error matrix R and mask matrix S are nonnegative. Given
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Algorithm 3 Alternating Minimization Algorithm for Equation 4.2

Input Node features X, adjacency matrix A, a stepsize u and hyperparameter
Output The model parameter w of GNN model f.

1: Initialize w(©, SO X
2: while Not Converged do

3: w®) = argmin, L(f(X, AV w),y) + B3, Si Ag b Al +
3w —w]

4: Given w(®) | extract latent nodes embedding Z® from GNN model f

5: Calculate reconstructed structure AS) = m(zz(»t), z§t)) for all pairs of i, j

6: SO =argming 85, Sy || Ay — AY|| +g(S;0) + 1 ||S — st

7: Compute A®) =S & A

8: if A® £ A then increase \ by stepsize p

9: end while

10: return w

this, we can incorporate the equality constraint as a Lagrange multiplier and rewrite
the loss function as £ = Lanny + 832, SiyRi; — A(|[S[l1 — K). Considering that K
remains constant, the optimization of the loss function can be equivalently framed by
substituting the given constraint with a regularization term denoted as g(S;\). As

such, the overall loss function can be reformulated as:

13151,’1 Lonn + 8 Z SiRij +9(S; M), (4.2)
i.j
where g(S; A\) = A||S — A|| and ||-|| is commonly chosen to be the squared f3-norm.

Since the training adjacency matrix A® = S® © A, as A — oo, more edges in the
input structure are included until the training adjacency matrix A® converges to
the input adjacency matrix A. Specifically, the regularization term ¢(S;\) controls
the learning scheme by the age parameter A, where A = A(t) grows with the number
of iterations. By monotonously increasing the value of A, the regularization term
g(S; A) will push the mask matrix gradually converge to the input adjacency matrix
A, resulting in more edges automatically involved in the training structure.

Optimization of learning objective. In optimizing the objective function
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in Equation 4.2, we need to jointly optimize parameter w for GNN model f and
the mask matrix S. To tackle this, we introduce an EM-style optimization scheme
(detailed in Algorithm 3) that iteratively updates both. The algorithm uses the node
feature matrix X, the original adjacency matrix A, a step size u to control the age
parameter )\ increase rate, and a hyperparameter v for regularization adjustments.
Post initialization of w and S, it alternates between: optimizing GNN model f (Step
3), extracting latent node embeddings and reconstructing the adjacency matrix (Steps
4 & 5), refining the mask matrix using the reconstructed matrix and regularization,
and results in more edges are gradually involved (Step 6), updating the training
adjacency matrix (Step 7), and incrementing A when the training matrix A® differs

from input matrix A, incorporating more edges in the next iteration.

Theorem 6. We have the following convergence guarantees for Algorithm 3:

¢ Avoidance of Saddle Points. If the second derivatives of L(f(X, A®;w),y) and
g(S; \) are continuous, then for sufficiently large v, any bounded sequence (w®, S®)
generated by Algorithm 3 with random initializations will not converge to a strict
saddle point of F' almost surely.

e Second Order Convergence. If the second derivatives of L(f(X,A®:w),y)
and g(S; \) are continuous, and L(f(X, A®:w),y) and ¢(S; \) satisfy the Kurdyka-
Lojasiewicz (KL) property [183], then for sufficiently large -, any bounded sequence
(w®),S®) generated by Algorithm 3 with random initialization will almost surely

converge to a second-order stationary point of F'.

The proof of this theorem can be found in Appendix C.1.

4.3.4 Smooth Structure Transition by Edge Reweighting

Note that in the Algorithm 1, the optimization process requires iteratively updating

the parameters w of the GNN model f and current adjacency matrix A®, where
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A® varies discretely between iterations. However, GNN models mostly work in a
message-passing fashion, which computes node representations by iteratively aggre-
gating information along edges from neighboring nodes. Discretely modifying the
number of edges will result in a great drift of the optimal model parameters between
iterations. In Appendix Figure , we demonstrate that a shift in the optimal parame-
ters of the GNN results in a spike in the training loss. Therefore, it can increase the
difficulty of finding optimal parameters and even hurt the generalization ability of the
model in some cases. Besides the numerical problem caused by discretely increasing
the number of edges, another issue raised by the CL strategy in Section 4.3.2 is the
trustworthiness of the estimated edge difficulty, which is inferred by the residual er-
ror on the edges. Although the residual error can reflect how well edges are expected
in the ideal case, the quality of the learned latent node embeddings may affect the
validity of this metric and compromise the quality of the designed curriculum by the
CL strategy.

To address both issues, we propose a novel edge reweighting scheme to (1) smooth
the transition of the training structure between iterations, and (2) reduce the weight
of edges that connect nodes with low-confidence latent embeddings. Formally, we use
a smoothed version of structure A® to substitute A® for training the GNN model f

in step 3 of Algorithm 3, where the mapping from A® to A® can be represented as:

(4.3)

is the weight imposed on edge e;; at iteration t¢. 70

) .
v

where 7, is calculated by
considering the counted occurrences of edge e;; until the iteration ¢ and the confidence

of the latent embedding for the connected pair of nodes v; and v;:

7Ti(3t') = 1(ey;)p(vi) p(vj), (4.4)
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where 9 is a function that reflects the number of edge occurrences and p is a function
to reflect the degree of confidence for the learned latent node embedding. The details
of these two functions are described as follow.

Smooth the transition of the training structure between iterations. In
order to obtain a smooth transition of the training structure between iterations, we
take the learned curriculum of selected edges into consideration. Formally, we model
1 by a smooth function of the edge selected occurrences compared to the model

iteration occurrences before the current iteration:

Pei) = tley)/t, (4.5)

where ¢ is the number of current iterations and t(e;;) represents the counting number
of selecting edge e;;. Therefore, we transform the original discretely changing train-
ing structure into a smoothly changing one by taking the historical edge selection
curriculum into consideration.

Reduce the influence of nodes with low confidence latent embeddings.
As introduced in our Algorithm 1 line 6, the estimated structure A is inferred from
the latent embedding Z, which is extracted from the trained GNN model f. Such
estimated latent embedding may possibly differ from the true underlying embedding,
which results in the inaccurately reconstructed structure around the node. In order
to alleviate this issue, we model the function p by the training loss on nodes, which
indicates the confidence of their learned latent embeddings. This idea is similar to
previous CL strategies on inferring the difficulty of data samples by their supervised
training loss. Specifically, a larger training loss indicates a low confident latent node
embedding. Mathematically, the weights p(v;) on node v; can be represented as a

distribution of their training loss:

plv) ~ e (4.6)
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where [; is the training loss on node v;. Therefore, a node with a larger training loss

will result in a smaller value of p(v;), which reduces the weight of its connecting edges.

4.4 Experimental Results of RCL

In this section, the experimental settings are introduced first in Section 4.4.1, then
the performance of the proposed method on both synthetic and real-world datasets
are presented in Section 4.4.2. We further present the robustness test on our CL
method against topological structure noise in Section 4.4.3. We verify the effective-
ness of framework components through ablation studies in Section 4.4.4. Intuitive
visualizations of the edge selection curriculum are shown in Section 4.4.5. In addi-
tion, we measure the parameter sensitivity in Section 4.4.6 and running time analysis

in Section 4.4.7.

4.4.1 Experimental Settings

Synthetic datasets. To evaluate the effectiveness of our proposed method on
datasets with ground-truth difficulty labels on structure, we first follow previous
studies [110, 1] to generate a set of synthetic datasets, where the difficulty of edges
in generated graphs are indicated by their formation probability. Specifically, as
shown in Figure 4.2, each generated graph is with 5,000 nodes, which are divided
into 10 equally sized node classes 1,2,...,10. The node features are sampled from
overlapping multi-Gaussian distributions. Each generated graph is associated with a
homophily coefficient (homo) which indicates the likelihood of a node forming a con-
nection to another node with the same label (same color in Figure 4.2). For example,
a generated graph with homo = 0.5 will have on average half of the edges formed be-
tween nodes with the same label. For the rest edges that are formed between nodes

with different labels (different colors in Figure 4.2), the probability of forming an edge
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Figure 4.2: Visualization of synthetic datasets. Each color represents a class of nodes.
Node attributes are sampled from overlapping multi-Gaussian distributions, where the
attributes of nodes with close labels are likely to have short distances. Homogeneous
edges represent edges that connect nodes of the same class (with the same color).
The probability of connecting two nodes of different classes decreases with the dis-
tance between the center points of their class distribution. Therefore, the formation
probability of a node denotes the edge difficulty, since edges between nodes with close
classes are more likely to positively contribute to the prediction under the homoge-
neous assumption.

is inversely proportional to the distances between their labels. Mathematically, the
probability of forming an edge between node u and node v follows p,_,, oc e~lev=cl,
where the distances between labels |¢, —c¢,| means shortest distance of two classes on a
circle. Therefore, the probability of forming an edge in the synthetic graph can reflect
how well this edge is expected. Specifically, edges with a higher formation probability,
e.g. connecting nodes with the same label or close labels, meaning that there is a
higher chance that this connection will positively contribute to the prediction (less
chance to be a noisy edge). Conversely, edges with a lower formation probability, e.g.,
connecting nodes with faraway labels, mean that there is a higher chance that this
connection will negatively contribute to the prediction (higher chance to be a noisy

edge). We vary the value of homo from 0.1,0.2,...,0.9 to generate nine graphs in
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total. Similar to previous works [110, 1], we randomly partition each synthetic graph

into equal-sized train, validation, and test node splits.

Real-world datasets. To further evaluate the performance of our proposed method
in real-world scenarios, nine benchmark real-world attributed network datasets, in-
cluding four citation network datasets Cora, Citeseer, Pubmed [215] and ogbn-arxiv [94],
two coauthor network datasets CS and Physics [125], two Amazon co-purchase net-
work datasets Photo and Computers [125], and one protein interation network ogbn-
proteins [94]. We follow the data splits from [31] on citation networks and use a
5-fold cross-validation setting on coauthor and Amazon co-purchase networks. All
datasets are publicly available from Pytorch-geometric library [66] and Open Graph

Benchmark (OGB) [94], where basic statistics are reported in Table 4.2.

Comparison methods. We incorporate three commonly used GNN models, in-
cluding GCN [116], GraphSAGE [85], and GIN [211], as the baseline model and also
the backbone model for RCL. In addition to evaluating our proposed method against
the baseline GNNs, we further leverage two categories of state-of-the-art comparison
methods in the experiments: (1) We incorporate four graph structure learning meth-
ods GNNSVD [60], ProGNN [107], NeuralSparse [235], and PTDNet [138]; (2) We
further compare with a curriculum learning method named CLNode [196] which grad-
ually select nodes in the order of the difficulties defined by a heuristic-based strategy.
The following describes the details of our comparison models.

Graph Neural Networks (GNNs). We first introduce three baseline GNN
models as follows.

(i) GCN. Graph Convolutional Networks (GCN) [116] is a commonly used GNN,
which introduces a first-order approximation architecture of the Chebyshev spectral
convolution operator;

(ii) GIN. Graph Isomorphism Networks (GIN) [211] is a variant of GNN, which
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has provably powerful discriminating power among the class of 1-order GNNss;

(iii) GraphSage. GraphSage [85] is a GNN method that computes the hid-
den representation of the root node by aggregating the hidden node representations
hierarchically from bottom to top.

Graph structure learning. We then introduce four state-of-the-art methods
for jointly learning the optimal graph structure and downstream tasks.

(i) GNNSVD. GNNSVD [60] first apply singular value decomposition (SVD) on
the graph adjacency matrix to obtain a low-rank graph structure and apply GNN on
the obtained low-rank structure;

(ii) ProGNN. ProGNN [107] is a method to defend against graph adversarial
attacks by obtaining a sparse and low-rank graph structure from the input structure;

(iii) NeuralSparse. NeuralSparse [235] is a method to learn robust graph rep-
resentations by iteratively sampling k-neighbor subgraphs for each node and sparsing
the graph according to the performance on the node classification;

(iv) PTDNet. PTDNet [138] learns a sparsified graph by pruning task-irrelevant
edges, where sparsity is controlled by regulating the number of edges.

Curriculum learning on graph data. We introduce a recent curriculum learn-
ing work on node classification as follows.

(i) CLNode. CLNode [196] regards nodes as data samples and gradually incor-
porates more nodes into training according to their difficulty. They apply a heuristic-
based strategy to measure the difficulty of nodes, where the nodes that connect neigh-

boring nodes with different classes are considered difficult.

Initializing graph structure by a pre-trained model. It is worth noting that
the model needs an initial training graph structure A% in the initial stage of training.
An intuitive way is that we can initialize the model to work in a purely data-driven

scenario that starts only with isolated nodes where no edges exist. However, an
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instructive initial structure can greatly reduce the search cost and computational
burden. Inspired by many previous CL works [197, 83, 103, 237] that incorporate
prior knowledge of a pre-trained model into designing curriculum for the current
model, we initialize the training structure A by a pre-trained vanilla GNN model
f*. Specifically, we follow the same steps from line 4 to line 7 in the algorithm 1 to
obtain the initial training structure A but the latent node embedding is extracted

from the pre-trained model f*.

Implementation Details. We use the baseline model (GCN, GIN, GraphSage) as
the backbone model for both our RCL method and all comparison methods. For a
fair comparison, we require all models follow the same GNN architecture with two
convolution layers. For each split, we run each model 10 times to reduce the variance
in particular data splits. Test results are according to the best validation results.
General training hyperparameters (such as learning rate or the number of training
epochs) are equal for all models. For the pre-trained model to initialize the training
structure, we utilize the same model as the backbone model utilized by our method.
For example, if we use GCN as the backbone model for RCL, the pre-trained model
to initialize is also GCN. All experiments are conducted on a 64-bit machine with
four NVIDIA Quadro RTX 8000 GPUs. The proposed method is implemented with

Pytorch deep learning framework [155].

4.4.2 Effectiveness Results

Table 4.1 presents the node classification results of the synthetic datasets. We re-
port the average accuracy and standard deviation for each model against the homo
of generated graphs. From the table, we observe that our proposed method RCL
consistently achieves the best or most competitive performance to all the compari-

son methods over three backbone GNN architectures. Specifically, RCL outperforms
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Homo ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
GCN 50.84+1.03  56.50£0.50  65.17£0.48  77.94+0.54  87.15+0.44  93.27+0.24  97.48+0.25  99.10£0.17  99.93£0.03
GNNSVD 54.96£0.76  58.454£0.56  63.06£0.63  70.23£0.61  80.51+0.41  85.02£0.46  90.3140.27  94.23£0.22  96.74£0.23
ProGNN 47.87£0.87  54.59£0.55  65.39£0.44  76.96£0.49  87.76+0.51  93.16+£0.34  97.60£0.31  99.04+0.19 99.9440.03
NeuralSparse | 51.42+1.35  57.994+0.69  65.10£0.43  75.37+£0.34  87.40+0.29  93.5440.28  97.16+£0.15  99.01+0.22  99.8340.07
PTDNet 48.21£1.98  55.524+2.82  65.82+£0.94  79.37£0.45  89.174+0.39  94.19£0.18  98.6140.12  99.51+0.09  99.81£0.05
CLNodes 50.37£0.73  56.64+0.56  65.04+£0.66  77.52+0.48  86.85+0.44  93.10£0.47  97.34£0.25  99.02+0.18  99.884+0.04
RCL 57.57+£0.43 62.06+£0.28 73.98+0.55 84.54+0.75 92.69+0.09 97.42+0.17 99.62+0.05 99.894+0.02 99.93£0.06
GIN 48.33+£1.89  53.62+£1.39  64.08%£0.99  77.55£1.10  85.31£0.75  90.57+0.36  97.82+£0.18  99.59£0.11  99.91£0.02
GNNSVD 43.21+£1.60  45.68+£1.66  54.90£1.16  68.29+0.79  79.76+0.52  85.63+£0.44  93.65£0.39  97.224+0.17  98.9440.17
ProGNN 45.76£1.40  52.96£1.01  64.12£1.07  76.95£0.87  85.13+0.71  89.96£0.55  96.5440.48  99.51£0.12  99.78+0.05
NeuralSparse | 50.23+2.05  54.12+1.52  62.81+0.75  76.98+1.17  85.14£0.94  92.57+0.44  98.02+£0.20  99.614+0.12  99.91+0.05
PTDNet 53.23£2.76  56.124+2.03  65.81+1.38  77.81£1.02  86.14+0.65  93.21£0.74  97.084+0.41  99.51+0.18  99.91£0.03
CLNodes 45.36£1.42  51.10£1.15  62.53+0.88  75.83£1.07  87.76+0.90 94.25+0.44 98.30+0.26 99.60£0.09 99.9240.03
RCL 57.63+0.66 62.084+1.17 71.02+0.61 80.61+0.69 88.62+0.43 94.88+0.36 98.19£0.19  99.3240.08  99.89+0.04
GraphSAGE | 62.57+£0.55  67.33+0.64  71.06+£0.74  80.88+0.54  85.884+0.51  91.42+0.37  95.264+0.33  97.78+0.16  99.52+0.13
GNNSVD 64.42+0.80  65.71£0.39  67.12£0.58  68.47+£0.50  77.70+0.65  82.86+0.50  87.81£0.71  91.61£0.55  95.01£0.50
ProGNN 58.57+2.09  66.75+£0.91  72.14+£0.64  81.27+0.44  86.89+0.47  92.10+0.39  95.21£0.30  97.51£0.23  99.50+0.11
NeuralSparse | 61.70£0.77  66.65+0.66 ~ 70.60£0.79  79.65+£0.45  84.19+0.91  91.314£0.54  94.86+£0.53  97.16+0.23  99.5540.19
PTDNet 65.72+1.08  69.25+0.92  72.60£0.77  79.65+0.45  86.54+0.56  91.79+0.53  96.10£0.58  97.98+0.13 99.78+0.08
CLNodes 69.41+£0.66 70.83£0.58  75.5140.36  82.65+£0.43  87.084+0.56  91.58+0.41  95.91£0.38  98.334+0.26  99.57+0.14
RCL 68.03+£0.37 71.39+0.51 76.99+0.99 83.761+0.55 88.24+0.30 93.3440.56 97.66+0.52 98.86+0.28 99.64+0.08

Table 4.1: Node classification accuracy on synthetic datasets (%). The best-
performing method on each backbone GNN model is highlighted in bold, while the
second-best method is underlined. In situations where RCL’s performance is not
strictly the best among all methods, we can see that almost all methods can achieve
a near-perfect performance and RCL is still close to the best methods.

the second best method on average by 4.17%, 2.60%, and 1.06% on GCN, GIN, and
GraphSAGE backbones, respectively. More importantly, the proposed RCL method
performs significantly better than the second best model when the homo of gener-
ated graphs is low (< 0.5), on average by 6.55% on GCN, 4.17% on GIN, and 2.93%
on GraphSAGE backbones. These demonstrate that our proposed RCL method sig-
nificantly improves the model’s capability of learning an effective representation to
downstream tasks especially when the edge difficulties vary largely in the data.

We report the experimental results of the real-world datasets in Table 4.2. The
results demonstrate the strength of our proposed method by consistently achieving
the best results in all 9 datasets by GCN backbone architecture, all 9 datasets by
GraphSAGE backbone architecture, and 8 out of 9 datasets by GIN backbone ar-
chitecture. Specifically, our proposed method improved the performance of baseline
models on average by 1.86%, 2.83%, and 1.62% over GCN, GIN, and GraphSAGE,
and outperformed the second best models model on average by 1.37%, 2.49%, and

1.22% over the three backbone models, respectively. The results demonstrate that
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Cora Citeseer Pubmed CS Physics Photo Computers ogbn-arxiv ogbn-proteins
# nodes 2,708 3,327 19,717 18,333 34,493 7,650 13,752 169,343 132,534
# edges 10,556 9,104 88,648 163,788 495,924 238,162 491,722 1,166,243 39,561,252
# features 1,433 3,703 500 6,805 8,415 745 767 100 8
GCN 85.744+0.42  78.934+0.32  87.914+0.09  93.03+0.32  96.554+0.15  93.254+0.70  88.09+0.40  71.7440.29 72.5140.35
GNNSVD 83.24+1.03  74.80+£0.87  88.81+0.38  93.794+0.11  96.11+0.13  89.63+£0.73  86.49+0.77  67.44%0.51 66.92+0.64
ProGNN 85.664+0.61  74.784+0.55  87.2240.33  94.0440.19  96.75+0.26  92.07+0.67  88.72+0.59 (OOM) (OOM)
NeuralSparse | 85.954+0.98  76.2440.48  86.834+0.40  92.314£0.47  95.56+0.30  90.57+0.90  88.6240.83 (OOM) (OOM)
PTDNet 83.8440.95  77.5440.42  87.894+0.08  93.60+0.43  96.56+0.09  88.924+0.87  87.52£0.70 (OOM) (OOM)
CLNode 85.674+0.33  78.9940.57  89.5040.28  93.83+0.24  95.764+0.16  93.394+0.83  89.28+0.38  70.95+0.18 71.4040.32
RCL 87.15+0.44 79.79+0.55 89.79+0.12 94.66+0.32 97.02+0.23 94.41+0.76 90.23+0.23 74.084+0.33  75.19+0.26
GIN 84.434+0.65  74.87£0.20  85.72+0.40  91.484+0.36  95.62+0.30  93.02£0.91  86.94+£1.58  69.26+0.34 74.51£0.32
GNNSVD 82.23+0.65  72.114+0.70  88.3140.15  91.404+0.87  95.304+0.29  89.49+1.11  82.66+£2.26  67.7940.41 70.6540.53
ProGNN 85.024+0.41 78.12+0.93 87.8240.51 (OOM) (OOM) 92.23+0.67  83.54+1.48 (OOM) (OOM)
NeuralSparse | 84.92+0.58  75.44+0.87  86.114+0.49  89.66+0.82  95.05£0.57  93.2840.83  87.22+0.54 (OOM) (OOM)
PTDNet 83.024+1.01  75.004+0.74  88.044+0.29  91.014+0.21  95.574+0.40  90.70+0.76  87.08+0.65 (OOM) (OOM)
CLNode 83.524+0.77  75.8240.58  86.92+0.61  91.71+0.41  95.75+0.46  92.784+0.90  85.93+1.53  70.58+0.17 73.9740.31
RCL 86.64+0.39 77.60+£0.18 89.174+0.29 93.9240.27 96.75+0.17 93.884+0.51 89.76+0.19 72.5540.15  78.76+0.22
GraphSAGE | 86.224+0.27  77.2740.23  88.504+0.16  94.2240.18  96.26+0.34 ~ 93.8240.51  88.62+0.21  71.49+0.27 77.6840.20
GNNSVD 83.114+0.82  73.19+0.49  88.424+0.38  93.86+0.36  95.96+0.12  89.31+0.53  81.46+£1.15  69.82+0.34 71.8240.39
ProGNN 86.234+0.42  74.45+£0.83  88.52+0.45 (OOM) (OOM) 90.8940.69  89.34+0.54 (OOM) (OOM)
NeuralSparse | 84.60+0.52  76.3240.55  89.024+0.39  93.89+0.58  96.67+0.20  90.78+1.06  88.3740.37 (OOM) (OOM)
PTDNet 86.03+0.60  76.07£0.58  86.78+0.45  93.78+0.43  95.324+0.31  92.96+£0.87  84.89+1.47 (OOM) (OOM)
CLNode 86.604+0.64  77.23+0.54  88.76+0.57  94.13+0.34  96.87+0.45  93.90+0.42  89.57+0.62  71.5440.20 78.40+0.41
RCL 86.90+0.39 78.95+0.18 90.14+0.43 95.05+0.23 96.88+0.19 95.06+0.52 90.47+0.38 73.13+0.14  79.89+0.35

Table 4.2: Node classification results on real-world datasets (%). The best-performing
method on each backbone is highlighted in bold and second-best is underlined.
(OOM) shorts for out-of-memory.

the proposed RCL method consistently improves the performance of GNN models in
real-world scenarios.

Our experimental results are statically sound. In 43 out of 48 tasks our method
outperforms the second-best performing model with strong statistical significance.
Specifically, we have in 30 out of 43 cases with a significance p < 0.001, in 8 out of
43 cases with a significance p < 0.01, and in 5 out of 43 cases with a significance
p < 0.05. Such statistical significance results can demonstrate that our proposed

method can consistently perform better than the baseline models in both scenarios.

4.4.3 Robustness Analysis Against Topological Noise

To further examine the robustness of the RCL method on extracting powerful repre-
sentation from correlated data samples, we follow previous works [107, 138] to ran-
domly inject fake edges into real-world graphs. This adversarial attack can be viewed
as adding random noise to the topological structure of graphs. Specifically, we ran-

domly connect M pairs of previously unlinked nodes in the real-world datasets, where



114

Cora, GCN Cora, GIN Citeseer, GCN Citeseer, GIN
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Figure 4.3: Node classification accuracy (%) on Cora and Citeseer under random
structure attack. The attack edge ratio is computed versus the original number of
edges, where 100% means that the number of inserted edges is equal to the number
of original edges.

the value of M varies from 10% to 100% of the original edges. We then train RCL and
all the comparison methods on the attacked graph and evaluate the node classification
performance. The results are shown in Figure 4.3, we can observe that RCL shows
strong robustness to adversarial structural attacks by consistently outperforming all
compared methods on all datasets. Especially, when the proportion of added noisy
edges is large (> 50%), the improvement becomes more significant. For instance,
under the extremely noisy ratio at 100%, RCL outperforms the second best model
by 4.43% and 2.83% on Cora dataset, and by 6.13%, 3.47% on Citeseer dataset, with
GCN and GIN backbone models, respectively.

To investigate the effectiveness of our proposed model with some simpler heuris-
tics, we deploy a series of abalation analysis. We first train the model with node
classification task purely and select the top K expected edges as suggested by the re-
viewer. Specifically, we follow previous works [191, 196] using two classical selection

pacing functions as follows:

t t
Linear: Kjpear(t) = ?|E|, Root: Kioe(t) = ”T’EL

where t is the number of current iterations and 7T is the number of total iterations,
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Syntheticl Synthetic2 Citeseer CS Computers

Full 73.98+0.55 97.42+0.17 79.79+0.55 94.66+0.22 90.23+0.23
Curriculum-linear 70.93+£0.54  95.19£0.19  79.04£0.38  94.144+0.26  89.28+0.21
Curriculum-root 70.13+£0.72  95.50+£0.18  78.27£0.54  94.47+0.34  89.2740.15
Random-linear 58.76+0.46  89.78+0.11  77.434+0.49  92.76+0.14  88.76+0.18
Random-root 61.04£0.20  91.04£0.09  76.814+0.35  92.924+0.15  88.81+0.28
w/o edge appearance | 70.70+0.43 95.77+0.16  77.77£0.65  94.39+0.21  89.56%0.30
w/o0 node confidence | 72.38+0.41 96.86+£0.17  78.72+0.72  94.34+0.13  90.03£0.62
w/o pre-trained model | 72.56+0.69 93.89+0.14  78.2840.77  94.504+0.14  89.80+0.55

Table 4.3: Ablation study. Here “Full” represents the original method without re-
moving any component. The best-performing method on each dataset is highlighted
in bold.

and |E| is the number of total edges. We name these two variants Curriculum-linear
and Curriculum-root, respectively. In addition, we also remove the edge difficulty
measurement module and use random selection instead. Specifically, we gradually
incorporate more edges into training in random order to verify the effectiveness of the
learned curriculum. We name two variants as Random-linear and Random-root with
the above two mentioned pacing functions, respectively.

In order to further investigate the impact of the proposed components of RCL. We
also first consider variants of removing the edge smoothing components mentioned
in Section 4.3.4. Specifically, we consider two variants w/o EC and w/o NC, which
remove the smoothing function of the edge occurrence ratio and the component to
reflect the degree of confidence for the latent node embedding in RCL, respectively.
In addition to examining the effectiveness of edge smoothing components, we further
consider a variant w/o pre-trained model that avoids using a pre-trained model to
initialize model, which is mentioned in Section 4.4.1, to initialize the training structure
by a pre-trained model and instead starts with inferred structure from isolated nodes

with no connections.
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Figure 4.4: Visualization of edge selection process during training.

4.4.4 Ablation Study

We present the results of two synthetic datasets (homophily coefficient= 0.3,0.6)
and three real-world datasets in Table 4.3. We summarize our findings from the
above table as below: (i) Our full model consistently outperforms the two variants
Curriculum-linear and Curriculum-root by an average of 1.59% on all datasets, sug-
gesting that our pacing module can benefit model training. It is worth noting that
these two variants also outperform the baseline vanilla GNN model Vanilla by an av-
erage of 1.92%, which supports the assumption that even a simple curriculum learning
strategy can still improve model performance. (ii) We observe that the performance
of the two variants Random-linear and Random-root on all datasets drops by 3.86%
on average compared to the variants Curriculum-linear and Curriculum-root. Such
behavior demonstrates the effectiveness of our proposed edge difficulty quantifica-
tion module by showing that randomly involving edges into training cannot benefit
model performance. (iii) We can observe a significant performance drop consistently
for all variants that remove the structural smoothing techniques and initialization
components. The results validate that all structural smoothing and initialization

components can benefit the performance of RCL on the downstream tasks.
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4.4.5 Visualization of Learned Edge Selection Curriculum

Besides the effectiveness and robustness of the RCL method on downstream clas-
sification results, it is also interesting to verify whether the learned edge selection
curriculum satisfies the rule from easy to hard. Since real-world datasets do not have
ground-truth labels of difficulty on edges, we conduct visualization experiments on
synthetic datasets, where the difficulty of each edge can be indicated by its formation
probability. Specifically, we classify edges into three balanced categories according
to their difficulty: easy, medium, and hard. Here, we define all homogenous edges
that connect nodes with the same class as easy, edges connecting nodes with adjacent
classes as medium, and the remaining edges connecting nodes with far away classes
as hard. We report the proportion of edges selected for each category during training
in Figure 4.4. We can observe that RCL can effectively select most of the easy edges
at the early stage of training, then more easy edges and most medium edges are grad-
ually included during training, and most hard edges are left unselected until the end
stage of training. Such edge selection behavior is highly consistent with the core idea
of designing a curriculum for edge selection, which verifies that our proposed method
can effectively design curriculums to select edges according to their difficulty from

easy to hard.

4.4.6 Effectiveness Experiments on Heterophilic Datasets

In order to further verify the effectiveness of our proposed strategy on heterophilic
graph datasets, we have included new experiments on six real-world heterophilic
datasets. As shown in Table 4.4, our method consistently improve performance of
backbone GNN models on these heterophilic datasets. Secifically, RCL outperforms
the second best method on average by 5.04%, and 4.55%, on GCN and GIN backbones,

respectively. The results can demonstrate our method is not limited to homophily
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Dataset ‘ Edge homo ratio ‘ GCN  GCN-RCL ‘ GIN  GIN-RCL

Texas 0.11 0.5645 0.6006 0.5885 0.6156
Cornell 0.30 0.4084 0.5045 0.4234  0.4925
Wisconsin 0.21 0.4923 0.5294 0.5141  0.5599
Actor 0.22 0.2868 0.3186 0.2678  0.3006
Squirrel 0.22 0.2743  0.2999 0.2347  0.2519
Chameleon 0.23 0.3625 0.4385 0.3233  0.4033

Table 4.4: Node classfication results for six real-world heterophilic datasets, where
the best performance of each model category in one dataset is highlighted.

Synthetic Citeseer Computers ogbn-arxiv ogbn-proteins
Vanilla 7.32s 3.90s 16.88s 55.22s 1438.23s
GNNSVD 11.49s 3.82s 35.96s 135.72s 2632.42s
CLNode 6.29s 3.96s 17.02s 58.53s 1545.53s
ProGNN 220.25s 72.42s 1953.23s (-) (-)
NeuralSparse | 310.02s  88.91s  6553.34s (-) (-)
PTDNet 153.43s  48.42s  2942.02s () (-)
Ours 4.07s 2.42s 14.62s 71.49s 2239.05s

Table 4.5: Running time of our method and comparison methods. Here (-) denotes
an out-of-memory error and Vanilla denotes the standard GNN model.

graphs.

Although the inner product decoder utilized in experiments might imply an un-
derlying homophily assumption, our method can still benefit from leveraging the
edge curriculum present within the input datasets. A reasonable explanation is that
standard GNN models are usually struggled with the heterophily edges, while our
methodology designs a curriculum allowing more focus on homophily edges, which

potentially leads to the observed performance boost.

4.4.7 Time Complexity Analysis

Here we consider GCN as the backbone. First, the time complexity of an L-layer
GOCN is O(L|E|b + L|V|b?) , where b is the number of node attributes. Second, the
time complexity of measuring the difficulty levels of edges by reconstruction is O(|€|d)

where d is the number of latent embedding dimensions. Third, the time complexity
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Figure 4.5: Parameter sensitivity analysis on four datasets. Here a larger value of
A means the training structure will converge to the original structure at an earlier
training stage.

of selecting the edges to add is O(|€]) . Therefore, the total time complexity of our
algorithm is O(|E|(Lb + d) + L|V|b?) .

In addition, we compare the total running time of our method and all comparison
methods in the Table 4.5. We can observe that the running time of our proposed
method is comparable to that of standard GNN models in all datasets. Notably, our
method is even faster than standard GNN models in some datasets. One possible
reason is that at the beginning of training, the graphs in our model have much fewer
edges than those in standard GNN models. Therefore, the computational cost of the
GNN model is also reduced.

4.4.8 Parameter Sensitivity Analysis

Recall that RCL learns a curriculum to gradually add edges in a given input graph
structure to the training process until all edges are included. An interesting question
is how the speed of adding edges will affect the performance of the model. Here we
conduct experiments to explore the impact of age parameter A which controls the
speed of adding edges to the model performance. Here a larger value of A means that
the training structure will converge to the input structure earlier. For example, A = 1
means that the training structure will probably not converge to the input structure
until the last iteration, and A = 5 means that the training structure will converge to

the input structure around half of the iterations are complete, and then the model will
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Figure 4.6: The comparison between our full model and the version without smoothing
technique on the training loss trend.

be trained with the full input structure for the remaining iterations. We present the
results on two synthetic datasets (homophily coefficient= 0.3,0.6) and two real-world
datasets in Figure 4.5. As can be seen from the figure, the classification results are
steady that the average standard deviation is only 0.41%. It is also worth noting that
the peak values for all datasets consistently appear around A = 3, which indicates
that the best performance is when the training structure converges to the full input

structure around two-thirds of the iterations are completed.

4.4.9 Visualization of Importance on Smoothing Component

Our experimental results demonstrated the importance of applying our smoothing
component in stablizing the optimization process of training. Figure 4.6 shows that
without the smoothing technique, the training loss spiked that reflects the GNN pa-
rameter shifts, which was caused by the number of edges discretely changed. However,
after adding the smoothing technique, the training loss can smoothly converge, hence,

the smoothing technique plays an important role in stabilizing the training process.
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Dataset | PNA  PNA-RCL PNA-linear PNA-root | GCN  GCN-RCL GCN-linear GCN-root
Synthetic-0.3 | 0.6982  0.7667 0.7463 0.7445 | 0.6517  0.7398 0.6641 0.6533
Synthetic-0.5 | 0.8742  0.9016 0.8476 0.8704 | 0.8715  0.9269 0.8494 0.8854
Synthetic-0.7 | 0.9658  0.9821 0.9514 0.9766 | 0.9748  0.9962 0.9712 0.9796
Cora 0.8310  0.8521 0.8145 0.8254 | 0.8574  0.8715 0.8327 0.8553
Citeseer 0.7478  0.7652 0.7482 0.7505 | 0.7893  0.7979 0.7723 0.7814
Computers | 0.8989  0.9096 0.8866 0.8975 | 0.8809  0.9023 0.8713 0.8985
ogbn-arxiv. | 0.7175  0.7441 0.6980 0.7242 | 0.7174  0.7408 0.7288 0.7359

Table 4.6: Node classfication results for our method and traditional CL methods
using PNA and GCN as backbone. Here ‘-RCL’ denotes our method, while ‘-linear’
and ‘-root’ denotes two traditional CL methods with different pacing functions.

4.4.10 Effectiveness Experiments on PNA Backbone Model

In Table 4.6, new experiments that adopt modern GNN architecture - PNA model [43]
have been added. From the table we can observe that our proposed method improves
the performance of PNA backbone by 2.54% on average, which further verified the
effectiveness of our method under different choices of backbone GNN model.

In addition, in Table 4.6 we further include two traditional CL methods for inde-
pendent data as additional baselines, following classical works [15, 120]. We employed
the supervised training loss of a pretrained GNN model as the difficulty metric, and
selected two well-established pacing functions for curriculum design: linear and root

pacing, defined as follows:

t
Linear: Kinear(t) = T|V|;

t
Root: Kioet(t) = “T|V|’

where t is the number of current iterations and 7' is the number of total iterations,
and |V is the number of nodes.

We utilized GCN and PNA as backbone architectures, identified by the suffixes
"-linear’ and ’-root’. Across all datasets, the results consistently demonstrate that our

proposed method outperforms traditional CL approaches.
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Dataset | Method | 0%  10%  20%  30%  40%  50%  60%  70%  80%  90%
Cora | PNA 0.8310 0.7911 0.7621 0.7402 0.7331 0.7210 0.6894 0.7042 0.6792 0.6617
Cora | PNA-RCL | 0.8521 0.8315 0.8162 0.7969 0.7992 0.7951 0.7571 0.7642 0.7457 0.7371
Citeseer | PNA 0.7478 0.7195 0.7184 0.6934 0.6952 0.6920 0.6852 0.6552 0.6481 0.6327

Citeseer | PNA-RCL | 0.7652 0.7422 0.7222 0.7254 0.7041 0.7012 0.6953 0.6921 0.6884 0.6794

Table 4.7: Further robustness test using PNA as backbone model. Here the percent-
age denotes the ratio of number of added random edges to the original edges.

4.4.11 Robustness Experiments on PNA Backbone Model

We present further robustness test against random noisy edges by using the PNA
backbone model. The results are shown in Table 4.7, which further proves that our
curriculum learning approach improves the robustness against edge noise with the

advanced PNA model as the backbone.

4.5 Conclusion

We focus on developing a novel CL method to improve the generalization ability and
robustness of GNN models on learning representations of data samples with depen-
dencies. The proposed method Relational Curriculum Learning (RCL) effectively
addresses the unique challenges in designing CL strategy for handling dependen-
cies. First, a self-supervised learning module is developed to select appropriate edges
that are expected by the model. Then an optimization model is presented to itera-
tively increment the edges according to the model training status and a theoretical
guarantee of the convergence on the optimization algorithm is given. Finally, an
edge reweighting scheme is proposed to steady the numerical process by smoothing
the training structure transition. Extensive experiments on synthetic and real-world
datasets demonstrate the strength of RCL in improving the generalization ability and

robustness.
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Chapter 5

Conclusions

The main goal of this dissertation research is to advance representation learning meth-
ods for both physical and information networks by jointly incorporating additional
physical or abstract information, the graph’s topological structure, and their critical
interplay. Our aim is to develop a general foundational model that can be applied
across diverse data domains. Additionally, we seek to address significant real-world
challenges in foundational models, including issues related to data quality, such as
label scarcity, noisy data, and the incompatibility between topological structures and
other modalities. To achieve this primary goal, there are three sub-goals focused on
different aspects of representation learning for graph-structured data: Data, Model
and Task. As illustrated in Figure 5.1, these three key components form the general
working pipeline for extract high quality representations from graph structured data.

First, from the data perspective, we aim to combine graph data with other key
data modalities to enrich the semantic information of the learned representations.
This will be achieved by leveraging the incremental information provided by the
graph structure, other data modalities, and their crucial interplay. In my proposed
research, we focus on two fundamental data modalities to equipped with graph data:

spatial data and textual data.
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Figure 5.1: Ilustration of general work pipeline of representation learning on graphs
structured data.

1. For physical networks that combine graph and spatial data, our proposed SGMP
method has demonstrated strong discriminative power on Euclidean spatial
networks, achieving high predictive performance on extensive biomedical and
chemical benchmark datasets. Additionally, we have extended the framework
to handle non-Euclidean spatial networks in manifold spaces. The method can
also be generalized to special cases such as spatial trees, significantly improving

predictive performance in neuron cell prediction and river network prediction.

2. Text data serves as a fundamental modality with the potential to unify different
graph data domains into a general format, paving the way for foundational
graph representation models. For text-attributed graphs that combine graph
and textual data, we propose the TAGA framework, which leverages the unique
properties of both structural and textual semantic information to ensure strong

expressive power.

Second, from the model perspective, our goal is to design corresponding model

architecture that preserves the maximum amount of information from the input data
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while maintaining strong expressive power with certain theoretical guarantees. For
the proposed SGMP and subsequent frameworks on physical networks, we can theo-
retically ensure that the model architecture preserves all input geometric structures
without information loss. Similarly, the TAGA framework for information networks is
designed to transform information losslessly between the two data modalities, thereby
ensuring the strong expressive power of the learned representations. Additionally, we
have developed accelerated algorithms for each framework to reduce time and memory
complexity to linear without compromising the theoretical guarantees of information
preservation.

Third, from the perspective of training strategies, our primary goal is to en-
hance the generalizability and robustness of the learned representations. We have
developed a curriculum learning strategy that aims at resolving the incompatibility
between noisy graph topology and features from other data modalities. The pro-
posed method gradually incorporates edges based on their difficulty and noise level,
demonstrating superior performance compared to state-of-the-art methods in tasks
like node classification. Furthermore, our ongoing objective is to advance the field of
graph representation learning to address more practical and challenging application
scenarios, including label-scarce environments, noisy data, and transfer learning. Fu-
ture work will focus on extending the proposed framework to tackle complex tasks on
graph data, such as zero-shot and few-shot node classification, link prediction, graph

clustering, and transfer learning.

5.1 Research Contributions

The major research contributions are described as follows.
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5.1.1 Representation Learning on Physical Networks

1. A novel generic framework for learning expressive representations on
physical networks. We propose generic framework SGMP with theoretical
guarantees on discriminative power and various spatial and network properties.
The proposed framework can capture and model the intrinsic coupled spatial
and graph properties and ensure the invariance of learned representation under

rotation and translation transformations.

2. An accelerating algorithm for efficiency. The proposed accelerating al-
gorithm effectively reduces the time and memory complexity from O(N?3) to

O(N), and maintains the theoretical guarantees for spatial networks.

3. A novel generalized framework to handle spatial networks in non-
Euclidean space. The generalized framework effectively addresses the unique
challenges of representing irregular spatial networks by first converting the man-
ifold space into a discrete mesh tessellation, and then converting the geometric

information of the curves between nodes into messages on edges.

4. A novel specialized framework to handle geometric trees. This frame-
work significantly improves geometric tree representations by leveraging their

inherent hierarchies and tree-oriented geometric structures.

5. Extensive experiments to evaluate the performance on synthetic and
real-world datasets. The strength of our theoretical findings through ex-
tensive experiments should be demonstrated on both synthetic datasets and
real-world datasets across biomedical, chemical, neuroscience and river network

domains.
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5.1.2 Representation Learning on Information Networks

1. The proposal of a novel generic self-supervised learning framework
for representation learning on information networks through text-
attributed graphs representing format. The proposed framework TAGA
jointly preserves rich semantic information, topology information, and their
interplay by aligning representations of TAGs from both graph and text data

modalities.

2. The proposal of a novel graph-to-text transformation module. This
transformation module requires to maintain the information lossless transforma-
tion between graph and text domains, which ensures the equivalent information

of alignment process.

3. Extensive experiments on label scarce scenarios. We have demonstrated
the performance of the proposed framework in label-scarce application settings,
such as zero-shot and few-shot predictions. These are challenging tasks where

few existing works have demonstrated significant results.

4. Extension to diverse graph tasks. We have extended the experiments to
several significantly important graph tasks, such as node classification and link

prediction.

5. Extension to transfer learning settings. Transferring learned knowledge
from one graph domain to a new graph domain without strong supervision is a
crucial yet extremely challenging task in the field of graph deep learning. This is
also a key step toward developing a graph foundation model. We have validated
the proposed framework under these challenging settings under zero-shot, few-

shot and transfer learning scenarios.



128

5.1.3 Enhancing Generalizability and Robustness of Learn-

ing Network Representations

1. The development of a novel generic curriculum learning framework
for representation learning on graph structured data. The framework is
aimed at improving the generalization ability and robustness of representation

learners on data with dependencies.

2. The proposal of a novel graph edge selection criteria based on their
difficulty level. The proposed method select the edges by quantifying their
corresponding difficulties in a self-supervised learning manner, thus without the

need of extra labels or external human knowledge.

3. A novel automatic curriculum pacing function. We present the learning
process as a concise optimization model, which automatically lets the model
gradually increase the number of including edges to involve more edges in train-

ing according to its own status.

4. A novel edge reweighting scheme. In order to guarantee a numerical steady
process for curriculum learning in graphs, a novel edge reweighting scheme is

proposed to smooth the graph structure transition process.

5. Extensive experiments to evaluate the generalizability and robustness
on synthetic and real-world datasets. The performance of the proposed
relational curriculum learning strategy needs to be compared to state-of-the-
art comparison methods through extensive experiments on both synthetic and

real-world datasets.
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Appendix A

Representation Learning on

Physical Networks

A.1 Representation Learning on Euclidean Spatial

Networks

A.1.1 Proof of Theorem 1

It is obvious to show that distances, angles, and torsions are invariant to translation
transformations since only relative coordinates are using in the formulation.
For rotation transformations R € SO(3) (the rotation group in 3D space), we

show two identity equations first:

(Rx, Ry) = (x,y)

(Rx) x (Ry) = R(x xy)

(A.1)



Thus we have

dij = ||Pijlla = (Pij, Pij) = (RP;;, RPj;),

) = awecos((Z T ))

8;;x = arccos((

Dijkp = arccos((Nyjk, Njkp)) = arccos((Rnyjk, RNjkp) ),
Dy X Mgy Py
[Imijic X g2 [P
finige X nyp) ~_RP;
|| R(mi1c X nygp) |27 | RP|2
i) X (Fngy) RPy
[|(Bny) x (Rngsp)[[2” || RP3;]2"

Parity = (

=

All elements are invariant under rotation and translation transformations.

A.1.2 Proof of Lemma 1

Note that from Equation 2.2 we have

HP’LJ X ijHg = dz’jdjk sin Qijk,
1

dijdjkdjp sin 0, sin 0,5,
1

- 2 . .
dz‘jdjkdjp Sin Hijk Sin Gijp

(Pij x Pj) x (Py; x Py,)

ijic X Nijp =

(Pij - (Pji x Pyp))P

7R

<nijk7 nijp> = COS P;jkp = COS V;jkp,

(nyj X nyjp, Pyj) P (P x Pjp)

Parity =

dij sin @ijkp dijdjkdjp sin Oijk sin Qijp sin @ijkp
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Suppose that the solution set of the Equation 2.1 contains two different solutions

v; and v}, then the Equation 2.2 implies that due to the same representation, we have

Parity(i) = Parity(¢')
Pij - (P x Pjp) Pij - (P x Pjp)

dijdjkdjp sin Hijk sin Hijp sin @ijkp di’jdjkdjp sin Qi’jk sin Qi’jp sin @i’jkp

0= Pii’ . (P]k X Pjp)-
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Since vj, Vg, vp is non-colinear, P, x P, is nonzero, the equation causes a contradic-
tion. Thus, the Cartesian coordinate of node v; can be uniquely determined by the

Equation 2.1. O

A.1.3 Proof of Theorem 3

In this theorem we denote S as the representation of spatial network in Equation 2.1.
Due to the continuity of g, we take J. so that |g(S) —g(S")| < € for any S5, 5" € S if the
Hausdorff distance between spatial information dy (S, S") < é.. Define the Kg4, Kq, K,
as the resolution of geometric features d, 8, ¢, and without lossing generality, we can
suppose K = K; = Ky = K, = [(H Let the mapping function A as A(S) = %
which maps all the elements in an interval to the left end of the interval, such that
we have [g(S) — g(A(S))| < € for any S € S.

Let f(S) € R!, where I is the number of dimension of embedding vectors for
S. Then consider f,(S) = ells=Silz , ¢ [1,...,I], where S, is one unit space in the
transformed space of the mapping function A. Intuitively, we can consider each
£.(S) measures if S is located in a unit S, of the discretized space by a smooth
indicator. Similarly, we can define another mapping ¢ with discretize value as & (S) =
[£1(S);. .. &1(S)] with each £,(S) = 1 indicating S is located in the (~th unit, otherwise
0. The mapping from £,(S) to &(S) can be easily learned by a linear function with
ReLU as the activation function, which is exactly the setting in our framework. We
denote this function as w. We finally have £(5) = w(f(S)).

It is obvious that £(S) is equivalent to A(S). Let 7 be a continuous function from

R’ to R such that 5(£(S)) = g(£(S)) and we can rewrite 4 = 4 o w Then
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The proof is complete here. 0

A.1.4 Proof of Proposition 1

The number of spanning trees in a graph G is given by Kirchhoft’s matrix tree theo-
rem [29], showing that the number can be computed as KMT(G) = det [L[u]], where
L[u] is the graph Laplacian matrix L with its u'* row and column removed, and u de-
notes a randomly chosen vertice. Obviously, the probability Pr(e;; € T') of sampling

one edge e;; in a random spanning tree 7' can be computed as

KMT(G) — KMT(G,,)
Pr(e;; € T) = KMT@G) ;

where C?eij is the graph G removed edge e;;. Then we write
Pr(m-jkp € T) = Pr(eij € T\ejk, €rp € T)Pr(ejk, €rp € T)
= Pr(e;; € Tleji, exp € T)Pr(ejiler, € T)Pr(er, € T),

which can be formulated as

PI‘(?Tijkp € T) = det[Y

m‘jkp]v

given by Burton-Pemantle theorem [27]. We do not give the proof of Burton-Pemantle

theorem here since it is not the focus of this paper. U

A.1.5 Proof of Proposition 2

Because the random spanning trees are sampled i.i.d. from a uniform distribution,

by the strong law of large number,

m®) (Wijkp>

R — UM
‘ (1 q(Tijkp)

| mijip € Mg }),
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converges almost surely to the expected value SUM(m9(m;j1,)). Then since o® is
continuous, by the continuous mapping theorem, the limits are preserved such that

Equation 2.1

O (..
, m\9 (ixp) =i
hz(- ) _ 50 (SUM({C](TJlﬂijkp € HT,S}))a

converges almost surely to Equation 2.3. U

A.2 Representation Learning on Non-Euclidean Spa-

tial Networks

A.2.1 Proof of Theorem 4

Proof. Intuitively, distance, angle, torsion, and orientation angle are invariant to
translation and rotation transformations, since only relative coordinates are used
in the formula. Formally, for translation transformations 7 € SFE(3) and rotation

transformations R € SE(3), the following identity equations hold:

Tx—-y)=x-y,
(R(x),R(y)) = (x,y) (A.2)

R(x) X R(y) = R(x X y)
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Thus we have

d=[[Ulla =[lp =PIl = [IT(P) = T (P2,

d =[]}z = (L1) = (R(1),R(1)),
1 L
0 = arccos((g, j})
1 L;;
= arCCOS((%, R<d ‘])>),
Pkl — ¢ c® x ¢+ Li; ) - GUk1)
[le® x D]y |[Lyj |2
L;; x1
where ¢ = —2— .

[ Liij > 12

k) _ (L x 10 x (Ly; x 1:+1)
|| Lij x 10O |o][ Ly x 14D ]y
_ (L - W x10Y))L
|[Lij x 18 [[5] [ Ly x 1D

cF) « ¢l

®) % k) L.
c® x ¢ i
thus ( ®) D] ] )
[[et®) x e[|y [| Ly |
(Ly; - (1% x 1)L, L

et 5 Ly, X IO Ly, 0] [ [
Li; - (l(k) X 1(k+1))
||c®) x ck+D [|o][Ly; x 1®)||o||Ly; x 1G+D|],
_ R(Ly) - (RA® x 1%+D))
o D oL x Tl x 0T

1R = arccos((n*=V n®Y),

= = arccos(R((n*", nM))).

All extracted geometric features are invariant under rotation and translation trans-

formations. O]

A.2.2 Proof of Theorem 5

The proof of Theorem 5 is a consequence of the Lemma 1.

Then we provide the proof for Theorem 5.
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Proof. As stated in Lemma 1, the Cartesian coordinates of a point p*) can be derived

k=1 Leveraging the

from its two endpoints and their connected neighbor points p!
connectivity of the spatial graph, we can iteratively compute the coordinates of a
connected point based on the set of points with known coordinates. By initiating the

process from any arbitrary point, we can determine the Cartesian coordinates for the

entire spatial network. O

Proof. Note that from Equation 2.1 we have followings:

Ly x 19y = [|(p;i — p;) x (¥ = p*V)||2 = d¥d; ;sin 6P,
ey _ (Lig < (P = py)) x (Liy x (p*V — py))
d ;d® d* =1 sin ) sin (k1)

_ (L - ((P® = py) x (P*7) — p)))) Ly
d; ;d®d*=1 sin §*) sin f(=1)

e« ¢l

(e, =Dy = cog gD = cog kD),

(™ xe® VL) Liy-((p; —p™) x (p; —p*V))
G smgtF D dysdRdt ) sin 6 sin 6D sin Gk

Suppose there exists two different positions of point p*) and p*) that satisfy Equa-
tion 2.1, then it implies that

Li; - ((p; —p™) x (p; —p"*" 1))
d; ;d®) d*+=1) sin ) gin Ok gin (kk-1)

— Liyj ) ((pj - p(k)’) X (pj — p(k—l)))
d; ;d® d*=D sin O*) sin =1 sin FICTS)

0=P® —p™ - ((p; —p®) x (p; — p* ).

Here ((p; —p®)) x (p; —p*~V)) is nonzero as long as p;, p*), p*=Y is non-colinear.

Therefore, the above equation causes a contradiction which proves that p*) can not

have two different positions given the representation in Equation 2.1. O
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Appendix B

Representation Learning on

Information Networks

B.1 Additional Experimental Results and Settings

In this section, we present additional experimental settings and results due to the

space limitation of the main paper.

B.1.1 Additional Implementation Settings

All experiments are conducted on a 64-bit machine with four 16GB NVIDIA GPUs.
Each experiment involves running the models 20 times with different random seeds to
minimize variance due to specific data splits. Accuracy is adopted as the evaluation
metric for node classification tasks. Specifically, for smaller datasets such as Cora
and PubMed, we employ 3 convolution layers, while for larger datasets, we utilize 2
layers. Latent dimension is aligned with the PLM embedding dimension. During the
pre-train stage, the model is trained with 40,000 steps on each dataset with minibatch
size 8. The learning rate is initialized as 1e™3 and with decay rate 0.999 each 10 steps.

For zero-shot predictions, we utilize the entire dataset as the test set. In the case of
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k-shot predictions, we randomly select k& samples from each class to form the training
set, dividing the remaining data into validation and test sets at a ratio of 1:9. All
models undergo finetune for 100 epochs, and testing is based on the best validation

results.

B.1.2 Additional Link Prediction Experiments

In order to verify the generalizability of our method, the transfer learning setting is
adopted. The representation learning method is pre-trained on source dataset, and
then directly perform link prediction task on target dataset without any finetune
process. The ratio of positive and negative edges is 1:1 and we use cosine similar-
ity to measure the scores. From the Table B.1 we can observe that our proposed
method outperforms all the comparison methods in 15 out of 16 tasks on ROC-AUC

metric, which further verified the effectiveness and generalizability of our proposed

representation learning method.

Source Target GRACE G2P2 TAGA
Pubmed Cora 0.6007 £+ 0.0019 | 0.9964 + 0.0001 | 0.9971 + 0.0005
Pubmed | 0.8240 + 0.0008 | 0.9564 + 0.0003 | 0.9683 + 0.0002
Sports 0.6094 £ 0.0002 | 0.9864 + 0.0000 | 0.9844 + 0.0000
Arxiv 0.5318 £+ 0.0002 | 0.9847 £ 0.0000 | 0.9865 + 0.0001
Arxiv Cora 0.9170 £ 0.0008 | 0.9928 + 0.0002 | 0.9947 + 0.0003
Pubmed | 0.8047 £ 0.0006 | 0.9563 + 0.0003 | 0.9662 + 0.0004
Sports 0.7636 £+ 0.0001 | 0.9907 + 0.0000 | 0.9940 + 0.0000
Arxiv 0.9386 + 0.0001 | 0.9857 + 0.0000 | 0.9886 + 0.0000
Cora Cora 0.9646 + 0.0005 | 0.9886 + 0.0004 | 0.9959 + 0.0002
Pubmed | 0.9363 + 0.0006 | 0.9508 + 0.0005 | 0.9634 + 0.0002
Sports 0.9727 £+ 0.0000 | 0.9816 + 0.0000 | 0.9913 + 0.0000
Arxiv 0.9735 £ 0.0001 | 0.9620 £+ 0.0001 | 0.9901 + 0.0000
Sports Cora 0.7847 £ 0.0010 | 0.9911 £ 0.0002 | 0.9955 + 0.0002
Pubmed | 0.8718 £ 0.0005 | 0.9611 + 0.0003 | 0.9667 + 0.0005
Sports 0.9353 £ 0.0000 | 0.9906 + 0.0000 | 0.9942 + 0.0000
Arxiv 0.8990 £ 0.0001 | 0.9780 + 0.0000 | 0.9842 + 0.0000

Table B.1: The ROC-AUC experimental results of zero-shot link prediction tasks by

transferring from the source dataset to target dataset.



140

k-Shot ‘ Model ‘ Arxiv Children Computers Cora History Photo Pubmed Sports
# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055
# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594
Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8
PLM 0.500 £ 0.001 0.094 + 0.003 0.427 + 0.001 0.624 + 0.005 0.169 + 0.001 0.387 + 0.009 0.475 £ 0.008 0.316 + 0.002
GraphMAE 0.104 £ 0.001 0.021 + 0.001 0.049 + 0.001 0.194 + 0.006 0.019 + 0.001 0.152 + 0.001 0.438 £ 0.001 0.112 + 0.001
0 GraphCL 0.089 £ 0.001 0.037 £ 0.001 0.173 £ 0.001 0.176 £ 0.003 0.191 £ 0.001 0.174 £ 0.001 0.368 £ 0.001 0.140 +£ 0.001
GRACE 0.045 £ 0.001 0.034 £ 0.001 0.169 £ 0.001 0.146 £ 0.004 0.079 £ 0.001 0.025 £ 0.001 0.335 £ 0.001 0.057 £ 0.001
G2P2 0.453 £ 0.002 0.201 £ 0.001 0.453 £ 0.001 0.644 £ 0.004 0.322 + 0.003  0.452 4+ 0.001  0.576 £ 0.006 0.436 + 0.001
TAGA 0.537 £+ 0.003 0.224 £+ 0.001 0.498 £+ 0.004 0.682 + 0.005 0.351 = 0.009 0.419 + 0.001 0.616 + 0.009 0.448 £ 0.003
TAGA-rw 0.530 £ 0.001 0.221 + 0.001 0.494 + 0.001 0.680 £ 0.002 0.301 £ 0.003 0.394 + 0.001 0.599 + 0.002 0.434 £ 0.002
PLM 0.280 £ 0.044 0.122 + 0.042 0.238 £ 0.039 0.412 £ 0.080 0.284 £ 0.078 0.230 £ 0.051 0.503 £ 0.067 0.282 £ 0.068
GraphMAE 0.255 £ 0.041 0.128 + 0.028 0.300 £ 0.052 0.474 £ 0.058 0.231 £ 0.052 0.304 £ 0.066 0.492 £ 0.076 0.270 £ 0.042
1 GraphCL 0.123 £ 0.031 0.157 + 0.066 0.256 + 0.039 0.402 £ 0.059 0.371 £ 0.124 0.325 £ 0.079 0.414 £ 0.040 0.347 £ 0.079
GRACE 0.263 £ 0.034 0.138 £ 0.035 0.336 £ 0.051 0.435 £ 0.071 0.266 + 0.085 0.295 + 0.053 0.514 £ 0.095 0.282 + 0.045
G2P2 0.308 £ 0.052 0.145 + 0.029 0.359 + 0.044 0.477 £ 0.082 0.361 + 0.092 0.372 + 0.066 0.522 + 0.085 0.356 + 0.042
TAGA 0.323 + 0.040 0.180 + 0.073 0.380 £ 0.062 0.509 + 0.089 0.413 £+ 0.114 0.417 £ 0.077 0.563 + 0.062  0.440 £ 0.070
TAGA-rw 0.307 £ 0.050 0.171 &+ 0.013 0.365 £ 0.042 0.561 &+ 0.063  0.383 £ 0.078 0.380 &+ 0.037 0.548 £ 0.073  0.498 & 0.084
PLM 0.436 £ 0.036 0.194 + 0.029 0.318 + 0.038 0.588 + 0.036 0.448 + 0.071 0.352 + 0.044 0.611 + 0.051 0.392 + 0.041
GraphMAE 0.379 £ 0.039 0.182 + 0.025 0.389 + 0.035 0.634 £ 0.044 0.362 £ 0.050 0.432 £ 0.051 0.597 + 0.061 0.363 £ 0.050
3 GraphCL 0.192 £ 0.029 0.186 + 0.039 0.343 £ 0.046 0.563 £ 0.044 0.484 £ 0.071 0.382 £ 0.052 0.476 £ 0.038 0.373 £ 0.071
GRACE 0.398 £ 0.031 0.200 £ 0.038 0.442 £ 0.045 0.622 £ 0.043 0.404 £ 0.057 0.447 £ 0.053 0.620 £ 0.055 0.398 £ 0.045
G2P2 0.430 £ 0.027 0.207 £ 0.038 0.469 + 0.042 523 + 0.033  0.508 £ 0.073  0.528 + 0.049 0.641 + 0.064 0.464 + 0.050
TAGA 0.445 + 0.035 0.241 4+ 0.062 0.497 £ 0.035 =+ 0.050 0.551 £ 0.094  0.551 4+ 0.045 0.659 £+ 0.058  0.586 + 0.057
TAGA-rw 0.442 £ 0.040 0.222 £ 0.060 0.467 = 0.025 0.705 £+ 0.021  0.558 + 0.072 0.513 £ 0.070  0.632 = 0.043  0.569 £ 0.105
PLM 0.500 £ 0.019 0.210 £ 0.025 0.377 £ 0.027 0.641 £ 0.031 0.557 £ 0.040 0.420 £ 0.037 0.632 £ 0.040 0.478 £ 0.056
GraphMAE 0.425 £ 0.028 0.212 + 0.029 0.434 £ 0.036 0.704 £ 0.038 0.459 + 0.038 0.489 + 0.038 0.625 £ 0.049 0.452 + 0.037
5 GraphCL 0.231 £ 0.015 0.201 + 0.040 0.397 £ 0.040 0.641 £ 0.044 0.531 £ 0.047 0.462 £ 0.041 0.584 £ 0.037 0.477 £ 0.048
GRACE 0.445 £ 0.028 0.227 £ 0.031 0.472 £ 0.040 0.685 £ 0.027 0.481 + 0.061 0.515 + 0.042 0.628 £ 0.047 0.482 + 0.040
G2P2 0.466 £ 0.025 0.240 + 0.034 0.510 + 0.039 0.703 £ 0.032 0.617 £ 0.053 0.583 + 0.051 0.640 + 0.051 0.565 + 0.055
TAGA 0.483 + 0.022 0.263 4 0.031 0.543 £+ 0.038 0.752 + 0.028 0.636 + 0.046  0.602 + 0.041 0.649 + 0.044 0.664 + 0.061
TAGA-rw 0.471 £ 0.031  0.276 £ 0.053 0.508 4 0.019  0.764 £ 0.027 0.621 + 0.076  0.594 & 0.025 0.684 + 0.027 0.675 & 0.070
PLM 0.526 £ 0.013 0.240 + 0.018 0.463 + 0.029 0.690 + 0.017 0.639 + 0.038 0.491 + 0.028 0.679 + 0.023 0.535 + 0.038
GraphMAE 0.461 £ 0.017 0.234 + 0.014 0.511 + 0.028 0.761 + 0.023 0.535 + 0.042 0.543 + 0.035 0.659 + 0.028 0.508 + 0.028
10 GraphCL 0.301 £ 0.018 0.233 £ 0.029 0.488 + 0.031 0.702 £ 0.025 0.566 + 0.043 0.523 £ 0.044 0.632 £ 0.025 0.531 £ 0.035
GRACE 0.488 £ 0.018 0.251 £ 0.015 0.552 £ 0.028 0.754 £ 0.018 0.567 £ 0.054 0.567 £ 0.031 0.670 £ 0.025 0.529 £ 0.033
G2P2 0.527 + 0.014 0.269 £ 0.018 0.598 £ 0.031 0.753 £ 0.020 0.649 £ 0.046 0.632 £ 0.037 0.691 £ 0.029 0.618 £ 0.037
TAGA 0.521 £+ 0.017 0.288 + 0.025 0.622 + 0.025 0.788 £ 0.021 0.679 + 0.041 0.651 + 0.048 0.714 + 0.024 0.705 £ 0.045
TAGA-rw 0.518 £ 0.010  0.288 + 0.040 0.595 + 0.024 0.806 £+ 0.011  0.652 + 0.046 0.626 £ 0.020 0.679 £ 0.013 0.662 + 0.056
PLM 0.592 £ 0.005 0.337 £ 0.013 0.610 £ 0.008 0.753 £ 0.014 0.753 £ 0.008 0.634 £ 0.015 0.771 £ 0.005 0.690 £ 0.013
GraphMAE 0.573 £ 0.005 0.319 + 0.008 0.650 £ 0.008 0.684 £ 0.011 0.655 £ 0.012 0.744 £ 0.010 0.677 £ 0.009
100 GraphCL 0.435 £ 0.005 0.313 £ 0.024 0.629 + 0.006 0.804 £ 0.014 0.675 £ 0.026 0.653 £ 0.012 0.737 £ 0.007 0.703 £ 0.016
GRACE 0.579 £ 0.007 0.339 + 0.009 0.681 + 0.006 0.838 £ 0.008 0.725 £ 0.014 0.678 £ 0.010 0.753 £ 0.010 0.712 £ 0.014
G2P2 0.578 £ 0.007 0.360 + 0.009 0.711 + 0.007 0.838 + 0.010 0.748 £ 0.009 0.710 £ 0.008 0.758 £ 0.009 0.725 £ 0.010
TAGA 0.631 + 0.008 0.375 + 0.021 0.731 4+ 0.006 0.849 4+ 0.008  0.754 + 0.022 0.738 + 0.015 0.787 + 0.007 0.802 + 0.014
TAGA-rw 0.595 £ 0.010 0.385 + 0.016 0.704 4+ 0.010  0.853 £ 0.005  0.749 + 0.023 0.716 + 0.010 0.776 + 0.011 0.767 + 0.021

Table B.2: Full table of performance in zero-shot and few-shot node classification for
each dataset and setting. The best-performing model is highlighted in bold, and the
second-best performing model is underlined.

B.1.3 Additional Node Classification Analysis

We present additional zero-shot and few-shot performance under two different text
encoders UAE-Large-V1 and Text-embedding—3-small. The zero-shot results
are present in Table B.3. The few-shot results with text encoder UAE-Large-V1 is
present in Table B.4, and few-shot results with text encoderText —embedding—-3-small
is present in Table B.5. From the table, we can observe that our method TAGA con-
sistently achieve the best performance on two different choices of text encoder models.

This demonstrates the effectiveness and robustness of our proposed method.
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arxiv children computers cora history photo pubmed sports
Text Encoder Model

UAE-Large-V1 PLM 0.500 £ 0.001  0.094 £ 0.003 0.427 &+ 0.001 0.624 £ 0.005 0.169 £ 0.001 0.387 &+ 0.009 0.475 £ 0.008 0.316 £ 0.002
GraphMAE  0.104 £ 0.001  0.021 4 0.001 0.049 + 0.001 0.194 + 0.006 0.019 £ 0.001 0.152 4 0.001 0.438 4+ 0.001 0.112 + 0.001
GraphCL 0.089 £ 0.001  0.037 + 0.001 0.173 £ 0.001 0.176 £ 0.003 0.191 £+ 0.001 0.174 4+ 0.001 0.368 £ 0.001 0.140 £ 0.001
GRACE 0.045 £ 0.001  0.034 £ 0.001 0.169 & 0.001 0.146 £ 0.004 0.079 £ 0.001 0.025 & 0.001 0.335 £ 0.001 0.057 £ 0.001

G2P2 0.453 £ 0.002  0.201 &+ 0.001 0.453 £ 0.001 0.644 £ 0.004 0.322 4 0.003 0.452 £ 0.001 0.576 £ 0.006 0.436 4 0.001
TAGA 0.537 £ 0.003  0.224 + 0.001 0.498 £ 0.004 0.682 £ 0.005 0.351 & 0.009 0.419 + 0.001 0.616 £ 0.009 0.448 £ 0.003
Text-embedding-3-small  PLM 0.351 £ 0.001  0.098 £ 0.002 0.434 & 0.005 0.561 £ 0.006 0.125 £ 0.001  0.321 £ 0.001  0.306 & 0.001 0.424 % 0.002

GraphMAE  0.101 £ 0.001  0.025 £ 0.001  0.108 = 0.001 0.162 £ 0.003  0.158 £ 0.001  0.033 &= 0.001 0.205 £ 0.001 0.364 £ 0.001
GraphCL 0.127 £ 0.001  0.045 + 0.001 0.282 £ 0.001  0.197 £ 0.004 0.106 & 0.001 0.163 = 0.001  0.383 £ 0.001 0.240 £ 0.003
GRACE 0.023 £ 0.001  0.022 £ 0.001 0.117 = 0.001  0.085 £ 0.004 0.039 £ 0.001 0.037 = 0.001 0.319 £ 0.001 0.088 £ 0.001
G2P2 0.332 £+ 0.001  0.092 + 0.001 0.449 £ 0.001 0.637 & 0.006 0.168 & 0.001 0.298 + 0.001 0.569 £ 0.001 0.511 £ 0.003
TAGA 0.369 & 0.001  0.084 &+ 0.001 0.615 £ 0.001 0.668 £ 0.005 0.264 & 0.001 0.423 & 0.001 0.639 £ 0.001 0.548 £ 0.003

Table B.3: Zero-shot node classification performance.

B.1.4 Additional Ablation Studies

Here we have included an ablation analysis to verify the effectiveness of neighbor-
hood size. The results in Table B.6 demonstrate that our method achieves stable

performance when using a neighborhood size of 2 or more orders.

B.2 Additional Technical Details

Efficiency Comparison with Directly Using PLM Embeddings. It is worth
noting that the textual embeddings of TofG views h(v;) can directly represent the
entire TAG. However, it may cause significant scalability and efficiency issue during
the inference phase. Existing PLMs typically adopts transformer architecture and it
has a quadratic complexity with the input number of text tokens, this is especially
important to TAGs since the number of input size grows exponentially with the
number of neighborhood hops. By aligning the knowledge from PLM with GNN
model through our framework, we can simultaneously maintain generalization ability
of TAG embeddings and high efficiency and scalability to large-sized graphs.
Enabling Zero-Shot and Few-Shot Predictions. Our pretrained strategy
ensures that the embeddings obtained from the GNN models at each layer remain
aligned within the textual embedding space. This alignment enables direct zero-
shot predictions using the self-supervised trained embeddings without requiring any

additional fine-tuning.
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k-Shot ‘ Model ‘ Arxiv Children Computers Cora History Photo Pubmed Sports
PLM 0.280 + 0.044  0.122 £+ 0.042 0.238 £ 0.039 0.412 £ 0.080  0.284 4+ 0.078 0.230 + 0.051 0.503 & 0.067 0.282 % 0.068
GraphMAE | 0.255 + 0.041  0.128 + 0.028  0.300 + 0.052  0.474 £ 0.058  0.231 £+ 0.052 0.304 £ 0.066 0.492 + 0.076  0.270 + 0.042
1 GRACE 0.263 + 0.034  0.138 £ 0.035 0.336 & 0.051 0.435 £ 0.071  0.266 &+ 0.085 0.295 + 0.053 0.514 £ 0.095 0.282 + 0.045
G2P2 0.308 + 0.052  0.145 & 0.029  0.359 &+ 0.044 0.477 £ 0.082  0.361 &+ 0.092 0.372 + 0.066 0.522 & 0.085 0.356 + 0.042
TAGA 0.323 + 0.040  0.180 £ 0.073  0.380 + 0.062 0.509 + 0.089  0.413 + 0.114 0.417 + 0.077 0.563 & 0.062 0.440 % 0.070
PLM 0.436 + 0.036  0.194 + 0.029 0.318 + 0.038 0.588 + 0.036  0.448 + 0.071 0.352 + 0.044 0.611 £ 0.051  0.392 + 0.041
GraphMAE | 0.379 £ 0.039  0.182 + 0.025 0.389 £ 0.035 0.634 £ 0.044  0.362 £ 0.050 0.432 £ 0.051 0.597 + 0.061 0.363 £ 0.050
3 GRACE 0.398 = 0.031  0.200 £ 0.038 0.442 + 0.045 0.622 £ 0.043  0.404 £ 0.057 0.447 £ 0.053 0.620 = 0.055 0.398 £ 0.045
G2P2 0.430 + 0.027  0.207 & 0.038  0.469 + 0.042 0.623 + 0.033  0.508 + 0.073  0.528 + 0.049 0.641 £ 0.064 0.464 + 0.050
TAGA 0.445 + 0.035  0.241 £ 0.062 0.497 +£ 0.035 0.695 £ 0.050  0.551 &+ 0.094 0.551 + 0.045 0.659 4 0.058 0.586 + 0.057
PLM 0.500 + 0.019  0.210 £ 0.025 0.377 + 0.027 0.641 + 0.031  0.557 4+ 0.040  0.420 + 0.037 0.632 & 0.040 0.478 + 0.056
GraphMAE | 0.425 + 0.028 0.212 &+ 0.029 0.434 £ 0.036 0.704 £ 0.038  0.459 £ 0.038 0.489 £ 0.038 0.625 = 0.049 0.452 £ 0.037
5 GRACE 0.445 + 0.028  0.227 £ 0.031  0.472 + 0.040 0.685 + 0.027  0.481 + 0.061 0.515 + 0.042 0.628 £ 0.047 0.482 % 0.040
b G2P2 0.466 + 0.025  0.240 & 0.034  0.510 + 0.039  0.703 £ 0.032  0.617 &+ 0.053 0.583 + 0.051 0.640 & 0.051  0.565 % 0.055
TAGA 0.483 + 0.022  0.263 & 0.031  0.543 + 0.038 0.752 £ 0.028  0.636 & 0.046 0.602 + 0.041 0.649 £ 0.044 0.664 + 0.061
PLM 0.526 = 0.013  0.240 £ 0.018 0.463 £ 0.029 0.690 = 0.017  0.639 &+ 0.038 0.491 £ 0.028 0.679 £ 0.023  0.535 + 0.038
GraphMAE | 0.461 £+ 0.017  0.234 + 0.014 0.511 £ 0.028 0.761 £ 0.023  0.535 £+ 0.042 0.543 £ 0.035 0.659 + 0.028 0.508 + 0.028
10 GRACE 0.488 + 0.018  0.251 £ 0.015 0.552 + 0.028 0.754 £ 0.018  0.567 &+ 0.054  0.567 + 0.031 0.670 & 0.025 0.529 + 0.033
G2P2 0.527 + 0.014  0.269 &+ 0.018 0.598 &+ 0.031  0.753 £ 0.020  0.649 & 0.046 0.632 + 0.037 0.691 £ 0.029 0.618 + 0.037
TAGA 0.521 + 0.017  0.288 £ 0.025 0.622 + 0.025 0.788 £ 0.021  0.679 &+ 0.041 0.651 + 0.048 0.714 & 0.024  0.705 + 0.045
PLM 0.526 £ 0.013  0.240 £ 0.018 0.463 £+ 0.029 0.690 + 0.017  0.639 & 0.038 0.491 + 0.028 0.679 £ 0.023  0.535 + 0.038
GraphMAE | 0.501 £ 0.009 0.264 + 0.013  0.558 £ 0.015 0.801 £ 0.014  0.597 £ 0.033  0.596 £ 0.016 0.689 + 0.021 0.572 £ 0.025
2 GRACE 0.521 + 0.011  0.277 £ 0.013  0.605 + 0.017 0.791 £ 0.017  0.640+ 0.037  0.615 £ 0.02 0.704 & 0.029 0.607 % 0.027
G2P2 0.556 + 0.010  0.301 &+ 0.015 0.649 + 0.015 0.813 £ 0.012  0.716 + 0.025 0.672 + 0.015 0.726 & 0.025 0.690 + 0.025
TAGA 0.561 + 0.010  0.319 & 0.023 0.673 & 0.014 0.814 £ 0.012  0.721 £ 0.035 0.694 + 0.021 0.745 4 0.022 0.759 + 0.026
PLM 0.526 £ 0.013  0.240 £ 0.018 0.463 & 0.029 0.690 + 0.017  0.639 & 0.038 0.491 + 0.028 0.679 & 0.023  0.535 + 0.038
GraphMAE | 0.541 + 0.007  0.300£ 0.010  0.612 £ 0.015 0.815 £ 0.008 0.657 £+ 0.012 0.631 £ 0.010 0.729 + 0.011 0.631 £ 0.018
50 GRACE 0.553 + 0.007  0.314 £ 0.012  0.649 + 0.012 0.818 £ 0.012  0.706 + 0.017 0.661 + 0.019 0.732 &+ 0.014 0.678 + 0.022
G2P2 0.578 + 0.009  0.340 & 0.011  0.692 &+ 0.012  0.827 £ 0.013  0.738 & 0.009 0.700 + 0.014 0.758 4 0.009 0.725 + 0.014
TAGA 0.586 + 0.010  0.348 &+ 0.015 0.712 + 0.012  0.836 + 0.010  0.743 + 0.022 0.715 + 0.016 0.771 & 0.011  0.784 + 0.016
PLM 0.592 + 0.005  0.337 &+ 0.013  0.610 + 0.008 0.753 £ 0.014  0.753 & 0.008 0.634 + 0.015 0.771 & 0.005 0.690 % 0.013
GraphMAE | 0.573 £ 0.005 0.319 + 0.008 0.650 £ 0.008 0.835 £ 0.007 0.684 £+ 0.011  0.655 £ 0.012 0.744 + 0.010  0.677 £ 0.009
100 GRACE 0.579 + 0.007  0.339 & 0.009 0.681 &+ 0.006 0.838 £ 0.008 0.725 &+ 0.014 0.678 + 0.010 0.753 & 0.010 0.712 & 0.014
G2P2 0.578 + 0.007  0.360 & 0.009 0.711 + 0.007 0.838 £ 0.010  0.748 &+ 0.009  0.710 + 0.008 0.758 4 0.009 0.725 + 0.010
TAGA 0.631 + 0.008 0.375 £ 0.021  0.731 + 0.006 0.849 £ 0.008 0.754 £ 0.022  0.738 £ 0.015 0.787 & 0.007 0.802 £ 0.014

Table B.4: Performance of all few-shot node classification for each dataset. The text
encoder choice is UAE-Large—-V1.

Specifically, suppose there are L prediction labels {ly,[s,...,l}. Their textual

embeddings are obtained through the pretrained language model (PLM) as follows:
D (1;) = PLM(l;) fori e {1,...,L} (B.1)

The probability that node v; belongs to class [; is computed in an unsupervised
manner by measuring the cosine similarity (or another appropriate similarity mea-
sure) between the learned GNN embeddings A9 (v;) and the label textual embeddings
RO (1)

Zi:l €p(h(g)(vi),h(l)(lk))

plv; = 1) = (B.2)
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k-Shot ‘ Model ‘ Arxiv Children Computers Cora History Photo Pubmed Sports

PLM 0.199 + 0.044 0.106 £ 0.025 0.347 & 0.084 0.486 + 0.095 0.285 & 0.108 0.339 + 0.055 0.491 + 0.066 0.443 + 0.098
GraphMAE | 0.167 £ 0.041 0.112 4 0.052 0.257 £ 0.037 0.447 £ 0.095 0.268 & 0.063 0.263 £ 0.080 0.456 £ 0.069 0.331 %+ 0.090
1 GRACE | 0.224 £+ 0.038 0.136 & 0.034 0.329 + 0.046 0.403 £ 0.067 0.304 + 0.096 0.312 £ 0.049 0.513 & 0.086 0.287 + 0.039
G2P2 0.308 £ 0.052  0.145 £ 0.029 0.359 £ 0.044 0.477 = 0.082 0.361 £ 0.092 0.372 £ 0.066 0.522 = 0.085 0.356 £ 0.042
TAGA 0.306 + 0.057 0.173 £ 0.072 0.430 &+ 0.067 0.523 £+ 0.101 0.395 £ 0.101 0.431 + 0.083 0.581 + 0.073 0.510 £ 0.099
PLM 0.322 + 0.046  0.148 £ 0.024 0.495 + 0.061  0.66 = 0.037  0.422 & 0.075 0.438 + 0.044 0.608 £ 0.033 0.577 & 0.082
GraphMAE | 0.276 £ 0.033  0.169 & 0.051 0.339 £ 0.038 0.657 £ 0.038 0.425 & 0.097 0.347 £ 0.048 0.553 £ 0.060 0.398 + 0.064
3 GRACE | 0.360 £ 0.030 0.191 & 0.037 0.455 + 0.045 0.580 £ 0.041 0.448 &+ 0.067 0.461 £ 0.045 0.623 & 0.064 0.426 + 0.045
G2P2 0.430 £ 0.027 0.207 £ 0.038  0.469 % 0.042 0.623 £ 0.033 0.508 £ 0.073 0.528 + 0.049 0.641 £ 0.064 0.464 £ 0.050

TAGA 0.442 + 0.023  0.248 £ 0.052 0.548 &+ 0.058 0.702 £ 0.032  0.523 + 0.08 0.575 + 0.047 0.683 £ 0.056 0.67 £ 0.062

PLM 0.365 + 0.037 0.174 £ 0.039  0.55 £ 0.036  0.705 &+ 0.02  0.522 £+ 0.094 0.502 + 0.039 0.601 £ 0.032  0.67 & 0.05
GraphMAE | 0.308 £ 0.030 0.196 & 0.059 0.384 £ 0.026 0.711 £ 0.030 0.511 & 0.058 0.412 £ 0.032 0.563 £ 0.068 0.484 + 0.038
5 GRACE | 0.399 £ 0.026 0.223 4 0.028 0.501 + 0.043 0.635 £ 0.028 0.513 &+ 0.051 0.527 £ 0.040 0.640 £ 0.052 0.521 + 0.049
G2P2 0.466 + 0.025 0.240 £ 0.034 0.510 & 0.039 0.703 £ 0.032 0.617 £ 0.053 0.583 = 0.051 0.640 £ 0.051 0.565 £ 0.055
TAGA 0.468 + 0.023  0.299 £ 0.034 0.584 + 0.04  0.74 + 0.031  0.618 & 0.067 0.6 £ 0.041  0.676 £ 0.048 0.735 £ 0.063
PLM 0.398 + 0.024  0.189 £ 0.026 0.627 &+ 0.025 0.741 £ 0.018 0.586 £ 0.056 0.541 + 0.022 0.667 £ 0.025 0.708 £ 0.039
GraphMAE | 0.375 £ 0.017 0.208 & 0.011  0.469 £ 0.029 0.763 £ 0.027 0.564 & 0.047 0.491 £ 0.034 0.613 £ 0.034 0.539 + 0.028
10 GRACE | 0.449 £+ 0.018 0.249 4+ 0.019 0.577 + 0.027 0.714 £+ 0.023 0.601 &+ 0.047 0.578 £ 0.030 0.682 & 0.025 0.569 + 0.039
G2P2 0.527 £ 0.014  0.269 £ 0.018 0.598 & 0.031 0.753 £ 0.020 0.649 £ 0.046 0.632 = 0.037 0.691 £ 0.029 0.618 £ 0.037
TAGA 0.509 + 0.020 0.315 £ 0.028 0.661 + 0.028 0.781 + 0.018 0.67 £ 0.049 0.646 + 0.033 0.724 £ 0.022 0.756 + 0.032
PLM 0.434 £ 0.016 0.223 £ 0.032 0.659 + 0.014 0.767 £ 0.015 0.641 £ 0.04 0.581 £ 0.015 0.712 + 0.021 0.761 £ 0.026
GraphMAE | 0.429 £ 0.011 0.236 & 0.020 0.535 £ 0.023 0.799 £ 0.014 0.625 &+ 0.024 0.559 + 0.017 0.655 £ 0.030 0.602 + 0.028
20 GRACE | 0.486 £+ 0.014 0.282 4+ 0.015 0.613 + 0.019 0.770 £ 0.017 0.654 + 0.027 0.629 £ 0.016 0.697 & 0.022 0.657 + 0.025
G2P2 0.556 + 0.010 0.301 £ 0.015 0.649 &+ 0.015 0.813 £ 0.012 0.716 £ 0.025 0.672 + 0.015 0.726 £ 0.025 0.690 £ 0.025
TAGA 0.547 + 0.010  0.332 £ 0.023 0.691 &+ 0.017 0.805 + 0.011 0.708 £ 0.039 0.682 + 0.015 0.745 £ 0.027 0.808 =+ 0.022
PLM 0.480 £+ 0.007 0.252 £ 0.022 0.695 £ 0.010 0.785 = 0.009 0.702 £ 0.02  0.609 £ 0.013 0.749 = 0.011 0.784 £ 0.014
GraphMAE | 0.477 £ 0.010 0.278 4 0.012 0.603 £ 0.012 0.819 £ 0.011 0.675 &+ 0.019 0.630 £ 0.015 0.692 £+ 0.016 0.673 + 0.021
50 GRACE | 0.520 £ 0.006 0.324 4+ 0.012 0.664 + 0.013 0.806 £ 0.014 0.694 + 0.022 0.668 £ 0.020 0.727 & 0.015 0.712 + 0.020
G2P2 0.578 £ 0.009 0.340 £ 0.011 0.692 & 0.012 0.827 £ 0.013 0.738 £ 0.009 0.700 + 0.014 0.758 £ 0.009 0.725 £ 0.014
TAGA 0.576 + 0.009 0.368 £ 0.014 0.734 &+ 0.007 0.826 + 0.009 0.738 & 0.021 0.717 + 0.016 0.773 £ 0.009 0.828 + 0.014
PLM 0.508 £ 0.005 0.272 £ 0.010 0.722 £ 0.007 0.800 = 0.014 0.73 = 0.015 0.629 £ 0.009 0.772 £+ 0.008 0.802 £ 0.006
GraphMAE | 0.499 + 0.008 0.298 4 0.014 0.634 + 0.008 0.844 £ 0.010 0.704 &+ 0.015 0.652 £ 0.017 0.721 £ 0.007 0.709 + 0.011
100 GRACE | 0.546 £ 0.007 0.344 4 0.008 0.693 + 0.006 0.823 & 0.013 0.714 + 0.011 0.688 £ 0.011 0.745 & 0.006 0.753 + 0.010
G2P2 0.578 + 0.007 0.360 £ 0.009 0.711 & 0.007 0.838 £ 0.010 0.748 £ 0.009 0.710 + 0.008 0.758 £ 0.009 0.725 £ 0.010
TAGA 0.602 + 0.007 0.400 £ 0.017 0.747 &+ 0.009 0.838 £ 0.009 0.755 & 0.017 0.738 + 0.010 0.786 + 0.006 0.846 + 0.013

Table B.5: Performance of all few-shot node classification for each dataset. The text

encoder choice is Text—embedding—3-small.

The final predicted class of node v; is determined as follows:

I(v;) = argmax; p(v; — ;)

(B.3)

where [(v;) is the predicted class label for node v;, determined by selecting the class

[ that maximizes the similarity measure p between the GNN embedding of the node

h9)(v;) and each of the label embeddings h!)(1;).

transformation function for few-shot learning adaptation:

Additionally, to further refine the learned embeddings, we introduce a learnable

h(g)

adapted

(Ui) = g(h(g) (Ui)> Dsupport)
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Method | arxiv children computers cora history photo pubmed sports
3-order | 0.532  0.223 0.493 0.678 0.351 0415 0.622  0.387
2-order | 0.537  0.224 0.498 0.682 0.344 0419 0.616  0.408
l-order | 0.500  0.197 0.463 0.635 0.318 0.392 0.566  0.448
Glo-GofT | 0.533  0.205 0.482 0.657 0.329 0.407 0.522  0.417

Table B.6: Additional ablation studies results of zero-shot settings. Here we show
the results with different orders of alignment at 1, 2 and 3 order. We also show
the results of a variant, Glo-GofT, which only aligns the GNN embeddings that
aggregate individual node’s text embeddings but removes all higher-order Graph-of-
Text embeddings.

where g represents a transformation function with learnable parameters (e.g., a multi-
layer perceptron), and Dgypport denotes a set of support examples for few-shot learning.
This adapted embedding h;%)apted is then utilized to compute the updated predictive

probabilities:
PP ptea @R (1))

plv; = ;) = (B.5)

ZL p(hfngi)apted(vi)7h(l>(lk))
k=1¢€

B.3 Limitations

This work aims to pioneer unsupervised representation learning in the text-attributed
graph research domain. Our approach demonstrates significant performance improve-
ments over existing state-of-the-art methods in zero-shot and few-shot prediction
tasks. However, we acknowledge certain limitations. While our work pushes the
boundaries of graph foundation models, the model’s transfer capabilities may be
limited when training and inference domains are vastly different (e.g., from social
networks to chemical networks). We consider the development of a universal graph
foundation model, capable of generalizing across diverse domains, to be an important

direction for future research.
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Appendix C

Enhancing (Generalizability and
Robustness of Learning Network

Representations

C.1 Mathematical Proof for Theorem 6

Proof. We prove this theorem by Theorem 10 and Corollary 3 from [126].
[Avoidance of Saddle Points] Because the sequence (w®, S®) is bounded, and

the second derivatives of L and ¢ are continuous, then they are bounded. In other

9

words, we have max{||VZL(f(X,A®;w®),y)|,[|[VEg(SP; N[} < p, where p > 0

is a constant. Similarly, it is easy to check that the second derivative of the term

Zi,j Sij

2
ij||, 18 bounded, i.e.,

NG
Al - A

A0 _ Al
1 9

A (t
Al - Ay

max{ INE

2
<
) } <gq,

Va ) S Vs S
i3 i,J

where ¢ > 0 is constant and A is a function of w. Therefore, it means that the

objective F is bi-smooth, i.e. max{||VZF|},|[V&F|} < p+ ¢q. In other words, F
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satisfies Assumption 4 from [126]. Moreover, the second derivative of F' is continuous.
For any v > p + ¢, any bounded sequence (w® S®) generated by Algorithm 3 will
not converge to a strict saddle of F' almost surely by Theorem 10 from [126].

[Second Order Convergence] From the above proof of avoidance of saddle points,
we know that F' satisfies Assumption 4 from [126]. Moreover, because L and g satisfy

the KL property, and the term Zij Sij AS) — Ay

2
satisfies the KL property, we
2

conclude that I satisfy the KL property as well. From the proof above, we also know
that the second derivative of F' is continuous. Because continuous differentiability
implies Lipschitz continuity [201], it infers that the first derivative of F' is Lipschitz
continuous. As a result, F' satisfies Assumption 1 from [126]. Because F' satisfies
Assumptions 1 and 4, then for any v > p + ¢, any bounded sequence (w®, K S®)
generated by Algorithm 3 will almost surely converges to a second-order stationary

point of F' by Corollary 3 from [126]. ]

While the convergence of Algorithm 3 entails the second-order optimality condi-
tions of f and g, some commonly used f such as the GNN with sigmoid or tanh
activations and some commonly used g such as the squared /5 norm satisfy the KL
property [185, 186], and Algorithm 3 is guaranteed to avoid a strict saddle point and

converges to a second-order stationary point.
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