
Distribution Agreement 

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 
University, I hereby grant to Emory University and its agents the non-exclusive license to 
archive, make accessible, and display my thesis in whole or in part in all forms of media, now or 
hereafter now, including display on the World Wide Web. I understand that I may select some 
access restrictions as part of the online submission of this thesis. I retain all ownership rights to 
the copyright of the thesis. I also retain the right to use in future works (such as articles or books) 
all or part of this thesis. 

 
Rahil Mahmood                                                                                                         April 03, 2023  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
  
 
  
   
 

A Machine Learning Network to Automatically Track Prairie Voles in Cohabitation:  

Oxytocin Receptor KO Males Reveal No Behavioral Deficits Towards their Partners 

 
 

by 

 
Rahil Mahmood 

 

 
Dr. Robert Liu 

Advisor 

 
 

Biology 

 
 

Dr. Robert Liu 
 

Advisor 

 

 

   Dr. Kate O’Toole 

    Committee Member 

 

 

   Dr. Mar Sanchez 

     Committee Member 

 

   2023 

 



  
  
 
  
   
 

A Machine Learning Network to Automatically Track Prairie Voles in Cohabitation:  

Oxytocin Receptor KO Males Reveal No Behavioral Deficits Towards their Partners 

 

 
 

By 

 
Rahil Mahmood 

 

 
Dr. Robert Liu 

Advisor 

 

 

 
 
 

An abstract of 
a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 
of the requirements of the degree of 

Bachelor of Science with Honors 
 
 

Biology 

 

 
2023 

 

 

 

 



  
  
 
  
   
 

Abstract 

A Machine Learning Network to Automatically Track Prairie Voles in Cohabitation:  

Oxytocin Receptor KO Males Reveal No Behavioral Deficits Towards their Partners 

 
By Rahil Mahmood 

Quantifying the nature of social interactions displayed by prairie voles in cohabitation can be a 

useful way to understand the neural mechanisms underlying various social behaviors. However, 

the current standard of behavioral analysis involves the annotation or scoring of experimental 

recordings, which in addition to being a time-consuming process, is open to biases and great 

variability across human annotators. Using supervised machine learning principles, we 

developed a robust network capable of automatically tracking prairie voles in cohabitation. 

Trained with the help of the open-source pose estimation tracking software DeepLabCut, our 

tracking network incorporated an in-house autoencoder and was built on a dataset of over 

500,000 frames of video. Ultimately, the network was capable of increasing the efficiency of the 

annotation process by nearly 100%. Oxytocin has previously been shown to play a crucial role in 

regulating the social behaviors that govern the formation of pair bonds in prairie voles and other 

monogamous mammals. We used our auto-tracking network to quantitatively compare the 

differences in social behaviors displayed by wildtype and CRISPR/Cas-9 mediated oxytocin 

receptor knockout male prairie voles in cohabitation with their wildtype female conspecifics. We 

found no significant differences between the two genotypes with regards to the average total 

duration and frequencies of prosocial behaviors displayed at the time of cohabitation. These 

results were consistent across both automated and manual tracking processes. In concordance 

with previous studies, we posit that pair bond maintenance, and hence the maintenance of the 

social behaviors regulating pair bonds, can be achieved in the absence of the oxytocin receptor. 

This is likely due to the cross-talk that has been shown to exist among the oxytocin, vasopressin, 



  
  
 
  
   
 
and dopaminergic pathways in the brain. Ultimately, we propose that our automated tracking 

model can be used to significantly eliminate the subjectivity inherent in the process of behavioral 

annotation and eventually serve to facilitate the standardization of annotation protocols in the 

field of computational neuroethology. 
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Introduction 

 
The neural mechanisms underlying social behavior in mammals have long been of 

interest in the field of behavioral neuroscience. Pair bonding, or the establishment of a long-term 

emotional connection facilitated through exclusivity in mating, or social monogamy between 

conspecifics (Bales et al, 2021), is observed in merely five percent of mammals, including prairie 

voles (Microtus ochrogaster) and humans (Johnson and Young, 2015). Pair bonding behavior is 

believed to be evolutionarily advantageous (Fletcher et al., 2015) in certain environments by 

enhancing reproductive performance, promoting biparental care, and increasing cooperation 

between members in harsh environmental conditions (Sánchez-Macouzet et al., 2014). Among 

some of the key hormones and neuromodulators responsible for regulating the social behaviors 

associated with establishing and maintaining pair bonds, oxytocin has been shown to be 

especially important (Burkett et al., 2016) due to its effects exerted across multiple behavioral-

regulating regions of the brain, including the nucleus accumbens (NAcc), prelimbic cortex (PLC) 

in the medial prefrontal cortex (mPFC), and the bed nucleus stria terminalis (BNST), to name a 

few (Horie et al., 2020; Liu and Wang, 2003). While previous studies have investigated how the 

global knockout of oxytocin receptors (Oxtr-KO) in male prairie voles does not prevent them 

from maintaining a preference towards their WT female partners (Horie et al., 2020), a shortage 

of data and lack of clarity exist in terms of understanding the specific roles of oxytocin receptors 

in regulating the nature of affiliative and non-affiliative behaviors that individuals display when 

encountering familiar faces. Specifically, there is a need for more clarity on how oxytocin 

receptors help modulate the prosocial behaviors (mating, sniffing, huddling, etc.) that male 

prairie voles often display when placed alongside their female partners. While the use of partner 

preference tests has previously served as a useful experimental set-up to investigate the role of 
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oxytocin receptors in maintaining preferences in male prairie voles for partner females over 

novel females (Beery, 2021; Williams et al., 1994), in order to look for the specific types of 

social and non-social behaviors that male prairie voles may display around their female partners, 

it is more useful to have the animals in cohabitation (López-Gutiérrez et al., 2021). In this 

setting, both the male and female are untethered and free to move around the entirety of the 

experimental environment (unlike in a partner preference test), thereby facilitating the enactment 

of behaviors in their most natural form (i.e. as would be seen in the wild).  

 
To modulate the oxytocin system, some previous studies infused an oxytocin receptor 

(OTR) antagonist into the NAcc and PFC and found that doing so restricted the display of 

partner preference in female prairie voles (Young and Wang, 2004). Other studies found that in 

male prairie voles, the infusion of an OTR antagonist into these same regions could prevent 

males from maintaining partner preference (Wang and Aragona, 2004). Given that there exists 

significant crosstalk between the oxytocin, arginine vasopressin (AVP), and dopamine receptor 

systems in these cortical regions (Song and Albers, 2018; Baribeau and Anagnostou, 2015; Rae 

et al., 2021), and that there are inefficiencies associated with antagonist usage (Josipović et al., 

2019), the aforementioned studies have been limited in their ability to fully understand the role 

of the oxytocin receptor in regulating social behaviors and social preferences.  

 
With the advent of modern biotechnologies in recent years, it has been possible to 

overcome many of the challenges and uncertainties posed by the use of receptor antagonists. One 

such technology is CRISPR (Heidenreich and Zhang, 2016). The CRISPR/Cas-9 facilitated 

oxytocin receptor knockout line of prairie voles has previously served as a useful model for 

demonstrating that the global knockout of oxytocin receptors leads to repetitive behaviors and 
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impaired preferences for social novelty (Horie et al., 2019). Some recent studies have used the 

CRISPR/Cas-9 model to demonstrate that Oxtr-KO prairie voles retain the ability to form social 

attachments and also maintain them over an extended period of time (Berendzen et al., 2023). 

However, studies like these primarily focused more on quantifying whether or not bond 

formation took place and less on how it took place. In other words, the question on how exactly 

the impairment of oxytocin signaling influences the numerous prosocial behaviors that prairie 

voles display during pair bond formation (or when they first encounter a new face) remains 

unexplored. Additionally, as insightful as these studies have been, many of the standard 

experimental set-ups that they have incorporated to objectively measure the deficits in social 

behavior seen in Oxtr-KO individuals are constrained by the requirement of the human element 

(i.e., the need for human scorers to manually annotate specific instances of different social 

behaviors by viewing video recordings of prairie voles in cohabitation) (Noldus et al., 2001).  

 
While having human annotators may be advantageous due to their ability to observe and 

differentiate between certain behavioral nuances (a skill that comes from experience and 

familiarity with prairie vole behavioral patterns), the process that they must partake in to 

annotate videos is often quite time consuming (Silverman et al., 2010; Winslow, 2003). 

Moreover, the process is vulnerable to significant bias and variability when different annotators 

work on different videos for the same experiment (Shemesh et al., 2013). Furthermore, this 

process of manual annotation does not allow for the development of a fixed standard of 

behavioral definitions that can be adopted and shared across labs interested in investigating 

similar questions (Segalin et al., 2021). For instance, determining whether a male “sniffs” or 

investigates a female, or vice-versa, is dependent upon the annotator's definition for the distance 

threshold between the two animals that would be appropriate to facilitate the act of “sniffing”. If 
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this threshold is chosen to be x units of distance, then the annotator would be required to visually 

judge this distance as accurately as possible on every occasion when the animals are in proximity 

of each other (and often moving at high speeds). Doing so is often beyond the scope of human 

sensory ability, and the prospect of training annotators to acquire the same reaction time is 

unfeasible—even when all the annotators work in the same lab. Inevitably, when the same 

behavior is assessed under different experimental conditions at different labs, the absence of a 

commonly agreed upon definition for investigative threshold distances or threshold mating 

angles, for example, could lead to a lack of generalizability in the results generated across 

different labs.  

 

To combat the many flaws inherent in the process of manually annotating social 

behaviors, there have been several efforts in the field of computational neuroscience to create 

more “automated” approaches—capable of addressing the previously mentioned time, bias, and 

standardization factors (Sturman et al., 2020). These approaches have primarily fallen under two 

broad categories of machine learning: supervised and unsupervised. The former derives its name 

from the fact that it is trained on human-generated “ground truth” data. In other words, human 

annotators must create a data set consisting of correctly-labeled samples that the automated 

network can then use as a reference point. The latter, meanwhile, requires no human input or 

ground truth. Instead, it relies on Hidden Markov Models to look for repetitive patterns in the 

data and then classifies different behavioral sequences according to these distinct patterns 

(Wiltschko et al., 2015). In the case of both the supervised and unsupervised machine learning 

approaches, there are certain drawbacks to be considered. The requirement for ground truth in 

the case of the supervised approach makes it open to biases that might be present in the human-
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generated data. Meanwhile, in the case of the unsupervised approach, the sequences recognized 

often tend to be overly complex (representing more behaviors than there actually are), and there 

is therefore a requirement for human subjects to ultimately deconstruct these complex patterns. 

Here too, then, there is certainly room for human bias, depending on how the data are 

interpreted. However, unlike in the case of manual annotation, the “bias” in the case of both 

supervised and unsupervised auto-tracking approaches has nothing to do with human reaction 

times or visual sensory capabilities. Rather, it arises mostly at the time of post-tracking analysis 

and its effects are often less detrimental than those that result from having badly tracked data to 

start with. Therefore, with both supervised and unsupervised approaches offering a significant 

reduction in the time factor and annotation bias—when compared to manual annotation 

processes—the decision regarding which approach to choose boils down to the question of 

generalizability in the results. As different labs may be interested in different variations of 

certain social behaviors (for example, general “sniffing” behaviors vs specifically “oral 

sniffing”), many previous studies (Nilsson et al., 2020; Walter and Couzin, 2021; Pereira et al., 

2020) have leaned towards supervised tracking approaches due to the flexibility they offer in 

allowing researchers to predefine specific behaviors of interest in the ground truth. However, the 

subject of generalizability and the extent to which is it possible, is still heavily debated (Segalin 

et al., 2021). 

 
With the goal of attempting to standardize the behavioral annotation process within and 

across labs, drastically reducing the time factor of the manual labeling process, and effectively 

eliminating the bias and variability inherent in manual annotation, this study incorporated an 

automated tracking methodology capable of increasing the efficiency of the tracking process by 

nearly one hundred percent. The open source, pose estimation tracking network DeepLabCut 
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(DLC) (Mathis et al., 2018) was trained with a large sample of manually-labeled tracking data 

and a multi-layered autoencoder was developed in-house to filter out the inaccuracies in the DLC 

tracking estimations. This robust, supervised machine learning network was then used to 

evaluate the differences in the nature of social interactions between five wild type (WT) and six 

oxytocin-receptor knockout (OXTR-KO) male prairie voles with their WT female partners 

during cohabitation. While some previous studies (Kitano et al., 2022; Berendzen et al., 2022; 

Ross et al., 2009) have looked into similar interactions, their analyses have relied primarily on 

manual annotation processes—thereby casting doubts on the generalizability of such findings as 

outlined above. Our study, however, is novel in that it comprises an unprecedented sample size 

of over 500,000 frames of cohabitation video to draw conclusions based on results generated by 

a highly regulated automated tracking network, and then compares these results to those obtained 

from conventional manual annotation practices. We found a strong correlation between the 

results generated by both the manual and automatic tracking approaches, allowing us to share our 

predictions on the role of the oxytocin receptor in mediating pair bonding behaviors with great 

certainty. Most of all, our model offers the opportunity to derive conclusions regarding the nature 

of a particular cohabitation in a time-span that is nearly less than half of that required when 

adopting the conventional process of manual annotation. In the sections that follow, we describe 

the steps we took to develop the tracking network, including how we ensured its robustness and 

reliability, and how we used it to explore a pressing question in the field of behavioral 

neuroscience. We believe that the significance of our work, however, lies less in its implications 

on oxytocin and pair bonding, but more in the field of automated behavioral tracking. We strove 

to define different social behaviors with the utmost clarity, using our familiarity with prairie vole 
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behavioral patterns to account for all possible physical manifestations—obvious and subtle—of 

the behaviors we investigated.  

 

 
Methods 

1. Animals 

Homozygous oxytocin receptor knockout male prairie voles generated by 

CRISPR/Cas9 editing (as outlined by Horie et al. (2020)) and wildtype male controls 

from the same breeding colonies were cohabitated with wild-type females obtained from 

the stock colony housed in the lab of Dr. Larry J. Young at Emory University in Atlanta, 

Georgia.  

 

2. Behavioral Recording and Manual Annotation 

A downward-facing camera was placed above each chamber to record the animals 

engaging in their native behaviors during cohabitation. The camera frame rate was set to 

20 fps (or 0.05 seconds per frame). The open-source event logging software called 

Behavioral Observation Research Interactive Software (BORIS) was used to create an 

ethogram of various social behaviors, including social investigation, mating, and 

approach/departure instances. This ethogram was subsequently used to annotate videos 

of cohabitation that lasted on average for a duration of 65 minutes. The human annotators 

were unaware of the genotype (WT/KO) of the animals in the videos, eliminating any 

potential biases from preconceived expectations on behavioral outcomes. Social 

investigation was defined as any attempt by the male to “sniff” the female within a 

visually determinable distance of approximately half the length of the average prairie 
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vole head. Instances wherein the male approached the female head-on (nose-nose 

sniffing), from either side of the female’s body (nose-to-ear/waist/hip), and from the 

female’s rear end (anogenital sniffing) were all included broadly under social 

investigation. The behavior mating was defined as any instance wherein the male 

mounted the female with the intention of intromission. Instances wherein intromission 

did not occur were classified separately as mounting only. Instances of approach and 

departure were defined as points wherein the male accelerated towards the female from 

rest with the intention of investigating it, and when the male accelerated away from the 

female after investigating/mating with it, respectively. Following the completion of the 

annotation process, BORIS provided the tools to generate metrics with regards to the total 

durations of each behavior and an overall timeline of behavioral events throughout the 

video. Comparing such metrics across different animals (such as total social investigation 

duration in WT vs KO) allowed for inferences pertaining to the effects of OXTR-KO on 

regulation of pro-social/pair bonding behaviors.      

 
 
3. Training Neural Network (DLC) 

The open-source pose estimation package DeepLabCut (DLC), developed by the 

Mathis Group and the Mathis Lab, was used to create separate 2D skeletal frameworks 

for the male and female inside each recording chamber (Figure 1). Each skeleton 

consisted of eleven points that served to provide an outline of the body shape: nose, left 

ear, between ears, right ear, right-mid-waist, midbody, left-mid-waist, left hip, midhip, 

right hip, tail start. Approximately 50000 frames were labeled per video, ultimately 

giving rise to a sizable “ground truth” of manually-labeled data (over 500000 frames) to 
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train the DLC network. Each of the eleven points labeled on the “skeleton” represented 

an X-Y coordinate for that particular anatomical feature. Each recording chamber was 

also mapped out to define the coordinates of the four corners and the center. Ultimately, 

the skeletal coordinates generated by the network were in relation to the coordinates of 

the cage (with the center of the chamber labeled as 0,0).  

 
 

 
Figure 1: Points used to label vole via DeepLabCut (DLC): Each point was manually placed 
on both the male and female at the time of establishing ground truth. Different point colors were 
used to distinguish between the animals in each frame. 

 
 
4. Autoencoder 

The results generated by the DLC network post training comprised of three 

varieties of errors: swapping, lagging, and shrinking. In order to keep the identities of the 

male and female separate, the network used two different skeletal colors: blue for female 

and red for the male. However, on certain occasions, especially when the two animals 

engaged in a series of rapid investigative or mating behaviors that resulted in their bodies 
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adopting complex configurations, the network failed to accurately maintain their 

identities. In other words, the skeletons “swapped” between the male and female. The 

“lagging” problem occurred on several occasions wherein an animal changed its position 

rapidly (for example, by accelerating very quickly from rest). As a result, the network 

failed to generate skeletons that were precisely placed on the animal’s body. On separate 

occasions, particularly when an animal adopted postures that made its shape difficult to 

decipher (i.e. accurately differentiate anterior from posterior or ventral from lateral), the 

“shrinking” problem persisted, wherein the skeletons reduced significantly in size and 

failed to map out the animal’s entire body. While each of these three types of errors was 

noticed across multiple videos, their occurrence is somewhat excusable given the fact that 

a human annotator would have also found these complex postures/movements difficult to 

accurately decipher. However, as such errors would have certainly produced faulty 

results and given rise to inaccurate conclusions regarding the differences between the WT 

and KO groups, it was extremely important to rectify them prior to analyzing the raw 

tracking data. We developed an autoencoder capable of identifying these badly labeled 

frames and repositioning skeletal points that deviated significantly from a predefined 

“shape” of the voles used in the study. Consisting of four primary layers (input, encoder, 

decoder, output), the autoencoder relied on a Gaussian mixture model (Fig. 11) to filter 

out any severe variations in the data, thereby significantly improving the DLC tracking 

results.  
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5. Data Analysis 

Having obtained coordinates of the animals through the tracking process, the next 

step was to use the coordinate data to make various calculations pertaining to the relative 

separation between the animals and ultimately identify various social behaviors. As 

previously described, performing manual annotation via BORIS allows for the quick 

generation of annotation summaries: the total number of instances (or total duration) of a 

specific behavior included in the ethogram can easily be determined using the tools 

provided by the software. However, in the case of our automated tracking network, the 

raw data was not in the form of specific labels from a predefined ethogram, but merely as 

a spreadsheet containing several thousand coordinates for each animal. We used 

MATLAB to write code (see Appendix) that could extract this raw data and translate it 

into a summary of distinct behavioral categories. The main categories of social behavior 

analyzed in this study were “social investigation” (including nose-to-nose sniffing, side 

sniffing, and anogenital sniffing) and “mating”. As previously discussed, the goal was to 

be able to standardize the definitions of these behaviors in order to facilitate 

generalizability in the results across and within labs.  

 
To determine instances of nose-to-nose sniffing, we relied on two parameters: 

distance and direction. We calculated the distance between the nose of the male and the 

nose of the female and also found the angle between the male’s and female’s eyeline 

vectors (Figure 2). The eyeline vector represented the vector connecting the middle of the 

neck and the nose for each animal. We then proposed that the act of nose-to-nose sniffing 

would occur on any occasion wherein the distance between the male and female noses 

was less than a certain threshold distance and, simultaneously, the angle between the two 
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eyeline vectors was between a certain threshold of angles. In trying to determine a 

reasonable threshold for distance, we correlated the auto-tracking results with the manual 

results for a range of different distance values and looked for the value that yielded the 

highest correlation (or R2) with the manual tracking results. We discuss the rationale and 

limitations behind this process in more detail later (see Discussion and Figure 18). Based 

on the peak R2 value, the threshold distance was chosen to be 25 pixels (or approximately 

the distance between the nose and between ears coordinates on an average prairie vole). 

The threshold range of angles was chosen to be +/- 90 degrees (or the area in front of the 

female nose where nose-nose sniffing was most likely to take place (Figure 2B). In the 

case of anogenital sniffing, we proposed that this event would take place on any occasion 

wherein the distance between the male’s nose and the female’s tail start was less than a 

certain threshold distance (25 pixels) and, simultaneously, the angle between the male 

eyeline vector and the female tail vector (the vector represented by the line joining the 

female tail start coordinate and the female midbody coordinate) was within a certain 

threshold (+/- 90 degrees) (Figure 3). 
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Figure 2: Determining instances of nose-nose sniffing: (A) The distance between the noses of 
the male (blue) and female (pink) were calculated as the Euclidean distance between the nose 
coordinates on each animal. (B) The direction of sniffing was determined by the angle between 
the two eyeline vectors. The possible range of angles is represented by the illustration on the top 
right (red arrow = male, blue arrows = female). 

 
 

In determining instances of side sniffing (Figure 4), we sought to account for all 

cases wherein the male approached the female from either the right or left side of the 

female’s body and went on to engage in the act of “sniffing”. Firstly, we found the 

Euclidean distance between the male’s nose and the female’s midbody (d1), and between 

the male’s nose and the female’s (right/left) mid-waist (d2). Next, we also calculated the 

distance between the male’s nose coordinate and the following segments on the female’s 

body: ear to mid-waist (d3) and mid-waist to hip (d4) (for both the left and right sides of 

the body).  We assumed that whenever d1 was greater than d2 (with reference to the 

right-mid-waist), then it was likely that the male was closer to the perimeter on the right 
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side of the female’s body than to the center of the female’s body (which would happen 

when the male mounted the female from the right side). Likewise, we assumed that 

whenever d1 was greater than d2 (with reference to the left-mid-waist), then it was likely 

that the male was closer to the perimeter of the left side of the female’s body than to the 

center of the female’s body (which would happen when the male mounted the female 

from the left side). In making these two assumptions, we were able to do two things: one, 

identify whether the male’s nose was closer to the right or left side of the female body; 

and two, disregard instances wherein the male carried out a sideward mounting of the 

female (an act that would not constitute merely “sniffing” the female). Subsequently, we 

combined this knowledge pertaining to the male’s position relative to the female’s body 

sides with the aforementioned calculations concerning the distance between the male’s 

nose coordinate and the body segments on the female. We stipulated that side sniffing 

would occur in the event that d1 was greater than d2 (for either the right or left sides of 

the female) and, simultaneously, the distance between the male’s nose coordinate and 

either of the two segments (d3/d4) (on the right or left sides of the female’s body) was 

less than a predefined threshold distance.  

 
To identify instances of mating (Figure 5), it was important to come up with strict 

parameters for both distance as well as direction, since this behavior can only take place 

when the male and female are in a specific position relative to each other. We found two 

vectors: the first being the line joining the midhip and midbody coordinates on the male, 

and the second being the line joining the same two coordinates on the female. Next, 

similar to how we approached the calculation for side sniffing, we found the distance 

between the male midbody coordinate and the segment joining the female midbody and 
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midhip coordinates. We assumed that in the event that this point-to-segment distance was 

less than a predefined threshold distance and, simultaneously, the angle between the two 

aforementioned vectors was less than a predefined threshold angle, the two animals 

would be engaged in mating.  

 

 

 

Figure 3: Determining instances of anogenital sniffing: (A) The distance between the nose of 
the male (blue) and tail start of the female (pink) were calculated as the Euclidean distance 
between the nose and tail start coordinates on the male and female, respectively. (B) The 
direction of sniffing was determined by the angle between the male eyeline vector and the female 
tail vector. The possible range of angles is represented by the illustration on the top right (red 
arrows = male, blue arrow = female). 
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Figure 4: Determining instances of side sniffing: (A) The distance between the male nose 
coordinate and female midbody coordinate (d1) and the distance between the male nose 
coordinate and female (right/left) midwaist coordinate (d2) allowed for determination of whether 
the male was side-mounting or side-sniffing the female. (B) The distances between the male nose 
coordinate and female (right/left) ear-midwaist segment (d3) and the male nose coordinate and 
female (right/left) midwaist-hip segment (d4) were compared against the threshold distance value 
for side sniffing. 
 

  

Figure 5: Determining instances of mating: (A) The distance between the male midbody 
coordinate and the segment joining the female midbody and midhip coordinates was compared 
against the predefined mating threshold. (B) The direction of mating was determined by 
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calculating the angle between the vectors joining the midbody and midhip coordinates on the 
bodies of the male and female. The white arrow (used for visibility) represents this vector on the 
female. The possible range of mating vectors is represented by the illustration on the top right. 
There, the white arrow has been replaced by the blue arrow.  

 

Results 

Comparing Auto-Tracked and Manually-Derived Results Independent of Genotype: 

One of the key objectives of this study was to be able to create an automated tracking 

network that would not only reduce the time required for the annotation process, but also 

perform with equal, if not greater, accuracy than human annotators. Therefore, it was vital for us 

to compare the auto-tracking results side-by-side with the manual tracking results for specific 

behaviors across every animal. We compared manual and auto-tracked results for mating, and 

social investigations (nose-to-nose sniffing, anogenital sniffing, and side sniffing) across 5 WT 

and 6 Oxtr-KO cohabitations. It is worth noting here that in order to ensure greater validity of the 

auto-tracking results, we included in our code a conditional statement that disregarded instances 

wherein a behavior was observed for less than 0.5 seconds. Doing so was crucial because in the 

event that the network mistakenly identified, for example, multiple instances of mating (each 

lasting less than 0.5 seconds) while the animals were in fact engaged in another behavior like 

anogenital sniffing, these instances could ultimately add up to wrongly alter the final duration 

results for mating. 

 
Mating: 

In comparing auto-tracked vs manually-generated results for the total mating duration 

during the first 30 minutes of cohabitation, we found that there was a strong positive correlation 

(R2 = 0.86, p = 0.42 (t-test)) between the auto-tracked and manual annotation results (Figure 6). 

In other words, for each of the animals observed, the network that we developed was able to 
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capture a value for total mating duration that was almost equal to that captured by human 

annotators using BORIS. In addition to duration, we also calculated the number of instances 

captured by both the network and human annotators for each of the behaviors of interest. This 

was important to do because we wanted to see whether the durations being identified by the 

network were based on the same or different number of episodes of the behavior. In the case of 

number of instances of mating (Figure 8), we found a weak positive correlation (R2 = 0.20, p = 

0.02 (t-test)) between the auto- and manually-generated results. We offer a detailed explanation 

for this occurrence later (see Discussion) but we think that this difference has to do with the 

network’s inability to differentiate between male- and female-initiated mounting behaviors, 

which tend to look nearly identical unless animal identities are clearly distinguished. The high 

positive slop value for the same results, however (Figure 8), indicates that, on average, the auto- 

and manually-generated calculations for number of instances did seem to line up when the 

network was able to correctly identify only male-initiated mating episodes.   

 
Social Investigation: 

The human annotators did not differentiate between nose-nose sniffing, anogenital 

sniffing, and side sniffing, but simply grouped all three types of “sniffing” under the category of 

“social investigation.” The automated tracking network, on the other hand, was trained to 

identify each of these subtypes of sniffing as separate behaviors. In order to directly compare the 

results of the automated tracking network with those of manual annotation for social 

investigation, we simply found the sum of durations for nose-nose sniffing, anogenital sniffing, 

and side sniffing for each animal—as this value would be logically equal to the social 

investigation value determined by human annotators using BORIS. For all of the WT and KO 

animals studied, we found a positive correlation (R2= 0.63, p = 0.74 (t-test)) between the auto-
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tracked and manually annotated results for the total duration of social investigation (Figure 7). 

Meanwhile, when comparing the number of instances of social investigation captured for each 

animal, we again found a positive correlation (R2 = 0.62, p = 0.85 (t-test)) between the auto-

tracked and manually annotated results (Figure 9). 

 

Comparing Quantitative Differences in Social Behavior Across Genotypes: 

 
Having established the reliability of the network (i.e., its capability of generating results 

comparable to those generated by human annotators), we then sought to use it to examine certain 

quantitative differences in social behaviors displayed by WT and Oxtr-KO male prairie voles 

when in the vicinity of their WT female conspecifics. We once again compared both total 

duration as well as number of instances for various social behaviors that are characteristic of 

prairie voles in cohabitation: mating, nose-nose sniffing, anogenital sniffing, and side 

sniffing. Additionally, for further validation of our auto-tracking results, we also compared theses 

parameters between the two genotypic groups using manually-annotated data.  

 
Using the results generated by our auto-tracking network, we found no significant 

differences in the mean duration (average total duration across all WT or all KO animals) 

between the WT and KO animals for each of the four behaviors investigated (Fig. 10). The 

following p values were calculated from the two-tailed t-test: 0.80 (nose-nose sniffing), 0.43 

(anogenital sniffing), 0.72 (side sniffing), and 0.69 (mating). We also compared the mean number 

of instances for the same four behaviors across WT and KO animals and found no significant 

differences (Figure 13). The following p values were calculated from the two-tailed t-test: 0.93 

(nose-nose sniffing), 0.42 (anogenital sniffing), 0.62 (side sniffing), and 0.20 (mating). For 
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reference, when we looked into these same comparisons using manually-generated data (Figure 

12), we found similar results. There was no significant difference in the mean duration between 

the WT and KO animals for both social investigation and mating. The following p values were 

calculated from the two-tailed t-test: 0.94 (social investigation) and 0.63 (mating). Using 

manually-generated data, we also looked compared the mean number of instances for both social 

investigation and mating between the WT and KO animals and found no significant differences 

(Figure 15). The following p values were calculated from the two-tailed t-test: 0.91 (social 

investigation) and 0.95 (mating).  

 

Discussion 

In this study, we trained a supervised machine learning network capable of automatically 

tracking prairie voles in cohabitation and thereby increasing the efficiency of the tracking 

process by nearly 100%. Moreover, our network sought to eliminate the variability and biases 

that often arise from manual tracking processes involving human annotators (Segalin et al., 

2021). Our results showed that, when compared to manual tracking processes, the auto-tracking 

network was able to identify both the duration as well as frequency of various social behaviors 

with varying levels of precision, depending on the thresholds that we set. As indicated in Figures 

6,7, and 9, at a threshold of 25 pixels (for both sniffing and mating behaviors), the R2 value is 

indicative of a strong correlation (about the mean) between the manually- and auto-derived 

tracking results. However, we found that upon exceeding a threshold of 25 pixels, or, likewise, 

decreasing the threshold below 25 pixels in descending order, the R2 values appear to decrease in 

both directions (Figure 18). This suggests that the number 25 serves as a peak threshold value 

(for sniffing behaviors) that allows for the generation of results that have minimal variance in the 
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context of our regression model. That said, upon setting the threshold value to 40 pixels, we can 

see that the slope of the correlation line (Figure 16) is exactly 1—indicating that the auto-tracked 

results for each animal are almost identical to the corresponding manually-generated results. 

However, we also observe that the y-intercept in this case (161.83) is larger than that seen for a 

lower threshold of 25 (101.91); and, in fact, the y-intercept value increases consistently with the 

slope value upon going from thresholds as low as 15 to as high as 40. Therefore, while it is 

tempting to aim for a threshold that provides a slope value of 1, the higher y-intercept values that 

accompany this higher slope value indicate longer durations of the behavior (social investigation) 

being detected by the auto-tracking network when compared to the manual tracking data. Upon 

using our code to look at the kinds of frames being extracted by the auto-tracking network at 

higher thresholds (40 pixels), we found that there were many “false positives” (Figure 19). By 

that we mean that the instances of nose-nose sniffing, for example, that the network detected, 

appeared to be too “distant” according to the threshold we would otherwise visually approximate 

during the process of manual annotation. This argument, however, assumes that our 

anthropocentric definition of what a “social interaction” should look like is accurate and 

applicable to prairie voles as well. The whole point of using the auto-tracking network was to be 

able to eliminate such biases in the behavioral annotation process and we will discuss this point 

further in the contents that follow. In addition to the above-mentioned occurrence of “false 

positives” at a threshold of 40 pixels, the R2 value at this threshold (0.55) also appears to be less 

than that for a threshold of 25 (0.63). The argument we pose in trying to choose between a higher 

slope value or a higher R2 value to show the robustness of our tracking network has to do with 

the significance and reliability of the “ground truth”. Of course, we took several measures to 

ensure that the manual annotation process was conducted as impartially as possible and 
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annotators were trained to carry out the labeling process with high accuracy. Even then, 

however, as discussed earlier, the manual annotation process will always be prone to errors (like 

different annotator response times and visual sensory abilities) that are beyond experimental 

control. As discussed earlier, when different experimenters or different labs have their own 

inherent biases, the question then boils down to whose ground truth is to be trusted and regarded 

as the “gold standard”. We propose that one of the advantages of our tracking network is that it 

offers experimenters the opportunity to choose their own threshold parameters, depending on 

their experimental conditions and the strictness with which they want to apply their behavioral 

definitions. Indeed, allowing for this flexibility ultimately takes away from the objectivity that 

this study aims to bring about in the field. That said, given the peak threshold values for sniffing 

behaviors that we were able to determine through our experiment, our model also offers 

experimenters the opportunity to identify optimal threshold values (based on peak R2 values or 

other parameters like slope or intercept offset) and to make this optimization explicit rather than 

implicit—as is the case with manual scoring. In doing so, those who implement our model might 

often find (as did we) that there exist significant differences in the manual and auto-tracked data. 

However, such differences might, in fact, be indicative of the biases or flaws present in the 

manual tracking methodology rather than of shortcomings in the accuracy of the auto-tracking 

network. In that sense, the earlier-mentioned argument regarding whose manually-labeled data is 

the gold standard might shift to, instead, whether auto-tracking itself is the real gold standard 

when compared to manual tracking. To provide statistical motivation for this question, it is worth 

considering Figure 17 at this point. When we look at the number of instances for all WT and KO 

animals wherein the animals are within different threshold distances of each other (the X-axis 

represents the pixel value for the distance between the male nose coordinate and the female 
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midbody coordinate), it appears that up until a threshold of 40 pixels, there are no significant 

differences between the two genotypes (which concurs with the findings of this study, given the 

thresholds that we implemented). However, upon going beyond a threshold of 40, all the way up 

until a threshold of 400 pixels, there seem to be many more instances wherein WT animals are in 

closer proximity than KO animals. This finding raises some interesting questions: does the 

communication involved in pair bond formation in prairie voles take place over longer distances 

than the those considered by the field thus far while performing manual scoring? If so, could the 

impairments resulting from the oxytocin receptor knockout actually manifest at higher distance 

thresholds than previously explored? 

 

In Figure 8, we saw a moderately positive correlation (R2 = 0.20) between the auto-

tracked and manually-annotated results for the number of instances of mating. In comparison to 

the correlation we found for the number of instances of social investigation (R2 = 0.62), this 

correlation appears to be much weaker. Given that the correlation between the auto-tracked and 

manually generated results for the total duration of the same behavior (mating) was quite strong 

(R2 = 0.86), meaning that both the network and human annotators observed similar total mating 

durations for the same animals, we propose that the weaker correlation observed for number of 

instances could be due to the network’s inability to differentiate between instances wherein the 

male mounted the female from instances when the female mounted the male. As can be seen in 

Figure 6, there appear to be two cases wherein the auto-tracking results show large positive 

values (around 25 and 50) for total mating duration when the manual results are around 0 for the 

same two animals. After looking back at the specific frames that were identified by our auto-

tracking network as instances of “mating”, we were able to confirm that a majority of these 
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frames involved the female mounting the male, an act that is not considered “mating”. In the case 

of manual annotation, such instances would quickly be filtered out given a human’s ability to 

distinguish between the male and female while watching the video. In the case of our auto-

tracking model, however, given that the final behavioral annotations depend on the robustness or 

quality of behavioral definitions created by the human coder, there can often be instances 

wherein even good tracking results (by the network) fail to be highlighted appropriately (by 

human analyzers). While significant efforts were made to account for any positional nuances 

while coding the definitions for all other behaviors, including nose-nose sniffing, anogenital 

sniffing, and side sniffing, given the orientations of the male and female when engaging in 

mating, it was difficult for us to write the appropriate code to be able to differentiate between 

male- and female-initiated mounting episodes. However, given that mounting of the male by the 

female is relatively rare when compared to mounting of the female by the male (Blocker and 

Ophir, 2016), we do not see this as a matter of grave concern in the context of this study.  

 

After having proven the reliability of our tracking network in generating results 

comparable to human annotators, we then sought to implement it in our exploration of the 

quantitative differences in the nature of social behaviors displayed by oxytocin receptor 

knockout male prairie voles when compared to wildtype male prairie voles. As indicated in 

Figures 10, 11, 12, 13, 14, and 15, we found no significant differences for either total duration or 

number of instances of various social behaviors between the WT and KO groups. This finding 

was common in both automated and manual annotation processes. In previously conducted 

studies involving partner preference tests, Oxtr-KO male prairie voles were shown to maintain 

their preferences towards their respective female partners (Wang and Aragona, 2004; Horie et 
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al., 2019). Based on those findings, we propose that it is likely that, in order to maintain such a 

preference, Oxtr-KO male prairie voles in cohabitation continue to display pro-social behaviors 

towards their female partners with similar frequency and duration as WT males. Furthermore, 

given that various other neurotransmitters and hormones, including vasopressin and dopamine, 

have previously been shown (Hammock and Young, 2006; Loth and Donaldson, 2021) to play a 

crucial role in the regulation of the pair bond (and hence the social behaviors governing pair 

bond formation), it is possible that the Oxtr-KO alone is insufficient to deter male prairie voles 

from engaging in pro-social behaviors towards their female partners with similar frequency and 

for similar durations as WT males. 

 

On the whole, this study has demonstrated that it is possible to track multiple prairie 

voles in cohabitation and achieve results that are on par with those obtained from manual 

annotation processes. By analyzing the differences in social behavior enacted by Oxtr-KO and 

WT male prairie voles and finding the same outcomes through both automated and manual 

approaches, we are confident that our network can be further trained to eventually track multiple 

animals in three dimensions and thereby extract more nuanced behavioral patterns. In addition to 

displaying a high level of accuracy, our network reduces the time factor of the annotation process 

by nearly 100% and offers experimenters a unique level of flexibility with regards to adapting 

behavioral definitions and thresholds to suit the unique requirements of their studies. 
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Future Directions  

 In this study we focused primarily on mating and sniffing behaviors to explore the 

quantitative differences in the nature of social interactions taking place across WT and Oxtr-KO 

male prairie voles. Another group of behaviors that we attempted to investigate, but were unable 

to successfully define for coding purposes in this project, is approach/departure behaviors. In 

addition to sniffing and mating, two very important characteristics of measuring affinity between 

conspecifics include the frequencies of approaches and departures—or simply how often the 

male approaches the female from a distance and how often the male moves away from the 

female after being in close proximity to it for an extended period of time, respectively. One of 

the challenges that we faced was in accounting for all possible mannerisms in which an approach 

or departure might take place. For instance, a male may run towards a female from rest at a high 

speed and in a straight line, or it may take a curved (or multi-direction) route to ultimately end up 

next to the female. In either case, however, the male may stop along the way at one or more 

occasions or simply adopt an uninterrupted motion. In such cases, it is unclear as to when exactly 

during the route (or journey towards the female) that the male receives the neurological intent to 

approach the female. Determining this intent can be challenging even for human annotators 

performing manual annotation, and hence there is a need for greater investigation into this topic. 

Additionally, as discussed earlier, upon looking at the cumulative distribution of frames across 

different threshold values for nose-body distance, we found that WT animals appear to be in 

closer proximity to each other than do KO animals at thresholds exceeding 40 pixels. This 

finding urged us to consider the possibility that the social interactions that oxytocin signaling 

facilitates during pair bond formation might in fact take place over much longer distances than 

previously expected. In future studies, we think it would be useful and important to amend our 
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definitions for social investigations and interactions to be able to account for these larger 

threshold values. The motivation to explore this phenomenon might not have arisen if not for the 

flexibility offered by our automated tracking model to select very specific threshold values and 

compare the subsequent outputs very quantitatively. Additionally, given the reliability of our 

network thus far, we hope to build on it further so that other researchers may implement it on 

other model organisms as well. Additionally, as discussed earlier, we hope to develop it to the 

extent where it can track animal movement in three dimensions. This will allow for a more 

nuanced analysis of behavior and potentially eliminate many of the tracking errors that result 

from the limitations of a two-dimensional camera angle.  
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APPENDIX 

MATLAB Codes 

Script A: 

close all; clear all; clc; 
%% This script is going to read .xlsx files storing automatic tracking 
results 
folderAddress='/Users/rahilriadmahmood/Documents/MATLAB/Track_cohab';  %% 
where the xls files storing the tracking results are saved 
DataList=dir([folderAddress,'/Corrected_Tracking_Results']); 
for ff=1:size(DataList,1)-2 
    filename=DataList(ff+2).name; 
    strings=split(filename,'_'); 
    for tt=1:size(strings,1) 
        if strfind(strings{tt}, 'male') 
            recordingName=strings{tt}; 
        else 
        end 
    end 
    if strfind(filename,  'HO') 
        NameTag='HO_'; 
    else 
        NameTag='WT_'; 
    end 
    [num, text, raw] = xlsread([folderAddress,'/Corrected_Tracking_Results/', 
filename]); 
 
    coord_data(1).nose = num(:, 2:3); 
    coord_data(2).nose = num(:, 24:25); 
    coord_data(1).leftear = num(:, 4:5); 
    coord_data(2).leftear = num(:, 26:27); 
    coord_data(1).betweenears = num(:, 6:7); 
    coord_data(2).betweenears = num(:, 28:29); 
    coord_data(1).rightear = num(:, 8:9); 
    coord_data(2).rightear = num(:, 30:31); 
    coord_data(1).rightmidwaist = num(:, 10:11); 
    coord_data(2).rightmidwaist = num(:, 32:33); 
    coord_data(1).midbody = num(:, 12:13); 
    coord_data(2).midbody = num(:, 34:35); 
    coord_data(1).leftmidwaist = num(:, 14:15); 
    coord_data(2).leftmidwaist = num(:, 36:37); 
    coord_data(1).lefthip = num(:, 16:17); 
    coord_data(2).lefthip = num(:, 38:39); 
    coord_data(1).midhip = num(:, 18:19); 
    coord_data(2).midhip = num(:, 40:41); 
    coord_data(1).righthip = num(:, 20:21); 
    coord_data(2).righthip = num(:, 42:43); 
    coord_data(1).tailstart = num(:, 22:23); 
    coord_data(2).tailstart = num(:, 44:45); 
    targetpath=[folderAddress,'/Mat_files_of_tracking_results/']; 
    if ~exist(targetpath) 
        mkdir(targetpath); 
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    else 
    end 
    save([targetpath, NameTag, recordingName, '.mat'], 'coord_data'); 
end 
 
Script B: 

close all; clear all; clc; 
%% load the .mat files saving tracking results one by one in the data folder,  
% decide at each frames whether the male animals (animal 1) are involved in 
% 1. nose-to-nose sniffing; 2. anogenital sniffing; 3. side sniffing;  
% 4. mating; 5. approaching; 6. departuring (definition of 5 and 6 
unfinished) 
% and the results are saved into matrix of index and saved in 
% BehavIndexData.mat 
%% Direct to the root folder of the project containing children data folders 
folderAddress='/Users/rahilriadmahmood/Documents/MATLAB/Track_cohab/';  %% 
where the xls files storing the tracking results are saved 
%% Settings of threshold 
threshold_nn_si = 15; % threshold for nose-nose sniffing 
threshold_ag_si = 15; % threshold for ano-genital sniffing 
threshold_ns_si = 15; % threshold for side sniffing 
threshold_mating = 25; % threshold distance for mating 
 
mating_angle = 45; 
nn_angle_min = +90; % nose-nose sniffing angle 
ag_angle_max = 90; % ano-genital sniffing angle 
 
DataList=dir([folderAddress,'Mat_files_of_tracking_results']); 
for ff=1:size(DataList,1)-3   %% !!!!!!!!!!! 
    filename=DataList(ff+3).name;   %%!!!!!!!!!!! 
    load([folderAddress,'/Mat_files_of_tracking_results/',filename]); 
    BehavIndex(ff).recFile=filename; 
    %% 
    loc_n = size((coord_data(1).nose),1); 
    Index = zeros(loc_n, 6); % store indexes indicating behavioral status for 
each behavioral ethogram 
    % 1: nose-2-nose sniffing; 2: anogenital sniffing; 3: side sniffing;  
    % 4: mating; 5: approaching; 6: departuring 
 
    %% 
    n2bodyDis=zeros(loc_n,2); 
    for ii = 1:loc_n 
        M_nose = coord_data(1).nose(ii,:); % extracting all male nosoe 
coordinates from raw data 
        M_midbody = coord_data(1).midbody(ii,:); % extracting all male 
midbody coordinates from raw data 
        M_midhip = coord_data(1).midhip(ii,:); % extracting all male midhip 
coordinates from raw data 
        M_betweenears = coord_data(1).betweenears(ii,:); % extracting all 
male between ears coordinates from raw data 
        F_betweenears = coord_data(2).betweenears(ii,:); % extracting all 
female between ears coordinates from raw data 
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        F_nose = coord_data(2).nose(ii,:); % extracting all female nose 
coordinates from raw data 
        F_tail = coord_data(2).tailstart(ii,:); % extracting all female tail 
start coordinates from raw data 
        F_EarR = coord_data(2).rightear(ii,:); % extracting all female right 
ear coordinates from raw data 
        F_MidWaistR = coord_data(2).rightmidwaist(ii,:); % extracting all 
female right mid waist coordinates from raw data 
        F_HipR = coord_data(2).righthip(ii,:); % extracting all female right 
hip coordinates from raw data 
        F_EarL = coord_data(2).leftear(ii,:); % extracting all female left 
ear coordinates from raw data 
        F_MidWaistL = coord_data(2).leftmidwaist(ii,:); % extracting all 
female left mid waist coordinates from raw data 
        F_HipL = coord_data(2).lefthip(ii,:); % extracting all female left 
hip coordinates from raw data 
        F_BetEars = coord_data(2).betweenears(ii,:); % extracting all female 
betweenears coordinates from raw data 
        F_MidHip = coord_data(2).midhip(ii,:); % extracting all female midhip 
coordinates from raw data 
        F_MidBody = coord_data(2).midbody(ii,:); % extracting all female 
midhip coordinates from raw data 
 
        %% finding instances of nose-nose sniffing  
        n2nDis(ii,1) = pdist([M_nose; F_nose],'euclidean'); % finding 
distance between male nose and famale nose 
        MHeadVec = M_nose - M_betweenears; % defining calculation for male 
head vector 
        FHeadVec = F_nose - F_betweenears; % defining calculation for female 
head vector 
        anglehn2hn(ii,1) = VecAngle(MHeadVec , FHeadVec); % calculating angle 
between male and female head vectors for nose-nose investigation 
        if n2nDis(ii,1) < threshold_nn_si & abs(anglehn2hn(ii,1)) >  
nn_angle_min 
            Index(ii,1) = 1; 
        else 
        end 
 
        %% finding instances of ano-genital sniffing  
        n2tsDis(ii,1) = pdist([M_nose; F_tail],'euclidean'); % finding 
distance between male nose and female tail start 
        FTailVec = F_tail - F_MidHip; % defining calculation for female tail 
vector 
        anglehn2tn(ii,1) = VecAngle(MHeadVec, FTailVec); % calculating angle 
between male head vector and female tail vector for ano-genital investigation 
        if n2tsDis(ii,1) < threshold_ag_si & abs(anglehn2tn(ii,1)) < 
ag_angle_max 
            Index(ii,2) = 1; 
        else 
        end 
 
        %% finding mating instances 
        MMatingVec = M_midbody - M_midhip; % defining calculation for male 
mating vector 
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        FMatingVec = F_MidBody - F_MidHip; % defiing calculation for female 
mating vector 
        anglemh2mb(ii,1) = VecAngle(MMatingVec, FMatingVec); % calculating 
angle between male and female mating vectors for mating_instances 
        [dis2, status2]=PointToSegDist(M_midbody, F_MidBody, F_MidHip); 
        if dis2 < threshold_mating & abs(anglemh2mb(ii,1)) < mating_angle 
            Index(ii,4) = 1; 
        else 
        end 
 
        %% side sniffing parameters calculation 
        if  pdist([M_nose; F_MidBody]) > pdist([M_nose; F_MidWaistL])  % 
male's nose is closer to the left side 
            [dis, status]=nose2bodyDis(M_nose, F_EarL, F_MidWaistL, F_HipL); 
            n2bodyDis(ii,1)=dis; 
            n2bodyDis(ii,2)=status; 
            if n2bodyDis(ii,1)<threshold_ns_si 
                if status == 2 
                Index(ii,3)=1; 
                else 
                    if sum(Index(ii,[1,2,4])) 
                    else 
                        Index(ii,3)=1; 
                    end 
                end 
            else 
            end 
        elseif pdist([M_nose; F_MidBody]) > pdist([M_nose; F_MidWaistR]) % 
male's nose is closer to the right side 
            [dis, status]=nose2bodyDis(M_nose, F_EarR, F_MidWaistR, F_HipR); 
            n2bodyDis(ii,1)=dis; 
            n2bodyDis(ii,2)=status; 
            if n2bodyDis(ii,1)<threshold_ns_si 
                if status == 2 
                Index(ii,3)=1; 
                else 
                    if sum(Index(ii,[1,2,4])) 
                    else 
                        Index(ii,3)=1; 
                    end 
                end 
            else 
            end 
        else 
        end 
 
    end 
 
    %% calculating approach/departure instances (not finished!!!) 
    fs=20; %% frame per second for the videos 
    frleng= 11;  % for Sgolay filtering 
    order = 3;   % for Sgolay filtering 
 
    male_mb = coord_data(1).midbody;  %% coordinates of male's midbody 
    female_mb = coord_data(2).midbody; %% coordinates of female's midbody 
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    velocity_male=diff(male_mb,1)*fs; 
    Vm2f=female_mb-male_mb; 
%    % velocity filtered for smoothing with the Savitzky-Golay filtering 
%    smoothV=sgolayfilt(velocity_male, order, frleng); 
%    for jj=1:size(smoothV,1) 
%        smoothSpeed(jj,1) = norm(smoothV(jj,:)); 
%        smoothHeading_angle(jj, :) = VecAngle(smoothV(jj,:), Vm2f(jj, :)); 
%    end 
    % 
%    acceleration_male=diff(smoothSpeed); 
%    norm_acceleration=zscore(acceleration_male); 
    %% 
%    [FragNum Frags]=ContinAcc(norm_acceleration, 3, 2); 
%     %% 
%     figure 
%     time1=(1:1:jj)/20; 
%     bx(1)=subplot(4,1,1) 
%     plot(time1,smoothSpeed, 'k'); 
%     xlabel('Time (s)'); 
%     ylabel('Velocity (pixel/s)'); 
%     title('Velocity'); 
%  
%     bx(2)=subplot(4,1,2) 
%     plot(time1(1:end-1), norm_acceleration); hold on; 
%     for ff=1:FragNum 
%         text(Frags(ff)/fs, norm_acceleration(ff),'o','color','r') 
%     end 
%     title('Normalized accelerator'); 
%  
%     bx(3)=subplot(4,1,3) 
%     plot(time1,smoothSpeed, 'k'); 
%     findpeaks(smoothSpeed, time1, 'MinPeakProminence', 100); 
%     [pks locs w p] = findpeaks(smoothSpeed, time1, 'MinPeakProminence', 
100); 
%     title('Find peaks in velocity data'); 
%  
%     bx(4)=subplot(4,1,4) 
%     plot(time1, smoothHeading_angle, 'r'); 
%     xlabel('Time'); 
%     ylabel('Direction of female'); 
%     title('Angle between movement and position vectors'); 
%     linkaxes(bx,'x'); 
%     xlim([0 3600]); 
%     size(pks) 
%     %% 
%     figure 
%     polarhistogram(smoothHeading_angle/pi, 16*4); 
%     title('Distribution of angles between female and movement directions'); 
%     %% 
%     figure 
%     scatter(smoothHeading_angle(1:end-1), norm_acceleration, 'r.'); hold on 
%     plot([-180 180], [3 3], 'b--'); hold on 
%     plot([-180 180], [-3 -3], 'b--'); 
%     xlim([-180 180]); 
%     xlabel('Angles between female and movement directions'); 
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%     ylabel('Normalized accelerator'); 
 
    %% 
    % 
    % idxSN = find(side_sniffing(:,3)); 
    % idxNN = find(n2tsDis(:,2)); 
    % idxAG = find(anogen_sniffing_instances(:,1)); 
    % idxMating = find(mating_instances(:, 1)); 
    % plotN=10*6; 
    % downN=ceil(length(idxAG)/plotN); 
    % % plotFrameVectors(coord_data, idxAG(1:downN:end)) 
    BehavIndex(ff).Index=Index; 
    clearvars coord_data n2nDis anglehn2hn n2tsDis anglehn2tn anglemh2mb 
n2bodyDis 
end 
%% 
save([folderAddress,'BehavIndexData.mat'], "BehavIndex") 
 
%% Calculate angle between two given vectors, result is in in degree 
function angle = VecAngle(vector1, vector2) 
angle = atan2d(vector1(1)*vector2(2)-vector1(2)*vector2(1), 
vector1(1)*vector2(1)+vector1(2)*vector2(2)); 
end 
 
%% Plot the skeletons of animals with coord_data and frame index 
function plotFrameVectors(data, frameIdx) 
number = length(frameIdx); 
if number <= 6 
    figure 
    for plotNum = 1:number 
        subplot(2,3,plotNum) 
        ff = frameIdx(plotNum); 
        SubPlotVectors(data, ff) 
 
        xlim([0 640]); 
        ylim([0 480]); 
    end 
 
else 
    for figNum = 1:ceil(number/6)   %%% 6 subplots per figure 
        figure 
        for plotNum = 1:min(6, number-6*(figNum-1)) 
            subplot(2,3,plotNum) 
            idx = 6*(figNum-1)+plotNum; 
            ff = frameIdx(idx); 
            SubPlotVectors(data, ff) 
            xlim([0 640]); 
            ylim([0 480]); 
        end 
    end 
end 
end 
 
 
function SubPlotVectors(data, ii) 
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xO1 = [data(1).nose(ii,1), data(1).leftear(ii,1), data(1).leftmidwaist(ii,1), 
data(1).lefthip(ii,1), data(1).tailstart(ii,1),... 
    data(1).righthip(ii,1), data(1).rightmidwaist(ii,1), 
data(1).rightear(ii,1), data(1).nose(ii,1),... 
    data(1).betweenears(ii,1), data(1).midbody(ii,1), data(1).midhip(ii,1)]; 
yO1 = [data(1).nose(ii,2), data(1).leftear(ii,2), data(1).leftmidwaist(ii,2), 
data(1).lefthip(ii,2), data(1).tailstart(ii,2),... 
    data(1).righthip(ii,2), data(1).rightmidwaist(ii,2), 
data(1).rightear(ii,2), data(1).nose(ii,2),... 
    data(1).betweenears(ii,2), data(1).midbody(ii,2), data(1).midhip(ii,2)]; 
xI1 = [data(1).leftear(ii,1), data(1).betweenears(ii,1), 
data(1).rightear(ii,1)]; 
yI1 = [data(1).leftear(ii,2), data(1).betweenears(ii,2), 
data(1).rightear(ii,2)]; 
xII1 = [data(1).leftmidwaist(ii,1), data(1).midbody(ii,1), 
data(1).rightmidwaist(ii,1)]; 
yII1 = [data(1).leftmidwaist(ii,2), data(1).midbody(ii,2), 
data(1).rightmidwaist(ii,2)]; 
xIII1 = [data(1).lefthip(ii,1), data(1).midhip(ii,1), 
data(1).righthip(ii,1)]; 
yIII1 = [data(1).lefthip(ii,2), data(1).midhip(ii,2), 
data(1).righthip(ii,2)]; 
 
xO2 = [data(2).nose(ii,1), data(2).leftear(ii,1), data(2).leftmidwaist(ii,1), 
data(2).lefthip(ii,1), data(2).tailstart(ii,1),... 
    data(2).righthip(ii,1), data(2).rightmidwaist(ii,1), 
data(2).rightear(ii,1), data(2).nose(ii,1),... 
    data(2).betweenears(ii,1), data(2).midbody(ii,1), data(2).midhip(ii,1)]; 
yO2 = [data(2).nose(ii,2), data(2).leftear(ii,2), data(2).leftmidwaist(ii,2), 
data(2).lefthip(ii,2), data(2).tailstart(ii,2),... 
    data(2).righthip(ii,2), data(2).rightmidwaist(ii,2), 
data(2).rightear(ii,2), data(2).nose(ii,2),... 
    data(2).betweenears(ii,2), data(2).midbody(ii,2), data(2).midhip(ii,2)]; 
xI2 = [data(2).leftear(ii,1), data(2).betweenears(ii,1), 
data(2).rightear(ii,1)]; 
yI2 = [data(2).leftear(ii,2), data(2).betweenears(ii,2), 
data(2).rightear(ii,2)]; 
xII2 = [data(2).leftmidwaist(ii,1), data(2).midbody(ii,1), 
data(2).rightmidwaist(ii,1)]; 
yII2 = [data(2).leftmidwaist(ii,2), data(2).midbody(ii,2), 
data(2).rightmidwaist(ii,2)]; 
xIII2 = [data(2).lefthip(ii,1), data(2).midhip(ii,1), 
data(2).righthip(ii,1)]; 
yIII2 = [data(2).lefthip(ii,2), data(2).midhip(ii,2), 
data(2).righthip(ii,2)]; 
plot(xO1,yO1, 'b-'); hold on % plot male's skeleton 
plot(xI1,yI1, 'b-'); hold on % plot male's skeleton 
plot(xII1,yII1, 'b-'); hold on % plot male's skeleton 
plot(xIII1,yIII1, 'b-'); hold on % plot male's skeleton 
plot(xO2,yO2, 'm-'); hold on % plot female's skeleton 
plot(xI2,yI2, 'm-'); hold on % plot female's skeleton 
plot(xII2,yII2, 'm-'); hold on % plot female's skeleton 
plot(xIII2,yIII2, 'm-'); hold on % plot male's skeleton 
title(ii); 
end 
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%% calculating the shortest distance from a point to a segment 
function [dis, statusIdx] = PointToSegDist(pt, p1, p2) 
V1=pt-p1; 
V2=pt-p2; 
V0=p2-p1; 
angle1 = VecAngle(V1, V0); 
angle2 = VecAngle(V2, -V0); 
if abs(angle1) >90 
    dis = pdist([pt; p1]); 
    statusIdx = 1; 
elseif abs(angle2) >90 
    dis = pdist([pt; p2]); 
    statusIdx = 3; 
else 
    dis=sin(abs(angle1)/180*pi)*pdist([pt;p1]); 
    statusIdx = 2; 
end 
end 
 
%% distance between male's nose and body segments of the female 
function [dis, statusIdx2] = nose2bodyDis(nose, ear, midwaist, hip) 
[dis1,con1] = PointToSegDist(nose, ear, midwaist); 
[dis2,con2] = PointToSegDist(nose, midwaist, hip); 
if con1 == 1 
    statusIdx2 = 1; 
    dis = dis1; 
elseif con2 == 3 
    statusIdx2 = 3; 
    dis = dis2; 
else 
    statusIdx2 = 2; 
    dis = min(dis1,dis2); 
end 
end 
 
 
Script C: 

 
close all; clear all; clc; 
%% 
%% Direct to the root folder of the project containing children data folders 
folderAddress='./';  %% where the xls files storing the tracking results are 
saved 
load([folderAddress, 'BehavIndexData.mat']); 
annoFiles=dir([folderAddress,'Annotation_results']); 
%% Parameters to be modulated 
fps = 20; 
minthreshold = 0.5; %% recognized behavioral bouts last less than 
minthreshold will be excluded 
ProcT = 30; %% Process behaviors *min after the female introduced in 
%% Use two arrays to store the index of HO and WT animals 
idxHO=[]; 
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idxWT=[]; 
for ii=1:size(BehavIndex,2) 
    if strfind(BehavIndex(ii).recFile, 'HO') 
        idxHO=[idxHO; ii]; 
    elseif strfind(BehavIndex(ii).recFile, 'WT') 
        idxWT=[idxWT; ii]; 
    else 
    end 
end 
%% Store animal names in the file names of .xls files storing annotations 
for jj=1:size(annoFiles,1)-2 
    strings=split(annoFiles(jj+2).name,'_'); 
    AnnoDataName(jj).animal=strings{3}; 
end 
%% Calculate bout time of each behaviors in an animal-by-animal way  
behav={'n2n_sniffing', 'anogenital_sniffing', 'side_sniffing', 'mating', 
'approach', 'departure'}; 
for ii=1:size(BehavIndex,2) 
    StatByAnimal(ii).recFile=BehavIndex(ii).recFile; 
    Index=BehavIndex(ii).Index; 
    % Read the right excel file storing annotations and find the start time 
    % when female is introduced in  
    for jj=1:size(AnnoDataName, 2) 
        if strfind(BehavIndex(ii).recFile, AnnoDataName(jj).animal) 
            StatByAnimal(ii).annoIdx=jj; 
            [num, text, raw] = xlsread([folderAddress,'Annotation_results/', 
annoFiles(jj+2).name]); 
            annoT=num(2:end,10:12); 
            anno=text(2:end,7); 
            startT=annoT(strcmp(anno, 'female in'),1); 
            %% write to calculate mating behaviors in 30min 
            AnnoMatT1=annoT(find(strcmp(anno, 'mount only')),:); 
            [AnnoMatDur1, AnnoMatNum1] = BehavWinCount(AnnoMatT1, [startT 
startT+ProcT*60]); 
            AnnoMatT2=annoT(find(strcmp(anno, 'mouting')),:); 
            [AnnoMatDur2, AnnoMatNum2] = BehavWinCount(AnnoMatT2, [startT 
startT+ProcT*60]);        
        %% SI Calculation 
        AnnoSIT=annoT(find(strcmp(anno, 'social investigation')),:);    %% 
### 
        [AnnoSIDur, AnnoSINum] = BehavWinCount(AnnoSIT, [startT 
startT+ProcT*60]);  %% ### 
        else           
        end 
    end 
    StatByAnimal(ii).StartT=startT; 
    StatByAnimal(ii).AnnoMatDur_window=AnnoMatDur1+AnnoMatDur2; 
    StatByAnimal(ii).AnnoMatNum_window=AnnoMatNum1+AnnoMatNum2; 
    StatByAnimal(ii).AnnoSIDur_window=AnnoSIDur-(AnnoMatDur1+AnnoMatDur2);   
%% ### 
    StatByAnimal(ii).AnnoSINum_window=AnnoSINum; 
 
    for kk=1:size(Index,2) 
        behavT=ContiBehav(Index(:,kk), fps, minthreshold, startT); 
        StatByAnimal(ii).(behav{1,kk})=behavT; 
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        clearvars behavT 
    end 
    AllSniff=[StatByAnimal(ii).(behav{1,1}); StatByAnimal(ii).(behav{1,2}); 
StatByAnimal(ii).(behav{1,3})]; %% ### 
    StatByAnimal(ii).TotalSniffing_Dur=sum(AllSniff(:,3));  %% ### 
    StatByAnimal(ii).TotalSniffing_Num=size(AllSniff,1);  %% ### 
    clearvars Index num text raw annoT anno AllSniff   %% ###   
end 
 
save([folderAddress, 'StatByAnimal.mat'], 'StatByAnimal'); 
 
%% 
for ii=1:size(BehavIndex(1).Index, 2) 
    StatByBehaviors(ii).behav=behav{1,ii}; 
    StatByBehaviors(ii).HO_duration_window = []; 
    StatByBehaviors(ii).HO_number_window = []; 
    StatByBehaviors(ii).WT_duration_window = []; 
    StatByBehaviors(ii).WT_number_window = []; 
    for jj=1:size(StatByAnimal,2) 
        behavT=StatByAnimal(jj).(behav{1,ii});       
        [TrackBehavDur, TrackBehavNum] = BehavWinCount(behavT, [startT 
startT+ProcT*60]);  
        if strfind(StatByAnimal(jj).recFile, 'HO') 
                StatByBehaviors(ii).HO_duration_window = 
[StatByBehaviors(ii).HO_duration_window; TrackBehavDur];  
                StatByBehaviors(ii).HO_number_window = 
[StatByBehaviors(ii).HO_number_window; TrackBehavNum];  
        elseif strfind(StatByAnimal(jj).recFile, 'WT') 
                StatByBehaviors(ii).WT_duration_window = 
[StatByBehaviors(ii).WT_duration_window; TrackBehavDur]; 
                StatByBehaviors(ii).WT_number_window = 
[StatByBehaviors(ii).WT_number_window; TrackBehavNum]; 
        else 
        end 
        clearvars behavT 
    end 
end 
StatByBehaviors(ii+1).behav = 'Total sniffing';   %% ### 
StatByBehaviors(ii+1).HO_duration_window = 
sum([StatByBehaviors(1).HO_duration_window,StatByBehaviors(2).HO_duration_win
dow, StatByBehaviors(3).HO_duration_window],2);   %% ### 
StatByBehaviors(ii+1).HO_number_window = 
sum([StatByBehaviors(1).HO_number_window,StatByBehaviors(2).HO_number_window, 
StatByBehaviors(3).HO_number_window],2);  %% ### 
StatByBehaviors(ii+1).WT_duration_window = 
sum([StatByBehaviors(1).WT_duration_window,StatByBehaviors(2).WT_duration_win
dow, StatByBehaviors(3).WT_duration_window],2);  %% ### 
StatByBehaviors(ii+1).WT_number_window = 
sum([StatByBehaviors(1).WT_number_window,StatByBehaviors(2).WT_number_window, 
StatByBehaviors(3).WT_number_window],2);  %% ### 
 
save([folderAddress, 'StatByBehaviors.mat'], 'StatByBehaviors'); 
%% Summarize mating duration and numbers from annotation and tracking 
AnnoMatDur=[]; 
AnnoMatNum=[]; 
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for ii=1:size(StatByAnimal,2) 
AnnoMatDur=[AnnoMatDur;StatByAnimal(ii).AnnoMatDur_window]; 
AnnoMatNum=[AnnoMatNum;StatByAnimal(ii).AnnoMatNum_window]; 
end 
TrackMatDur=[StatByBehaviors(4).HO_duration_window;StatByBehaviors(4).WT_dura
tion_window]; 
TrackMatNum=[StatByBehaviors(4).HO_number_window;StatByBehaviors(4).WT_number
_window]; 
figure 
subplot(1,2,1) 
scatter(AnnoMatDur, TrackMatDur, 'r'); 
xlabel('Duration from Manual Annotation'); 
ylabel('Duration from Auto-Tracking'); 
title('Mating Duration in First 30 mins of Cohab') 
R_dur=corrcoef(AnnoMatDur, TrackMatDur);  %% ### 
text(40, 160, ['r = ',num2str(R_dur(1,2))]);  %% ### 
subplot(1,2,2) 
scatter(AnnoMatNum, TrackMatNum, 'r'); 
xlabel('Number of Events from Manual Annotation'); 
ylabel('Number of Events from Auto-Tracking'); 
title('Number of Mating Events in First 30 mins of Cohab') 
R_num=corrcoef(AnnoMatNum, TrackMatNum);  %% ### 
text(5, 30, ['r = ',num2str(R_num(1,2))]);  %% ### 
%%  
function behavT=ContiBehav(IndexArray, fps, minthreshold, startT) 
temptP=IndexArray; 
idxSig=find(temptP); 
idxSig(find(idxSig<(startT*fps)))=[];  %% exclude all events before female 
introduced in 
FragNum=0; 
Frags=[]; 
if isempty(idxSig) 
else                              %%%%%% if any significant data point 
    dis=diff(idxSig); 
    idxSigJump=find(dis>1); 
    if isempty(idxSigJump)           %%% if no jump of non-zero data points 
        if diff([idxSig(1),idxSig(end)])<minthreshold*fps-1 
            temptP(idxSig(1):idxSig(end))=0; 
        else 
            FragNum=FragNum+1; 
            Frags=[idxSig(1) idxSig(end)]; 
        end 
    else                             %%% if there're jumps of non-zero data 
points 
        %%% deal with the first Fragment of significant data points prior 
        %%% to the first jump 
        if diff([idxSig(1),idxSig(idxSigJump(1))])<minthreshold*fps-1 
            temptP(idxSig(1):idxSig(idxSigJump(1)))=0; 
        elseif idxSig(1)==idxSig(idxSigJump(1)) 
            temptP(idxSig(1))=0; 
        else 
            FragNum=FragNum+1; 
            Frags=[Frags;[idxSig(1) idxSig(idxSigJump(1)-1)]]; 
        end 
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        %%% deal with the other Fragments of significant data points 
        for iii=1:length(idxSigJump) %% 
            if iii<length(idxSigJump) 
                if 
diff([idxSig(idxSigJump(iii)+1),idxSig(idxSigJump(iii+1))])<minthreshold*fps-
1 
                    
temptP(idxSig(idxSigJump(iii)+1):idxSig(idxSigJump(iii)))=0; 
                else 
                    FragNum=FragNum+1; 
                    Frags=[Frags;[idxSig(idxSigJump(iii)+1) 
idxSig(idxSigJump(iii+1))]]; 
                end 
            else        %% data after the last jump 
                if diff([idxSig(idxSigJump(iii)+1), 
idxSig(end)])<minthreshold*fps-1 
                    temptP(idxSig(idxSigJump(iii)+1):idxSig(end))=0; 
                else 
                    FragNum=FragNum+1; 
                    Frags=[Frags;[idxSig(idxSigJump(iii)+1) idxSig(end)]]; 
                end 
 
            end 
        end 
    end 
end 
if FragNum==0 
    Frags=[]; 
    behavT=[]; 
else 
    behavT(:,[1 2])=Frags/fps; 
    behavT(:,3)=behavT(:,2)-behavT(:,1); 
%     behavT(find(behavT(:,3)<minthreshold),:)=[]; 
end 
end 
%%  
function [duration, number] = BehavWinCount(behavT, window) 
if ~isempty(behavT) 
    idx=find(behavT(:,1)<window(2) & behavT(:,1)>window(1));  %% star time of 
bouts located within the given time window 
    if ~isempty(idx) 
        number=length(idx); 
        if behavT(idx(end),2)<window(2)   %% if the end time of the last bout 
located before time window too 
            duration=sum(behavT(idx,3)); 
        elseif length(idx)>1  %% if there're more than one bout and the last 
bout ends after window's end 
            duration=sum(behavT(idx(1:end-
1),3))+diff([behavT(idx(end),1),window(2)]); 
        else  %% if there's only one bout and it ends after window's end 
            duration=diff([behavT(idx(1),1),window(2)]); 
        end 
        if idx(1)>1 
            if behavT(idx(1)-1,2)>window(1)  %% consider if there's a bout 
start before window's start but end after it 
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                duration=duration+diff([window(1), behavT(idx(1)-1,2)]); 
            else 
            end 
        else 
        end 
 
    else 
        duration=0; 
        number=0; 
    end 
else  %% no behavT input 
    duration=0; 
    number=0; 
end 
end 
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FIGURES 

 

 

Figure 6: Correlation between auto-tracked and manually generated results (mating 
duration). The high R^2 value indicates minimal difference in the total duration of mating 
captured by manual and automated tracking approaches. Each point represents a single animal 
(n=12).  
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Figure 7: Correlation between auto-tracked and manually generated results (social 
investigation duration). The high R^2 value indicates minimal difference in the total duration 
of social investigation captured by manual and automated tracking approaches. Each point 
represents a single animal (n=11).  
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Figure 8: Correlation between auto-tracked and manually generated results (mating 
instances). The R^2 value indicates moderate difference in the total number of instances of 
mating captured by manual and automated tracking approaches. Each point represents a single 
animal (n=12). 
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Figure 9: Correlation between auto-tracked and manually generated results (social 
investigation instances). The high R^2 value indicates minimal difference in the total number of 
instances of social investigation captured by manual and automated tracking approaches. Each 
point represents a single animal (n=11). 
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Figure 10: Distribution of average durations of social behaviors (auto-tracking). Each bar 
represents the average total time that the behavior was observed across all animals in the 
genotypic group (n=6 KO, n=5 WT). The differences between WT and KO for all four behaviors 
are insignificant (t-test, 2-tailed, unpaired: 0.73, 0.58, 0.89, 0.59). 
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Figure 11: Distribution of average durations of social behaviors (auto-tracking). Each bar 
represents the average total time that the behavior was observed for across n=6 animals. The 
differences between WT and KO for both categories of behaviors are insignificant (t-test, 2-
tailed, unpaired: 0.85, 0.59). 
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Figure 12: Distribution of average durations of social behaviors (manual-tracking). Each 
bar represents the average total time that the behavior was observed for across n=6 animals. The 
differences between WT and KO for both categories of behaviors are insignificant (t-test, 2-
tailed, unpaired: 0.69, 0.43). 
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Figure 13: Distribution of average number of instances of social behaviors (auto-tracking). 
Each bar represents the average total number of instances that the behavior was observed for 
across n=6 animals. The differences between WT and KO for all four behaviors are insignificant 
(t-test, 2-tailed, unpaired: 0.90, 0.39, 0.78, 0.30). 

 

 

Figure 14: Distribution of average number of instances of social behaviors (auto-tracking). 
Each bar represents the average total number of instances that the behavior was observed for 
across n=6 animals. The differences between WT and KO for both categories of behaviors are 
insignificant (t-test, 2-tailed, unpaired: 0.84, 0.32). 
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Figure 15: Distribution of average number of instances of social behaviors (manual 
tracking). Each bar represents the average total number of instances that the behavior was 
observed for across n=6 animals. The differences between WT and KO for both categories of 
behaviors are insignificant (t-test, 2-tailed, unpaired: 0.88, 0.77). 
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Figure 16: Correlation between auto-tracked and manually generated results (social 
investigation durations). The near-1 slope value indicates minimal difference in the total 
duration of social investigation captured by manual and automated tracking approaches. Each 
point represents a single animal (n=11). 
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Figure 17: Cumulative probability distribution of frames identified by auto-tracking 
network for various male-female distance thresholds: The x axis illustrates a range of 
possible threshold values for the distance between the male nose coordinate and the female 
midbody coordinate. (30 Pixels = distance from vole nose to between-ears = 12 mm approx.). 
The y axis represents a probability density function for the percentage of frames (for either HO 
or WT animals) that the auto-tracking network identified to be within a given value of distance 
between the two animals. The results have been averaged across all animals in each group (n=5 
for WT and n=6 for HO). Upon crossing a threshold of 40 pixels, until 400 pixels, WT animals 
on average appear to be in closer proximity to their female conspecifics than do HO animals to 
their female conspecifics.  
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Figure 18: Distribution of R2 and slope values obtained for correlations between manual 
and auto-tracking results across all animals (n=11): For social investigative behavioral 
durations (see Methods (5) and Figures 7, 9, and 16), R2 peaks between a threshold of 20 and 25 
pixels and the slope value reaches 1 at a threshold of 40 pixels.  
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Figure 19: Frames identified by auto-tracking network for instances of nose-nose sniffing 
at a specific threshold value: The left panel displays results that would always be considered as 
“true” for the behavior during manual annotation processes, given the proximity and alignment 
of the animals. The figure on the right represents a “false positive” result at the same threshold 
value. While the animals have aligned appropriately to carry out nose-nose sniffing, they appear 
to be too “distant” from each other to be considered “true” for the behavior during manual 
annotation processes. The results from Figure 17, however, might suggest that the frame on the 
right is in fact “true” for the given behavior.  
 
 
 
 
 
 

 
 
 
 


