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Abstract

Nonparametric Regression for Assessing Time-Varying Effects in Survival Analysis
By Jae Eui Soh

Most regression models in survival analysis tacitly assume constant effects of co-
variates on event times. However, this assumption may not always be realistic in
practice. In a clinical study for AIDS patients, for example, a treatment might take
time to reach its full efficacy rather than right after randomization; meanwhile, the
treatment effect might also erode over time as drug resistance develops, e.g., Eshle-
man et al. (2001). In this dissertation, we present three projects to develop regression
models that accommodate time-varying effects of covariates; two projects are for the
analysis of recurrent events, and the third one is for the analysis of univariate survival
data.

In the first project, we propose a varying-coefficient model for the mean frequency
of recurrent events. We develop an estimation procedure that fully exploits observed
data, and a resampling-based inference procedure. Consistency and weak convergence
of the proposed estimator are established. Simulation studies demonstrate utility of
the estimator with practical sample sizes. Two real data analyses are presented for
illustration of the proposed method.

Most models for recurrent events consider the study-time scale, but gap times
between recurrent events are of natural interest in many applications. The second
project is concerned with the gap-time scale of recurrent events, and we propose a
marginal varying-coefficient model for the cumulative hazard function of the gap time.
Estimation and inference procedures are developed. We establish consistency and
weak convergence of the proposed estimator, and Monte Carlo simulations demon-
strate utility of the proposed estimator. An analysis of the bladder tumor trial data
is presented for illustration.

In the third project, we propose a semiparametric survival regression model for
the analysis of univariate survival data. With a mixture of time-varying and constant
effects of covariates, the proposed model generalizes the proportional hazards model
of Cox (1972), while being a sub-model of the temporal survival regression of Peng
and Huang (2007). We develop an iterative estimation procedure and an inference
procedure. Extensive simulations are conducted to assess finite-sample behaviors of
the proposed estimator. The proposed method is illustrated by an analysis of the
Veterans’ Administration lung cancer trial data.
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Chapter 1

Introduction and Background

1.1 Time-To-Event Data

Survival Time

Lifetime events such as death and disease have been of natural interest in human

history. Endeavors to understand such random events and furthermore to establish

risk factors have been primary pursuit in quantitative research. In a clinical trial,

for example, to assess an experimental drug’s preventive effect on death may be of

primary interest. In health services research, public health practitioners would want

to understand what socioeconomic risk factors affect patients’ access to health care

services.

In this monograph, we restrict our attention to random events with a well-defined

follow-up time origin, e.g., treatment randomization in a clinical trial and initial dis-

ease diagnosis date for a patient. In this way, an event occurrence can be represented

in terms of the time elapsed from the initiation of follow-up to the event of interest.

Regardless of one’s favor on an event of interest, the elapsed time is conventionally

called survival time in survival analysis, thus the term will be used in the sequel

without loss of generality. For example, the times to wedding, graduation, cancer,
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or death would be understood and analyzed in the same framework using the term

‘survival’ time.

Censored Survival Time Data

Since ‘waiting’ is needed to observe an event occurrence, survival data often come

in a mixture of complete and incomplete survival times. By the incomplete survival

times, we mean the right-censored survival times, which are not actual event times but

‘censored’ times. Reasons of right censoring include the end of study and patient drop-

out before an event occurs. Standard statistical methods such as a t-test or ordinary

regressions cannot be naively applied to censored survival data. This is because even

the mean of a random survival time could not be estimated unbiasedly in the presence

of an incomplete observation. For the analysis of censored survival data, we need right

mathematical concepts and statistical methods, as will be discussed from the next

Section.

Recurrent Events and Time Scale

Some events, so-called recurrent events, occur repeatedly over time. They are often

observed in follow-up studies where a subject may experience multiple occurrences of

the same event. Examples of recurrent events in biomedical research include series of

heart attacks in patients with cardiovascular disease and opportunistic infections in

AIDS patients.

Times to event occurrences, i.e., recurrence times, may be represented and an-

alyzed on different time scales. Two most widely used time scales in the recurrent

event literature are the study-time scale and the gap-time scale. The study-time scale

is in the time elapsed from a study origin to the event of interest. On the other hand,

the gap-time scale is in the time elapsed from a preceding event to the next event.

Either time-scale may be preferred depending on research interest. For example, the
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gap-time scale may be more appealing choice if research interest is in prediction of

the next event.

Recurrent events are of primary interest in this dissertation. Two of the three

projects in this monograph are for the analysis of recurrent events, and they are

concerned with the study-time scale and the gap-time scale, respectively, as described

in Chapters 2 and 3. On the other hand, the third project presented in Chapter 4

deals with univariate survival data.

1.1.1 Survival Time Example: the VA Lung Cancer Trial

Data

The Veterans’ Administration lung cancer trial data set was originally discussed in

Prentice (1973) and analyzed by many researchers including Kalbfleisch and Prentice

(2002) and Peng and Huang (2007). A total of 137 male patients with advanced inop-

erable lung cancer was randomly assigned to either a standard or a test chemotherapy.

The time from randomization to death was recorded for each patient. A total of 128

events of death was observed, and the other 9 patients’ survival times were censored.

Heterogeneity in the patients was measured by some covariates including age in year,

histological type of tumor, and Karnofsky score at enrollment that is a measure of

performance status.

Figure 1.1 shows 5 complete and 5 censored survival times on the study-time scale.

Heterogeneity across the patients in the sample is not adjusted in this simple display.

This data set is analyzed in Chapter 4 for method illustration.

1.1.2 Recurrence Time Example: the Bladder Tumor Trial

Data

Byar (1980) reported a randomized clinical trial which was to evaluate the effects of
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5 complete and 5 censored survival times on the study-time scale. Black dots and the
empty circles indicate death and being censored, respectively.
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new treatments on tumor recurrences. A total of 118 patients with superficial bladder

tumors entered the study after removal of their initial tumors. The patients were ran-

domly assigned to three treatment arms: pyridoxine, thiotepa, and placebo. During

the follow-up, sixty-two patients experienced tumor recurrences, and the maximum

number of recurrences was 9. Follow-up times varied from 1 to 64 months. Other

information was available including the size of a largest initial tumor, the number of

tumors at enrollment.

Figure 1.2 shows times to tumor recurrences for 10 randomly selected patients

on the study-time scale, with censoring time information. Some important models

for recurrent event analysis are discussed in Section 1.4. Nevertheless, depending on

research interest a subset of the whole recurrent event data may be analyzed. For

example, one may be interested in the ‘first’ tumor recurrence from randomization.

In this case, classical survival data analysis methods may be applied to the subset

data. Some classical models for univariate survival analysis are discussed in Section

1.3.

The bladder tumor trial data set is analyzed in Chapters 2 and 3 to illustrate the

proposed methods for the analysis of recurrent events.

1.2 Nonparametric Estimators for the

One-Sample Problem

Right mathematical concepts and methods are needed to deal with censored survival

data objectively. In the literature, two quantities of the distribution of the random

survival time have been of great interest. One is the survival function of the survival

time, say, T ,

S(t) ≡ Pr(T > t),
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Figure 1.2: The bladder tumor trial data. Ten randomly selected patients’ times to
tumor recurrences and censoring times. The black dots and empty circles indicate
the occurrences of tumor and censoring times

and the other one is the hazard function

λ(t) ≡ f(t)

S(t−)
= lim

h↓0

1

h
Pr(t ≤ T < t+ h|T ≥ t),

where f(t) is the density function of the survival time. Alternatively, the hazard

function is represented in the form of the cumulative hazard function, namely

Λ(t) ≡
∫ t

0

λ(s) ds.

Each of the quantities uniquely determines the distribution of the survival time, and

either one can be represented by the other, e.g., S(t) = exp{−
∫ t
0
λ(s) ds}.

1.2.1 Counting Processes and Nonparametric Estimators

It is natural to see the events we consider as stochastic processes since the events are

intrinsically a random function of time. Moreover, the number of events between an
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origin and a given time t is a natural measure of event times. Therefore, we denote

the counting process for an underlying event process by N∗(t), which is a random

function of time measuring the number of events occurring in time interval [0, t] for a

subject. Also, we define the at-risk process Y (t) as one if an event for a subject can

be observed at time t or afterwards, and as zero otherwise. The underlying counting

process N∗(t) can be uniquely decomposed into model and error parts; that is,

N∗(t) = Λ(t) +M(t),

where the model part Λ(t) is called the compensator and the error part M(t) is called

the martingale.

Theories for counting processes have been well-developed and widely used in the

statistical literature. In particular, large-sample properties of many estimators have

been well-studied based on martingale theory, e.g., consistency and asymptotic nor-

mality proofs of the standard Cox estimator by Andersen and Gill (1982). Under a

less stringent condition with a mean-zero stochastic error process, but without a mar-

tingale error process, empirical process theory may be used to establish large-sample

behaviors, e.g, van der Vaart and Wellner (1996).

In Chapters 2 and 3, we utilize empirical process theory to establish uniform

consistency and weak convergence of the proposed estimators.

Kaplan-Meier and Nelson-Aalen Estimators

If survival time T is subject to the random censoring, say, at C, what are observed

in univariate survival data are the observed survival time X ≡ T ∧ C and the in-

dicator ∆ ≡ I(T ≤ C), where ∧ is the minimum operator and I(·) is the indicator

function. Alternatively, the censored survival data can be represented using the count-

ing process notation. Define the counting process for an observed event process as
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N(t) ≡ I(X ≤ t,∆ = 1), and let the at-risk process for a subject be Y (t) = I(X ≥ t).

The censored survival data consist of {Ni(·), Yi(·)}ni=1, which are n independent repli-

cates of {N(·), Y (·)}.

The Kaplan-Meier estimator (a.k.a. the product-limit estimator) is a widely used

nonparametric estimator for the survival function. Under the independence assump-

tion between T and C, the Kaplan-Meier estimator estimates the survival function

unbiasedly from the censored survival data. Let 0 < x1 < x2 < · · · be the observed

survival times in the sample of size n. Then, the Kaplan-Meier estimator can be

defined in the counting process notation

Ŝ(t) ≡
∏
j:xj≤t

{1−
∑n

i=1 dNi(xj)∑n
i=1 Yi(xj)

}.

On the other hand, the Nelson-Aalen estimator can estimate the cumulative hazard

function from the censored survival data. That is,

Λ̂(t) ≡
n∑
i=1

∫ t

0

dNi(s)∑n
k=1 Yk(s)

=
∑
j:xj≤t

∑n
i=1 dNi(xj)∑n
i=1 Yi(xj)

.

The two estimators are related in the same way that the survival function and the

cumulative hazard function are connected. Let K time points partition the time

interval (0, t] such that 0 < x1 < x2 < · · · < xK = t. It can be shown that

Ŝ(t) =πs≤t{1− dΛ̂(s)} ≡ lim
M→0

K∏
k=1

[1− {Λ̂(xk)− Λ̂(xk−1)}],

where π is the product-integral and M ≡ maxk |xk − xk−1| is the length of the

longest subinterval. Uniform consistency and weak convergence of the nonparametric

estimators can be shown based on the martingale theory, e.g., Andersen, Borgan, Gill,

and Keiding (1993).

Figure 1.3 displays the Kaplan-Meier estimates and the Nelson-Aalen estimates
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Figure 1.3: The Veterans Administration lung cancer trial data. (a) Kaplan-Meier
estimates for the survival functions; (b) Nelson-Aalen estimates for the cumulative
hazard functions for patients with baseline Karnofsky performance score ≤ 60 and
> 60.

for two groups of patients with baseline Karnofsky score ≤ 60 and > 60 in the VA

lung cancer trial data. Overall, the estimates indicate that patients who had higher

Karnofsky score at enrollment lived longer in the data.

In the recurrent event data, what are observed are individual-level recurrent events

and censoring times. Alternatively, the recurrent events can be represented using the

counting process for an observed event process N(·) = N∗(· ∧ C) and the at-risk

process for a subject Y (·) = I(C ≥ ·). Specifically, the recurrent event data of size

n consist of {Ni(·), Yi(·)}ni=1, which are n independent replicates of {N(·), Y (·)}. Let

µ(t) ≡ E(N∗(t)) be the mean frequency of recurrent events. Using the counting

process notation, the Nelson-Aalen estimator for the cumulative hazard function Λ(·)

can be extended directly to an estimator for the mean frequency function µ(·). To

be specific, the Nelson-Aalen-type nonparametric estimator for the mean frequency
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Figure 1.4: The bladder tumor trial data. The Nelson-Aalen type mean frequency
function estimates for three treatment arms: pyridoxine; thiotepa; and placebo.

function is

µ̂(t) ≡
n∑
i=1

∫ t

0

dNi(s)∑n
k=1 Yk(s)

=
∑
j:xj≤t

∑n
i=1 dNi(xj)∑n
i=1 Yi(xj)

,

where 0 < x1 < x2 < · · · are unique event times from all individuals in the sample.

Figure 1.4 shows the Nelson-Aalen type mean frequency function estimates for

three groups of patients by treatment. On the whole, the estimates indicate that

patients in thiotepa treatment arm tended to have less frequent tumor occurrences

over time compared to the other patients.
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1.3 Existing Regression Models in Survival

Analysis

1.3.1 Constant-Effects Regression Models for Univariate Sur-

vival Time

Since the advent of the proportional hazards model of Cox (1972), many regression

models and methods for the censored survival time data have been developed as an

extension or alternative of the proportional hazards model. Let Z be a p-dimensional

vector of covariates. The Cox model for the hazard function of the survival time T

given Z takes a form

λ(t|Z) = λ0(t) exp{b>0 Z},

where λ0(t) is an unspecified baseline hazard function, and b0 is a p-dimensional

regression coefficients. The proportional hazards model postulates constant effects of

covariates on the survival time. As an alternative of the Cox model, the accelerated

failure time model (a.k.a. the AFT model) has been considered directly referring to

the logarithm of the survival time. Specifically, the accelerated failure time model

takes a form

log T = b>0 Z + ε,

where ε is a residual from an unspecified distribution. This model postulates constant

multiplicative effects of covariates on the survival-time scale change; see Buckley and

James (1979) and Prentice (1978) among others. Although such ‘accelerated time’

modeling seems to provide a simple and direct physical interpretation on the survival

time, a caution is needed when the estimated effects of covariates are interpreted as

the mean effects for log T . This is because the survival data may actually contain

incomplete observations. Besides, a class of the semiparametric linear transformation
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models has been considered by some authors; Dabrowska and Doksum (1988) and

Chen et al. (2002) among others. A class of transformation models takes a form

g(T ) = −b>0 Z + ε,

where g is an unspecified monotone transformation function, and ε is a random vari-

able from a known distribution. When ε has an extreme value distribution, this class

of models reduces to the original Cox model. Also, the proportional odds model

is a special case of this transformation model when ε follows the standard logistic

regression.

1.3.2 Varying-Coefficient Models

Most regression models in survival analysis assume constant effects of covariates on

the survival time. This simplistic assumption is often unrealistic in practice. In a

clinical study for AIDS patients, for example, a treatment might take time to reach

its full efficacy rather than right after randomization; meanwhile, the treatment effect

might also erode over time as drug resistance develops, e.g., Eshleman et al. (2001) and

Wu et al. (2005). In the VA lung cancer data, a changing ratio of two Nelson-Aalen

estimates is observed in Figure 1.5. The patients with high Karnofsky performance

score at enrollment tended to have higher survival rate at the beginning of the follow-

up, but the association appeared to be weaken afterwards.

Such circumstances call for a more general model to accommodate time-varying

evolving effects of covariates. There have been attempts to address the changing ef-

fects of covariates in a way of extending the Cox model. As a natural generalization of

the original Cox model, a varying-coefficient Cox model with time-varying regression

coefficients b0(t), in place of constant b0, has been studied by many researchers; see

Zucker and Karr (1990), Cai and Sun (2003), and Tian et al. (2005) among others.
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Figure 1.5: The Veterans Administration lung cancer trial data. Difference in log
Nelson-Aalen estimates for survival time between patients with baseline Karnofsky
performance score ≤ 60 and > 60.
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The varying-coefficient Cox model takes a form

λ(t|Z) = λ0(t) exp{b0(t)>Z}.

Alternatively, Aalen (1989) proposed the additive hazards model, which specifies the

‘additive’ time-varying effects of covariates on the survival time. To be specific, the

additive hazards model of Aalen (1989) takes a form

λ(t|Z) = λ0(t) + b0(t)
>Z.

Unlike the varying-coefficient Cox model, the jth element of b0(t) represents an ex-

cessive effect of the jth covariate as the increase in hazard at time t for a unit increase

of the covariate. However, the additive hazards model has not been used as much

as the Cox-type multiplicative effect models. Less popularity of this model might

have been because the estimated conditional hazards can possibly deviate from the

positive range, i.e., negative values of the hazards.

Both of the varying-coefficient Cox model and the additive hazards model specify

the hazard of event over infinitesimal time intervals. Although such hazard function

modeling enables a flexible mathematical specification, the effects of covariates may

not be clinically meaningful in practice. Moreover, the methods for the varying-

coefficient model and the additive hazards model are complicated as they require a

kernel smoothing. Instead of the hazard function modeling, Peng and Huang (2007)

considered the survival probability and proposed an alternative varying-coefficient

model for the survival function. Specifically, the temporal survival regression model

of Peng and Huang (2007) takes the following form

S(t|Z) = exp
[
− exp{log Λ0(t) + b0(t)

>Z}
]
, for all t ≥ 0,
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where Λ0(·) is an unspecified baseline cumulative hazard function. Basically, the

temporal survival regression model postulates time-varying multiplicative effects of

covariates on the baseline cumulative hazards Λ0(·), and thereby on the unspecified

baseline survival function S0(·) ≡ exp{−Λ0(·)}. In the special case with constant

regression coefficients, i.e., b0(·) = b0, the temporal survival regression reduces to the

original Cox model.

Alternatively, a quantile regression model has been studied by some authors; see

Peng and Huang (2008), Huang (2010), Qian and Peng (2010) among others. Given

Z, conditional quantile function Q(τ |Z) ≡ sup{t : 1 − S(t|Z) ≤ τ} for τ ∈ [0, 1) is

specified as

Q(τ |Z) = Q0(τ) + b0(τ)>Z,

where Q0(·) is an unspecified baseline quantile function. Essentially, each of the base-

line quantiles is modeled to be changing in its scale as covariates affect in the linear

combination of their coefficients of corresponding cumulative probability τ . Since the

quantile regression model is specified on the probability scale, clinical interpretation

may not be as straightforward as other models specified on the study-time scale.

A concern with fully functional varying-coefficient models is efficiency loss due

to the increasing model generality. When clinical or biological knowledge implies

constant effects for some of the covariates, a mixture effect model with constant and

time-varying effects would be useful. In Chapter 4, we propose a semiparametric mix-

ture effect model for the survival function. The model is a sub-model of the temporal

survival regression model, and therefore has direct interpretation of covariate effects

on the survival function. Moreover, an iterative estimation procedure is developed,

which does not involve smoothing.
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1.4 Existing Models in Recurrent Events

To investigate association between covariates and recurrent events, earlier model de-

velopments focused on the intensity function modeling; see Prentice et al. (1981) and

Andersen and Gill (1982) among others. In particular, the multiplicative intensity

model of Andersen and Gill (1982) directly extends the idea of the Cox model for re-

current event data by adapting counting processes. To be specific, the multiplicative

intensity model of Andersen and Gill (1982) takes a form

E( dN∗(t)|Ft−) = λ0(t) exp{b>0 Z} dt,

where Ft− is the history filtration right before time t, i.e., all the available information

up to right before time t. The model presumes the independent increment structure

of the non-homogeneous Poisson process, and postulates constant multiplicative ef-

fects of covariates on the next event. Without imposing the independent increment

assumption on recurrent events, Prentice, Williams, and Peterson (1981) proposed

the stratified proportional intensity model, which takes a form

E( dN∗(t)|Ft−) = λ0ν(t) exp{b>0νZ} dt,

where λ0ν(t) is an unspecified stratum-specific baseline intensity function. Notation

ν may be specified based on the event process history, e.g., ν ≡ N∗(t−) the number

of previous events in time interval [0, t).

1.4.1 Intra-Individual Correlation and Marginal Models

By the multiplicity nature of recurrent events, the intra-individual correlation be-

tween events is often exhibited in the data. The intra-individual correlation is due

to not only observed covariates but also random effects. Since the intensity function
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modeling typically requires that the baseline event process is either Markov or semi-

Markov, it is tacitly assumed that the intra-individual correlation between events is

entirely due to the observed covariates while the intensity function is formulated.

To relax the Markovian assumption, some marginal models have been developed

on the study-time scale; see Pepe and Cai (1993), Lawless and Nadeau (1995), and

Lin et al. (2000) among others. In marginal modeling, effects of covariates are for-

mulated on a population-level quantity such as the rate or mean frequency function

of recurrent events. Therefore, the individual-level dependence structure is left com-

pletely unspecified. In particular, the proportional means model of Lin, Wei, Yang,

and Ying (2000) takes a form

E(N∗(t)|Z) = µ0(t) exp{b>0 Z},

where µ0(t) is an unspecified baseline mean frequency function. This model marginally

specifies the constant multiplicative effects of covariates on the expected frequency

function, without conditional on the event process history. By averaging out the

event history process, this marginal model generalizes the the multiplicative inten-

sity model of Andersen and Gill (1982). From this perspective, marginal models can

accommodate more general circumstances, such as frailty, facilitating robust method

developments.

Some marginal models for recurrent events have also been developed on the gap-

time scale between the successive events. Particularly, Huang and Chen (2003) pro-

posed a marginal proportional hazards model for gap times between recurrent events.

Under the renewal assumption on event processes (i.e., gap times for a subject are iid

replicates of, say, T ), the recurrent gap times are marginally modeled with observed

covariates. To be specific, the marginal cumulative hazard function of the gap time
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T given Z takes a form

Λ(t|Z) = Λ0(t) exp{b>0 Z},

where Λ0(t) is an unspecified marginal baseline cumulative gap-time hazard function.

Such gap-time modeling strategy is useful especially when the occurrence of next event

is of research interest in recurrent event analysis. In the bladder tumor tiral data,

for instance, researchers may be interested in the effect of a prophylatic treatment on

the time to next tumor recurrence.

Besides, Lin, Wei, and Ying (1998) proposed the accelerated failure time model

for recurrent event data. The model formulates the effects of covariates on the time

scale change of the mean frequency function. Specifically, the accelerated failure time

model of Lin et al. (1998) takes a form

E(N∗(t)|Z) = µ0{t exp(b>0 Z)}.

As noted previously, the multiplicative intensity model of Andersen and Gill (1982)

generalizes the proportional hazards model of Cox (1972). By adapting the counting

process notation, this model of Lin et al. (1998) similarly generalizes the accelerated

failure time model for survival data to accommodate recurrent events.

1.4.2 Varying-Coefficient Models

Most existing models for the analysis of recurrent events assume constant effects of

covariates on recurrence times. As discussed in Section 1.3.2, the constant effect

assumption may not always be realistic in practice. In the bladder tumor trial data,

moreover, a changing ratio of nonparametric mean frequency function estimates is

observed in Figure 1.6. The changing ratio indicates that the effect of the number of

initial tumor changed over time on tumor recurrence times.

Several models and methods have been developed for recurrent event analysis to
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Figure 1.6: The bladder tumor trial data. The ratio of the Nelson-Aalen-type mean
frequency function estimates between people with at most one initial tumor and
people with 2 or more initial tumors.

accommodate time-varying effects of covariates. In particular, the temporal process

regression of Fine, Yan, and Kosorok (2004) formulates temporal effects of covari-

ates on a baseline mean frequency at a given time point. Chiang and Wang (2009)

proposed a varying-coefficient model for the overall rate of recurrent events and devel-

oped a kernel smoothing-based estimation procedure. Alternatively, Huang and Peng

(2009) proposed the accelerated recurrence time model in which time-varying effects

of covariates are formulated through time-scale change of the mean frequency func-

tion. This model generalizes the accelerated failure time model of Lin et al. (1998).

Along a similar line, Sun et al. (2016) proposed a generalization of the univariate

censored quantile regression of Peng and Huang (2008) for recurrent events.

We propose two marginal varying-coefficient models on study-time and gap-time

scales of recurrent events, respectively in Chapters 2 and 3. Both models are globally

specified over time, and therefore accompanied smoothing-free estimation procedures

fully utilize the event times in the sample. Such estimation is expected to be more

efficient than local estimation, e.g., Fine et al. (2004), and implementation can be
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straightforward than smoothing-based estimation, e.g., Chiang and Wang (2009).

1.5 Overview

In Chapter 2, we develop a dynamic regression model to target the mean frequency of

recurrent events. By allowing regression coefficients to vary over time, it generalizes

the proportional means model of Lin et al. (2000). Meanwhile, our proposed model

can be viewed as a special case of the temporal process regression of Fine et al.

(2004). We develop estimation and inference procedures and establish large sample

properties of the proposed estimator. The performance of the proposed estimator is

evaluated through Monte Carlo simulations. Two real data analyses are presented

for illustration of the proposed method.

In Chapter 3, we propose a marginal varying-coefficient model for gap times be-

tween recurrent events. The proposed model accommodates evolving effects of covari-

ates on gap times marginally at the population level. The proposed model directly

generalizes the semiparametric model of Huang and Chen (2003) by replacing constant

regression coefficients with time-varying ones. Estimation and inference procedures

for the time-varying coefficients are developed, and we establish large sample prop-

erties of the proposed estimator. Finite-sample behaviors of the proposed estimator

are evaluated through Monte Carlo simulations. An analysis of the bladder tumor

trial data is presented to illustrate the proposed method.

In Chapter 4, we propose a semiparametric survival regression model with a mix-

ture of time-varying and constant effects of covariates. The proposed model is a

sub-model of the temporal survival regression of Peng and Huang (2007), and there-

fore provides a middle ground between the proportional hazards model of Cox (1972)

and the temporal survival regression model. We develop a smoothing-free itera-

tive estimation procedure and a nonparametric resampling-based inference procedure.
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Finite-sample behaviors of the proposed estimator are investigated via Monte Carlo

simulations. Also when the original Cox model holds, efficiency loss of the proposed

estimators is investigated through simulation studies. An analysis of the well-known

Veterans’ Administration lung cancer data is presented for illustration.

We conclude with final summary and future work in Chapter 5. Detailed proofs

of consistency and weak convergence results can be found in Appendices.
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Chapter 2

Dynamic Regression with

Recurrent Events

Most regression models with recurrent events may be categorized as either conditional

or marginal modeling. In conditional regression modeling, the intensity function of

a recurrent event process is specified, e.g., the models of Prentice et al. (1981) and

Andersen and Gill (1982). Thus conditional models could be more useful in making

an individual-level prediction. On the other hand, in marginal regression modeling,

either the overall rate or the mean frequency of recurrent event processes is specified

by covariates, e.g., the proportional means model by Lin et al. (2000).

Most of the existing models with recurrent events assume constant effects of co-

variates over time, but this simplistic assumption is often unrealistic in practice.

To accommodate evolving effects of covariates, several regression models have been

developed for the analysis of recurrent events. In particular, the temporal process

regression by Fine et al. (2004) accommodates temporal effects of covariates on a

baseline mean frequency at a given time point.

In this Chapter, we develop a dynamic regression model to target the mean fre-

quency of recurrent events. By allowing regression coefficients to vary over time, it



23

generalizes the proportional means model of Lin et al. (2000). Meanwhile, our pro-

posed model can be viewed as a special case of the temporal process regression of

Fine et al. (2004). The model is described in Section 2.1. We propose estimation

and inference procedures in Section 2.2, also present large sample properties of the

proposed estimator. The performance of the proposed estimator is evaluated through

Monte Carlo simulations in Section 2.3. In Section 2.4, two real data analyses are

presented for illustration of the proposed method.

2.1 Model

Let N∗(t) denote the number of recurrent events of interest for a subject in time

interval [0, t] and Z be a p-dimensional covariate vector. We develop a dynamic

regression model with recurrent events

E{N∗(t)|Z} = exp{β0(t)
>Z̃}, for all t ≥ 0, (2.1)

where β0(t) = {log µ0(t), b0(t)
>}> and Z̃ = (1, Z>)>. Here µ0(t) denotes the base-

line mean frequency of recurrent events, i.e., with all covariates being zero; and b0(t)

is the p-dimensional time-varying regression coefficient vector. Model (2.1) postu-

lates time-varying multiplicative effects of covariates on the baseline mean frequency

function. Note µ0(0) = 0 because N∗(0) = 0.

In many circumstances the underlying counting process N∗(·) for a subject is only

observed up to a random follow-up time, say, C. Therefore what are observed are an

observed event processN(·) = N∗(·∧C) and an at-risk process Y (·) = I(C ≥ ·), where

∧ and I(·) are the minimization operator and the indicator function, respectively. We

adopt the conditional independence assumption on the censoring mechanism

N∗(·) ⊥ C | Z.
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Model (2.1) is a structure-imposed nonparametric model as the slope coefficients

depend on time. In the special case of a k-sample problem, it is a saturated model,

in which no structure is actually imposed. Note that our proposed model with time-

varying coefficients generalizes the proportional means model of Lin et al. (2000).

Meanwhile, our model turns out to be the special case of the temporal process re-

gression of Fine et al. (2004) when log link and recurrent events are considered.

2.2 Estimation and Inference

2.2.1 Point Estimation

Suppose an observed data set {Ni(·);Yi(·);Ci;Zi}ni=1 consists of n independent repli-

cates of {N(·);Y (·);C;Z}. Under model (2.1) with the conditional independence as-

sumption on the censoring mechanism, it follows E{N(t)|Z} = E
[ ∫ t

0
Y (s) d exp{β0(s)

>Z̃}|Z
]
.

This motivates our proposed estimating integral equation

n−1
n∑
i=1

Z̃i

[
Ni(t)−

∫ t

0

Yi(s) d exp{β(s)>Z̃i}
]

= 0, for all t ≥ 0. (2.2)

This equation is similar to the one for the univariate survival model in Peng and Huang

(2007). However, under the proposed model (2.1) the left-hand side of equation (2.2)

does not have a martingale structure when β(·) is β0(·), unlike the case for univariate

survival data.

Equation (2.2) admits a càdlàg solution, β̂(t), which has jumps only at observed

event times. Write 0 < x1 < x2 < · · · < xM as the observed event times of all

subjects in the sample, and denote Z(1),Z(2), . . . ,Z(M) as the associated covariate

vectors. Note that one individual may have multiple contributions to {xj,Z(j)}Mj=1.

The initial value, β̂(0), satisfies exp{β̂(t)>Z̃i} = 0 for all i. Then, at time x1, the
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estimating integral equation (2.2) reduces to

Z̃(1) −
n∑
i=1

Yi(x1)Z̃i exp{β(x1)
>Z̃i} = 0. (2.3)

Sequentially at the observed event times (xj)
M
j=2, the estimating integral equation

(2.2) reduces to

Z̃(j) −
n∑
i=1

Yi(xj)Z̃i

[
exp{β(xj)

>Z̃i} − exp{β̂(xj−1)
>Z̃i}

]
= 0, j = 2, . . . ,M.

(2.4)

Both estimating equations (2.3) and (2.4) have good computational properties since

their left-hand sides are monotone functions.

If censoring is absent up to time t, the estimating integral equation (2.2) implies

n−1
n∑
i=1

Z̃i

[
Ni(t)− exp{β(t)>Z̃i}

]
= 0.

This estimating equation coincides with the one in Fine et al. (2004) when the nat-

ural logarithm is adopted for the link function in their model.Consequently an iden-

tical estimator is obtained. When censoring is present, however, equation (2.2) fully

utilizes the observed data, whereas the estimating equation of Fine et al. (2004),∑n
i=1 Yi(t)Z̃i

[
Ni(t)− exp{β(t)>Z̃i}

]
= 0, uses the data only from uncensored obser-

vation as of the given time point of interest. Therefore, our estimator tends to be

more efficient as shown later in our simulation studies.

2.2.2 Large Sample Properties

We establish the uniform consistency and the weak convergence of the proposed es-

timator β̂(·). Write ‖ · ‖ and eigmin(·) as the Euclidean norm and the minimum

eigenvalue of a positive semidefinite matrix, respectively. Write β0(t) as the true

value of β(t). We postulate the following regularity conditions:
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C1. there exists a time point κ > 0 such that Pr(C > κ) = 1;

C2. N(τ) is bounded, where τ is a fixed time point satisfying Pr(C > τ) > 0 for

κ < τ <∞;

C3. ‖Z‖ is bounded;

C4. supt∈[κ,τ ] ‖β0(t)‖ is bounded;

C5. β0(t) is continuously differentiable for t ∈ (κ, τ ];

C6. inft∈[0,τ ]eigminE{Y (t)Z̃Z̃>} is bounded away from zero.

The logarithm of a baseline mean frequency function is negative infinity, i.e., log µ0(0) =

−∞, which creates a challenge in the asymptotic study. To avoid this issue, we focus

on the properties of β̂(t) over t ∈ [κ, τ ] for some small κ and impose condition C1.

As such, β̂(κ) is the same as an estimator of Fine et al. (2004) and its properties

follow the standard M -estimation theory. Other conditions, C2 to C6, are technical

assumptions and fairly standard with varying-coefficient regression models.

Theorem 1. Under regularity conditions C1-C6, supt∈[κ,τ ] ‖β̂(t) − β0(t)‖ −→ 0,

almost surely.

Theorem 2. Under regularity conditions C1-C6, n1/2{β̂(·)−β0(·)} on (κ, τ ] weakly

converges to a mean-zero Gaussian process.

The proofs are in the Appendix A.

2.2.3 Interval Estimation

Inference may be based on Theorem 2. In particular for a finite-dimensional quantity,

e.g., β0(t) for a given t, asymptotic variance can be estimated and subsequently

confidence interval may be constructed. However, this approach is difficult if not

impossible to construct confidence band for infinite-dimensional quantities such as
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β0(·); see related discussion in Lin et al. (1994) and Huang (2014) in different contexts.

We instead propose a nonparametric bootstrap inference procedure using multiplier

bootstrap; see Rubin (1981), Kosorok (2008) and Huang (2014). To be specific, we

propose a bootstrap estimating integral equation

n−1
n∑
i=1

ξiZ̃i

[
Ni(t)−

∫ t

0

Yi(s) d exp{β(s)>Z̃i}
]

= 0, for all t ≥ 0, (2.5)

where (ξi)
n
i=1 are independent and identically distributed, following the standard ex-

ponential distribution. Denote a solution to this equation (2.5) by β∗(·). Then based

on B bootstrap resamples, a set of bootstrap solutions {β∗b (·)}Bb=1 can be obtained.

At any given time t, the variance of estimator β̂(t) can be estimated by the sample

variance of {β∗b (t)}Bb=1. Provided this variance estimate, a 100(1 − α)% point-wise

confidence interval for β0(t) can be constructed by the normal approximation cen-

tered at β̂(t). Alternatively, a confidence interval can be simply constructed with

the (α/2)th and (1 − α/2)th quantiles of the empirical distribution of β∗(t). Given

the solutions β̂(·) and {β∗b (·)}Bb=1, we propose to construct a 100(1− α)% confidence

band for {β0(t) : t ∈ (l, u]} with {β̂(t)± γα : t ∈ (l, u]}. Here γα is the (1− α/2)th

quantile of the empirical distribution of J∗, where J∗b = supt∈[l,u] |β∗b (t) − β̂(t)| for

b = 1, . . . , B.

2.2.4 Average Effect and Test for Varying Effect

Our estimator β̂(·) can provide a profile of time-varying effects of covariates over time.

However, one may be interested in average effects of covariates over time interval (l, u]

for 0 < l < u < ∞. That is, β0(l, u) ≡ (u − l)−1
∫ u
l
β0(t) dt; see Peng and Huang

(2008) for its usage in quantile regression. Therefore based on β̂(·), we propose a

natural estimator of the average effects β̂(l, u) = (u− l)−1
∫ u
l
β̂(t) dt.

Moreover, we consider the null hypothesis testing for constant vs. time-varying
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effects

H0 : c>β0(t) is a constant for all t ∈ (l, u],

where c is a known (p+1)-dimensional vector. In the special case of testing the varying

effect of the ith covariate, the (i + 1)th component of c is one and zeros elsewhere.

To evaluate H0, we propose a test statistic T = n1/2
∫ u
l
c>{β̂(t) − β̂(l, u)}Ξ(t) dt,

where Ξ(t) is a known nonnegative weight function. The identity function Ξ(t) = t

is considered to be a good candidate for the weight when a linear changing effect is

reasonable. Note that the limiting distribution of T is a Gaussian because T is a

linear function of β̂(·). For variance estimation of the limiting distribution of T , we

consider T ∗ = n1/2
∫ u
l
c>{β∗(t)−β∗(l, u)}Ξ(t) dt in a bootstrap sample as the counter

part of T , where β∗(l, u) = (u − l)−1
∫ u
l
β∗(t) dt. Since the limiting distribution of

T under H0 is equivalent to the limiting conditional distribution of T ∗ given the

observed data, a p-value for a constant effect test can be computed based on the

bootstrap replicates of T ∗.

2.3 Simulation Studies

We conducted Monte Carlo simulations to investigate finite-sample properties of the

proposed estimator. Throughout the simulations, the underlying baseline mean fre-

quency function was the identity function of time t, i.e., µ0(t) = t. To induce an

intra-individual correlation, a subject-level random frailty η was generated from the

unit-mean gamma distribution with V ar(η) = σ2 = 0, 0.5, and 1. Note that larger

σ2 leads to higher intra-individual correlation. The sample size n in each data set

was 200, and the bootstrap size B was 500. Under each frailty scenario, 1,000 Monte

Carlo data sets were simulated.

For comparison with the proposed method, we also considered the temporal pro-

cess regression method of Fine et al. (2004) and the proportional means model of Lin
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et al. (2000). For the proportional means model, we used the same estimates from

the conventional estimation based on the whole observed data, regardless of the time

interval under consideration for averaging.

2.3.1 Simulation 1: Single Covariate with Constant Effect

We first considered a single covariate with constant multiplicative effect on the base-

line mean frequency. The covariate followed the uniform[0, 1] distribution, and its

fixed regression coefficient b0(·) was 0.5. Random follow-up time C was from the

uniform[0, 3] distribution.

Table 2.1 reports a summary of the Monte Carlo simulations for both of the

proposed method and the temporal process regression method: empirical biases, em-

pirical standard deviations, average standard error estimates, and empirical coverage

probabilities of Wald-type 95% confidence intervals at the predetermined time points.

First of all, it is shown that all the estimates were close to the estimands over time.

Moreover, the averages of the estimated standard errors agreed quite well with the em-

pirical standard deviations. This indicates that the estimated standard errors based

on the proposed resampling procedure approximate the true sampling variation well.

When the variance of random frailty was increased, the empirical standard devia-

tions increased and the empirical coverage probabilities decreased on the whole. This

indicates that an extra variability was introduced in estimation by the increased de-

pendence between events. On the whole, the Monte Carlo biases of estimator of Fine

et al. (2004) were comparable to the ones based on the proposed method. However,

relatively large empirical standard deviations were observed for the temporal process

regression estimator, even more so at the end of the follow-up. This low efficiency

of the temporal process regression estimator was attributed to the fact that in its

estimation procedure, the data only from uncensored observation at a given time are

used in cross-sectional fashion.
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Table 2.2 reports the three methods’ estimation performance for the average ef-

fect of covariate. For each of the three intervals under consideration, the Monte Carlo

empirical biases were close to zero relative to the corresponding empirical standard

deviations over the different intra-individual correlation scenarios. In case of no de-

pendence between events σ2 = 0, the proportional means model of Lin et al. (2000)

had smallest empirical standard deviations as expected. However, the Monte Carlo

standard deviations increased by a great deal when an intra-individual correlation

was introduced, i.e., with σ2 = 0.5 and 1. Indeed, the finite-sample efficiency of es-

timator of Lin et al. (2000) became comparable to the ones based on the other two

methods. On the other hand, for the time interval which includes the end of the

follow-up, i.e., (l, u] = (0, 3], the temporal process regression estimator of Fine et al.

(2004) had larger Monte Carlo biases and big discrepancies between the empirical

standard deviations and the average of the estimated standard errors. The temporal

process regression is a robust method in general providing unbiased estimates in large

sample. However, our simulation results with practical sample size indicate that its

estimator tended to be highly variable when a time interval of interest included the

end of the study time, in which less events were observed.

2.3.2 Simulation 2: Single Covariate with Time-Varying Ef-

fect

In the second simulation, we considered a single covariate with decreasing time-

varying effect. The covariate followed the uniform[0, 1], and its time-varying co-

efficient b0(t) was exp{−t/ exp(1)}. Random follow-up time C was generated from

the uniform[0, 3].

Table 2.3 shows that the empirical biases of the considered estimators were close to

zero relative to the corresponding Monte Carlo standard deviations. Notably all of the

empirical standard deviations of the proposed estimator were smaller than those based
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Table 2.2: Summary Results of Simulation 1 for the Average Effect of Covariate
β0(l, u)

b0(t) = 0.5
Proposed Method Fine et al. (2004) Lin et al. (2000)

B SD SE CP95 B SD SE CP95 B SD SE CP95

Interval (0, 3]
σ2 = 0 4 194 190 94.6 13 596 212 83.1 3 176 176 94.8
σ2 = 0.5 -7 284 263 94.3 -4 1151 310 71.8 -6 271 265 94.0
σ2 = 1 9 337 317 93.9 137 1580 377 61.8 7 332 328 94.4
Interval (0, 2.5]
σ2 = 0 4 208 203 94.4 5 230 219 94.2
σ2 = 0.5 -5 288 271 93.7 1 322 301 93.6
σ2 = 1 10 344 322 92.8 11 391 357 92.0
Interval (0.5, 2.5]
σ2 = 0 1 187 185 94.5 4 218 210 94.8
σ2 = 0.5 -8 273 262 93.6 1 318 306 94.2
σ2 = 1 9 326 318 94.2 12 394 371 92.1

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error (×1000);
CP95: empirical coverage probability of the Wald 95% confidence interval (×100). Based on 1,000 Monte Carlo
replications. For the proportional means model of Lin et al. (2000), the same estimates from the conventional
estimation were used based on the whole observed data regardless of the time interval under consideration for
averaging; thus the results for intervals (0, 2.5] and (0.5, 2.5] are not presented as they are equivalent to the ones
for interval (0, 3].

on the temporal process regression method. Table 2.4 summarizes the simulation

results for the average of the time-varying coefficient β0(l, u). Regardless of degrees

of intra-individual correlations, the Monte Carlo biases of the proposed average effect

estimator β̂(l, u) were close to zero relative to the empirical standard deviations. By

contrast, the average estimator based on the temporal process regression had larger

empirical biases and empirical standard deviations, especially when the time interval

of interest contained the end-part of the study follow-up, i.e., interval (l, u] = (0, 3];

the similar pattern was observed in Table 2.2.

2.3.3 Simulation 3: Two Covariates with Constant and Time-

Varying Effects

We further considered two covariates, one with varying effect and the other with

constant effect. Covariate Z(1) was randomly generated from the trimmed normal
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Table 2.4: Summary Results of Simulation 2 for the Average Effect of Covariate
β0(l, u)

b0(t) = exp{−t/ exp(1)}
Proposed Method Fine et al. (2004) Lin et al. (2000)

B SD SE CP95 B SD SE CP95 B SD SE CP95

Interval (0, 3]
σ2 = 0 2 199 186 93.0 18 606 209 81.7 -102 180 176 91.1
σ2 = 0.5 -7 279 258 92.4 24 1163 316 68.5 -109 261 260 91.8
σ2 = 1 1 339 313 92.3 -2 1834 385 59.8 -96 337 322 91.4
Interval (0, 2.5]
σ2 = 0 3 213 196 92.8 7 240 214 91.6 -150 180 176 85.5
σ2 = 0.5 21 292 265 90.7 18 324 294 91.8 -130 279 261 90.7
σ2 = 1 -1 342 317 92.5 8 399 354 90.4 -145 337 322 90.5
Interval (0.5, 2.5]
σ2 = 0 -7 189 182 94.7 -5 226 209 93.6 -85 180 176 92.3
σ2 = 0.5 -14 265 257 93.8 -16 321 302 93.6 -93 261 260 92.7
σ2 = 1 -3 333 313 93.0 6 413 368 90.6 -80 337 322 92.0

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error (×1000);
CP95: empirical coverage probability of the Wald 95% confidence interval (×100). Based on 1,000 Monte Carlo
replications. For the proportional means model of Lin et al. (2000), the same estimates from the conventional
estimation were used based on the whole observed data regardless of the time interval under consideration for
averaging.

distribution over range [0, 1] with mean 1/3 and variance 1, and had time-varying

coefficient b
(1)
0 = exp{−t/ exp(1)}. Covariate Z(2) was from the uniform[0, 1] distri-

bution, having the constant coefficient b
(2)
0 (t) = 0.5. Random follow-up time C was

generated conditionally on the second covariate such that C|[Z(2) ≥ 0.5] from the

uniform[0, 3] and C|[Z(2) < 0.5] from the uniform[2, 3].

Tables 2.5 and 2.6 report that the simulation results were similar to the ones

discussed in the previous simulations, respectively for the covariate effects over time

and the averaged effects of covariates.

2.4 Real Data Analyses

Our proposed method is illustrated by two real data analyses of the bladder tumor

trial data (Byar, 1980) and the DISC study data (Tangpricha et al., 2017).
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2.4.1 Analysis of the Bladder Tumor Trial Data

Byar (1980) reported a randomized clinical trial assessing the effects of new treatments

on tumor recurrence. A total of 118 patients with superficial bladder tumors entered

the study after removal of their initial tumors. They were randomly assigned to three

treatment arms (pyridoxine, thiotepa, and placebo). Follow-up time varied from 1 to

64 months. During the follow-up, sixty-two patients experienced tumor recurrences,

and the maximum number of recurrences was 9. We applied our dynamic regression

model with four baseline covariates: the size of a largest initial tumor, the number of

tumors at enrollment, and two treatment indicators for pyridoxine and thiotepa.

Figure 2.1 shows the estimated effects of the covariates and corresponding Wald-

type 95% point-wise bootstrap confidence intervals. The effects of initial number and

size of tumors appeared to be changing over time. Specifically, the initial number

of tumors was associated with lower recurrence rate around the middle of study

follow-up but with higher recurrence rate toward the end. In contrast, the initial

tumor size increased the mean frequency of tumor occurrence by about exp(0.1∗ size)

around 5 months after the removal of initial tumors, and the size decreased the

mean frequency by the same factor after 50-month of follow-up. The p-values for the

proposed constant effect test were 0.105 and 0.030, respectively, for (l, u] = (5, 53]. On

the other hand, pyridoxine and thiotepa had relatively constant effects, with p-values

0.960 and 0.691 respectively. Thiotepa appeared to reduce the tumor recurrence

compared to the placebo, whereas pyridoxine did not. This observation is consistent

with the results of other bladder tumor data analyses discussed in Therneau and

Grambsch (2000).

2.4.2 Analysis of the DISC Trial Data

Cystic fibrosis is a chronic genetic disorder, which occurs at a rate of 3 cases per

10,000 Caucasian newborns each year in the U.S.; see Strausbaugh and Davis (2007).
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Figure 2.1: The bladder tumor trial data. Estimates for the effects of the considered
covariates. The rugged solid lines and the dotted lines denote the point estimates
and the Wald-type 95% point-wise bootstrap confidence intervals, respectively. The
horizontal solid lines are the estimated average effects over (5, 53]. The p-values for
the constant effect tests are calculated based on time interval (5, 53].
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Also, it is reported that vitamin D deficiency in cystic fibrosis patients is highly

prevalent, e.g., Wolfenden et al. (2008). In order to assess the effect of vitamin D

on recurrence of pulmonary exacerbation, ninety-one adults with cystic fibrosis were

randomly assigned to either high-dose vitamin D group or placebo group in the DISC

trial of Tangpricha et al. (2017). During the follow-up, pulmonary exacerbations were

observed as many as 9 times in each patient. In addition to vitamin D treatment,

we considered additional five covariates in the model: gender, Caucasian, age, body

mass index (BMI), and forced expiratory volume (FEV) at enrollment.

Figure 2.2 shows the estimated effects of covariates and corresponding Wald-type

95% point-wise bootstrap confidence intervals. The age effect appeared to vary over

time on recurrence of pulmonary exacerbation although the test for the constant effect

was not significant with p-value 0.163 for (l, u] = (50, 500] (days). Younger people

tended to have more frequent pulmonary exacerbation, perhaps even more so at the

end of the study follow-up. On the other hand, the effects of the other covariates,

including vitamin D treatment, did not appear to change over time in the sample. As

one reviewer pointed out, the relatively constant effect estimates suggest that a time-

independent coefficient model fits well. This shows another utility of the proposed

methods, to provide justification for such a simpler model.
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Figure 2.2: The DISC trial data. Estimates for the effects of covariates. The rugged
solid lines and the dotted lines denote the point estimates and the Wald-type 95%
point-wise bootstrap confidence intervals, respectively. The horizontal solid lines are
the estimated average effects over (50, 500]. The p-values for the constant effect tests
are calculated based on time interval (50, 500].
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Chapter 3

A Varying-Coefficient Model for

Gap Times Between Recurrent

Events

To evaluate effects of risk factors on recurrent events, many regression models have

been proposed in a way of extending the proportional hazards model of Cox (1972)

for univariate survival data, e.g., the models of Prentice et al. (1981) and Andersen

and Gill (1982). These extended Cox models for recurrent events specify the intensity

function as conditional on the process history. Such so-called conditional modeling

may target the study-time scale (i.e., the time scale from the study origin), or the

gap-time scale (i.e., the time elapsed from the last event). By the multiplicity nature

of recurrent events, however, the intra-individual correlation between events is often

exhibited in the data. Since conditional modeling typically requires that the baseline

recurrent event process is either Markov or semi-Markov, the intra-individual cor-

relation is tacitly presumed to be entirely due to the observed covariates when the

intensity function is formulated.

To relax the Markovian assumption, some marginal models have been developed
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on the study-time scale, e.g., the models of Pepe and Cai (1993), Lawless and Nadeau

(1995), and Lin et al. (2000) among others. In marginal models, effects of covariates

are formulated on a population-level quantity such as the rate or mean frequency of

recurrent events so that the individual-level dependence structure is left completely

unspecified. Such partial specification of event processes facilitates robust method

developments. For example, the proportional means model of Lin et al. (2000) spec-

ifies the mean frequency function conditional on observed covariates. In this way,

arbitrary intra-individual dependence structure is allowed among recurrent events.

Some marginal models for recurrent events have also been developed on the gap-

time scale. In particular, Huang and Chen (2003) proposed a marginal proportional

hazards model for gap times between recurrent events. Under the renewal assumption

on event processes (i.e., gap times for a subject are iid replicates of, say, T ), the

recurrent gap times are marginally modeled with observed covariates, say, Z, a p-

dimensional vector of covariates. To be specific, the marginal cumulative hazard

function of T given Z takes a form

Λ(t|Z) = Λ0(t) exp{b>0 Z},

where Λ0(t) is an unspecified baseline cumulative gap-time hazard and b0 is a p-

dimensional constant vector of regression coefficients.

Most existing models for recurrent events assume constant effects of covariates

over time. This simplistic assumption can be unrealistic in practice. To accommodate

varying effects of covariates, in this Chapter, we propose a marginal varying-coefficient

model for gap times between recurrent events. The proposed model accommodates

evolving effects of covariates on gap times marginally at the population level. The

model is described in Section 3.1. Estimation and inference procedures for the time-

varying coefficients are developed in Section 3.2. Also, in Section 3.2, we establish
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large sample properties of the proposed estimator. Finite-sample behaviors of the

proposed estimator are evaluated through Monte Carlo simulations in Section 3.3. In

Section 3.4, an analysis of the bladder tumor trial data is presented to illustrate the

proposed method.

3.1 Model

Suppose that the study follow-up starts with an initial recurrent event. Assign indexes

j = 0, 1, 2, . . . to the recurrent events for a subject. Denote the gap time between

(j − 1)st and jth events by T(j) for j ≥ 1. Therefore the recurrent event process can

be represented by a collection of the gap times, i.e., T ≡ {T(j) : j = 1, 2, . . .}.

By the multiplicity nature of recurrent events, gap times between recurrent events

for a subject often exhibit certain homogeneity. Thus we consider the events for a

subject are from a renewal process. That way, gap times {T(j)}j as within a subject

are considered as iid replicates of, say, T . However, sample is a mixture of possibly

heterogeneous renewal processes. Moreover, we consider the heterogeneity among

renewal processes is owing to both the observed covariates and unobserved random

effect, i.e., frailty. We model the gap times marginally with the observed covari-

ates. Specifically, we propose a marginal varying-coefficient model for the cumulative

hazard function of the gap time T , namely

Λ(t|Z) = exp{β0(t)
>Z̃}, for all t ≥ 0, (3.1)

where β0(t) = [log Λ0(t), b0(t)
>]> and Z̃ = [1, Z>]>. Here, b0(t) is a p-dimensional

time-varying regression coefficient vector for covariates Z. Technically, model (3.1)

marginally postulates time-varying multiplicative effects of covariates on the baseline

cumulative gap-time hazards Λ0(·). Note that our proposed model is a structure-

imposed nonparametric regression model, and it directly generalizes the semipara-
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metric model of Huang and Chen (2003) by replacing constant b0 with varying b0(·).

In a special case of a homogeneous sample with no covariates, our model reduces to

the recurrent survival function considered in Wang and Chang (1999).

We consider recurrent events for a subject are observable up to a random follow-up

time C, and adopt the conditional independent assumption on the censoring mecha-

nism,

T ⊥ C | Z.

3.2 Estimation and Inference

Due to the right censoring, for subject i, we observe the first, say, Mi−1 complete gap

times {Ti(j)}Mi−1
j=1 and a censored gap, that is, T+

i(Mi)
≡ Ci−

∑Mi−1
j=1 Ti(j), where

∑0 = 0.

Thus the data set consists of {Ti(j) : j = 1, 2, . . . ,Mi − 1;T+
i(Mi)

;Zi}, i = 1, . . . , n,

which are n independent replicates of {T(j) : j = 1, 2, . . . ,M − 1;T+
(M);Z}.

In our estimation and inference procedures, a subset of the data is used. Essen-

tially, the subset leaves out the censored gap times for subjects with at least one

complete gap time, i.e., subjects with M − 1 > 0. The rationale for using this subset

is based on the established connection between a subset of observed gap times and

clustered survival times with informative cluster size; see Huang and Chen (2003,

Section 2). To be specific, with each individual i, given Ci and Mi, the complete

gap times {Ti(j)}Mi−1
j=1 have an exchangeable distribution under the assumption of re-

newal process and conditional independence censorship. This connection facilitates

the use of the subset data as the clustered survival data with informative cluster

size, as described in the following Section. For notational convenience, we introduce

Si ≡ max(Mi − 1, 1), ∆i ≡ I(Mi − 1 ≥ 1), and

Xi(j) ≡

 Ti(j) for ∆i = 1

T+
i(j) for ∆i = 0

, j = 1, . . . , Si,
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where I(·) is the indicator function. Then the subset of the data consists of {Xi(j) :

j = 1, 2, . . . , Si; ∆i;Zi}, i = 1, . . . , n, which are n independent replicates of {X(j) :

j = 1, 2, . . . , S; ∆;Z}.

3.2.1 Point Estimation

The subset can be alternatively represented in counting process notation. LetN(j)(t) ≡

I(X(j) ≤ t,∆ = 1) be the counting process that indicates whether jth gap time for

a subject is observed or not, between (j − 1)st event and the time t on the gap-time

scale. Also, define the at-risk process Y(j)(t) ≡ I(X(j) ≥ t), which indicates whether

jth gap time for a subject can be observed in the gap time t or later, from (j − 1)st

event.

Under model (3.1) and the conditional independent censoring assumption, it fol-

lows E(dN(1)(t)|Z) = Y(1)(t)dΛ(t|Z) = Y(1)(t) d exp{β0(t)
>Z̃}. Thus the method of

Peng and Huang (2007), which was originally developed for univariate survival time

data, can be applied to the first gap time. The estimating equation of Peng and

Huang (2007) takes a form

n−1
n∑
i=1

Z̃i

[
dNi(1)(t)− Yi(1)(t) d exp{β(t)>Z̃i}

]
= 0, for all t ≥ 0, (3.2)

where Ni(1)(t) = I(Xi(1) ≤ t,∆i = 1) and Yi(1)(t) = I(Xi(1) ≥ t).

Due to the exchangeability of the observed complete gap times, the subset data

can be treated as observed clustered survival data. This motivates our estimating

integral equation

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

[
Ni(j)(t)−

∫ t

0

Yi(j)(s) d exp{β(s)>Z̃i}
]

= 0, for all t ≥ 0,

(3.3)

where Ni(j)(t) = I(Xi(j) ≤ t,∆i = 1) and Yi(j)(t) = I(Xi(j) ≥ t). Basically, the
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observed first gap time in equation (3.2) is replaced with the average of all observed

gap times from an individual.

Equation (3.3) admits a càdlàg solution, β̂(t), which has jumps only at observed

gap times. Write 0 < x1 < x2 < · · · < xG as the unique observed gap times from all

individuals in the sample. The initial value, β̂(0−), satisfies exp{β̂(0−)>Z̃i} = 0 for

all i. Then, at time x1, the estimating integral equation (3.3) reduces to

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

(
dNi(j)(x1)− Yi(j)(x1) exp{β(x1)

>Z̃i}
)

= 0. (3.4)

Sequentially at the observed event times xg, g = 2, . . . , G, the estimating integral

equation (3.3) reduces to

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

(
dNi(j)(xg)−Yi(j)(xg)

[
exp{β(xg)

>Z̃i}−exp{β̂(xg−1)
>Z̃i}

])
= 0.

(3.5)

In this way, our estimator β̂(·) is obtained as the solutions to the equations (3.4)

and (3.5), which have good computational properties since the left-hand sides of both

equations are monotone functions of β.

Since all the observed complete gap times are used in equation (3.3), some ef-

ficiency gain in estimation is expected compared to the estimation based on equa-

tion (3.2). This will be investigated in the Section 3.3 via Monte Carlo simulations.

3.2.2 Large Sample Properties

We establish uniform consistency and weak convergence of the proposed estimator

β̂(·). Write ‖ · ‖ and eigmin(·) as the Euclidean norm and the minimum eigenvalue

of a positive semidefinite matrix, respectively. Write β0(t) as the true value of β(t).

We impose the following regularity conditions:

C1.
∑∞

j=1N(j)(τ) is bounded, where τ is a fixed time point satisfying Pr(C > τ) > 0;
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C2. ‖Z‖ is bounded;

C3. supt∈[0,τ ] ‖β0(t)‖ is bounded;

C4. β0(t) is continuously differentiable for t ∈ (0, τ ];

C5. eigminE{Y(1)(τ)Z̃Z̃>} is bounded away from zero.

Condition C3 implies that β0(0) is bounded and thereby the gap time T has a proba-

bility mass as time 0, i.e., Pr(T = 0|Z) > 0. This facilitates a proof of the consistency

of β̂(·) at time 0 and furthermore its uniform consistency over time [0, τ ]. The other

conditions are technical assumptions and fairly standard with varying-coefficient re-

gression models.

Theorem 3. Under regularity conditions C1-C5, supt∈[0,τ ] ‖β̂(t) − β0(t)‖ −→ 0, al-

most surely.

Theorem 4. Under regularity conditions C1-C5, n1/2{β̂(·)− β0(·)} on [0, τ ] weakly

converges to a mean-zero Gaussian process.

Detailed proofs of Theorems 3 and 4 are in the Appendix B.

3.2.3 Interval Estimation

Inference about β0(t) for a given time t may be based on a variance estimate as can be

obtained through the asymptotic study. In constructing confidence band for infinite-

dimensional quantities such as β0(·), however, such an asymptotics-based approach

is difficult if not impossible; see related discussion in Lin et al. (1994) and Huang

(2014) in different contexts. For this reason, we instead propose a nonparametric

inference procedure using the multiplier bootstrap; see Rubin (1981), Kosorok (2008)
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and Huang (2014). Specifically, we propose a bootstrap estimating integral equation

n−1
n∑
i=1

ξiS
−1
i

Si∑
j=1

Z̃i

[
Ni(j)(t)−

∫ t

0

Yi(j)(s) d exp{β(s)>Z̃i}
]

= 0, for all t ≥ 0,

(3.6)

where (ξi)
n
i=1 are a random sample from a distribution with unit mean and unit

variance, e.g., the standard exponential distribution. Denote the solution path to

this equation (3.6) by β∗(·). Then based on ,say, B bootstrap resamples, a set of

bootstrap solutions {β∗b (·)}Bb=1 is obtained. The variance of β̂(t) can be estimated by

the sample variance of {β∗b (t)}Bb=1. Provided this, the Wald-type 100(1− α)% point-

wise confidence interval for β0(t) can be constructed by the normal approximation

centered at β̂(t). Alternatively, a confidence interval may be constructed with the

corresponding (α/2)th and (1−α/2)th quantiles of the empirical distribution of β∗(t).

We also propose to construct a 100(1−α)% confidence band for {c>β0(t) : t ∈ (l, u]}

with {c>β̂(t) ± γα : t ∈ (l, u]}, where c is a given (p + 1)-dimensional vector.

Here γα is the (1 − α/2)th quantile of the empirical distribution of J∗, where J∗b =

supt∈[l,u] |c>{β∗b (t)− β̂(t)}| for b = 1, . . . , B.

3.2.4 Average Effect and Test for Varying Effect

Our proposed estimator β̂(·) estimates evolving effects of covariates over time. Nev-

ertheless one may be interested in an averaged effect of the covariates. We consider

β0(l, u) ≡ (u− l)−1
∫ u
l
β0(t) dt for 0 < l < u <∞; see Peng and Huang (2008) for its

usage in quantile regression. A natural estimator for β0(l, u) based on our estimator

β̂(·) is β̂(l, u) = (u − l)−1
∫ u
l
β̂(t) dt. Moreover, we consider a test for constant vs.

time-varying effects

H0 : c>β0(t) is a constant for all t ∈ (l, u],
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where c is a known (p + 1)-dimensional vector. Note that in the special case of

testing the varying effect of the kth covariate only, the (k + 1)th component of c is

set to be one and zeros elsewhere. To evaluate H0, we propose a test statistic T =

n1/2
∫ u
l
c>{β̂(t)− β̂(l, u)}Ξ(t) dt, where Ξ(t) is a known nonnegative weight function.

For example, the identity function Ξ(t) = t is a good candidate for the weight when

a linear changing effect is reasonable. Note that the limiting distribution of T is

Gaussian because T is a linear function of β̂(·). For variance estimation of the limiting

distribution of T , we consider T ∗ = n1/2
∫ u
l
c>{β∗(t)−β∗(l, u)}Ξ(t) dt in a bootstrap

sample to be the counter part of T , where β∗(l, u) = (u− l)−1
∫ u
l
β∗(t) dt. Since the

limiting distribution of T is equivalent to the limiting conditional distribution of T ∗

given the observed data, a p-value for a constant effect test can be calculated based

on the bootstrap replicates of T ∗. Specifically, one can estimate the variance of the

limiting distribution of T by an empirical variance of the bootstrap replicates of T ∗.

Then under H0, a p-value can be obtained based on Gaussian distribution with mean

zero and the estimated variance.

3.3 Simulation Studies

We conducted Monte Carlo simulations to investigate finite-sample properties of the

proposed estimator. We adapted the gap-time data generation strategy of Huang

and Chen (2003), in which various degrees of intra-individual correlation can be ac-

commodated in Monte Carlo sample. Monte Carlo gap times were generated from a

marginal cumulative gap-time hazard function Λ(·) in the form of model (3.1), i.e.,

Λ(t|Z) = exp{log t + b0(t)
>Z}. Specifically, Monte Carlo gap times were generated

from Λ−1(U), where U was a random variable from the standard exponential distri-

bution. In order to address the intra-individual correlation, random variable U was

set to − log{1− Φ(A+B)} for a mixture of heterogeneous renewal processes, where
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individual-specific random variable A and episode-specific random variable B were

independently generated from mean-zero normal distributions with variance ρ and

1− ρ, respectively, for ρ ∈ [0, 1]. Here Φ(·) is the cumulative distribution function of

the standard normal distribution. Note that ρ = 0 leads to the same baseline renewal

process across the subjects, whereas ρ = 1 generates gap times of the same length

within a subject. That way, larger ρ ∈ [0, 1] accommodates higher intra-individual

correlation in the sample.

The size of each Monte Carlo sample was n = 200, and the bootstrap size B was

500. A total of 1,000 Monte Carlo data sets was generated under each intra-individual

correlation scenario, ρ = 0.25, 0.5, or 0.75. To compare estimation performance of

the proposed method, we also considered the methods of Peng and Huang (2007)

and Huang and Chen (2003). Note the method of Huang and Chen (2003) is valid

only when all effects are constant. However, their method was applied in average

effect estimation even when the effect under consideration was time-varying; and the

conventional estimates were used based on the whole observed data over interval [0,

3] regardless of averaging time interval under consideration.

3.3.1 Simulation 1: Single Covariate with Constant Effect

Firstly, we considered a single covariate with constant effect on gap times. The covari-

ate Z was from the uniform[-1, 1] distribution, and its fixed regression coefficient b0(·)

was one. Random follow-up time C was generated from the uniform[0, 3] distribution.

Table 3.1 reports summaries of the Monte Carlo estimates from our proposed

method and the method of Peng and Huang (2007) in terms of the empirical bias,

empirical standard deviation of the estimates, average standard error estimate, and

empirical coverage probability of Wald-type 95% confidence intervals at prespecified

time points. On the whole, the Monte Carlo biases of the estimates from both methods

were close to zero. Moreover, the averages of the standard errors agreed well with the
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empirical standard deviations of the estimates. In particular, relatively large empirical

standard deviations were observed for the high intra-individual correlation scenario,

i.e., ρ = 0.75. These observations were owing to increased unobserved heterogeneity

across the subjects given the observed covariates. On the other hand, the proposed

estimator appeared to have smaller empirical standard deviations, compared to the

application of the method of Peng and Huang (2007) to the firstly observed complete

gap times. This is because our estimation utilizes all the complete gap times, not

only the firstly observed event times.

Table 3.2 shows summary results of the average effect estimates from three meth-

ods of Peng and Huang (2007), Huang and Chen (2003), and ours. For the methods

of Peng and Huang (2007) and ours, we considered the average effect estimator pro-

posed in Section 3.2.4, over averaging time interval (0.5, 2.0]. All the average effect

estimates were close to the true value 1, with less than 2% Monte Carlo biases. Com-

pared to our proposed average effect estimates, the estimates from the methods of

Huang and Chen (2003) and Peng and Huang (2007), respectively, had smaller and

bigger empirical standard deviations.

3.3.2 Simulation 2: Single Covariate with Time-Varying Ef-

fect

In the second simulation, we considered a single covariate with time-varying effect.

The covariate Z followed the uniform[-1, 1] distribution, and its time-varying re-

gression coefficient was a decreasing function of time; that was, b0(t) = (1 + 2t)−1.

Random follow-up time C was generated from the uniform[0, 3].

Table 3.3 shows similar summary results to the ones in Table 3.1. Likewise, the

Monte Carlo biases were close to zero over the prespecified time points. Furthermore,

the averages of the standard errors agreed well with the empirical standard deviations,

and the empirical coverage probabilities of the Wald-type 95% confidence intervals
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Table 3.1: Summary Results of Simulation 1 Over Prespecified Time Points

log Λ0(t) = log t b0(t) = 1.0

Proposed Method Peng and Huang (2007) Proposed Method Peng and Huang (2007)

t B SD SE CP95 B SD SE CP95 B SD SE CP95 B SD SE CP95

Intra-individual correlation (ρ = 0.25)
0.25 -20 133 133 95.1 -25 171 167 94.8 16 215 216 94.3 7 278 273 94.5
0.50 -11 106 108 95.7 -14 125 127 95.4 4 182 181 94.9 0 220 215 94.0
0.75 -7 100 101 95.8 -10 115 113 95.1 4 179 173 93.6 -4 203 197 94.5
1.00 -5 103 100 93.8 -8 114 109 93.5 2 183 175 94.3 -4 205 194 93.7
1.25 -2 104 103 95.2 -10 113 110 94.0 10 195 185 93.6 0 214 201 93.2
1.50 1 114 110 94.2 -8 124 115 94.0 17 215 201 93.5 1 231 216 93.5
1.75 -3 129 121 94.4 -15 140 126 94.4 17 240 224 93.4 -1 264 239 92.2
Intra-individual correlation (ρ = 0.5)

0.25 -18 139 134 95.2 -34 173 168 94.7 10 230 219 94.7 7 286 275 94.9
0.50 -15 113 110 94.6 -25 131 128 93.5 15 187 185 95.1 12 219 216 94.7
0.75 -10 106 102 93.9 -17 120 114 93.6 3 171 176 95.5 0 197 197 95.0
1.00 -7 106 101 94.8 -13 116 109 93.6 11 183 179 94.6 5 201 194 94.3
1.25 -4 110 104 94.2 -11 117 110 93.6 10 196 188 93.7 -2 212 200 93.7
1.50 -6 116 111 94.4 -15 124 115 93.9 7 218 203 93.0 -9 236 213 93.7
1.75 -9 129 121 94.2 -21 130 124 94.5 8 252 224 92.4 -9 263 234 92.9
Intra-individual correlation (ρ = 0.75)

0.25 -13 143 139 94.1 -24 174 167 94.4 8 241 230 94.4 12 291 272 93.6
0.50 -6 115 113 94.7 -13 131 127 94.8 6 199 192 94.4 4 226 215 94.5
0.75 -5 110 105 94.5 -12 119 114 94.6 6 193 182 93.0 1 213 197 93.4
1.00 -3 108 104 94.0 -9 113 109 94.2 3 196 183 92.9 1 209 194 93.0
1.25 1 110 106 94.9 -5 113 110 95.0 -2 202 192 93.0 -6 216 200 92.4
1.50 -1 120 113 93.4 -8 122 115 93.4 4 225 208 93.5 -7 235 214 92.8
1.75 -1 140 124 92.8 -11 140 126 93.3 4 264 232 92.1 -9 267 237 92.2

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error (×1000); CP95:
empirical coverage probability of the Wald-type 95% point-wise confidence interval (×100). Based on 1,000 Monte Carlo
replications.

Table 3.2: Summary Results of Simulation 1 for the Average Effect of Covariate β0(l, u)

β0(l, u) = 1.0

Proposed Method Peng and Huang (2007) Huang and Chen (2003)

B SD SE CP95 B SD SE CP95 B SD SE CP95

Interval (0.5,2.0]
ρ = 0.25 9 167 160 93.4 -3 178 170 93.4 3 156 151 94.1
ρ = 0.5 9 169 162 94.2 -1 176 169 94.8 10 158 154 94.2
ρ = 0.75 4 179 166 92.7 -3 184 169 92.7 15 158 157 95.0

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error
(×1000); CP95: empirical coverage probability of the Wald-type 95% confidence interval (×100). Based on
1,000 Monte Carlo replications. For the method of Huang and Chen (2003), the same estimates from the
conventional estimation were used based on the whole observed data over interval [0, 3].
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Table 3.3: Summary Results of Simulation 2 Over Prespecified Time Points

log Λ0(t) = log t b0(t) = (1 + 2t)−1

Proposed Method Peng and Huang (2007) Proposed Method Peng and Huang (2007)

t B SD SE CP95 B SD SE CP95 B SD SE CP95 B SD SE CP95

Intra-individual correlation (ρ = 0.25)
0.25 -16 127 126 94.8 -21 156 162 95.8 7 219 211 93.4 4 276 269 94.5
0.50 -11 104 102 94.2 -13 123 122 95.1 9 180 175 94.5 6 213 207 95.4
0.75 -5 98 95 94.8 -8 111 108 94.4 9 172 164 93.3 8 194 186 93.6
1.00 -3 97 94 94.9 -7 105 103 94.3 6 167 163 94.9 2 187 178 94.1
1.25 -1 98 97 95.0 -7 102 102 95.4 5 175 167 93.7 1 189 178 93.3
1.50 1 106 101 94.2 -8 112 105 92.9 0 190 176 92.7 -4 200 183 93.1
1.75 1 117 108 92.9 -10 120 110 93.1 -3 207 187 93.1 -10 216 192 92.7
Intra-individual correlation (ρ = 0.5)

0.25 -22 132 128 94.3 -35 163 163 96.1 5 223 216 93.4 8 281 271 93.7
0.50 -13 107 105 94.3 -19 124 122 94.7 -5 179 179 94.4 -5 209 208 94.7
0.75 -8 96 97 95.5 -13 108 108 94.3 -7 169 168 94.3 -7 191 186 94.6
1.00 -8 95 96 95.5 -13 103 103 95.6 -3 167 166 94.5 -6 182 178 94.5
1.25 -9 96 98 95.9 -15 102 102 95.2 1 177 170 93.7 -1 185 178 93.0
1.50 -7 102 102 94.8 -12 107 104 93.5 2 194 178 92.4 -1 196 182 92.2
1.75 -9 112 108 93.9 -16 114 109 93.7 -1 209 189 92.5 -8 213 192 91.0
Intra-individual correlation (ρ = 0.75)

0.25 -12 137 134 94.5 -21 164 161 95.5 -5 219 227 95.7 -12 262 269 95.8
0.50 -10 112 108 94.2 -16 126 122 94.0 2 189 187 95.3 -2 208 208 95.7
0.75 -5 106 100 94.0 -11 112 108 94.4 -1 176 173 94.6 -4 190 187 93.9
1.00 0 101 98 94.3 -7 104 103 94.7 -1 175 171 94.5 -8 185 179 94.8
1.25 2 104 100 94.0 -4 106 102 94.5 2 186 174 93.7 -2 194 179 93.3
1.50 3 109 104 93.2 -4 109 104 94.0 0 194 181 94.2 -3 198 183 93.6
1.75 3 117 109 93.5 -4 118 109 93.4 -1 213 192 92.8 -3 216 193 91.7

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error (×1000); CP95:
empirical coverage probability of the Wald-type 95% point-wise confidence interval (×100). Based on 1,000 Monte Carlo
replications.

were close to the nominal level 95%. These indicate that our proposed nonparametric

inference procedure worked well. On the other hand, the empirical standard devia-

tions of the proposed estimator were smaller than the ones based on the estimation

of Peng and Huang (2007), as discussed in the previous simulation.

Table 3.4 shows summary results of the averaged effect estimates for β0(l, u), cf.,

β0(0.5, 2.0) = 0.305 and β0(0, 3) = 0.324. On the whole, relatively small Monte

Carlo biases were observed. Moreover, the closeness between the empirical standard

deviations and the average of standard errors of our method indicates the proposed

nonparametric inference procedure worked well.
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Table 3.4: Summary Results of Simulation 2 for the Average Effect of Covariate β0(l, u)

β0(0.5, 2.0) = 0.305

Proposed Method Peng and Huang (2007) Huang and Chen (2003)

B SD SE CP95 B SD SE CP95 B SD SE CP95

Interval (0.5,2.0]
ρ = 0.25 3 153 147 93.0 -1 161 152 93.5 36 150 145 94.2
ρ = 0.5 -3 156 149 93.2 -6 159 152 93.2 28 148 147 94.0
ρ = 0.75 -1 159 152 94.3 -5 160 153 93.5 34 151 149 93.9

NOTE: B: empirical bias (×1000); SD: empirical standard deviation (×1000); SE: average standard error
(×1000); CP95: empirical coverage probability of the Wald-type 95% confidence interval (×100). Based on
1,000 Monte Carlo replications. For the method of Huang and Chen (2003), the same estimates from the
conventional estimation were used based on the whole observed data over interval [0, 3], cf., β0(0, 3) = 0.324.

3.3.3 Simulation 3: Two Covariates with Constant and Time-

Varying Effects

In simulation 3, we considered two covariates, one with constant effect and the other

with time-varying effect. Specifically, covariates Z(1) and Z(2) were independently

generated from the uniform [-1, 1] distribution. Z(1) had a constant effect b
(1)
0 (·) = 1

on the baseline hazard function, and Z(2) had a time-varying effect b
(2)
0 (t) = (1+2t)−1.

Random follow-up time C was generated conditional on the second covariate such that

C followed the uniform[0, 3] if Z(2) ≥ 0, otherwise from the uniform[1, 3].

Table 3.5 reports summary results of the Monte Carlo estimates, in which similar

patterns were observed to the ones discussed in the previous simulations, cf., Ta-

bles 3.1 and 3.3. These observations demonstrate good finite-sample properties of

the proposed estimator.

3.4 Analysis of the Bladder Tumor Trial Data

Byar (1980) reported a randomized clinical trial assessing experimental treatments’

effects on tumor recurrence. In the trial, a total of 118 patients with superficial

bladder tumors participated in the study after removal of their initial tumors. The

patients were randomly assigned to three treatment arms: pyridoxine, thiotepa, and
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placebo. Follow-up times ranged between 1 and 64 months. Sixty-two patients expe-

rienced tumor recurrences during the follow-up, and the number of recurrences was

as many as 9. In our analysis, we considered four covariates: the size of a largest

initial tumor, the number of tumors at enrollment, and two treatment indicators for

pyridoxine and thiotepa.

Figure 3.1 shows the estimated effects of covariates on the occurrence of next tu-

mor, and the corresponding Wald-type 95% point-wise bootstrap confidence intervals.

On the whole, thiotepa appeared to be most effective treatment, and the number of

initial tumors was observed to be highly associated with the successive tumor re-

currence; these observations were consistent with other analysis results discussed in

Therneau and Grambsch (2000). Notice that thiotepa effect appeared to be changing

over time. Specifically, the magnitude of its estimated preventive effect on next tu-

mor recurrence was increasing. This was consistent with our constant effect test with

p-value 0.031 over time interval (l, u] = (1, 20]. In contrast, effects of the number of

initial tumors, the size of a largest tumor, and treatment pyridoxine appeared to be

relatively constant, with large p-values 0.827, 0.753, and 0.473, respectively.
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Figure 3.1: The bladder tumor trial data. Estimated effects of covariates on the
baseline cumulative hazard function of gap times between successive tumor occur-
rences. The rugged solid lines and the dotted lines denote the point estimates and
the Wald-type 95% point-wise bootstrap confidence intervals, respectively. The hor-
izontal solid lines are the estimated average effects over (1, 20]. The p-values for the
constant effect tests are calculated over time interval (1, 20].
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Chapter 4

Semiparametric Survival

Regression with a Mixture of

Time-Varying and Constant Effects

In the analysis of survival time data, the proportional hazards model of Cox (1972)

has been the most popular choice of regression models and a foundation of many

other model developments. One key assumption of the original Cox model is that all

covariates have constant multiplicative effects on survival times. Specifically, the Cox

model for the hazard function of the survival time T takes a form

λ(t|W ) = λ0(t) exp(α>0W ),

where λ0(t) is an unspecified baseline hazard function and W is a vector of (p + q)-

dimensional covariates. However, the proportionality assumption may not always be

realistic in practice, but the effects may actually vary over time. To accommodate

time-varying effects of covariates, a varying-coefficient Cox model with time-varying

regression coefficients α0(t), in place of constant α0, has been studied by many re-

searchers; see Zucker and Karr (1990), Cai and Sun (2003), and Tian et al. (2005)
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among others. On the other hand, Peng and Huang (2007) proposed an alternative

varying-coefficient model for the survival function, rather than the hazard function,

allowing all effects of covariates to vary over time. To be specific, the temporal

survival regression model of Peng and Huang (2007) takes a form

S(t|W ) = exp
[
− exp{log Λ0(t) +α0(t)

>W }
]
, for all t ≥ 0, (4.1)

where Λ0(·) is an unspecified baseline cumulative hazard function. Essentially, model (4.1)

postulates multiplicative time-varying effects of covariates on the baseline cumulative

hazards Λ0(·), and thereby on the unspecified baseline survival function S0(t) ≡

exp{−Λ0(t)}. In a special case of constant regression coefficients, i.e., α0(·) = α0,

the temporal survival regression model reduces to the proportional hazards model.

Estimation efficiency is expected to decrease in such varying-coefficient models

due to the increased model generality. Especially, when sample size is small and the

number of covariates is relatively large, estimation of functional regression coefficients

may not have good precision. Therefore, a model with a mixture of time-varying and

time-constant effects can be a useful alternative in practice. This is the motivation

of our semiparametric model development.

In Section 4.1, we propose a semiparametric survival regression model with a

mixture of time-varying and constant effects of covariates. The proposed model is

a sub-model of the temporal survival regression of Peng and Huang (2007), and it

provides a middle ground between the proportional hazards model and the temporal

survival regression model. We develop a smoothing-free iterative estimation proce-

dure and a nonparametric resampling-based inference procedure in Section 4.2. In

Section 4.3, finite-sample behaviors of the proposed estimator are investigated via

Monte Carlo simulations. Also in Section 4.4, when the original Cox model holds,

efficiency-loss of the estimators from the methods of Peng and Huang (2007) and
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ours is investigated through simulation studies. In Section 4.5, an analysis of the

well-known Veterans’ Administration lung cancer data is presented for illustration.

4.1 Model

Split W into two covariate vectors, say, p- and q-dimensional Z and V , according to

whether their effects are time-varying or constant, and we propose a semiparametric

survival regression model

S(t|Z,V ) = exp
[
− exp{β0(t)

>Z̃ + γ>0 V }
]
, for all t ≥ 0, (4.2)

where β0(t) = [log Λ0(t), b0(t)
>]> and Z̃ = [1, Z>]> . Here, b0(t) is a p-dimensional

vector of time-varying regression coefficients, and γ0 is a q-dimensional constant vec-

tor. In model (4.2), new terms β0(·) and Z̃ are introduced for notational convenience

as both the unspecified baseline cumulative hazard function Λ0(·) and the regres-

sion coefficients b0(·) are time-varying. With both types of coefficients b0(·) and γ0,

model (4.2) postulates time-varying and time-constant multiplicative effects of covari-

ates on the baseline cumulative hazard Λ0(·), and thereby on the baseline survival

function. In this way, the proposed model accommodates evolving effects of some

covariates on survival times while formulating constant effects of the rest of the co-

variates. Note model (4.2) can be viewed as a sub-model of the temporal survival

regression of Peng and Huang (2007) when some of the covariates are considered to

have constant effects. Further, the proposed model reduces to the proportional haz-

ards model when all covariates have constant effects. We consider the survival time

is subject to the right censoring, say, at C; and adopt the conditional independent

assumption on the censoring mechanism, namely

T ⊥ C | (Z,V ).
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Adopting a similar strategy to address the both types of covariate effects, several

models have been proposed for other quantities. Martinussen et al. (2002) proposed

a semiparametric mixture effect model for the hazard function of the survival time.

This model is a sub-model of the varying-coefficient Cox model. On the other hand,

McKeague and Sasieni (1994) and Qian and Peng (2010) proposed semiparametric

mixture effect models in additive hazards regression and censored quantile regression,

respectively.

4.2 Estimation and Inference

Write the observed survival time as X ≡ T ∧ C and define ∆ ≡ I(T ≤ C), where ∧

is the minimization operator and I(·) is the indicator function. Then, the censored

survival data consist of {Xi; ∆i;Zi;Vi}ni=1, which are n independent replicates of

{X; ∆;Z;V }. Alternatively, the data can be represented using the counting process

notation. Denote the counting process for an observed event process by N(t) =

I(X ≤ t,∆ = 1), and the at-risk process by Y (t) = I(X ≥ t). Then the observed

data set consists of {Ni(·);Yi(·);Zi;Vi}ni=1, which are n independent replicates of

{N(·);Y (·);Z;V }.

Under model (4.2) and the conditional independence assumption on the censoring

mechanism, it follows E{dN(t)|Z,V } = Y (t) dΛ(t|Z,V ) = Y (t) d exp{β0(t)
>Z̃ +

γ>0 V }. This equation motivates our proposed estimating integral equations, namely,

for all t ≥ 0,

Sn(β,γ, t) ≡ n−1
n∑
i=1

Z̃i

[
Ni(t)−

∫ t

0

Yi(s) d exp{β(s)>Z̃i + γ>Vi}
]

= 0 (4.3)

and

Un(β,γ) ≡ n−1
n∑
i=1

Vi
[
Ni(τ)−

∫ τ

0

Yi(s) d exp{β(s)>Z̃i + γ>Vi}
]

= 0, (4.4)
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where τ is a fixed time point satisfying Pr(C > τ) > 0. We propose an iterative

recursive estimation procedure in the following Subsection 4.2.1.

When no covariates are considered for constant effects, estimating integral equa-

tion (4.3) reduces to the estimating equation of Peng and Huang (2007). This leads

our varying-effect estimator to be identical with the estimator of Peng and Huang

(2007). On the other hand, when no covariates are considered to have time-varying

effect, our constant-effect estimator for γ0 and estimator for log Λ0(·) reduce the max-

imum partial-likelihood estimator of Cox (1975) and the logarithm of the Breslow

estimator for Λ0(·), respectively.

4.2.1 Estimation Procedure

Write 0 < x1 < x2 < · · · < xM as the observed event times in the sample, and denote

the associated covariate vectors by (Z>(1),V
>
(1))
>, (Z>(2),V

>
(2))
>, . . . , (Z>(M),V

>
(M))

>. We

develop a smoothing-free estimation procedure for β0(·) and γ0; that is,

Step 1. Set k = 0 and choose initial value γ̂(k).

Step 2. Obtain estimates β̂(k)(xj, γ̂
(k)) at xj, j = 1, . . . ,M as the solution to

equation

n−1
n∑
i=1

Z̃i

[
dNi(xj)− Yi(xj) d exp{β(xj)

>Z̃i + γ̂(k)>Vi}
]

= 0. (4.5)

Step 3. Obtain estimate γ̂(k+1) by solving the following equation

n−1
n∑
i=1

Vi
[
Ni(τ)− exp(γ>Vi)

∫ τ

0

Yi(s) d exp{β̂(k)(s, γ̂(k))>Z̃i}
]

= 0. (4.6)

Step 4. Update k to k + 1

Step 5. Repeat Steps 2 and 4 until a predetermined convergence criterion.
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Estimating equation (4.5) is reduced from the estimating integral equation (4.3) at the

observed event times in the sample. Moreover, at time x1, estimating equation (4.5)

becomes

Z̃(1) −
n∑
i=1

Yi(x1)Z̃i exp{γ̂(k)>Vi} exp{β(x1)
>Z̃i} = 0. (4.7)

Also, at event times xj, j = 2, . . . ,M , the equation (4.5) sequentially becomes

Z̃(j) −
n∑
i=1

Yi(xj)Z̃i exp{γ̂(k)>Vi}
[

exp{β(xj)
>Z̃i} − exp{β̂(k)(xj−1, γ̂

(k))>Z̃i}
]

= 0.

(4.8)

Therefore β̂(k)(xj, γ̂
(k)) is obtained as the solution to the estimating equations (4.7)

and (4.8) at xj, j = 1, . . . ,M . Note in equation (4.8), the estimate β̂(k)(xj−1, γ̂
(k))

from the previous estimation is used in estimation of β(k)(xj, γ̂
(k)). On the other hand,

given the estimates β̂(k)(xj, γ̂
(k)) at xj, j = 1, . . . ,M , estimate γ̂(k+1) is obtained as

a root of the equation (4.6).

Once a predetermined convergence criteria is met, we estimate γ0 and β0(·) by our

final estimates γ̂(k+1) and β̂(k+1)(·, γ̂(k+1)), respectively; and they are denoted by γ̂

and β̂(·). The proposed estimator β̂(·) will be a càdlàg function that may jump only

at the observed event times. Initial value β̂(0) for time interval [0, x1) is set to satisfy

exp{β̂(0−)>Z̃i + γ̂>Ṽi} = 0 for all i, i.e., Ŝ(0 − |Z,V ) = 1 to meet the condition

S(0− |Z,V ) = 0. In addition, both estimating equations (4.5) and (4.6) have good

computational properties since their left-hand sides are monotone functions of β(·)

and γ.

4.2.2 Interval Estimation

We propose a practical nonparametric resampling-based inference procedure by adapt-

ing the Bayesian bootstrap of Rubin (1981); see more in Kosorok (2008) and Huang

(2014). To be specific, we consider the following bootstrap estimating integral equa-
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tions, for all t ≥ 0,

S∗n(β,γ, t) ≡ n−1
n∑
i=1

ξiZ̃i

[
Ni(t)−

∫ t

0

Yi(s) d exp{β(s)>Z̃i + γ>Vi}
]

= 0 (4.9)

and

U ∗n(β,γ) ≡ n−1
n∑
i=1

ξiVi
[
Ni(τ)−

∫ τ

0

Yi(s) d exp{β(s)>Z̃i + γ>Vi}
]

= 0. (4.10)

where (ξi)
n
i=1 are a non-negative random sample from a distribution with unit-mean

and unit-variance, e.g., the standard exponential distribution. Denote by β∗(·) and

γ∗, convergent solutions to equations (4.9) and (4.10) from an iterative root find-

ing algorithm. Based on, say, B bootstrap resamples, a set of bootstrap solutions

[{β∗b (·)>,γ∗>b }>]Bb=1 is obtained. The variance of estimator {β̂(t)>, γ̂>}> for t > 0

can be estimated by the sample variance of [{β∗b (t)>,γ∗>b }>]Bb=1. Provided a variance

estimate, a Wald-type 100(1 − α)% point-wise confidence interval for {β0(t)
>,γ>0 }>

can be constructed based on the normal approximation centered at {β̂(t)>, γ̂>}>.

Alternatively, a confidence interval can be simply constructed with the corresponding

(α/2)th and (1 − α/2)th quantiles of the empirical distribution of {β∗(t)>,γ∗>}>.

Moreover, a 100(1 − α)% confidence band for
[
c>{β0(t)

>,γ>0 }> : t ∈ (l, u]
]

can be

constructed with
[
c>{β̂(t)>, γ̂>}>±ηα : t ∈ (l, u]

]
, where c is a (p+q+1)-dimensional

known constant vector. Here ηα is the (1−α/2)th quantile of the empirical distribu-

tion of J∗, where J∗b = supt∈[l,u] |c>[{β∗b (t)>,γ∗>b }>−{β̂(t)>, γ̂>}>]| for b = 1, . . . , B.

4.3 Monte Carlo Simulations under the Mixture

Effect Model

We conducted Monte Carlo simulations to investigate finite-sample behaviors of the

proposed estimator. Two covariates with time-varying and constant effects were con-
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sidered. Specifically, event times were generated from the following survival function

in the form of model (4.2)

S(t|Z, V ) = exp
[
− t exp{(1 + 2t)−1Z − V }

]
,

where covariate Z had time-varying coefficient b0(t) = (1+2t)−1; and covariate V had

constant coefficient γ0 = −1. Covariates Z and V were independently generated from

the uniform[-1, 1] distribution. The underlying baseline cumulative hazard function

was the identity function of time t, i.e., the baseline hazard λ0(·) = 1. Random follow-

up time C was from the uniform [c0, 3] distribution, where c0 ∈ (0, 1) for two censoring

scenarios. Considered sample sizes were n =50, 100, 200, 400, and 800, and bootstrap

size B was 100. For each combination of sample sizes and censoring scenarios, 1,000

Monte Carlo samples were generated. For estimation performance comparison with

our method proposal, we also considered the temporal survival regression method of

Peng and Huang (2007).

Table 4.1 reports summary results of the Monte Carlo estimates at the prede-

termined time points, which are summarized in terms of empirical bias, empirical

standard deviation, average standard error estimate, and empirical coverage prob-

ability of Wald-type 95% point-wise confidence intervals. On the whole, empirical

biases were close to zero over time. Moreover, the averages of the estimated stan-

dard errors from our method agreed well with the corresponding empirical standard

deviations. This indicates that our proposed bootstrap method approximated the

sampling distribution of the proposed estimator well in our simulations. When sam-

ple size was relatively large, e.g., n ≥ 200, the coverage probabilities were close to the

nominal level of 95% though in small sample, e.g., n ≤ 100, the coverage probabilities

tended to be smaller than 95%, regardless of method and type of covariate effect. The

empirical standard deviations for our proposed estimator, especially in estimation of
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constant effect γ0, appeared to be smaller than the ones for the temporal survival

regression estimator. This indicates that our proposed estimation procedure attained

more efficient estimation, especially for constant-effect estimation in our simulations.

4.4 Efficiency-Loss Study when the Cox Model

Holds

Loss in estimation efficiency is expected with the increasing model generality. There-

fore, we conducted simulation studies to assess the extent of the efficiency loss of

the proposed estimator when the Cox model holds. Three baseline hazard functions,

which are constant, increasing, and decreasing, were considered to address diverse

scenarios in the Cox model. Table 4.2 and Figure 4.1 display the considered hazard

functions. For each baseline hazards scenario, Monte Carlo samples were generated

from the Cox model in the form of (4.2); that is,

S(t|V (1), V (2)) = exp
[
− Λ0(t) exp{γ(1)0 V (1) + γ

(2)
0 V (2)}

]
,

where covariates V (1) and V (2) were independently generated from the uniform [-

1, 1] distribution; and true effects γ
(1)
0 and γ

(2)
0 were 1 and -1, respectively. Random

censoring time C followed the uniform [c0, 3] distribution for c0 ∈ (0, 1, 2), and sample

sizes were n = 50, 100, 200, 400, and 800. For each combination of the simulation

set-ups, 1,000 Monte Carlo samples were generated.

To compare efficiency loss of the proposed estimator, the estimator of Peng and

Huang (2007) was also considered. For the functional estimators of Peng and Huang

(2007) and ours, an averaged effect estimator was adapted in constant effect estima-

tion, e.g., γ̂(l, u) ≡ (u − l)−1
∫ u
l
β̂(t) dt for 0 < l < u < ∞. For the constant effect

estimators of Cox (1972) and ours, on the other hand, the estimates from the original
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Table 4.1: Summary Results for Monte Carlo Simulation under the Mixture Effect
Model

b0(t) = (1 + 2t)−1 γ0 = −1
Peng and Huang (2007) Proposed Method Peng and Huang (2007) Proposed Method

n t B SD SEE CP95 B SD SEE CP95 B SD SEE CP95 B SD SEE CP95

50 0.25 2 594 512 92.2 20 598 518 91.7 16 616 533 93.2
50 0.50 -28 466 414 92.8 -12 456 408 93.0 6 482 435 91.4
50 0.75 -12 456 392 91.3 7 440 380 91.5 5 471 416 92.2
50 1.00 2 477 397 91.2 15 443 378 91.5 20 509 426 89.8 1 366 333 92.7
50 1.25 9 527 419 90.4 25 469 390 90.7 9 605 467 89.3
50 1.50 -39 737 463 88.6 -9 616 420 89.7 3 799 539 88.0
50 1.75 -22 950 505 84.9 -2 775 466 87.5 29 1058 609 84.4

100 0.25 -20 378 354 92.9 -10 377 358 93.5 4 400 369 93.0
100 0.50 -4 305 287 93.5 8 305 287 93.7 14 316 299 94.1
100 0.75 -10 284 267 93.0 3 280 265 93.4 3 305 281 92.5
100 1.00 -4 275 265 94.7 6 269 260 95.0 -1 317 283 91.9 -13 239 229 93.7
100 1.25 0 287 272 93.2 5 275 265 93.1 -1 332 296 91.9
100 1.50 5 334 288 91.3 8 311 275 91.6 -7 390 327 91.5
100 1.75 1 393 315 90.5 4 348 296 91.4 -4 508 383 90.8

200 0.25 -5 261 250 94.8 2 262 252 94.5 13 265 261 94.4
200 0.50 9 211 202 94.0 12 210 202 94.0 -7 223 213 94.2
200 0.75 6 196 189 93.3 9 196 188 93.0 -8 204 199 94.9
200 1.00 5 190 186 94.4 9 190 184 94.4 -10 215 198 93.1 -11 169 161 94.7
200 1.25 3 192 189 94.4 6 193 187 93.8 -5 214 206 93.8
200 1.50 -1 209 197 93.8 2 206 193 93.5 -2 231 221 93.2
200 1.75 5 234 211 93.2 8 227 204 92.9 -4 267 245 93.1

400 0.25 1 196 180 92.9 4 197 181 92.8 -6 189 188 95.0
400 0.50 -4 156 144 92.8 -1 156 144 92.8 0 153 151 94.4
400 0.75 -5 140 134 93.6 -4 140 134 93.4 -2 144 141 94.1
400 1.00 1 138 132 93.8 3 136 131 93.6 -1 144 140 93.3 -6 116 114 94.9
400 1.25 3 142 134 94.1 5 141 133 94.1 0 151 144 93.9
400 1.50 5 148 140 93.9 7 145 139 94.2 0 164 153 94.0
400 1.75 5 153 149 94.8 7 151 147 94.7 -3 183 168 93.2

800 0.25 -2 133 127 93.5 -1 133 127 93.3 11 134 132 94.4
800 0.50 -2 104 102 94.4 -2 104 102 94.2 5 108 107 94.4
800 0.75 -2 97 95 93.7 -1 97 94 93.8 3 102 100 93.9
800 1.00 -2 95 93 94.6 -2 95 93 94.5 5 98 99 95.1 4 80 80 94.4
800 1.25 -1 100 95 93.6 0 99 95 93.3 5 105 102 94.0
800 1.50 0 101 100 94.7 1 100 99 95.0 5 112 108 93.7
800 1.75 3 113 106 93.5 3 111 105 93.2 6 123 118 93.7

NOTE: B: empirical bias (×1000); SD: empirical standard deviation of estimates (×1000); SEE: average of standard error estimates (×1000); CP95:
empirical coverage probability of the Wald-type 95% point-wise confidence interval (×100). Based on 1,000 Monte Carlo replications.

Table 4.2: The Three Risk Scenarios under the Cox Model in the Form of Model (4.2)

Risk Scenario λ0(t) S(t|V )

1 1 exp
[
− t exp{V (1) − V (2)}

]
2 2

3
t exp

[
− 1

3
t2 exp{V (1) − V (2)}

]
3 −2

3
t+ 2 exp

[
− (−1

3
t2 + 2t) exp{V (1) − V (2)}

]
See Figure 4.1 for graphical display of the baseline hazards
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Figure 4.1: Monte Carlo baseline risk scenarios 1, 2, and 3. (a) three baseline hazard
functions; and (b) the corresponding baseline cumulative hazard functions
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estimation were used based on the whole observed data regardless of the averaging

time interval under consideration.

Table 4.3 shows summary results of the Monte Carlo estimates from the risk sce-

nario 1, i.e., λ0(t) = 1. The results are reported in terms of empirical bias, empirical

standard deviation, and empirical relative efficiency of the Cox estimator relative to

the estimator under consideration, e.g., the empirical variance of our averaged effect

estimates divided by the empirical variance of the Cox estimates. On the whole, em-

pirical biases for all estimators were close to zero. Specifically, the Monte Carlo biases

were at most 5.5% for sample size n = 50 regardless of method, and were under 1%

for n = 800.

In estimation of γ
(2)
0 , on the other hand, the empirical relative efficiency of the

Cox estimator to our constant effect estimator was close to 1. This indicates that our

proposed constant effect estimator had competitive efficiency to the Cox estimator

in our simulations. In contrast, our averaged effect estimator for γ
(1)
0 appeared to

be not as efficient as the Cox estimator. To be specific, the relative efficiency of

the Cox estimator to our proposed averaged effect estimator ranged from 1.02 to

1.75. However, our averaged effect estimator for γ
(1)
0 had better empirical efficiency,

compared to the averaged effect estimator of Peng and Huang (2007) to which the

relative efficiency of the Cox estimator ranged from 1.06 to 2.12.

The summary results in Table 4.3 were generally similar with the results from the

other simulations with different baseline hazard scenarios. For example, Tables 4.4

and 4.5 show summary results from the risk scenarios 2 and 3, with the increasing and

decreasing baseline hazards. The empirical biases were close to zero, and the empirical

standard deviations of our constant effect estimator for γ(2) were comparable to the

ones of the Cox estimator. In estimation of γ(1), our averaged effect estimator had

consistently better efficiency over the averaged effect estimator of Peng and Huang

(2007) even though ours was not as much efficient as the Cox estimator.
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Overall, all the empirical biases were small, and the efficiency trends were consis-

tent over the simulation scenarios. In small sample, however, some variations were

observed in summary results over the censoring distributions and baseline hazards.

They indicate that survival times in small sample were sensitively affected by survival-

time and censoring distributions.

4.5 Analysis of the VA Lung Cancer Trial Data

To illustrate the proposed method, we analyzed the Veterans’ Administration lung

cancer data, which were previously analyzed and discussed by some authors including

Prentice (1973), Peng and Huang (2007), and Kalbfleisch and Prentice (2002). In

the clinical trial, a total of 137 male patients with advanced inoperable lung cancer

was randomly assigned to a standard or a test chemotherapy. Time to death from

randomization was recorded as a primary endpoint for each patient, and there were

9 cases of incomplete follow-up.

Karnofsky performance score, which is a measure of performance status, and types

of histological tumor (squamous, small, adenoma, or large cell) were covariates in our

survival regression modeling. Specifically, Karnofsky performance score at enrollment

was considered to have time-varying effect on survival times, but types of histological

tumor were assumed to have constant effects. The covariate choice whether for con-

stant or varying effect was based on the earlier analysis by Peng and Huang (2007),

in which Karnofsky score appeared to be the only covariate to have varying effect.

To be specific, we consider a mixture effect model in the form of model (4.2); that is,

for all t ≥ 0,

S(t|Z,V ) = exp
[
− Λ0(t) exp{b0(t)K.S. + γ

(1)
0 I(squam.) + γ

(2)
0 I(small) + γ

(3)
0 I(adeno.)}

]
.

Figure 4.2 shows the estimated effects of covariates from the methods of Cox
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(1972), Peng and Huang (2007), and ours. The estimates from all three methods

were generally in the same direction on average. In particular, Karnofsky performance

score appeared to decrease the death rate on the whole, e.g., the negative value from

the Cox method. Nevertheless, its effect may be truly changing over time as indicated

by the estimates from the methods of Peng and Huang (2007) and ours. To be specific,

the size of estimated effect was relatively large until 3-month of follow-up, but the size

diminished afterwards. This implies that the proportionality assumption in the Cox

model may be too simple to adequately describe changing effects of covariates. In

contrast, the effects of types of histological tumor appeared to be relatively constant.

On the whole, people with small cell or adenoma tumor history tended to experience

the event of death frequently, compared to people with large or squamous tumor

history.



75

0.1 0.2 0.3 0.4

−
0
.0

8
−

0
.0

4
0
.0

0

Karnofsky Score

Time (year)

E
s
ti
m

a
te

d
 C

o
e
ff
ic

ie
n
t

0.1 0.2 0.3 0.4

−
2

−
1

0
1

2
3

Squam. (vs. large)

Time (year)
E

s
ti
m

a
te

d
 C

o
e
ff
ic

ie
n
t

0.1 0.2 0.3 0.4

−
1

0
1

2
3

Small (vs. large)

Time (year)

E
s
ti
m

a
te

d
 C

o
e
ff
ic

ie
n
t

0.1 0.2 0.3 0.4

−
1

0
1

2
3

Adeno. (vs. large)

Time (year)

E
s
ti
m

a
te

d
 C

o
e
ff
ic

ie
n
t

Figure 4.2: The Veterans’ Administration lung cancer trial data. Solid lines are es-
timated effects of covariates from the three methods (Red: the Cox estimate; Black:
Peng-Huang estimate; Thick Blue: proposed mixture effect estimate). The cor-
responding dotted lines denote the Wald-type 95% point-wise confidence intervals.
Dash-Dotted lines are the reference line at 0, indicating no proportional effect.
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Chapter 5

Summary and Future Work

5.1 Summary

We have carried out three projects to develop regression models that accommodate

time-varying effects of covariates. The proposed models offer flexible modeling options

in recurrent event and survival analysis.

We first consider a dynamic regression model for the mean frequency of recurrent

events. With the time-varying regression coefficients, the model generalizes the pro-

portional means model of Lin et al. (2000). Smoothing-free estimation and nonpara-

metric inference procedures are developed. Large-sample properties of the proposed

estimator are established based on the empirical process theory. Simulation studies

demonstrate utility of the proposed method with practical sample sizes. Our analy-

ses of the bladder tumor trial data and the DISC trial data illustrate the proposed

method well.

Next, we develop a varying-coefficient model for the cumulative gap-time hazard

function on the gap-time scale of recurrent events. The model generalizes the marginal

proportional gap-time hazards model of Huang and Chen (2003). Large-sample and

finite-sample behaviors of the proposed estimator are investigated through asymptotic
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studies and Monte Carlo simulations. An analysis of the bladder tumor trial data is

presented to illustrate the proposed method.

For the analysis of univariate survival data, we study a semiparametric survival

regression model with a mixture of time-varying and constant effects of covariates.

The model is a sub-model of the temporal process regression of Peng and Huang

(2007), generalizing the proportional hazards model of Cox (1972). An iterative

estimation algorithm and a resampling-based inference procedure are developed for

time-varying and time-constant coefficients. Extensive simulations are carried out

to study the efficiency loss of the proposed estimator. Our analysis of the VA lung

cancer trial data is presented for illustration.

5.2 Future Work

Each of the proposed models in this dissertation may be generalized to a class of

dynamic transformation models. Generalizing the model (2.1), specifically, a class of

transformation models for the mean frequency of recurrent events can take a form

E{N∗(t)|Z} = g{β0(t)
>Z̃},

where g is a known function. Both of the estimation procedure and the resampling

approach in Chapter 2 can be easily adapted. This class includes the additive regres-

sion model of Aalen et al. (2004) for recurrent event data as a special case when g

is the identity function, and their estimator coincides with ours. Adopting a similar

strategy, the dynamic cumulative gap-time hazards model (3.1) and the mixture ef-

fect survival regression model (4.2) can be extended to Λ(t|Z) = g{β0(t)
>Z̃} and

S(t|Z,V ) = g{β0(t)
>Z̃ + γ>0 V }, respectively. The original estimation and inference

procedures in Chapters 3 and 4 would be easily adapted.

We have considered time-independent covariates for our model and method devel-
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opments. The mean frequency regression model (2.1) and the mixture effect survival

regression model (4.2) can be extended to accommodate ‘external’ time-dependent

covariates; see Kalbfleisch and Prentice (2002, pg. 196) for discussion about external

time-dependent covariates. Then technically, the original estimation and inference

methods can be easily adapted to the extended models. However, the interpretation

would be difficult for the extended models with time-dependent covariates as both

the covariates and their effects are time-varying.

We speculate that our proposed estimators for time-varying and constant effects

in Chapter 4 are consistent and asymptotically normal, which seems to be supported

by the conducted simulation studies. Large-sample behaviors of our estimator are left

for our future work.

A mean frequency function of recurrent events and a cumulative gap-time hazard

function do not decrease over time. On the other hand, a survival function does

not increase. One concern is that lack of monotonicity respecting may arise in the

estimated conditional functions. Recently Huang (2017) proposed the adaptive inter-

polation method for restoration of monotonicity respecting. That method should be

applicable to each of our estimators as well.

By introducing weight processes in each of the proposed estimating integral equa-

tions (2.2), (3.3), (4.3), and (4.4), a class of estimating integral equations can be

developed. The weight processes may depend on covariates as well as β(·). To pur-

sue more efficient estimation within this class is a future research topic.

As described in Sections 2.2, 3.2, and 4.2, our estimation algorithms solve the pro-

posed estimating integral equations at each and every observed event time. A faster

estimation may be achieved by solving estimating integral equations approximately

over a grid of time points. Such algorithm can be a viable alternative especially when

a data set has a large number of distinct event times.
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Appendix A

Proofs of Consistency and Weak

Convergence in Chapter 2

We first characterize the jump size of the proposed estimator β̂(·) in Lemma 1, which

paves the way for establishing the large sample properties of the estimator β̂(·).

Lemma 1. Suppose β̂(t) ∈ B for all t ∈ [κ, τ ], where B is a compact parameter

space in Rp+1. Under conditions C1-C3, and C6, 4β̂(t) ≡ β̂(t) − β̂(t−) is O(n−1),

almost surely, uniformly over t ∈ (κ, τ ]

Proof. From the estimating integral equation (2.2), it follows that, for t > 0

0 =
1

n

n∑
i=1

Z̃i

(
dNi(t)− Yi(t)

[
exp{β̂(t)>Z̃i} − exp{β̂(t−)>Z̃i}

])
.

There may be change in β̂(·) at the observed event times (xj)
M
j=1, whereas no jump

occurs in β̂(·) over time between any two adjacent event times. At the jth event
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time, it follows that

1

n
Z̃(j) =

1

n

n∑
i=1

Yi(t)Z̃i

[
exp{β̂(t)>Z̃i} − exp{β̂(t−)>Z̃i}

]
(A.1)

=
1

n

n∑
i=1

Yi(t)Z̃iZ̃
>
i exp{β~

i (t)>Z̃i}{β̂(t)− β̂(t−)},

where β~
i (t)>Z̃i is on the line segment between β̂(t)>Z̃i and β̂(t−)>Z̃i. Note β~

i (t)

satisfies exp{β~
i (t)>Z̃i} =

∫ 1

0

exp

([
β̂(t−) + r{β̂(t) − β̂(t−)}

]>
Z̃i

)
dr. Under C3,

1
n
Z̃(j) on the left-hand side of equation (A.1) is O(n−1). The limit of the fac-

tor 1
n

∑n
i=1 Yi(t)Z̃iZ̃

>
i exp{β~

i (t)>Z̃i}, on the right-hand side of (A.1) has a smallest

eigenvalue bounded away from zero under C6 as every exp{β~
i (t)>Z̃i} is bounded

away from zero. Consequently, at any t ∈ [κ, τ ], the jump size 4β̂(t) = O(n−1)

almost surely.

A.1. Proof of Theorem 1: the uniform consistency of β̂(·)

Define classes F and G as F ≡ {Z̃N(t) : t ∈ [0, τ ]} and G ≡ {Y (t)Z̃Z̃> exp(β>Z̃) :

t ∈ [0, τ ],β ∈ B}, where B is a compact subset of Rp+1. It is known that both

{I(T ≤ t) : t ∈ R} and {I(C ≥ t) : t ∈ R} are Donsker (Kosorok, 2008, Lemma

9.10). By permanence properties of the Donsker class, F and G are Donsker. Since

Donsker implies Glivenko-Cantelli, it follows that

sup
t∈[0,τ ]

‖n−1
n∑
i=1

Z̃i

[
Ni(t)−

∫ t

0

Yi(s)Z̃
>
i exp{β0(s)

>Z̃i} dβ0(s)
]
‖ −→ 0, almost surely.

(A.2)
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Let ψ(t) ≡ n−1
n∑
i=1

Z̃i

[
Ni(t) −

∫ t

0

Yi(s) d exp{β0(s)
>Z̃i}

]
for t ∈ [0, τ ]. With the

solutions to the estimating equations (2.3) and (2.4), it follows that

ψ(t)−ψ(κ) = n−1
n∑
i=1

Z̃i

∫ t

κ

Yi(s) d
[

exp{β̂(s)>Z̃i} − exp{β0(s)
>Z̃i}

]
= n−1

n∑
i=1

Z̃iZ̃
>
i

∫ t

κ

Yi(s) d
[

exp{β}
i (s)>Z̃i}{β̂(s)− β0(s)}

]
=

∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s){β̂(s−)− β0(s−)} d exp{β}

i (s)>Z̃i}

+

∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s) exp{β}

i (s)>Z̃i} d{β̂(s)− β0(s)}, (A.3)

where β}
i (s)>Z̃i is on the line segment between β̂(s)>Z̃i and β0(s)

>Z̃i. Note that

the subscript i in β}
i (s) indicates its dependency on Z̃i.

Let Â(t) ≡
∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s) d exp{β}

i (s)>Z̃i} and

B̂(s) ≡ n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s) exp{β}

i (s)>Z̃i}. From equation (A.3), we have

dψ(t) = Â(dt){β̂(t−)− β0(t−)}+ B̂(t)d{β̂(t)− β0(t)}. (A.4)

By conditions C3, C4, and C6, B̂(t)−1 exists almost surely for sufficiently large n.

By multiplying the inverse of B̂(t) on each side of the equation (A.4) followed by

integration over (κ, t], we have

β̂(t)− β0(t) = {β̂(κ)− β0(κ)}

+

∫ t

κ

B̂(s)−1dψ(s)−
∫ t

κ

B̂(s)−1Â(ds){β̂(s−)− β0(s−)} (A.5)

Since this is a the Volterra integral equation (e.g., Andersen et al., 1993, Theorem
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II.6.3), unique solution β̂(t)− β0(t) is obtained for t ∈ [κ, τ ]. That is,

β̂(t)− β0(t) = [π [κ,t]{I − Â(du)B̂(u)−1}]>{β̂(κ)− β0(κ)}

+

∫ t

κ

[π(s,t]{I − Â(du)B̂(u)−1}]>B̂(s)−1ψ(ds), (A.6)

whereπ denotes the product-integral.

Suppose that almost surely β̂(t) is in a compact subset of Rp+1 for t ∈ [κ, τ ] for

sufficiently large n. By Lemma 14β̂(t) and4Â(t) on [κ, τ ] are O(n−1), almost surely.

As Â(t) is differentiable on intervals between the adjacent event times, the derivative

of Â(t) is bounded. Therefore, Â(·) and
∫ t
κ
Â(du)B̂(u)−1 are of bounded variation on

[κ, τ ]. Note the product integral π(s,t]{I − Â(du)B̂(u)−1} exists for κ ≤ s ≤ t ≤ τ

(Gill and Johansen, 1990, Theorem 1). Given the consistent estimator β̂(κ), the first

term on the right-hand side of equation (A.6) is o(1) almost surely; also, the second

term on the right-hand side of equation (A.6) is o(1) almost surely by the integration

by parts. Thus, we have the result that supt∈[κ,τ ] ‖β̂(t)−β0(t)‖ −→ 0, almost surely.

Now it remains to show that almost surely supt∈[κ,τ ] ‖β̂(t) − β0(t)‖ −→ 0 if it is

not true that β̂(t) is in a compact subset of Rp+1 for t ∈ [κ, τ ]. There exists t∗ ∈ (κ, τ ]

at which β̂(·) has a jump and goes off the boundary of the compact set for the first

time, since β̂(κ) − β0(κ) → 0 almost surely. As β̂(t) is in the compact set for all

t ∈ [κ, t∗], ‖β̂(t)−β0(t)‖ can be made arbitrarily small for t ∈ [κ, t∗] with sufficiently

large sample size. It implies that the jump size of β̂(·) at t∗ is bounded away from 0.

This would result in a contradiction in light of the equation (A.1) in Lemma 1.
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A.2. Proof of Theorem 2: the weak convergence of β̂(·)

Recall ψ(·) defined in the proof of Theorem 1. For each t ∈ (κ, τ ], almost surely,

ψ(t)−ψ(κ) = n−1
n∑
i=1

Z̃i

∫ t

κ

Yi(s) d
[

exp{β̂(s)>Z̃i} − exp{β0(s)
>Z̃i}

]
= n−1

n∑
i=1

Z̃i

∫ t

κ

Yi(s) d
[

exp{β0(s)
>Z̃i}Z̃>i {β̂(s)− β0(s)}

]
+ C̃(t)

=

∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s){β̂(s−)− β0(s−)} d exp{β0(s)

>Z̃i}

+

∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s){exp{β0(s)

>Z̃i} d{β̂(s)− β0(s)}+ C̃(t),

for some C̃(t) = o{β̂(t)−β0(t)}. Define Ã(t) ≡
∫ t

κ

n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s) d exp{β0(s)

>Z̃i}

and B̃(s) ≡ n−1
n∑
i=1

Z̃iZ̃
>
i Yi(s) exp{β0(s)

>Z̃i}. It follows that dψ(t) = Ã(dt){β̂(t−)−

β0(t−)}+B̃(t)d{β̂(t)−β0(t)}+dC̃(t). Under the regularity conditions, B̃(t)−1 exists

almost surely for sufficiently large n. By virtue of the Volterra integral equation,
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n1/2{β̂(t)− β0(t)} = n1/2[π [κ,t]{I − Ã(du)B̃(u)−1}]>{β̂(κ)− β0(κ)}

+ n1/2

∫ t

κ

[π(s,t]{I − Ã(du)B̃(u)−1}]>B̃(s)−1d{ψ(s)− C̃(s)}

= n1/2[π [κ,t]{I − Ã(du)B̃(u)−1}]>[−{B̃(κ) + op(1)}−1ψ(κ)]

+ n1/2

∫ t

κ

[π(s,t]{I − Ã(du)B̃(u)−1}]>B̃(s)−1d{ψ(s)− C̃(s)}

= −n1/2[π [κ,t]{I −A0(du)B0(u)−1}]>B0(κ)−1ψ(κ)

+ n1/2

∫ t

κ

[π(s,t]{I − Ã(du)B̃(u)−1}]>B0(s)
−1ψ(ds)

+ op[n
1/2{β̂(t)− β0(t)}],

whereA0(t) ≡ E
[ ∫ t

κ

Z̃Z̃>Y (s) d exp{β0(s)
>Z̃}

]
andB0(s) ≡ E

[
Z̃Z̃>Y (s) exp{β0(s)

>Z̃}
]
.

Then, n1/2{β̂(·)−β0(·)} weakly converges to a Gaussian process as it is a linear map-

ping of ψ(·), which is a Gaussian process itself.
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Appendix B

Proofs of Consistency and Weak

Convergence in Chapter 3

We first characterize the jump size of the proposed estimator in Lemma 2.

Lemma 2. Suppose β̂(t) ∈ B for all t ∈ [0, τ ], where B is a compact parameter

space in Rp+1. Under conditions C1-C2, and C5, 4β̂(t) ≡ β̂(t) − β̂(t−) is O(n−1),

almost surely, uniformly over t ∈ (0, τ ]

Proof of Lemma 2.

From the estimating integral equation (3.3), it follows that, for t > 0,

1

n

n∑
i=1

S−1i

Si∑
j=1

Z̃i

[
dNi(j)(t)− Yi(j)(t)

[
exp{β̂(t)>Z̃i} − exp{β̂(t−)>Z̃i}

]]
= 0.

Step function β̂(·) may jump only at the unique observed gap times 0 < x1 < x2 <

· · · < xG from the all individuals in the sample. At the gth gap time, it follows that

1

n
S−1(g)Z̃(g) =

1

n

n∑
i=1

S−1i

Si∑
j=1

Z̃iYi(j)(t)
[

exp{β̂(t)>Z̃i} − exp{β̂(t−)>Z̃i}
]

(B.1)

=
1

n

n∑
i=1

S−1i

Si∑
j=1

Yi(j)(t)Z̃iZ̃
>
i exp{β~

i (t)>Z̃i}{β̂(t)− β̂(t−)},
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where Z̃(g) and S(g) are the associated covariate vector and the number of observed

gap with the subject that contributed the gth gap-time in the sample. Here, β~
i (t)>Z̃i

is on the line segment between β̂(t)>Z̃i and β̂(t−)>Z̃i. Note β~
i (t) satisfies

exp{β~
i (t)>Z̃i} =

∫ 1

0

exp{[β̂(t−) + r(β̂(t) − β̂(t−)]>Z̃i} dr. Under C1 and C2,

1
n
S−1(g)Z̃(g) on the left-hand side of equation (B.1) is O(n−1). Under C5, the limit

of the factor,

1
n

∑n
i=1 S

−1
i

∑Si

j=1 Yi(j)(t)Z̃iZ̃
>
i exp{β~

i (t)>Z̃i}, on the right-hand side of equation (B.1)

has a smallest eigenvalue bounded away from zero because exp{β~(t)>Z̃} is bounded

away from zero. Consequently, at any t ∈ [0, τ ], the jump size 4β̂(t) is asymptotically

finite in the sense that 4β̂(t) = O(n−1).

Proof of Theorem 3: the uniform consistency of β̂(·).

Define classes F and G as F ≡ {Z̃N(t) : t ∈ [0, τ ]} and G ≡ {Y (t)Z̃Z̃> exp(β>Z̃) :

t ∈ [0, τ ],β ∈ B}, where B is a compact subset of Rp+1. It is known that both

{I(X ≤ t,∆ = 1) : t ∈ R} and {I(X ≥ t) : t ∈ R} are Donsker (Kosorok 2008,

Lemma 9.10). By permanence properties of the Donsker class, F and G are Donsker.

Since Donsker implies Glivenko-Cantelli, it follows that, almost surely,

sup
t∈[0,τ ]

‖n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

[
Ni(j)(t)−

∫ t

0

Yi(j)(s)Z̃
>
i exp{β0(s)

>Z̃i} dβ0(s)

]
‖ −→ 0.

(B.2)

Let ψ(t) ≡ n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

[
Ni(j)(t) −

∫ t

0

Yi(j)(s) d exp{β0(s)
>Z̃i}

]
for t ∈ [0, τ ].

Note ψ(t) = o(1), almost surely for t ∈ (0, τ ]. With the solutions to the estimating



87

equations (3.4) and (3.5), it follows that

ψ(t) = n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

∫ t

0

Yi(j)(s) d
[

exp{β̂(s)>Z̃i} − exp{β0(s)
>Z̃i}

]
= n−1

n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i

∫ t

0

Yi(j)(s) d
[

exp{β}
i (s)>Z̃i}{β̂(s)− β0(s)}

]
=

∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s){β̂(s−)− β0(s−)} d exp{β}

i (s)>Z̃i}

+

∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s) exp{β}

i (s)>Z̃i} d{β̂(s)− β0(s)}, (B.3)

where β}
i (s)>Z̃i is on the line segment between β̂(s)>Z̃i and β0(s)

>Z̃i. Note that

the subscript i in β}
i (s) indicates its dependency on Z̃i.

Let

Â(t) ≡
∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s) d exp{β}

i (s)>Z̃i}

and

B̂(s) ≡ n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s) exp{β}

i (s)>Z̃i}.

It follows that

dψ(t) = Â(dt){β̂(t−)− β0(t−)}+ B̂(t)d{β̂(t)− β0(t)}. (B.4)

Under conditions C1 – C3, and C5, the limit of B̂(t)−1 exists. By multiplying the

inverse of B̂(t) on each side of the equation (B.4) followed by integration over (0, t],

we have

β̂(t)− β0(t) = {β̂(0)− β0(0)}

+

∫ t

0

B̂(s)−1dψ(s)−
∫ t

0

B̂(s)−1Â(ds){β̂(s−)− β0(s−)} (B.5)
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The equation (B.5) is in the form of the Volterra integral equation (e.g., Andersen

et al. 1993, Theorem II.6.3). Therefore, we obtain the unique solution β̂(t) − β0(t)

for t ∈ [0, τ ]; that is,

β̂(t)− β0(t) = [π [0,t]{I − Â(du)B̂(u)−1}]>{β̂(0)− β0(0)}

+

∫ t

0

[π(s,t]{I − Â(du)B̂(u)−1}]>B̂(s)−1ψ(ds), (B.6)

whereπ denotes the product-integral.

Suppose that almost surely β̂(t) is in a compact subset ofRp+1 for t ∈ [0, τ ] for suf-

ficiently large n. It follows from Lemma 2 that 4β̂(t) and 4Â(t) on [0, τ ] are O(n−1),

almost surely. As Â(t) is differentiable over intervals between the adjacent event

times, the derivative of Â(t) is bounded. Therefore, Â(·) and
∫ t
0
Â(du)B̂(u)−1 are

of bounded variation on [0, τ ]. Note the product integralπ(s,t](I −{Â(du)B̂(u)−1})

exists for 0 ≤ s ≤ t ≤ τ (Gill and Johansen 1990, Theorem 1). Under C3, the solu-

tion vector to our proposed estimating integral equation (3.3) at time 0 is a consistent

binary regression estimator for β0(0). Given this consistent estimator β̂(0), the first

term on the right-hand side of equation (B.6) is o(1) almost surely; also, the second

term on the right is o(1) almost surely by the integration by parts. Thus, we have

the result that supt∈[0,τ ] ‖β̂(t)− β0(t)‖ → 0, almost surely.

If β̂(t) for t > 0 is not in a compact neighborhood of the parameter space, there

must have been a time point between time 0 and t at which the estimator β̂(·) deviates

from the compact space. Let t∗ ∈ (0, τ ] be the time where β̂(·) goes off the boundary

of the compact set for the first time. As β̂(t) is in the compact set for all t ∈ [0, t∗),

‖β̂(t) − β0(t)‖ can be made arbitrarily small for t ∈ [0, t∗) with sufficiently large

sample size. This implies that the jump size of β̂(·) at t∗ is bounded away from 0. It

can be shown that this would result in a contradiction in light of the equation (B.1)
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in Lemma 2. Therefore, β̂(t) for t ∈ (0, τ ] residing out of the compact parameter

space would not exist in large sample given the regular conditions. This completes

the proof.

Proof of Theorem 4: the weak convergence of β̂(·).

Recall ψ(·) defined in the proof of Theorem 3. For each t ∈ (0, τ ], almost surely,

ψ(t) = n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃i

∫ t

0

Yi(j)(s) d
[

exp{β̂(s)>Z̃i} − exp{β0(s)
>Z̃i}

]
= n−1

n∑
i=1

S−1i

Si∑
j=1

Z̃i

∫ t

0

Yi(j)(s) d
[

exp{β0(s)
>Z̃i}Z̃>i {β̂(s)− β0(s)}

]
+ C̃(t)

=

∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s){β̂(s−)− β0(s−)} d exp{β0(s)

>Z̃i}

+

∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s) exp{β0(s)

>Z̃i} d{β̂(s)− β0(s)}+ C̃(t),

for some C̃(t) = o{β̂(t) − β0(t)} due to the consistency of β̂(t). Define Ã(t) ≡∫ t

0

n−1
n∑
i=1

S−1i

Si∑
j=1

Z̃iZ̃
>
i Yi(j)(s) d exp{β0(s)

>Z̃i} and

B̃(s) ≡ n−1
∑n

i=1 S
−1
i

∑Si

j=1 Z̃iZ̃
>
i Yi(j)(s) exp{β0(s)

>Z̃i}. It follows that dψ(t) =

Ã(dt){β̂(t−)−β0(t−)}+B̃(t)d{β̂(t)−β0(t)}+dC̃(t). Under the regularity conditions,

B̃(t)−1 exists almost surely for sufficiently large n. By virtue of the Volterra integral

equation,
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n1/2{β̂(t)− β0(t)} = n1/2[π [0,t]{I − Ã(du)B̃(u)−1}]>{β̂(0)− β0(0)}

+ n1/2

∫ t

0

[π(s,t]{I − Ã(du)B̃(u)−1}]>B̃(s)−1d{ψ(s)− C̃(s)}

= n1/2[π [0,t]{I − Ã(du)B̃(u)−1}]>[−{B̃(0) + op(1)}−1ψ(0)]

+ n1/2

∫ t

0

[π(s,t]{I − Ã(du)B̃(u)−1}]>B̃(s)−1d{ψ(s)− C̃(s)}

= −n1/2[π [0,t]{I −A0(du)B0(u)−1}]>B0(0)−1ψ(0)

+ n1/2

∫ t

0

[π(s,t]{I − Ã(du)B̃(u)−1}]>B0(s)
−1ψ(ds)

+ op[n
1/2{β̂(t)− β0(t)}],

whereA0(t) ≡ E
[ ∫ t

0

Z̃Z̃>Y (s) d exp{β0(s)
>Z̃}

]
andB0(s) ≡ E

[
Z̃Z̃>Y (s) exp{β0(s)

>Z̃}
]
.

Then, n1/2{β̂(·)−β0(·)} weakly converges to a Gaussian process as it is a linear map-

ping of n1/2ψ(·), which is a Gaussian process itself.
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