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Abstract

Preconditioning Techniques for the Incompressible Navier–Stokes Equations
By Zhen Wang

We study different preconditioning techniques for the incompressible Navier–
Stokes equations in two and three space dimensions. Both steady and un-
steady problems are considered.

First we analyze different variants of the augmented Lagrangian-based
block triangular preconditioner. The preconditioners are used to acceler-
ate the convergence of the Generalized Minimal Residual (GMRES) method
applied to both stable and stabilized finite element and MAC discretiza-
tions of the Oseen problem. We study the eigenvalues of the preconditioned
matrices obtained from Picard linearization, and we devise a simple and
effective method for the choice of the augmentation parameter γ based on
Fourier analysis. Numerical experiments on a wide range of model problems
demonstrate the robustness of these preconditioners, yielding fast conver-
gence independent of mesh size and only mildly dependent on viscosity on
both uniform and stretched grids. Good results are also obtained on linear
systems arising from Newton linearization. We also show that performing
inexact preconditioner solves with an algebraic multigrid algorithm results
in excellent scalability. Comparisons of the modified augmented Lagrangian
preconditioners with other state-of-the-art techniques show the competi-
tiveness of our approach. Implementation on parallel architectures is also
considered.

Moreover, we study a Relaxed Dimensional Factorization (RDF) precon-
ditioner for saddle point problems. Properties of the preconditioned matrix
are analyzed and compared with those of the closely related Dimensional
Splitting preconditioner. Numerical results for a variety of finite element
discretizations of both steady and unsteady incompressible flow problems
indicate very good behavior of the RDF preconditioner with respect to both
mesh size and viscosity.
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Chapter 1

Introduction

In this thesis, we consider the solution of the incompressible Navier–Stokes

equations governing the flow of viscous Newtonian fluids [72]. For an open

bounded domain Ω ⊂ Rd(d = 2, 3) with boundary ∂Ω = ∂ΩD ∪ ∂ΩN where

∂ΩD and ∂ΩN are disjoint, time interval [0, T ], and a given external force

field f , Dirichlet boundary data g and initial condition u0, the goal is to

find the velocity vector field u = u(x, t) and pressure scalar field p = p(x, t)

satisfying the following system of partial differential equations:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f on Ω× (0, T ], (1.1)

div u = 0 on Ω× [0, T ], (1.2)

u = g on ∂ΩD × [0, T ], (1.3)

ν
∂u

∂n
− np = 0 on ∂ΩN × [0, T ], (1.4)

u(x, 0) = u0(x) on Ω, (1.5)

where ν > 0 is the kinematic viscosity (inversely proportional to the Reynolds

number), ∆ is the vector Laplacian, ∇ is the gradient, div the divergence

and n the outward normal to the boundary.

Linearization of the Navier–Stokes system (1.1)–(1.5) by Picard fixed-point

iteration [37, Section 7.2.2] or time lagging results in a sequence of (general-
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ized) Oseen problems of the form

σu− ν∆u+ (v · ∇)u+∇p = f on Ω, (1.6)

div u = 0 on Ω, (1.7)

u = g on ∂ΩD, (1.8)

ν
∂u

∂n
− np = 0 on ∂ΩN , (1.9)

where v is a known velocity field from a previous Picard step or time step

(the ‘wind’) and σ is a function of the reciprocal of the time step (σ = 0 for

a steady problem). When v = 0 we have a (generalized) Stokes problem.

In this thesis we focus mostly on the steady-state Navier–Stokes equations

because they present challenges for even the best preconditioning techniques

in literature. The steady Navier–Stokes equations are

−ν∆u+ (u · ∇)u+∇p = f on Ω, (1.10)

div u = 0 on Ω (1.11)

u = g on ∂ΩD, (1.12)

ν
∂u

∂n
− np = 0 on ∂ΩN . (1.13)

The weak formulation of (1.10)–(1.13) is as follows:

Find u ∈ H1 and p ∈ L2(Ω) such that

ν

∫
Ω

∇u : ∇v +

∫
Ω

(u · ∇u) · v −
∫
Ω

p(∇ · v) =
∫
Ω

f · v for all v ∈ H1
0,

(1.14)∫
Ω

q(∇ · u) = 0 for all q ∈ L2(Ω). (1.15)

Here ∇u : ∇v represents componentwise scalar product, i.e., ∇u1 · ∇v1 +
∇u2 · ∇v2 in 2D (u = (u1, u2) and v = (v1, v2)) and the function spaces are
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defined as follows (2D case):

L2(Ω) =:

{
p : Ω → R

∣∣∣∣ ∫
Ω

p2 <∞
}
,

H1(Ω) =:

{
u : Ω → R

∣∣∣∣u, ∂u∂x, ∂u∂y ∈ L2(Ω)

}
,

H1 =: {u ∈ H1(Ω)d | u = g on ∂ΩD},

H1
0 =: {v ∈ H1(Ω)d | v = 0 on ∂ΩD},

The Navier–Stokes system is nonlinear due to the presence of the convec-

tive term (u · ∇)u in (1.10) (
∫
Ω
(u · ∇u) · v in (1.14)). Two widely used

linearization schemes are Newton’s method and Picard’s method. Given an

approximate solution (uk, pk) at the kth step, the nonlinear residual of the

weak formulation (1.14)–(1.15) is

Rk(v) =

∫
Ω

f · v − ν

∫
Ω

∇uk : ∇v −
∫
Ω

(uk · ∇uk) · v +

∫
Ω

pk(∇ · v),

rk(q) = −
∫
Ω

q(∇ · uk)

for any v ∈ H1
0 and q ∈ L2(Ω). Writing u = uk+δuk and p = pk+δpk where

the corrections δuk ∈ H1
0 and δpk ∈ L2(Ω), we obtain

ν

∫
Ω

∇δuk · ∇v +

∫
Ω

(δuk · ∇δuk) · v +

∫
Ω

(uk · ∇δuk) · v

+

∫
Ω

(δuk · ∇uk) · v −
∫
Ω

δpk(∇ · v) = Rk(v),∫
Ω

q∇ · δuk = rk(q).

Dropping the quadratic term
∫
Ω
(δuk · ∇δuk) · v, we arrive at the Newton’s

linearization:

Find δuk ∈ H1 and δpk ∈ L2(Ω) such that

ν

∫
Ω

∇δuk · ∇v +

∫
Ω

(uk · ∇δuk) · v +

∫
Ω

(δuk · ∇uk) · v −
∫
Ω

δpk(∇ · v) = Rk(v),∫
Ω

q∇ · δuk = rk(q)



4

for all v ∈ H1
0 and q ∈ L2(Ω). After solving the linearized system for uk and

δpk, the new approximate solutions are δuk+1 = uk+δuk and pk+1 = pk+δpk.

An advantage of Newton’s method is its locally quadratic convergence rate

provided the initial guess is ‘sufficiently’ close to the exact solution and the

associated Jacobian matrix is nonsingular. However, the radius of the ball

of convergence is usually proportional to the viscosity. Therefore, for the

steady Navier–Stokes equations with small viscosity, it is essential to run a

few steps of Picard’s iteration to provide a sufficiently good initial guess for

Newton’s method.

The weak formulation for Picard’s method is identical to that of Newton’s

method except that another term
∫
Ω
(δuk · ∇uk) · v is dropped. Hence the

linearized problem is:

Find δuk ∈ H1 and δpk ∈ L2(Ω) such that

ν

∫
Ω

∇δuk · ∇v +

∫
Ω

(uk · ∇δuk) · v −
∫
Ω

δpk(∇ · v) = Rk(v),∫
Ω

q∇ · δuk = rk(q)

for all v ∈ H1
0 and q ∈ L2(Ω). The advantage of Picard’s methods is that

the radius of the ball of convergence is very large, so it is typical to use

Picard’s iteration to obtain good approximate solution and then switch to

quickly convergent Newton’s method to take advantage of these two methods.

See [37, Section 7.2.2] for more details on Newton and Picard linearization

methods.

Spatial discretization of (1.6)–(1.9) using finite differences or finite volumes

or that of (1.14)–(1.15) using finite elements results in large, sparse saddle

point systems of the form(
A BT

B −C

)(
u

p

)
=

(
f

g

)
, or Ax = b. (1.16)

Here u and p represent the discrete velocity and pressure, respectively, A ∈
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Rn×n is the discretization of the diffusion, convection, and time-dependent

terms, BT ∈ Rn×m is the discrete gradient, B the (negative) discrete diver-

gence, C ∈ Rm×m is a stabilization matrix, and f and g contain forcing and

boundary terms. If the discretization satisfies the Ladyzhenskaya-Babuška-

Brezzi (LBB, or ‘inf-sup’) stability condition [37], no pressure stabilization

is required and we can take C = 0. If the LBB condition is not satisfied, the

stabilization matrix C ̸= 0 is usually symmetric and positive semi-definite

and the actual choice of C depends on the particular finite element pair being

used; see, e.g., [37, Section 5.3.2].

The linear system (1.16) can also be written as(
A BT

−B C

)(
u

p

)
=

(
f

−g

)
, or Ãx = b̃. (1.17)

Note that writing the constraint equation in the form−Bu+Cp = −g instead
of the more frequently used form Bu−Cp = g in (1.16) leads to a coefficient

matrix with eigenvalue spectrum entirely contained in the right half-plane.

In contrast, the more symmetric-looking system (1.16) is highly indefinite,

in the sense that its eigenvalues surround the origin in the complex plane.

See [9, 16] for a discussion of these issues.

Linear systems of the form (1.16) are examples of generalized saddle point

problems. In the past few decades, tremendous effort has been invested in the

development of fast solution methods for (1.16); see [9] for a comprehensive

survey, and [37,74,75] for thorough discussions of solvers tailored to the finite

element discretizations of Stokes and Navier–Stokes equations. Recent works

on sparse direct methods for symmetric saddle point problems include [23,31].

While highly reliable, direct methods usually require extensive resources in

terms of computing time and memory. This is true for three-dimensional (3D)

problems (see, e.g., [18]), and also for certain unsteady two-dimensional (2D)

problems requiring additional spatial resolution in order to resolve very fine

scale features of the solution.
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Hence, the efficient solution of systems of the form (1.16) necessitates rapid-

ly convergent iterative methods. The two main approaches available in liter-

ature are preconditioned Krylov subspace methods [67] and multigrid meth-

ods [73, 74, 78]. The two approaches can be combined by using one or more

multigrid cycles as preconditioners for Krylov methods; see [48]. Here we fo-

cus on preconditioned Krylov subspace methods, specifically, preconditioned

GMRES [67,68].

Krylov subspace methods are a class of iterative methods for solving large

linear systems. For brevity, we will only describe the methods without any

preconditioner. Suppose that x0 is an initial guess for solving (1.16). De-

noting the initial residual b−Ax0 by r0, the kth Krylov subspace is defined

as

Kk(A, r0) =: span{r0,Ar0,A2r0, . . . ,Ak−1r0}, k = 1, 2, . . .

Imposing the Petrov-Galerkin condition

b−Axk ⊥ Lk,

where Lk is a given subspace, we can obtain a kth approximate solution xk

lying in the subspace x0 + Kk(A, r0). Two widely used choices are Lk =

Kk(A, r0) and Lk = AKk(A, r0). The former applies to the case when A is

symmetric positive definite, while the latter is used for general nonsingular

A. Because we mainly deal with (asymmetric) Oseen problems, GMRES,

which is built upon the latter choice, is used as the linear solver.

One can see that the Krylov subspaces form a nested sequence

K1(A, r0) ⊂ K2(A, r0) ⊂ · · · ⊂ Kd(A, r0) = · · · = Kn+m(A, r0),

where d =: dimKn+m(A, b) ≤ n+m. In exact arithmetic, the exact solution

to (1.16) must be obtained when the dimension of the Krylov subspace is d.

However, in practice, one is more interested in computing an approximate

solution satisfying some criterion. For instance, in the context of numerical
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PDEs, a solution with error at the level of discretization error is usually

sufficient. Therefore Krylov subspace methods can be stopped once this level

is reached, and it is often the case that the iteration number needed is much

less than the size of the matrixA provided effective preconditioner is adopted.

For more details on Krylov subspace methods as well as preconditioning,

see [67].

The convergence rate of Krylov subspace methods is mainly determined by

the preconditioner. Generally speaking, the convergence rate with an ideal

preconditioner should be independent of problem parameters, such as the

mesh size h, the viscosity ν, the particular finite element scheme used, etc.

Moreover, the cost per iteration should be linear in the number of unknowns.

In spite of considerable progress in recent years, especially in terms of h-

independence, there is still plenty of room for improvements. Specifically,

steady-state problems with low viscosity (high Reynolds numbers) and the

use of stretched grids pose significant challenges to state-of-the-art solvers.

An important class of preconditioners is the one based on the block LU

factorization of the coefficient matrix; see papers [3, 5, 36, 40, 55, 58, 64, 66],

the survey [9], the monograph [37] and the many references therein. This

class includes a variety of block diagonal and block triangular precondition-

ers. The crucial ingredient in all these methods is an approximation to the

Schur complement BA−1BT + C. Examples of preconditioners of this type

include the pressure convection diffusion (PCD) preconditioner, the least

squares commutator (LSC) preconditioner, and their variants [33,37,38]; see

also the review in [63]. These preconditioners are fairly robust with respect

to grid size and viscosity, but the original PCD preconditioner necessitates

the construction of an artificial convection-diffusion operator on the finite

element space for the pressure, which is typically not available to the end

user, while LSC-type schemes may not yield grid-independent convergence

rates for small ν and stretched grids; see the discussion in [63] and the exper-
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imental results in Section 2.5.3. More recent contributions include the pa-

pers [13,14,61,15,17] on preconditioning based on the augmented Lagrangian

(AL) approach [40]; this method is also studied in [19]. Other relevant work

includes the development of ILU-type preconditioners for saddle point prob-

lems [76] and SIMPLE-type block preconditioners [77]. In these papers, these

preconditioners are analyzed and compared with other preconditioners; see

also [30] and [75], where AL-based preconditioners were found to compare

favorably with other approaches. Promising results using AL-type precondi-

tioners have also been reported in the solution of saddle point problems from

other application areas; see, e.g., [46].

In this thesis we describe and analyze the AL preconditioners for the incom-

pressible Navier–Stokes equations. These preconditioners can be motivated

in terms of the block LU factorization of the augmented linear system. The

difference is that due to the presence of augmentation, approximating the

pressure Schur complement is relatively easy and the main issue becomes the

approximate solution of linear systems associated with the augmented (1,1)

block (the ‘primal’ Schur complement); see Chapter 2. It was shown in [13]

that the AL-based approach results in preconditioners that are independent

of the mesh size h and fairly insensitive to the viscosity ν, resulting in a

remarkably robust and nearly optimal solver for the steady Oseen problem

up to Reynolds numbers of about 10,000. It was further shown in [61] that

the preconditioner performs quite well also for challenging linear systems

arising from the linear stability analysis of linearized (Newton) solutions of

the incompressible Navier–Stokes equations. Moreover, it was proved in [14]

that GMRES with exact application of the AL preconditioner is convergent

independent of problem parameters, such as mesh size h, viscosity ν and σ.

As shown in [13, 61], the crucial ingredient for the AL-based preconditioner

was an efficient multigrid cycle used as an approximate solver for the veloc-

ity subproblem associated with the (1,1) block of the preconditioner. For
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stable discretizations of the steady Oseen problem, excellent results were ob-

tained in [13] with a geometric multigrid scheme based on the method in [69].

However, this sophisticated coupled geometric multigrid scheme may be dif-

ficult to implement for general discretizations and geometries, particularly if

unstructured grids are used.

To overcome this difficulty, a variant of the AL-based block triangular pre-

conditioner, which we refer to as the modified AL preconditioner was in-

troduced in [15], which can be more readily implemented for general dis-

cretizations and problem geometries using off-the-shelf algebraic multigrid

solvers for scalar elliptic problems. In particular, state-of-the-art parallel

algebraic multilevel solvers can be used to solve the subsystems arising in

the application of the preconditioner. Though promising results have been

obtained in [15], nevertheless, several important questions needs further in-

vestigation. Firstly, a spectral analysis of the modified AL preconditioner

is needed. Secondly, a systematic procedure for estimating the optimal val-

ue of the augmentation parameter γ is necessary (only rules of thumb have

been provided in [15]). In [17], we presented an eigenvalue analysis of the

modified AL preconditioners. We prove that the preconditioned coefficient

matrix has 1 as an eigenvalue of algebraic multiplicity at least n (recall that

n is the number of velocity degrees of freedom). The remaining m eigen-

values cannot generally be all close to 1 for any value of the augmentation

parameter γ; however, we show how the latter can be chosen so as to ap-

proximately minimize the average distance of these m eigenvalues from 1.

We do this by means of a Fourier analysis, following an approach similar

to that used in [7, 33, 48]. As we shall see, this approach gives remarkably

accurate estimates of the optimal parameter value and results in excellent

convergence behavior. Furthermore, numerical results show that the conver-

gence rate of GMRES with the modified AL preconditioner is independent

of h, which has also been proved in [14], and only mild dependent on ν.
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Furthermore, comparisons on standard benchmark problems show that the

modified AL preconditioner often outperform preconditioners based on pres-

sure Schur complement approximations like PCD and LSC, particularly for

low viscosities and stretched grids.

In addition, we consider 3D Oseen problems discretized by the Marker-and-

Cell (MAC) [49] finite difference method and 3D lid driven cavity problem

discretized by P2-P1 stable finite elements in LifeV [1]. The staggered grid

in MAC makes it a stable discretization method, so the ideal and modified

AL preconditioners for stable finite elements can be applied directly. Our

numerical experiments show that in 3D one can expect similar results to

those obtained in 2D using stable finite elements. Numerical results are also

reported on a computer cluster showing good scalability of the modified AL

preconditioner as the number of cores grows.

Moreover, we extend the ideal and modified AL preconditioners to sad-

dle point systems arising from stabilized finite element methods, resulting in

C ̸= 0 in (1.16) [15]. This requires a different approach to augment the lin-

ear system before constructing and applying the preconditioner. We analyze

the eigenvalues of the matrix preconditioned by the AL-based precondition-

ers for stabilized finite elements, and obtain similar spectral properties to

the results for stable finite elements [15, 17]. We also use Fourier analysis

to choose the augmentation parameter γ, and present the results of numeri-

cal experiments [17]. These results show that the convergence rate obtained

with the ideal AL-based preconditioner is independent of problem parame-

ters, including grid size, viscosity, and non-uniform meshes, and that with

the modified AL preconditioner it is independent of grid size and non-uniform

meshes, and only mildly dependent to viscosity. Furthermore, comparisons

on standard benchmark problems show that these techniques often outper-

form preconditioners based on pressure Schur complement approximations

like PCD and LSC, particularly for low viscosities.
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We also note that in [45], a block diagonal preconditioner based on the aug-

mentation of the (1,1) block, has been introduced and analyzed. However,

this technique is different from the AL-based approach discussed above be-

cause the preconditioner is applied to the original (non-augmented) system.

A similar augmentation block triangular preconditioner has been proposed

in [65], and generalized to nonsymmetric saddle point systems in [26]. In

the block triangular case, a parameter appears in the off-diagonal block;

analysis of this type of preconditioners as well as parameters have been stud-

ied in [25, 28, 53]. Similar to the AL preconditioner, the augmentation may

increase the cost of applying the preconditioner; some variants have been es-

tablished in [28,44,46,65] to address this issue. However, for incompressible

flow problems, we have found that applying the AL preconditioners to the

augmented linear system leads to much faster convergence than the original

one, so we will only focus on the AL-based approach.

Other types of preconditioners for (possibly nonsymmetric) saddle point

problems include those based on the Hermitian and skew-Hermitian Split-

ting (HSS) and on the Dimensional Splitting (DS) of the coefficient matrix

Ã; see, respectively, [4,8,11,27,48] and [10]. These preconditioners have been

shown to be effective on a wide range of problems. However, HSS is difficult

to implement efficiently for the Oseen problem (except as a smoother, or for

the rotation form of the Navier–Stokes equations, cf. [48, 11]), and DS pre-

conditioning has difficulties dealing with low-viscosity problems on stretched

grids.

In this thesis, we build on the DS preconditioner introduced in [10] and

develop a technique which will be referred to as the Relaxed Dimension-

al Factorization (RDF) preconditioner [12] for solving linear system (1.17).

The idea for this method comes from explicitly forming the (parameter-

dependent) DS preconditioner, originally given in factorized form, and com-

paring the DS preconditioner with the original coefficient matrix Ã. This
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reveals that certain diagonal terms of the DS preconditioner can be neglected

without adversely affecting the quality of the approximation; indeed, drop-

ping some of these terms actually leads to a better approximation of Ã,

suggesting the possibility of improvements in the performance of the precon-

ditioner. This intuition is indeed confirmed in many cases both by numerical

experiments and by comparing the clustering effect of RDF preconditioning

with that of DS on the spectrum of the preconditioned matrices. We derive

some simple results for the spectrum of RDF-preconditioned matrices. Fur-

thermore, we apply a Fourier analysis (more complete than the one in [12])

to guide in the choice of the RDF parameter. We present the result of nume-

rical experiments, including comparisons with other preconditioners, using

test problems generated from discretizations of the 2D Oseen equations by

Q2-Q1 stable finite elements. We also present a few results for 3D prob-

lems. Additionally, we propose a generalization of the RDF preconditioner

to linear systems obtained by stabilized finite element discretization, and its

effectiveness is demonstrated by numerical experiments.

The thesis is organized as follows. In Chapter 2 we focus on the augmented

Lagrangian-based preconditioners. We first review the ideal AL precondition-

er [13] and analyze its spectral properties in Section 2.2. Next in Section 2.4,

we describe the modified AL preconditioner, analyze the eigenvalues of the

modified AL-preconditioned saddle point matrix in the case of LBB-stable

finite elements discretizations, and show how to use Fourier analysis to guide

in the choice of γ. Numerical experiments on various standard reference

problems and comparison with other state-of-the-art preconditioners show

the effectiveness of our approach. We also investigate the effect of inexact

solves in the application of the preconditioner. Extension of the modified

AL preconditioner to 3D problems is discussed in Section 2.5.7. Results for

Oseen problems discretized by stable MAC and finite elements methods on

a parallel computer are also presented. In Sections 3.1 and 3.3 we consider
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the ideal and modified AL preconditioners for stabilized finite elements, re-

spectively. The spectrum of the coefficient matrix preconditioned with the

ideal and modified AL preconditioners is analyzed, Fourier analysis is applied

to determine γ, and numerical experiments are presented. In Chapter 3 we

recall the RDF preconditioner [12], show how Fourier analysis can be used

to select the parameter in RDF, present the results of numerical experiments

demonstrating the performance of the RDF preconditioner, and discuss a

generalization to linear systems discretized by stabilized finite elements.
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Chapter 2

Augmented Lagrangian-based

preconditioners

In this chapter we begin by recalling the ideal AL-based preconditioner

described in [13]. Then we present the modified AL-based block triangular

preconditioner for the Oseen problem discretized by stable finite element

pairs, such as Q2-Q1 or Q2-P1; see, e.g., [37]. Subsequently, we study the

spectrum of the preconditioned saddle point matrix using this preconditioner

for the steady 2D Oseen problem. Moreover, we describe an approach based

on Fourier analysis for choosing the augmentation parameter γ, and we report

on the results of numerical experiments demonstrating the effectiveness of

this approach. The extension of the modified AL preconditioner to the 3D

problems is given.

2.1 Problem formulation

Here we consider solving the steady-state Oseen equations (σ = 0 in (1.6))

for simplicity. Unless otherwise stated, we will focus on the steady case in the

sequel. An LBB-stable finite element discretization gives rise to the following

system: (
A BT

B 0

)(
u

p

)
=

(
f

g

)
, or Ax = b. (2.1)
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From Bu = g it follows that

γBTW−1Bu = γBTW−1g.

Adding the above equation to Au+BTp = f gives

(A+ γBTW−1B)u+BTp = f + γBTW−1g,

which leads to the equivalent augmented Lagrangian (AL) formulation [40](
Aγ BT

B 0

)(
u

p

)
=

(
fγ

g

)
, or Âx = b̂, (2.2)

where Aγ =: A+ γBTW−1B, fγ =: f + γBTW−1g, W is symmetric positive

definite, and γ > 0. A good choice of W is the pressure mass matrix Mp; in

practice, we use the main diagonal of Mp instead, in order to maintain the

sparsity in Aγ. The choice of γ is important and will be discussed below.

The use of the AL formulation (2.2) instead of the original one (2.1) can

be justified in various ways; see for instance the discussion in [13, 61]. Here

we justify this choice by the observation that preconditioning (2.2) allows

us to circumvent the delicate issue of finding good approximations for the

pressure Schur complement BA−1BT or its inverse, which is crucial when

constructing block diagonal or block triangular preconditioners for the non-

augmented system (2.1).

2.2 Ideal AL preconditioner for stable finite

elements

An ideal preconditioner for problem (2.2) is given by the block triangular

matrix [13]

P =

(
Aγ BT

0 Ŝ

)
, (2.3)
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where

Ŝ−1 =: −νM̂−1
p − γW−1. (2.4)

The spectral properties associated with the preconditioner above have been

analyzed in the following theorem.

Theorem 2.1 ( [13]). Setting W = Mp (the pressure mass matrix), for

γ > 0, P−1Â has the eigenvalue 1 of algebraic multiplicity n (size of A), and

the remaining m (size of W ) eigenvalues are contained in a rectangle in the

right half-plane independent of the mesh size h. Moreover, γ can be chosen

such that the rectangle does not depend on the viscosity ν. When γ → ∞, all

the eigenvalues tend to 1.

Moreover, using field-of-values analysis, it has been proved that GMRES

with this preconditioner is convergent at a rate independent of problems

parameters, such as h, ν and σ.

Theorem 2.2 ( [14]). Define the norm

⟨{u, p}, {v, q}⟩−a =: ⟨A−1
S u, v⟩+ (ν + γ)⟨M−1

p p, q⟩,

where AS =: 1
2
(Aγ + AT

γ ). For ν < 1, if γ = ∥(BA−1BT )−1Mp∥Mp, the

residual norms in GMRES with the ideal AL preconditioner satisfy

∥rk∥−a ≤ τ k∥r0∥−a,

where rk is the GMRES residual of the k-th step, and τ < 1 is independent

of problem parameters h, ν and σ.

Here the term ‘ideal’ refers to the fact that the analysis in [13,14] assumes

that the action of the preconditioner is computed exactly, i.e., linear sys-

tems associated with the sub-matrices Aγ and Ŝ are solved exactly, which is
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generally not feasible in practice. This approach is different from the ‘mod-

ified’ preconditioner discussed in Section 2.4. Another simple choice of Ŝ is

Ŝ = −γ−1W . Because of the identity

P−1 =

(
A−1

γ γA−1
γ BTW−1

0 −γW−1

)
=

(
A−1

γ 0

0 Im

)(
In BT

0 −Im

)(
In 0

0 γW−1

)
,

applying P−1 to a vector mainly requires one solve with W and one with Aγ.

The right-preconditioned matrix is

ÂP−1 =

(
In 0

BA−1
γ γBA−1

γ BTW−1

)
, (2.5)

showing that λ = 1 is an eigenvalue of algebraic multiplicity n. Additionally,

the other m eigenvalues λ satisfy the generalized eigenvalue problem

BA−1
γ BTp = λ

(
1

γ
W

)
p.

Lemma 4.1 in [13] states that if all the relevant matrices are invertible, it

holds

(BA−1
γ BT )−1

=
(
B(A+ γBTW−1B)−1BT

)−1

=(BA−1BT )−1 + γW−1.

(2.6)

Setting W =Mp (the pressure mass matrix), we thus have

1

λ
p =

1

γ
(BA−1

γ BT )−1Mpp

=
1

γ

(
(BA−1BT )−1 + γM−1

p

)
Mpp

=
1

γ
(BA−1BT )−1Mpp+ p

=
1

γµ
p+ p,
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where µ satisfies the generalized eigenproblem

BA−1BT q = µMpq.

Hence, we obtain

λ =
γµ

1 + γµ
. (2.7)

Next, we derive bounds for the real and imaginary parts of λ. Writing λ =

aλ + ibλ and µ = aµ + ibµ, where i =
√
−1, we have

aλ + ibλ =
γ(aµ + ibµ)

1 + γ(aµ + ibµ)
=
γaµ(1 + γaµ) + γ2b2µ + iγbµ

(1 + γaµ)2 + γ2b2µ
,

which implies

aλ =
γaµ(1 + γaµ) + γ2b2µ
(1 + γaµ)2 + γ2b2µ

and bλ =
γbµ

(1 + γaµ)2 + γ2b2µ
.

Following the argument in [34], it can be shown that the µ’s are contained

in a rectangle which lies in the positive half-plane Re(z) > 0 and which does

not depend on h. Easy manipulations give

0 < min
µ

γaµ
1 + γaµ

≤ aλ ≤ 1, (2.8)

|bλ| ≤ max
µ

min
{
γ|bµ|,

1

γ|bµ|

}
≤ 1. (2.9)

Note that the real part of λ is bounded away from zero uniformly in h, for

all fixed γ > 0. Likewise, the imaginary part of λ is bounded uniformly in h

by 1, for all fixed γ > 0. Furthermore, for γ → ∞ all eigenvalues tend to 1;

cf. Theorem 2.1.

In Table 2.1 we show the maximum and minimum of the real parts and the

maximum imaginary parts of µ and λ corresponding to a uniform Q2-Q1 dis-

cretization of the regularized lid driven cavity problem described in [37, Sec-

tion 7.1] (see also [47]). The value γ = 1 is used in the ideal AL precondi-

tioner. Notice that 0 is also an eigenvalue (corresponding to the hydrostatic
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Table 2.1: Eigenvalue bounds with the ideal AL preconditioner.

Grid max aµ min aµ max |bµ| max aλ min aλ max |bλ|
Viscosity 0.1

16× 16 15.677 1.259 2.274 0.9411 0.5573 0.0127

32× 32 19.355 1.277 4.323 0.9519 0.5608 0.0121

64× 64 21.147 1.278 4.973 0.9553 0.5610 0.0185

Viscosity 0.01

16× 16 132.77 9.16 38.22 0.9925 0.9016 0.0275

32× 32 159.89 11.57 64.60 0.9938 0.9204 0.0292

64× 64 192.85 12.65 88.61 0.9948 0.9267 0.0255

Viscosity 0.001

16× 16 1279.6 2.3 148.9 0.9992 0.6961 0.0586

32× 32 1477.7 2.2 301.3 0.9993 0.6914 0.0529

64× 64 1584.5 2.3 452.2 0.9994 0.6968 0.0270

pressure mode), which does not affect the convergence of preconditioned

GMRES and can be excluded from further consideration (see [37, Section

2.3]). One can clearly see the independence of λ with respect to h, and the

near-independence with respect to ν. The real and imaginary parts of µ show

a weak dependence on h, which according to the theory must disappear in

the limit of h → 0; note that the minimum of the real part of µ is already

h-independent even for these rather coarse grids. On the other hand, there

is a strong dependence of µ on the viscosity ν, as already observed in [34].

Because of the expensive solve associated with the velocity sub-matrix Aγ,

the ‘ideal’ preconditioner P in (2.3) is not practical. It is necessary to replace
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the exact solves with inexact ones, leading to preconditioners of the form

P =

(
Âγ BT

0 Ŝ

)
, (2.10)

where Âγ ≈ A + γBTW−1B and Ŝ are implicitly defined via the action

of their inverses on vectors. In [13], Â−1
γ was implemented as a W-cycle

of a non-standard geometric multigrid method based on [69]; for Ŝ−1, a

few Richardson iterations preconditioned with the diagonal M̂p of Mp were

used to approximately solve linear systems associated with Mp. (In practice,

another acceptable choice is to simply use Ŝ−1 = −γM̂−1
p .) Theory and

numerical experiments in [13] show that the preconditioner (2.10) is nearly

optimal, meaning that the rate of convergence of Krylov subspace methods

with this AL preconditioner is independent of the grid and almost insensitive

to viscosity.

2.3 Numerical experiments

In this section we present the results of numerical experiments with the ideal

AL preconditioner. The test problems are generated by IFISS [35, 70]. The

linearized Oseen system is the one in the first step of the Picard iteration

immediately following the initial one (which reduces to a Stokes problem)

and is discretized by Q2-Q1 stable finite elements. For the ideal AL pre-

conditioner, we use γ = 1 for all the experiments; little is gained in tuning

γ. The basic Krylov solver used in all our experiments is GMRES (50) [67],

starting from a zero initial guess. The iteration is stopped when the relative

residual norm is reduced below 10−6. Also, we set W = M̂p = diag(Mp) and

Ŝ−1 = −γM̂−1
p . Right preconditioning is used in all cases; the results for left

preconditioning are similar. An exact solve is performed on the subproblem

involving Aγ by means of sparse LU factorizations preceded by an approx-

imate minimum degree column reordering [2] (using the Matlab function
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Figure 2.1: Streamline plot (left) and pressure plot (right) for lid driven

cavity problem (ν = 0.001) using Q2-Q1 approximation on 128× 128 grid.
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colamd) of the matrix Aγ. All computations are performed in Matlab on

a Sun Microsystems SunFire with 4 dual-core AMD Opteron processors and

32 GB of memory.

The numerical experiments are based on three test problems. The first one

is the regularized lid driven cavity problem discretized on a uniform grid.

The flow is enclosed in a square with no flow conditions on the bottom, left

and right boundaries, and the following regularized condition:

u1 = 1− x4, u2 = 0

represents the moving lid. The second one is the same problem but discretized

on a stretched grid to investigate the influence of non-uniform elements; the
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Figure 2.2: Streamline plot (above) and pressure plot (below) for backward

facing step problem (ν = 0.005) using Q2-Q1 approximation on 64 × 192

grid.
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stretch factors used are the default ones in IFISS, namely 1.2712 for the 16×
16 grid, 1.1669 for the 32× 32 grid, 1.0977 for the 64× 64 grid, and 1.056 for

the 128×128 grid. The stretching is done in both the horizontal and vertical

directions starting at the center of the domain, resulting in rather fine grids

near the boundaries. The third problem is the backward facing step problem;

we include this problem because it is a standard benchmark and because we

are interested in seeing the effect of a non-square domain. For this problem

the smallest value of the viscosity used is ν = 0.005, since the flow would be
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Table 2.2: GMRES(50) iterations with ideal AL preconditioner (cavity, Q2-

Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid γ = 1

16× 16 6 4 5 5

32× 32 5 4 4 4

64× 64 5 3 3 4

128× 128 4 3 3 3

Table 2.3: GMRES(50) iterations with ideal AL preconditioner (cavity, Q2-

Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid γ = 1

16× 16 5 4 5 5

32× 32 4 3 4 4

64× 64 4 3 3 4

128× 128 3 3 3 3

turbulent for ν < 0.001 in this case [37, Section 7.1] and consequently it does

not make sense to compute a steady solution. Streamline and pressure plots

of the approximate solutions of the Navier–Stokes equations (computed with

IFISS) for the lid driven cavity and backward facing step problems are shown

in Figures 2.1–2.2, respectively. We refer to the IFISS documentation [35]

and to [37] for a detailed description of these test problems.

GMRES iteration counts with the ideal AL preconditioner are shown in

Tables 2.2, 2.3 and 2.4. From these results we can see that the performance

of the ideal AL preconditioner is independent of both the mesh size h and the

viscosity ν. The eigenvalues of the preconditioned matrices corresponding to

the lid driven cavity problem with ν = 0.1 and ν = 0.001 discretized by Q2-
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Table 2.4: GMRES(50) iterations with ideal AL preconditioner (step, Q2-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005

Grid γ = 1

16× 16 8 7 7

32× 32 7 6 6

64× 64 6 5 5

128× 128 6 5 5

Figure 2.3: Plots of the eigenvalues of the Oseen matrix with ideal AL pre-

conditioner (cavity, Q2-Q1, uniform 32 × 32 grid). Left: ν = 0.1. Right:

ν = 0.001.
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Q1 finite elements on uniform 32× 32 grid are plotted on the two figures in

Figure 2.3. The non-zero eigenvalues are bounded away from 0, and cluster

near 1 (note the different scales used for the horizontal and vertical axes). The

only 0 eigenvalue comes from the hydrostatic pressure mode, which makes the

saddle point system singular. Note that for ν smaller, the imaginary parts of

the eigenvalues are slightly larger, as already shown in Table 2.1. The strong

clustering of the eigenvalues is in agreement with the fast convergence of the
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Table 2.5: Inexact inner solvers. GMRES(50) iterations and timings with

ideal AL preconditioner (cavity, Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.1 0.01 0.005

MI20 ML

16× 16 43 279 300* 300* 300* 300*

Setup time 0.24 0.05 - - - -

Iter time 0.11 0.68 - - - -

Total time 0.35 0.73 - - - -

32× 32 45 298 300* 30 60 105

Setup time 0.12 0.04 - 0.24 0.22 0.24

Iter time 0.33 2.26 - 0.53 1.87 2.27

Total time 0.45 2.30 - 0.77 2.09 2.52

64× 64 45 253 300* 83 163 300*

Setup time 0.48 0.21 - 1.20 1.09 -

Iter time 6.09 11.78 - 10.47 19.88 -

Total time 6.57 11.99 - 11.67 20.98 -

128× 128 44 201 300* - - -

Setup time 0.90 2.57 - - - -

Iter time 8.24 72.30 - - - -

Total time 9.14 74.87 - - - -

preconditioned GMRES iteration.

In spite of the extreme robustness of the ideal AL preconditioner, solving

Aγ exactly is not feasible even for medium-sized problems due to memory

constraint and long computing time. Therefore we make an attempt to use

algebraic multigrid methods (AMG) since these solvers are memory-efficient

and much faster, and moreover, they are easier to apply to general discretiza-

tions and geometries than the geometric multigrid method used in [13]. Here

we consider two implementations: MI20 described in [20,21] and ML [42] in
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the Trilinos package [51]. The former is written in Fortran while the latter is

in C++; both can be called through aMatlab interface. We perform one ap-

plication of AMG with default settings of MI20, and default parameters with

slight modification (full multigrid cycle with both pre- and post-smoothing

and 2 sweeps for each) of ML to solve linear system with Aγ inexactly. The

iteration counts and timings are presented in Table 2.5. The ‘Setup time’

includes the construction of the preconditioner, the ‘Iter time’ is the iter-

ative phase of preconditioned GMRES, and the ‘Total time’ is the sum of

the preceding two. All times are in seconds. The notation ‘300*’ means

that the total number of 300 GMRES iterations (6 cycles of GMRES(50)) is

performed without reaching the desired stopping tolerance, and no report on

iteration count means that Matlab is crashed. We can observe that even

for mild viscosity ν = 0.1 and 0.01, MI20 and ML already have difficulty in

solving Aγ: They may require a large number of iterations, or deteriorate

as the grid becomes larger. For smaller viscosity 0.005, neither converges

within 300 iterations except for ML on the 32× 32 grid. We emphasize that

these algebraic multigrid methods are designed for scalar PDEs rather than

coupled system of PDEs, so it is not surprising that they perform poorly on

Aγ, a set of two (three for 3D problems) coupled scalar PDEs. This moti-

vates the proposal of the modified AL preconditioner in Section 2.4, which

takes advantage of AMG and delivers excellent performance for a variety of

problems.

2.4 Modified AL preconditioner

In the ideal AL-based preconditioner, linear systems associated with the aug-

mented velocity sub-matrix Aγ were solved inexactly by means of a sophisti-

cated geometric multigrid method for coupled systems of PDEs [13] similar

to the one described in [69]. This solver is difficult to implement for problems
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discretized using unstructured grids in complex geometries. This observation

motivated the introduction in [15] of the modified AL preconditioner which

could be implemented using standard algebraic multilevel solvers for scalar

elliptic PDEs. The modified AL preconditioner can be described as follows.

Recall that in 2D we have A = diag(A1, A2), with each block Ai (i = 1, 2)

square and of order n/2, and B = (B1, B2). Thus

Aγ = A+ γBTW−1B

=

(
A1 0

0 A2

)
+ γ

(
BT

1

BT
2

)
W−1

(
B1 B2

)
=

(
A1 + γBT

1 W
−1B1 γBT

1 W
−1B2

γBT
2 W

−1B1 A2 + γBT
2 W

−1B2

)

=:

(
A11 A12

A21 A22

)
.

Approximating Aγ with its block upper triangular part

Ãγ =

(
A11 A12

0 A22

)
,

we define the modified AL preconditioner to be the block triangular matrix

P̃ =

(
Ãγ BT

0 Ŝ

)
=


A11 A12 BT

1

0 A22 BT
2

0 0 Ŝ

 . (2.11)

We note in passing that although the original construction of the modified AL

preconditioner relied on the block diagonal structure of A, this approximation

can be generalized to cases where A does not have block diagonal structure,

as in the case of Newton linearization (in a way, it is even more natural for

such problems).
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2.4.1 Eigenvalue analysis

The block upper triangular structure of P̃ yields the following factorization

of P̃−1:

P̃−1 =

(
Ã−1

γ 0

0 Im

)(
In BT

0 −Im

)(
In 0

0 −Ŝ−1

)
.

Most of the work in computing the action of P̃−1 on a vector lies in the

solution of the two linear systems with coefficient matrices A11 and A22.

Observing that Aii = Ai + γBT
i W

−1Bi (i = 1, 2), in which the Ai’s represent

discrete scalar convection-diffusion operators and the Bi’s are discretizations

of the partial derivatives with respect to x and y, we immediately see that

the Aii’s can be interpreted as discrete scalar anisotropic convection-diffusion

operators with diffusion anisotropy ratio ≈ 1 + γ/ν. Thus, applying A−1
11

and A−1
22 requires solving two scalar anisotropic convection-diffusion problems

(three in 3D). These subsystems can be solved exactly or inexactly. For

2D problems of moderate sizes, sparse direct solvers can be used to solve

the subsystems efficiently. For 3D problems, however, direct solvers become

prohibitively expensive for sufficiently fine meshes, and algebraic multigrid

methods should be used instead.

Applying right preconditioning to the coefficient matrix in (2.2) yields

ÂP̃−1 =

(
Aγ BT

B 0

)(
Ã−1

γ 0

0 Im

)(
In BT

0 −Im

)(
In 0

0 −Ŝ−1

)

=

(
AγÃ

−1
γ −(AγÃ

−1
γ − In)B

T Ŝ−1

BÃ−1
γ −BÃ−1

γ BT Ŝ−1

)
.

(2.12)

A simple but tedious calculation gives the result stated in the lemma below.

Lemma 2.3. The right-preconditioned matrix has the following block struc-
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ture:

ÂP̃−1 =


In/2 0 0

AT
12A

−1
11 In/2 − AT

12A
−1
11 A12A

−1
22 T23

B1A
−1
11 −B1A

−1
11 A12A

−1
22 +B2A

−1
22 T33

 , (2.13)

where T23 = (−AT
12A

−1
11 B

T
1 +A

T
12A

−1
11 A12A

−1
22 B

T
2 )Ŝ

−1 and T33 = −(B1A
−1
11 B

T
1 +

B2A
−1
22 B

T
2 −B1A

−1
11 A12A

−1
22 B

T
2 )Ŝ

−1.

Proof. First of all, we observe that the inverse of Ãγ is

Ã−1
γ =

(
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

)
.

Thus, noticing that AT
12 = A21, the (1,1) block of the right-hand side of (2.12)

is

AγÃ
−1
γ =

(
A11 A12

A21 A22

)(
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

)
=

(
I 0

AT
12A

−1
11 I − AT

12A
−1
11 A12A

−1
22

)
.

(Here and thereafter we omit the subscripts for the identity matrices for

notational brevity when they are clear from the context.) The (1,2), (2,1)

and (2,2) blocks of the right-hand side of (2.12) are, respectively,

−(AγÃ
−1
γ − I)BT Ŝ−1 =

(
0 0

−AT
12A

−1
11 AT

12A
−1
11 A12A

−1
22

)(
BT

1

BT
2

)
Ŝ−1

=

(
0

(−AT
12A

−1
11 B

T
1 + AT

12A
−1
11 A12A

−1
22 B

T
2 )Ŝ

−1

)
,

BÃ−1
γ =

(
B1 B2

)(A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

)
=
(
B1A

−1
11 −B1A

−1
11 A12A

−1
22 +B2A

−1
22

)
,

−BÃ−1
γ BT Ŝ−1 = −

(
B1 B2

)(A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

)(
BT

1

BT
2

)
Ŝ−1

= −(B1A
−1
11 B

T
1 +B2A

−1
22 B

T
2 −B1A

−1
11 A12A

−1
22 B

T
2 )Ŝ

−1.
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Plugging the above expressions into (2.12) gives (2.13).

From (2.13) it follows immediately that ÂP̃−1 has 1 as an eigenvalue of

algebraic multiplicity at least n/2; the remaining eigenvalues can be analyzed

by focusing on the (2,2), (2,3), (3,2), (3,3) blocks of the right-hand side of

(2.13). In order to proceed further, we need the following two lemmas.

Lemma 2.4. The following two identities hold:

γB1A
−1
11 B

T
1 W

−1 = Im − (Im + γB1A
−1
1 BT

1 W
−1)−1, (2.14)

γB2A
−1
22 B

T
2 W

−1 = Im − (Im + γB2A
−1
2 BT

2 W
−1)−1. (2.15)

Proof. Applying the Sherman–Morrison–Woodbury matrix identity [43, page

50]:

(Y + UZV )−1 = Y −1 − Y −1U(Z−1 + V Y −1U)−1V Y −1 (2.16)

to A−1
11 = (A1 + γBT

1 W
−1B1)

−1 gives

A−1
11 = A−1

1 − A−1
1 BT

1 (γ
−1W +B1A

−1
1 BT

1 )
−1B1A

−1
1 .

Thus, we have

B1A
−1
11 B

T
1 = B1

(
A−1

1 − A−1
1 BT

1 (γ
−1W +B1A

−1
1 BT

1 )
−1B1A

−1
1

)
BT

1

= B1A
−1
1 BT

1

(
I − (γ−1W +B1A

−1
1 BT

1 )
−1B1A

−1
1 BT

1

)
= B1A

−1
1 BT

1

(
I − (γ−1W +B1A

−1
1 BT

1 )
−1(B1A

−1
1 BT

1 + γ−1W − γ−1W )
)

= B1A
−1
1 BT

1 (γ
−1W +B1A

−1
1 BT

1 )
−1γ−1W

= (B1A
−1
1 BT

1 + γ−1W − γ−1W )(γ−1W +B1A
−1
1 BT

1 )
−1γ−1W

= γ−1W − γ−1W (γ−1W +B1A
−1
1 BT

1 )
−1γ−1W.

Post-multiplying by γW−1, we obtain

γB1A
−1
11 B

T
1 W

−1 = I − (I + γB1A
−1
1 BT

1 W
−1)−1.



31

Similarly, one can show that

γB2A
−1
22 B

T
2 W

−1 = I − (I + γB2A
−1
2 BT

2 W
−1)−1.

We complete the proof by observing that all the necessary inverses exist.

Indeed, in the Oseen problem the sub-matrices A1 and A2 are positive defi-

nite, in the sense that they have positive definite symmetric part. Therefore,

B1A
−1
1 BT

1 and B2A
−1
2 BT

2 are positive semi-definite. Since W is SPD and

the product of an SPD matrix and a positive semi-definite one has eigen-

values with nonnegative real parts, matrices like I + γB1A
−1
1 BT

1 W
−1 and

γ−1W +B2A
−1
2 BT

2 are necessarily invertible.

Applying (2.14) and (2.15) to (2.13), we obtain the result below.

Lemma 2.5. Letting

D = γBT
2 W

−1
(
Im − (Im + γB1A

−1
1 BT

1 W
−1)−1

)
,

E = (Im + γB2A
−1
2 BT

2 W
−1)−1B2A

−1
2 ,

F = (Im + γB1A
−1
1 BT

1 W
−1)−1,

G = (Im + γB2A
−1
2 BT

2 W
−1)−1,

the right-preconditioned matrix can be written as

ÂP̃−1 =


In/2 0 0

AT
12A

−1
11 In/2 −DE −γ−1DGWŜ−1

B1A
−1
11 FE −γ−1(Im − FG)WŜ−1

 . (2.17)

Proof. First consider the (2,2) block I − AT
12A

−1
11 A12A

−1
22 of the right-hand

side of (2.13). Using (2.14), we obtain

AT
12A

−1
11 A12A

−1
22 = γBT

2 W
−1B1A

−1
11 γB

T
1 W

−1B2A
−1
22

= γBT
2 W

−1(γB1A
−1
11 B

T
1 W

−1)B2A
−1
22

= γBT
2 W

−1
(
I − (I + γB1A

−1
1 BT

1 W
−1)−1

)
B2A

−1
22 .

(2.18)
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Applying again the Sherman–Morrison–Woodbury matrix identity to A−1
22

gives

B2A
−1
22 = B2

(
A−1

2 − A−1
2 BT

2 (γ
−1W +B2A

−1
2 BT

2 )
−1B2A

−1
2

)
=
(
I −B2A

−1
2 BT

2 (γ
−1W +B2A

−1
2 BT

2 )
−1
)
B2A

−1
2

=
(
I − (−γ−1W + γ−1W +B2A

−1
2 BT

2 )(γ
−1W +B2A

−1
2 BT

2 )
−1
)
B2A

−1
2

= γ−1W (γ−1W +B2A
−1
2 BT

2 )
−1B2A

−1
2

= (I + γB2A
−1
2 BT

2 W
−1)−1B2A

−1
2 .

(2.19)

Now, (2.18) and (2.19) together imply

AT
12A

−1
11 A12A

−1
22

=γBT
2 W

−1
(
I − (I + γB1A

−1
1 BT

1 W
−1)−1

)
(I + γB2A

−1
2 BT

2 W
−1)−1B2A

−1
2

=DE.

(2.20)

Second, for the (2,3) block in (2.13), we have

(−AT
12A

−1
11 B

T
1 + AT

12A
−1
11 A12A

−1
22 B

T
2 )Ŝ

−1

=(−AT
12A

−1
11 B

T
1 + AT

12A
−1
11 (γB

T
1 W

−1B2)A
−1
22 B

T
2 )Ŝ

−1

=− γBT
2 W

−1B1A
−1
11 B

T
1 (I − γW−1B2A

−1
22 B

T
2 )Ŝ

−1

=γBT
2 W

−1(γB1A
−1
11 B

T
1 W

−1)(I − γB2A
−1
22 B

T
2 W

−1)(−γW−1)−1Ŝ−1

=γBT
2 W

−1
(
I − (I + γB1A

−1
1 BT

1 W
−1)−1

)
(I + γB2A

−1
2 BT

2 W
−1)−1(−γW−1)−1Ŝ−1

=DG(−γW−1)−1Ŝ−1.

(2.21)



33

Next, using (2.14) and (2.19), the (3,2) block in (2.13) is

−B1A
−1
11 A12A

−1
22 +B2A

−1
22

=−B1A
−1
11 γB

T
1 W

−1B2A
−1
22 +B2A

−1
22

=(I − γB1A
−1
11 B

T
1 W

−1)B2A
−1
22

=(I + γB1A
−1
1 BT

1 W
−1)−1(I + γB2A

−1
2 BT

2 W
−1)−1B2A

−1
2

=FE.

(2.22)

Finally, let us investigate the (3,3) block of (2.13). We have

− (B1A
−1
11 B

T
1 +B2A

−1
22 B

T
2 −B1A

−1
11 A12A

−1
22 B

T
2 )Ŝ

−1

=− (B1A
−1
11 B

T
1 +B2A

−1
22 B

T
2 −B1A

−1
11 γB

T
1 W

−1B2A
−1
22 B

T
2 )(γW

−1)(γW−1)−1Ŝ−1

=
(
I − (I − γB1A

−1
11 B

T
1 W

−1)(I − γB2A
−1
22 B

T
2 W

−1)
)
(−γW−1)−1Ŝ−1

=
(
I − (I + γB1A

−1
1 BT

1 W
−1)−1(I + γB2A

−1
2 BT

2 W
−1)−1

)
(−γW−1)−1Ŝ−1

=(I − FG)(−γW−1)−1Ŝ−1.

(2.23)

Substituting the expressions in (2.20), (2.21), (2.22) and (2.23) into (2.13)

we arrive at (2.17).

The foregoing lemma suggests replacing the choice of Ŝ−1 given in (2.4)

with Ŝ−1 = −γW−1, leading to the following result.

Theorem 2.6. Taking Ŝ−1 = −γW−1, we obtain

ÂP̃−1 =


In/2 0 0

AT
12A

−1
11 In/2 −DE DG

B1A
−1
11 FE Im − FG

 . (2.24)

Then ÂP̃−1 has 1 as an eigenvalue of algebraic multiplicity at least n. The

remaining eigenvalues are the non-unit eigenvalues of the matrix(
In/2 −DE DG

FE Im − FG

)
.
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Proof. Equality (2.24) immediately follows from (2.17). Furthermore, the

spectrum of ÂP̃−1 consists of the eigenvalue 1 of algebraic multiplicity n/2,

plus the spectrum of the matrix(
In/2 −DE DG

FE Im − FG

)
=

(
In/2 0

0 Im

)
−

(
DE −DG
−FE FG

)
.

Observing that E = GB2A
−1
2 , we have(

DE

−FE

)
= −

(
−DG
FG

)
B2A

−1
2 .

Therefore, we obtain

rank

(
DE −DG
−FE FG

)
≤ rank

(
−DG
FG

)
≤ m,

because

(
−DG
FG

)
has m columns. This implies that the matrix

(
In/2 −DE DG

FE Im − FG

)

has the eigenvalue 1 of algebraic multiplicity at least n/2. Therefore, ÂP̃−1

has 1 as an eigenvalue of algebraic multiplicity at least n.

Remark 2.7. For the choice Ŝ−1 = −γW−1, we have

In+m − ÂP̃−1 =


0 0 0

−AT
12A

−1
11 DE −DG

−B1A
−1
11 −FE FG

 .

Hence, a sufficient condition for all the eigenvalues of ÂP̃−1 to be clustered

around 1 is that ∥D∥, ∥E∥, ∥F∥ and ∥G∥ be as small as possible. For the
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ideal AL preconditioner (2.3), all the eigenvalues of the preconditioned matrix

cluster around 1 as γ → ∞, cf. Theorem 2.1. However, this is not generally

the case for the modified variant (2.11). Recalling the definitions of D, E, F

and G in Lemma 2.5, we find that

lim
γ→0+

∥D∥ = 0, lim
γ→0+

∥E∥ = ∥B2A
−1
2 ∥, lim

γ→0+
∥F∥ = 1, lim

γ→0+
∥G∥ = 1;

lim
γ→∞

∥D∥ = ∞, lim
γ→∞

∥E∥ = 0, lim
γ→∞

∥F∥ = 0, lim
γ→∞

∥G∥ = 0.

Hence, letting γ → 0+ or γ → ∞ does not make ∥D∥, ∥E∥, ∥F∥ and ∥G∥
simultaneously small. Furthermore, the above limits suggest that if an optimal

γ exists for the modified AL preconditioner, it will likely be neither very large

nor very small.

Furthermore, using field-of-values analysis, it has been proved that GMRES

with the modified AL preconditioner converges independently of h.

Theorem 2.8 ( [14]). For any ν > 0, σ ≥ 0, sufficiently small γ > 0 and ∥I−
AγÃ

−1
γ ∥A−1

S
, the preconditioned GMRES with the modified AL preconditioner

satisfies the convergence estimate

∥rk∥−a ≤ τ k∥r0∥−a,

where rk is the GMRES residual of the k-th step, and τ < 1 is independent

of h.

2.4.2 Estimation of the optimal augmentation param-

eter γ using Fourier analysis

The simple argument in Remark 2.7 suggests that setting γ to be some arbi-

trarily small or large number will likely result in sub-optimal performance of

the preconditioner. In [15] an empirical rule based on numerical evidence has

been stated and discussed. Details about it and corresponding results will
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Table 2.6: The correspondence between the operators and their symbols.

Operator Symbol

Lx 2− ei2πhθx − e−i2πhθx

Ly 2− ei2πhθy − e−i2πhθy

Nx ei2πhθx − e−i2πhθx

Ny ei2πhθy − e−i2πhθy

Sx h(1− e−i2πhθx)

Sy h(1− e−i2πhθy)

W h2

be presented in Section 2.5.1. Here, we resort to a Fourier analysis (FA) for

guiding in the choice of γ; see, e.g., [79]. As usual with this technique, some

rather drastic simplifications and assumptions on the problem are needed.

We assume that the Oseen problem (1.6)–(1.8) has constant coefficients, is

defined on the unit square with periodic boundary conditions, and is dis-

cretized on a uniform l × l grid with h = 1/ l. Moreover, the matrices A1,

A2, B1, B2 and W = M̂p are assumed to be all square (of the same order)

and to commute with one another. Though these assumptions are virtually

never met in practice, they are ‘almost’ true (at least locally) away from the

boundary and, as we shall see, they have remarkable heuristic value. Indeed,

the value of γ obtained by Fourier analysis can be used even in problems that

are defined in non-square domains, are discretized on stretched grids and do

not have constant coefficients and periodic boundary conditions; see also [33]

for a discussion in a similar context.

Under the assumptions above, we can replace A1, A2, B1 and B2 with the

symbols of the corresponding operators. Indeed, A1 and A2 represent copies

of the discrete 2D convection-diffusion operator

A = Il ⊗ (νLx +Nx) + (νLy +Ny)⊗ Il,
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where⊗ denotes the Kronecker (tensor) product, Il is the l×l identity matrix,

Lx and Ly are discrete one-dimensional (1D) Laplacians and Nx and Ny

are discrete 1D convection operators in the x and y directions, respectively.

Similarly, denoting the discretizations of the ordinary derivatives d
dx

and d
dy

by Sx and Sy, respectively, the matrices B1 and B2 represent discrete partial

derivatives with respect to x and y, i.e., B1 = Il ⊗ Sx and B2 = Sy ⊗ Il.

Finally, let θx, θy denote integers running over the values 1, 2, . . . , l. Then

discretizing diffusion and convection terms by centered differences and the

divergence (and gradient) by one-sided differences and observing that W =

M̂p scales as h2 give the correspondence between the operators and their

symbols reported in Table 2.6. Note that the symbols respect the scaling of

the matrices discretized by finite element methods. Then Lx, Ly, Nx, Ny, Sx

and Sy can be expressed as diagonal matrices, whose diagonal entries are the

corresponding eigenvalues. Hence, A1, A2, B1 and B2 can be represented by

the symbols in Table 2.6 as well. More specifically, we express B1A
−1
1 BT

1 W
−1,

B2A
−1
2 BT

2 W
−1, BT

2 W
−1 and B2A

−1
2 as diagonal matrices D1 = diag(d1),

D2 = diag(d2), D3 = diag(d3) and D4 = diag(d4). For ease of notation, we

use di to denote the generic diagonal entry of Di (i = 1 : 4) though there

are actually l2 such entries. Then the block matrix

(
DE −DG
−FE FG

)
can be

represented by

H =:

((
I − (I + γD1)

−1
)
(I + γD2)

−1γD2 γD3

(
I − (I + γD1)

−1
)
(I + γD2)

−1

(I + γD1)
−1(I + γD2)

−1D4 (I + γD1)
−1(I + γD2)

−1

)
.

All the 4 blocks of H are diagonal, so the spectrum of H can be represented

by the eigenvalues of the 2× 2 matrix symbol

H̃ =:

((
1− (1 + γd1)

−1
)
(1 + γd2)

−1γd2 γd3
(
1− (1 + γd1)

−1
)
(1 + γd2)

−1

(1 + γd1)
−1(1 + γd2)

−1d4 (1 + γd1)
−1(1 + γd2)

−1

)
.
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Observing that d3d4 = d2, the eigenvalues of H̃ are 0 and

λ = λ(γ) =
1 + γ2d1d2

1 + γd1 + γd2 + γ2d1d2
.

Here the di’s (i = 1 : 4) run over all the diagonal entries of theDi’s (i = 1 : 4).

Moreover, d1 and d2 are the symbols of B1A
−1
1 BT

1 W
−1 and B2A

−1
2 BT

2 W
−1,

so they depend on θx and θy. Recall now that for a clustered spectrum of

the preconditioned matrix, we want the eigenvalues of H to be as small as

possible. This suggests that the augmentation parameter γ should be cho-

sen as the solution of the following (non-convex, non-smooth) optimization

problem:

min
γ>0

mean |(λ(γ; θx, θy))|

where θx, θy = 1, 2, . . . , l,

where mean represents the average value. Since the expression of λ as a

function of γ is very complicated and the optimization problem has sever-

al local minima, we find an approximate global minimum as follows. We

sample γ over the range of values from 0.001 to 1 with step 0.001 (numeri-

cal experiments show that the optimal γ lies in the interval [0.001,1] for all

interesting problem parameters), and simply select the one that minimizes

the arithmetic mean of the values of |λ| for θx, θy = 1, 2, . . . , l. Note that

this approach imposes little overhead compared with the cost of solving the

Oseen problem. In practice we also include L, the length of the domain

where the problem is defined, to obtain the 1D convection-diffusion opera-

tors νLx + LNx and νLy + LNy in order to take into account the fact that

the problem is generally not posed on the unit square.
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2.5 Numerical experiments

In this section we present the results of numerical experiments with the

modified AL preconditioner. In particular, we evaluate the empirical rule

(discovered in [15] and discussed in details below) and the Fourier analysis-

based approach for choosing γ by comparing GMRES iterations precondi-

tioned by the modified AL preconditioners with the value of γ obtained by

the empirical rule, by Fourier analysis and with the optimal γ (determined

experimentally). The test problems are those described in Section 2.3. We

set W = M̂p = diag(Mp). Right preconditioning is used in all cases; the

results for left preconditioning are similar. All exact solves are performed on

the subproblems involving A11 and A22 by means of sparse LU factorizations

preceded by an approximate minimum degree column reordering [2] of the

matrices A11, A22.

2.5.1 Empirical rule for choosing γ

We now turn to the empirical rule [15] of for choosing γ when using the

modified AL preconditioner. The empirical rule is as follows: when ν = 0.1

the modified AL preconditioner is not sensitive to γ, and taking γ as a

constant turns out to be a good choice; for other values of the viscosity, the

experimentally found optimal γ for the coarsest grid is divided by a factor of

about
√
2 when the mesh size h is divided by 2. Hence, for fixed ν, letting γ0

be the γ for the coarsest grid, we use γ0/
√
2, γ0/2 and γ0/2

√
2 for each refined

grid. In Table 2.7 we compare the values of γ obtained by the empirical rule

with the optimal ones for the Q2-Q1 discretization of the cavity problem on

uniform grids. As one can see, the empirical values are fairly close to the

optimal ones.

We present GMRES iterations with the modified AL preconditioner in Ta-

bles 2.8, 2.9 and 2.10 for the three test problems mentioned in Section 2.3.
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Table 2.7: Values of γ obtained by empirical rule vs. optimal values (cavity,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid Em Opt Em Opt Em Opt Em Opt

16× 16 0.45 0.45 0.085 0.085 0.068 0.068 0.063 0.063

32× 32 0.45 0.38 0.060 0.050 0.048 0.043 0.045 0.035

64× 64 0.45 0.32 0.043 0.045 0.034 0.032 0.031 0.022

128× 128 0.45 0.28 0.030 0.046 0.024 0.032 0.022 0.017

Table 2.8: GMRES(50) iterations with modified AL preconditioner (cavity,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid Em Opt Em Opt Em Opt Em Opt

16× 16 9 9 12 12 15 15 23 23

32× 32 10 9 12 11 14 14 30 29

64× 64 10 9 10 11 13 13 30 27

128× 128 9 9 10 10 13 12 26 24

Table 2.9: GMRES(50) iterations with modified AL preconditioner (cavity,

Q2-Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid Em Opt Em Opt Em Opt Em Opt

16× 16 9 9 11 11 13 13 20 20

32× 32 9 9 11 11 14 14 23 23

64× 64 10 8 11 11 14 14 25 25

128× 128 9 7 11 11 13 13 26 26

‘Em’ denotes the γ chosen by the empirical rule, while ‘Opt’ stands for the

optimal γ. It is clear that the empirical rule works remarkably well in all
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Table 2.10: GMRES(50) iterations with modified AL preconditioner (step,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005

Grid Em Opt Em Opt Em Opt

16× 48 12 12 16 16 19 19

32× 96 12 12 17 17 20 20

64× 192 12 11 16 16 19 19

128× 384 12 11 15 15 19 19

these cases.

Although the empirical rule is quite successful in predicting the values of

γ for all the test problems, it could be impractical since the problem being

solved may not be discretized on a coarse grid. Therefore we need some more

convenient and efficient method, such as the Fourier analysis-based approach

since it only requires an estimate of the mesh size and is much faster.

2.5.2 Fourier analysis-based approach for choosing γ

In Table 2.11 we compare the values of γ obtained by Fourier analysis with the

optimal ones for the Q2-Q1 discretization of the cavity problem on uniform

grids. As one can see, the Fourier estimates are fairly close to the optimal

ones when the viscosity is not too small; for smaller viscosities, the estimated

values tend to approach the optimal value as the mesh is refined.

In Tables 2.12, 2.13 and 2.14, we present preconditioned GMRES iteration

counts for the three test problems already mentioned. ‘FA’ denotes the γ

chosen by Fourier analysis, while ‘Opt’ stands for the optimal γ. For the

Oseen problem on stretched grids (Table 2.13), we estimate the value of γ by

Fourier analysis using an ‘average’ mesh size h defined as h =: 2/m where

m is the number of grid points in the x-direction (or y-direction; recall that
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Table 2.11: Values of γ obtained by Fourier analysis vs. optimal values (cav-

ity, Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 0.42 0.45 0.075 0.085 0.270 0.068 0.220 0.063

32× 32 0.29 0.38 0.056 0.050 0.098 0.043 0.067 0.035

64× 64 0.32 0.32 0.055 0.045 0.032 0.032 0.037 0.022

128× 128 0.28 0.28 0.036 0.046 0.022 0.032 0.020 0.017

Table 2.12: GMRES(50) iterations with modified AL preconditioner (cavity,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 9 9 12 12 26 15 42 23

32× 32 10 9 11 11 20 14 37 29

64× 64 9 9 11 11 13 13 33 27

128× 128 9 9 10 10 13 12 25 24

Table 2.13: GMRES(50) iterations with modified AL preconditioner (cavity,

Q2-Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 9 9 11 11 21 13 35 20

32× 32 9 9 11 11 17 14 31 23

64× 64 8 8 11 11 14 14 29 25

128× 128 8 7 11 11 14 13 26 26

here Ω = [−1, 1] × [−1, 1]), which is actually the same as the value on the

corresponding uniform grid. This strategy turns out to work quite well in
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Table 2.14: GMRES(50) iterations with modified AL preconditioner (step,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 48 15 12 46 16 59 19

32× 96 12 12 24 17 38 20

64× 192 12 11 17 16 26 19

128× 384 11 11 15 15 19 19

practice.

Except for the case of coarse grids and very small viscosity, which is in any

case irrelevant since physical solutions cannot be computed on such coarse

grids, the iteration counts for γ chosen by FA are very close to those with

optimal γ, no matter which problem is solved and how small ν is, demon-

strating a wide applicability. We also observe that the convergence rate of

GMRES with either choice of γ is almost grid-independent and is only mildly

dependent on ν, confirming the robustness of the method. An especially note-

worthy feature of the preconditioner is the excellent behavior on stretched

meshes, in some cases even better than for uniform meshes (see Table 2.13).

This could be due to the fact that stretched meshes lead to more accurate

approximations for problems with small viscosity, hence they better reflect

the underlying physics.

The dependence of the number of iterations on the value of γ is shown in

Figure 2.4 for the case of the lid driven cavity Oseen problem with ν = 0.01

and ν = 0.001 discretized with Q2-Q1 elements on two uniform grids. From

these plots we can see that the rate of convergence is more sensitive to the

value of γ when the viscosity is small. In Figure 2.5, we display the eigen-

values of the preconditioned Oseen matrix for the lid driven cavity problem

(with ν = 0.01) discretized with Q2-Q1 elements on a uniform 32× 32 grid.
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Figure 2.4: Number of iterations vs. parameter γ (cavity, Q2-Q1, uniform

grids). Left: ν = 0.01. Right: ν = 0.001.
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Figure 2.5: Plots of the eigenvalues of the Oseen matrix with modified AL

preconditioner (cavity, Q2-Q1, uniform 32× 32 grid, ν = 0.01). Left: with γ

chosen by Fourier analysis. Right: with optimal γ.
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On the left we show the eigenvalues for the value of γ chosen by Fourier

analysis, on the right those for the optimal γ. These values are, respective-

ly, γ = 0.05 and γ = 0.056. The spectra are almost identical, and nicely

clustered away from the origin except for the zero eigenvalue corresponding

to the hydrostatic pressure mode, which has no effect on the convergence of

GMRES. Note also the eigenvalue at 1 (of algebraic multiplicity 2178).
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Table 2.15: GMRES(50) iterations with modified AL preconditioner (cavity,

Newton, Q2-Q1, uniform grids). The asterisk means that the FA values of γ

are the ones found for the Oseen problem.

Viscosity 0.1 0.01 0.005 0.001

Grid FA* Opt FA* Opt FA* Opt FA* Opt

16× 16 13 13 22 21 39 29 138 50

32× 32 14 13 23 23 37 33 103 92

64× 64 14 14 23 23 35 35 98 98

128× 128 15 14 25 23 39 35 99 98

Table 2.16: GMRES(50) iterations with modified AL preconditioner (cavity,

Newton, Q2-Q1, stretched grids). The asterisk means that the FA values of

γ are the ones found for the Oseen problem.

Viscosity 0.1 0.01 0.005 0.001

Grid FA* Opt FA* Opt FA* Opt FA* Opt

16× 16 13 13 21 21 30 25 99 62

32× 32 14 14 23 23 31 30 71 60

64× 64 14 14 24 23 35 33 84 72

128× 128 15 14 26 23 40 34 95 82

Additionally, we consider the solution of Newton linearization for the three

test problems. The purpose of these experiments is to show that although the

modified AL-based preconditioner was designed having in mind the Picard

form of linearized equations, it performs well also for the Newton lineariza-

tion. When solving the lid driven cavity problem, for ν = 0.005, we initialize

the Newton iteration with the solution computed by one Picard iteration; for

ν = 0.001, three Picard iterations are needed to provide Newton’s method

with a sufficiently good initial guess. The results are shown in Table 2.15,

2.16 and 2.17. Here, we use the same value of γ chosen by FA for the Pi-
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Table 2.17: GMRES(50) iterations with modified AL preconditioner (step,

Newton, Q2-Q1, uniform grids). The asterisk means that the FA values of γ

are the ones found for the Oseen problem.

Viscosity 0.1 0.01 0.005

Grid FA* Opt FA* Opt FA* Opt

16× 48 21 18 63 27 81 30

32× 96 18 18 42 30 63 34

64× 192 18 19 35 32 52 37

128× 384 19 19 34 33 40 38

card linearization. From the GMRES iteration counts, we can observe that

Fourier analysis still gives very good estimates for the optimal parameter

values. Although with γ chosen by FA h-independent convergence is not

retained in some cases for the cavity problem on stretched grids, we still get

good convergence rates (it should be kept in mind that the linear systems

from Newton linearization are considerably harder to solve than the Oseen

problem.) Moreover, with the optimal γ, grid-independent convergence rate

is maintained (except for ν = 0.001 in Table 2.16, where some deterioration

occurs), again demonstrating the robustness of the augmented Lagrangian-

based approach.

2.5.3 Comparison with other preconditioners

Next, we compare the modified AL preconditioner with some of the best

preconditioners available in the literature, namely, the least-squares commu-

tator (LSC) preconditioner, the pressure convection-diffusion preconditioner

(PCD) [37], and its modified variant (mPCD) introduced in [38]. For the

experiments, we use the implementations of these methods found in IFISS.

It should be kept in mind that in IFISS, no restarting is used with GMRES,
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Table 2.18: Full GMRES iterations with PCD, LSC and modified PCD pre-

conditioners (cavity, Q2-Q1, uniform grids).

Viscosity 0.005 0.001

Grid PCD LSC mPCD PCD LSC mPCD

16× 16 40 27 37 83 69 83

32× 32 41 31 35 106 85 97

64× 64 40 29 34 108 91 93

128× 128 36 33 34 92 67 71

Table 2.19: Full GMRES iterations with PCD, LSC and modified PCD pre-

conditioners (cavity, Q2-Q1, stretched grids).

Viscosity 0.005 0.001

Grid PCD LSC mPCD PCD LSC mPCD

16× 16 36 28 51 67 49 81

32× 32 38 38 37 89 77 95

64× 64 38 54 38 101 109 93

128× 128 36 80 35 96 154 98

Table 2.20: Full GMRES iterations with PCD, LSC and modified PCD pre-

conditioners (cavity, Newton, Q2-Q1, uniform grids).

Viscosity 0.005 0.001

Grid PCD LSC mPCD PCD LSC mPCD

16× 16 66 49 64 84 81 84

32× 32 74 53 64 215 178 196

64× 64 73 53 64 239 187 199

128× 128 71 57 64 226 169 180

therefore the results presented here are for full GMRES. Moreover, exact

solves are done by backslash, which is rather inefficient since the correspond-
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Table 2.21: Full GMRES iterations with PCD, LSC and modified PCD pre-

conditioners (cavity, Newton, Q2-Q1, stretched grids).

Viscosity 0.005 0.001

Grid PCD LSC mPCD PCD LSC mPCD

16× 16 56 42 64 83 76 82

32× 32 65 60 62 182 147 160

64× 64 67 89 62 226 216 208

128× 128 69 128 62 235 286 206

ing matrices are factored anew at each solve, rather than reusing the tri-

angular factors computed after the first application of the preconditioners.

For these reasons, we do not include timings for these preconditioners. For

Oseen problems at small Reynolds numbers discretized on uniform grids, we

found that all these methods display convergence rates comparable to those

obtained with modified AL preconditioning. Hence, here we focus on harder

problems. Results for the Oseen problem with small viscosity (ν = 0.005 and

0.001) are reported in Tables 2.18 and 2.19 for both uniform and stretched

grids. Results for the Newton linearization with two values of the viscosity

are shown in Tables 2.20 and 2.21.

Comparing these results with those for the modified AL preconditioner sug-

gests that the latter is to be preferred when solving difficult problems with

small viscosities. The exceptional robustness of the augmented Lagrangian-

based approach, and particularly its ability to effectively cope with stretched

grids, give it a clear advantage over the existing methods. We observe that

a comparison in terms of iteration counts is meaningful, since all these pre-

conditioners have comparable cost per iteration.
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Table 2.22: Comparison of exact and inexact inner solvers. GMRES(50) iter-

ations and timings with modified AL preconditioner (cavity, Q2-Q1, uniform

grids, ν = 0.005).

Grid Picard Newton

Timings Exact Inexact Exact Inexact

16× 16 26 35 39 71

Setup time 0.03 0.02 0.02 0.01

Iter time 0.09 0.19 0.10 0.43

Total time 0.12 0.21 0.12 0.44

32× 32 20 33 37 43

Setup time 0.15 0.15 0.15 0.07

Iter time 0.18 0.77 0.38 1.12

Total time 0.33 0.92 0.54 1.19

64× 64 13 15 35 36

Setup time 1.93 0.27 1.95 0.26

Iter time 0.62 1.42 1.75 3.29

Total time 2.55 1.69 3.70 3.55

128× 128 13 16 39 41

Setup time 34.90 1.23 34.34 1.20

Iter time 4.44 7.55 10.94 15.82

Total time 39.34 8.78 45.28 17.02

256× 256 13 15 43 44

Setup time 856.74 5.17 673.29 5.26

Iter time 40.22 25.79 85.84 94.28

Total time 896.96 30.96 759.12 99.54

2.5.4 Inexact solves

We also report on the effect of inexact solves within the modified AL pre-

conditioner. Instead of using an exact sparse LU factorization for A11 and
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A22, we now solve the corresponding linear systems inexactly using a single

iteration of the algebraic multigrid method (AMG) implemented in the code

MI20 and described in [20, 21]. For the smoother we use symmetric Gauss–

Seidel. The parameter γ is again chosen by FA, ignoring the fact that the

solves are inexact.

In Table 2.22 we show iteration counts, setup time for constructing the dif-

ferent preconditioners, iteration time for preconditioned GMRES, and total

time (that is, the sum of the preceding two). All timings are in seconds. We

do not include the time for estimating the optimal γ with Fourier analysis,

which is small compared to the overall solution costs (e.g., under 2 seconds

for the 128 × 128 grid, with a simple code that has not been optimized). A

few observations are in order. First, except for the two coarsest grids the

iteration counts are almost unchanged when exact preconditioner solves are

replaced with inexact ones. Hence, a single iteration of AMG with the chosen

smoother is enough. In particular, the preconditioned iteration with inexact

inner solves retains the very good convergence behavior of the exact variant

as the mesh is refined. Second, and most importantly, the timings associated

with exact solves (based on sparse LU factorization with approximate mini-

mum degree reordering) are not scalable, whereas those with inexact solves

show excellent scalability. Hence, the exact variant of the preconditioner is

outperformed by the inexact variant already for a 64× 64 grid.

We note that in the inexact case, the preconditioner construction time for

AMG could be further reduced by reusing the same setup for several Picard

or Newton iterations. We performed some experiments to see how ‘freezing’

the AMG preconditioner affects the convergence of preconditioned GMRES,

and we found that for ν = 0.01 or larger, the number of iterations increases

only slightly (if at all), resulting in considerable savings in terms of time to

solution. However, this strategy does not work well with smaller viscosities.

In this case it seems to be necessary to update the AMG preconditioner at
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Table 2.23: GMRES(50) iterations and timings with modified AL precondi-

tioner (cavity, Q2-Q1, uniform 256× 256 grid, ν = 0.01)

No. of cores 2 4 8 16 32 64

Iterations 16 15 15 14 15 15

Setup time 5.72 2.91 1.57 0.90 0.77 0.44

Iter time 6.07 2.95 1.55 0.78 0.64 0.31

Total time 11.79 5.86 3.12 1.68 1.41 0.75

each Picard or Newton step.

2.5.5 Parallel results

In this subsection we show the results of a few numerical experiments on a

computer cluster. The test problem is the steady 2D Oseen problem for the

lid driven cavity. The value of the viscosity is ν = 0.01, and γ is chosen

by FA. Using Q2-Q1 finite elements on uniform 256 × 256 grid results in a

148, 739×148, 739 saddle point matrix with 60, 341, 640 nonzero entries. The

preconditioner is the modified AL preconditioner, where the linear systems

associated with the diagonal sub-blocks Aii are solved by the smoothed ag-

gregation AMG preconditioner ML. The parameters for ML are based on the

default parameters for non-symmetric smoothed aggregation with some mod-

ifications. The linear solver is GMRES implemented in the Trilinos package

AztecOO [50].

The experiments are performed on a cluster consisting of 32 nodes and 128

processor cores. Each node has 2 dual-core AMD 2.2 GHz Opteron CPUs

and 4 GB RAM. The program is compiled and run with Open MPI. GMRES

iteration counts and timings using 2, 4, 8, 16, 32 and 64 cores are shown in

Table 2.23. The ‘Setup time’ includes matrix multiplication and addition

for A11 and A22 as well as AMG setup time for them, and ‘Iter time’ is the
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iterative phase of preconditioned GMRES. The ‘Total time’ is the sum of the

previous two. The iteration numbers keep almost constant as the number of

cores grows, and the timings show fairly good scalability up to 64 cores.

2.5.6 Unsteady problems

Here we present some results for unsteady (generalized) Oseen problems. In

this type of problem the (1,1) block A of the saddle point matrix contains

an additional term of the form σMu where σ is the reciprocal of the time

step ∆t and Mu is the velocity mass matrix. Linear systems of this type

tend to be easier to solve than the ones arising in the steady case, since the

presence of the additional positive definite term σMu makes the (1,1) block

more diagonally dominant, especially when ∆t is sufficiently small. On the

other hand, many such systems (one for each time step) have to be solved

during a simulation, so fast solvers are absolutely indispensable.

We have performed numerical experiments for the lid driven cavity prob-

lem. In our experiments we let σ = h−1 where h is the mesh size. The

parameter γ is chosen by Fourier analysis as for steady problems. Similar

to the well-known Cahouet–Chabard [24] preconditioner for the unsteady

Stokes problem, we modify the (2,2) block of the preconditioner (implicitly

defined by its inverse) by using

Ŝ−1 = −γM̂−1
p − σ(BM̂−1

u BT )−1 (2.25)

instead of Ŝ−1 = −γM̂−1
p . Here M̂u denotes the diagonal of the velocity mass

matrix; moreover, the action of the inverse of the scaled discrete Laplacian

BM̂−1
u BT is implemented exactly by backslash in Matlab.

Iteration counts are shown in Tables 2.24 and 2.25 for the lid driven cavity

discretized on uniform and stretched grids and Table 2.26 for the backward

facing step problem on uniform grids. This preconditioner with either choice

of γ is now quite robust and stable with respect to both ν and h.
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Table 2.24: GMRES(50) iterations with modified AL preconditioner (un-

steady cavity, Q2-Q1, uniform grids, improved Ŝ−1).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 9 8 5 5 6 6 6 6

32× 32 9 8 5 5 4 4 5 5

64× 64 9 8 6 5 4 4 4 4

128× 128 8 8 5 5 4 4 3 3

Table 2.25: GMRES(50) iterations with modified AL preconditioner (un-

steady cavity, Q2-Q1, stretched grids, improved Ŝ−1).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 8 8 7 8 6 6 5 5

32× 32 9 8 8 8 9 6 4 4

64× 64 8 8 6 6 6 6 5 4

128× 128 6 6 5 5 4 4 3 3

Table 2.26: GMRES(50) iterations with modified AL preconditioner (un-

steady step, Q2-Q1, uniform grids, improved Ŝ−1).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 48 10 9 9 9 9 9

32× 96 10 9 9 9 11 9

64× 192 9 9 8 8 8 8

128× 384 9 9 8 8 8 8

It is important to point out that in actual unsteady flow calculations the

number of iterations can be expected to be significantly less than reported



54

above, since one takes the solution from the previous time step as the initial

guess. Indeed, using the solution at the previous time step typically results in

an initial residual that is much smaller in norm than the residual correspond-

ing to the zero initial guess, therefore leading to fewer iterations required to

satisfy the same reduction in the relative size of the residual norm.

We make a few remarks about the performance of the classical Cahouet–

Chabard preconditioner [24] applied to the unsteady Oseen problem. It turns

out that without augmentation (that is, working with the original system

(2.1) rather than the augmented one), this block triangular preconditioner is

almost always more efficient than the AL-based approach, except for some

cases with small viscosity and large time steps. This is mainly due to the

fact that with augmentation, the linear systems associated with the velocity

unknowns that must be solved (exactly or inexactly) at each application of

the preconditioner become more complicated. Therefore, even though the

Cahouet–Chabard preconditioner typically requires more iterations than the

AL-based one, it is actually faster in terms of solution time.

It should be pointed out, however, that there are important situations

where the augmentation term arises naturally, in which case the AL-based

preconditioner will be a good candidate. We note that the algebraic aug-

mentation is closely related to the so-called grad-div stabilization [62] of

the Galerkin method for the incompressible Navier–Stokes equations. The

stabilization is a commonly used one for those problems which require ad-

ditional subgrid pressure modeling or enhanced mass conservation [57, 59].

It is also an important ingredient of some turbulence models [56]. The

least square term added in such models gives rise to a matrix G with ele-

ments gij = γ
∫
Ω
divψi divψjdx, where the ψi are basis functions of a discrete

(e.g., finite element) space. This matrix is added to the velocity (1,1) block

and possesses a block structure and algebraic properties similar to those of

γBTW−1B (algebraic augmentation). Therefore, the solvers studied in this
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thesis should be useful for handling algebraic systems resulting from such

stabilized Galerkin discretizations. In [19], it was found that for a 2D Oseen

problem with recirculating convection, Taylor–Hood finite element discretiza-

tion with grad-div stabilization results in a sparser velocity matrix, whose

number of nonzero entries is only approximately 1/7 of that obtained from ex-

plicit augmentation. Furthermore, a sparser matrix requires less setup times

for, e.g., H-LU factorization [19] and AMG (see Section 2.5.9). Hence the

‘first-augment-then-discretize’ approach is preferred because of its efficiency.

Yet another example is the formulation of the Navier–Stokes equations in the

context of fluid-structure interaction problems, where it is essential that the

velocity deformation tensor (∇u +∇uT )/2 is retained in its entirety in the

equations in order to ensure good momentum conservation properties during

the numerical solution. This point of view is adopted in, e.g., [39, Chap-

ter 9]. We present numerical results on problems with the full tensor in

Section 2.5.9.

2.5.7 Extension to 3D problems

In this subsection we evaluate the performance of the ideal and modified

AL preconditioners for Stokes and Oseen problems in 3D. Besides the usual

(convective) form of the Oseen equations, we also consider linearizations of

the Navier–Stokes equations in rotation form; see, e.g., [11,60] and references

therein for details.

For a stable discretization, the saddle point system is again of the form(
A BT

B 0

)(
u

p

)
=

(
f

g

)
, or Ax = b,

where for 3D problems A = diag(A1, A2, A3) and B = (B1, B2, B3). There-

fore, for the convection form the coefficient matrix of the equivalent aug-
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mented Lagrangian formulation is

Aγ = A+ γBTW−1B

=


A1 0 0

0 A2 0

0 0 A3

+ γ


BT

1

BT
2

BT
3

W−1
(
B1 B2 B3

)

=


A1 + γBT

1 W
−1B1 γBT

1 W
−1B2 γBT

1 W
−1B3

γBT
2 W

−1B1 A2 + γBT
2 W

−1B2 γBT
2 W

−1B3

γBT
3 W

−1B1 γBT
3 W

−1B2 A3 + γBT
3 W

−1B3



=:


A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

The ideal AL preconditioner is again given by (2.3). In the modified variant

we replace Aγ with the block triangular approximation

Ãγ =


A1 + γBT

1 W
−1B1 γBT

1 W
−1B2 γBT

1 W
−1B3

0 A2 + γBT
2 W

−1B2 γBT
2 W

−1B3

0 0 A3 + γBT
3 W

−1B3



=


A11 A12 A13

0 A22 A23

0 0 A33

 .

Note that in the 3D case we drop three blocks: the (2,1), (3,1) and (3,2)

blocks of Aγ, so the performance could be affected more than in the 2D case.

As in the 2D case, each diagonal block Aii (i = 1, 2, 3) represents a discrete

scalar convection-diffusion operator. For the Stokes problem and for the

rotation form of the Navier–Stokes equations, no convective term is present

and each sub-block Aii (i = 1, 2, 3) is symmetric and positive definite (SPD).

On the other hand, in the rotation form each off-diagonal block Aij (with

i ̸= j) contains additional coupling terms not present in the standard form
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Table 2.27: GMRES iterations with ideal and modified AL preconditioners

(3D Stokes, MAC).

Grid Ideal Modified

8× 8× 8 8 11

16× 16× 16 9 13

24× 24× 24 10 14

of the Oseen problem. Finally, for unsteady problems an additional reaction

term (also SPD) is present in each diagonal sub-block.

2.5.8 Numerical experiments: 3D examples

We use a Marker-and-Cell (MAC) scheme [49] to discretize the Stokes and

Oseen problems on the unit cube Ω = [0, 1] × [0, 1] × [0, 1]. This scheme is

known to be div-stable, hence no pressure stabilization is needed and the (2,2)

block C in the saddle point problem (1.16) is zero. Homogeneous Dirichlet

boundary conditions are imposed on the velocity components.

In the first experiment, we compare the ideal and the modified AL precon-

ditioners on a steady Stokes problem. We use γ = 1 for both preconditioners

for simplicity, and because it gives good results. Iteration counts for three

grids of increasing size are shown in Table 2.27. Using a complete sparse

Cholesky factorization on the sub-matrix Aγ makes the ideal AL precondi-

tioner unfeasible already for rather coarse grids in 3D. On the other hand,

the modified AL preconditioner is able to handle larger problems, since only

the diagonal blocks Aii (i = 1, 2, 3) of Aγ need to be factored.

Our results indicate that for this problem, the rate of convergence with the

ideal and modified AL preconditioners is essentially independent of the mesh

size.
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Table 2.28: GMRES iterations with ideal and modified AL preconditioners

(3D Oseen in convection form, MAC).

Viscosity 0.1 0.01

Grid Ideal Modified Ideal Modified

8× 8× 8 6 10 (0.4) 5 16 (0.06)

16× 16× 16 6 11 (0.4) 5 17 (0.06)

24× 24× 24 6 12 (0.4) 5 17 (0.06)

32× 32× 32 - 12 (0.4) - 18 (0.06)

Next, we proceed to the more challenging case of 3D Oseen problems, in

both convection and rotation forms. The divergence-free wind function (v in

(1.6)) is taken to be

v =


(2y − 1)x(1− x)

(2x− 1)y(1− y)

−2z(1− 2x)(2y − 1)

 .

The results are shown in Tables 2.28 and 2.29. The use of LU factorization

makes the ideal preconditioner unfeasible on 32 × 32 × 32 or larger grids

due to exceeded memory limits, which is shown as a ‘-’. We set γ = 1 for

the ideal preconditioner; for the modified one, the values of γ chosen by FA

are too small, so we find optimal values experimentally, and show them in

parentheses after the number of GMRES iterations.

While the ideal AL preconditioner is independent of the mesh size and vis-

cosity, the modified preconditioner appears to be independent of h but shows

a degradation of convergence rate when ν becomes very small. Also notice

that γ must be taken smaller when ν = 0.01. Also for small ν the modified

preconditioner is less effective for the rotation form than for the convection

form. This is due to the presence, in the rotation form, of relatively stronger
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Table 2.29: GMRES iterations with ideal and modified AL preconditioners

(3D Oseen in rotation form, MAC).

Viscosity 0.1 0.01

Grid Ideal Modified Ideal Modified

8× 8× 8 7 12 (0.4) 5 23 (0.08)

16× 16× 16 7 14 (0.4) 5 22 (0.08)

24× 24× 24 8 14 (0.4) 5 22 (0.08)

32× 32× 32 - 15 (0.4) - 23 (0.08)

Table 2.30: GMRES(50) iterations with ideal and modified AL precondition-

ers (unsteady 3D Oseen in convection form, MAC).

Viscosity 0.1 0.01

Grid Ideal Modified Ideal Modified

8× 8× 8 7 12 7 12

16× 16× 16 8 13 7 11

24× 24× 24 9 13 8 11

32× 32× 32 - 13 - 11

coupling terms in the off-diagonal blocks Aij (i > j) that are neglected when

forming the preconditioner.

Next, we consider unsteady Oseen problems with σ = h−1. Because of the

dominance of the block diagonal part of the (1,1) block of the saddle point

system, we can expect good performance of the modified AL preconditioner.

For the ideal preconditioner, we set γ = 1; for the modified variant, FA gives

good heuristic values of γ. The (2,2) block is given by

Ŝ−1 = −γM̂−1
p − σ(BM̂−1

u BT )−1
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Table 2.31: GMRES(50) iterations with ideal and modified AL precondition-

ers (unsteady 3D Oseen in rotation form, MAC).

Viscosity 0.1 0.01

Grid Ideal Modified Ideal Modified

8× 8× 8 8 13 6 12

16× 16× 16 9 15 8 10

24× 24× 24 10 15 8 10

32× 32× 32 - 16 - 10

as for 2D problems. Iteration counts are shown in Tables 2.30 (convection

form) and 2.31 (rotation from).

The performance of the modified AL preconditioner is quite satisfactory.

Indeed, the iteration number is essentially independent of the mesh size and

viscosity.

2.5.9 Parallel results: 3D examples

In this subsection we first show parallel results for the 3D Oseen problem

in convection form discretized by MAC with viscosity ν = 0.01. GMRES

iteration counts and timings are shown in Table 2.32 when the problem is

discretized on 64 × 64 × 64 and 128 × 128 × 128 grids. The augmentation

parameter γ = 0.06 is determined experimentally to minimize the GMRES

iteration counts.

On the 64×64×64 grid, the coefficient matrix is 1, 036, 288×1, 036, 288 with

8, 442, 624 nonzero elements. The ‘Setup time’ includes matrix multiplication

and addition, that is, explicit formation of A11, A22 and A33, and ML setup

phase of these matrices. One can observe that the iteration counts do not

increase and timings show almost perfect scalability. For the larger 128 ×
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Table 2.32: GMRES(50) iterations and timings with modified AL precondi-

tioner (3D Oseen, MAC, ν = 0.01)

No. of cores 2 4 8 16 32 64

64× 64× 64 19 19 19 19 19 27

Setup time 8.68 5.03 3.82 1.94 1.66 1.60

Iter time 22.91 12.74 7.19 4.14 2.22 1.66

Total time 31.59 17.77 11.01 6.08 3.88 3.26

128× 128× 128 19 19 19 19 19 21

Setup time 78.70 44.96 23.65 14.30 9.23 8.25

Iter time 217.11 141.78 64.73 36.73 18.90 12.03

Total time 295.81 186.74 88.38 51.03 28.13 20.28

128 × 128 grid, the coefficient matrix is now 8, 339, 456 × 8, 339, 456 with

99, 290, 112 nonzero entries. Very good scalability is still achieved up to 32

cores. When using 64 cores, some improvement is obtained although not

perfect.

Next we present GMRES iteration counts and timings in Table 2.33 for a

linearized steady 3D lid driven cavity problem discretized by P2-P1 finite

elements in the finite element library LifeV [1]. The viscosity ν is 0.05. Here

we retain the full tensor (∇u + ∇uT )/2 so as to circumvent the explicit

construction of Aii (i = 1, 2, 3). In fact, using the full tensor could save up to

5/6 of total time. Firstly, we observe that the iteration counts do not change

essentially as the number of cores increase or the size of the mesh becomes

larger, demonstrating the effectiveness of the modified AL preconditioner and

the ML preconditioner for subproblems. In fact, larger grids provide better

approximations to the continuous problem, and the number of iterations

decreases. Secondly, good scalability is achieved for the 32 × 32 × 32 grid,

but not for smaller grids when using less than 8 cores. Finally, we observe

quite good weak scalability.



62

Table 2.33: GMRES(50) iterations and timings with modified AL precondi-

tioner (3D cavity, P2-P1, ν = 0.05)

No. of cores 2 4 8 16 32 64

16× 16× 16 25 25 24 25 23 23

Setup time 1.85 1.57 1.68 1.16 0.89 0.72

Iter time 5.35 3.68 3.06 1.94 0.95 0.67

Total time 7.20 5.25 4.74 3.10 1.84 1.39

24× 24× 24 24 23 23 23 23 22

Setup time 7.53 5.98 6.34 3.82 2.83 1.82

Iter time 18.80 11.61 10.32 6.14 4.11 2.04

Total time 25.33 17.59 16.66 9.96 6.94 3.86

32× 32× 32 22 21 20 20 20 19

Setup time 37.71 16.53 18.09 9.38 6.27 4.00

Iter time 67.88 29.24 25.41 12.88 8.11 4.33

Total time 105.59 45.77 43.50 22.26 14.38 8.33
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Chapter 3

The stabilized case

In this chapter, we consider the Oseen problem discretized by stabilized

finite elements, e.g., Q1-Q1 elements. We generalize the ideal and modified

AL preconditioners to stabilized elements, aiming to achieve robustness with

respect to h and ν. We analyze the eigenvalues of the matrix preconditioned

by the AL-based preconditioners for stabilized finite elements, use Fourier

analysis to choose the augmentation parameter γ, and present numerical

results.

3.1 Ideal AL preconditioners

From this section, we consider the Oseen problem discretized by stabilized

finite elements, e.g., Q1-Q1 or Q1-P0 elements. We generalize the ideal

and modified AL preconditioners to stabilized elements, aiming to achieve

robustness with respect to h and ν. We further analyze the eigenvalues of

the matrix preconditioned by the AL-based preconditioners. As in Section

2.4.2, we use Fourier analysis to choose the augmentation parameter γ, and

present the results of numerical experiments.
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3.1.1 Problem formulation

Equal order finite element pairs, like Q1-Q1, are extensively used in the

engineering community due to their ease of implementation and other ad-

vantages. However, this choice of finite element spaces does not meet the

LBB condition, and pressure stabilization is required; see, e.g., [54]. In this

case, the (2,2) block of the saddle point matrix is no longer zero; it is re-

placed by −C with some symmetric positive semi-definite matrix C = δĈ.

Here δ is a stabilization parameter, and Ĉ is a stabilization matrix for the

corresponding Stokes problem.

For Q1-Q1 finite elements, pressure stabilization in [32] is used, and for Q1-

P0 elements, the pressure jumps over all internal edges of the triangulation

are penalized [22]. In either case the spectral properties of the matrix Ĉ

are somewhat similar to those of a scaled Laplacian discretization. For more

details on the construction of Ĉ, see [37]. We note that different pressure

stabilization methods can be applied, including those based on residual-free

bubbles [41], local projection [6], as well as the method in [54]. In general

they lead to matrices Ĉ with similar algebraic properties.

We use the following choice of the stabilization parameter (see [29]):

δ =
β

ν + h∥v∥
,

where h is the mesh size, v is the wind function, and β = 1 for the Q1-Q1

finite element pair and 1/4 for Q1-P0. The resulting linear system reads(
A BT

B −C

)(
u

p

)
=

(
f

g

)
. (3.1)
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3.1.2 Augmented linear systems and ideal AL precon-

ditioners

Owing to the presence of a nonzero (2,2) block, the augmentation of system

(3.1) must be done differently than in the case of stable finite elements. As

before, let γ > 0 and let W be a symmetric positive definite matrix. Then

from Bu− Cp = g it follows that

γBTW−1Bu− γBTW−1Cp = γBTW−1Bg.

Adding the above equation to Au+BTp = f gives

(A+ γBTW−1B)u+ (BT − γBTW−1C)p = f + γBTW−1Bg.

Therefore, the first (non-symmetric) augmented linear system is(
Aγ BT

γ

B −C

)(
u

p

)
=

(
fγ

g

)
, or Âx = b̂, (3.2)

where Aγ = A+γBTW−1B, BT
γ = BT −γBTW−1C and fγ = f+γBTW−1g.

Notice that in (3.2), the (1,2) block BT
γ is not equal to the transpose of the

(2,1) block B. To get a more ‘symmetric’ augmented linear system, we can

obtain from Bu− Cp = g the equation

−γCW−1Bu+ γCW−1Cp = −γCW−1Bg.

Then, combining this equation with Bu− Cp = g, we have

(B − γCW−1B)u− (C − γCW−1C)p = g − γCW−1Bg.

Letting Cγ = C − γCW−1C and gγ = g − γCW−1Bg, we obtain the second

(symmetrized) augmented system(
Aγ BT

γ

Bγ −Cγ

)(
u

p

)
=

(
fγ

gγ

)
. (3.3)
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Numerical experiments suggest that applying the AL preconditioner to (3.2)

produces almost the same results as to (3.3). Therefore, all results of nume-

rical experiments will be shown for (3.2) in the sequel.

Similar to the stable finite elements case we build the block triangular

preconditioner in the form

P =

(
Aγ 0

B Ŝ

)
(3.4)

for (3.2). Here in order to simplify the action of P−1 we use a block lower

triangular AL preconditioner so as to have B in the (2,1) block rather than

the more cumbersome BT
γ in the (1,2) block. For the ‘symmetrized’ system

(3.3), B should be replaced by Bγ; the corresponding AL preconditioner is

P =

(
Aγ 0

Bγ Ŝ

)
. (3.5)

Both lower and upper triangular preconditioners are essentially equivalent in

this case.

For LBB-stable elements, in Section 2.2 we set Ŝ = −γ−1W = −γ−1M̂p.

As we will see, for the case of C ̸= 0 the choice of Ŝ and W is more delicate.

From (2.5) one notices that −Ŝ intends to approximate the pressure Schur

complement of the augmented system, i.e. the matrices Sγ =: BγA
−1
γ BT

γ +Cγ

for (3.3) and S̃γ =: BA−1
γ BT

γ +C for (3.2). Recall the notation for the pressure

Schur complement matrix of the non-augmented problem: S = BA−1BT +C.

The following result, which extends the representation in (2.6) to the case of

C ̸= 0, will help us to set W , build the preconditioner Ŝ, and analyze the

spectrum of the preconditioned system.

Lemma 3.1 ( [15]). Assuming all the relevant matrices are invertible, it

holds

S−1
γ = S−1 + γ(W − γC)−1, (3.6)

S̃−1
γ = S−1(I − γCW−1) + γW−1. (3.7)
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Proof. The matrix X =: −S−1
γ is the (2,2) block of the inverse of the coef-

ficient matrix in (3.3). Denoting by Y the (1,2) block of this inverse matrix

we get the following system of matrix equations:

(A+ γBTW−1B)Y +BT (I − γW−1C)X = 0, (3.8)

(I − γCW−1)BY − (I − γCW−1)CX = I. (3.9)

From (3.9) we get BY = (I − γCW−1)−1 +CX. Substituting this into (3.8)

and applying A−1 lead to

Y = −γA−1BTW−1(I − γCW−1)−1 − A−1BTX.

Now substituting Y to (3.9) gives, after simple manipulations,

−
(
BA−1BT + C

)
X(I − γCW−1) = I + γBA−1BTW−1.

By straightforward computations one verifies that the last equation is solved

by matrixX = −
(
BA−1BT+C

)−1−γ(W−γC)−1. Thus (3.6) is proved. The

result in (3.7) follows from the obvious identity (I − γCW−1)S̃γ = Sγ.

The expressions (3.6) and (3.7) suggest that the auxiliary matrixW should

be such that W − γC is positive definite. Below we consider the following

two choices of W satisfying this constraint:

W1 =:Mp + γC,

W2 =:Mp with 0 < γ ≤ (2∥M−1
p C∥)−1.

Similar to the LBB-stable case, in practical computations Mp is replaced by

its diagonal approximation M̂p. Let us briefly comment on both choices of

W .

Remark 3.2. Setting W =W1 will lead to a simple choice of preconditioner

Ŝ such that the preconditioned system enjoys the same eigenvalue bounds
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as in the LBB-stable case, i.e. (2.8)–(2.9). At the same time, W = W1

involves the Laplacian-type matrix C. Hence the inverse W−1 may become

an (almost) full matrix, so that Aγ = A + BTW−1B is an (almost) full

matrix and consequently making the solution of linear systems with Aγ much

more difficult. This happens for example with Q1-Q1 elements. For Q1-P0

elements, however, the matrix C has a special block-diagonal structure, which

leads to a relatively cheap solve with Aγ. In practice we will use W1 only with

Q1-P0 elements.

The choice W =W2 preserves the sparsity of Aγ. However, the restriction

on γ yields a decrease of γ when ν is small and h tends to zero, since for

small ν it holds ∥M−1
p C∥ = O(h−1); see the discussion on matrix C in Section

3.1.1. Thus less augmentation is introduced and the performance of the solver

becomes more sensitive to the variation in ν and h.

In the next subsection we present the eigenvalue analysis and show the

corresponding choices of Ŝ for both cases W = W1 and W = W2. We shall

also discuss a third (intermediate) alternative of setting the augmentation

and preconditioning, which is not covered by our analysis, but shows stable

and ν- and h-independent convergence behavior while keeping the matrix Aγ

sparse.

3.1.3 Eigenvalue analysis

To analyze the spectrum of the preconditioned matrix, we consider the fol-

lowing generalized eigenvalue problem:(
Aγ BT

γ

B −C

)(
u

p

)
= λ

(
Aγ 0

B Ŝ

)(
u

p

)
. (3.10)

For the symmetrized system, matrix B in the (2,1) block is replaced by Bγ

and matrix C in the (2,2) block by Cγ. As in the case of stable finite elements,
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we consider the eigenvalue problem

Sq = µMpq, (3.11)

where S = BA−1BT + C, and obtain bounds on λ in terms of µ.

For W =W1 one immediately gets from (3.6) and (3.7)

S−1
γ = S−1 + γM−1

p ,

S̃−1
γ = S−1Mp(Mp + γC)−1 + γ(Mp + γC)−1.

Therefore, setting

Ŝ =: −γ−1Mp − C for (3.2) or Ŝ := −γ−1Mp for (3.3), (3.12)

we obtain with the same arguments as for the case of C = 0 in Section 2.2

that all non-unit eigenvalues of (3.10) satisfy S−1p + γM−1
p p = λ−1γM−1

p p,

where p ̸= 0, and thus

λ =
γµ

1 + γµ
.

This representation is identical to the one in (2.7). Therefore, we obtain the

following theorem.

Theorem 3.3 ( [15]). Assume W = W1 and Ŝ is defined as in (3.12). The

preconditioned matrix P−1Â has the eigenvalue 1 of algebraic multiplicity at

least n. All other (nonunit) eigenvalues satisfy the following bounds:

0 < min
µ

γaµ
1 + γaµ

≤ aλ ≤ 1, |bλ| ≤ max
µ

min
{
γ|bµ|,

1

γ|bµ|

}
≤ 1,

where λ = aλ + ibλ and µ = aµ + ibµ.

We noted already that the choice W = W1 is not always practical. The

next theorem shows eigenvalue bounds for the case W = W2 in terms of the

bounds given by the Bendixson’s Theorem [71] for the generalized eigenvalue

problem (3.11):

αµ =: min
p̸=0

pTDp

pTMpp
≤ aµ, |bµ| ≤ βµ =: max

p̸=0

|pTRp|
pTMpp

, (3.13)
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where µ = aµ + ibµ, D = BA−1+A−T

2
BT + C is the symmetric part of S, and

R = BA−1−A−T

2
BT is its skew-symmetric part.

Theorem 3.4 ( [15]). Assume W = W2, 0 < γ ≤ (2∥M−1
p C∥)−1 and Ŝ =

−γ−1Mp. The preconditioned matrix P−1Â has the eigenvalue 1 of algebraic

multiplicity at least n. All other (nonunit) eigenvalues satisfy the following

bounds for the non-symmetric augmentation (3.2),

0 <
γαµ

1 + γαµ

≤ aλ ≤ 1, |bλ| ≤ max
µ

min
{
γβµ, 1

}
≤ 1, (3.14)

where λ = aλ + ibλ.

Proof. From (3.10), we immediately get that λ = 1 is eigenvalue of algebraic

multiplicity (at least) n and any vector [u; 0] with u ̸= 0 is a corresponding

eigenvector. The remaining eigenvalues λ satisfy

S̃γp = −λŜp.

For W =Mp, Ŝ = −γ−1Mp, using representation (3.7), we obtain

Sp =
λ

1− λ

(
1

γ
Mp − C

)
p. (3.15)

For brevity, we let η = λ
1−λ

and Q = 1
γ
Mp − C. It follows from Bendixson’s

Theorem that

min
p ̸=0

pTDp

pTQp
≤ aη ≤ max

p ̸=0

pTDp

pTQp
, |bη| ≤ max

p̸=0

|pTRp|
pTQp

,

where η = aη + ibη. Using (3.15) we shall obtain bounds for λ in terms of µ

from (3.11). Since γ satisfies 0 < γ ≤ (2∥M−1
p C∥)−1, it holds

1

2γ
Mp ≤

1

γ
Mp − C ≤ 1

γ
Mp.

Therefore, we have

γmin
p̸=0

pTDp

pTMpp
≤ min

p̸=0

pTDp

pTQp
≤ aη ≤ max

p̸=0

pTDp

pTQp
≤ 2γmax

p̸=0

pTDp

pTMpp
, (3.16)

|bη| ≤ max
p̸=0

|pTRp|
pTQp

≤ 2γmax
p ̸=0

|pTRp|
pTMpp

. (3.17)
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Applying (3.13) yields

aη ≥ γαµ > 0, |bη| ≤ 2γβµ. (3.18)

Solving η = λ
1−λ

for aλ and bλ, we have

aλ =
aη(1 + aη) + b2η
(1 + aη)2 + b2η

, bλ =
bη

(1 + aη)2 + b2η
.

From this and (3.18) the result in (3.14) follows.

The bounds for λ in Theorems 3.3 and 3.4 are written in terms of bounds for

the eigenvalues µ from (3.11). Following the same argument as in [34], we can

prove that αµ and βµ from (3.14) and hence the smallest real and the largest

imaginary parts of µ are independent of h, but depend on ν. The resulting

eigenvalue bounds for λ are very similar to those for the LBB-stable case

(C = 0) from Section 2.2 and [13]. This suggests that the choice γ = O(1)

leads to a method which is essentially insensitive to variations of parameters

ν and h. However, for the practical choice ofW = M̂p we have the restriction

on γ. Numerical experiments [15] show that with the setting of W and Ŝ

from Theorem 3.4 the restriction is indeed important and prohibits the choice

γ = O(1) for all values ν and h of interest. The situation looks better from

the numerical viewpoint if one sets (for the non-symmetrized case (3.2))

W = M̂p, Ŝ =: −γ−1M̂p − C. (3.19)

With this choice, solving linear systems with coefficient matrix Ŝ is inex-

pensive: either a direct sparse Cholesky solver or (better yet) one or two

iterations of multigrid will suffice in practice. This combination of the aug-

mentation and preconditioning, which is intermediate between those in The-

orems 3.3 and 3.4, is not covered by the eigenvalue analysis above. However,

numerical experiments [15] show that the convergence rate of GMRES pre-

conditioned by (3.4) with the above-definedW and Ŝ and γ = 1 is insensitive
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to the variation of grid size and viscosity. Furthermore, with γ chosen by

Fourier analysis (discussed later in this subsection), the above AL precon-

ditioner can yield h- and ν-independent convergence, as will be shown in

numerical experiments.

Next we use a different approach to analyze the eigenvalues of the coefficient

matrices preconditioned by the ideal AL-based preconditioners, which arrives

at the same conclusion as in Theorem 3.3, and, moreover, provides a natural

way to incorporate Fourier analysis to choose the augmentation parameter

γ.

We start by analyzing the non-symmetric augmented system (3.2) and the

corresponding preconditioner (3.4). Using the following factorization:

P−1 =

(
In 0

0 −Ŝ−1

)(
In 0

B −Im

)(
A−1

γ 0

0 Im

)
,

the preconditioned augmented matrix is

P−1Â =

(
In 0

0 −Ŝ−1

)(
In 0

B −Im

)(
A−1

γ 0

0 Im

)(
Aγ BT

B −C

)

=

(
In A−1

γ BT
γ

0 −Ŝ−1(BA−1
γ BT

γ + C)

)
.

(3.20)

Clearly, P−1Â has 1 as an eigenvalue of algebraic multiplicity at least n. The

remaining eigenvalues are the non-unit eigenvalues of −Ŝ−1(BA−1
γ BT

γ + C).

Applying Lemma 2.4 to γBA−1
γ BTW−1, we obtain

BA−1
γ BT

γ =BA−1
γ (BT − γBTW−1C)

= γ−1
(
γBA−1

γ BTW−1
)
W (Im − γW−1C)

=
(
Im − (Im + γBA−1BTW−1)−1

) (
γ−1W − C

)
.

Plugging the above expression into −Ŝ−1(BA−1
γ BT

γ +C) and using the iden-
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tity (2.16) in the Appendix yield

− Ŝ−1(BA−1
γ BT

γ + C)

= − Ŝ−1
(
γ−1W − (Im + γBA−1BTW−1)−1

(
γ−1W − C

))
= − Ŝ−1

(
γ−1W −

(
Im − γCW−1 + γ(BA−1BT + C)W−1

)−1
(γ−1W − C)

)
= − Ŝ−1

(
γ−1W −

(
γW−1 + γ(γ−1W − C)−1(BA−1BT + C)W−1

)−1
)

= − Ŝ−1
(
γ−1W − γ−1W

(
Im + (γ−1W − C)−1(BA−1BT + C)

)−1
)

= − Ŝ−1
(
γ−1W − γ−1W

(
Im −

(
Im + (BA−1BT + C)−1(γ−1W − C)

)−1
))

= − Ŝ−1γ−1W
(
Im + (BA−1BT + C)−1(γ−1W − C)

)−1
.

(3.21)

Remark 3.5. In the above derivation we have assumed that γ−1C −W is

nonsingular, as is always the case in practice.

Remark 3.6. If we let

W =Mp + γC and Ŝ = −γ−1W,

then

−Ŝ−1(BA−1
γ BT

γ + C) =
(
Im + (BA−1BT + C)−1γ−1Mp

)−1

= Im − (Im + γM−1
p (BA−1BT + C))−1,

in agreement with the analysis of the ideal AL preconditioner in Theorem

3.3.

Remark 3.7. If C = 0 as in the case of stable finite elements and if we

choose

W =Mp and Ŝ−1 = −νW−1 − γW−1,

then

−Ŝ−1(BA−1
γ BT

γ ) =
ν + γ

γ

((
Im + (BA−1BT )−1γ−1Mp

)−1
)

=
ν + γ

γ

(
Im − (Im + γM−1

p BA−1BT )−1
)
,
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in agreement with the analysis of the ideal AL preconditioner for stable finite

elements in Theorem 2.1.

Next let us turn to the symmetric augmented system (3.3) and the precon-

ditioner (3.5). Applying the preconditioner leads to(
A−1

γ 0

−Ŝ−1BγA
−1
γ Ŝ−1

)(
Aγ BT

γ

Bγ −Cγ

)
=

(
In A−1

γ Bγ

0 −Ŝ−1BγA
−1
γ BT

γ − Ŝ−1Cγ

)
.

(3.22)

Again, we observe that 1 is the eigenvalue of the preconditioned matrix with

algebraic multiplicity n. Similarly, the (2,2) block of the above matrix on

the right-hand side can be expressed as

− Ŝ−1BγA
−1
γ BT

γ − Ŝ−1Cγ

=− Ŝ−1
(
(Im − γCW−1)B(A+ γBTW−1B)−1BT (Im − γW−1C)

+ (C − γCW−1C)
)

=− Ŝ−1
(
(Im − γCW−1)

(
(BA−1BT )−1 + γW−1

)−1
(Im − γW−1C)

+ (C − γCW−1C)
)

=− Ŝ−1
(
(Im − γCW−1)

(
γ−1W − γ−1W (BA−1BT + γ−1W )−1γ−1W

)
(Im − γW−1C) + (C − γCW−1C)

)
=− Ŝ−1

(
(Im − γCW−1)γ−1W (Im − γW−1C)

− (Im − γCW−1)γ−1W (BA−1BT + γ−1W )−1γ−1W (Im − γW−1C)

+ (C − γCW−1C)
)

=− Ŝ−1
(
(γ−1W − C)− (γ−1W − C)(BA−1BT + C + γ−1W − C)−1

(γ−1W − C)
)

=− Ŝ−1
(
(BA−1BT + C)−1 + (γ−1W − C)−1

)−1
.
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Therefore, letting Ŝ = −γ−1Mp and W =Mp + γC, we obtain

− Ŝ−1BγA
−1
γ BT

γ − Ŝ−1Cγ

=− Ŝ−1
(
(BA−1BT + C)−1 + (γ−1W − C)−1

)−1

=(γ−1Mp)
−1
(
(BA−1BT + C)−1 + (γ−1Mp)

−1
)−1

=
(
(BA−1BT + C)−1γ−1Mp + Im

)−1

=Im −
(
Im + γM−1

p (BA−1BT + C)
)−1

,

from which we can draw the same conclusion as for the non-symmetric case,

namely,

λ =
γµ

1 + γµ
,

where λ is the nonunit eigenvalue of the matrix in (3.22) and µ is as in (3.11).

When applying Fourier analysis to the Schur complement −Ŝ−1(BA−1
γ BT

γ +

C) in (3.21) to choose γ (recall that C = δ Ĉ), the following inequality

from [37, page 245]:

pT Ĉp

pTMpp
≤ 1, p ∈ Rm,

along with

O(h2) ≤ pT Ĉp

pTMpp

verified through numerical experiments, shows that the eigenvalues of Ĉ are

between O(h4) and O(h2) except the 0 eigenvalue. In our experiments, the

same asMp, the symbol of Ĉ is taken to be h2 as well; using other values, say

0, h4 or h3, produces almost identical results. For all other matrices we use

the same symbols as in Table 2.6. From (3.20) we can see that we need to

choose γ so as to cluster the spectrum of −Ŝ−1(BA−1
γ BT

γ +C) about 1. Thus,

we pick the value of γ that minimizes the average distance of the eigenvalues

from 1.

Remark 3.8. If C = 0 as in the case of stable finite element discretizations,
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Table 3.1: GMRES(50) iterations with ideal AL preconditioner (cavity, Q1-

P0, uniform and stretched grids).

Viscosity 0.1 0.01 0.005 0.001 0.1 0.01 0.005 0.001

Grid Uniform Stretched

16× 16 5 5 5 5 5 5 5 5

32× 32 5 4 4 5 5 4 4 5

64× 64 5 4 4 5 5 4 4 5

128× 128 5 4 4 4 5 4 4 4

Fourier analysis shows that the larger γ is, the more clustered the eigenvalues

are about 1. This agrees with the analysis in Theorem 2.1.

3.2 Numerical experiments

In this section, we study the numerical behavior of the ideal AL precondi-

tioners for linear system discretized by stabilized Q1-P0 and Q1-Q1 finite

elements.

The first set of experiments is to use the ideal AL preconditioner to solve

the lid driven cavity problem discretized by Q1-P0 finite elements. With this

choice of elements one can set W = M̂p + γC, Ŝ = −γ−1M̂p − C for the

AL preconditioner, cf. Remark 3.2. In this case no restriction on γ applies

(see Theorem 3.3), so we set γ = 1. The results are shown in Table 3.1 for

the lid driven cavity problem on both uniform and stretched grids. The h-

independence and ν-independence of the AL preconditioner are obvious from

the data.

We also present numerical results for the three test problems obtained from

Q1-Q1 finite element discretization in Tables 3.2, 3.3 and 3.4. In this case,

we set W = M̂p to maintain the sparsity in Aγ and Ŝ = −γ−1M̂ − C as in
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Table 3.2: GMRES(50) iterations with ideal AL preconditioner (cavity, Q1-

Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 7 7 7 7 7 7 8 8

32× 32 7 7 7 7 7 7 8 7

64× 64 6 6 7 6 7 6 7 7

128× 128 6 6 6 6 7 6 7 6

Table 3.3: GMRES(50) iterations with ideal AL preconditioner (cavity, Q1-

Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 7 7 7 7 7 7 7 7

32× 32 6 6 7 6 7 7 7 7

64× 64 6 6 6 6 6 6 7 7

128× 128 5 5 6 5 6 6 7 6

Table 3.4: GMRES(50) iterations with ideal AL preconditioner (step, Q1-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 48 9 9 8 8 9 8

32× 96 9 9 8 8 9 9

64× 192 9 8 8 8 9 9

128× 384 8 8 9 8 9 9

(3.19). These results show that the FA-based strategy for choosing γ gives

very accurate estimates for the optimal γ. The experiments also show that
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the convergence rates with both sets of γ do not depend on the grid size and

viscosity, demonstrating the robustness of the ideal AL preconditioner with

respect to different problems with various parameters.

3.3 Modified AL preconditioner

Unfortunately, the ideal AL preconditioner (3.4) is not feasible in practice

for large problems due to the high cost of exactly solving linear systems

associated with Aγ. Instead, we consider its modified version for stabilized

finite elements given by

P̃ =

(
Ãγ 0

B Ŝ

)
=


A11 A12 0

0 A22 0

B1 B2 Ŝ

 , (3.23)

where Ãγ =

(
A11 A12

0 A22

)
. Here we retain an upper triangular approximation

Ãγ for Aγ to simplify the analysis and in order to reuse parts of the code

already written for the stable case; however, similar results are obtained by

using a block lower triangular approximation to Aγ. Then applying P̃−1 to

the augmented matrix Â gives rise to

P̃−1Â =

(
In 0

0 −Ŝ−1

)(
In 0

B −Im

)(
Ã−1

γ 0

0 Im

)(
Aγ BT

B −C

)

=

(
Ã−1

γ Aγ Ã−1
γ BT

γ

−Ŝ−1B(Ã−1
γ Aγ − I) −Ŝ−1(BÃ−1

γ BT
γ + C)

)
.

(3.24)

Carrying out calculations similar to those found in Section 2.4.1, we obtain

the following result.
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Theorem 3.9. Letting Ŝ−1 = −γW−1, we have

P̃−1Â =


In/2 −DE 0 DG(Im − γW−1C)

A−1
22 A21 In/2 A−1

22 B
T
2 (Im − γW−1C)

FE 0 Im − FG(Im − γW−1C)

 . (3.25)

Hence, P̃−1Â has 1 as an eigenvalue of algebraic multiplicity at least n. The

remaining eigenvalues are the non-unit eigenvalues of the matrix(
In/2 −DE DG(Im − γW−1C)

FE Im − FG(Im − γW−1C)

)
.

Proof. Letting Ŝ−1 = −γW−1, we have (with I = Im)

I − Ŝ−1
(
(−γW−1)−1FG+ γ−1W + (C + Ŝ)(I − γW−1C)−1

)
(I − γW−1C)

= I + γW−1
(
−γ−1WFG+ γ−1W + (C − γ−1W )(I − γW−1C)−1

)
(I − γW−1C)

= I − FG(I − γW−1C),

from which (3.25) immediately follows. The same derivation as in Theorem

2.6 gives that the algebraic multiplicity of the eigenvalue 1 is at least n.

Again, Fourier analysis is used to guide in the choice of γ. The procedure

followed is similar to that described in Section 2.4. In the interest of brevity,

we omit the details.

Motivated by the same reason for the choice of Ŝ in the ideal AL precon-

ditioner (3.4), we also consider the choice

Ŝ = −γ−1M̂p − C

in the modified version. The presence of C complicates the analysis, so we

will only investigate it through numerical experiments in the next section.
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Table 3.5: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005 0.001

Grid Em Opt Em Opt Em Opt Em Opt

16× 16 10 10 15 15 18 18 29 29

32× 32 10 9 13 12 16 15 29 28

64× 64 10 8 11 10 13 13 26 26

128× 128 9 8 9 9 12 12 24 23

3.4 Numerical experiments

3.4.1 Empirical rule for choosing γ

As before, we compare the number of GMRES iterations preconditioned by

the modified AL preconditioner with γ chosen by the empirical rule and with

experimentally determined optimal values. We test the preconditioner with

Ŝ = −γ−1M̂p − C. The results are shown in Tables 3.5, 3.6 and 3.7. The

iteration counts show the excellent behavior of the modified AL precondi-

tioner, with independence on the mesh size and a mild dependence on ν. In

addition, the empirical rule gives almost optimal convergence rate in terms

of GMRES iteration counts.

3.4.2 Fourier analysis-based approach for choosing γ

In the following, we evaluate γ chosen by the Fourier analysis and experi-

mentally determined optimal values. First we test the preconditioner with

approximate Schur complement given by Ŝ−1 = −γW−1 (with W = M̂p), as

suggested by Theorem 3.9. We consider both uniform and stretched grids.

The results are shown in Tables 3.8, 3.9 and 3.10.

As for stable finite elements, the value of γ determined by FA gives nearly
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Table 3.6: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, stretched grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005 0.001

Grid Em Opt Em Opt Em Opt Em Opt

16× 16 9 9 14 14 16 16 25 25

32× 32 9 9 12 12 15 14 25 24

64× 64 9 8 11 11 14 14 25 25

128× 128 9 7 10 10 13 13 26 25

Table 3.7: GMRES(50) iterations with modified AL preconditioner (step,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005

Grid Em Opt Em Opt Em Opt

16× 48 13 13 18 17 20 20

32× 96 13 12 18 17 21 20

64× 192 12 12 17 16 22 20

128× 384 12 11 18 14 25 20

Table 3.8: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 10 9 16 14 38 17 92 27

32× 32 9 8 13 12 24 14 50 27

64× 64 8 8 11 10 13 13 36 26

128× 128 8 7 9 9 13 12 25 24

optimal results in almost all cases; the only exceptions occur for low viscosity
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Table 3.9: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, stretched grids, Ŝ = −γ−1M̂p).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 9 9 14 13 32 15 82 24

32× 32 9 8 12 11 22 14 43 24

64× 64 9 8 12 11 14 14 35 25

128× 128 8 7 10 10 13 13 26 25

Table 3.10: GMRES(50) iterations with modified AL preconditioner (step,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 48 16 12 67 16 97 18

32× 96 13 11 40 17 57 20

64× 192 12 11 20 16 35 20

128× 384 11 11 17 17 27 23

problems with coarse grids, and we have already observed that these problems

are not physically meaningful. What is important is that the gap between

the iteration counts corresponding to the two choices of γ narrows as the

mesh is refined.

Again, we observe iteration counts that are essentially h-independent and

only mildly dependent on the viscosity. One exception appears to be the

step problem with viscosity ν = 0.005, for which the iteration count with

the optimal γ shows a mild dependence on h. We address this problem by

modifying the approximate Schur complement in the preconditioner; letting

Ŝ = −γ−1M̂p − C in the modified AL preconditioner, we obtain the results
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Table 3.11: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 10 10 16 15 18 18 64 29

32× 32 9 9 13 12 18 15 48 28

64× 64 8 8 10 10 13 13 35 26

128× 128 8 8 9 9 13 12 24 23

Table 3.12: GMRES(50) iterations with modified AL preconditioner (cavity,

Q1-Q1, stretched grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 9 9 14 14 16 16 55 25

32× 32 9 9 12 12 17 14 42 24

64× 64 9 8 11 11 14 14 34 25

128× 128 7 7 10 10 14 13 26 25

Table 3.13: GMRES(50) iterations with modified AL preconditioner (step,

Q1-Q1, uniform grids, Ŝ = −γ−1M̂p − C).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 48 13 13 24 17 49 20

32× 96 13 12 24 17 42 20

64× 192 12 12 19 16 28 20

128× 384 11 11 15 14 20 20

presented in Tables 3.11, 3.12 and 3.13. Now we see that GMRES iteration
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Table 3.14: GMRES(50) iterations with modified AL preconditioner (cavity,

Newton, Q1-Q1, uniform grids). The asterisk means that the FA values of γ

are the ones found for the Oseen problem.

Viscosity 0.1 0.01 0.005 0.001

Grid FA* Opt FA* Opt FA* Opt FA* Opt

16× 16 14 13 25 23 31 31 121 63

32× 32 14 13 23 23 35 35 107 77

64× 64 14 13 23 23 34 34 100 81

128× 128 15 13 25 23 41 35 97 96

Table 3.15: GMRES(50) iterations with modified AL preconditioner (cavity,

Newton, Q1-Q1, stretched grids). The asterisk means that the FA values of

γ are the ones found for the Oseen problem.

Viscosity 0.1 0.01 0.005 0.001

Grid FA* Opt FA* Opt FA* Opt FA* Opt

16× 16 13 13 24 21 28 25 107 47

32× 32 13 13 23 22 32 30 96 62

64× 64 14 14 24 24 33 33 87 81

128× 128 14 14 25 24 40 34 89 77

counts with the optimal γ are essentially h-independent for all values of ν;

indeed, the rate of convergence tends to improve as the mesh is refined.

Again, the iteration counts for γ chosen by FA are very close, and even

identical to those with optimal γ on fine grids. This choice of Ŝ is only

slightly more expensive than the previous one; in practice, including C in Ŝ

may be recommended, as it results in increased robustness of the solver. We

also emphasize that the preconditioner does not have any difficulties handling

stretched grids.

We also performed some experiments on linear systems generated from
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Table 3.16: Full GMRES iterations with PCD, LSC preconditioners (cavity,

Q1-Q1, uniform and stretched grids).

Viscosity 0.005 0.001 0.005 0.001

PCD LSC PCD LSC PCD LSC PCD LSC

Grid Uniform Stretched

16× 16 54 43 144 122 50 38 118 98

32× 32 54 42 155 147 51 48 143 126

64× 64 41 31 154 149 50 63 145 154

128× 128 35 28 110 104 47 84 142 188

Newton linearization using the FA values of γ found for the Oseen equations

and with the choice Ŝ = −γ−1M̂p − C. The iteration numbers are shown in

Table 3.14 and 3.15. Similar remarks to those in Section 2.4.2 apply.

3.4.3 Comparison with other preconditioners

Next, we briefly compare the modified augmented Lagrangian preconditioner

with some of the best existing methods for the class of problems of interest.

In [33], the LSC preconditioner has been generalized to deal with stabilized

finite element discretizations of the Navier–Stokes equations, like Q1-Q1.

Comparing our results with those reported in [33] as well as Table 3.16,

we observe that the modified AL preconditioner is much less sensitive to

variations in h and ν, and performs much better and more consistently on

stretched grids. We also tested the LSC and PCD preconditioners on linear

systems from Newton linearization; results for two values of the viscosity

using uniform and stretched grids are shown in Table 3.17. Comparing these

results with those in Tables 3.14 and 3.15, we see that the modified AL pre-

conditioner clearly outperforms the other preconditioners on these problems.
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Table 3.17: Full GMRES iterations with PCD, LSC preconditioners (cavity,

Newton, Q1-Q1, uniform and stretched grids).

Viscosity 0.005 0.001 0.005 0.001

PCD LSC PCD LSC PCD LSC PCD LSC

Grid Uniform Stretched

16× 16 69 62 122 94 63 53 125 112

32× 32 83 73 311 290 77 75 244 231

64× 64 77 65 240 204 82 111 248 246

128× 128 72 55 256 199 80 168 251 298

3.4.4 Inexact solves

Finally, we perform experiments analogous to those reported in Table 2.22 to

compare the use of exact and inexact solves for the linear systems associated

with A11 and A22. Again, exact solves are obtained with a sparse LU fac-

torization with column AMD reordering. Inexact solves are now obtained by

performing three AMG iterations with symmetric Gauss–Seidel as the smoo-

ther. The reason while three inner AMG iterations are performed is that

for the larger meshes, we observed a slight increase in the number of itera-

tions with inexact solves if only one AMG iteration is used. The results for

both Picard and Newton linearization are given in Table 3.18. By compar-

ing iteration counts, we observe almost identical rates of convergence for the

exact and inexact approaches; in one case (128× 128 grid, Newton lineariza-

tion) the exact variant actually requires one more iteration than the inexact

one. We see that while the exact variant is faster for small and moderate-size

problems, the inexact variant becomes considerably faster for large problems.

Moreover, the timings show that the inexact solver yields a preconditioner

with very good scalability, especially for the Picard linearization.
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Table 3.18: Comparison of exact and inexact inner solvers. GMRES(50) iter-

ations and timings with modified AL preconditioner (cavity, Q1-Q1, uniform

grids, ν = 0.005).

Grid Picard Newton

Timings Exact Inexact Exact Inexact

16× 16 18 18 31 31

Setup time 0.01 0.06 0.01 0.01

Iter time 0.04 0.13 0.11 0.21

Total time 0.05 0.19 0.12 0.22

32× 32 18 18 35 35

Setup time 0.10 0.05 0.10 0.05

Iter time 0.16 0.57 0.34 0.89

Total time 0.26 0.62 0.44 0.94

64× 64 13 13 34 37

Setup time 0.96 0.31 0.89 0.29

Iter time 0.52 2.17 1.33 4.98

Total time 1.49 2.48 2.22 5.27

128× 128 13 14 41 40

Setup time 19.52 1.34 19.14 1.33

Iter time 3.24 13.13 10.88 30.51

Total time 22.76 14.47 30.02 31.84

256× 256 12 13 42 42

Setup time 158.62 5.43 158.97 5.32

Iter time 15.93 38.95 63.55 149.36

Total time 174.55 44.38 222.52 154.68
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Chapter 4

A relaxed dimensional

factorization preconditioner

In this chapter we study a relaxed dimensional factorization (RDF) precon-

ditioner for saddle point problems. Properties of the preconditioned matrix

are analyzed and compared with those of the closely related dimensional

splitting (DS) preconditioner introduced in [10]. Numerical results for a va-

riety of discretization methods of both steady and unsteady incompressible

flow problems indicate very good behavior of the RDF preconditioner with

respect to both mesh size and viscosity. Finally we discuss a generalization of

the RDF preconditioner for linear system obtained by using stabilized finite

elements. Additional results can be found in [12].

4.1 Dimensional splitting preconditioner

We begin with a brief description of DS preconditioning; for further details,

see [10].

We first consider the saddle point system (1.17) for the 2D Oseen problem

with stable finite elements discretization; in this case, C = 0 and Ã has the
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block structure

Ã =


A1 0 BT

1

0 A2 BT
2

−B1 −B2 0

 , (4.1)

i.e., A = diag(A1, A2) and B = (B1, B2) in (1.17). Each diagonal block ma-

trix Ai ∈ Rn/2×n/2 is a discrete scalar convection-diffusion-reaction operator

Ai = σM + νL+Ni, (4.2)

with M being the diagonal block of the velocity mass matrix Mu (Mu =

diag(M,M) for 2D), L the discrete (negative) Laplacian, and Ni the convec-

tive terms; the parameter σ ≥ 0 is typically proportional to the reciprocal

of the time step, and is zero in the steady case. Moreover, BT
1 ∈ Rn/2×m,

BT
2 ∈ Rn/2×m are discretizations of the partial derivatives ∂

∂x
, ∂
∂y
, respectively.

The dimensional splitting (DS) preconditioner proposed in [10] is of the

form

B =
1

α


A1 + αI 0 BT

1

0 αI 0

−B1 0 αI



αI 0 0

0 A2 + αI BT
2

0 −B2 αI

 , (4.3)

and is suggested by splitting Ã as follows:

Ã = Ã1 + Ã2 =


A1 0 BT

1

0 0 0

−B1 0 0

+


0 0 0

0 A2 BT
2

0 −B2 0

 . (4.4)

(Here and thereafter we omit the subscripts for the identity matrices for

notational brevity when they are clear from the context.) The alternating

(alternating direction iteration-like) stationary iteration corresponding to the

DS splitting is (αI + Ã1)x
(k+ 1

2
) = (αI − Ã2)x

(k) + b̃,

(αI + Ã2)x
(k+1) = (αI − Ã1)x

(k+ 1
2
) + b̃,

(4.5)
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(with k = 0, 1, . . ., and x(0) arbitrary). It is obtained alternating between the

following two splittings of Ã:

Ã = (αI + Ã1)− (αI − Ã2)

and

Ã = (αI + Ã2)− (αI − Ã1).

In [10], it is shown that the iteration (4.5) is convergent for all α > 0 to

the unique solution of Ãx = b̃, provided that A + AT is positive definite

and B has full rank. We should point out that the factor 1/α used in (4.3)

originally appears as 1/(2α) in [10]. Since this factor has no effect on the

preconditioned system, we use 1/α in this chapter just for analysis purpose.

By performing the matrix multiplication on the right-hand side of (4.3), it

follows that B has the block structure

B =


αI + A1 −α−1BT

1 B2 BT
1

0 αI + A2 BT
2

−B1 −B2 αI

 . (4.6)

From (4.1) and (4.6), we can see that the difference between the precondi-

tioner B and the coefficient matrix Ã is given by

B − Ã =


αI −α−1BT

1 B2 0

0 αI 0

0 0 αI

 . (4.7)

Equation (4.7) shows that as α tends to zero, the weight of the three diagonal

blocks in the difference matrix decreases, whereas the weight of the nonzero

off-diagonal block becomes unbounded. Hence, the choice of α requires a

balancing act. The size of α depends on the scaling of the equations in the

linear system.
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4.2 Relaxed dimensional factorization precon-

ditioner

Based on the previous observations, an improved variant of the DS precon-

ditioner was proposed in [12]. The new preconditioner is defined as follows:

M =


A1 −α−1BT

1 B2 BT
1

0 A2 BT
2

−B1 −B2 αI

 . (4.8)

By comparing the preconditioner M defined in (4.8) with the DS precondi-

tioner B defined in (4.6), we can see that the new preconditioner no longer

contains the shift terms αI appearing in the (1,1) and (2,2) blocks of B. It

is important to note that the preconditioner M can be written in factorized

form as

M =
1

α


A1 0 BT

1

0 αI 0

−B1 0 αI



αI 0 0

0 A2 BT
2

0 −B2 αI

 =:
1

α
M1M2.

Note that M1 and M2 are invertible provided that A1, A2 have positive

definite symmetric part, hence in this case the preconditioner itself is non-

singular. This (sufficient) condition is satisfied for both Stokes and Oseen

problems. In the particular case α = 1, the preconditioner M reduces to

M =


A1 0 BT

1

0 I 0

−B1 0 I



I 0 0

0 A2 BT
2

0 −B2 I

 . (4.9)

By analogy with the concept of dimensional splitting (4.3), it follows that

the preconditioner M given by (4.9) can be regarded as a dimensional fac-

torization preconditioner, and hence the preconditioner M given by (4.8) is

referred to as the Relaxed Dimensional Factorization (RDF) preconditioner.
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By comparing (4.8) with (4.1), we can see that the difference between M
and Ã is given by

R = M− Ã =


0 −α−1BT

1 B2 0

0 0 0

0 0 αI

 . (4.10)

Hence, compared to DS preconditioning, now only one of the three diagonal

blocks (the smallest one in size) is nonzero, while the nonzero off-diagonal

block is the same for both RDF and DS preconditioning. This observation

suggests that M may be a better preconditioner than B, since it gives a

better approximation of the system matrix Ã for the same value of α. Fur-

thermore, the structure of (4.10) somewhat facilitates the analysis of the

eigenvalue distribution of the preconditioned matrix. We should remark that

the RDF preconditioner M no longer relates to an alternating direction it-

eration like (4.5). Clearly, this fact is of no consequence when M is used as

a preconditioner for a Krylov subspace method like GMRES [67].

We have the following result from [12].

Theorem 4.1 ( [12]). The preconditioned matrix ÃM−1 has an eigenvalue at

1 with algebraic multiplicity n. The remaining eigenvalues are the eigenvalues

of the matrix Zα = α−1(S1 + S2) − 2α−2S1S2, where Â1 = A1 + α−1BT
1 B1,

S1 = B1Â
−1
1 BT

1 , Â2 = A2 + α−1BT
2 B2 and S2 = B2Â

−1
2 BT

2 .

Eigenvalue plots of the preconditioned matrices obtained with DS and RDF

preconditioners (with optimal values of α) are displayed in Figures 4.1–

4.2 [12]. These two plots confirm that for both DS and RDF preconditioning,

the eigenvalues of the preconditioned matrices are confined to a rectangular

region in the half-plane Re(z) ≥ 0; note that the appearance of a zero eigen-

value is due to the singularity of the saddle point system (1.17), which is

caused by the hydrostatic pressure mode [37]. As already mentioned, this ze-

ro eigenvalue is harmless in practice and can be ignored [37, Section 2.3]. In
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Figure 4.1: Plots of the eigenvalues of the preconditioned Oseen matrix (cav-

ity, Q2-Q1, uniform 32 × 32 grid, ν = 0.01 and experimentally optimal α).

Top: ÃB−1. Bottom: ÃM−1.
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these two examples, corresponding to the viscosities ν = 0.01 and ν = 0.001,

it is clear that RDF produces a much more favorable eigenvalue distribution

than DS. Indeed, in these examples the DS preconditioner fails to force many

of the eigenvalues away from zero (especially in the case of ν = 0.001), which

may cause the GMRES method preconditioned by DS preconditioner to con-

verge more slowly. In contrast, the RDF preconditioner is able to cluster

most of the eigenvalues at 1. Indeed, according to Theorem 4.1, there are

at least 2178 eigenvalues equal to 1 in this case, and the plots show that
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Figure 4.2: Plots of the eigenvalues of the preconditioned Oseen matrix (cav-

ity, Q2-Q1, uniform 32× 32 grid, ν = 0.001 and experimentally optimal α).

Top: ÃB−1. Bottom: ÃM−1.
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the remaining nonzero eigenvalues are well separated from the origin. The

clustering of the spectrum obtained with DS preconditioning can be greatly

improved by diagonally scaling Ã prior to applying the DS preconditioner

(see [10]), but it is interesting to see that for these examples RDF achieves

excellent clustering without the need for scaling.

The following result provides additional information about the non-unit

eigenvalues of the RDF-preconditioned matrices.
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Theorem 4.2 ( [12]). The eigenvalues µi of Zα are of the form

µi =
αξi

1 + αξi
,

where the ξi’s satisfy the generalized eigenvalue problem

BA−1BTϕi = ξi(α
2I + Ŝ1Ŝ2)ϕi, with Ŝk = BkA

−1
k BT

k (k = 1, 2).

The foregoing theorem can be used to obtain estimates on the magnitude

of the non-unit eigenvalues of the preconditioned matrix; for example, it

can be used to show that they go to zero like O(α) for α → 0+, and like

O(α−1) for α → ∞. Indeed, let (ξ, ϕ) be a generalized eigensolution of

BA−1BTϕ = ξ(α2I + Ŝ1Ŝ2)ϕ, with ∥ϕ∥2 = 1. Then

ξ =
ϕ∗BA−1BTϕ

α2 + ϕ∗Ŝ1Ŝ2ϕ
,

where ϕ∗ is the conjugate transpose of ϕ. It follows that

µ =

ϕ∗BA−1BTϕ

α2+ϕ∗Ŝ1Ŝ2ϕ

1
α
+ ϕ∗BA−1BTϕ

α2+ϕ∗Ŝ1Ŝ2ϕ

.

Taking the limits for α → 0+ and for α → ∞ we see that the non-unit

eigenvalues of the preconditioned matrix ÃM−1 tend to 0 like O(α) and to

∞ like O(α−1), respectively.

4.2.1 Practical implementation of the RDF precondi-

tioner

In this subsection we outline the practical implementation of the RDF pre-

conditioner in a Krylov subspace iterative method, such as GMRES. The

main step is applying the preconditioner, i.e., solving linear systems with
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coefficient matrix M. The RDF preconditioner can be factorized as follows:

M =


A1 0 α−1BT

1

0 I 0

−B1 0 I



I 0 0

0 A2 BT
2

0 −B2 αI



=


I 0 α−1BT

1

0 I 0

0 0 I



Â1 0 0

0 I 0

−B1 0 I



I 0 0

0 Â2 BT
2

0 0 αI



I 0 0

0 I 0

0 −α−1B2 I

 ,

showing that the preconditioner requires solving two linear systems at each

step, with coefficient matrices Â1 = A1+α
−1BT

1 B1 and Â2 = A2+α
−1BT

2 B2.

Note that these systems can be interpreted as discretizations of anisotropic

scalar elliptic boundary value problems of convection-diffusion type (for the

unsteady case, the equations are of reaction-convection-diffusion type). Sev-

eral different approaches are available for solving linear systems involving Â1

and Â2. We defer the discussion of these to Section 4.3.

In [10] it was pointed out that the performance of DS preconditioning can

be significantly improved by diagonal scaling. We found that scaling can be

beneficial for RDF as well. Unless otherwise specified, we perform a prelimi-

nary symmetric scaling of the system Ãx = b̃ in the formD− 1
2 ÃD− 1

2y = D− 1
2 b̃

with y = D 1
2x, and

D =


D1 0 0

0 D2 0

0 0 I

 ,

where (for 2D problems) diag(D1, D2) is the main diagonal of the velocity

mass matrix Mu.
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4.2.2 Estimation of the optimal relaxation parameter

α using Fourier analysis

In this section we describe an inexpensive technique for approximating the

optimal value of the parameter α using Fourier analysis as we did for the

modified AL preconditioner in Section 2.4. In [12], the 2D differential oper-

ators are replaced by 1D surrogates; in this thesis, we use the original 2D

operators.

Following the symbols in Table 2.6, we use a1, a2, b1, b2 to denote the

generic eigenvalues of A1, A2, B1, B2. Furthermore, from S1 = B1(A1 +

α−1BT
1 B1)

−1BT
1 , S2 = B2(A2 + α−1BT

2 B2)
−1BT

2 and Zα = α−1(S1 + S2) −
2α−2S1S2, it follows that the eigenvalues of S1, S2 and Zα can also be repre-

sented in terms of a1, a2, b1 and b2. To be more specific, the eigenvalues of

Zα can be expressed as

z(α) =
1

α
(s1 + s2)−

2

α2
s1s2,

where s1, s2 are the eigenvalues of S1, S2 and are given by

s1 =
b21

a1 +
1
α
b21
, and s2 =

b22
a2 +

1
α
b22
.

Note that the diagonal scaling strategy described in the previous subsection

leaves s1 and s2, and thus z(α), unchanged.

From Theorem 4.1 we expect that clustering the eigenvalues of Zα around

1 could lead to fast convergence of the RDF-preconditioned iteration. This

can be achieved by choosing α so as to cluster the values of z(α) around 1.

Therefore, for any fixed h and ν, choosing the value of α that maximizes

the clustering of the z(α) around 1 is equivalent to solving the following

optimization problem:

min
α>0

mean |z(α; θx, θy)− 1|

where θx, θy = 1, 2, . . . , l
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to determine the value of α, where mean represents the average value. Unfor-

tunately, finding a closed form solution to this problem appears to be rather

difficult. In practice, we compute an approximate solution to the optimiza-

tion problem as follows. We sample α over the range of [0.0001, 2] (with

step 0.0001) for 2D finite element discretizations, and over the range [0.1, 30]

(with step 0.1) for 3D finite differences, since numerical tests indicate that

the best results are obtained for α in these intervals. These values are then

substituted into the expression for z(α); we then pick the α that minimizes

the average of the values of |z(α; θx, θy) − 1|. This computation is inexpen-

sive and imposes almost no overhead compared with the cost of solving the

Stokes (or Oseen) problem. If desired, the results can be given in the form

of a table giving the approximate value of αopt for each value of h and ν.

Finally, we note that when dealing with unsteady problems we also have to

take into account the mass matrices. For the purpose of the Fourier analysis,

we use as the corresponding symbol h2 in 2D finite elements and 1 in 3D

finite differences discretizations, to account for the different scaling used in

two types of discretizations.

4.3 Numerical experiments

In this section we present the results of numerical experiments on saddle

point systems arising from linearization and discretization of the test prob-

lems in Section 2.3. We consider only Oseen problems; for results on Stokes

problems as well as the comparison between DS and RDF, see [12]. Note that

the reported results for steady cases in [12] correspond to the linear system

occurring at the 5th Picard iteration, while in this section we solve the lin-

ear system at the 1st Picard iteration, i.e., the one immediately after Stokes

solve, as what was done for the AL preconditioners. In fact, the iteration

count almost keeps the same during the Picard iteration, cf. Table 4.7. For
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Table 4.1: GMRES(50) iterations with RDF preconditioner (cavity, Q2-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 11 11 12 12 32 14 59 23

32× 32 11 11 13 11 27 12 47 28

64× 64 11 11 13 9 13 10 40 21

128× 128 10 6 9 8 10 10 22 13

Table 4.2: GMRES(50) iterations with RDF preconditioner (cavity, Q2-Q1,

stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 14 14 15 14 31 16 43 23

32× 32 21 21 21 21 31 20 50 27

64× 64 19 17 25 16 26 18 65 28

128× 128 17 10 22 12 24 14 56 21

unsteady cases, we present results for a linear system occurring in the course

of a simulation, before reaching the steady-state. We let σ = h−1 in (4.2);

using a larger time step (say, five times as large) typically leads to a small

increase in the number of iterations but the overall behavior of the tested

preconditioner is the same.

Experimental results for the steady case are displayed in Tables 4.1–4.3;

the middle table is for stretched grids (with the default parameter setting in

IFISS), the remaining ones for uniform grids. For stretched grids (Table 4.2),

we use the same strategy as in Section 2.5.2: Define the average mesh size

h =: 2/m where m is the number of grid points in the x-direction (recall that

here Ω = [−1, 1] × [−1, 1]), and use it for Fourier analysis. This strategy
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Table 4.3: GMRES(50) iterations with RDF preconditioner (step, Q2-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 16 21 15 62 14 81 15

32× 32 13 13 34 13 56 17

64× 64 12 12 22 14 34 16

128× 128 10 10 12 12 19 19

Table 4.4: GMRES(50) iterations with RDF preconditioner (unsteady cavity,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA FA FA FA

16× 16 11 10 10 8

32× 32 11 11 10 8

64× 64 10 10 8 4

128× 128 10 5 4 2

Table 4.5: GMRES(50) iterations with RDF preconditioner (unsteady cavity,

Q2-Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA FA FA FA

16× 16 13 11 11 9

32× 32 17 12 11 10

64× 64 14 9 5 2

128× 128 6 2 2 2

turns out to give good heuristic values in practice. Results for the unsteady

problems are reported in Tables 4.4–4.6. Symmetric diagonal scaling is used
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Table 4.6: GMRES(50) iterations with RDF preconditioner (unsteady step,

Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005

Grid FA FA FA

16× 16 17 15 18

32× 32 21 26 20

64× 64 25 14 10

128× 128 14 8 7

for RDF.

For all problems we observe convergence rates that are independent of h,

and ν-independent convergence is obtained for unsteady problems. Note

that for the lid driven cavity problem on the 128× 128 grid with very small

viscosity (ν = 0.005 and 0.001), 4 or even 2 iterations are required to satisfy

the desired tolerance. Fourier analysis accurately estimates the optimal α

only if the mesh is fine enough to yield physical solutions. Note that the

results for the value of α obtained by Fourier analysis (‘FA estimate’ in

Tables 4.1 and 4.3) are essentially optimal, except for the cavity problem on

stretched grids (Table 4.2).

An important property of the RDF preconditioner is that both the optimal

α and the performance of the preconditioner remain virtually unchanged

throughout the solution of the Navier–Stokes equation by Picard iteration.

For the Q2-Q1 discretization of the lid driven cavity problem on the 128 ×
128 grid, this phenomenon is illustrated in Table 4.7, which displays the

optimal value of α and the number of linear iterations required at each of

the first five Picard steps needed to solve the Navier–Stokes equations with

ν = 0.1, 0.01, 0.005 and ν = 0.001.

The dependence of the RDF preconditioned GMRES on the parameter α

is illustrated in Figure 4.3; these results are from tests on two representative
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Table 4.7: GMRES(50) iterations with RDF preconditioner of the first five

Picard iterations (Cavity, Q2-Q1, uniform 128 × 128 grid, different viscosi-

ties).

Viscosity 0.1 0.01 0.005 0.001

Picard αopt its αopt its αopt its αopt its

1 0.04 6 0.007 9 0.012 10 0.03 13

2 0.04 6 0.007 9 0.012 10 0.03 16

3 0.04 6 0.007 8 0.012 10 0.03 11

4 0.04 6 0.007 8 0.012 10 0.03 15

5 0.04 6 0.007 8 0.012 10 0.03 14

Figure 4.3: Number of iterations vs. parameter α (cavity, Q2-Q1, uniform

grids). Left: ν = 0.01. Right: ν = 0.001.
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steady Oseen problems with ν = 0.01 and ν = 0.001, using the 64 × 64

and 128 × 128 grids. We can see that the RDF preconditioner is not overly

sensitive to the value of the parameter α, in the sense that the iteration count

does not change dramatically near the experimental optimal α. We observe

that there is a fairly wide range of values of the parameter α that produce

similar convergence results.
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Table 4.8: GMRES(50) iteration counts and timings with RDF precondition-

er (3D Oseen, MAC).

Viscosity 0.1 0.01 0.005

Grid its (αopt) its (αopt) its (αopt)

16× 16× 16 12 (1.6-3.6) 18 (13.1-14) 27 (21.6-21.9)

Setup time 0.11 0.48 0.13

Iter time 0.58 1.32 2.30

Total time 0.69 1.80 2.43

32× 32× 32 12 (2.3-2.4) 19 (12.3-14) 26 (20.5 - 22)

Setup time 1.60 1.89 2.45

Iter time 10.87 17.73 36.27

Total time 12.47 19.62 38.72

48× 48× 48 13 (1.7-3.0) 19 (12.6-14) 26 (20.4 - 22)

Setup time 7.04 9.43 8.61

Iter time 45.92 88.39 125.19

Total time 52.96 97.82 133.80

64× 64× 64 13 (2.1-2.6) 19 (12.7-14) 26 (20.6 - 22)

Setup time 18.24 23.46 25.22

Iter time 112.06 219.17 333.51

Total time 130.30 242.63 358.73

Next, we solve 3D steady and unsteady Oseen problems discretized by

Marker-and-Cell [49] using GMRES(50) with the RDF preconditioner, which

takes the form
A1 0 0 BT

1

0 αI 0 0

0 0 αI 0

−B1 0 0 αI



αI 0 0 0

0 A2 0 BT
2

0 0 αI 0

0 −B2 0 αI



αI 0 0 0

0 αI 0 0

0 0 A3 BT
3

0 0 −B3 αI

 .
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Table 4.9: GMRES(50) iteration counts and timings with RDF precondition-

er (unsteady 3D Oseen, MAC).

Viscosity 0.1 0.01 0.005

Grid its (αopt) its (αopt) its (αopt)

16× 16× 16 12 (1.0 -1.6) 18(3.0 - 5.7) 20 (4.6-4.7)

Setup time 0.10 0.06 0.07

Iter time 0.61 0.67 0.76

Total time 0.71 0.73 0.83

32× 32× 32 14 (0.9-1.2) 21 (2.3 - 5.2) 25 (2.9-7.0)

Setup time 1.73 1.19 0.99

Iter time 13.92 18.44 17.96

Total time 15.65 19.63 18.95

48× 48× 48 15 (0.8-1.0) 22 (2.0 - 2.8) 27 (2.7-3.4)

Setup time 6.26 4.43 4.24

Iter time 54.60 71.35 92.70

Total time 60.86 75.78 96.94

64× 64× 64 16 (0.6-1.0) 22 (1.8-2.3) 28 (2.4 - 3)

Setup time 18.83 12.11 9.54

Iter time 156.69 175.91 177.72

Total time 175.52 188.02 187.26

The subproblems associated with Âi = Ai +α−1BT
i Bi (i = 1, 2, 3) are solved

inexactly via a single V-cycle of algebraic multigrid (AMG) with symmetric

Gauss–Seidel as the smoother. The AMG implementation is the one provided

by the Fortran code MI20; see [20, 21]. No diagonal scaling is applied here

since the velocity mass matrix is the identity matrix. In Tables 4.8 and 4.9

we report results obtained using the optimal α for the steady and unsteady

case, respectively. When a range of values is reported for the optimal α, the

same number of iterations was observed for all values of α in that range. Note
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that the optimal α’s are now much larger than in the case of finite elements,

due to the different scaling of the matrix entries. Indeed, the stiffness matrix

entries now scale as O(h−2) rather than being O(1) as in the case of finite

elements. (The mass matrices now are just identity matrices, whereas the

finite element mass matrices scale as O(h2) for 2D and O(h3) for 3D.) As

in the 2D case, we set the time step to be the mesh size h. Once again,

our results show that RDF is able to achieve convergence rates that are h-

independent and only moderately dependent on ν. The smallest value of the

viscosity we consider is ν = 0.005, since smaller values would require finer

grids to give physically meaningful solutions.

We report setup times, iteration times and total solution times; note the

very small setup times achieved by MI20 for these problems. The scalability

with respect to problem size, while not perfect, appears to be quite good

overall.

4.3.1 Comparison with other preconditioners

In this subsection we briefly compare RDF preconditioning with PCD, the

modified PCD, LSC and the modified AL preconditioners. First comparing

the results in the previous subsection and the Tables 2.18 and 2.19, all the

PCD, the modified variant and LSC preconditioners require a significantly

higher number of iterations than RDF.

To compare the RDF and the modified AL preconditioners, we apply the

same diagonal scaling to the linear systems and then the preconditioners.

The results for the steady lid driven cavity with Q2-Q1 finite element dis-

cretizations on stretched grids are presented in Table 4.10. The value of γ

is chosen by Fourier analysis since it give almost optimal convergence rate.

Comparing the iteration counts in Table 4.2, the modified AL preconditioner

outperforms RDF clearly even with optimal α. Furthermore, the iteration
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Table 4.10: GMRES(50) iterations with diagonal scaling and modified AL

preconditioner (cavity, Q2-Q1, stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA FA FA FA

16× 16 9 9 19 32

32× 32 9 9 15 26

64× 64 8 9 11 22

128× 128 8 8 10 14

counts are smaller than those in Table 2.13, especially on the largest grid.

We also show GMRES(50) iterations and timings in Table 4.11 for un-

steady step problem discretized by Q2-Q1 finite elements. The subproblems

associated with Â1 and Â2 in RDF and A11, A22 and the compatible Lapla-

cian in the modified AL preconditioner are performed inexactly by MI20.

First, using inexact solves does not affect the convergence rate significantly,

especially for problems with small viscosity. Next, very good scalability is

achieved except for the case with 256 × 256 grid and ν = 0.1. Finally, the

RDF and modified AL preconditioners give similar performance in terms of

both GMRES iteration counts and timings.

4.4 The stabilized case

In this section we discuss a straightforward generalization of the RDF precon-

ditioner to saddle point systems obtained by using stabilized finite element

discretizations. The spectrum of the preconditioned matrix is analyzed, the

technique based on Fourier analysis for estimating the relaxation parame-

ter is described, and numerical results show the competitiveness of the RDF

preconditioner.
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Table 4.11: Comparison of RDF and modified AL preconditioners.

GMRES(50) iterations and timings (unsteady step, Q2-Q1, uniform grids).

Viscosity 0.1 0.01 0.005

Grid RDF Mod AL RDF Mod AL RDF Mod AL

16× 16 19 17 19 20 22 24

Setup time 0.15 0.03 0.14 0.39 0.18 0.41

Iter time 0.25 0.21 0.21 0.24 0.23 0.29

Total time 0.40 0.24 0.35 0.63 0.41 0.70

32× 32 23 25 31 30 24 26

Setup time 0.16 0.19 0.15 0.22 0.14 0.21

Iter time 1.44 1.87 1.60 2.72 1.23 2.28

Total time 1.60 2.06 1.75 2.94 1.37 2.49

64× 64 29 33 16 13 12 13

Setup time 0.72 0.82 0.74 1.00 0.78 1.04

Iter time 8.96 9.78 5.03 5.17 4.40 5.34

Total time 9.68 10.60 5.77 6.17 5.18 6.38

128× 128 20 23 9 10 9 10

Setup time 3.96 3.63 4.23 4.11 3.89 4.43

Iter time 30.84 31.50 16.23 16.29 16.32 19.11

Total time 34.80 35.13 20.46 20.40 20.21 23.54

256× 256 31 29 8 8 8 8

Setup time 15.02 15.00 17.15 15.36 19.07 17.18

Iter time 179.75 182.26 59.82 51.77 58.29 65.49

Total time 194.77 197.26 76.97 67.13 77.36 82.67

Using stabilized finite element discretizations, a pressure stabilization ma-
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trix C is required; thus we consider solving(
A BT

−B C

)(
u

p

)
=

(
f

−g

)
, or Ãx = b̃, (4.11)

Note that the coefficient matrix in (4.11) has a spectrum entirely contained

in the right half-plane.

The RDF preconditioner for (4.11) is the same as for linear system dis-

cretized by stable finite elements; see Section 4.2. By comparing the precon-

ditioner (4.8) with (4.11), we can see that the difference between M and Ã
is given by

R = M− Ã

=


0 −α−1BT

1 B2 0

0 0 0

0 0 αI − C



=


0 −α−1BT

1 B2 0

0 0 0

0 0 αI



I 0 0

0 I 0

0 0 I − α−1C

 .

(4.12)

Following the same approach used in Section 4.2, we can prove the lemma

below.

Lemma 4.3. Recall Â1 = A1 + α−1BT
1 B1, S1 = B1Â

−1
1 BT

1 , Â2 = A2 +

α−1BT
2 B2 and S2 = B2Â

−1
2 BT

2 . Define

T22 =

(
α−2Â−1

2 BT
2 S1B2

(
− Â−1

2 BT
2 + α−1Â−1

2 BT
2 S1

)
(I − α−1C)

−α−2S1B2 + α−3S2S1B2 α−2(αI − S2)(αI − S1)(I − α−1C)

)
.

Then the eigenvalues of T22 are given by 0 with algebraic multiplicity at least

n/2, and the remaining eigenvalues are 1−µi, where µi are the eigenvalues of

the m×m matrix Zα =: α−1(S1+S2)−2α−2S1S2+α
−3(αI−S1)C(αI−S2).
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Proof. Firstly, we observe that

T22 = α−2

(
−Â−1

2 BT
2

α−1(αI − S2)

)(
−S1B2 α(αI − S1)(I − α−1C)

)
= α−2XY T ,

(4.13)

where

X =

(
−Â−1

2 BT
2

α−1(αI − S2)

)
∈ R(n/2+m)×m

and

Y T =
(
−S1B2 α(αI − S1)(I − α−1C)

)
∈ Rm×(n/2+m).

Hence, from (4.13) we can see that T22 is a matrix with rank at most m.

Therefore, T22 has an eigenvalue 0 of algebraic multiplicity at least n/2. By

a well known result [52, Theorem 1.3.20], the remaining eigenvalues are the

eigenvalues of the matrix

α−2Y TX = α−2(S1B2Â
−1
2 BT

2 + (αI − S1)(I − α−1C)(αI − S2))

= I + 2α−2S1S2 − α−1(S1 + S2)− α−3(αI − S1)C(αI − S2)

= I − Zα.

Based on Lemma 1 [12] and Lemma 4.3, we have the following result.

Theorem 4.4. The preconditioned matrix T = ÃM−1 has an eigenvalue at

1 with algebraic multiplicity at least n. The remaining eigenvalues are the

eigenvalues µi of the matrix Zα.

Proof. First of all, from T̃ =: M−1(ÃM−1)M = M−1Ã we see that the

right-preconditioned matrix T is similar to the left-preconditioned one T̃ , so
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T and T̃ have the same eigenvalues. We have

T̃ =In+m −M−1R

=In+m − αM−1
2 M−1

1 R

=In+m −


α−1I 0 0

0 Â−1
2 −α−1Â−1

2 BT
2

0 α−1B2Â
−1
2 α−1I − α−2S2



αÂ−1

1 0 −Â−1
1 BT

1

0 I 0

B1Â
−1
1 0 I − α−1S1



×


0 −α−1BT

1 B2 0

0 0 0

0 0 αI



I 0 0

0 I 0

0 0 I − α−1C



=In+m −


0 −α−1Â−1

1 BT
1 B2 −Â−1

1 BT
1

0 α−2Â−1
2 BT

2 S1B2 −Â−1
2 BT

2 + α−1Â−1
2 BT

2 S1

0 −α−2S1B2 + α−3S2S1B2 α−2(αI − S2)(αI − S1)



×


I 0 0

0 I 0

0 0 I − α−1C


=In+m −

(
0 T12

0 T22

)
,

(4.14)

where

T12 =
(
−α−1Â−1

1 BT
1 B2 −Â−1

1 BT
1 (I − α−1C)

)
and

T22 =

(
α−2Â−1

2 BT
2 S1B2

(
− Â−1

2 BT
2 + α−1Â−1

2 BT
2 S1

)
(I − α−1C)

−α−2S1B2 + α−3S2S1B2 α−2(αI − S2)(αI − S1)(I − α−1C)

)
.

According to Lemma 4.3, the eigenvalues of T22 are given by 0 with algebraic

multiplicity n and 1− µi(i = 1, 2, . . . ,m). Therefore, from (4.14) we can see

that the eigenvalues of T are given by 1 with algebraic multiplicity at least

n and by the µi’s.
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Additional information on the nonunit eigenvalues of the Oseen matrix

with RDF preconditioner is given in the theorem below, which generalizes

Theorem 2 in [12] to the stabilized case.

Theorem 4.5. The eigenvalues µi of Zα are of the form

µi =
αξi

1 + αξi
,

where the ξi’s satisfy the generalized eigenvalue problem

(BA−1BT+C)ϕi = ξi(α
2I+Ŝ1Ŝ2−αC)ϕi, with Ŝk = BkA

−1
k BT

k (k = 1, 2).

Proof. In the stabilized case, the matrix Zα has an additional term α−3(αI−
S1)C(αI − S2). Using the identity Sk = αŜk(αI + Ŝk)

−1 in [12], we get

α−3(αI − S1)C(αI − S2)

=α−3(αI − αŜ1(αI + Ŝ1)
−1)C(αI − αŜ2(αI + Ŝ2)

−1)

=α−1(I − Ŝ1(αI + Ŝ1)
−1)C(I − Ŝ2(αI + Ŝ2)

−1)

=α−1(αI(αI + Ŝ1)
−1)C(αI(αI + Ŝ2)

−1)

=α(αI + Ŝ1)
−1C(αI + Ŝ2)

−1.

Therefore using equation (21) in [12], we obtain

Zα = α(αI + Ŝ1)
−1(Ŝ1 + Ŝ2 + C)(αI + Ŝ2)

−1.

Since Ŝ1 + Ŝ2 + C = BA−1BT + C, µi’s are the eigenvalues of the following

generalized eigenvalue problem:

α(BA−1BT + C)φi = µi(α(Ŝ1 + Ŝ2) + α2I + Ŝ1Ŝ2)φi, (4.15)

which can be rewritten as

(BA−1BT + C)ϕi = ξi(α
2I + Ŝ1Ŝ2 − αC)ϕi,

with ξi =
µi

α(1−µi)
. It immediately follows that µi =

αξi
1+αξi

, as claimed.
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Table 4.12: GMRES(50) iterations with RDF preconditioner (cavity, Q1-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 12 11 21 16 22 18 46 30

32× 32 10 10 15 12 16 15 28 23

64× 64 8 8 9 9 13 11 22 21

128× 128 7 5 9 8 12 11 14 14

Similar to the argument in [12], the previous theorem suggests that the non-

unit eigenvalues of the preconditioned matrix ÃM−1 tend to 0 like O(α) and

to ∞ like O(α−1), respectively.

Based on the previous results, Fourier analysis can be used to choose α.

The only difference to the case of stable finite elements is the presence of C

in Zα, which is treated the same as we did in Section 3.1.3.

4.5 Numerical experiments

In Tables 4.12, 4.13 and 4.14 we present the results of numerical experi-

ments with the RDF preconditioner for the three test problems discretized

by stabilized Q1-Q1 finite elements. It is clear that the convergence rate of

RDF-preconditioned GMRES is independent of grids and largely insensitive

to viscosity. Furthermore, the values of α chosen by the Fourier analysis-

based approach are fairly close to the optimal values, especially on the finest

grids.

Comparing with the results in Section 3.4, we can see that the RDF pre-

conditioner performs similarly to the modified AL preconditioner, and RDF

is even better for the lid driven cavity and step problems on uniform grids
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Table 4.13: GMRES(50) iterations with RDF preconditioner (cavity, Q1-Q1,

stretched grids).

Viscosity 0.1 0.01 0.005 0.001

Grid FA Opt FA Opt FA Opt FA Opt

16× 16 28 26 34 26 31 28 64 63

32× 32 28 28 22 22 25 22 37 30

64× 64 26 21 21 18 20 20 40 31

128× 128 22 9 17 13 17 16 29 25

Table 4.14: GMRES(50) iterations with RDF preconditioner (step, Q1-Q1,

uniform grids).

Viscosity 0.1 0.01 0.005

Grid FA Opt FA Opt FA Opt

16× 16 15 13 36 16 50 20

32× 32 12 12 19 13 24 17

64× 64 11 11 13 13 18 16

128× 128 11 11 16 13 17 15

with small viscosity. Looking at the results of RDF preconditioner for stable

finite elements in Tables 4.1, 4.2 and 4.3, one can observe that the two sets

of results are quite similar.
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Chapter 5

Conclusions

In this thesis, we have studied various preconditioning techniques for the

incompressible Navier–Stokes equations discretized by stable and stabilized

finite elements as well as the Marker-and-Cell finite difference method. We

considered both steady and unsteady problems in 2D and 3D domains. Nu-

merical results on parallel architecture were also presented. Comparison with

other state-of-the-art preconditioners shows the competitiveness of our pre-

conditioners.

We first studied the ideal and modified augmented Lagrangian-based pre-

conditioners for Oseen-type problems. We have also extended the AL-based

approach for stable finite elements to the case of stabilized finite element

pairs, and analyzed the spectral properties of saddle point matrices precon-

ditioned with such techniques. One advantage of the modified AL precondi-

tioners is that they can be readily implemented using standard off-the-shelf

algebraic multilevel solvers developed for elliptic PDEs, in particular parallel

AMG-type solvers. Our theory, together with a form of Fourier analysis,

provides an inexpensive way to select the augmentation parameter γ in a

nearly optimal way for the modified variants.

The preconditioner performance has been thoroughly investigated on a va-

riety of benchmark 2D problems. Our numerical experiments show excellent

performance of the modified AL preconditioner for a wide range of prob-

lem parameters. The preconditioner is able to handle small viscosities and



115

stretched grids, and is found to be generally superior to (and more robust

than) some of the best existing preconditioners. Numerical experiments on

linear systems arising from the Newton linearization show that using the

modified AL preconditioner with the same values of the parameter γ found

using Fourier analysis for the Oseen problem gives surprisingly good results.

We have also investigated the use of inexact solves for the velocity sub-

systems arising in the application of the preconditioner. We found that

for sufficiently large problems, replacing exact solves with one iteration of

an algebraic multigrid method with an appropriate smoother yields rates

of convergence that are nearly as good as those obtained with exact solves

while significantly reducing total computing times. This holds for Q2-Q1

discretizations and for both the Oseen (Picard) and Newton linearizations.

The resulting solver shows excellent scalability in terms of solution times.

Furthermore, the modified AL preconditioner has been implemented in the

framework of Trilinos, and further incorporated into the finite element library

LifeV. Parallel results on various 2D and 3D problems discretized by finite

elements and finite differences show good performance of this preconditioner,

which is an effective approach for the parallel solution of the incompressible

Navier–Stokes equations.

In addition, we have studied a novel relaxed dimensional factorization pre-

conditioner for solving saddle point systems. Although the preconditioner

can be applied to rather general linear systems in saddle point form, in this

thesis we have focused on discretizations of systems of PDEs arising in in-

compressible fluid flow simulations. Some results on the eigenvalues of the

preconditioned matrices have been obtained, and an inexpensive technique

for estimating the relaxation parameter has been described based on Fourier

analysis.

Numerical experiments on a variety of test cases indicate very fast conver-

gence of RDF-preconditioned GMRES independent of mesh size in the case
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of uniform grids. The convergence rate is only moderately affected by the

viscosity ν, and appears to be much less sensitive to it than other current ap-

proaches (including the closely related DS preconditioner). The convergence

behavior is also quite good for problems posed on stretched grids. In spite of

some deterioration of the preconditioner quality in the steady case for very

low viscosity values, RDF appears to be quite competitive when compared

to some of the best existing methods.

Efficient implementation of the RDF preconditioner in 3D requires the use

of inexact (inner) solves. Our experiments indicate that the excellent conver-

gence properties of the ‘exact’ RDF preconditioner are retained even when

the inner solves are performed with low accuracy. In our 3D tests we have

used a single AMG V-cycle (with symmetric Gauss–Seidel smoothing) for

the inner solves. The resulting solver appears to scale reasonably well.
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[20] J. Boyle, M. Mihajlović, and J. Scott. HSL MI20: an efficient AMG pre-

conditioner. Technical Report RAL-TR-2007-021, Rutherford Appleton

Laboratory, Chilton, Oxfordshire, UK, December 2007.
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