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Abstract 

The association between CT-based body composition measurements and high grade serous 
ovarian cancer outcomes 

By Kierstin Faw 
 

Objective 
To evaluate the association between high grade serous ovarian cancer (HGSOC) outcomes 
(overall survival and disease recurrence) and computed tomography (CT) scan-based body 
composition measurements (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), 
intermuscular adipose tissue (IMAT), and skeletal muscle index (SMI)).  
 
Methods 
A retrospective review was conducted using electronic medical records from Emory University 
Hospital to find pre-treatment CT-scans, vital status, and recurrence status for each participant. 
The CT-scans were quantified into surface area measurements and multivariate cox proportional 
hazards models and accelerated time to failure models with a Weibull distribution were utilized 
to calculate hazard ratios. The association between obesity and HGSOC outcomes were fit 
stratified by low and high body composition levels. A meta-analysis was conducted with data 
from the present study in combination with Moffitt Cancer Center and Roswell Park 
Comprehensive Cancer Institute. 
  
Results  
In the multivariate survival analysis, VAT was statistically significantly associated with longer 
time to recurrence (HR = 0.42, 95% CI (0.19, 0.99)). Obesity was significantly associated with 
overall survival among those with higher SAT area (HR = 0.23, 95% CI (0.07, 0.81)). The results 
of our meta-analysis revealed evidence of a dose-response for overall survival and VAT area. 
Medium VAT area suggested greater survival while high VAT area suggested poorer survival (HR 
= 0.76, 95% CI (0.33, 1.77) and HR = 1.10 (0.87, 1.39), respectively).  
 
Conclusion 
Future studies need to be conducted to better understand the relationship between CT scan-based 
body composition measurements and HGSOC outcomes. Missingness of data from electronic 
medical records needs to be addressed and a larger sample size is necessary to properly 
understand this relationship.  
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Introduction 

Ovarian cancer and body size 

Ovarian cancer remains the deadliest of gynecologic cancers among women in the United 

States (Siegel et al, 2022).  It is estimated that 12,810 women will die from ovarian cancer in 

2022 (Siegel et al, 2022). The five-year survival rate for ovarian cancer for all stages is 49% 

(Siegel et al., 2022). However, there are survival differences among races and ethnic groups. The 

five-year survival rate for all stages is 48% for White patients and 41% for Black patients. When 

considering just distant stage disease (cancer that has spread to distant lymph nodes and tissues), 

the survival rate for white and black patients is 30% versus 23%, respectively (Siegel et al., 

2022). The histologic type that is most often diagnosed is epithelial ovarian cancer (EOC), 

making up roughly 90% of diagnoses (Peres & Schildkraut, 2020). Some of the factors that are 

suspected to affect a women’s risk of EOC include: age at menarche and menopause, nulliparity 

versus any parity, infertility and fertility drugs, oral contraceptive usage, smoking, and body size 

(Webb & Jordan, 2017). Most of these factors have been well researched but body size’s effect 

on EOC risk remains inconclusive.  

Proposed mechanisms for body size influencing EOC development 

There are a few proposed mechanisms for how obesity influences cancer development 

and survival through excess dysfunctional adipose tissue.  

The first is through insulin resistance and the insulin-like growth factor (IGF-1) (van 

Kruijsdijk et al., 2009). A state of insulin resistance is often seen in obese patients. With high 

serum levels of insulin in the blood, it upregulates growth hormone (GH) which stimulates 

production of IGF-1 in the liver. Therefore, it is suspected that IGF-1 levels would be higher in 

obese individuals. However, IGF-1 levels have been found to be normal or lower in obese 
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individuals. That is because high insulin levels also lead to inhibiting the secretion of IGF-

binding protein-1 and 2, limiting the accessibility of IGF-1 to bind to its necessary sites. Thus, 

leaving higher free IGF-1 levels in the blood. Both higher levels of insulin and free IGF-1 are 

problematic because they inhibit apoptosis (the death of cells) and stimulate cell proliferation, 

making cells more susceptible to forming carcinogenic neoplasms (van Kruijsdijk et al., 2009).  

The second potential mechanism is through adipose tissue, which produces hormones and 

adipokines, a type of cytokine (van Kruijsdijk et al., 2009). Adipose tissue dysfunction can be a 

direct result from modified serum levels of adipokines. Adiponectin, a type of adipokine, has 

anti-inflammatory capabilities. Adiponectin has the ability to decrease the production of reactive 

oxygen species, which may inhibit cell proliferation. Adiponectin concentrations have been 

found to be lower in obese individuals, potentially increasing inflammation (van Kruijsdijk et al., 

2009).  

The third mechanism is inflammation. Obesity-induced inflammation is reflected by C-

reactive protein (CRP), an inflammatory marker, which is increased in individuals with higher 

body mass index (BMI) (van Kruijsdijk et al., 2009). Raised levels of CRP have been found to be 

associated with cancer. Dysfunctional adipose tissue secretes large quantities of proinflammatory 

cytokines such as tumor necrosis factor (TNF-α). TNF- α has been found to be involved in 

carcinogenesis because of its role in apoptosis. Tumor cells can also produce TNF-α which has 

been found in the case of ovarian cancer. It activates transcription networks that advance tumor 

progression (van Kruijsdijk et al., 2009) 

The final potential mechanism is sex steroids. The relationship between sex steroids and 

breast and endometrial cancer has been well established. It is believed to be rooted in the 

proliferative effect of estrogen on epithelial tissue. Increased levels of insulin, which as discussed 
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earlier can be a result of dysfunctional adipose tissue, can cause an increase in ovarian androgen 

synthesis and reduce hepatic synthesis of sex-hormone binding globulin (SHBG), limiting the 

transport capabilities for androgens and estrogen within the body. (van Kruijsdijk et al., 2009).  

Ovarian cancer risk and body size 

The epidemiologic relationship between ovarian cancer risk and body size is not well 

understood. There is a plethora of studies that have shown that obesity increases the risk for 

ovarian cancer among women. Researchers in the United Kingdom found an increased incidence 

among those with increasing BMI, with a relative risk of 1.14 (Reeves et al., 2007). Australian 

women with a BMI between the 65th and 85th percentile had a 50% increased risk of ovarian 

cancer and those above the 85th percentile had a 90% increased risk when compared to women 

whose BMIs were in the normal range (35th-65th percentile) (Purdie et al., 2001). A meta-analysis 

from the United States found a summary relative risk for a five-unit increment increase in BMI 

to be 1.07, with risk significantly increasing for women with a BMI of 28 kg/m2 or higher (Aune 

et al., 2015). In a study that looked at the risk of ovarian cancer in African American women, the 

racial/ethnic group with the highest prevalence of obesity, the odds of ovarian cancer in obese 

women (BMI of 40 kg/m2 or higher) was 1.72 times that of women who had a BMI less than 25 

kg/m! (Bandera et al., 2016). However, when women were stratified by menopausal status, the 

association between BMI and EOC risk was limited to women who were postmenopausal. This 

could be one reason for the inconsistencies in the literature of BMI and EOC risk. Self-reported 

height and weight which are subject to biases could also be fueling some of the inconsistencies in 

the literature.  
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Body size as a predictor of ovarian cancer survival  

Similarly, to EOC risk factors, the factors that influence a women’s survival of EOC 

include parity, ovulatory cycles, smoking, and BMI (Kim et al., 2017). A study that examined the 

effect of obesity on survival (disease free survival, progression free survival, and overall 

survival), found that women with advanced stage disease who were classified as having BMI 

over 25 kg/m!, had a decrease in disease-free survival (Pavelka et al., 2006). Progression-free 

survival (PFS) had been shown to be affected by BMI as well. Patients categorized as “healthy 

weight” had PFS of 24 months while those who were classified as “obese” had a PFS of 21 

months (Pavelka et al., 2006). The hazard ratio (HR) for overall survival (OS) was 1.05 (95% CI 

1.01, 1.10) (Pavelka et al., 2006).  

Some studies present that there is no association between body composition and survival. 

A study investigating the association between baseline BMI of advanced staged EOC patients 

and survival found that OS and PFS had no association with BMI (Hess et al., 2007). Another 

study looked at BMI 5-years before diagnosis and found that it had a statistically significant HR 

of 1.11 while adjusting for age at diagnosis, histology, and disease stage. The second model that 

was run in this study, adjusted for everything in the first model and added recurrence. The HR for 

BMI in the second model was 1.17 (Kim et al., 2017).  BMI was considered a continuous 

variable in these two models. However, when BMI was analyzed as a categorical variable, there 

were no statistically significant HRs (Kim et al., 2017). This is one of the reasons that there are 

inconsistencies within the literature on EOC survival and obesity. Analyzing BMI as a 

continuous variable gives the study more statistical power (Ragland, 1992). In a meta-analysis of 

17 cohort studies, investigators found that evaluating BMI as a continuous variable yielded 

slightly poorer survival with each incremental increase in BMI, while analysis of BMI as a 
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categorical variable yielded no effect on cancer survival (Table 1) (Bae et al., 2014). Definitions 

of what BMI is considered obese in studies is also a potential reason for inconsistencies. Two 

studies dichotomized BMI (25 kg/m2 or higher was the classification of overweight/obese) 

(Fotopoulou et al., 2011 & Zhou et al., 2011). One study found an increase in survival for those 

who were obese and the other found poorer survival for obese patients (Bae et al., 2014). While 

other studies that classified obese as a BMI of 30 kg/m2 or higher found a hazardous effect of 

obesity (Bae et al., 2014).  

Another potential factor creating inconsistencies is the time of the BMI measurement. 

Some studies used BMI measurements 5 years prior to EOC diagnosis or 1 year before diagnosis 

while others measured BMI after treatment (Table 1). The measurement of BMI itself is also a 

cause of differing results. BMI oversimplifies the distribution of adipose tissue throughout the 

body (Gibson et al., 2015).  
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Table 1: Studies that have used BMI as a predictor of ovarian cancer survival 
Author Design n Hazard Ratio 

(95% Confidence 
intervals) 

BMI Modeling 

Pavelka et 
al., 2006 

Cohort Study 216 1.05 (1.01-1.10) BMI as a continuous variable, 
height and weight measurements 
were gathered from the first post-
cytoreduction surgery visit 
  

Kim et al., 
2017 

Case-Control 
Study 

1421 1.17 (1.07-1.28)  BMI as a continuous variable, used 
current patient height and weight 
from 5-years prior to diagnosis  
  

Fotopoulou 
et al., 2011 

Cohort Study 306 0.73 (0.39-1.37)  Dichotomized BMI (25 or higher), 
time of measurement not specified 
  

Zhou, 2011 Cohort Study 388 1.30 (0.92-1.83) Dichotomized BMI (25 or higher), 
measurements 5-years prior to 
diagnosis   
  

Hess et al., 
2007 

Retrospective 
Review 

792 1.00 (0.99-1.01) BMI as a categorical variable (3 
categories: less than 25 kg/m2, 
25.0-29.9 kg/m2, and 29.9 or 
greater), used BMI before starting 
chemotherapy 

 

Implications of using body mass index as a survival predictor  

BMI assumes that the distribution of adipose and muscle tissue is uniform in everybody, 

which is problematic because adipose tissue is distributed differently among sexes and age 

groups (Gibson et al., 2015). Thus, using BMI as a predictor for survival can create 

misclassification bias. This is especially the case for ovarian cancer patients because 

approximately 61% of women that are diagnosed with ovarian cancer present advanced staged 

disease (Purcell et al. 2016 & Torres et al., 2013).  Later staged diseases are more likely to have a 

larger volume of ascites, larger tumor masses, and bowel obstruction which would increase a 
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women’s overall body weight. Increasing body weight will lead to a higher BMI measurement 

that is not reflective of adipose tissue or muscle mass, but of the volume of ascites, tumor size, 

and bowel obstruction (Purcell et al., 2016).  

There are biological changes in body composition that occur for women after they go 

through menopause. Visceral fat area tends to be higher in women after they go through 

menopause and skeletal muscle mass decreases with age (Purcell et al., 2016 & Mittal, 2019). 

Therefore, using BMI, measured 5 years prior to diagnosis, as a body composition predictor 

would neglect the weight changes due to aging and disease progression, thus biasing survival 

outcomes. In order to get more reliable data on how body composition affects survival of EOC, 

the use of computed tomography (CT) scans can be very beneficial to accurately depict body 

composition before treatment begins.  

Utilization of CT scans 

  CT scans provide images that can distinguish between muscles, adipose tissue, and 

organs. They even have the capabilities to further distinguish between skeletal muscle mass 

(SMM), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and intermuscular 

adipose tissue areas (IMAT) (Deluche et al., 2018). This is possible by the determination of 

upper and lower thresholds for adipose tissue and muscle regions in the CT images using 

Hounsfield units (HU), which is a relative quantitative measurement of radio density (DenOtter, 

T. D.  & Schubert, J., 2019). These thresholds allow for the differentiation between the tissues 

and quantification of the surface area of each tissue (Del Grande et al., 2021 & DenOtter, T. D.  

& Schubert, J., 2019).  

Distinguishing between different adipose tissues is important because SAT and VAT serve 

different functional purposes to the body. SAT is beneath the skin and pro-inflammatory gene 
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expression is much more prominent in SAT than VAT (Mittal, 2019). SAT produces interlukin-6 

(IL-6), a pro-inflammatory cytokine like TNF- α (Mittal, 2019). IL-6 levels are elevated in obese 

individuals and have been correlated with overall cancer mortality (van Kruiksdijk et al., 2009). 

VAT is mainly found in the abdomen, lining internal organs (Liu & Xiao, 2013). Visceral fat 

plays a crucial role in insulin resistance and has the ability to produce more free fatty acids than 

subcutaneous fat (Mittal, 2019, 2013 & Yip et al., 2015). As previously discussed, insulin 

resistance has the potential to make cells more susceptible to neoplasm formations due to lack of 

apoptosis and stimulation of cell proliferation (van Kruiksdijk et al., 2009).  

CT scans are part of the routine diagnosis procedure for EOC patients (Gibson et al., 

2015). CT scans are the gold standard and a non-invasive tool to aid in staging and follow-up by 

measuring muscle quantity and adipose tissue (Del Grande et al., 2021). One study evaluated the 

linear relationship between cross-sectional pieces of lumbar vertebra 3 (L3)’s distribution of 

adipose tissue and skeletal muscle and their distributions throughout the whole body (Mourtzakis 

et al., 2008). It found that CT images at L3 were strongly associated with full body distribution 

of fat mass (r2 =0.927) and muscle mass (r2 = 0.855). The L3 cross-sectional CT scans can be 

extrapolated to represent the muscle and fat distribution of the whole body (Mourtzakis et al., 

2008).  

Therefore, the ability to distinguish between different adipose tissues is important for 

understanding potential treatment risks for EOC patients and predicting survival based on the 

proposed biological mechanisms of how obesity influences cancer progression. The ability to 

understand treatment risk and outcomes based on body composition will improve treatment 

efficacy and the cost effectiveness of cancer treatment as well (Prado, 2013).  
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In this study, we evaluate the association between body composition, survival, and 

disease recurrence among women diagnosed with high grade serous ovarian cancer (HGSOC), 

the most common type of EOC. CT scans are utilized to differentiated between SAT, VAT, IMAT, 

and SMM. This is a pilot study to see the feasibility of utilizing CT scans to create a model that 

predicts treatment response to better use interventions and treatment strategies for prolonging 

survival.  

Methods 

Study population 

Subjects eligible for the study included women diagnosed with HGSOC who were 

between the ages of 20 and 85 years old. All cases were diagnosed between January 1st, 2008- 

December 31st, 2018, and treated within the Emory Healthcare System. The starting date of 2008 

was crucial because of the shift to thin slice and higher resolution CT scanners. Participants must 

have had a routine abdomen and pelvis CT scan before beginning treatment to be included in this 

study. Those who were diagnosed with non-serous ovarian cancer subtypes and women 

diagnosed before 2008 were excluded from the study. This study had institutional review board 

(IRB) approval from Emory University to access electronic medical records and complete a 

retrospective review.   

Medical record abstraction and data  

Electronic medical record abstraction was conducted for all patients meeting the 

eligibility criteria for the study. Information was abstracted from Cerner’s Powerchart electronic 

medical records through the Emory Healthcare network. Variables that were collected included 

age at diagnosis, race, ethnicity, date of diagnosis, pre-treatment BMI, International Federation 

of Gynecology and Obstetrics (FIGO) stage, type of first line treatment (neoadjuvant 
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chemotherapy (a few rounds of chemotherapy before surgery) versus upfront surgical 

debulking), chemotherapy regimen and doses, recurrence status, CA-125 levels before and after 

surgery, and CT scans before and after treatment.  

All data was collected and stored in REDCap (Version 12.2.0) before being transferred to 

SAS (Software 9.4) for data cleaning and analysis. 

CT scans and adiposity measurements  

Participant’s CT scans were obtained by requesting pre- and post- treatment scans from the 

Winship Cancer Institute’s radiology department in Atlanta, Georgia. The scans that were 

obtained were sent to Moffit Cancer Center (MCC) for the quantification of body composition. A 

data transfer agreement (DTA) was established in order to share CT scans with MCC.  

Body composition measurements (BCMs) were observed at the cross-sectional slice of the 

mid transverse plane of L3. For CT scans that were missing the mid-scan (n = 2), the top scan 

was used for body composition measurements. Pre-defined Hounsfield units’ boundaries were 

applied as follows: -150 to -50 for VAT, -190 to -30 for SAT, -190 to -30 for IMAT and -29 to 

150 for SMM.  The surface area of each tissue (cm2) was determined by Data Analysis 

Facilitation Suite (DAFS) software at MCC by the Qualitative Imaging Core. This software 

allows for accurate segmentation and identification of tissues. Each tissue is color coded in the 

output images to differentiate between the tissues’ surface areas (shown in Figure 1). Skeletal 

muscle index (SMI) was calculated by taking SMM and dividing it by the square of the 

participant’s height. Height was obtained through medical record abstraction and was recorded 

around the time of the participant’s pre-treatment CT scan.  
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Overall survival and recurrence 

Overall survival (OS) was measured from the date of diagnosis to date of death (in 

months). Date of death was determined by using vital status updates in the participant’s medical 

records. For participants whose vital status was not explicitly stated in their medical records, 

LexisNexis was utilized to confirm vital status and date of death. Those participants that did not 

die during the study period, were censored at the date that vital status was last determined (i.e., 

the date that vital status was checked in medical records and/or LexisNexis).  

A participant was said to have a recurrence if their medical records explicitly stated that 

disease recurrence occurred, and the participant’s CA-125 levels were steadily increasing after 

the completion of treatment. Time to recurrence was measured from time of diagnosis to the date 

the participant’s medical record reflected recurrent disease (in months). Patients that did not have 

a recurrence recorded in their medical record were censored at their last known follow-up at an 

Emory Healthcare facility.  

Pa#ent 1 Pa#ent 2 

Figure 1: Examples of segmentation of two participants that had similar BMI 
(Patient 1: 32.4 kg/m! ; Patient 2: 32.5 kg/m!) but different segmentation of body 
composition measurements: SMM (light red), VAT (yellow), SAT (cyan), and IMAT 
(green). 
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Statistical Analysis  

Statistical analyses were performed using SAS (Software 9.4). The proportional hazard 

(PH) assumption was tested for each BCMs and covariates by graphing negative log-log curves, 

goodness-of-fit tests, and testing the interaction of time to evaluate if the variable was time 

dependent. For the BCMs that met the PH assumption, Cox proportional hazard models were 

utilized (OS: VAT, SAT, IMAT). Accelerated failure time (AFT) models with a Weibull 

distribution were performed for BCMs that did not meet the PH assumption (OS: SMI; 

recurrence: VAT, SAT, IMAT, SMI). The point estimates and Weibull shape parameter were used 

to convert the parameters to hazard ratios (HR) by using the following formula: 

e"!"#$	&"'(")*+",	-)*+'.*-∗$%('()*+,,	./01(	10203(4(2). All four BCMs were dichotomized using the 

median as the cutoff point for modeling.  

BMI was categorized into non-obese (BMI < 30) and obese (BMI ≥ 30), and PH models 

for the association between obesity and both OS and recurrence were fit stratified by high or low 

body composition levels. HRs and 95% confidence intervals were calculated for obesity.  

Covariates 

Age at diagnosis, stage, race, and first line treatment were considered as potential 

confounders. Age was modeled as a continuous variable and FIGO stage was categorized into 

early (I/II) and late-stage disease (III/IV). Race categories available from medical records were 

Asian, Black, and White. First line treatment was defined as a binary variable based on medical 

records indicating if patients had neoadjuvant chemotherapy or upfront surgical debulking.  
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Meta-analysis 

A meta-analysis was conducted using the BCM estimates determined from this study 

(VAT, SAT, IMAT, and SMI) with BCM estimates from subjects at the MCC (n=384) and 

Roswell Park Comprehensive Cancer Institute (RPCCI) (n= 308). For this meta-analysis, each 

BCM was categorized into three groups by tertiles: low, medium, and high adipose tissue area. 

SMI measurements were not available from RPCCI, so the HRs were calculated using Emory 

University and MCC results only.  

The SAS macro %METAANAL_NOIML (Depuy, 2017), an extended version of the 

macro %METAANAL (Hertzmark & Spiegelman, 2017), was utilized to calculate the combined 

HRs and 95% confidence intervals with the DerSimonian-Laird estimators (1986). The macro 

required the upper and lower bounds of the individual studies’ results. The Q statistic and 

corresponding p-value were generated to test for heterogeneity between the individual studies’ 

results.  

 

Results 

Figure 2 illustrates the exclusions applied to the women identified at the Emory 

University Hospital. There were 246 women with a probable diagnosis of HGSOC between 

2008-2018. Of those, 181 were confirmed diagnoses by pathology reports in their electronic 

medical records. Of the confirmed diagnoses, 104 patients were excluded for various reasons: 

some patients were not treated within the Emory Healthcare System (n=8), some patients passed 

away before pre-treatment CT scan was obtained (n=8), some patients were not candidates for 

treatment and were referred to hospice (n=2), some patients did not have a pre-treatment CT scan 
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in their medical records (n=81), a pre-treatment CT was not available from the file room (n=1) , 

and some participants’ CT scans could not be read by the DAFS software so BCMs could not be 

obtained (n=4). The final sample size was 77 participants (Figure 2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Sample characteristics  

The study population had a mean age at diagnosis of 62.8 years, more than half were 

White (53.33%) and most of the women were non-Hispanic (96.2%). The average pre-treatment 

BMI was 29.1 kg/m2. Roughly two-thirds of the women were diagnosed with stage III (A-C) 

cancer. Approximately three-fourths of participants underwent neoadjuvant chemotherapy as 

their first-line treatment. The most common co-morbidity was hypertension with 42.9% of 

Figure 2: Flowchart of participants exclusion from the study population.  

Emory University Hospital: Probable HGSOC = 246 Patients 

181 confirmed HGSOC patients  

65 patients 
excluded  

No 
medical 
records 

available 
(n=7)  

Non-
HGSOC 
diagnosis 
(n= 51)  

99 patients 
excluded Unknown 

Histotype 
(n = 7)  Not 

treated 
at 

Emory  
(n = 8)  

Patient 
passed 
away 

before pre-
treatment 
CT scan 

(n=8)  
Not a 

candidate 
for 

treatment 
(n=2)  

No pre-
treatment 
CT scan 
(n= 81)  

Final Sample Size = 77 

CT scan unavailable from 
the file room (n=1) 

DAFS unable to read CT scan – 
no body composition 

measurements available (n = 4) 
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participants being diagnosed with hypertension before or after their cancer treatment. The years 

that had the most participants diagnosed with HGSOC were 2017 (23.4%) and 2011 (18.2%). 

The average BCMs were 94.1 cm2 for VAT, 227.4 cm2 for SAT, 12.4 cm2 for IMAT, and 0.00041 

for SMI. Roughly 64% of the study population was deceased and 78% of participants 

experienced a recurrence (Table 2).  

Table 2: Characteristics of study population 
Characteristic N (%)  
Vital Status    
    Alive 26 (36.11) 
    Dead 46 (63.89)  
    Unknown 5 (-)  
Recurrence    
    Yes 45 (77.59) 
    No  13 (22.41) 
    Unknown  19 (-)  
First line treatment   
    Neoadjuvant chemotherapy  57 (75.00) 
    Upfront debulking surgery 19 (25.00) 
    Missing 1 (-)  
Race    

    Asian  10 (13.33) 
    Black   25 (33.33) 
    White 40 (53.33) 
    Missing  2 (-)  
Ethnicity    
    Hispanic  2 (3.85) 
    Non-Hispanic  50 (96.15) 
    Missing 25 (-)  
FIGO Stage    
    IA-IC 3 (5.08)  
    IIA-IIC 6 (10.17) 
    IIIA-IIIC  40 (67.80) 
    IV 10 (16.95) 
    Missing 18 (-)  
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Characteristic N (%)  
Co-morbidities    
    Diabetes Mellitus  12 (15.58) 
    Hypertension 33 (42.86) 
    Cardiac Condition 11 (14.29)  
    Chronic Kidney Disease  6 (7.79)  
     Hypercholesterolemia 4 (5.19) 

Year of Diagnosis  

    2008 2 (2.60)  
    2009  1 (1.30) 
    2010 5 (6.49)  

    2011 14 (18.18) 

    2012 5 (6.49)  

    2013  3 (3.90) 

    2014 6 (7.79) 

    2015 4 (5.19)  

    2016 7 (9.09) 

    2017 18 (23.38) 

    2018 12 (15.58) 

Characteristic Mean (SD) 
Age at diagnosis  62.77 (12.11)  
Pre-treatment BMI (kg/m2) 29.07 (7.36) 
VAT (cm2) 94.05 (61.31)  
SAT (cm2) 227.36 (132.55) 
IMAT (cm2) 12.42 (7.32) 
SMI 0.00041 (0.00076)  

 
 

Body Composition, overall survival, and recurrence 

The median OS was 48.9 months. OS did not significantly differ between those with 

higher and lower VAT, SAT, IMAT, and SMI. Although not significant, higher VAT and SMI 

were found to be associated with longer OS with HRs less than 1.0 (HR = 0.56, 95% (CI 0.25, 
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1.23) and HR = 0.61, 95% CI (0.29, 1.27), respectively. While higher SAT and IMAT did appear 

to poorly influence OS with HRs of 1.17, (95% CI: 0.56, 2.42) and 1.19, (95% CI: 0.52, 2.74), 

respectively (Table 3).   

The median time to recurrence was 18 months. Those with higher VAT area had a 

statistically significant longer time to recurrence when compared to those with lower VAT area 

(HR = 0.42, 95% CI (0.18, 0.99)). Although not significant, higher surface area of IMAT and 

SMI were found to be inversely related to time to recurrence (HR = 0.69, 95 % CI (0.28, 1.69); 

HR = 0.78, 95% CI (0.35, 1.72), respectively). There appeared to be no association between SAT 

area and recurrence with a HR of 1.01 (95% CI: 0.44, 2.28) (Table 3).  

 

 
 

     Models were adjusted for stage, age at diagnosis, race, and first line treatment.  
     *These HRs were transformed from Weibull accelerated failure time models. HRs were 

          calculated as follows: HR'()*+,,	 =	e
67/012	30450678709	:6874;8:∗	$%(8/01(	10203(4(2)9 

 
 

BMI Correlation and Stratification 

 Correlation coefficients were calculated for each of the four CT scan based BCMs and 

BMI. All were positively correlated with pre-treatment BMI with SAT having the strongest 

correlation (r = 0.78) followed by VAT, SMI, and IMAT being moderately correlated with pre-

 Overall Survival Recurrence 
 N (Event N)  HR (95% CI) N (Event N) HR (95% CI) 
VAT 57 (33) 0.56 (0.25, 1.23)  56 (33) 0.42 (0.18, 0.99) * 
SAT 57 (33)  1.17 (0.56, 2.42) 56 (33) 1.01 (0.44, 2.28) * 
IMAT 57 (33) 1.19 (0.52, 2.74) 56 (33)  0.69 (0.28, 1.69) * 
SMI   57 (33)     0.61 (0.29, 1.27) * 56 (33)  0.78 (0.35, 1.72) * 

Table 3: CT scan-based body composition measurements, overall survival, and recurrence 
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treatment BMI (r = 0.56; r = 0.56; and r = 0.40), respectively. Scatterplots are provided in Figure 

3 below.  

  
Figure 3: Correlation with CT-Scan based body composition and pre-treatment BMI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Among those have low body composition (BC) area for VAT and IMAT, obesity was not 

associated with OS (HR= 1.00, 95% CI (0.24, 4.17); HR = 1.06, 95% CI (0.29, 3.93), 

respectively).  For those with low SAT area, obesity was associated with longer survival (HR = 

0.63, 95% CI (0.08, 5.08). On the other hand, for those with low SMI, obesity was associated 

with shorter OS, (HR = 1.18, 95% CI (0.28, 5.44)). However, both confidence intervals are wide 

and imprecise. Obesity was significantly associated with longer survival among those with high 

r = 0.56 r = 0.78 

r = 0.40  r = 0.56 
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SAT area (HR = 0.23, 95% CI (0.07, 0.81)).  Obesity was associated with longer OS for those 

with high IMAT and SMI (HR = 0.52, 95% CI (0.18, 1.48) and HR = 0.72, 95% CI (0.22, 2.35), 

respectively). Among those with high VAT area, obesity was associated with shorter OS with an 

HR of 1.23 (95% CI 0.32, 4.73) (Table 4).  

 Among those with low VAT, obesity was observed to lead to shorter time to recurrence, 

however, the confidence interval is imprecise (HR = 2.90, 95% CI 0.70, 12.00). Obesity led to 

longer time to recurrence among those with low SAT area and SMI with HRs less than 1.0 (HR = 

0.57, 95% CI (0.10, 3.11) and HR = 0.48, 95% CI (0.06, 4.18), respectively). No association was 

found between obesity and recurrence among those with low IMAT area (HR = 1.11, 95% CI 

(0.34, 3.60)). Obesity was found to be inversely related to recurrence among those with high BC 

area for all four BCMs (VAT HR = 0.56, 95% CI (0.17, 1.79); SAT HR = 0.74, 95% CI (0.18, 

2.95); IMAT HR = 0.60, 95% CI (0.21, 1.71); and SMI HR = 0.52, 95% CI (0.18, 1.45), 

respectively) (Table 4).  

Table 4: The association between obesity, overall survival, and recurrence modified by BCMs.  
 Low BC area High BC area 
 N (Event N) HR (95% CI) N (Event N) HR (95% CI) 
Overall Survival      
   Obesity – VAT 31 (20) 1.00 (0.24, 4.17)  26 (13)  1.23 (0.32, 4.73)   
   Obesity – SAT 31 (16)  0.63 (0.08, 5.08)  26 (17)  0.23 (0.07, 0.81)  
   Obesity – IMAT 26 (15)  1.06 (0.29, 3.93)  31 (18)   0.52 (0.18, 1.48) 
   Obesity - SMI 25 (16)  1.18 (0.28, 5.44)  32 (17)  0.72 (0.22, 2.35)  
Recurrence      
    Obesity - VAT 30 (17) 2.90 (0.70, 12.00)  26 (16)  0.56 (0.17, 1.79)  
    Obesity - SAT 30 (18)  0.57 (0.10, 3.11)  26 (15)  0.74 (0.18, 2.95)  
    Obesity - IMAT 25 (16)  1.11 (0.34, 3.60)  31 (17)  0.60 (0.21, 1.71)  
    Obesity - SMI 25 (14)  0.48 (0.06, 4.18)  31 (19) 0.52 (0.18, 1.45)  

Models were adjusted for stage, age at diagnosis, race, and first line treatment.  
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Meta-analysis 
 
 Table 5 shows the individual study results from this study (Emory University) and the 

study conducted at MCC/RPCCI. Each BCM was categorized into low, medium, and high BC 

area using tertiles. Emory University models were adjusted for race, first line treatment, age at 

diagnosis, and stage for all four BCMs. For VAT, SAT, and IMAT, MCC/RPCCI adjusted for age 

at diagnosis, stage, first line treatment, and study site. MCC adjusted for age at diagnosis, stage, 

race/ethnicity, first line treatment, and debulking status for SMI models.  

Emory University and MCC/ RPCCI both found no association between medium VAT 

and medium IMAT area and recurrence (HR VAT Emory = 1.04, 95% CI (0.41, 2.60); HR VAT 

MCC/RPCCI = 0.97, 95% CI (0.79, 1.20); HR IMAT Emory = 1.07, 95% CI (0.40, 2.86); HR 

IMAT MCC/RPCCI = 0.98, 95% CI (0.78, 1.21), respectively). Both studies found that medium 

SAT area was associated with longer time to recurrence (HR Emory = 0.59, 95% CI (0.23, 1.48); 

HR MCC/RPCCI = 0.87, 95% CI (0.71, 1.08), respectively), however Emory University found 

no association between medium SAT and OS while MCC/RPCCI found it to lead to slightly 

longer OS (HR Emory = 0.93, 95% CI (0.38, 2.27) and HR MCC/RPCCI= 0.86, 95% CI (0.67, 

1.10), respectively). High SMI was found to be associated with shorter time to recurrence in 

Emory University and MCC’s cohorts (HR Emory = 1.99, 95% CI (0.72, 5.53) and HR MCC = 

1.15, 95% CI (0.85, 1.55), respectively) (Table 5).  
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Table 5: Study results from Emory University and Moffitt Cancer Center (MCC) / Roswell Park 
Comprehensive Cancer Institute (RPCCI) cohorts for CT-based body composition measurements 
and HGSOC overall survival and recurrence 
 Overall Survival Recurrence 
 Emory University MCC / RPCCI Emory University MCC / RPCCI 
 HR (95% CI)  HR (95% CI)  HR (95% CI) HR (95% CI)  
VAT     
   Low 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 
   Medium  0.43 (0.16, 1.14) 1.05 (0.82, 1.34)  1.04 (0.41, 2.60) * 0.97 (0.79, 1.20)  
   High  0.76 (0.33, 1.74)  1.13 (0.89, 1.45)  0.48 (0.18, 1.27) *  0.98 (0.80, 1.21)  
SAT      
   Low 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 
   Medium 0.93 (0.38, 2.27)  0.86 (0.67, 1.10)  0.59 (0.23, 1.48) * 0.87 (0.71, 1.08)  
   High 0.69 (0.29, 1.66)  1.05 (0.83, 1.34)  0.60 (0.24, 1.51) * 1.16 (0.94, 1.43)  
IMAT     
   Low 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 
   Medium 0.68 (0.28, 1.69)  0.90 (0.69, 1.16)  1.07 (0.40, 2.86) * 0.98 (0.78, 1.21)  
   High 0.66 (0.27, 1.65)  1.44 (1.09, 1.90)  0.44 (0.16, 1.20) * 1.15 (0.90, 1.47)  
SMI     
   Low 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 1.00 (Referent) 
   Medium 0.98 (0.40, 2.40) * 1.00 (0.72, 1.40)  0.82 (0.29, 2.33) * 0.98 (0.74, 1.30)  
   High 0.79 (0.27, 1.70) * 1.11 (0.78, 1.60)  1.99 (0.72, 5.53) * 1.15 (0.85, 1.55)  

*These HRs were transformed from Weibull accelerated failure time models. HRs were 

calculated as follows: HR'()*+,,	 =	e
67/012	30450678709	:6874;8:∗	$%(8/01(	10203(4(2)9 

 

The results of the meta-analysis conclude that medium VAT area was inversely associated 

with OS and high VAT area was inversely related to recurrence (HR = 0.76, 95% CI (0.33, 1.77); 

HR =0.81 (0.43, 1.52), respectively). Medium SAT area was associated with longer OS and 

longer time to recurrence (HR = 0.86, 95% CI (0.68, 1.10) % and HR = 0.86, 95% CI (0.70, 

1.05), respectively). While high SAT area was not associated with survival or recurrence (HR = 

1.02, 95% CI (0.81, 1.29); HR= 0.98, 95% CI (0.56, 1.72), respectively).  

 There was no evidence of an association between OS and IMAT (medium or high) with 

HRs of 0.88 (95% CI 0.68, 1.13) and 1.11 (95% CI 0.55, 2.26), respectively.  Medium IMAT was 

not associated with recurrence (HR = 0.98, 95% CI (0.79, 1.21)); however, high IMAT area was 



 Faw 22 

associated with longer time to recurrence (HR = 0.81, 95% CI (0.32, 2.01)).  Medium and high 

SMI was not association with OS (HR = 1.00, 95% CI (0.73, 1.37) and HR = 1.05, 95% CI (0.75, 

1.46), respectively) and medium SMI was not associated with recurrence (HR = 0.97, 95% CI 

(0.74, 1.27)).  High SMI, however, resulted in shorter time to recurrence (HR = 1.21, 95% CI 

(0.88, 1.65)) (Table 6).  

 
Table 6: Meta-analysis HRs from Moffit Cancer Center, Roswell Park Comprehensive Cancer 
Institute, and Emory University for CT-based body composition measurements, overall survival, 
and recurrence.  
 Overall Survival Recurrence 
 HR (95% CI) Q-statistic p-value HR (95% CI) Q statistic p-value 
VAT     
   Low 1.00 (Referent)  1.00 (Referent)  
   Medium  0.76 (0.33, 1.77)  0.08 0.98 (0.80, 1.20)  0.90 
   High  1.10 (0.87, 1.39)  0.36 0.81 (0.43, 1.52)  0.15 
SAT      
   Low 1.00 (Referent)  1.00 (Referent)  
   Medium 0.86 (0.68, 1.10) 0.87 0.86 (0.70, 1.05)  0.40 
   High 1.02 (0.81, 1.29)  0.36 0.98 (0.56, 1.72)  0.17 
IMAT     
   Low 1.00 (Referent)  1.00 (Referent)  
   Medium 0.88 (0.68, 1.13) 0.58 0.98 (0.79, 1.21)  0.85 
   High 1.11 (0.55, 2.26)  0.11 0.81 (0.32, 2.01)  0.07 
SMI     
   Low 1.00 (Referent)  1.00 (Referent)  
   Medium 1.00 (0.73, 1.37)   0.96 0.97 (0.74, 1.27)  0.74 
   High 1.05 (0.75, 1.46)  0.30 1.21 (0.88, 1.65)  0.31 

 

 

 

 

 

 



 Faw 23 

Discussion  

In this study’s multivariate analysis of the associations between BCMs and HGSOC 

outcomes, VAT was significantly inversely associated with recurrence and none of the four 

BCMs were statistically significantly related to OS. However, high SMI was associated with 

longer OS. This is consistent with other literature because sarcopenia, which is when someone 

has low SMI, has been found to poorly impact OS among EOC patients (McSharry et al., 2021 & 

Ubachs et al., 2019). A meta-analysis that evaluated this relationship found a statistically 

significant association between sarcopenia and poorer OS (HR =1.11, 95% CI 1.03, 1.20). That is 

reflected in the results that our study found in modeling SMI dichotomously and in tertiles (Table 

3 and Table 5). The reason for this could potentially be because, chemotherapy is linked to loss 

of muscle mass due to increased activity of the ubiquitin-proteasome system (UPS) which leads 

to an increase in muscle protein degradation (Rier et al., 2016). Therefore, the more SMI a 

patient has at the start of their treatment, may indicate their likelihood of chemotherapy toxicity 

and treatment outcomes (Rier et al., 2016).  

Obesity was significantly associated with longer OS for those with high SAT area. This 

finding was consistent with a retrospective cohort study investigating the association between 

adiposity and several kinds of cancer (gastrointestinal, respiratory, and renal cell carcinoma) 

(Ebadi et al., 2017). With high adiposity as the reference group, the HR was 1.26 (95% CI: 1.11, 

1.43) for the low area SAT group. Although not significant, a similar association was found 

between VAT and OS (HR = 1.13, 95% CI (0.99, 1.28)), lower VAT area was found to lead to 

poorer survival (Ebadi et al., 2017). 

There is evidence that the relationship between obesity and recurrence could be modified 

by BCMs, specifically VAT area. Among those with lower VAT area, shorter time to recurrence 
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was observed while those with higher VAT area exhibited longer time to recurrence. This 

modification may be an indicator that some VAT is needed to properly respond to chemotherapy 

and protect vital organs within the abdomen. However, the biological mechanism explaining how 

high area of VAT and SAT prolong time to HGSOC outcomes is not well understood. Adipose 

tissue is responsible for storing energy in the form of lipids, so one hypothesis is that obese 

patients can sustain the decrease in energy intake associated with cancer treatment because of the 

availability of energy from the stored adipose tissue, increasing the likelihood of better treatment 

outcomes (Liu & Xiao, 2013 & Hughes, 2013).  

Our meta-analysis suggests a dose-response between BCMs and OS. Although the results 

were mostly null, VAT and IMAT suggest that the higher BCM tertile may be negatively 

impacting OS. The results suggest that moderate adipose tissue area could potentially not be 

harmful, but higher area could impact OS. Similar to our results, a retrospective cohort study by 

Deluche et al., found that higher IMAT was an independent predictor of worse OS for those with 

breast cancer (HR = 3.60 95% CI (1.20, 10.8)) (Deluche et al, 2016). Similarly, the MCC/ 

RPCCI study found that high IMAT area was significantly associated with shorter HGSOC OS 

with an HR of 1.44 (95% CI 1.09, 1.90) (Table 5). Deluche et al.’s study had a sample size of 119 

patients and the MCC/RPCCI study had a sample size of 656 participants. Perhaps with a larger 

sample size our current study would have been able to detect a statistically significant trend for 

IMAT and OS. IMAT is located within muscles. The infiltration of adipose tissue in muscles can 

cause sensitivity to insulin, lower muscle strength, power, and quality, potentially resulting in 

sarcopenia (Waters, 2019).  
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Strengths and limitations 

 The main strength of this study is the concept of approaching assessment of body 

composition utilizing CT scans. There are very few studies that use CT scan based BCMs as 

potential predictors for OS and recurrence for HGSOC. One of the goals of this study was to 

evaluate the feasibility of obtaining and using CT scan based BCMs for potential future research.  

However, this study had several limitations. The first being, the sample size and 

missingness of data. With only 77 patients getting treated at Emory clinics meeting the full 

eligibility criteria, the sample size was small to begin with. However, the missingness of 

information from electronic medical records, limited the number of observations used in the Cox 

PH and AFT models.  Therefore, there is concern of lack of statistical power and external 

validity of these results. Second is the potential misclassification of the outcomes. The outcomes 

of OS and recurrence were based on electronic medical records and vital status updates on 

LexisNexis. Depending on how often LexisNexis is updated, may influence a participant’s vital 

status classification if their medical records were not up to date (Woolpert et al., 2021). Medical 

records that did not explicitly state recurrence were assumed to not have a recurrence. If patients 

sought care elsewhere or moved after their first line treatment outside of the Emory Healthcare 

system, their medical records would not reflect a recurrence and they would be misclassified as 

not having had a recurrence. Lastly, MCC/RPCCI adjusted for slightly different factors in their 

models than the present study. Although it is not anticipated to have made a big impact on the 

results of the meta-analysis, it does have the potential to distort the point estimates and 

confidence intervals. Possible reasons for the different model adjustments include differences in 

racial composition among the sites and availability of data from different methods of gathering 

covariate information. To improve the results of the meta-analysis, the three datasets should be 
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combined into one and the models should adjust for the same covariates, or a new data analysis 

could be undertaken to make the adjustments uniform. Either method would improve the validity 

of the meta-analysis results. 

Public health implications and future research   

To date, there are limited studies that use CT scan based BCMs to evaluate their effects 

on OS and recurrence for patients with HGSOC. Although we did not find many significant 

results with our data, perhaps with a larger and more diverse sample size (i.e., more women that 

identify as Black/African American, Asian, and Hispanic), the true effect of BCMs on OS and 

recurrence can be established and generalizable to all women diagnosed with HGSOC. One way 

to do this is by expanding the study into additional Emory Healthcare clinic sites since this 

present study only evaluated women at the Emory University Hospital clinic.  

Some of the lessons learned from this study include the importance of data sharing. There 

were a lot of participants excluded because they came to the Emory Hospital system as a second 

opinion or after they received a CT-scan during diagnosis elsewhere. Some CT-scans were 

available, but many were not. For future studies, CT-scan requests, and release forms from 

participants not found in the hospital’s medical record system, would be extremely beneficial. 

Missingness of information in electronic medical records also needs to be addressed. This study 

found that FIGO stage was missing from 23.4% of participants records, therefore, pathology 

reports or operation reports should be included in the medical records or obtained from the 

patient’s physician or pathologist to confirm FIGO stage to limit the amount of missing data.  

It is important to further investigate the relationships between CT scan based BCMs and 

HGSOC outcomes because it could potentially provide a patient specific approach to treatment 

to maximize OS and decrease the likelihood of recurrence.  
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