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Powerful variance-component method for TWAS identifies novel and known risk 

genes for Alzheimer’s dementia 
 

By Shizhen Tang 
 

 
Background: Existing method for detecting disease related genes of complex disease 
including Genome-wide association studies (GWAS) and Transcriptome-wide 
association studies (TWAS). Typically, GWAS focuses on detecting the association 
between common single nucleotide polymorphisms (SNPs) and traits. However, the 
biology mechanisms for the majority of GWAS signals remain to be determined. Existing 
TWAS methods such as PrediXcan, FUSION, and TIGAR employ different regression 
models to estimate cis-eQTL effect sizes from reference panels, but conduct gene-based 
association studies by Burden approach that models the variant effect size as a linear 
function of their corresponding cis-eQTL effect size estimate which may not be true for 
majority genes. 
 
Methods and Materials: We proposed a novel TWAS method based on Sequential 
Kernel Association Test (SKAT) as VC-TWAS method, which takes cis-eQTL effect size 
estimates as variant weights but does not model the directions of variant effect sizes. In 
our studies, we applied PrediXcan and the nonparametric Bayesian Dirichlet process 
regression (DPR) model to estimate the cis-eQTL effect sizes. In simulation studies, we 
compared the performance of VC-TWAS and Burden-TWAS and simulated the data 
using the real genotype data from ROS/MAP dataset to simulation gene expression level 
and phenotype in two models. In real application, we applied VC-TWAS with the 
nonparametric Bayesian Dirichlet process regression (DPR) model to study Alzheimer’s 
dementia related phenotypes. 
 
Results: From simulation studies, Compared to Burden-TWAS, VC-TWAS with weights 
derived from DPR method was shown obtaining the highest power when phenotypes 
were simulated under the assumption of random effects. From Meta-analysis result, we 
detected 13 significant TWAS (FDR < 0.05) genes for AD diagnosis, including the well-
known GWAS risk gene TOMM40 with FDR = 2.86 × 10!".Top novel risk Gene 
ZNF234 with FDR = 1.40 × 10!#$ and previously detected Gene TRAPPC6A by Burden 
type TWAS with FDR = 1.52 × 10!#% are identified by VC-TWAS. All significant loci 
are proximal to the major known risk loci APOE for Alzheimer’s dementia. 
 
Conclusion: Based on those result, our finding provided potential biological 
interpretations for the known AD risk genes that also had significant TWAS p-values, 
with respect to the mediated genetic effects through gene expression and the significant  
association with both AD diagnosis and AD pathology indices. 
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1. Introduction 

Genome-wide association studies (GWAS) have succeeded in identifying 

thousands of genetic loci associated with complex traits and diseases. Typically, GWAS 

focuses on detecting the association between common single nucleotide polymorphisms 

(SNPs) and the trait of interest1. However, the genetic effect sizes on complex traits are 

often small and rely on large sample sizes to identify significant associations2. Single 

variant tests across all genome-wide SNPs by standard GWAS are also subject to the 

complication of multiple testing. Additionally, the molecular and biological mechanisms 

for majority GWAS signals remain to be determined3. Studies have shown that gene 

expression plays a key role in explaining the etiology of complex diseases4. It is shown 

that many common variants associated with diseases are highly likely to be expression 

quantitative trait loci (eQTL) 5; 6. Therefore, integrating gene expression information in 

GWAS is expected to help identify novel risk genes as well as provide biological 

interpretation. 

A novel gene-based test approach, the transcriptome-wide association study 

(TWAS) has been proposed to integrate transcriptomic and GWAS data7. Basically, 

TWAS first fits imputation models for expression quantitative traits by taking cis-SNP 

genotype data as predictors, where the broad sense of cis-eQTL effect sizes are estimated 

using reference panels such as Genotype-Tissues Expression (GTEx) 8. Then TWAS tests 

for the association between the imputed genetically regulated gene expression (GReX) 

per gene and the trait of interest within additional GWAS samples, where GReX is 

obtained by using the corresponding gene expression imputation model fitted with 

reference panels. Existing TWAS tools such as PrediXcan9, FUSION10, and TIGAR7 
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employ different regression methods to fit gene expression imputation models. For 

example, PrediXcan method9 implements the Elastic-Net penalized regression method 

and TIGAR7 implements the nonparametric Bayesian Dirichlet process regression 

(DPR)11 method. However, the essence of these existing TWAS7 methods is a weighted 

burden test7 (referred to as Burden-TWAS in this paper), which assumes SNP effect sizes 

on phenotype are of a linear function of their corresponding cis-eQTL effect sizes 

estimated from gene expression imputation models. This strong assumption does not hold 

for most genes and complex traits with unknown underlying genetic architectures, thus 

limiting the potential power of TWAS.  

To relax this assumption for general studies, we derive a novel Variance-

Component TWAS (VC-TWAS) method that is analogous to the previously proposed 

Sequence Kernel Association Test (SKAT)12-14 for gene-based test. Unlike Burden-

TWAS methods, our VC-TWAS aggregates genetic information across SNPs within the 

test gene region using a kernel similarity function that allows upweighting or 

downweighing of specific variants in the similarity score based on cis-eQTL effect size 

magnitudes. The test statistic can be thought of as a variance-component score statistic 

based on a linear mixed model where each variant in the gene has a random effect whose 

variance is a linear function of the squared values of corresponding cis-eQTL effect size. 

By modeling variants with random effects, the technique is robust to weight 

misspecification; both in terms of the direction and magnitude of the weight. That is, our 

VC-TWAS is expected to be robust to the direction and magnitude of cis-eQTL effect 

size estimates. In particular, our VC-TWAS uses variant weights that are cis-eQTL effect 

sizes estimated by either the nonparametric Bayesian Dirichlet process regression (DPR) 
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method implemented in TIGAR7 or the Elastic-Net penalized regression method 

implemented in PrediXcan9. 

In this paper, we conducted in-depth simulation studies to validate the power 

performance as well as type I errors of our VC-TWAS method, under scenarios with 

various gene expression heritability and proportion of true causal eQTL and two 

phenotype models as assumed respectively by Burden-TWAS and VC-TWAS. Compared 

to Burden-TWAS, VC-TWAS with weights derived from DPR method was shown 

obtaining the highest power when phenotypes were simulated under the assumption of 

random effects. Then we applied our VC-TWAS method with weights derived from DPR 

and PrediXcan methods to GWAS data from Religious Order Study and Memory Aging 

Project (ROS/MAP)15-18 and Mayo Clinic late-onsite Alzheimer’s disease (LOAD)19; 20 

cohorts for studying Alzheimer’s dementia (AD) related phenotypes. Our application 

studies demonstrated that VC-TWAS with weights derived from DPR method identified 

both novel and known risk genes for AD within 2MB of the well-known major risk gene 

APOE of AD, including the known risk gene TOMM40. Additionally, we integrate this 

novel VC-TWAS method into our previously developed software tool TIGAR7 for public 

use. 

In the following sections, we first provide descriptions about TWAS procedure, 

VC-TWAS, cis-eQTL effect size estimation, GWAS data of ROS/MAP and Mayo Clinic 

LOAD cohorts, as well as simulation study design in the Methods section. Second, we 

describe our results from simulation studies and real application studies of AD related 

phenotypes. Last, we end with a brief discussion about potential impact, computation 

tool, and current limitations of VC-TWAS. 
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2. Methods 

2.1. TWAS Procedure 

TWAS first fits gene expression imputation models by taking genotype data as 

predictors and assuming the following additive genetic model for expression quantitative 

traits,  

𝑬𝒈 = 𝑮𝒘+ 𝜺,					𝜺~𝑁(0, 𝜎'$𝑰).                                    (Equation 1) 

Here, 𝑮 is the genotype matrix for all cis-genotypes (encoded as the number of minor 

alleles or genotype dosages of SNPs within 1MB of the target gene region), 𝒘 is the cis-

eQTL effect size vector, and 𝑬𝒈 is the profiled gene expression levels for the target gene 

𝒈. With cis-eQTL effect size estimates 𝒘<  from reference data, GReX will be imputed by 

the following equation 

𝑮𝑹𝒆𝑿@ = 𝑮𝒏𝒆𝒘𝒘<,                                            (Equation 2) 

where 𝑮𝒏𝒆𝒘 is the genotype matrix for the test cohort.  

The general test framework of Burden-TWAS7; 9; 10 that test for association 

between 𝑮𝑹𝒆𝑿@  and the phenotype of interest can be written as:  

𝒀	 = 	𝛽𝑮𝑹𝒆𝑿@ +𝜶′𝒁 + e = 	𝛽(𝑮𝒏𝒆𝒘𝒘<) + 𝜶′𝒁 + e		,				e		~	𝑁	(0, 𝑰),         (Equation 3)       

where 𝑮𝑹𝒆𝑿@ 	is imputed gene expression levels, 𝒀 denotes the phenotype of interest, 𝜶′ 

denotes the coefficient vector for other non-genomic covariates 𝒁. Basically, Burden-

TWAS tests the null hypothesis of 𝐻%: b = 0, where cis-eQTL effect size estimates (𝒘< ) 

are taken as variant weights and SNP effect sizes on phenotype (𝛽𝒘< ) are assumed of a 

linear function of 𝒘< 7; 9; 10. However, this strong assumption of linear relationship is often 

not true in real studies, which limits the potential power of TWAS.  
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2.2. VC-TWAS Method 

Here, we propose a powerful VC-TWAS method that is analogous to the 

previously proposed method SKAT for SNP-set based association test12. Similar to 

SKAT, the general test framework of VC-TWAS can be written as  

𝒀	 = 	𝜷′𝑮 + 𝜶′𝒁 + e, 			b,
	-	~	𝑁	I0, 𝑤,$𝜏L,					e		~	𝑁	(0, 𝜎'$),                   (Equation 4) 

for continuous quantitative traits, and  

𝑙𝑜𝑔𝑖𝑡	𝑝(𝑌. = 1) 	= 	𝜷-𝐺. + 𝜶-𝑍. , b,
	-	~	𝑁	(0, 𝜏𝑤,$),                       (Equation 5) 

for dichotomous traits of sample 𝑖. Here, 𝜷′	is the genetic effect size vector, 𝑮 is the 

genotype matrix for all test SNPs within the test gene, 𝒁 is the non-genomic covariate 

matrix, and e		is the error term. VC-TWAS will test 𝐻%: 𝜏 = 0, which is equivalent to 

testing 𝐻%: 𝜷 = 0. The variance-component score statistic used by VC-TWAS is given by  

𝑄 = (𝒀 − 𝝁<)-𝑲(𝒀 − 𝝁<), 𝑲 = 𝑮𝑾𝑮-,                                (Equation 6) 

where 𝝁< is the estimated phenotype mean under 𝑯𝟎 and 𝑾 = 𝑑𝑖𝑎𝑔(𝑤,$, … ) with weight 

𝑤, for the 𝑗th variant.  

Different from SKAT, VC-TWAS takes cis-eQTL effect size estimates from 

Equation 1 as variant weights (𝑤,). That is, the variances (𝜏𝑤,$) of SNP effect sizes on 

phenotype are assumed of a linear function of cis-eQTL effect size estimates, which is 

robust to both direction and magnitude of cis-eQTL effect size estimates. Since the 

variance-component score statistic Q (Equation 6) follows a mixture of chi-square 

distributions under the null hypothesis21; 22, p-value can be conveniently obtained from 

several approximation and exact methods like the Davies exact method23.  
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2.3. Cis-eQTL effect size estimation 

Different methods can be used to estimate cis-eQTL effect sizes 𝒘 from Equation 

1. In this study, we applied PrediXcan and nonparametric Bayesian DPR methods7; 9 to 

estimate 𝒘 and compared the performance of VC-TWAS using cis-eQTL effect sizes 

estimated by these two methods. Here, we briefly describe the PrediXcan and 

nonparametric Bayesian DPR methods for estimating 𝒘. 

PrediXcan TWAS method9 employs Elastic-Net penalized regression method24 to 

estimate cis-eQTL effect sizes 𝒘 from Equation 1. Basically, the Elastic-Net method 

assumes a combined LASSO  (𝐿#)25 and Ridge (𝐿$)26 penalty and estimate 𝒘 by the 

following equation 

𝒘< = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒘

(d𝑬𝒈 − 𝑮𝒘d$
$ + 𝜆(𝛼||𝒘||# +

#
$
(1 − 𝛼)||𝒘||$$))                   (Equation 7) 

Where ‖∙‖# denotes 𝐿# norm, ‖∙‖$ denotes 𝐿$	norm. Particularly, 𝜶 is taken as 0.5 by 

PrediXcan method9 and penalty parameter 𝝀 can be tuned by a 5-fold cross validation. 

The nonparametric Bayesian DPR method11 provides a more flexible approach to 

nonparametrically estimate cis-eQTL effect sizes. The DPR method assumes a normal 

prior distribution 𝑁(0, 𝜎0$) for cis-eQTL effect sizes and a Dirichlet process prior27 for 

effect-size variance 𝝈𝒘𝟐  as follows:  

w2~N(0, σ3$ ), σ3$ ~D, D~DP(IG(a, b), ξ).                            (Equation 8) 

That is, the prior distribution 𝐷 of effect-size variance deviates from a Dirichlet Process 

(DP) with an inverse gamma (IG) distribution and concentration parameter 𝛏.As proposed 

by previous studies, variational Bayesian algorithm28; 29 is implemented to obtain posterior 

estimates 𝒘< . 
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2.4. Computational considerations of VC-TWAS 

 We note that our VC-TWAS method is computationally more complex than 

standard Burden-TWAS given the need to perform eigen-decomposition of the kernel 

matrix K in Equation 6 to obtain an analytic p-value. Such eigen-decomposition has 

computational complexity 𝑂(𝑚4) for considering 𝑚 SNPs with non-zero cis-eQTL effect 

sizes. As DPR method produces non-zero cis-eQTL effect size estimates for almost all 

SNPs within a test gene region (with most cis-eQTL effect size estimates being close to 

zero7), we explored an alternate VC-TWAS that considered a reduced set of SNPs by 

filtering out those with cis-eQTL effect size estimates smaller than the median cis-eQTL 

effect size estimate. By doing so, we can reduce up to 80% computation time while 

having negligible impact on performance relative to using all SNPs with non-zero cis-

eQTL effect size estimates. These are validated by our following simulation studies. 

 

2.5. ROS/MAP data 

ROS/MAP data are generated from the Religious Orders Study (ROS) and Rush 

Memory and Aging Project (MAP) 15-18, which are ongoing prospective cohort studies of 

studying aging and dementia. Participants are senior adults showed no signs of dementia 

when enrolled, who underwent annual clinical evaluation. Brain autopsy was done at the 

time of death for each participant. All participants signed an informed consent and 

Anatomic Gift Act, and the studies are approved by an Institutional Review Board of Rush 

University Medical Center, Chicago, IL. All participants in this study also signed a 

repository consent to allow their data to be re-purposed. Currently, we have microarray 

genotype data generated for 2,093 European-decent subjects from ROS/MAP15-18, which 
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are further imputed to the 1000 Genome Project Phase 330 in our analysis31. Post-mortem 

brain samples (gray matter of the dorsolateral prefrontal cortex) from ~30% these 

ROS/MAP participants with assayed genotype data are profiled for transcriptomic data by 

next-generation RNA-sequencing32, which are used as reference data to train GReX 

prediction models.   

Using ROS/MAP data, we conducted TWAS for clinical diagnosis of LOAD as 

well as pathology indices of AD quantified with 𝛽 -antibody specific immunostains, 

including PHFtau tangle density, 𝛽-amyloid load, and a global measure of AD pathology 

(a combination of neuritic and diffuse plaques and neurofibrillary tangles)15; 16; 18. The tangle 

density quantifies the average PHFtau tangle density within two or more 20µm sections 

from eight brain regions –– hippocampus, entorhinal cortex, midfrontal cortex, inferior 

temporal, angular gyrus, calcarine cortex, anterior cingulate cortex, and superior frontal 

cortex. The 𝛽-amyloid load quantifies the average percent area of cortex occupied by 𝛽-

amyloid protein in adjacent sections from the same eight brain regions. These two are based 

on immunohistochemistry.  The global measure of AD pathology is based on counts of 

neuritic and diffuse plaques and neurofibrillary tangles (15 counts) on 6µm sections stained 

with modified Bielschowsky15; 16; 18.  

 

2.6. Mayo Clinic LOAD GWAS data 

Mayo Clinic LOAD GWAS data contain samples from two clinical AD Case-

Control series: Mayo Clinic Jacksonville (MCJ: 353 AD cases and 331 Controls), Mayo 

Clinic Rochester (MCR: 291 AD cases and 787 Controls) and a neuropathological series 

of autopsy-confirmed subjects from the Mayo Clinic Brain Bank (MCBB: 298 AD cases 
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and 223 non-AD Controls)19; 20. In total, we have 844 cases with LOAD and 1,255 controls 

without a dementia diagnosis. Mayo Clinic LOAD GWAS data have microarray genotype 

data profiled for 2,099 European-decent samples that are further imputed to the 1000 

Genome Project Phase 330 in our analysis31. This cohort only profiles the phenotype of 

clinical diagnosis of AD. 

 

2.7. Simulation Study Design 

The purpose of this simulation study is to compare the performance of Burden-

TWAS and VC-TWAS with variant weights estimated by PrediXcan and DPR methods. 

We used the real genotype data from ROS/MAP33 participants to simulate quantitative gene 

expression and phenotype traits, where the genotype data were of 2,799 cis-SNPs (with 

𝑀𝐴𝐹 > 5%	and Hardy Weinberg p-value  > 10!5) of the arbitrarily chosen gene ABCA7. 

Specifically, quantitative gene expression traits are generated by the following equation 

𝑬𝒈 = 	𝑮𝒘 + 𝜺𝑬,                                     (Equation 9) 

where 𝑮 denotes the genotype matrix of randomly selected true causal eQTL based on a 

target proportion of causal eQTL (𝑝789:8;) within the test gene, 𝒘 denotes cis-eQTL effect 

sizes generated from 𝑁(0, 𝜎0$𝑰) with variance 𝜎0$  chosen to ensure a target gene expression 

heritability (ℎ<$), and 𝜺𝑬 is the error term generated from 𝑁(0, (1 − ℎ<$)𝑰). Phenotype data 

are generated based on two models to mimic two different genetic architectures of complex 

traits in practice.  

       Model I: The genetic effects on the trait of study are completely driven by 

genetically regulated gene expression (GReX), where SNP effect sizes are of a linear 
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function of their corresponding cis-eQTL effect sizes as assumed by Burden-TWAS 

methods7; 9; 10. Phenotype data are generated from the following equation 

𝒀 = f𝑬𝒈 + e= 	= 𝜙(𝑮𝒘 + 𝜺𝑬) + e𝒀	,			e𝒀	~𝑁(0, (1 − ℎ?$)𝑰	),              (Equation 10) 

where 𝑬𝒈is the gene expression generated from Equation 9 and  f =�ℎ?$ 𝑉𝑎𝑟	(𝑬𝒈)	⁄ 	is a 

scalar chosen to ensure a target phenotype heritability (ℎ?$).  

    Model II: The magnitudes of SNP effect sizes on phenotype are driven by their 

corresponding cis-eQTL effect sizes, while the directions of SNP effect sizes are not 

restricted. Specifically, variances of SNP effect sizes on phenotype are taken as a linear 

function of squared values of cis-eQTL effect sizes, as assumed by VC-TWAS. 

Phenotype data are generated from the following equation  

𝒀 = 𝑮b+ e𝒀	, e𝒀	~	𝑁	(0, (1 − ℎ?$)𝑰	),                                      (Equation 11) 

where 𝑮 denotes the genotype matrix of randomly selected true causal SNPs that are also 

true causal cis-eQTL as in Equation 9, respective SNP effect sizes are generated from b. 

~𝑁(0,j𝑤.	$) with corresponding cis-eQTL effect size 𝑤. as used in Equation 9 and j 

chosen to ensure a phenotype heritability ℎ?$.  

We considered scenarios with various proportions of causal cis-eQTL/SNPs 

𝑝789:8; = (0.001, 0.01, 0.1, 0.2) for the test gene, and various combinations of 

expression heritability (ℎ<$) and phenotype variance/heritability (ℎ?$) that were chosen to 

ensure TWAS power falling within the range of (25%, 90%). The values of ℎ<$ and ℎ?$ 

were taken as Iℎ<$, ℎ?$L = ((0.001,0.2), (0.01,0.3), (0.05,0.4), (0.1,0.4), (0.2,0.5)) for 

simulating phenotypes from Model I, while taken as Iℎ<$, ℎ?$L =



 

 

11 

  

((0.001,0.1), (0.01,0.1), (0.05,0.15), (0.1,0.15), (0.2,0.15)) for simulating phenotypes 

from Model II. 

In our simulation studies, we randomly selected 499 ROS/MAP samples as 

training data and 1,200 ROS/MAP samples as test data. We estimated cis-eQTL effect 

sizes from training data by using PrediXcan and DPR methods and then conducted 

Burden-TWAS and VC-TWAS with test data. For each scenario, we repeated simulations 

for 1,000 times and obtained the power as the proportion of simulations that had test p-

value < 2.5 × 10!@ (genome-wide significance threshold for gene-based test). 

Additionally, we simulated phenotype under the null hypothesis 𝑌 ∼ 𝑁(0, 1) for 10@ 

times and evaluated type I errors of Burden-TWAS and VC-TWAS, using variant 

weights derived from PrediXcan and DPR methods. For each VC-TWAS, we considered 

both our original form of the test as well as the alternate form that considered only the 

filtered set of variants with cis-eQTL effect size estimates greater than the median effect 

size value to improve computational efficiency.  
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3. Results 

3.1. Simulation results 

We compared the performance of VC-TWAS and Burden-TWAS using PrediXcan 

weights (cis-eQTL effect size estimates by Elastic-Net penalized regression) and DPR 

weights (cis-eQTL effect size estimates by DPR) under various scenarios. We also 

evaluated the performance of VC-TWAS and Burden-TWAS using filtered DPR weights 

as described in Methods.  

First, we compared TWAS power for studying phenotypes simulated from Model 

I that assumed SNP effect sizes on phenotypes were of a linear function of their 

corresponding cis-eQTL effect sizes. As shown in Figure 1A, for scenarios with various 

proportions of true causal cis-eQTL/SNPs within the test gene region, 𝑝789:8; =

(0.001, 0.01, 0.1, 0.2) , and various combinations of expression heritability ℎ<$  and 

phenotype heritability ℎ?$ , Iℎ<$, ℎ?$L = ((0.001,0.2), (0.01,0.3), (0.05,0.4), (0.1,0.4),

(0.2,0.5)), we observed that Burden-TWAS had comparable power with VC-TWAS when 

pABCDBE = (0.001, 0.01) with sparse true causal signals, and slightly higher power when 

pABCDBE = (	0.1, 0.2). In particular, when pABCDBE = (0.001, 0.01), TWAS methods using 

PrediXcan weights achieved higher power than using DPR weights. Whereas, when 

pABCDBE > 0.01, TWAS methods using DPR weights achieved higher power than using 

PrediXcan weights. These results are consistent with previous Burden-TWAS findings7. 

This is because DPR method is preferred for modeling quantitative gene expression traits 

when a gene harbors a considerable proportion of true cis-eQTL with relatively smaller 

effect sizes, e.g., scenarios with pABCDBE > 0.01  in our simulation studies. Across all 
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considered scenarios, TWAS using filtered DPR weights performed as powerful as using 

complete DPR. 

Second, we compared TWAS power for studying phenotypes simulated from 

Model II that assumes variances of SNP effect sizes on phenotype were of a linear 

function of the squared values of their corresponding cis-eQTL effect sizes. As shown in 

Figure 1B, we found that the VC-TWAS obtained higher power than Burden-TWAS 

across all scenarios, with 𝑝789:8; = (0.001, 0.01, 0.1, 0.2)	and Iℎ<$, ℎ?$L = 

((0.001,0.1), (0.01,0.1), (0.05,0.15), (0.1,0.15), (0.2,0.15)). Especially, when pABCDBE ≥

0.01, the power of VC-TWAS method using DPR weights was twice higher than using 

PrediXcan weights on average (88.99% vs. 38.45%), while the power of burden-TWAS 

using DPR weights was comparable with using PrediXcan weights except when 

pABCDBE = 0.001. When pABCDBE = 0.001 and ℎ<$ ∈ (0.1,0.2), both TWAS approaches 

using PrediXcan weights performed better than using DPR weights. Again, across all 

considered scenarios, TWAS using filtered DPR weights performed as powerful as using 

complete DPR. 

In addition, to evaluate type I errors of both TWAS approaches, we conducted 10@ 

times simulations under the null hypothesis where phenotypes were not associated with 

genetic data of the test gene. Without loss of generality, we used gene expression data 

simulated with pABCDBE = 0.2, ℎ<$ = 0.1  and generated phenotypes randomly from a 

𝑁(0, 1)  distribution. We evaluated type I errors (Table 1) with multiple significant 

levels(10!$, 10!F, 2.5 × 10!@), demonstrating that both TWAS approaches had type I 

errors well controlled with all considered significance levels. We also presented the 

quantile-quantile (QQ) plots of p-values by all methods in Supplementary Figure 1.    
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To summarize, VC-TWAS performed similarly to Burden-TWAS for studying 

phenotypes simulated from Model I, while outperformed Burden-TWAS for studying 

phenotypes simulated from model II. This is because the genetic architecture assumed 

under Model I is the one assumed by Burden-TWAS with linear relationship between SNP 

effect sizes on phenotype and cis-eQTL effect sizes. Whereas, Model II assumes a genetic 

architecture that is more general in practice, where the variances of SNP effect sizes on 

phenotype are of a linear function with squared values of cis-eQTL effect sizes. In 

particular, TWAS methods using DPR weights achieved higher power than using 

PrediXcan weights when pABCDBE ≥ 0.01 , which is consistent with previous studies7. 

Additionally, TWAS using filtered DPR weights achieved similar power as using complete 

DPR weights, while saving up to 80% computation time.  

 

3.2. Application results 

 We applied VC-TWAS to the GWAS data of ROS/MAP and Mayo Clinic LOAD 

cohorts, using SNP weights (i.e., cis-eQTL effect sizes) generated by PrediXcan and 

filtered DPR methods with 499 ROS/MAP training samples that had both transcriptomic 

and genetic data profiled7. As suggested by previous studies9; 34, our TWAS results 

included genes with 5-fold cross validation (CV) 𝑅$ > 0.005 for predicting quantitative 

gene expression traits by either PrediXcan or DPR. We obtained VC-TWAS p-values for 

5,710 genes using PrediXcan weights and 12,650 genes using filtered DPR weights. 

Filtered DPR weights were used in our VC-TWAS such that on average the variance 

component test considered ~50% SNPs from the test gene region and costs ~3 CPU 

munities (Supplementary Figure 2). Specifically, the median number of SNPs considered 
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by VC-TWAS per gene is 2,872 for using filtered DPR weights and 6,632 for using 

complete DPR weights.  

With ROS/MAP GWAS data, we conducted VC-TWAS for four AD related 

phenotypes including dichotomous phenotype of AD clinical diagnosis, quantitative 

pathology indices of AD including 𝛽-amyloid load, PHFtau tangle density (tangles), and 

a global measure of AD pathology (gpath). For the dichotomous phenotype of AD 

clinical diagnosis (N=1,436), we took patients diagnosed with Alzheimer’s dementia as 

cases (N=609), and patients either without cognitive impairment or diagnosed with mild 

cognitive impairment (MCI) as controls (N=827). For continuous AD pathology 

phenotypes, among all samples with profiled genetic data, we had 1,294 participants with 

profiled 𝛽-Amyloid, 1,303 participants with profiled tangles, and 1,329 participants with 

gpath values. In the VC-TWAS of all four phenotypes, we adjusted for covariates of age, 

smoking status, sex, study group (ROS or MAP), education, and the top three principal 

components of ancestry.  

With Mayo Clinic cohort, we conducted VC-TWAS for AD clinical diagnosis 

with 844 cases diagnosed with LOAD and 1,255 controls showed no signal of dementia, 

which adjusted for covariates age, sex, and top three principal components of ancestry. 

Since only the phenotype of AD clinical diagnosis was profiled by both ROS/MAP and 

Mayo Clinic cohorts (under different diagnosis criteria) and different sets of covariates 

were adjusted in VC-TWAS, we conducted meta-analysis with VC-TWAS summary 

statistics obtained per study by using Fisher’s method (meta VC-TWAS) to leverage the 

power of considering a larger sample size35. 
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By meta VC-TWAS, we detected 13 significant risk genes with FDR < 0.05 that 

were located within ~2MB region around the well-known AD risk gene APOE on 

chromosome 19 (Figure 2A; Table 2). Seven of those significant genes were known risk 

genes by previous GWAS (CLASRP, TOMM40, MARK4, CLPTM1, CEACAM19, 

RELB)36  and Burden-TWAS (TRAPPC6A)7. To investigate whether these significant 

genes were also involved in the mechanisms of AD pathologies, we investigated the VC-

TWAS p-values of these significant genes with respect to AD pathology phenotypes (𝛽-

amyloid, tangles and gpath) (Table 3; Figure 2B; Supplementary Figure 3). Interestingly, 

11 out of these 13 genes had at least one VC-TWAS p-value <0.05 with respect to one of 

the AD pathology phenotypes. Recall that gpath is a global measure of AD pathology, 

which includes weighted quantitative measures of 𝛽-amyloid and tangles. Six of these 

significant genes (ZNF234, CLASRP, TRAPPC6A, CLPTM1, CEACAM19 and GIPR) 

have VC-TWAS p-value <0.05 for all three AD pathology phenotypes, which are likely 

to be involved in the biological mechanisms of both 𝛽-amyloid and tangles. The other 

five genes (TOMM40, MARK4, PPP1R13L, EML2, FBXO46) have VC-TWAS p-value 

<0.05 for 𝛽-amyloid and gpath, which are likely to be involved only in the biological 

mechanism of	𝛽-amyloid.    

For example, the top significant gene ZNF234 (with FDR = 	1.40 × 10!#$) by 

meta VC-TWAS of AD clinical diagnosis is also the top significant gene (p-value =

2.10 × 10!F) by VC-TWAS of 𝛽-amyloid, the second most significant gene (p-value =

6.39 × 10!5) by VC-TWAS of gpath, and has p-value = 1.06 × 10!4 by VC-TWAS of 

tangles. These results showed that the genetic factor of gene ZNF234 on AD is potentially 

mediated through its gene expression, and the expression of this gene is also potentially 
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involved in the mechanisms of both AD pathology indices of 𝛽-amyloid and tangles. 

Besides AD, gene ZNF234 is also a known risk gene for lipid traits37. The genetically 

regulated gene expression of this gene might also affect lipid traits, thus leading to a 

pleiotropy phenomenon of AD and lipid traits.  Additionally, ZNF234 is known to be 

involved in the super pathway of gene expression and is annotated with the Gene Ontology 

term of nucleic acid binding and DNA-binding transcription factor activity38.  

Another gene of interest is TOMM40, which has FDR = 	2.86 × 10!"	by meta VC-

TWAS for AD clinical diagnosis and VC-TWAS p-values = (4.44 × 10!F, 6.95 ×

10!$, 1.91 × 10!F)  for 𝛽 -amyloid, tangles, and gpath, respectively. These findings 

suggest that the genetic effect of this well-known AD risk gene TOMM4039 could be 

mediated through its gene expression, and the disease mechanism caused by this gene is 

likely to be only involved with the AD pathology of 𝛽-amyloid.  

For all SNPs considered by meta VC-TWAS for genes ZNF234 and TOMM40, 

we colocalized meta GWAS results for AD clinical diagnosis with ROS/MAP and Mayo 

Clinic cohorts and their corresponding cis-eQTL effect sizes estimated by DPR with 

ROS/MAP training data. Interestingly, we found that the VC-TWAS association of these 

two genes were likely to be driven by SNPs around APOE/TOMM40 loci that also 

possessed major cis-eQTL effect sizes (Figure 3).  

In addition, our VC-TWAS identified a significant gene HSPBAP1 (FDR = 0.058) 

for tangles (Supplementary Figure 3B). As shown by previous studies, mRNA of gene 

HSPBAP1 was abnormally expressed in the anterior temporal neocortex of patients with 

intractable epilepsy40. Based on our VC-TWAS results, gene HSPBAP1 might not have a 

significant genetic effect on AD, but have a significant effect on the global measurement 
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of the brain pathology (p-value = 4.57× 10!@). This showed that gene HSPBAP1 could be 

involved in the mechanism of brain pathology tangles and other neurological diseases such 

as intractable epilepsy40.  

In conclusion, our VC-TWAS method with filtered DPR weights identified both 

novel and known risk genes for AD clinical diagnosis that are proximal to the major 

known risk gene APOE (Supplementary Figure 4). These results provided potential 

biological interpretations for the known AD risk genes that also had significant VC-

TWAS p-values, with respect to the mediated genetic effects through gene expression 

and the significant association with both AD clinical diagnosis and AD pathology 

indices. However, compared with the results of VC-TWAS with PrediXcan weights, no 

significant genes were identified with FDR <0.05 (Supplementary Figures 5-7), and the 

genes with smallest p-values were not proximal to APOE. This further showed that our 

VC-TWAS method with filtered DPR weights provided more insight into the genetic 

origins of AD in these datasets.  
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4. Discussion 

In this paper, we propose a novel variance-component TWAS method which takes 

cis-eQTL effect sizes as variant weights without the strong assumption of a linear 

relationship between SNP effect sizes on phenotypes and cis-eQTL effect sizes. By 

implementing this VC-TWAS with cis-eQTL effect sizes estimated by DPR method7; 11, 

we created a powerful test statistic that had good performance in simulation studies and 

obtained biologically meaningful TWAS results for AD related phenotypes. In particular, 

we detected 13 significant TWAS genes for AD clinical diagnosis, including the well-

known GWAS risk gene TOMM40 and previously identified TWAS gene TRAPPC6A7. 

Moreover, 6 out of these 13 significant genes were identified by previous GWAS36. The 

pleiotropy effects of 11 of these genes with respect to AD clinical diagnosis and 

pathology indices demonstrated the possible biological mechanisms involved with the 

AD pathologies of 𝛽-amyloid and tangles.  

To help users to conduct our VC-TWAS method conveniently and efficiently, we 

added this function into our previously developed tool –– Transcriptome Integrated 

Genetic Association Resource (TIGAR)7. We enabled the choices of using either cis-

eQTL effect sizes estimated by PrediXcan method (i.e., Elastic-Net)24 or nonparametric 

Bayesian DPR method12. Further, we also enabled this new VC-TWAS method by using 

individual-level for continuous and dichotomous phenotypes. Since the variance 

component test statistic used by VC-TWAS involves calculating and performing an 

eigen-decomposition of a genotypic kernel matrix, efficient computation is required 

(even when filtering variants to include only those variants with larger cis-acting eQTL 

estimates) for obtaining the corresponding p-values for genome-wide genes. Our TIGAR 
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packages implements multi-threaded computation to take advantage of high-performance 

cloud computing clusters and enable practical computation for testing genome-wide 

genes.  

Of course, current TWAS methods including our VC-TWAS still have their 

limitations. First, because of genetic and transcriptomic heterogeneities across different 

ethnicities, one may not be able to translate cis-eQTL effect size estimates across cohorts 

with different ethnicities. That is, applying TWAS methods to GWAS data of a different 

ethnicity from the reference samples that were used to estimate cis-eQTL effect sizes is 

likely to fail. Reference panels with diverse ethnicities and multiple tissue types will be 

needed to expand TWAS to study complex diseases for ethnicities besides Caucasian. As 

shown in our application studies, since both ROS/MAP and Mayo Clinic cohorts are 

consisted with European samples, TWAS on Mayo Clinic GWAS data with cis-eQTL 

effect sizes derived from ROS/MAP training data resulted in interesting results.  Second, 

current TWAS methods fail to account for the uncertainty of cis-eQTL effect-size 

estimates and trans-eQTL information. Advanced statistical approaches are needed to 

address such gaps, which may further improve the power of existing TWAS methods. 

Third, our current VC-TWAS method requires individual-level GWAS data. By deriving 

the variance component test statistic using GWAS summary statistics will make our 

method and tool more practically useful for the field. We will be addressing these 

limitations in our continuing research. 

In conclusion, compared with Burden-TWAS methods, our VC-TWAS method 

assumes a linear relationship between variances of SNP effect sizes on phenotypes and 

squared values of cis-eQTL effect sizes, which is preferred in practical studies as shown 
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by our application studies for AD related phenotypes. Compared with SKAT method for 

gene-based association studies that generally uses variant weights derived from the 

corresponding minor allele frequency (MAF), our VC-TWAS method integrated 

transcriptomic data with GWAS data by taking the cis-eQTL effect size estimates as 

variant weights. That is, our proposed method in this paper provides a powerful TWAS 

method based on variance component test, which not only employs transcriptomic data in 

gene-based association studies but also flexibly accounts for the unknown genetic 

architectures underlying the test genes. As a result, our VC-TWAS method provides the 

public a useful tool for illustrating the genetic etiology of complex diseases by providing 

a list of risk genes whose effects on phenotypes might be mediated through 

transcriptomes. 
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5.  Appendix 

5.1. Tables 

Significance 
Level 

Burden-TWAS VC-TWAS 
DPR  Filtered DPR PrediXcan DPR Filtered DPR  PrediXcan  

1.00 × 10!" 9.82 × 10!# 9.86 × 10!# 9.27 × 10!# 9.43 × 10!# 9.46 × 10!# 9.23 × 10!# 
1.00 × 10!$ 8.64 × 10!% 8.44 × 10!% 9.95 × 10!% 8.64 × 10!% 9.05 × 10!% 8.24 × 10!% 
2.50 × 10!& 2.00 × 10!& 2.00 × 10!& 2.00 × 10!& 2.00 × 10!& 1.00 × 10!& 6.00 × 10!& 

Table 1. Type I errors under null simulation studies with 𝑝'()*(+ = 0.2, ℎ," = 0.1 for Burden-TWAS and 
VC-TWAS with DPR weights, filtered DPR weights, and PrediXcan weights, at significant levels 
(10!", 10!$, 2.5 × 10!&). 
 
 

Gene name Chr Start End P-value FDR 
ZNF234 19 44,645,710 44,664,462 1.11 × 10!-& 1.40 × 10!-" 
CLASRP 19 45,542,298 45,574,214 4.44 × 10!-& 2.81 × 10!-" 
TRAPPC6A 19 45,666,187 45,681,485 3.60 × 10!-$ 1.52 × 10!-. 
TOMM40 19 45,394,477 45,406,935 9.05 × 10!-# 2.86 × 10!/ 
MARK4 19 45,754,550 45,808,541 4.62 × 10!-& 1.17 × 10!0 
PPP1R13L 19 45,882,892 45,909,607 1.82 × 10!-. 3.84 × 10!1 
CLPTM1 19 45,457,848 45,496,598 5.71 × 10!0 1.03 × 10!$ 
EML2 19 46,112,660 46,148,726 1.88 × 10!1 2.97 × 10!$ 
FBXO46 19 46,213,887 46,234,151 4.13 × 10!1 5.80 × 10!$ 
CEACAM19 19 45,174,724 45,187,631 3.93 × 10!& 4.68 × 10!# 
GIPR 19 46,171,502 46,185,704 4.07 × 10!& 4.68 × 10!# 
RELB 19 45,504,695 45,541,452 6.63 × 10!& 6.99 × 10!# 
ZNF225 19 44,617,548 44,637,255 2.59 × 10!% 2.51 × 10!" 

Table 2. Significant genes with FDR < 0.05 for phenotype AD clinical diagnosis by meta VC-TWAS with 
filtered DPR weights, using samples of ROS/MAP and Mayo Clinic cohorts. Known AD risk genes by 
previous GWAS are shaded in grey. 
 
 

Gene name Chr 𝜷-Amyloid Tangles Gpath Phenotypes with p-value <0.05 
ZNF234 19 2.10 × 10!$ 1.06 × 10!# 6.39 × 10!% 𝛽-amyloid, tangles, gpath 
CLASRP 19 1.39 × 10!# 8.69 × 10!# 3.76 × 10!$ 𝛽-amyloid, tangles, gpath 
TRAPPC6A 19 4.44 × 10!$ 3.74 × 10!# 1.91 × 10!$ 𝛽-amyloid, tangles, gpath 
TOMM40 19 9.55 × 10!$ 6.95 × 10!" 2.08 × 10!$ 𝛽-amyloid, gpath 
MARK4 19 1.73 × 10!" 2.08 × 10!- 2.62 × 10!" 𝛽-amyloid, gpath 
PPP1R13L 19 2.64 × 10!" 1.57 × 10!- 2.98 × 10!" 𝛽-amyloid, gpath 
CLPTM1 19 1.18 × 10!" 1.59 × 10!" 9.24 × 10!# 𝛽-amyloid, tangles, gpath 
EML2 19 8.47 × 10!# 5.97 × 10!" 2.16 × 10!" 𝛽-amyloid, gpath 
FBXO46 19 2.02 × 10!# 8.90 × 10!" 2.68 × 10!# 𝛽-amyloid, gpath 
CEACAM19 19 1.03 × 10!# 1.21 × 10!" 3.19 × 10!% 𝛽-amyloid, tangles, gpath 
GIPR 19 6.37 × 10!# 3.22 × 10!" 3.25 × 10!" 𝛽-amyloid, tangles, gpath 
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Table 3. VC-TWAS p-values with respect to phenotypes of 𝛽-amyloid, tangles, and gpath for genes with 
FDR <0.05 from meta VC-TWAS with filtered DPR weights on the phenotype of AD clinical diagnosis. 
Known AD risk genes by previous GWAS are shaded in grey. 
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5.2. Figures 

(A) 

 
(B) 

 
 
Figure 1. TWAS power comparison for VC-TWAS and Burden-TWAS with phenotypes simulated 
from Model I (A) and Model II (B). Various types of SNP weights were considered, including those derived 
from PrediXcan method, DPR method, and filtered DPR weights. Using DPR weights resulted in higher 
TWAS power than using PrediXcan weights across all scenarios with p234536 ≥ 0.01. TWAS using filtered 
DPR weights had comparable performance as using complete DPR weights across all scenarios. For 
phenotypes simulated from Model I (panel A), Burden-TWAS had either comparable power with VC-TWAS 
when p234536 = (0.001, 0.01) or slightly higher power p234536 = (0.1, 0.2). For phenotypes simulated from 
Model II (panel B), VC-TWAS had higher power than Burden-TWAS under all scenarios. VC-TWAS with 
DPR weights resulted in the highest power.  
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A) 

 
B) 

 
Figure 2. Manhattan plots of meta-analysis VC-TWAS for AD clinical diagnosis (A) and VC-TWAS 
of global AD pathology (B) with DPR weights. Genes with FDR < 0.05 are highlighted in (A), where red 
dots denote novel risk genes identified by meta VC-TWAS and blue dots denote known AD risk genes. 
Genes with FDR < 0.05 in meta VC-TWAS of AD clinical diagnosis and p-value < 0.05 in VC-TWAS of 
global AD pathology are highlighted in red in (B). 
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A)                                                                                                                     C) 

  
B) D) 

  
 
Figure 3. Locus zoom plots of GWAS results and the absolute values of cis-eQTL effect size estimates 
by DPR method for SNPs that were included in VC-TWAS of genes TOMM40 (A, B) and ZNF2334 
(C, D). Only SNPs with the absolute values of estimated cis-eQTL effect sizes > 10!$ were included for 
VC-TWAS, same SNPs in TOMM40 and ZNF234 are labeled in red. 
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5.3. Supplemental Data 

 
Supplementary Figure 1. Q-Q plots for VC-TWAS and Burden-TWAS with DPR weights, filtered DPR 
weights, and PrediXcan weights under null hypothesis, where quantitative gene expression traits were 
generated with 𝑝'()*(+ = 0.2 and ℎ," = 0.1. 
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(A) 

 

 
 
 
(B) 

 
 
 
Supplementary Figure 2. (A) Box plot of the number of SNPs considered by VC-TWAS using complete 
DPR weights and filtered DPR weights derived from ROS/MAP training data. (B) Average computation 
time for VC-TWAS with respect to the number of SNPs considered in the test. SNPs with filtered DPR 
weights have cis-eQTL effect sizes estimates > 10!$ by DPR method.  
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A) 

 
B) 

 
Supplementary Figure 3. Manhattan plots of VC-TWAS results with filtered DPR weights for studying 
quantitative AD pathology of 𝛽-Amyloid (A) and tangles (B). Genes with FDA < 0.05 by meta VC-TWAS 
of AD clinical diagnosis are colored in red in (A) and top significant gene by VC-TWAS with FDR = 0.058 
of tangles is colored in red in (B). 
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Supplementary Figure 4. Q-Q plots of VC-TWAS results with filtered DPR weights for studying 𝛽-
amyloid, tangles, and gpath with ROS/MAO cohort, as well as meta VC-TWAS results with filtered DPR 
weights for studying AD clinical diagnosis with ROS/MAP and Mayo Clinic cohorts. 
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A) 

 

B) 

 

Supplementary Figure 5. Manhattan plots of VC-TWAS results with PrediXcan weights for studying AD 
clinical diagnosis (A) and global pathology (B).  
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A) 

 

B) 

 

Supplementary Figure 6. Manhattan plots of VC-TWAS results with PrediXcan weights for studying 
quantitative AD pathology of β-Amyloid (A) and tangles (B).  
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Supplementary Figure 7. Q-Q plots of VC-TWAS results with PrediXcan weights for studying 𝛽-
amyloid, tangles, and gpath with ROS/MAO cohort, as well as meta VC-TWAS results with PrediXcan 
weights for studying AD clinical diagnosis with ROS/MAP and Mayo Clinic cohorts. 
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5.4. Web Resources 

TIGAR, https://github.com/yanglab-emory/TIGAR 
PrediXcan, https://github.com/hakyim/PrediXcan 
RADC Research Resource Sharing Hub, http://www.radc.rush.edu/ 
ROS/MAP data, https://www.synapse.org/#!Synapse:syn3219045 
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