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Abstract 
 

 

Gene Profile Modeling and Integration for EWOC Phase I Clinical Trial Design While 

Fully Utilizing All Toxicity Information 

 

 

By Feng Tian 

 

 

Background: Personalized medicine incorporating genomic profile has become the 

frontier in modern medicine. It is especially profound in optimizing healthcare for cancer 

patients because many gene mutations significantly affect cancer progression and 

efficacy of treatments. Personalized Maximum Tolerated Dose (pMTD) estimation in 

Phase Ⅰ clinical trial is the initial key step to integrate genomic profile into personalized 

medicine.  

Methods: Considering the limited sample size of phase Ⅰ trails, selecting a small number 

of representative gene mutation profiles is required to keep the pMTD estimation valid. 

The main aim of this study is to achieve above goal by performing variable selections and 

comprehensive index construction using four common methods: model selection with 

logistic regression, regularization, principle components analysis, and random forest.  

Results: The results of four methods are compared in the consistency of selected genes, 

the simplicity and the variety in dose estimation using EWOC-NETS (escalation with 

overdose control using normalized equivalent toxicity score) framework. We found that 

different methods are fairly consistent in selecting the important genes. The Elastic Net 

method is the optimal one to generate a model with simplicity and precise dose 

estimation in predicting tumor response.  

Conclusion: For future pMTD estimation, it is a good idea to use Elastic Nets as a main 

reference and the common elements recommended by other mentioned methods as 

additional support to decide the required representative gene information to be 

incorporated into EWOC-NETS. The extracting and incorporation of summary genomic 

data will have great potential to improve treatment precision and trial efficacy. 
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1. Introduction: 

Many biomarkers, including proteins, lipid and genes are correlated with the effect of 

cancer treatments and also dose-toxicity relationships. Through integrating personal 

information into clinical trial modeling, precise medicine can be further developed[1].   

Phase Ⅰ cancer clinical trials are one initial important validation step for the application of 

drug. Considering that patients  involved in cancer phase Ⅰ clinical trials are mostly in an 

advanced cancer stage  and are seeking for cure, the designs of the trials are supposed to 

minimize the number of individuals treated at low, non-effective dose and also with 

overdose[2]. To achieve that, Escalation with overdose control (EWOC) can be a good 

choice.  EWOC  is an adaptive Bayesian method to estimate the maximum tolerated dose 

during phase Ⅰ clinical trials [4]. It shows the characteristic to minimize the predicted 

amount by which any given patient is underdosed. It also feature approaching the  

maximum tolerated dose (MTD)as rapidly as possible with the restriction that the 

posterior overdose probability is no more than a pre-specified feasible bound[3]. 

One drawback of EWOC model is that it uses a binary outcome variable to indicate the 

appearance of dose limited toxicity. As a result, much information is discarded in term of 

the multiple types of toxicities and their grades. Considering the nature of cancer phase1 

clinical trial as a small sample of patients with limited information and therapeutic aim, it 

is important to completely and reasonably utilize the information obtained through trials 

to get the estimation of MTD quickly and precisely. In dealing with the loss of the 

toxicity information, one recommended way is to replace the traditional binary outcome 

in MTD estimation with the Normalized Equivalent Toxicity Score (NETS). NETS is a 

novel toxicity score that adjust the original toxicity score and weight all the toxicities for 
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each individual. It is shown that this score can improve the accuracy of MTD estimation 

with the model called EWOC-NETS [4]. To further apply this model, additional 

covariates representing personal characteristic can be incorporated to help the MTD 

estimation for different subjects. Simulation results have shown that an additional binary 

categorical or standardized continuous variable in EWOC-NETS can improve the 

performance in estimating MTDs for different patients groups[1]. It is interesting to think 

about that what kinds of covariates should be involved in EWOC-NETS to further 

develop the personalized MTD estimation. One possible choice is the genetic 

information. Genetic information represents diversity and uniqueness. If genetic 

information can be integrated to EWOC-NETS, it might be possible to make a more 

precise and biologically plausible estimation for the MTD for each individual, which, is 

what desired for personalized medicine. 

To integrate genetic information into the EWOC-NETS model, we can first select some 

dominant genes as predictors or combine the most valuable gene information as 

comprehensive index through modeling with the treatment response. Later, we can 

transform those potential candidates into covariates that provide helpful information in 

EWOC-NETS model. One challenge is that genetic markers are sometimes tightly 

correlated with each other, which can cause multicollinearity. Besides, the number of 

genes potentially involved can be relatively large compared to the sample size, which can 

cause overfitting.  To overcome those problems, dimension reduction and the 

multicollinearity elimination are necessary to help minimize the loss of information. To 

achieve that, we applied four methods including model selections, regularization 

regression, principle components analysis(PCA) and random forest analysis. The 
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performance of those methods in terms of the overlapping of recommended genes and the 

standard error of dose effect estimation in simulation will then be evaluated and 

compared to find the optimal method.  

 The manuscript is organized as follows. In section 2, we describe how this study is 

designed, what gene modeling methods are used and the concept of dose-toxicity model: 

EWOC-NETS with additional covariates. In section 3, we present the results of gene 

mutation profile modeling using different methods and make comparison with one 

simulation analysis under EWOC-NETS framework. The comparison results in terms of 

strength, weakness and similarity of those four methods are fully discussed in the section 

3&4.  

2.Method: 

In this study, the real-world data were collected from 161 patients with rectum/colon 

cancer at Emory University. Investigators recorded their gender, smoking history, 

therapy, gene mutations and treatment response. This study mainly aims to model the 

gene mutations of cancer patients with treatment response to check consistency for 

different methods in selecting the candidate’s genes and evaluate the performance of 

those methods in dose estimation in EWOC-NETS model.  

The treatment response is a binary variable referred to the “Response Evaluation Criteria 

in Solid Tumors (RECIST)”[5].  Gene mutations are represented by binary variables: 1 

means mutated and 0 means unmutated.  The data were generated using the tumor sample 

from patients and the application of DNA sequencing techniques. 31 oncogenes or tumor 

suppressor gene were included as: KRAS, NRAS, BRAF, PIK3CA, P53, APC, ATM, 

SMAD2/4, BRCA 1/2,  
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 MUTYH, FBXW7, ASXl1, TET2, DNMT3A, RUNX1, FAM123B, arid1a_b, RB1, 

RNF43, PTEN, FLT3, ZNF_217, SOX_9, BCOR, CDK8, IRS2 Amp, SRC Amp, MYC 

Amp, CTNNB1 NOTCH1/3, BCL2 Amp. For each gene, the number of mutated ones 

range from 3 to 133. Considering that the treatment results reflect the toxicity and effect 

of the cancerous drug, the genes predictors that are most significant can be inspired as 

effective predictors in later EWOC-NETS model for better maximum tolerated dose 

estimation. 

2.1 Methods for gene profile modeling 

2.1.1 Logistic Model Selection 

Firstly, descriptive statistics are generated for each gene and the response. The original 

response variable is categorized as 0,1,2,3 according to RECIST. It is then re-categorized 

to 0(unknown or stable/progressive disease) and 1(complete/ (very good) partial 

response). Then logistic regression is applied to model the association between this 

binary outcome on all the genes variables. Backward and stepwise selections are 

performed to decide the most significant genes to be retained in the final logistic model. 

Selections are first performed based on the significance test with the retaining criteria as 

α=0.1.  Then selections are performed using AIC, which denotes the goodness of fit for 

the model with penalization for the increasing number of predictors. After that, best 

subset selection is conducted with restrictions on the number of predictors for 

comparison. The scientific procedures can be referred from the SAS user guide[6]. 

For the significance test, it applies the partial F test to decide whether the additional 

covariates are significant with formula below to calculate the F statistics: 
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                                           F =  

𝑆𝑆𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑆𝑆𝐸𝑓𝑢𝑙𝑙

𝑘
𝑀𝑆𝐸𝑓𝑢𝑙𝑙

 ~ 𝑋𝐾
2                                               (2.1) 

 

k is the number of additional gene predictors in the full model. 

For the AIC selection, the lowest AIC is preferred with definition as: 

                                          AIC = 2k – 2ln (�̃�)                                                         (2.2) 

Where K is the number of parameters in the model and �̃� is the maximized likelihood 

function. 

The best subset selection fits all the possible models and the best model with restricted 

number of predictors is selected according to certain criterion including:  a Mallows' Cp 

close to the number of predictors, high R2or high adjusted R2 . Here we use the global 

score chi-square statistic as the comparison standard. 

2.1.2 Regularization Methods 

After the routine logistic regression selection, regression with regularizations are 

conducted. Lasso, Ridge and Elastic Nets regression are all performed with certain types 

of restrictions on the regression coefficients to help shrink the effect of unimportant 

genes.  

For lasso regression, the coefficients estimations are restricted as below: 

                          min
𝛽0,𝛽

{
1

𝑁
∑ (𝑦𝑖 − 𝛽0 − 𝑿𝒊

𝑻𝜷)2𝑁
𝑖=1 }  subject to ∑ |𝛽𝑗|

𝑝
𝑗=1 ≤ t            (2.3)               

Above equation can be rewritten as the Lagrangian form as below: 

                                      min
𝛽∈𝑅𝑝

{
1

𝑁
‖𝒚 − 𝑿𝜷‖2

2 +  𝜆‖𝜷‖1}                       (2.4)                                        

The regression coefficients are solved as 𝛽𝑙𝑎𝑠𝑠𝑜 with 𝜆 as the shrinkage parameter that 

control the amount of regularization and the size of the coefficients[7]. 
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Similarly, for Ridge regression, below equation is solved to get 𝛽𝑟𝑖𝑑𝑔𝑒 [7]: 

                                          min
𝛽∈𝑅𝑝

{
1

𝑁
‖𝒚 − 𝑿𝜷‖2

2 +  𝜆‖𝜷‖2
2}                            (2.5)                                            

For Elastic Net regression, the restriction for 𝛽𝑒𝑙𝑎𝑠𝑡𝑖𝑐  𝑛𝑒𝑡is shown as below[8]:  

                                     min
𝛽∈𝑅𝑝

{
1

𝑁
‖𝒚 − 𝑿𝜷‖2

2 +  𝜆1‖𝜷‖1 + 𝜆2‖𝛽‖2
2}            (2.6)                           

 

In this study, the optimal parameter lambdas are selected with 10-fold cross-validation.  

Then genes with relatively large coefficients are retained in Lasso. Though the ridge 

regression cannot select predictors, it helps verify the results of Lasso through keeping 

the effective variables with relative large coefficients. Elastic Nets regression, which 

considered to be a combination of Lasso and Ridge, can further help compare the results. 

The retained genes in this part will be compared to the result of 2.1.1 to better decide the 

gene candidates for EWOC-NETS. 

2.1.3 Principle Components Analysis 

The third method is principle components analysis (PCA). PCA is a variable reduction 

procedure to deal with overfitting and correlated predictors. The predictors that contribute 

to the variety in the same direction will be incorporated into single artificial variables, 

which, are called principle components. Mathematically, a principle component is 

defined as the linear combination of optimally-weighted original variables[9].  

Let components to be expressed as a l× 1 vector 𝑡𝑖 = ( 𝑡1, 𝑡2,……, 𝑡𝑙)𝑖 and let the weight 

to calculate components scores to be defined as a l×p matrix of weight coefficient 

𝑤𝑘 = (𝑤1, 𝑤2,……, 𝑤𝑝)𝑘, where p is the number of parameter. X is defined as the data 

matrix. The weight for the first components can be calculated as: 
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                                            𝑤1 = 𝑎𝑟𝑔𝑚𝑎𝑥‖𝑤‖=1(‖𝑿𝒘‖2)                                (2.7)       

Then the weight for kth principle components score can be calculated as: 

                                           𝑤𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥‖𝑤‖=1(‖𝑿�̂�𝒘‖
2
)                         (2.8)                        

where 𝑋�̂� is the matrix of X that subtract the first k-1 principle components; 

Then, the complete principle components can be derived as: 

                                              T=XW                                               (2.9)                                 

After generating all the principle components, the next step is to decide how many 

components to be kept. The retained components are desired to adequately represent the 

majority of variance. The final components retained will be decided base on criterion 

including the eigenvalues (>1), the scree plot (first large break), the variance proportions 

for each component (5%-10%) and the interpretation convenience (simple structure). 

2.1.4 Random Forest Analysis 

The last method implemented in this study is the random forest tree analysis. It combines 

multiple decision trees as the building blocks, which does classification work using 

different features of the data. The key concept behind it is to let all the decisions trees to 

work as a committee and then get the final classification decision by checking the most 

frequently appeared results. In this way, random forest can perform an ensemble 

prediction. In this process, the importance of the features for accurate classification can 

be determined with simulations[10]. The importance of the predictors is decided through 

calculating the reduction in node impurity contributed by each variable and then weighted 

by the probability of achieving that node. The node probability can be computed by 

dividing the number of samples that reach the node with the total number of samples. The 
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variable resulting in largest reduction of node impurity is the most important feature. 

Below are the corresponding equations: 

                            R𝐹𝑓𝑖𝑖(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) = 
∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗𝑗 

∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑗𝑘𝑗 ∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑘∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠
            (2.10)                     

                                                         𝑛𝑜𝑟𝑚𝑓𝑖𝑗 = 
𝑓𝑖𝑗

∑ 𝑛𝑜𝑟𝑚𝑓𝑖𝑗𝑗 ∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
                          (2.11)            

                                       , where 𝑓𝑖𝑗𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑖 𝑖𝑛 𝑎 𝑛𝑜𝑑𝑒 

1000 simulations are conducted here with 70% training data and 30% validation data. 

Optimal splitting variable number is chosen first according to predictive accuracy for 

later simulation. The number of trees is selected to be 1000. The importance of genes in 

terms of the contribution to the accuracy is summarized to determine that which genes are 

more helpful to predict the true outcomes in validation set. The R package 

“randomForest” is applied to complete above procedures[11]. Results of this random 

forest analysis will be compared with the other three methods to check thatif there are 

any overlapped recommended genes, which have the potential to be effective in EWOC-

NETS. The concepts of EWOC-NETS model with additional covariates can be viewed 

from below section 2.2.  

2.2 EWOC-NETS model that utilize gene information 

EWOC is an adaptive Bayesian model using a binary outcome to denote the appearance 

of dose limited toxicity (DLT). The detailed design can be viewed from [3]. The EWOC 

can be extended to EWOC-NETS by using the normalized equivalent score as the 

outcome variable. Basically, NETS is a novel way to represent the dose toxicity as a 

quasi-continuous variable. It utilizes all the toxicity information and help to get a more 

accurate estimated MTD compared to the traditional way, which, only use the worst 

toxicity for screening [4].  
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The first step to generate the score is to adjust the original grade of toxicity as below:  

Original grade Grade 0 Grade 1 Grade 2 Grade 3 Non-DLT Grade 4 Non-DLT Grade 3 DLT Grade 4 DLT 

Adjusted grade 0 1 2 3 4 5 6 

Using the adjusted grade, NETS can be derived as: 

       𝑆𝑖 =

[
 
 
 
 𝐺𝑖,𝑚𝑎𝑥 − 1 + 

exp {𝛼 +  𝛽 (∑
𝑤𝑖,𝑗𝐺𝑖,𝑗

𝐺𝑖,𝑚𝑎𝑥

𝐽𝑖
𝑗=1 )}

1 + exp {𝛼 +  𝛽 (∑
𝑤𝑖,𝑗𝐺𝑖,𝑗

𝐺𝑖,𝑚𝑎𝑥

𝐽𝑖
𝑗=1 )}

 

]
 
 
 
                                                        (2.12) 

Here, 𝑆𝑖 is the NETS for the ith patient.  𝐺𝑖,𝑚𝑎𝑥 is the worst adjusted toxicity grade for 

this individual. J is the total number of toxicities for each patient. 𝑤𝑖,𝑗 is a specific weight 

of the jth toxicity for the ith individual. This weight, ranging from 0 to 1, is set to be 1 if 

it is uncorrelated with other toxicities and 0 if exactly a duplicate of other toxicities. 𝛼 is 

the parameter to control the score interval. 𝛽 is assumed to > 0 to make sure the non-

decreasing of toxicity. 

Considering the number of patients achieving DLT follow a quasi-distribution that is  

binomial distributed, which, belongs to the family of linear exponential distribution, the 

quasi maximum likelihood estimation for the MTD can be highly consistent[12, 13]. The 

detailed incorporation steps can be checked from [2]. 

Based on the framework of EWOC-NETS, additional covariates such as gender, race, or 

more microscopic, gene profile can be incorporated to estimate personalized MTDs. The 

first step to add new covariate is to add one categorical variable with values of 0 and 1. 

Follow the well-established EWOC-NETS setting, one additional categorical variable, 

with 0 as no gene mutation and 1 as gene mutation, will be incorporated as C. Then we 

can write the model as: 

                                                   𝜇𝑆𝑖|𝑋𝑖
= 𝐹(𝛽0 + 𝛽1𝑋𝑖 + 𝛿𝐶𝑖)                    (2.13)                    
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Here Xi is the assigned dose level.  𝜇𝑆𝑖|𝑋𝑖
 is called average normalized equivalent toxicity 

score. It is the expected value of NETS given dose level as 𝑋𝑖. 𝐶𝑖 is the binary covariates 

providing gene mutation information and 𝛿 is the coefficient for C. 

𝜇𝑆𝑖|𝑋𝑖
 is also assumed to follow a logistic distribution, then reparameterization can be 

performed using following values: MTD: γ, the corresponding ANETS: θ, which show 

the worst acceptable toxicity level quantitatively with gene mutation. The start dose Xmin 

in group 1 with no gene mutation and corresponding ANETS 𝜌1. The start dose Xmin in 

group 2 with gene mutation and corresponding ANETS 𝜌2.Then e can write below 

equations: 

                                                        Logit(𝜌1) =  𝛽0 + 𝛽1𝑋𝑚𝑖𝑛                       (2.14)                  

                                                        Logit(𝜌2) =  𝛽0 + 𝛽1𝑋𝑚𝑖𝑛 +  𝛿               (2.15)                    

                                                       Logit(𝜃) =  𝛽0 + 𝛽1𝛾 +  𝛿                        (2.16)                      

In this way, all the coefficient can be rewritten as: 

                            𝛽0 = 𝑙𝑜𝑔𝑖𝑡(𝜌1) − 
𝑋𝑚𝑖𝑛 

𝛾−𝑋𝑚𝑖𝑛 
[𝛾𝑙𝑜𝑔𝑖𝑡(𝜃) − 𝑋𝑚𝑖𝑛 𝑙𝑜𝑔𝑖𝑡(𝜌2)]     (2.17)  

                                       𝛽1 = 
1

𝛾−𝑋𝑚𝑖𝑛 
[𝑙𝑜𝑔𝑖𝑡(θ) − 𝑙𝑜𝑔𝑖𝑡(𝜌2)]                          (2.18)                         

                                                              δ = logit(𝜌2) − 𝑙𝑜𝑔𝑖𝑡(𝜌1)                           (2.19)                        

The prior distribution of (𝛾, 𝜌1, 𝜌2) can be assigned as non-informative uniform 

distribution in [𝑋𝑚𝑖𝑛,   𝑋𝑚𝑎𝑥] × [0, 𝜃] × [0, θ]. Then the quasi-Bernoulli likelihood is 

applied as mentioned in section 2.4.      

 �̃�(𝛾, 𝜌1, 𝜌2  | 𝐷𝑘) =  ∏ 𝐹(𝛽0 + 𝛽1𝑋𝑖 + 𝛿𝐶𝑖)
𝑆𝑖𝑘

𝑖=1  * (1 − 𝐹(𝛽0 + 𝛽1𝑋𝑖 + 𝛿𝐶𝑖))
1−𝑆𝑖     (2.20)  

Now, reparametrize (23) with (20) – (22), and we can get the posterior distribution of 

(𝛾, 𝜌1, 𝜌2)as:     
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 𝜋𝑘(𝛾, 𝜌1, 𝜌2  | 𝐷𝑘) ∝  �̃�(𝛾, 𝜌1, 𝜌2  | 𝐷𝑘) * h(𝛾, 𝜌1, 𝜌2, ) ∝ �̃�(𝛾, 𝜌1, 𝜌2  | 𝐷𝑘)      (2.21)      

 

The corresponding posterior CDF of 𝛾 can thus be derived as πk,Ck+1
(Xk+1|Dk), the 

details of this derivation can be checked from [1]. For the next patients, select the dose as 

πk,Ck+1

−1 (𝛼) to control the probability of overdose. Upon the completion of the trial, the 

posterior median of dose will used as MTD estimate generated by MCMC sampler[14]. 

The derivation for additional continuous covariates and the simulation result can be 

viewed from [1]. This model can help estimate personalized MTDs for two groups with 

smaller standard error, bias and MSE compared to EWOC-NETS , which only estimates 

the marginal MTDs for all patients. Through combining the results from section 2.1 with 

selected candidates of gene predictors, simulation will be performed using this “EWOC-

NETS with covariates” framework as follow: The logistic regression using tumor 

response as outcome and number of treatments as dose is fitted as an original model. 

Then the estimated probability will be regarded as the probability of DLT considering 

that DLT and complete response has a positive correlation. This probability of DLT can 

be further regarded as NETS, which is the normalized equivalent toxicity score using all 

the toxicity information ranging from 0 to 1. Finally, we fit logistic regression again 

using response as outcome and use number of treatments as dose, together with selected 

gene predictors as covariates and analyze that how the precision of dose estimation 

changes with the effect of gene information. The optimal method for gene profile 

integration can then be evaluated and decided based on the precision of dose estimation 

and the simplicity. The conclusion, thus, may applied later in practical, real-world 

EWOC-NETS trial analysis. 
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3. Results: 

According to the supplementary table 1, among 161 patients, 59 individuals got positive 

treatment response and 102 individuals got negative response. For the gene mutations, 

most of them have a relatively small percentage of mutated expressions about 5% to 

20%.  There are also some unbalanced genes, which may not be good for prediction. 

With 31 genes that provide either similar or different information and a small sample of 

161 patients as a phase Ⅰ trial setting, integration and dimension reduction are required to 

be performed to get the most significant ones for later dose estimation. From the 

univariate association analysis shown in supplementary table 2,  it can be seen that the 

mutation of BRAF, ATM, FLT3 and ZNF_217 are significantly associate with treatment 

response in a 0.05 significance level. 

3.1 Factor Selection: 

3.1.1 Logistic Model Selection 

According to table 1, the models after backward selection based on significance test is:  

Model 1: 

Logit(p(Response=1)) = -0.7465+ 2.064*ATM – 1.924*BRAF + 1.152*NRAS + 1.059*FLT3  

The model after stepwise selection based on significance test is: 

Model 2: 

Logit(p(Response=1)) = -0.9681+ 3.247*ZNF_217 + -2.4212*BRAF + 2.248*ATM + 

1.2737*NRAS + 1.206*FLT3 + 1.195*FBXW7    

Genes retained including ATM, BRAF, NRAS and FLT3 in model 1. Compared with the 

backward selection, two additional genes are kept in model 2, which are ZNF_217 and 

FBXW7. At the same time, the most significant gene change is from ATM to ZNF_217.  

The model after backward/stepwise selection(table 3) base on AIC value is:  
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Model 3: 

logit(p(Response=1)) = -0.543 + 2.12*ATM -2.11*BRAF + 1.186*FLT3+ 

1.063*FBXW7 + 1.021*NRAS- 0.513*KRASGene predictors including ATM, BRAF, 

FLT3, FBXW7, NRAS and KRAS are retained.  

Model 4: 

Logit(p(Response=1)) = -0.662 + 3.29*ZNF_217- 2.75*BRAF+ 2.36*ATM+ 1.33*FLT3+ 

1.179*FBXW7+ 1.147*NRAS – 0.557*KRAS 

Gene predictors including ZNF_217, ATM, BRAF, FLT3, FBXW7, NRAS and KRAS 

are retained. The model of best subset with one to seven predictors are listed in table 2. It 

is highly consistent with the results of above backward and stepwise selection. These 

results suggest that when use AIC criteria for model comparison, more gene predictors 

are retained. Considering that AIC penalizes the number of predictors, a simpler model is 

preferred. This is contradictory to the results now, suggesting that AIC use different 

selection mechanism in comparing with significance test. Thus, further study is necessary 

for the characteristics of this type of binary gene mutation marker selection. Another 

noticeable point is that compared with backward selection, the most effective covariate 

changes are from ATM to ZNF_217 for both significance test method and AIC method. 

The corresponding confidence interval can be checked from table 1. Overall, backward 

selection shows a better performance to prevent the involvement of gene whose effect has 

large standard error here.  

3.1.2 Regularization Methods: 

According to table 3, for ridge regression, several genes with largest coefficients are 

similar to the previous results in 3.1.1 such as ZNF_217, BRAF, ATM and FBXW7. 

Some additional potential candidates that are different compared to 3.1.1are RUNX1 and 
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IRS2 AMP. For lasso regression, seven genes are kept using λ that minimizes the cross-

validated sum of squared residuals. Those genes are NRAS, BRAF, ATM, FBXW7, 

FLT3, RUNX1 and ZNF_217. This result is also similar to the 3.1.1 and ridge regression. 

It is noticeable that RUNX1 is an additional recommended gene in LASSO and Ridge 

regression without appearing in the previous 3.1.1 results. There was only one gene, 

ZNF_217 kept in elastic net regression, which was also suggest to be the most effective 

gene predictor in stepwise selection using significance test, AIC, Ridge and Lasso. Above 

similarity in results indicates that the first two methods are fairly consistent although 

there are not exactly the same. These three regularization methods selected similar gene 

predictors, ZNF_217, BRAF, FBXW7, and ATM. As can be seen from table 3, some 

other genes including IRS2_Amp and RINX1 are also potential genes candidates that are 

retained in regularization with smaller coefficients, suggest less strength as the scale of 

each genes are the same as 0 and 1 

3.1.3 Principle Components Analysis 

After the first try of extraction, twelve components are retained. The foundamental 

retaining criteria is to make sure that the eigenvalue is larger than 1, which means that 

each components kept contribute larger variances compared to the original gene 

predictors. There is also no eigenvalue such as 0.99 to make this criteria ambiguous 

(Table 4). Another retaining criteria is to make sure that the variance proportion for 

retained components, over that total variance (31 here) are larger than 5% or totally larger 

70%. This criteria is slightly violated since that started from the 7th components, the 

proportions are smaller than 5% and the total proportion is 63.9%, which  smaller than 

70%. (table 4). The scree plot shows the largest break appears after the third component. 
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At the same time, the first six components meet the criteria that “one component is 

supposed to have at least three loading variables.”  Considering the overall above 

criterion, the first three components were selected for future EWOC-NETS simulation. 

After the additional PCA process with restriction of three components as shown in table 

5, for the first components, BRAF and RNF43 take large loading proportion. For the 

second component, KRAS, ZNF_217 and SRC_Amp, BCOR, BCL2_amp all take large 

proportions. For the third components, FLT3 takes the largest proportion. The 

information above represent the most valuable variety of predictors, which is partly 

overlapped with previous result in 3.1.1 and 3.1.2 that the important effects are 

contributed by BRAF, ZNF_217, KRAS and FLT3. However, there are also some 

difference: some other genes, such as RNF43, BCOR and SRC_Amp, seem to represent 

major variance. In addition, the previous recommended gene ATM does not appear as the 

loading variable in those three retained components. Overall, PCA works somehow 

differently compared to previous methods. Considering that PCA value the variance more 

than the association without using outcome information, it might not be the first Choice 

so far for gene mutation data integration, though it still provides supportive information 

of effective genes. 

3.1.4 Random Forest Analysis 

The most important genes contributing to the accuracy for each simulation are recorded 

and their frequencies are also summarized after 1000 simulation as shown in figure.1. 

Four variables are decided as the optimal number to be sampled at each split in random 

forest analysis.  In this simulation, ZNF_217 is the most important gene for over 500 

times, followed by ATM, FLT3 and NRAS. This importance of genes is similar to 
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previous model selection and regularization methods, supporting that ZNF_217, ATM, 

FLT3 can be commonly recommended for EWOC-NETS model candidates for potential 

accurate outcomes.   

3.2 Incorporation of Gene Mutation Profile to EWOC-NETS: 

The summarized simulation results can be seen from table 6. The intercept is the baseline 

log odds of get positive response or the log odds of DLT or the log of NETS/(1-NETS).  

The coefficient of dose denotes the log odds ratio when there are one unit increasing of 

dose.. It can be found that after incorporating genes variables into the model with dose as 

the main effect and the treatment response as the binary outcome, the standard error for 

the dose effect for all methods slightly increased in a small scale of (0.0037, 0.0146), 

which is fine with the aim to compare different methods and find the one with optimal 

precision for dose estimation. In this kind of situation, we can choose the model 

considering both precision and the simplicity of the model, which related to the overall 

efficiency of the trial. From table 6. it is found that when use Elastic Net or the PCA, the 

increasing of standard error is the smallest as 0.0037, suggesting that those two methods 

can be better choices that give relatively precise dose estimation. At the same time, the 

Elastic Net is more efficient for it results in a more simplified model compared with PCA 

while it estimates dose as precise as PCA. In a phase I trial, we must consider the cost of 

effort and time for patients so that they get the most appropriate dose in clinical trials. 

Thus, the Elastic Net regression seems to be the optimal method according to this study.  

4. Conclusion and Discussion: 

In conclusion, with good consistency for all methods, the elastic net method is the most 

beneficial one considering its simplified final model with the most précised estimation for 
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dose effect. For the future generalized procedures of gene profile integration to the 

EWOC-NETS, the elastic nets can be used as a main tool to summary gene mutation 

profile. Other methods of model selection, regularization and random forest can then be 

used to further help provide supportive information with overlapped retained elements to 

verify the gene candidates that related to the treatment response. The PCA analysis with 

proper retained components can be suggestive reference but may not be very helpful 

considering that the outcome information is not used in this method With four methods 

applied in analysisthe highly overlapped genes can be used for further EWOC-NETS 

modeling process. In this specific study, ZNF_217, ATM, FLT3 are the recommended 

genes.  

At the same time, it is surely necessary to repeat above analysis with more gene profile 

data to verify the conclusion. In addition, although using less gene information might cost 

less effort, we need to consider the interaction between genes. To further improve the 

procedure in this study, it might be a good idea to try to make the whole gene profile a 

comprehensive index, such as a quasi-continuous variable, and then include it in EWOC-

NETS model. This can be a considerable way to estimated pMTDs using all gene 

information. At the same time, more information might be required to decide the 

correlation among genes as the weight for the single gene index . One previous idea 

suggests that to integrate gene profile data, genetic risk score can be used. It is similar to 

a propensity score with a previous univariate logistic regression analysis to calculated the 

odds ratio of gens as a weight[15]. Gene interactions involvement is surely worthy:  

previous research has shown that the interaction or the combination of cancer-related 
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gene mutation can cause the cell to become easier to die, which inspired the clinical trial 

design to generate certain functionally gene interactions[16].  

In this study, we also use tumor response instead of dose limited toxicity as outcome: this 

might be another supportive way to compared with the result of using dose limited 

toxicity as outcome to get a more considerable and comprehensive estimated 

personalized maximum tolerated dose. Another idea to help further develop the EWOC-

NETS model with gene information is to use stratified randomized clinical trials to 

decide in what kinds of gene mutation groups, the patients are more sensitive to the 

drug[17]. In this way, we may find the groups that shows the most significant difference 

in dose effect, which help to verify the result of this study. From this study, we gain some 

inspiration of the most proper methods to select gene predictors for the dose estimation 

even when the gene mutation dataset is not large in a phase Ⅰ clinical trial. For future 

plan,   we plan to conduct a more comprehensive and intensive  simulation with EWOC-

NETS model. Considering that there are many gene expression pattern, setting the true 

maximum tolerated doses for each gene pattern can be time-consuming in simulation. 

However, it is valuable to conduct further investigation so that we can gain a more valid 

insight of the advantages and drawbacks for different gene integration methods in dealing 

with highly correlated gene mutation data. 
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6. Tables and figures 

Table 1 Odds Ratio Estimates of four selection process 

    Odds Ratio Estimates 

Method Effect Estimate 95% Confidence limits P-value 

  ATM 7.875 (1.320, 42.967) 0.0235 

Backward 

selection 
BRAF 0.146 (0.016, 1.344) 0.0894 

(Partial F test) FLT3 2.884 (0.946, 8.792) 0.0626 

  NRAS 3.165 (0.844, 11.869) 0.0876 

     

 ATM 9.471 (1.44, 62.293) 0.0193 

 BRAF 0.089 (0.007, 1.137) 0.0627 

Stepwise 

selection 
FBXW7 3.305 (0.871, 12.538) 0.0789 

(Partial F test) FLT3 3.34 (1.076, 10.367) 0.0369 

 NRAS 3.574 (0.934, 13.682) 0.0629 

 ZNF_217 25.708 (1.917, 344.704) 0.0142 

      

 ATM 8.289 (1.361, 50.480) 0.0218 

 BRAF 0.1 (0.012, 1.175) 0.0687 

Backward 

selection 
FBXW7 2.895 (0.767, 10.926) 0.1167 

(AIC) FLT3 3.274 (1.042, 10.288) 0.0423 

 KRAS 0.599 (0.293, 1.223) 0.1592 

  NRAS 2.775 (0.716, 10.753) 0.1398 

     

 ATM 10.605 (1.592, 70.648) 0.0147 

 BRAF 0.064 (0.005, 0.873) 0.0393 

Stepwise 

selection 
FBXW7 3.251 (0.850, 12.438) 0.0851 

(AIC) FLT3 3.785 (1.188, 12.057) 0.0243 

 KRAS 0.573 (0.273, 1.200) 0.1398 

 NRAS 3.15 (0.805, 12.322) 0.0993 

  ZNF_217 26.934 (2.001, 362.500) 0.013 
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Table 2 Model selected using best subset method 

Regression Models Selected using best subset method 

Number of 

Variables 

Chi-Square 

Score Variables Included in Model 

1 5.8512 ZNF_217 

2 11.7115 ATM, ZNF_217 

3 16.972 ATM, BRAF, ZNF_217 

4 20.5411 ATM, BRAF, FLT3, ZNF_217 

5 24.1398 ATM, BRAF, FBXW7, FLT3, ZNF_217 

6 27.2078 ATM, BRAF, FBXW7, FLT3, NRAS, ZNF_217 

7 28.9367 ATM, BRAF, FBXW7, FLT3, KRAS, NRAS, ZNF_217 

 *By default, the criterion used to determine the "best" subset in SAS is based on the global      score chi-

square statistic. 

 

Table 3 Regularization methods with final models 

    Final model 

      

Methods Lambda Predictors retained Equation 

RIDGR Minimum ALL 

logit(p(Response=1)) = -0.630 + 

0.154*KRAS – 0.175*BRAF + 

0.247*ATM + 0.174*FBXW7 – 

0.225*RUNX1 + 0.306*ZNF_217 + 

0.150*IRS2_Amp 
    

LASSO Minimum 

NRAS, BRAF, ATM, 

FBXW7, FLT3, 

RUNX1, ZNF_217 

logit(p(Response=1)) = -0.684 + 

0.297*NRAS – 0.529*BRAF + 

0.816*ATM, + 0.383*FBXW7 + 

0.406*FLT3 – 0.163*RUNX1 + 

1.138*ZNF_217 

    

Elastic Net Minimum ZNF_217 
logit(p(Response=1)) = -0.548+ 

0.0175*ZNF_217 

        

* Number observations is 161  

* Minimum is the lambda with smallest MSE through 10-fold cross validation;  
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Table 4 Eigenvalues for each component with their proportion to the total variance and loading 

information 

Component Eigenvalue Proportion Cumulative Loading Biomarkers 

1 2.588 0.084 0.083 
BRAF, FLT3, APC, RNF43, 

CDK8, NOTCH_1/3 

2 2.408 0.078 0.161 
KRAS, ZNF_217, BCOR, 

SRC_Amp, BCL2_Amp 

3 2.269 0.073 0.234 
FLT3, IRS2_Amp, CDK8, 

MYC_Amp, RB1 

4 1.926 0.062 0.297 RUNX1, RB1, PTEN, BCOR 

5 1.768 0.057 0.354 
ZNF_217, SRC_Amp, TET2, 

FAM123B 

6 1.594 0.051 0.405 SOX9, SMAD2/4, PIK3CA 

7 1.469 0.047 0.452 MUTYH, arid1a/b 

8 1.303 0.042 0.494 ATM 

9 1.222 0.039 0.534 NRAS 

10 1.143 0.037 0.571 FBXW7 

11 1.089 0.035 0.606 N/A 

12 1.028 0.033 0.639 SMAD2/4, CTNNB1 

* 12 components are retained according to "Eigenvalue>1 criteria" 

*Total variance is 31 since there are 31 gene predictors 

* The loading criteria is that the variance of a certain gene contribute to a component is over 40% 

 

Table 5 Summary of PCA loading variables 

    Final model 

Methods Component Retained/important predictors  

PCA 1 RNF43>BRAF>APC>NOTCH1/3>BRCA1/2>CTNNB1=MUTYH 

 2 SRC_Amp>BCL2_Amp>ZNF_217=BCOR>ASXI1=KRAS>P53 

  3 FLT3>CDK8>IRS2_Amp 
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Table 6 The result of simulation to compare the precision of dose estimation: 

Method Gene or Components Intercept SE Dose SE 

Original fitting Dose -0.66 0.43 0.031 0.093 

Backward 

(Partial F test) 
Dose + ATM, BRAF FLT3, NRAS -0.85 0.46 0.03 0.099 

Stepwise 

(Partial F test) 

Dose + ATM, BRAF, FBXW7, FLT3, 

NRAS, ZNF_217 
-0.98 0.50 0.0090 0.11 

Backward 

(AIC) 

Dose + ATM, BRAF, FBXW7, FLT3, 

KRAS, NRAS 
-0.73 0.49 0.049 0.010 

Stepwise 

(AIC) 

Dose + ATM, BRAF, FBXW7, FLT3, 

KRAS, NRAS, ZNF_217 
-0.77 0.52 0.028 0.11 

Ridge 

regression 

Dose + ATM, BRAF, FBXW7, 

IRS2_Amp, KRAS, RUNX1, ZNF_217 
-0.54 0.51 0.026 0.11 

Lasso 

regression 

Dose + ATM, BRAF, FBXW7, FLT3, 

NRAS, RUNX1, ZNF_217 
-0.92 0.50 0.0066 0.11 

Elastic Nets 

regression 
Dose + ZNF_217 -0.65 0.44 0.012 0.097 

PCA Dose + first three components -0.56 0.44 0.0055 0.097 

Random forest Dose + ATM, FLT3, NRAS, ZNF_217 -1.0 0.47 0.015 0.10 

 

 

 

 

  Figure 1 The importance of gene predictors in random forest tree analysis accuracy 

 

   *1000 simulations with two variables randomly sampled at each split and 1000 trees  
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7. Appendix: 

                   Supplementary table 1 Descriptive statistics for all genes variables 

Variable Level N (%) = 161 

Response 0 102 (63.4) 

1 59 (36.6) 

 

KRAS 0 73 (45.3) 

1 88 (54.7) 

 

NRAS 0 151 (93.8) 

1 10 (6.2) 

 

BRAF 0 150 (93.2) 

1 11 (6.8) 

 

PIK3CA 0 133 (82.6) 

1 28 (17.4) 

 

P53 0 33 (20.5) 

1 128 (79.5) 

 

APC 0 28 (17.4) 

1 133 (82.6) 

 

ATM 0 153 (95.0) 

1 8 (5.0) 

 

SMAD2/4 0 142 (88.2) 

1 19 (11.8) 

 

BRCA 1/2 0 153 (95.0) 

1 8 (5.0) 
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Variable Level N (%) = 161 

 

MUTYH 0 156 (96.9) 

1 5 (3.1) 

 

FBXW7 0 150 (93.2) 

1 11 (6.8) 

 

ASXl1 0 157 (97.5) 

1 4 (2.5) 

 

TET2 0 156 (96.9) 

1 5 (3.1) 

 

DNMT3A 0 157 (97.5) 

1 4 (2.5) 

 

RUNX1 0 157 (97.5) 

1 4 (2.5) 

 

FAM123B 0 151 (93.8) 

1 10 (6.2) 

 

arid1a/b 0 154 (95.7) 

1 7 (4.3) 

 

RB1 0 158 (98.1) 

1 3 (1.9) 

 

RNF43 0 157 (97.5) 

1 4 (2.5) 
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Variable Level N (%) = 161 

PTEN 0 148 (91.9) 

1 13 (8.1) 

 

FLT3 0 146 (90.7) 

1 15 (9.3) 

 

ZNF_217 0 155 (96.3) 

1 6 (3.7) 

 

SOX_9 0 148 (91.9) 

1 13 (8.1) 

 

BCOR 0 152 (94.4) 

1 9 (5.6) 

 

CDK8 0 148 (91.9) 

1 13 (8.1) 

 

IRS2_Amp 0 153 (95.0) 

1 8 (5.0) 

 

SRC_Amp 0 156 (96.9) 

1 5 (3.1) 

 

MYC_amp 0 150 (93.2) 

1 11 (6.8) 

 

CTNNB1 0 156 (96.9) 

1 5 (3.1) 

 

NOTCH1/3 0 157 (97.5) 

1 4 (2.5) 
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Variable Level N (%) = 161 

 

BCL2_amp 0 154 (95.7) 

1 7 (4.3) 

 

 

 

 

Supplementary table 2 Univariate association for the treatment outcome with gene  

 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

KRAS N 

(Col %) 

0 44 (43.14) 29 (49.15) 0.460 

N 

(Col %) 

1 58 (56.86) 30 (50.85) 

 

NRAS N 

(Col %) 

0 98 (96.08) 53 (89.83) 0.114 

N 

(Col %) 

1 4 (3.92) 6 (10.17) 

 

BRAF N 

(Col %) 

0 92 (90.2) 58 (98.31) 0.049 

N 

(Col %) 

1 10 (9.8) 1 (1.69) 

 

PIK3CA N 

(Col %) 

0 82 (80.39) 51 (86.44) 0.329 

N 

(Col %) 

1 20 (19.61) 8 (13.56) 
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 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

P53 N 

(Col %) 

0 22 (21.57) 11 (18.64) 0.658 

N 

(Col %) 

1 80 (78.43) 48 (81.36) 

 

APC N 

(Col %) 

0 20 (19.61) 8 (13.56) 0.329 

N 

(Col %) 

1 82 (80.39) 51 (86.44) 

 

ATM N 

(Col %) 

0 100 (98.04) 53 (89.83) 0.021 

N 

(Col %) 

1 2 (1.96) 6 (10.17) 

 

SMAD2/4 N 

(Col %) 

0 91 (89.22) 51 (86.44) 0.599 

N 

(Col %) 

1 11 (10.78) 8 (13.56) 

 

BRCA 1/2 N 

(Col %) 

0 96 (94.12) 57 (96.61) 0.483 

N 

(Col %) 

1 6 (5.88) 2 (3.39) 

 

MUTYH N 

(Col %) 

0 99 (97.06) 57 (96.61) 0.874 

N 

(Col %) 

1 3 (2.94) 2 (3.39) 
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 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

FBXW7 N 

(Col %) 

0 98 (96.08) 52 (88.14) 0.054 

N 

(Col %) 

1 4 (3.92) 7 (11.86) 

 

ASXl1 N 

(Col %) 

0 100 (98.04) 57 (96.61) 0.575 

N 

(Col %) 

1 2 (1.96) 2 (3.39) 

 

TET2 N 

(Col %) 

0 99 (97.06) 57 (96.61) 0.874 

N 

(Col %) 

1 3 (2.94) 2 (3.39) 

 

DNMT3A N 

(Col %) 

0 100 (98.04) 57 (96.61) 0.575 

N 

(Col %) 

1 2 (1.96) 2 (3.39) 

 

RUNX1 N 

(Col %) 

0 98 (96.08) 59 (100) 0.123 

N 

(Col %) 

1 4 (3.92) 0 (0) 

 

FAM123B N 

(Col %) 

0 97 (95.1) 54 (91.53) 0.365 

N 

(Col %) 

1 5 (4.9) 5 (8.47) 
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 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

arid1a/b N 

(Col %) 

0 98 (96.08) 56 (94.92) 0.727 

N 

(Col %) 

1 4 (3.92) 3 (5.08) 

 

RB1 N 

(Col %) 

0 100 (98.04) 58 (98.31) 0.904 

N 

(Col %) 

1 2 (1.96) 1 (1.69) 

 

RNF43 N 

(Col %) 

0 99 (97.06) 58 (98.31) 0.624 

N 

(Col %) 

1 3 (2.94) 1 (1.69) 

 

PTEN N 

(Col %) 

0 92 (90.2) 56 (94.92) 0.290 

N 

(Col %) 

1 10 (9.8) 3 (5.08) 

 

FLT3 N 

(Col %) 

0 96 (94.12) 50 (84.75) 0.049 

N 

(Col %) 

1 6 (5.88) 9 (15.25) 

 

ZNF_217 N 

(Col %) 

0 101 (99.02) 54 (91.53) 0.016 

N 

(Col %) 

1 1 (0.98) 5 (8.47) 
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 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

SOX_9 N 

(Col %) 

0 93 (91.18) 55 (93.22) 0.646 

N 

(Col %) 

1 9 (8.82) 4 (6.78) 

 

BCOR N 

(Col %) 

0 95 (93.14) 57 (96.61) 0.355 

N 

(Col %) 

1 7 (6.86) 2 (3.39) 

 

CDK8 N 

(Col %) 

0 95 (93.14) 53 (89.83) 0.458 

N 

(Col %) 

1 7 (6.86) 6 (10.17) 

 

IRS2_Am

p 

N 

(Col %) 

0 99 (97.06) 54 (91.53) 0.120 

N 

(Col %) 

1 3 (2.94) 5 (8.47) 

 

SRC_Am

p 

N 

(Col %) 

0 99 (97.06) 57 (96.61) 0.874 

N 

(Col %) 

1 3 (2.94) 2 (3.39) 

 

MYC_am

p 

N 

(Col %) 

0 95 (93.14) 55 (93.22) 0.984 

N 

(Col %) 

1 7 (6.86) 4 (6.78) 
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 Response  

 ___________________________  

Covariate Statistics Level 0 N=102 1 N=59 
Parametri

c P-value* 

CTNNB1 N 

(Col %) 

0 98 (96.08) 58 (98.31) 0.433 

N 

(Col %) 

1 4 (3.92) 1 (1.69) 

 

NOTCH1/

3 

N 

(Col %) 

0 100 (98.04) 57 (96.61) 0.575 

N 

(Col %) 

1 2 (1.96) 2 (3.39) 

 

BCL2_am

p 

N 

(Col %) 

0 98 (96.08) 56 (94.92) 0.727 

N 

(Col %) 

1 4 (3.92) 3 (5.08) 

 

*  The parametric p-value is calculated by chi-square test. 

 

 


