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Abstract

Joint Modeling Approaches for Clustered Survival Data with Random

Cluster Size

By Shuling Liu

The first part of this dissertation focuses on the development of copula based joint

modeling approaches for the clustered survival data with a random cluster size. We

propose to adopt Clayton-Oakes model (Clayton, 1978; Oakes, 1989) for measure-

ments within a cluster and the cluster size is modeled via a discrete survival model.

The methods are motivated by the Mount Sinai Study of Women Office Workers

(MSSWOW) where women were prospectively followed for one year for studying fer-

tility. For each woman, menstrual cycle lengths (MCLs) are recorded until time-to-

pregnancy (TTP) or the end of study.

We first consider specifying a parametric distribution as the marginal survival dis-

tribution in the Clayton-Oakes model and TTP is modeled using a grouped version of

the usual continuous time Cox regression model (Scheike and Jensen, 1997). Second,

we consider a semiparametric linear transformation model (Cheng et al., 1995) for the

marginal distribution of the Clayton-Oakes model. We develop an EM algorithm to

derive an approximate generalized maximum likelihood estimator. We also provide

a computationally simple estimation procedure known as the two-stage approach.

Asymptotic theory for the two-stage estimators is established. Simulation studies are

conducted to evaluate the performance of the proposed joint model and estimation

procedures. The proposed methods are also applied to the MSSWOW data.

In the second part of this dissertation, we consider the problem of testing whether

a repeatedly measured quantitative biomarker is associated with a subsequent time-

to-event process. We propose a nonparametric testing procedure to evaluate the null

hypothesis by adopting a linear mixed model for repeated measures, but without

imposing modeling assumptions on the time to event. The proposed test can uti-

lize all the information provided by the random effects and is not sensitive to the

model misspecification of the time-to-event process. We show that the proposed test

statistic is asymptotically consistent and normally distributed under both null and

alternative hypotheses. We demonstrate the validity of the new nonparametric test

using simulation studies and compare the proposed method to a model-based score

test. We finally apply the proposed method to a real data from epidemiological study

to illustrate its practical utility.
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Chapter 1

Introduction

1.1 Background

In the past few decades, reproductive health issues such as conception and infertility,

complications of pregnancy and adverse pregnancy outcomes have raised concerns

in public health research. Infertility has become more and more common in the

United States, about 10% of women (6.1 million) aged 15-44 years suffering difficulties

getting pregnant or staying pregnant (Centers for Disease Control and Prevention,

2012). Therefore, how to improve pregnancy health has become very important. In

most cases, infertility is due to problems with a woman’s ovulation which occurs in

each menstrual cycle. Time-to-pregnancy (TTP) is a widely used outcome to study

fertility since data on TTP are usually easy and inexpensive to derive by surveys and

questionnaires (Bonde et al., 2006). Menstrual cycle length is also a key indicator of

women’s reproductive health (Harlow and Matanoski, 1991; Small et al., 2006; Guo et

al., 2006). Many subject-specific characteristics and environmental factors can affect

women’s ability to conceive (Scheike and Jensen, 1997; Scheike and Keiding, 2006),

which include age, smoking, alcohol assumption, being overweight or underweight

and sexual behavior etc. Hence, it is of scientific interest to understand the effects

of risk factors on both TTP and menstrual cycle lengths. Recognition of these risks

can provide appropriate advice to women who try to get pregnant and protect their
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reproductive health. For example, some work-related risk factors have been found to

have adverse effects on women’s fertility and legislation with regards to the protection

of the reproductive health of women have been developed (Liu et al., 2004; Burdorf

et al., 2011). Although many statistical tools have been developed for reproductive

health and fertility studies in recent years (Harlow and Zeger, 1991; Scheike and

Jensen, 1997; Harlow et al., 2000; Guo et al., 2006; Scheike and Keiding, 2006),

statistical methods are limited in studying both TTP and menstrual cycle lengths

simultaneously. Particularly, challenging and complex features of TTP and menstrual

cycle lengths data indicate that efficient and flexible statistical methods are needed.

The first objective of this dissertation is to develop statistical models and their

inference for studying risk factors for both menstrual length data and pregnancy out-

comes. Despite the fact that the methods are motivated by reproductive studies, they

can be generalized to apply for studying joint modeling methodology for longitudinal

and survival outcomes in general settings. Another objective is to develop a nonpara-

metric test statistic for the association between a repeatedly measured continuous

outcome and a time-to-event process. Our goal is to develop a testing procedure that

is more robust to the semiparametric assumption of the survival model.

In this chapter, we provide an introduction and the background. First, we provide

scientific reasoning to motivate the statistical problems using a reproductive health

study called the Mount Sinai Study of Women Office Workers (MSSWOW). We will

describe the details of MSSWOW data including data collection methods, variables

and scientific hypotheses that are of interest to epidemiologists. Second, we will sum-

marize current statistical methods for studying TTP and menstrual cycle lengths

in the literature. In order to motivate our proposed joint modeling procedure, we

provide a background of joint modeling methodology for longitudinal processes and

time-to-event data. Since our model is developed based on the Clayton-Oakes models

(Clayton, 1978; Oakes, 1989), we give a brief introduction to copula models and the
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Clayton-Oakes models. Third, we will briefly summarize the prior literature that

were developed under joint modeling framework. We also provide literature reviews

on discussion of validity of these methods under model misspecification, which mo-

tivates us to propose a robust nonparametric testing procedure without imposing

semiparametric model assumptions. Finally, we provide a summary of the methods

that are developed in this dissertation.

1.2 The Mount Sinai Study of Women Office Work-

ers

The Mount Sinai Study of Women Office Workers (MSSWOW) was a prospective

cohort study that was conducted from 1991 to 1994. The Principle Investigator of this

study is Dr. Michele Marcus from the Department of Epidemiology, Rollins School

of Public Health, Emory University. Women from 14 companies and government

agencies in New York, New Jersey and Massachusetts were enrolled in the study.

The aim of the original study was to explore the relationships between Video Display

Terminal (VDT) use and rates of spontaneous abortion. Women between the age of

18 and 40 who were at risk of pregnancy were recruited in the study. Three exclusion

criteria were implemented prior to the follow-up study, including if the couple had

been trying to conceive a child unsuccessfully for more than 1 year, if the woman had

a hysterectomy, and if her partner had a vasectomy. A total of 4640 female office

workers completed a cross-sectional questionnaire. 563 women who had finished the

questionnaire agreed to participate in the study were interviewed to assess possible

confounding factors, baseline information and demographics. 79 women who did not

collect any urine samples and 14 women who were found to be ineligible after the

entry interview were excluded from the study. Finally, 470 women were recruited.

After the baseline visit, these women were followed for one year or until the end of
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a clinical pregnancy. During the study, the participants were required to complete

diaries to record information such as hours of VDT use, exercise performed, stress

level, frequency of sexual intercourse, birth control use, and when menstrual bleeding

occurred.

As far as now, there is no firm evidence indicating that VDT use would notably

increase the risk of infertility of women (Marcus, 1990). Although this study has

been designed to investigate the of effect of VDT on spontaneous abortion, the study

provided the opportunity to explore the possible roles of risk factors on many repro-

ductive health outcomes such as menstrual cycle length, TTP, spontaneous abortion

etc. There are several publications that focused on analyzing reproductive health

outcomes resulting from this study (Guo et al., 2006; Small et al., 2006; Small et al.,

2007). Menstrual cycle characteristics, including cycle length and bleeding length,

are found to be associated with a woman’s fertility (Small et al., 2006). Women with

30- to 31-day menstrual cycles and 5-day bleeding lengths were found to have high

risk of conception and low risk of spontaneous abortion. Low probability of getting

pregnant is also associated with high variability in menstrual cycle lengths (Small et

al., 2006). In addition, Guo et al. (2006) found that women’s age has a quadratic

effect on the variability of menstrual cycle lengths. Chen et al. (unpublished, 2013)’s

findings suggested that women’s age has significant influence on TTP adjusting for

unprotected intercourse.

1.3 Discrete Survival Models for TTP

Since each menstrual cycle indicates a single ovulatory opportunity for getting preg-

nant, time-to-pregnancy (TTP) is defined as the number menstrual cycles taken to

conceive and including a conception cycle and TTP is naturally considered as a dis-

crete random variable (Rothman and Greenland, 1998). Due to this discrete time

feature, TTP can be modeled by a grouped version of the continuous survival time
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model (Scheike and Jensen, 1997; Kalbfleisch and Prentice, 2002). In this section, we

give a brief review of discrete time survival models for TTP.

Let T̃ be the number of cycles to get pregnant for an individual. We assume that

T̃ is a non-negative discrete random variable that follows an unspecified distribution

and common for all subjects, i.e., T̃ ∼ FT . The survival function ST (t) of T̃ is defined

as

ST (t) = Pr{T̃ > t} =
∑
s>t

Pr{T̃ = s} (1.1)

where t takes on possible values of T̃ . Given that a woman has not been pregnant in

previous cycles, the conditional probability of she getting pregnant at the t-th cycle

(i.e., the discrete hazard function) is defined as

λT (t) = Pr{T̃ = t|T̃ ≥ t} =
Pr{T̃ = t}∑
s≥t Pr{T̃ = s}

. (1.2)

Based on the definition, the following relationship between λT (t) and ST (t) can be

derived

ST (t) =
t∏

j=1

(1− λT (j)) (1.3)

Like all survival data, truncation and censoring issues are very common in TTP

studies. To accommodate these problems as well as discreteness in the context of TTP

study, several authors proposed grouped version or discrete version survival models

that resembles those in the continuous case for TTP data. Scheike and Jensen (1997)

proposed a complementary log-log link model for TTP data as following

log(− log(1− λT (t|X))) = αt + ηX (1.4)

where X is a p-dimensional covariates vector and αt = log(− log(1 − λT0(t))) is the

complementary log-log transformation of the baseline hazard function denoted by

λT0(t). Scheike and Jensen (1997) included a random effect in model (4) to account

for potential unknown risk factors and heterogeneity among different women as well
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as the within-subject correlation when multiple TTP data are observed for the same

subject. A nice feature of this complementary log-log model is that it can be obtained

by grouping time in the regular Cox (1972) proportional hazard model in continuous

survival time case (Kalbfleisch and Prentice, 2002). To see this, let us assume that Z

is a continuous survival time which is modeled by the Cox proportional hazard model

λZ(z|X) = λZ0(z) exp(ηX).

where λZ0(z) is the baseline hazard function for time z. Suppose that time Z is

grouped into intervals [a0, a1), ..., [ak, ak+1), ..., [am,∞) by partitioning the continuous

time space [0,∞). Assume that the event or censoring is only observed in each of the

intervals. If Z falls within the t-th interval [at−1, at), then a grouped observation of

Z is Zd = t. Then it can be proved that the grouped survival time Zd follows the

following hazard model

λZd(t|X) = 1− exp(− exp(σt + ηX))

where σt = log(
∫ at
at−1

λZ0(z)dz). Therefore, the complementary log-log model is ap-

propriate for discrete survival data when the underlying event time follows a Cox

proportional hazards model (Kalbfleish and Prentice, 2002). The interpretation of

the fixed effect of risk factors is straightforward as the logarithm of subject-specific

risk ratios. In addition, time-dependent covariates can be easily introduced to the

model (Weinberg and Gladen, 1986; Scheike and Jensen, 1997). Based on the model,

Ecochard and Clayton (2000) extended the method to more general cases such as

multivariate waiting times by including more flexible random effect distributions.

Other methods for TTP include the logistic regression model for grouped fail-

ure times suggested by Thompson (1977), which is the explicit use of Cox’s (1972)

method. Weinberg and Gladen (1986) proposed a generalization of beta-geometric

model(Henry, 1953) for TTP data. Under this beta-geometric assumption, condi-

tional on fecundability (which is defined as the probability to conceive during a
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month), TTP has a geometric distribution while fecundability itself follows a beta

distribution. Thus, the heterogeneity of different subjects is captured by the beta

distribution. Although this model can be fitted using general software and be able to

handle fixed covariates, it is not easy to incorporate time-dependent covariates. Later

Weinberg et al. (1994) developed a semiparametric regression model with a log link

for the hazard rates instead of the complementary log-log link function. However, one

problem for this method is that the hazard (which is a conditional probability) may

be out of boundary of [0, 1] since the covariate coefficients can go from negative infin-

ity to positive infinity. Alternatively, Dunson and Zhou (2000) proposed a Bayesian

inference on the fecundability and sterility. Prior information about heterogeneity in

fecundability and a mixture model were used to assess the effects of risk factors such

as smoking and age while taking into account both sterile couples and heterogeneity

among fecund couples. Other Bayesian methods for characterizing covariate effects

and heterogeneity among couples include: 1) the more flexible Bayesian semiparamet-

ric modeling approach proposed Dunson (2001) based on Dunson and Zhou’s model

(2000), 2) Bayesian methodology to incorporate known order restrictions to improve

efficiency in assessing covariate effects on fecundability (Dunson and Neelon, 2003),

3) Bayesian multiprocess fecundability model developed by Dunson (2003), and 4)

hierarchical Bayesian logistic-survival model studied by Hanson et al. (2003) and

Thurmond et al. (2005), etc.

1.4 Modeling Menstrual Cycle Lengths

Menstrual cycle length is measured as the number of days from the first day of

menstrual bleeding to the first day of next time bleeding. In general, the normal length

of a menstrual cycle for a healthy woman is considered to be centered around 28 days

but it is possible to have a shorter or longer length than 28 days. Menstrual cycles that

are either shorter than 21 days, or longer than 36 days are considered as an irregular
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period. Some women may experience irregular cycles occasionally caused by stress,

anxiety and illness etc. However, frequent irregular periods may indicate potential

menstrual dysfunction and make getting pregnant difficult (Treloar et al., 1967; Bullen

et al., 1985; Belsey et al., 1987; Harlow and Matanoski, 1991). With the development

of techniques that enable evaluation of menstrual cycle characteristics and assessment

of ovulation, the variability and various patterns of menstrual cycles on women’s

fecundity is of primary interest in recent reproductive studies. Particularly, the effects

of exposures such as smoking, alcohol consumption, age and body mass index (BMI)

on menstrual function and how these effects vary among different women have been

investigated (Treloar et al., 1967; Chiazze et al., 1968; Lenton et al., 1984; Bullen et

al., 1985; Harlow and Matanoski, 1991; Harlow and Zeger, 1991; Murphy et al., 1995;

Harlow et al., 2000; Guo et al., 2006; Small et al., 2006).

Statistical analysis for menstrual cycle data is often complicated due to several

reasons which include: 1) the distribution of menstrual cycle lengths is difficult to

describe since it has a mixture of symmetric part with a long right tail; 2) there is

generally a sampling bias in follow-up studies like MSSWOW since women with a

short cycle would contribute more observations than those with a few long cycles and

3) measurement errors and censoring issues are present in self-reported menstrual

cycles.

Normal distribution is a common underlying assumption in early studies for men-

strual cycle lengths(Treloar et al., 1967; Chiazze et al., 1968; Lenton et al., 1984).

However, it was later found that menstrual cycle length data features a long right tail

and therefore a mixture distribution is considered to describe the symmetric part as

well as the long right tail (Harlow and Zeger, 1991; Murphy et al., 1995; Harlow et al.,

2000; Guo et al., 2006). Suppose the observed menstrual cycle lengths for a subject

are denoted by a n-dimensional vector Y = (Y1, Y2, ..., Yn)′ where n is the number of

repeated cycle lengths on the same subject. Harlow and Zeger (1991) suggests using
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a mixture of symmetric distribution that is centered at 28 days and a stochastically

larger component to accommodate the long right tail. Two separate models were fit-

ted for the standard cycle lengths from the symmetric distribution and probability of

having a non-standard cycle from the long tail. Lin et al. (1997) extended standard

linear mixed models to account for heterogeneous within-cluster variances. To further

solve the challenging issues of sampling bias and measurement errors, Murphy et al.

(1995) proposed a sequential model approach for the mean cycle lengths conditional

on the past cycle lengths and time-varying covariates. This model handles within-

woman and between-woman variability of menstrual cycles and identify potential risk

factors that affect these variabilities as well as accommodate the sampling bias and

censoring issues in the data. Following the argument that the menstrual cycle lengths

follow a mixed distribution, Guo et al. (2006) proposed the mixture density for the

cycle length Y , g(y) = pg1(y) + (1− p)g2(y), where g1(y) and g2(y) are the densities

for the symmetric distribution and tail distribution, respectively, and p and 1− p are

the probability weights. Guo et al. (2006) chose a normal distribution for g1(·) to

model the standard cycle lengths and a shifted Weibull distribution for g2(·) to fit

the nonstandard cycle lengths. Modeling of covariates was introduced via two mod-

els, one for the normal density and the other for the Weibull density. In addition,

the cutoff point that distinguishes the standard and nonstandard cycle lengths were

estimated.

Our approach in this dissertation is to consider a general copula model for the joint

distribution of menstrual cycle lengths. Specifically, we propose to use the Clayton-

Oakes model for the menstrual length data, which is described in details in the next

section.

9



1.5 Copula Models

In recent years, copula models has become a popular statistical tool in modeling

dependency between random variables, especially in such fields as finance, actuarial

science and survival analysis. A copula is defined as a multivariate distribution func-

tion with certain properties that expresses the cumulative distribution function in

terms of its one-dimensional marginal distribution functions. For simplicity, we use

bivariate distribution for our representation and all definitions and theories can be

easily generalized to higher dimensional cases. Specifically, if a two-dimensional vec-

tor of random variables U = (U1, U2) follows a copula, denoted by C: [0, 1]2 → [0, 1],

then the function C satisfies the following properties:

(i) for µ = (µ1, µ2) ∈ [0, 1]2, the realization of U, C(µ) = 0 if at least one ui, i = 1, 2

equals to 0;

(ii) for every (µ11, µ12), (µ21, µ22) ∈ [0, 1]2 and µ11 < µ21, µ12 < µ22, C(µ21, µ22) −

C(µ21, µ12)− C(µ11, µ22) + C(µ11, µ12) ≥ 0, and

(iii) C(1, µ2) = µ2 and C(µ1, 1) = µ1.

In the framework of statistical modeling, a copula is a function that can be used to

link univariate marginals with their full multivariate distribution. Assume that we

have a vector of a multivariate random variable vector X = (X1, ..., Xn) with a joint

distribution function FJ and marginal distribution functions U = (F1(x1), ..., Fn(xn)).

The joint distribution FJ can be written as a copula function as (Sklar, 1959)

FJ(X1, ..., Xn) = C(F1(x1), ..., Fn(xn); ρ)

where ρ is a dependence parameter. Many copula families are available for construct-

ing statistical models such as Gaussian copulas and Archimedean copulas. Partic-

ularly, we focus on Archimedean copulas, which has been explored by statisticians

for analyzing the clustered survival data (Genest and Mackay, 1986). Archimedean
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copulas are defined as

CA(u1, ..., un) = φ−1{φ(u1) + · · ·+ φ(un)}

where φ : [0, 1] → [0,+∞] is called the generator of the copula. φ is a decreasing

and convex function such that φ(0) =∞, φ(1) = 0. Examples of Archimedean copu-

las include Clayton copula, Gumbel copula, Frank copula, Gumbel-Hougaard copula

etc. In this dissertation, we consider the Clayton copula (Clayton, 1978; Cook and

Johnson, 1981; Oakes, 1982). Following Clayton (1978), for the bivariate case, Oakes

(1982) assumed that the generator φ in the above definition as the inverse of the

Laplace transformation (the Laplace transformation of a function f(x), x ≥ 0 is de-

fined as
∫∞

0
e−sxf(x)dx). Then the Clayton copula is obtained by taking the Laplace

transformation of gamma distribution with mean 1 and variance θ, as

Cθ(u1, u2) = (u−θ1 + u−θ2 )−
1
θ .

Under the framework of survival analysis, let (Y1, Y2) be two random variables

with marginal survival functions S1(y1) and S2(y2), respectively. The joint survival

function of (Y1, Y2), S(y1, y2), can be expressed via the Clayton copula known as the

Clayton-Oakes model which has a form of

S(y1, y2) =
[
{S1(y1)}−θ + {S2(y2)}−θ − 1

]− 1
θ .

where θ > 0 is the dependence parameter. As θ approaches to 0, it indicates

that Y1 and Y2 are independent and thus the joint survival function S(y1, y2) is

simply the product of the marginal survival functions of S1(y1) and S2(y2). As θ

goes to ∞, the joint survival function converges to its upper Frechet bound and

S(y1, y2) = min{S1(y1), S2(y2)}. One of the important properties of Archimedean

copula is that there exists a general relationship between its generator and Kendall’s

τ (Kendall, 1938). For the Clayton-Oakes model, the relationship of Kendall’s τ and

the dependence parameter θ is given by θ = 2τ/(1− τ). Kendall’s τ is a rank-based
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measure of correlation, ranging from −1 to +1 and hence it is invariant under strictly

increasing transformations of the underlying random variables.

Other copulas such as the Gaussian copula are often utilized to construct multi-

variate dispersion models as well. Some examples of marginal dispersion distributions

for Gaussian copulas are given by Song et al. (2000, 2009) such as binary model,

Poisson model, Gamma model etc. The parameter estimation based on maximum

likelihood procedures for these models have been developed in the literature as well

(Oakes, 1982, 1989; Joe, 1994, 1997, 2005; Song, 2005).

The advantages of copula models include their relatively simple and concise math-

ematical formulation and the introduction of dependency structures without placing

restrictions on the marginal distributions. That is, copulas can be utilized in a wide

range of parametric, nonparametric or semiparametric frameworks. First, parametric

models can be postulated for both copulas and marginal distributions as illustrated in

the Clayton-Oakes model. Second, one can consider fitting nonparametric models for

both copulas and marginal distributions. Dehuvels (1979) used a multivariate empiri-

cal distribution approach. Gijbels and Mielniczuk (1990) proposed a kernel estimator

for a bivariate copula. Chen and Huang (2007) later developed a kernel approach

based on local linear kernels. A third possibility to work with copulas is the semi-

parametric approach, which means either a combination of a parametric model and

a nonparametric model or semiparametric assumptions for the copula and marginal

distributions.

In terms of parameter estimation, Shih and Louis (1995) developed a two-stage

semiparametric estimation procedure in the copula models for bivariate survival data

where the marginal survival function can be obtained as Kaplan-Mier estimators.

Song et al. (2009) extended the multivariate dispersion models generated by Gaussian

copulas to more generalized linear models which allows for continuous, discrete and

mixed correlated outcomes. For the Clayton-Oakes model, semiparametric marginal
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survival distributions were initially incorporated into the model by Oakes(1986).

By utilizing the established relationship between the Clayton-Oakes model and the

gamma frailty model (Vaupel et al., 1979), Glidden and Self (1999) proposed a semi-

parametric likelihood estimation approach for the Clayton-Oakes model which fits

into the framework of Nielsen et al. (1992) estimating method for gamma frailty

model. They assumed that the marginal hazard function follows a Cox proportional

hazard model in the Clayton-Oakes model and an approximate EM-algorithm was

developed to obtain the generalized maximum likelihood estimators. Glidden (2000)

later proposed a two-stage estimation procedure for the same model.

1.6 Joint Modeling of Longitudinal and Survival

Data

In many epidemiological studies and clinical trials, longitudinal (or clustered) mea-

surements of a response and time-to-event data are collected. The longitudinal data,

such as CD4 counts, tumor cells, or a health biomarker, are often important predic-

tors or surrogates for a time to event which can be disease-free survival or overall

survival. Classical methods for analyzing only the longitudinal data include the lin-

ear mixed-effects model or generalized estimating equations (GEE) approach and the

Cox proportional hazards model or accelerated failure time model are used when only

time-to-event data is available. A more powerful method that considers the relation-

ship and association between longitudinal and time-to-event data is to jointly model

the two outcomes (Tsiatis and Davidian, 2004; Hsieh et al., 2006; Ibrahim et al.,

2010). That is, the longitudinal and time-to-event data are modeled simultaneously

so that one can assess the covariate effects on both outcomes and the association be-

tween them. In recent years, this type of joint modeling method has gained popularity

because it reduces the bias and improves efficiency in terms of parameter estimation
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and can provide valid inference for the effects of risk factors (Wulfsohn and Tsiatis,

1997; Tsiatis and Davidian, 2001; Song et al., 2002b; Tsiatis and Davidian, 2004;

Zeng and Cai, 2005; Chen et al., 2011). In addition, the joint models can handle the

complicated features of the observed data such as missing and measurement errors

in the longitudinal outcome and censoring and truncation in time-to-event data (Lin

et al., 2002; Tsiatis and Davidian, 2004; Rizopoulos, 2010; Rizopoulos et al., 2011;

Sousa, 2011).

Typically, a joint model consists of two components: a submodel for the longitu-

dinal observations denoted by Y (t) (t ≥ 0 represents all measurement times) and the

other submodel for the time-to-event data denoted by T , where Y (t) is the observa-

tion of the longitudinal response for an individual at time t. In addition, censoring

and truncation are quite common phenomena in time-to-event data. Let L denote

the left truncation variable and C be the right censoring variable. Conditioning on

T ≥ L, N = min(T,C) is the observed time-to-event data and the censoring indicator

is ∆ = I(T ≤ C). Y (t) are observed periodically at times t ≤ T . Hence the observed

outcome data for a subject can be denoted by the vector O = {N,∆, y(t); t ≥ 0}.

By making assumptions on the joint distribution of O and specification for the two

submodels, different joint models can be constructed.

In literature, there are usually two ways to construct a joint model for longitudinal

and the survival data, including (i) assuming shared random effects for both outcomes

(Self and Pawitan, 1992; DeGruttola and Tu, 1994; Hogan and Laird, 1997; Wulfsohn

and Tsiatis, 1997; Henderson et al., 2000; Wang and Taylor, 2001; Xu and Zeger,

2001; Ibrahim et al., 2004; Zeng and Cai, 2005; Chi and Ibrahim, 2006; Vonesh et

al., 2006; Diggle et al., 2008; Rizopoulos and Ghosh, 2011) and (ii) utilizing different

factorization of the joint distribution of (Y (t), T ) (Little, 1993; Tsiatis et al., 1995;

Hu et al., 1998; Huang et al., 2001; Xu and Zeger, 2001a, 2001b).
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1.6.1 Shared Random Effects Joint Models

The shared random effects joint models assume that the longitudinal and time-to-

event processes are independent conditional on some latent random effects. That is,

event time and longitudinal biomarker are assumed to be associated via an underlying

progression, defined by random effects, rather than directly dependent on each other.

Typically, the model for the repeatedly measured longitudinal data with random

effects has a form of

Y (t) = α0 + α1t+ βX(t) + ε(t)

where α = {α0, α1} is the vector of random effects that follow a bivariate normal

distribution MVN2(0,Σa) and represents the subject-specific random intercept and

random slope, respectively; X(t) is a vector of covariates and β is the corresponding

covariate coefficients; and ε(t) are mutually independent normal random errors. For

the survival submodel, a parametric distribution such as exponential or Weibull for

the response can be assumed. More commonly, the semiparametric Cox proportional

hazards models and accelerated failure time models have been widely used (DeGrut-

tola and Tu, 1994; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Tsiatis and

Davidian, 2004; Vonesh et al., 2006; Rizopoulos et al., 2008). The two submodels

are typically joined via shared random effects. Given the random random effects,

the longitudinal response and the survival time are conditionally independent. For

instance, Wulfson and Tsiatis (1997) proposed the Cox proportional hazards model

with shared random effects given in the mixed model as

λT (t|α, Y (t)) = λT (t|α) = λ0(t) exp(γ(α0 + α1t+ βX(t)))

where γ evaluates the dependency between the longitudinal biomarker and the time

to event. This type of joint models have been studied in literature including Self

and Pawitan (1992), DeGruttola and Tu (1994), Tsiatis et al. (1995), Faucett and

Thomas (1996), Bycott and Taylor (1998), Dafni and Tsiatis (1998) and recently by
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Rizopoulos et al. (2009). More complex random effects structure can be specified.

For example, a polynomial function of the random effects can be used instead of

a linear form. Tsiatis and Davidian (2001) and Song et al. (2002b) generalized

this model by relaxing the normality assumption on the random effects. Song et

al. (2002a) incorporated multiple time-dependent covariates into the model. Zeng

and Cai (2005) proposed a joint model where random effects affect the two outcomes

differently. Instead of imposing common random effects for both outcomes, they

assumed the random effects in the longitudinal model are (α0, α1) and the random

effects in the survival model are assumed to have a form of α̃i = γiαi + ωi, i = 0, 1

where ωi is a subject-specific effects that only affect the survival response and γ is a

scale parameter that evaluates different intensity of random effects on both outcomes.

To allow a more flexible and feasible structure for the within-subject correlation,

some authors suggested adding common stochastic process components instead of

random effects into both the submodels and the association between both responses

can be captured by the stochastic process (Henderson et al., 2000; Wang and Taylor,

2001; Xu and Zeger, 2001a). Likewise, a similar approach has been proposed by Lin

et al. (2002a) where the joint model contained common covariates that have influence

on both outcomes. Other issues such as missingness and measurement errors have

also been closely investigated (Wulfsohn and Tsiatis, 1997; Wu et al., 2008). In

the presence of clustered data, Ratcliffe et al. (2004) proposed a mixed effects type

model for the clustered data and a frailty model for the survival outcome along with

a common cluster-level random effect that accommodated both within-subject and

between-cluster heterogeneity.

Usually, the parameter estimators for these shared random effects joint models

can be obtained by EM algorithm. The performance of the EM algorithm was ex-

amined by many authors(Wulfson and Tsiatis, 1997; Zeng and Cai, 2005; Hsieh et

al., 2006) and it has been demonstrated that these estimators are robust and efficient

16



under certain assumptions. Hsieh et al. (2006) recommended to use the bootstrap

estimators for estimating the standard errors of the parameter estimators unless re-

liable standard error estimates can be established theoretically.

1.6.2 Mixture and Selection Joint Models

The second approach to construct a joint model is based on a conditional distribution

factorization of the joint distribution of Y (t) and T . Specifically, one can assume that

fY (t),T (y(t), t) = fT |Y (t)(t|y(t))fY (t)(y(t)) or fY (t),T (y(t), t) = fY (t)|T (y(t)|t)fT (t)

These two types of models are also known as selection and mixture models, respec-

tively (Little, 1993). A linear mixed-effects model is commonly assumed for the

distribution of repeated measurements of the longitudinal outcome. Typical choices

for the conditional time-to-event distribution include Cox proportional hazard model,

accelerated life model, logistic linear regression, probit regression, etc.

The first type of conditional and marginal distribution factorization, i.e., the se-

lection model, is proposed to study the informative drop-out where the conditional

distribution of drop-out time T given the longitudinal response is modeled via general-

ized linear models, with observed longitudinal data as a covariate and the longitudinal

response is modeled by linear mixed models (Diggle and Kenward, 1994; Diggle, 1998;

Scharfstein et al., 2003). Hogan and Laird (1997) proposed a mixture model for a

longitudinal outcome conditioning on a time-to-event which missing values in the lon-

gitudinal measures and censoring survival time are accommodated. For longitudinal

outcome, the conditional distribution of Y (t) given T is assumed to follow a multi-

variate normal distribution and a linear mixed effects model is utilized and the event

time T is a covariate for the conditional mean of Y (t). No parametric form is assumed

for the time-to-event data and Kaplan-Meier product-limit estimators are obtained to

replace the cumulative distribution function F (t). Hogan et al. (2004) extended this
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mixture model to more general semiparametric framework. They assumed that the

longitudinal response follows a varying coefficient random effects model conditional on

drop-out time while impact of drop-out time on the longitudinal data is modeled via

unspecified nonparametric functions that can be estimated using step functions when

drop-out time is discrete and using smoothing splines if drop-out time is continuous.

A joint model for longitudinal measurements and competing risks survival data

was studied by Elashoff et al. (2008) where a flexible modeling approach is proposed

to handle potential informative missingness in the longitudinal measurements due to

dropout and a possible way to incorporate informatively censored events as a compet-

ing risk. Linear mixed-effects models for the longitudinal process and proportional

cause-specific hazard frailty models for the competing risks survival data are linked

via some latent random effects to construct the joint model. The maximum likelihood

estimators for mixture models are generally available by using EM algorithms based

on the joint distribution fY (t),T (y(t), t) (Hogan and Laird, 1997; Elashoff et al., 2008).

1.6.3 Other Joint Models

In addition to shared parameter models and mixture and selection models, many au-

thors based their work with joint models within the framework of Bayesian analysis

where hierarchical models were generally used (Brown and Ibrahim, 2003ab; Ibrahim

et al., 2004; Chi and Ibrahim, 2007; Rizopoulos and Ghosh, 2011) and both longitu-

dinal and survival outcomes are allowed to be multidimensional.

In a different context but related to joint modeling framework, some authors have

investigated clustered data that involve clustered outcomes with a random cluster

size. The measurements of outcomes within a cluster is often associated with the

cluster size and the primary interest is to investigate the dependency of the outcomes

per subunit and cluster size. In certain situations, when multiple measurements on

the subjects are observed, the number of the measurements is a random variable.
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Multivariate random length data are observed when multiple measurements (cate-

gorical or continuous) are obtained and at the same time the length of the vector

of measurements is also recorded as an outcome for each individual (Barnhart and

Sampson, 1995; Barnhart et al., 1999). Barnhart and Sampson (1995) developed a

general joint modeling setting for multivariate random length data where the random

length is assumed to follow a generalized linear model and the conditional distribu-

tion of the observed multiple measurements vector has a form of multivariate normal

distribution. Specifically, the random length variable K has a discrete distribution as

Pr{K = k} = gk(δ + γµi)

where δ is the intercept, µi represents the i-th population mean and γ is the regres-

sion coefficient that evaluates the correlation between the multivariate data and the

random length. Conditional on K = k, the multivariate vector, denoted by X, has a

distribution of

X|K = k ∼MVN
[
µiek, σ

2Rk(ρ)
]

where ek is an k × 1 vector with every element equal to one and Rk(ρ) is the k × k

correlation matrix. Maximum likelihood estimators and asymptotic properties are de-

rived by likelihood inferences. Later, Barnhart et al., (1999) extended this population

model by including covariates in both generalized linear model and the multivariate

normal model. Maximum likelihood estimators as well as asymptotic efficiency are

provided. Some technical issues related to the estimation procedures are discussed.

Dunson et al. (2003) considered a similar problem to address the association between

the outcomes on subunits in a litter and the litter size. They constructed the joint

model under a Bayesian framework by assuming an underlying normal model for the

subunit-level outcomes and a generalized continuation ratio probit model for the clus-

ter size. The dependency structure between the subunit-level outcomes and cluster

size was described by a multivariate normal covariance structure and shared latent
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variables. In this dissertation, we consider joint modeling approach in the survival

analysis settings where outcomes per subject are time-to-event data with a random

cluster size. The basic concept behind the development of our longitudinal and sur-

vival models is similar to that suggested by Barnhart et al. (1995, 1999).

1.6.4 Testing Whether Repeated Measured Biomarker Asso-

ciated with Time To Event

As described in the previous sections, a typical setup of the joint model is that the

longitudinal model and the survival model are linked via the shared random effects.

Based on the joint models, test statistic such as score test and Wald test are available

to investigate the relationship between the two outcomes. For example, Jacqmin-

Gadda et al. (2010) proposed a score test based on a joint model with latent classes

and shared random effects for testing the null hypothesis that the risk of an event

depends on the random effects from the longitudinal marker model in addition to the

latent classes.

However, the model-based testing procedures often raise questions regarding the

robustness against the model misspecifications. Either or both assumptions for the

longitudinal process and time to event may fail. In this dissertation, another objective

is to develop a nonparametric test statistic to determine whether a biomarker and a

time to event are associated without imposing parametric or semiparametric model

assumptions on the time to event.

1.7 Outline

The first two chapters of this dissertation is focused on developing a joint model ap-

proach to describe the relation of multiple menstrual lengths and time-to-pregnancy

(TTP). We assume the Clayton-Oakes model for the clustered menstrual cycle lengths
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and a complementary log-log link for the time-to-pregnancy. In the next chapter, we

develop a joint model where a parametric model is postulated in the Clayton-Oakes

model for menstrual cycle lengths and a complementary log-log link model is used for

TTP and a full likelihood specification is constructed to derive maximum likelihood

estimators. The proposed joint modeling method provides meaningful insights on the

reproductive health of women and demonstrates flexibility to accommodate trunca-

tion and censoring issues in the data. Standard errors are obtained via both likelihood

function and bootstrap procedure and the analytical form of the estimating equations

are also provided. Simulation studies are conducted to examine the estimators and

the performance of the proposed method.

Chapter 3 focuses on a more flexible modeling framework for both outcomes,

menstrual lengths and TTP. That is, we generalize the joint model approach proposed

in Chapter 1 to semiparametric models. Specifically, the marginal distributions in

the Clayton-Oakes model are left semiparametrically specified. An approximate EM

algorithm is developed to obtain the maximum likelihood estimators. Monte Carlo

simulations illustrate that the estimators from the joint model perform well for finite

samples. The proposed joint model and likelihood estimation approach are applied

to the MSSWOW data.

Although the likelihood method, i.e., EM algorithm, is often used and has been

demonstrated to perform well, it is also shown that this estimation procedure is com-

putationally demanding and uneasy to implement using existing software packages

in practice. In Chapter 4, we propose a two-stage method to obtain the parameter

estimates, which is computationally simpler. Simulation studies are conducted to

evaluate the performance of the two-stage method as well as to compare the rela-

tive efficiency of EM algorithm and two-stage approach. The results demonstrate

that the two-stage estimation method provide unbiased estimators and the loss of

efficiency is relatively small and offset by its simplicity. Under certain regularity con-
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ditions, we show that the estimators based on two-stage method are consistent and

asymptotically normal. Finally, the proposed approach is applied to the MSSWOW

data.

In Chapter 5, we develop a nonparametric test statistic to determine the rela-

tionship between a repeatedly measured quantitative biomarker and a subsequent

time-to-event process. A linear mixed model for repeated measures is used, but no

modeling assumptions such as proportional hazards on the time to event are imposed.

The proposed test statistic is shown to be asymptotically consistent and normally

distributed under both null and alternative hypotheses. The simulation studies show

that the nonparametric test statistic can perform well. We also apply the proposed

method to a real data from epidemiological study.

Chapter 6 provides a summary of the dissertation and plans for future research

work.
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Chapter 2

Joint Models with Marginal

Parametric Assumptions

2.1 Introduction

In many medical studies that involve clustered or longitudinal data, outcomes mea-

sured within a cluster (subject) along with cluster size (the number of the measure-

ments) are collected. For example, if outcomes per subject (cluster) generate multiple

measurements and the number of measurements, then a random cluster size is ob-

served. In this setting, the covariates (e.g., treatment or exposure to some risk) may

have influence on both outcomes from the subunits as well as the cluster size. This

type of data has been referred to as multivariate random length data by Barnhart

and Sampson (1995). These authors presented the National Heart, Lung and Blood

Institute (NHLBI) Type II Coronary Intervention study (Brensike et al., 1982, 1984)

where patients with Type II hyperlipoproteinemia and coronary heart disease were

randomly assigned to a treatment or a placebo group. The outcome measurements

of a patient’s angiograms consisted of vascular lesion sizes and the number of lesions.

The treatment may affect both the lesion sizes and the number of lesions through

some underlying mechanism. Another example of such data is described by Dunson

et al. (2003) in a rodent teratology study where fetal outcomes (e.g., fetal weight)

were measured for each subunit in a litter and the litter size may be associated with
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the fetal outcomes. If the dam is exposed to some developmental toxicant prior to

mating, the correlation between litter size and fetal weight will be affected by the

mechanism of action of the toxicant and random features of the dam and pregnancy.

In both of these examples, the outcomes measured on the subunits are continuous.

However, in some studies, the outcomes may take the form of survival times. For ex-

ample, one can consider a study where the outcome, time-to-death, is obtained from

subunits in a litter as in Dunson et al.’s manuscript. Challenging features of survival

data such as censoring and truncation can pose difficulties in directly applying the

models that have been developed for continuous data. In this dissertation, we con-

sider a reproductive study called the Mount Sinai Study of Women Office Workers

(MSSWOW) to motivate our research in a joint modeling framework for clustered

survival data with a random cluster size.

In the presence of random cluster size, it is important to jointly model the out-

comes and the cluster size to accommodate association between them rather than

simply assume independence or incorporate cluster size as a covariate. Barnhart and

Sampson (1995) proposed a general joint model for multivariate random length data

to depict the relationship between the quantitative variable observed from the subjects

and the random length of the vector. The distribution of observations within each

subject was assumed to follow a multivariate normal distribution with an exchange-

able correlations structure while the length of the multivariate data was modeled via

a generalized linear model. Both distributions depend on underlying parameters some

of which are common. Maximum likelihood estimation procedure was developed for

statistical inference. Later, Barnhart et al. (1999) extended this model to include ad-

ditional covariates in the model. Dunson et al. (2003) proposed a Bayesian framework

to jointly model the multivariate outcomes measured on each subunit and the random

cluster size. Their method utilized an underlying normal model for the subunit-level

outcomes and a generalized continuation ratio probit model for the cluster size. The
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relationship between the subunit-level outcomes and cluster size was captured by a

multivariate normal covariance structure and shared latent variables. For correlated

survival data, we postulate a similar structure as Barnhart and Simpson (1995) model

by modeling the survival data in terms of a Copula model. As previously mentioned,

our analysis is motivated by MSSWOW data which we describe below.

In the MSSWOW study, women were followed prospectively for one year for study-

ing fertility during which repeated measures of menstrual cycle length for each subject

was collected. Time-to-pregnancy (TTP) was recorded as the number of menstrual

cycles taken to conceive including the conception cycle. In the literature, statistical

models have been developed to investigate the potential covariate effects on men-

strual cycle lengths (e.g., Harlow and Zeger, 1991; Guo et al, 2006) without paying

much attention to the fact that subjects may get pregnant during the study period.

Similarly, the models have been proposed to investigate covariate effects on TTP

(e.g., Scheike and Jensen, 1997; Keiding et al., 2002) to study different risk factors

for women’s fertility without considerations of repeated menstrual lengths that oc-

curred prior to pregnancy. In many reproductive studies, measurements of menstrual

lengths are recorded until time to pregnancy or the end of the study. Since both

menstrual lengths and TTP are good indicators of reproductive health (Baird et al.,

1986; Weinberg et al., 1989; Harlow and Zeger, 1991; Florack et al., 1994; Jensen et

al., 1999; Dunson et al., 2002; Scheike and Keiding, 2006), it is of interest to evaluate

the effects of covariates on both outcomes (menstrual lengths and TTP) as well as the

relationship between the two outcomes. We treat the repeated continuous measure-

ments of menstrual lengths and the end time outcome as clustered outcomes where

the cluster size is a random variable. Specifically, when a women gets pregnant and

hence is no longer at risk of menstrual bleeding, the menstrual cycle length at the

conception cycle cannot be observed. If a subject does not conceive at the end of

the study, i.e., the subject’s TTP is censored, the remaining menstrual cycle lengths
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until pregnancy are missing. Likewise, due to some subjects have been trying to get

pregnant before entering the study, TTP is left-truncated and menstrual lengths be-

fore entry are also missing. To accommodate these complications, we propose a joint

model method, under which, repeated menstrual cycle lengths are assumed to follow

the Clayton-Oakes model (Clayton, 1978; Oakes, 1989) of a size of TTP, denoted by

T , while T is modeled via a discrete time hazard model (Scheike and Jensen, 1997).

The Clayton-Oakes model is a very flexible type of copula models for multivari-

ate failure time data because it allows to specify arbitrary marginal distributions

whiles incorporating the intracluster dependence. Previous work (Harlow and Zeger,

1991; Guo et al., 2006), as well as the histogram of our data suggest the need to

address skewness of the distribution of menstrual lengths. By recognizing the log-

linear interpretation of Weibull distribution, we assume the marginal distribution of

the menstrual lengths as Weibull distribution. One approach for modeling discrete

failure time is to use a grouped version of the usual continuous time proportional

hazard model (Kalbfleisch and Prentice, 2002). This discrete survival model is conve-

nient to specify and it retains an interpretation in terms of the proportional hazards

assumptions with the underlying continuous time.

This chapter is organized as follows. First, we present the joint models for the

clustered survival data with a random cluster size. Model is parameterized based

on the motivation of MSSWOW study. A maximum likelihood-based procedure is

developed to estimate the covariate effects on both menstrual cycle lengths and TTP

as well as within-subject association of menstrual cycle lengths. In addition, our

method appropriately handles missing and censoring menstrual lengths and also well

accommodates censoring and left truncation that occurs in the pregnancy outcome.

Simulation studies are conducted to evaluate the performance of the proposed method.

Finally we apply our method to MSSWOW data.
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2.2 The Model

2.2.1 Notation

Suppose that we have m subjects (or clusters). Let Ti represent the underlying ran-

dom cluster size for the i-th subject. In this dissertation, we focus on the case where

Ti is a discrete survival time, but the modeling approach can be extended to other

discrete distributions. Conditional on Ti = ti, the corresponding observable clustered

outcome for the subject i is a ti-dimensional vector denoted by Yi = (Yi1, Yi2, ..., Yiti)
′.

Note that in the MSSWOW data, since the subjects are not at risk for menstrual

bleeding if conception occurs, which results in the menstrual length is inherently

missing at the conception cycle, the clustered response vector has a dimension of

time-to-pregnancy minus 1 due to the inherent missingness of menstrual cycle lengths.

Therefore, Ti = ti denotes the time-to-pregnancy after ti observed menstrual cycles.

As a time-to-event variable, the cluster size Ti involves truncation and censoring

issues. Let Li denote the left truncation variable and Ci be the right censoring time,

which is assumed to be independent of Ti. Conditioning on that Ti ≥ Li, the observed

data for the i-th subject on the discrete time-to-event process Ti consists of (T̃i,∆i),

where T̃i = min(Ti, Ci) and ∆i = I(Ti ≤ Ci) is the censoring indicator. In addition,

a p-dimensional covariate vector Xi is collected for each subject, which can affect

both the clustered outcome and the cluster size. Thus, the observed data comprises

the set {Yi, T̃i,∆i,Xi; i = 1, ...,m}. Throughout this chapter, the upper-case letters

represent random variables and we use lower-case letters for their realizations.

To construct a joint model, the joint distribution fY,T of (Yi, Ti) given covariates

Xi is factorized by the conditional distribution of Yi|Ti and the marginal distribution

of Ti as

fY,T (yi, ti|Xi;π) = fY|T (yi|ti,Xi;ω)fT (ti|Xi;υ)

where π = (ω,υ) represents the parameter vector in the joint distribution and ω and
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ε are the parameter vectors for fY|T and fT , respectively.

2.2.2 General Framework

First, we define the marginal model for the cluster size Ti. We assume that the hazard

rate of the discrete time-to-event Ti λ(ti|Xi) has a discrete hazard model as

λ(ti|Xi; ξ) = Pr{Ti = ti|Ti ≥ ti,Xi} = ν(α(ti) + ξXi) (2.1)

where ν(·) is a known function, ξ is a set of regression coefficients associated with

covariates Xi and the scalar parameter α(ti) represents the baseline hazard rate asso-

ciated with ti. A particular link function of ν(·) is the complementary log-log (CLL)

function which is equivalent to the Cox regression model for continuous failure time.

Other link functions include the logistic model and log linear model etc.

The clustered outcome is assumed to follow some copula model. Copula families

are often used to construct statistical models. An important family of copula func-

tions is known as the Archimedean copulas. Conditional on Ti = ti, Yi is assumed to

follow an Archimedean copula model (Nelsen, 1999):

SJ(yi|Ti = ti,Xi;β) = Pr{Yi1 > yi1, ..., Yiti > yiti |Ti = ti,Xi;β}

= CA (S(yi1|Xi;β), ..., S(yiti |Xi;β)) (2.2)

where the subscript J indicates that this is a joint survival function and CA is the

Archimedean copula function that can be written in the form of

CA(u1, ..., uti) = ϕ(ϕ−1(u1) + · · ·+ ϕ−1(uti)), uj ∈ [0, 1], j = 1, ..., ti

for some generator function ϕ and its generalized inverse ϕ−1 that satisfy:

1. ϕ(0) = 1 and limx→∞ ϕ(x) = 0.

2. ϕ is continuous and strictly decreasing on [0, ϕ−1(0)].

3. ϕ−1 is given by ϕ−1(x) = inf{u : ϕ(u) ≤ x}.

β is a vector of regression parameters for covariates Xi and S(yij|Xi;β) is either a
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parametric or semi-parametric marginal survival distribution of the j-th cycle for the

i-th subject.

In addition to investigating the covariate effects on both outcomes, it is of im-

portance to understand the association between the processes. For example, in the

MSSWOW study, the outcome data consist of repeated menstrual cycle lengths with

cluster size measured by time-to-pregnancy (TTP), i.e., the number of menstrual cy-

cles taken to get pregnant. It is well known both menstrual lengths and TTP are key

indicators of women’s reproductive health. Risk factors such as age and smoking were

assessed for both responses. At the same time, the interest also lies in understanding

the association between the process of occurrence of menstrual lengths and conse-

quent pregnancy outcome. We introduce shared parameters are imposed in model

(2.1) and (2.2) to quantitatively describe the relationship between the clustered out-

come and the cluster size (Barnhart and Sampson, 1995; Dunson et al., 2003). In

particular, we assume that ξ = γβ where the regression parameters β are common in

both models which indicate that the covariates may affect both the clustered outcome

and its cluster size and γ is a scalar that evaluates the effects of the clustered response

on the cluster size as well as acts as a scaling parameter providing different influences

of the covariates on the distribution of both responses.

2.2.3 The Model Specification

Following Scheike and Jensen’s work (1997), we adopt the complementary log-log

link for ν(·) in model (2.1), so the hazard rate of the cluster size variable λ(ti) has a

time-to-event submodel as

λ(ti|Xi; γ,β) = 1− exp[− exp(α(ti) + γXiβ)]. (2.3)

Although logit link is more common in practice, this model is more appropriate

for discrete survival data in terms of retaining the continuous proportional hazard
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model interpretation (Kalbfleish and Prentice, 2002).

To understand the within-cluster association, we assume that the menstrual cycle

lengths denoted by Yi = (Yi1, Yi2, ..., Yiti)
′ follow a special type of Archimedean copula

known as the Clayton-Oakes model (Clayton 1978, Oakes 1989):

SJ(yi|Ti = ti,Xi;β) = Pr{Yi1 > yi1, ..., Yiti > yiti |Ti = ti,Xi;β} =

 ti∑
j=1

S(yij |Xi;β)−θ − ti + 1

− 1
θ

(2.4)

where S(yij|Xi;β) is the marginal survival model with covariates Xi and regression

parameters β and θ > 0 depicts the association between any two clustered responses.

The association between any two clustered measurements is assumed to be the same.

When θ approaches to 0, the observations within the same subject are independent

and thus the joint survival function is simply the product of the marginal survival

functions. As θ → +∞, the joint survival function converges to its upper Frechet

bound and SJ(yi|Ti = ti,Xi) = min{S(yij|Xi), j = 1, ..., ti}. The dependence param-

eter θ is related to Kendall’s (1962) coefficient of concordance known as the Kendall’s

τ which can be expressed as τ = θ/(θ + 2).

Furthermore, we assume that the marginal distribution of the clustered survival data

follows a Weibull distribution. Compared to other parametric models, it is very flex-

ible with regards to the assumptions on the hazard rate as well as the description of

the tail shape. This is particulary useful for the menstrual cycle lengths because it

is well known that the distribution of menstrual lengths is skewed with a long right

tail. In addition, Weibull distribution is the only parametric survival model which

can be represented as both a proportional hazard model and an accelerated failure

time model. Specifically, the survival function of the Weibull distribution for Yij is

given by

SY (yij) = exp(−µkijykij)

where k and µ represent the shape parameter and the scale parameter, respectively.
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Taking the logarithm of time Yij, the Vij = log Yij has a survival function as

SV (vij) = exp(−µkij exp(kvij)).

To incorporate the covariates Xi, we define the scale parameter as µ = exp(−(β0 +

Xiβ)). Then it follows that log-transformed survival time has a linear relationship

with the covariates as

Vij = log Yij = −1

k
log µkij +

1

k
eij = β0 + Xiβ +

1

k
eij

where eij has the extreme value distribution with probability density function f(w) =

exp(w − exp(w)),−∞ < w < ∞. Similar to linear models, this model has the

interpretation that with one unit increase in the covariate Xib, b = 1, ..., p, the average

logarithm of Yij will increase or decrease by absolute value of βib.

Then we rewrite the Clayton-Oakes model with the marginal survival model as

above as

SJ(yi|Ti = ti,Xi;β) =

[
ti∑
j=1

exp
(
θykij exp(−k(β0 + Xiβ))

)
− ti + 1

]− 1
θ

. (2.5)

Combining (2.3) and (2.4), the joint model for the clustered measures Yi and the

random cluster size Ti is constructed as

Pr(Yi1 > yi1, ..., Yiti > yiti , Ti = ti|Xi;π) =

 ti∑
j=1

S(yij |Xi;β)−θ − ti + 1

− 1
θ

Pr{Ti = ti|Xi; γ,β},

(2.6)

where π = (θ,β, γ,α) is the parameter space for the joint model and S(yij|Xi;β) =

exp
(
−ykij exp(−k(β0 + Xiβ))

)
is the marginal Weibull model and Pr{Ti = ti|Xi; γ,β}

is written in terms of a discrete hazard with complementary log-log link. Based on

joint model (2.6), the joint density function fY,T (yi, ti|Xi;π) can be written as:
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fY,T (yi, ti|Xi;π)

=

ti∏
i=1

((j − 1)θ + 1)f(yij |Xi;β)S(yij |Xi;β)−θ ·

 ti∑
j=1

S(yij |Xi;β)−θ − ti + 1

− 1
θ
−ti+1

Pr{Ti = ti|Xi; γ,β}

where f(yij|Xi;β) and S(yij|Xi;β) are the probability density function and survival

function of Weibull distribution. Note that the above models has some good prop-

erties. First, zero cluster size is allowed for some subjects. That is, no quantitative

measurements of clustered outcome are observed for a subject. In our example of

MSSWOW data, some women may get pregnant at the first menstrual cycle. In this

case, no measurements of menstrual cycle lengths are observed, which results in a

cluster size of zero. Second, the random cluster size can take either any non-negative

integer value or non-negative integer up to some known value Tmax < ∞. Third, a

stochastic ordering property has been imposed in the joint model by specifying the

shared parameters, which can describe the association between the clustered mea-

surements and the cluster size response. Specifically, the discrete hazard function

λ(z) with the complementary log-log link in model (2.3) is stochastically increasing

in z. This implies that for a covariate Xib, b = 1, ..., p, when the scaling parameter

γ > 0, the larger the value of βbXib is, the more likely a larger TTP would be ob-

served as well as a longer menstrual cycle length, and vice versa for γ < 0. In other

words, γ depicts the relationship between the clustered response and the cluster size.

If Xiβ is seen as the estimate of the centered mean of clustered measurements, γ > 0

implies that with greater measure of clustered outcome, we will observe a greater

risk of having an event in the survival cluster size and vice versa. When γ equals to

zero, TTP and menstrual cycle lengths are not associated. In addition, the multivari-

ate distribution of the clustered measurements is invariant under permutation of its

components because of the summation form of the Clayton-Oakes model. Another

important feature of the model is that the submodel of the Clayton-Oakes model

maintains the same form as the full model assuming that the marginal distributions
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are correctly specified. This is particularly attractive if some repeated measurements

are missing. Note that it is possible to have different covariate effects in the models

by simply adding covariates to either or both models without imposing the shared

regression coefficients.

2.3 Parameter Estimation

2.3.1 Maximum Likelihood Estimators

Suppose the observed data for the i-th subject of {Yi, Ti,Xi, Li, ηij} is {yi, ti,xi, li, ηij}.

The likelihood based on the joint model (2.5) has two components including a part

consisting discrete survival model (2.3) and a part from the Clayton-Oakes model

(2.4). The likelihood contribution from model (2.3) is straightforward. Specifically,

conditioning on the left truncation Li = li, the likelihood contribution from the ob-

served cluster size data based on model (2.3) is (see details in Appendix I)

ti∏
j=li+1

[
λ(j|Xi)

1− λ(j|Xi)

]ηij
(1− λ(j|Xi)) =

ti∏
j=li+1

[
1− exp(− exp(α(j) + γXiβ))

exp(− exp(α(j) + γXiβ))

]ηij
exp(− exp(α(j) + γXiβ)).

where ηij = 1 if the i-th subject experienced an event at the j-th discrete time point

and 0 otherwise. However, in order to write the likelihood contribution from model

(2.4), we need to consider several different scenarios. First, for an individual who

has an event at time ti during the study period, the observed clustered response is

complete, i.e., Yi = (Yi1, ..., Yiti)
′ given that Ti = ti. Second, if a subject is censored

during the study and the underlying time-to-event is Ti > ti, we can only observe

Yi = (Yi1, ..., Yiti)
′ but the future observations until the actual time-to-event are

missing. Additionally, some subjects may have delayed entry to the study. That is, the

time-to-event for those subjects are left-truncated at some point li in this case. The

clustered response before entry is also missing and the observable outcome becomes

Yi = (Yi,li+1, Yi,li+2, ..., Yiti)
′. Under the assumption of missing at random (MAR) and

the marginal distributions are correctly specified, we can integrate out those missing
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data to derive the submodel of the observed data. Let fJ(yi1, ..., yiti) denote the full

joint distribution of the clustered outcome contributed by some woman. Without

loss of generality, we assume that the j-th observation yj is missing from the vector

yi = (yi1, ..., yiti) due to left truncation or right censoring. It can be easily shown that

the joint distribution for the observed data y∗i = (yi1, ..., yi,j−1, yi,j+1, ..., yiti) has the

same form of the full data model. Further, we can show that if we assume that the

clustered outcome is missing at random, the estimating functions of the parameters

based on the observed data are unbiased (See Appendix II). Therefore, if some cluster

size values are censored or truncated, the likelihood contribution from the Clayton-

Oakes model can still be expressed as:

ti−1∏
j=li+1

[
((j − li − 1)θ + 1) · k · exp(−k(β0 + Xiβ)) · yk−1

ij · exp(θykij exp(−k(β0 + Xiβ)))
]

×

 ti−1∑
j=li+1

exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)

− 1
θ
−(ti−li−1)

where li is the left truncation point and ti is the observed time-to-event. Conse-

quently, the log-likelihood from the i-th subject based on the joint model (2.5) can

be expressed as

l(π; yi, ti|Ti > li) =

ti−1∑
j=li+1

log((j − li − 1)θ + 1) + (k − 1) log yij + log k − k(β0 + Xiβ)

+ θ exp(−k(β0 + Xiβ))ykij

−
(

1

θ
+ ti − li − 1

)
log

 ti−1∑
j=li+1

exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)


+

ti∑
j=li+1

{ηij log [1− exp(− exp(αj + γxiβ))]− (1− ηij) exp(αj + γxiβ)} . (2.7)

The maximum likelihood estimators can be obtained by solving the score functions

U(π = ∂l(π)/∂π based on the log likelihood function (2.6) (Details can be found in

Appendix III).
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2.3.2 Estimation of Standard Errors

The variance-covariance matrix of the estimator π̂ = (θ̂, β̂, γ̂, α̂) can be obtained

by taking the second derivative of the log likelihood function (2.6), i.e., the Hes-

sian matrix. However, the analytical expression for the variance-covariance matrix

is very complex due to the complicated form of the likelihood function. Hence, we

use a bootstrap method to obtain the standard errors of our parameter estimators.

Specifically, random samples are selected with replacement from the observed data

{yi, ti,xi, li, ηij}, i = 1, ...,m; j = 1, ..., ni (Efron and Tibshirani, 1993). For each ran-

dom sample, estimates of parameters are calculated and the standard errors of these

estimates are calculated as the bootstrap standard error estimators. The confidence

intervals for the parameters can be constructed using the asymptotic normality prop-

erty of the estimators.

2.4 Simulation Studies

To evaluate the performance of the joint modeling procedure, we conduct simulation

studies in different settings. Five hundred replicates are performed for each setting

of parameters. Similar to MSSWOW study, we first generate the random cluster size

with a maximum cluster size of 12. That is, an administrative censoring time of 12

is imposed on the cluster size. For simplicity, a common baseline hazard of having

an event at each cycle is assumed. In terms of covariates, we consider a categorical

predictor with two groups and a continuous factor in the model, denoted by X1 and

X2, respectively. Therefore, the cluster size for the i-th subject follows the model

λ(ti|Xi) = 1− exp[− exp(α + γ(β1X1i + β2X2i))]

where γβ1 and γβ2 are the regression coefficients for the random cluster size after

adjusting for the repeatedly measured clustered data and different values of α will

give different percentages of censoring. If a subject has an event at time t, the
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corresponding clustered data will have a cluster size of t− 1. If a subject is censored

at time t, the vector of clustered observations will have a cluster size of t. Given the

cluster size of ti, the clustered observations are simulated as

yij =

[
− log(Sij)

exp(−k(β0 + β1X1i + β2X2i))

] 1
k

where k is the shape parameter, β0 is the intercept, β1 and β2 are the covariate effects,

and Sij ∈ (0, 1) is a marginal survival function from the Clayton-Oakes model with a

dependence parameter θ, which can be obtained from the following algorithm. The

generator function ϕ and its inverse ϕ−1 of the Archimedean copulas is known to be

the Laplace transform of some positive random variable (Marshall and Olkin 1988;

Frees and Valdez 1998), which is often referred to as frailty. For the Clayton-Oakes

model, this frailty follows a gamma distribution. Let ζ be a realization of the frailty

and υ1, ..., υt is a vector of independent observations from uniform distribution [0, 1].

Then µi = ϕ−1(−ζ−1 log υi), i = 1, ..., t is a realization form the Archimedean copula

with generator ϕ and frailty ζ.

Each dataset is analyzed using the maximum likelihood procedure described in

Section 3. The results from the simulation study are summarized in Table 1. The

simulation study illustrates that the maximum likelihood estimators perform very well

even when clustered outcomes are highly correlated or the percentage of censoring

increases.

2.5 MSSWOW Data

In the MSSWOW study, 470 women, aged from 19 to 41, from 41 companies were

followed for up to one year until a clinical pregnancy and a total of 3689 menstrual

cycles were obtained. Of those participants, 179 (38.1%) of them got pregnant at the

end of the study. Several risk factors are identified from MSSWOW study including

age, smoking, BMI and unsafe sex etc. Previous findings have shown that menstrual
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Table 2.1. Simulation Studies with 500 Replicates, Sample Size m = 400

Scenarios Association1 True Bias SE2 SE3 95% CP3

Right Censoring: τ = 0.2 β1 0.3 -0.0007 0.0202 0.0325 0.94

20% of subjects β2 0.5 0.0005 0.0255 0.0354 0.93

are censored. γ 4.0 -0.0281 0.3729 0.4253 0.94

θ 0.5 0.0056 0.0479 0.0694 0.94

τ = 0.5 β1 0.3 -0.0002 0.0191 0.0299 0.96

β2 0.5 0.0003 0.0247 0.0364 0.96

γ 4.0 -0.0392 0.3720 0.4245 0.92

θ 2.0 0.0037 0.1574 0.1687 0.94

τ = 0.8 β1 0.3 -0.0007 0.0182 0.0248 0.95

β2 0.5 0.0019 0.0233 0.0311 0.95

γ 4.0 -0.0425 0.3639 0.3947 0.93

θ 8.0 0.0022 0.3594 0.5802 0.92

1 The association among clustered data is represented by Kendall’s τ .

2 This is the Monte Carlo standard error based on the simulations.

3 The standard error is based on the bootstrap sampling.

4 CP stands for the coverage probability.
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cycle lengths varies in different age groups as well the risk of getting pregnant (Guo et

al., 2006; Small et al., 2006). In MSSWOW data, four age groups, 19-25, 26-30, 31-35

and 36-41, are considered and the last group is set as the reference group. Descriptive

statistics of the data are summarized in Table 2. The menstrual cycle lengths decrease

when women get older. Women between age 31 and 35 had the highest conception

rate. Figure 1 (Small et al., 2006) provides the unadjusted fertility in relation to cycle

length of the previous menstrual cycle. On average, a moderate cycle length between

30 and 31 is associated with the highest probability of conception. Either shorter

or longer cycle lengths may reduce the chance of getting pregnant. Figure 2 shows

hazard rate of getting pregnant for each age group at each cycle.

Table 2.2. Summary of Descriptive Statistics of MSSWOW Data (m=470)

Age Group N Obs Mean MCLs Mean TTP Pregnancy (%)

Age group 19-25 65 29.40 8.48 35.38

Age group 26-30 157 28.85 7.78 41.40

Age group 31-35 157 28.62 9.00 43.31

Age group 36-41 91 26.41 10.78 25.27

The results shown in Table 3 indicate that age group has significant impacts on

both TTP and menstrual cycle lengths. Women aged between 31 and 35 had the

highest probability of conception. In general, menstrual cycle lengths increase with

the increasing of age at first but decrease at age group between 36 and 41. This result

is consistent with that from Guo et al. (2006). A significant correlation is found

among menstrual cycle lengths with a Kendall’s tau of 0.208. Note that the number

of unsafe sex is not added to the menstrual cycle length model but only considered

in TTP model due to the meaningful interpretation. As expected, the results show

that the number of unsafe sex has significant impacts on TTP (p < .001). To further
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Figure 2.1. Unadjusted relationship of cycle length and risk of getting pregnant.
Vertical bar represents the proportion of cycles within each cycle length category
prior to pregnancy standard error bars are also given in the plot. (Source: Small
et al., 2006, Epidemiology)

Figure 2.2. Estimated Hazard Rate of Pregnancy for Each Age Group
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investigate the relationship between menstrual cycle lengths and TTP, we assume a

common scaling parameter γ in the model and only consider the four age groups as the

covaraites so that the regression coefficients β1b, b = 1, 2, 3 represents the estimated

difference of menstrual cycle lengths between different age groups. Table 3 shows that

menstrual cycle length has a significant influence on TTP (p = 0.025). Specifically,

the estimated γ is positive, indicating that the longer the menstrual cycle lengths

are, the risk of getting pregnant gets higher. Figure 1 displays the pregnancy rate for

each group accounting for the impact of baseline hazard and menstrual cycle lengths.

Table 2.3. Analysis of MSSWOW Data (m=470)

Model Effects Estimates SE P-value

Joint Model Intercept β0 3.339 0.013 <.001

Age group 19-25 β11 0.117 0.019 <.001

Age group 26-30 β12 0.126 0.006 <.001

Age group 31-35 β13 0.181 0.014 <.001

Age group 36-41 - - - -

Baseline for TTP:≤2 α1 -3.406 0.268 <.001

Baseline for TTP:3 ∼ 8 α2 -3.533 0.213 <.001

Baseline for TTP:=9 α3 -4.750 0.600 <.001

Baseline for TTP:10 ∼ 12 α4 -3.180 0.243 <.001

Baseline for TTP:≥13 α5 -3.934 0.222 <.001

Scaling parameter γ 2.850 1.272 0.025

Unsafe Sex β4 0.078 0.010 <.001

Association among Association θ 0.526 0.032 <.001

Cycle Lengths Kendall’s tau τ 0.208 - -

Shape κ 2.521 0.053 <.001
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2.6 Remarks

In this chapter, we have proposed a joint modeling framework for the analysis of

clustered data with a random cluster size where the clustered data was modeled

via a Clayton-Oakes model and the random cluster size was treated as a discrete

survival time that was assumed to follow a complementary log-log hazard function.

Particularly, we imposed the parametric Weibull assumption for the Clayton-Oakes

model as the marginal model. Maximum likelihood estimators are obtained based on

the fully parametric specification of the model.

In the application to MSSWOW data, we found that the association between

women’s menstrual cycle lengths is significant. The menstrual cycle lengths have

significant influence on the risk of getting pregnant, i.e., time-to-pregnancy (TTP).

However, we can see that the inference based on the joint model is slightly different

from what we observed in the data. This might imply that the Weibull model does

not fit the data very well. In next chapter, we will relax this parametric assumption

and use more generalized semi-parametric models.
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Appendix I: Probability Mass Function of TTP

For the i-th subject, the probability of observed TTP Ti = ti conditioning on Ti > li

is

Pr{Ti = ti|Ti > li,Xi} =
[
Pr{T̃i = ti|T̃i > li,Xi}

]ηi [
Pr{T̃i > ti|T̃i > li,Xi}

]1−ηi

=

[
Pr{T̃i = ti + li|Xi}
Pr{T̃i > li|Xi}

]ηi [
Pr{T̃i > ti + li|Xi}
Pr{T̃i > li|Xi}

]1−ηi

=

[
λ(ti|Xi)

∏ti−1
j=1 (1− λ(j|Xi))∏li

j=1(1− λ(j|Xi))

]ηi [∏ti
j=1(1− λ(j|Xi))∏li
j=1(1− λ(j|Xi))

]1−ηi

=

[
λ(ti + li|Xi)

1− λ(ti + li|Xi)

]ηi ti+li∏
j=li+1

(1− λ(j|Xi))

=

ti∏
j=li+1

[
λ(j|Xi)

1− λ(j|Xi)

]ηij
(1− λ(j|Xi))

=

ti∏
j=li+1

[
1− exp(− exp(α(j) + γXiβ))

exp(− exp(α(j) + γXiβ))

]ηij
exp(− exp(α(j) + γXiβ)).
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Appendix II: Unbiasness of the Estimating Equa-

tion

Since we assume the longitudinal survival outcome suffers from the missing issue, we

only need to consider the likelihood contribution from the clustered survival data.

Given cluster size T̃i = N , the complete clustered survival data for the i-th subject

is Yi(all) = (yi1, ..., yi,N−1) where N − 1 is the largest possible cluster size. Denote

the corresponding missing data indicator vector by Mi = (mi1, ...,mi,N−1) where

mij = 1, j = 1, ..., N − 1 if yij is observed and 0 if missing. The observed data is

denoted by Yi(obs) and Yi(mis) represents the missing data. Under the assumption of

missing at random (MAR), the joint distribution of Yi(obs) and Mi can be written as

f(yi(obs),Mi|π,φ) = f(yi(obs)|π)f(Mi|φ).

For our proposed model, we make the following assumptions with regards to the miss-

ing mechanism of the clustered survival time:

Assumption 1. The cluster survival times are missing at random. That is, the prob-

ability of missingness may be related to the observed data but not depend on the

missing values.

Assumption 2. The missingness does not depend on covariates so that π and φ are

distinct.

Let Ui(π; yi(obs)) denote the score function of the observed clustered survival data

contributed by the i-th subject. If the marginal models are correctly specified, then

we have the following results under Assumptions 1 and 2:

E
(
Ui(π; yi(obs))

)
=

∫
yi

∫
Mi

Ui(π; yi(obs)f(yi(obs),Mi|π,φ)dMidyi

=

∫
yi(obs)

Ui(π; yi(obs)

{∫
yi(mis)

∫
Mi

f(yi(obs),Mi|π,φ)dMidyi(mis)

}
dyi(obs)

=

∫
yi(obs)

Ui(π; yi(obs)f(yi(obs)|π)dyi(obs)

= 0.

Therefore, we have proved that the score function is unbiased as long as MAR

holds and the marginal density is correct. Moreover, inference for π based on the
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score function Ui(π; yi(obs)) is the same as that from the full data score function

Ui(π; yi(all)). In other words, the maximum likelihood estimators by ignoring the

missing data are efficient. If assumption 2 is not true, i.e., distinctness of π and φ

does not hold, we can still obtain unbiasedness of the estimating function. However,

the estimators are not fully efficient since we ignore the missingness which has con-

tribution to the estimation of π.
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Appendix III: Estimating Equations

θ :

m∑
i=1

ti−1∑
j=li+1

[
j − li − 1

(j − li − 1)θ + 1
+ exp(−k(β0 + Xiβ))ykij

]

+
m∑
i=1

1

θ2
log

 ti∑
j=li+1

exp
(
θykij exp(−k(β0 + Xiβ))

)
− (ti − li − 2)


−

m∑
i=1

(
1

θ
+ ti − li − 1

) ∑ti−1
j=li+1 y

k
ij exp(−k(β0 + Xiβ)) exp(θykij exp(−k(β0 + Xiβ)))∑ti−1

j=li+1 exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)
= 0

k :
m∑
i=1

(
log yij +

1

k
− xiβ

)
+

m∑
i=1

ti−1∑
j=li+1

θxiβ exp(−k(β0 + Xiβ))ykij + θykij log yij exp(−k(β0 + Xiβ))

−
m∑
i=1

(
1

θ
+ ti − li − 1

) ∑ti−1
j=li+1 θy

k
ij exp(−k(β0 + Xiβ))(log yij − xiβ) exp(θykij exp(−k(β0 + Xiβ)))∑ti−1

j=li+1 exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)
= 0

αj :

m∑
i=1

ηij
exp(αj + γxiβ) exp(− exp(αj + γxiβ))

1− exp(− exp(αj + γxiβ))
−

m∑
i=1

(1− ηij) exp(αj + γxiβ) = 0

γ :
m∑
i=1

ti∑
j=li+1

ηij
xiβ exp(αj + γxiβ) exp(− exp(αj + γxiβ))

1− exp(− exp(αj + γxiβ))

−
m∑
i=1

ti∑
j=li+1

(1− ηij)xiβ exp(αj + γxiβ) = 0

β0 :−
m∑
i=1

ti−1∑
j=li+1

{
k + kθykij exp(−k(β0 + Xiβ))

}

+

m∑
i=1

(
1

θ
+ ti − li − 1

) ∑ti−1
j=li+1 kθy

k
ij exp(−k(β0 + Xiβ)) exp(θykij exp(−k(β0 + Xiβ)))∑ti−1

j=li+1 exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)

βb :−
m∑
i=1

ti−1∑
j=li+1

{
kxib + kθxiby

k
ij exp(−k(β0 + Xiβ))

}

+

m∑
i=1

(
1

θ
+ ti − li − 1

) ∑ti−1
j=li+1 kxibθy

k
ij exp(−k(β0 + Xiβ)) exp(θykij exp(−k(β0 + Xiβ)))∑ti−1

j=li+1 exp(θykij exp(−k(β0 + Xiβ)))− (ti − li − 2)

+

m∑
i=1

ti∑
j=li+1

[
ηij

γbxib exp(αj + γxiβ) exp(− exp(αj + γxiβ))

1− exp(− exp(αj + γxiβ))
− (1− ηij)xibγb exp(αj + γxiβ)

]
= 0

where b = 1, . . . , p is the b-th parameter and xib is the b-th covariate for subject i.
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Chapter 3

Semiparametric Joint Models

3.1 Introduction

There has been extensive literature for the analysis of correlated data with different

types of outcomes including continuous, ordinal and survival outcomes etc. (Laird

and Ware, 1982; Cai and Prentice, 1995; Liang and Zeger, 1995). In such liter-

ature, multiple measurements from each subject are correlated and the number of

these measurements is treated as fixed. When the number of measurements is a ran-

dom variable and may be an outcome of interest, joint models with random effects

have been considered to model longitudinal measurements and the number of mea-

surements. These joint models aim to determine the influence of covariates on both

outcomes, the within-subject correlation as well as the association between the two

outcomes (Hogan and Laird, 1997; Dunson et al., 2003). Alternatively, Barnhart and

Sampson (1995) described this type of data as random length data where a vector of

observations is collected for each subject and the length of the vector is also a random

variable. They considered a multivariate normal distribution for the correlated out-

comes and the marginal distributions are parameterized in terms of treatment effects.

In addition, the treatment effects are modified by a scalar to reflect the influence

of the treatment on the distribution of the random length, which is modeled via a

generalized linear model.
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In this Chapter, we study the modeling approach as in Barnhart and Sampson

(1995), but we consider the copula model for repeated measures to relax the mul-

tivariate normality assumption and the distribution of the length of the vector is

specified via a generalized linear model. Our work is motivated by a reproductive

study called the Mount Sinai Study of Women Office Workers (MSSWOW). In this

study, women were followed prospectively for one year in order to study fertility until

a clinical pregnancy or the end of the study. Multiple measures of menstrual cy-

cle lengths (MCLs) for each subject were observed. Time-to-pregnancy (TTP) was

defined as the number of menstrual cycles taken to conceive excluding the concep-

tion cycle (when a woman gets pregnant and hence is no longer at risk of menstrual

bleeding, MCL at the conception cycle cannot be observed). Therefore, it is natural

to view MCL collected from the first conception attempt to conception as a vector

containing multiple measurements of MCL with random vector length equal to TTP.

As in many other epidemiologic studies, several complicated issues have been raised

by MSSWOW study. First, there is evidence showing that the MCL data have a long

right tail and therefore a normal distribution is not adequate (Harlow and Zeger,

1991; Murphy et al., 1995; Harlow et al., 2000; Guo et al., 2006). Second, when a

subject does not conceive at the end of the study, the subject’s TTP is censored and

the remaining MCLs until pregnancy are missing. Third, since some subjects were

trying to get pregnant before entering the study, TTP is left-truncated and MCLs

before entry are also missing.

Recently, McLain et al. (2012) considered a Bayesian framework for modeling

MCL and TTP simultaneously. They used a mixture of normal and Weibull (or

extreme-value) distribution to handle the skewness of the distribution of MCLs. How-

ever, with skewed continuous outcomes, parametric method with mixture distribu-

tions imposes computational difficulties and raises questions about the robustness

of inference to its assumptions; therefore, more flexible semiparametric modeling is
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desired. This motivates us to specify the marginal distribution of MCLs via a general

class of semiparametric transformation model (Zeng and Lin, 2007; Chen and Yu,

2012), which includes proportional hazards model and proportional odds model as

two special cases.

We consider a joint model where the repeated measurements are assumed to follow

a special type of copula model known as the Clayton-Oakes model (Clayton, 1978;

Oakes, 1989) and the marginal distribution of the Clayton-Oakes model follows the

semiparametric transformation model. Furthermore, the length of the vector, which

corresponds to TTP, is modeled via a discrete time hazard model (Scheike and Jensen,

1997). This discrete survival model can be expressed as a complementary log-log link

model and retains an interpretation in terms of the underlying proportional hazards

for grouped data (Kalbfleisch and Prentice, 2002). To understand the relationship

between multiple measurements and the random length (e.g., MCL and TTP), shared

parameters are imposed on both the Clayton-Oakes model and the discrete survival

time model. Glidden and Self (1999) proposed a semiparametric estimation approach

for the Clayton-Oakes model, when the vector length is fixed and the marginal distri-

bution follows a proportional hazards model. We adopt a similar estimation method,

but in our case we propose a shared-parameter joint model, assuming a more gen-

eral specification for the marginal distributions and a generalized linear model with

a complementary log-log link function for the random length.

In Section 2, we describe our joint modeling framework and marginal model spec-

ification as well as properties of the model. Due to the semiparametric nature of the

model specification, direct maximum likelihood estimators are not available. Section

3 proposes an approximate EM-algorithm to derive generalized maximum likelihood

estimators for the parameters in the joint model. In Section 4, we conduct general

simulation studies to evaluate the performance of the proposed method. We apply

our method to the MSSWOW study in Section 5.
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3.2 The Models

Suppose that we have m subjects. Let i index the subject and j index the mea-

surement for each subject. Let Yi = (Yi1, Yi2, ..., YiNi)
′ denote a vector of multiple

measurements on a quantitative variable with a random length Ni for the i-th sub-

ject, i = 1, ...,m. In addition, a p-dimensional covariate vector Xi is collected for

each subject which may affect both the repeatedly measured outcome and the ran-

dom length. The joint model is based on the factorization of the joint distribution of

(Yi, Ni).

First, we define the model for the vector of multiple measurements Yi given Ni.

Conditional on Ni = ni, we assume that Yi = (Yi1, Yi2, ..., Yini)
′ has a multivariate

survival distribution that follows the Clayton-Oakes model (Clayton, 1978; Oakes,

1989) as

SJ(yi|Ni = ni,Xi;β) = Pr{Yi1 > yi1, ..., Yini > yini |Ni = ni,Xi;β} =

 ni∑
j=1

S(yij |Xi;β)−θ − ni + 1

− 1
θ

(3.1)

where SJ(·) indicates a joint distribution of the multiple measurements, β is a

p× 1 vector of unknown regression parameters associated with Xi, S(yij|Xi;β) rep-

resents the marginal survivor distribution of the j -th observation for the i -th sub-

ject given Xi, and θ depicts the within-subject dependence. As θ approaches 0,

the observations within the same subject become independent, and the joint sur-

vival function is simply the product of the marginal survival functions. When θ

goes to +∞, the joint survival function converges to its upper Frechet bound and

SJ(yi|Ni = ni,Xi;β) = min{S(yij|Xi;β), j = 1, ..., ni}. In addition, θ is related to

Kendall’s (1962) coefficient of concordance known as the Kendall’s τ which can be

expressed as τ = θ/(θ + 2). The model implies that the association between any two

measurements from the same subject is constant, which is a reasonable assumption

for the MSSWOW study.
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For the marginal distribution of each Yij, we consider a class of semiparametric

linear transformation models. That is, we specify S(yij|Xi;β) in model (3.1) where

Yij depends on the covariates via an unknown function q(·) as

q(Yij) = −XT
i β + εij, (3.2)

and q(·) is a completely unspecified and strictly increasing function and εij is a random

error with a known distribution function denoted by Fε. Let Sε = 1 − Fε be the

survivor function for ε, then the marginal survival function of Yij given Xi can be

written as S(yij|Xi;β) = Sε(q(yij) + XT
i β). Then the hazard function of Yij can be

written as h(yij|Xi;β) = ∂q(yij)/∂yij · hε(q(yij) + XT
i β). If we reparameterize the

transformation model as Φ(yij) = exp(q(yij)) = exp(−XT
i β) exp(εij) where Φ(·) is a

strictly increasing positive function with Φ(0) = 0 and limy→∞Φ(y) = ∞, we can

write the hazard function for Yij given Xi as

h(yij|Xi;β) = φ(yij) exp(XT
i β)h0(Φ(yij) exp(XT

i β)) (3.3)

where φ(yij) = Φ′(yij) and h0(·) is the hazard function associated with exp(ε).

Various choices for Sε will generate different marginal models. For example, if Sε

follows the extreme value distribution as Sε(s) = exp(− exp(s)), model (3.2) becomes

the familiar proportional hazards model where the hazard function h(yij|Xi;β) =

φ(yij) exp(XT
i β) and φ(yij) is the unspecified baseline hazard function in this case.

If εij has a standard logistic distribution with Sε(s) = exp(s)/(1 + exp(s)), model

(3.2) yields the proportional odds model that has a form of logit(1− S(yij|Xi;β)) =

log(Φ(yij))+XT
i β in which case Φ(yij) is the baseline odds. A more general form for Sε

can be expressed as the class of logarithmic transformations Sε(s) = [1 + r exp(s)]−
1
r ,

r ≥ 0 (Dabrowska and Doksum, 1988; Chen and Yu, 2012), where r = 0 corresponds

to the proportional hazards model and r = 1 yields the proportional odds model.

For the random length Ni, which for example may capture TTP, a discrete survival
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outcome, we assume that Ni follows a discrete distribution with a general form of

Pr{Ni = ni|XT
i β; γ,α} = ν(α(ni) + γXT

i β), ni = 0, 1, ...,M, (3.4)

where ν(·) is a probability density function, M > 0 is a known positive integer, and

ν(α(ni)) denotes the baseline probability density. The parameter β is shared by the

Clayton-Oakes model (3.1) and the discrete model (3.4), and γ is a scaling parameter

that evaluates the impact of shifts or changes in the distribution of Yi with respect

to covariates Xi on the distribution of Ni. In other words, the association between

Yi and Ni is induced by the covariates Xi. The parameterization also allows the two

models contain different covariates. For example, if a predictor Xib is included in

the generalized linear model but not in the Clayton-Oakes model, the b-th regression

coefficient βb in the vector β in the Clayton-Oakes is set to be zero.

In this dissertation, we focus on the case where the random length Ni is a discrete

survival time, though it is straightforward to extend the modeling approach to other

discrete distributions. In particular, we use the complementary log-log (CLL) function

for modeling the hazard rate of Ni (Scheike and Jensen, 1997; Kalbfleish and Prentice,

2002). That is, we write the hazard rate of the random length variable Ni given Xi

as

λ
(
ni|XT

i β; γ,α
)

= 1− exp
(
− exp(α(ni) + γXT

i β)
)
, ni = 0, 1, ...,M, (3.5)

where the parameters α(ni), β and γ are as defined as before. Under the assumption

of model (3.5), the probability density of the discrete distribution in (3.4) has a form

of

Pr{Ni = ni|XT
i β; γ,α} = λ(ni|XT

i β; γ,α)

ni−1∏
j=1

(
1− λ(j|XT

i β; γ,α)
)

Combining the Clayton-Oakes model (3.1) and the discrete model (3.4), a general

form of the joint model for the multiple measurements and the random length (Yi, Ni)
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is derived as

Pr{Yi1 > yi1, ..., Yini > yiNi , Ni = ni|Xi;π}

=

 ni∑
j=1

S(yij |Xi;β)−θ − ni + 1

− 1
θ

Pr{Ni = ni|XT
i β; γ,α} (3.6)

where π = (θ,β, γ,α) is the vector of parameters to estimate.

Model (3.6) has some interesting properties (Barnhart and Sampson, 1995). First,

zero random length is allowed for some subjects. In MSSWOW data, some women

may get pregnant at the first menstrual cycle. In this case, no measurements of MCLs

are observed, which results in a random length of zero. Second, the random length

can take either any non-negative integer value or non-negative integer up to some

known value M < ∞. Third, a stochastic ordering property has been imposed by

specifying the shared parameters and the scaling parameter, which can describe the

association between the multiple measurements and the random length. Specifically,

if the probability density function stochastically increases with the increasing of ni,

it implies that for a covariate Xib, b = 1, ..., p, when the scaling parameter γ > 0, the

larger the value of βbXib is, the more likely a larger random length as well as a larger

value of each component in the vector of multiple measurements would be observed,

and vice versa for γ < 0. In addition, the multivariate distribution of the multiple

measurements is invariant under permutation of its components because of the sum-

mation form of the Clayton-Oakes model. Another important feature of the model is

that the sub-model of the Clayton-Oakes model maintains the same Clayton-Oakes

form as the full model, which becomes convenient to handle the missingness in the

multiple measurements.

3.3 Parameter Estimation

We consider the estimation of the joint model (3.6) where S(yij|Xi;β) and Pr{Ni =

ni|XT
i β; γ,α} are specified via models (3.2) and (3.5), respectively. Due to the semi-
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parametric specification in the Clayton-Oakes model part of the joint model, the

likelihood of (Yi, Ni) involves the unknown function Φ(·). We adopt an approximate

EM algorithm for parameter estimation, which is similar to the approach suggested

by Glidden and Self (1999) for the Clayton-Oakes model with a marginal proportional

hazards model where the length of the vector is fixed. We start with constructing the

joint likelihood by exploiting the equivalence of Clayton-Oakes model and gamma

frailty model (Nielsen et al., 1992; Klein, 1992). Under the gamma frailty model,

dependence among the repeated measures from the same subject is captured by an

unobservable frailty. We propose to use a two-level EM algorithm for the joint model

(3.6). At the first level, the association parameter θ is fixed and an EM algorithm is

used to derive generalized maximum likelihood estimators (GMLEs) of other param-

eters in the joint model. With θ fixed, in the E-step, the expected values of the latent

frailties are calculated with respect to the observed data and the M-step involves the

maximization of the full joint likelihood function and the unknown baseline function

is estimated by a Breslow-type estimator. At the second level of the iteration, the

profile likelihood of θ is maximized to obtain GMLE of θ. The steps are iterated until

convergence is achieved.

3.3.1 Likelihood Construction

The form of joint model (3.6) implies that the likelihood from the joint density con-

tains two components, denoted by LF1 and LF2, respectively. The first component

LF1 is the likelihood contribution from the vector of multiple measurements Yi con-

ditioning on Ni, and LF2 denotes the likelihood function for the random length Ni.

The full joint likelihood function for π = (β, θ, γ,α) is given by

LF (π|Y, N) = LF1(β, θ|Y, N) · LF2(β, γ,α|N).
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First, we consider the likelihood contribution from the random length Ni, i.e., LF2.

As a time-to-event variable, the random length Ni involves truncation and censoring

issues. Let Li denote the left truncation variable and Ci be the right censoring time,

which is assumed to be independent ofNi. Conditioning on thatNi ≥ Li, the observed

data for the i-th subject on the discrete time-to-event Ni consists of (Ñi,∆i), where

Ñi = min(Ni, Ci) and ∆i = I(Ni ≤ Ci) is the censoring indicator. Assuming that a

subject enters the study after time li, i.e., the left truncation Li = li, and an event

occurs at time Ni = ni, the likelihood contribution of Ni from the i-th subject is

Pr{Ni = ni|Ni > li,X
T
i β; γ,α} = λ(ni|XT

i β; γ,α)

ni−1∏
j=li+1

(
1− λ(j|XT

i β; γ,α)
)

where λ(j|XT
i β; γ,α) = 1 − exp(− exp(α(j) + γXT

i β)) is as defined in model (3.5).

In the scenario where a subject enters the study after time li, but the event time Ni

is censored at ni, the likelihood function for Ni is

Pr{Ni > ni|Ni > li,X
T
i β; γ,α} =

ni∏
j=li+1

(
1− λ(j|XT

i β; γ,α)
)
.

Therefore, given Li = li and Xi, the likelihood contribution from Ni taking into

account the left truncation and right censoring is given by

LF2(β, γ,α|N) =
m∏
i=1

ni∏
j=li+1

(
λ(j|XT

i β; γ,α)

1− λ(j|XT
i β; γ,α)

)ηij
(1− λ(j|XT

i β; γ,α)) (3.7)

where ηij is the longitudinal censoring indicator for Ni. ηij = 1 if an event occurs at

the the j -th time for the i -th individual, and ηij = 0 otherwise.

In order to evaluate the likelihood contribution LF1(β, θ|Y, N) from the Clayton-

Oakes model part, we utilize a key feature that the Clayton-Oakes model can be

obtained as a gamma frailty model (Clayton, 1978; Oakes, 1982; Glidden and Self,

1999). Assuming the observations from the i-th subject are independent conditional

on a latent frailty, denoted by µi, we write the hazard rate for Yij as

lim
s→0

Pr(yij ≤ Yij < yij + s|Yij ≥ yij, µi,Xi;β, θ)

s
= µih

∗(yij|Xi;β) (3.8)
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where h∗(yij|Xi;β) is called the basic hazard functions for gamma frailty model, and

µi has a gamma distribution with mean one and variance θ. The representation of

(3.8) provides a gamma frailty model (Vaupel et al., 1979; Glidden and Self, 1999).

It has been shown that a gamma frailty model has a joint survival function in the

form of the Clayton-Oakes model if the basic hazard function is written as

h∗(yij|Xi;β) = h(yij|Xi;β) exp {θH(yij − |Xi;β)}

where h(yij|Xi;β) is the hazard function of Yij associated with the marginal distri-

bution S(yij|Xi;β) in the Clayton-Oakes model and H(yij|Xi;β) =
∫ yij

0
h(s|Xi;β)ds

(Clayton, 1978; Oakes, 1982). Based on the hazard function h(yij|Xi;β) defined in

(3.3), the basic hazard function in the gamma frailty model can be written as

h∗(yij|Xi;β) = φ(yij) exp(XT
i β)h0(Φ(yij) exp(XT

i β)) exp{θH0(Φ(yij−) exp(XT
i β))}

(3.9)

where h0(·) is the hazard function associated with exp(ε) and H0(y) =
∫ y

0
h0(s)ds.

We take equation (3.9) as our basic model for the intensity of the associated

counting processes for Yij where φ(yij) is treated as the unknown baseline function.

Define the counting processes as Kij(y) = I(Yij ≥ y) and Nij(y) = I(Yij ≤ y),

y ∈ [0, τ ] where τ is the upper bound for Yij. Given Li = li and Ni = ni, the “com-

plete data” for Yi is defined as a filtration of G = {µi, Nij(s), Kij(s+), Yij,Xi, 0 ≤
s ≤ y; j = li + 1, ..., ni, i = 1, ...,m} which contains the unobservable frailty µi

for each subject. The “incomplete data” is observations of the filtration of F =

{Nij(s), Kij(s+), Yij,Xi, 0 ≤ s ≤ y; j = li + 1, ..., ni, i = 1, ...,m}. The (partial)

likelihood of “complete data” for the Clayton-Oakes model part can be obtained as

LFG1 (β, θ|Y, N) =

m∏
i=1

ni∏
j=li+1

g(µi; θ) exp

(
−µi

∫ τ

0

Kij(s)dH
∗
ij(s|Xi;β)

) ∏
y∈[0,τ ]

(
µiKij(y)h∗ij(y|Xi;β)

)dNij(y)

where g(·; θ) is the density for gamma random variable with mean one and variance

θ and H∗(y) =
∫ y

0
h∗(s)ds. Under regularity conditions, integrating over the frailties
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gives the (partial) likelihood for the “incomplete data” of F

LFF1 (β, θ|Y, N) =

m∏
i=1

θ−θ
−1

Γ(θ−1 +Ni·(τ))

Γ(θ−1)
(
θ−1 +

∑ni
j=1

∫ τ
0
Kij(y)dH∗ij(y|Xi;β)

)θ−1+Ni·(τ)

ni∏
j=li+1

∏
y∈[0,τ ]

(
Kij(y)h∗ij(y|Xi;β)

)dNij(y)

where “·” in the subscript indicates a sum over the corresponding index and Γ is

the gamma function. Therefore, the (partial) likelihood of the joint model for the

“complete data” is written as

LF G(π) = LF1(β, θ|Y, N) · LF2(β, γ,α|N)

∝
m∏
i=1

g(µi; θ)

ni∏
j=li+1

exp

(
−µi

∫ τ

0

Kij(y)dH∗ij(y|Xi;β)

)
·
∏
y∈[0,τ ]

(
µiKij(y)h∗ij(y|Xi;β)

)dNij(y)

·
m∏
i=1

ni∏
j=li+1

[
1− exp(− exp(α(j) + γXT

i β))

exp(− exp(α(j) + γXT
i β))

]ηij
exp(− exp(α(j) + γXT

i β)) (3.10)

The (partial) likelihood for the “incomplete data” is given by

LFF(π) = LF1(β, θ|Y, N) · LF2(β, γ,α|N)

∝
m∏
i=1

θ−θ
−1

Γ(θ−1 +Ni·(τ))

Γ(θ−1)
(
θ−1 +

∑ni
j=1

∫ τ
0
Kij(y)dH∗ij(y|Xi;β)

)θ−1+Ni·(τ)

·
ni∏

j=li+1

∏
y∈[0,τ ]

(
Kij(y)h∗ij(y|Xi;β)

)dNij(y)

·
m∏
i=1

ni∏
j=li+1

[
1− exp(− exp(α(j) + γXT

i β))

exp(− exp(α(j) + γXT
i β))

]ηij
exp(− exp(α(j) + γXT

i β)) (3.11)

Note that if the hazard function h(yij|Xi;β) is fully parametric, the likelihood of

(3.11) can be directly maximized. However, for semiparametric basic hazard models,

maximization of (3.11) can be computationally prohibitive, while the maximization of

(3.10) based on the “complete data” are feasible. Since the structure of the “complete

data” likelihood (3.10) contains the “missing data” of frailties µi, an EM-algorithm

approach is proposed.
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3.3.2 EM algorithm

The EM algorithm involves two levels of iteration. At the first level, θ is treated as a

fixed value at θ̃, and an EM algorithm is iterated to convergence to maximize (3.10)

with respect to (β, γ,α) which leads to the GMLEs (β̂, γ̂, α̂)|θ̃. The estimated un-

known baseline function Φ̂(·)|θ̃ is obtained by a Breslow-type estimator. Substituting

these estimators in the likelihood (3.10) gives us the profile likelihood for θ. Repeated

evaluations of this profile likelihood provide us the GMLE for θ. Therefore, the pa-

rameter estimation procedure involves repeated assessment of the profile likelihood

for θ and each assessment requires iteration of an EM algorithm to obtain GMLEs

for (β, γ,α,Φ(·)).

For E-step of the EM algorithm, we take the logarithm of likelihood function

(3.10) which results in a function of the latent frailty µi that still has a form of

gamma distribution conditional on the observed data (Nielsen et al., 1992). Then the

expectation of the latent frailties given the observed data are obtained as

E (µi|F) =
1 + θNi·(y)

1 + θ
∑ni

j=li+1

∫ y
0
Kij(s)dH∗ij(s|Xi;β)

(3.12)

This is the key basis for the E-step where the frailties in the complete data log-

likelihood are replaced by this conditional expectation. In particular, the basic cu-

mulative hazard function H∗ij(s|Xi;β) in this expectation involves with the unknown

baseline function Φ(·). Therefore, Φ(·) is treated as nuisance parameters and needs

to be estimated in the M-step as if the frailties µi were observed.

Assuming that θ is fixed at the value θ̃ and given the initial values

(β̂
(0)
, γ̂(0), α̂(0), Φ̂(·)(0)), the (l + 1)-th iteration of the EM algorithm has a structure

as follows.

Step0: Calculation of Basic Cumulative Hazard.

To obtain the expectation of the frailties, the basic cumulative hazard function needs

to be calculated. Based on equation (3.9) and given the values of (β̂
(l)
, γ̂(l), Φ̂(·)(l)),
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the estimator of H∗ij(s|Xi;β) in the l + 1-th iteration can be expressed as

Ĥ
∗(l)
ij (y|Xi; β̂

(l)
) =

∫ y

0
exp

{
θ̃Ĥ

(l)
0,ij(Φ̂

(l)
ij (s−) exp(Xiβ̂

(l)
))
}
dĤ

(l)
0,ij(Φ̂

(l)
ij (s−) exp(Xiβ̂

(l)
))

where Φ̂(·) is given in the M-step.

E-step: Posterior Expectation of the latent frailty µi.

In the E-step, equation (3.12) is evaluated under current parameter estimates as

µ̂
(l+1)
i =

1 + θ̃Ni·(τ)

1 + θ̃
∑ni

j=li+1

∫ τ
0
Kij(s)dĤ

∗(l)
ij (s|Xi;β)

M-step: Estimation of (β, γ,α) and Φ(·).
The M-step is involved with maximization of the likelihood function (3.10) with re-

spect to (β, γ,α) and at the same time the unknown baseline function Φ(·) is esti-

mated by a Breslow-type estimator by keeping β fixed.

M1: M-step for (β, γ,α)

(β̂, γ̂, α̂)(l+1) = arg max
(β,γ,α)

m∏
i=1

ni∏
j=li+1

[
1− exp(− exp(α(j) + γXT

i β))

exp(− exp(α(j) + γXT
i β))

]ηij
exp(− exp(α(j) + γXT

i β))

·
∏

y∈[0,τ ]

(
µ̂
(l+1)
i exp{θ̃Ĥ0,ij(Φ̂ij(y−) exp(XT

i β))}dĤ0,ij(Φ̂ij(y) exp(XT
i β)) exp(XT

i β)∑m
k=1

∑tk
l=1 µ̂

(l+1)
k exp{θ̃Ĥ0,kl(Φ̂kl(y−) exp(Xkβ))}dĤ0,kl(Φ̂kl(y) exp(Xkβ)) exp(Xkβ)Kkl(y)

)dNij(y)

M2: Approximate M-step for Φ̂(·) given
(
β̂, γ̂, α̂, µ̂

)(l+1)

.

The unknown baseline function Φ(·) can be obtained by solving the following step

function inductively with starting value of Φ(0) = 0.

Φ̂(l+1)(y) =

∫ y

0

[
m∑
i=1

ni∑
j=1

µ̂
(l+1)
i R

(
Φ̂(l+1)(s−), β̂

(l+1)
|θ̃,Xi

)
Kij(s)

]−1

dN..(s)

where

R
(

Φ̂(l+1)(s−), β̂
(l+1)
|θ̃,Xi

)
=

exp{θ̃Ĥ0,ij(Φ̂
(l+1)(s−) exp(Xiβ̂

(l+1)
))}ĥ0,ij(Φ̂

(l+1)(s) exp(Xiβ̂
(l+1)

)) exp(Xiβ̂
(l+1)

).

Note that the solution for Φ̂(·) in this M-step is an approximation. In the E-step,

the expectation is estimated by replacing dH∗ij(·) with its estimator dĤ∗ij(·) and by

fixing θ at θ̃. For the M-step, we first obtain the GMLEs for the parameters (β, γ,α)

by maximizing the likelihood of (3.10) where the frailties µi’s are substituted by
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their estimates from the E-step and H∗ij(·) and dH∗ij(·) are replaced with Ĥ∗ij(·) and

dĤ∗ij(·), respectively. Using the estimators for (β, γ,α), the estimator for the baseline

function Φ(·) is also updated. Therefore, the M-step is involved with maximization of

likelihood function of (3.10) with respect to (β, γ,α) as well as the baseline function

Φ(·).

Step0, E-step, M-step1 and M-step2 are repeated until convergence is obtained.

The values of β and Φ(·) at convergence, denoted by β̂|θ̃ and Φ̂(·)|θ̃, are used to maxi-

mize the profile likelihood of θ using one dimensional optimization method. Due to the

complexity of the estimators (β̂, γ̂, α̂, Φ̂(·)), we propose to use a bootstrap procedure

to derive the estimates of variance of the estimators as well as the confidence intervals.

3.4 Simulation Studies

To evaluate the performance of the joint modeling procedure, we conducted simulation

studies in different settings. One thousand replicates were performed for each set.

Each simulation sample consisted of m subjects (m = 200 and 400). First, random

lengths were generated as a time-to-event process from the complementary log-log

model with a constant baseline hazard λ(ni|XT
i β; γ) = 1− exp(− exp(α+ γ(β1X1i +

β2X2i))) where X1 and X2 represent dummy variables of a categorical variable with

three levels. In addition, Ni’s were subject to censorship by means of an independent

censoring time that was simulated from a complementary log-log model with intercept

only.

The vector of multiple measures Yi for each subject was generated from the

Clayton-Oakes model with a marginal transformation model, and the length of vector

Yi was equal to the time-to-event Ni. For the marginal model, we considered the

class of logarithmic transformations of the form of S(yij|Xi;β) =

[1 + r exp(q(yij) + β1X1i + β2X2i)]
− 1
r with r = 0 corresponding to the marginal pro-
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portional hazards model and r = 1 corresponding to the marginal proportional odds

model (Dabrowska and Doksum, 1988; Chen and Yu, 2012).

The parameters were chosen to be similar to these estimated in the MSSWOW

study presented in Section 5. Specifically, the following values were set for the vector

of parameters (β1, β2, γ, α) = (0.3, 0.5, 4,−4). Approximately, these values provided

the mean of the observed random vector length equal to 5 with 65% of censoring, and

the mean of multiple measurements equal to 24. The dependence parameter θ was set

to be 0.5 and 3.0, corresponding to Kendall’s tau of 0.2 and 0.6, respectively. Each

data set was analyzed using the joint modeling procedure and the EM algorithm

described in Section 2 and 3. Biases for β1, β2, γ and θ were evaluated from the

simulations. Bootstrapping standard deviations of the parameters, average simulation

standard errors, and 95% coverage probabilities were also calculated. The simulation

results are summarized in Table 1.

The results show that the biases for estimating β1, β2 and γ are small, particularly

when sample size is large. The largest biases (between 2% and 4%) are seen in the

estimators of β1, β2 and γ in the scenario where the sample size is small with m = 200

and at the same time the dependence parameter is large for the multiple measure-

ments with θ = 3.0. There exists a slight negative bias for estimation of θ, which

becomes smaller with decreasing of association and increasing of sample size. This

negative bias has been observed previously with maximizing the profile likelihood

(Nielsen et al., 1992; Glidden and Self, 1999). The bootstrap standard deviations

agree well with the Monte Carlo simulation standard errors. When dependence pa-

rameter decreases and sample size increases, the difference between the two standard

errors becomes negligible. The 95% coverage probability for the regression parame-

ters (β1, β2) maintains near the nominal level in all cases. Most of 95% confidence

intervals for γ have reasonable coverage probabilities except for a few cases when

r = 0 and θ = 3.0 (coverage probability for γ: 91%-93%). The coverage probability
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for θ is slightly lower than 95% in the case where r = 0 and θ = 3.0 (coverage prob-

ability for θ: 92%). A similar phenomenon has been reported in previous literature

for transformation model (Chen and Yu, 2012). In addition, as sample size increases,

the bias and standard errors of all the parameters decrease. Overall, the simulation

study illustrates that the generalized maximum likelihood estimators based on the

EM algorithm perform reasonably well even when within-subject correlation is rela-

tively high and sample size is moderate.

3.5 Application to MSSWOW Study

MSSWOW was a prospective cohort study conducted from 1991 to 1994. Women

who were between the ages of 19 and 40 and at risk for pregnancy (sexually active

and not consistently using birth control) were eligible for the study and a total of

470 women were finally enrolled and the participants were followed with menstrual

diaries and urine samples for up to one year until a clinical pregnancy or the end of

the study. Women kept a daily record of menstrual bleeding and unprotected inter-

course during follow-up and collected urine samples which were tested for pregnancy.

Time-to-pregnancy (TTP) was recorded as the number of cycles for a woman taken

to conceive. Menstrual cycle lengths (MCLs) were calculated from the first day of

menstrual bleeding until the day before the next onset of menses. A total of 3689

MCLs were recorded, and 179 (38.1%) of the participants got pregnant by the end of

the study.

This study has been originally designed to investigate the effect of Video Display

Terminal on spontaneous abortion (Marcus, 1990), but it provided the opportunity to

explore the possible roles of risk factors on reproductive health outcomes of MCLs and

TTP. In previous work, menstrual cycle characteristics, including cycle length and

bleeding length, were found to be associated with a woman’s likelihood of becoming

pregnant as well as pregnancy outcome (Small et al., 2006). Guo et al. (2006)
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Table 3.1. Simulation Results for Fitting Joint Models and Estimating the
Parameters Using the EM Algorithm with 1000 Replicates1

θ = 0.5 θ = 3.0

Scenarios True Bias SD2 SE3 CP4 Bias SD SE CP

m = 200

r=0 β1(0.3) 0.0083 0.1353 0.1399 0.95 0.0084 0.1906 0.2028 0.94

β2(0.5) 0.0038 0.1384 0.1431 0.95 0.0081 0.1942 0.2025 0.94

γ(4.0) -0.0175 0.8772 0.8278 0.91 -0.0284 0.6688 0.6457 0.96

θ(0.5/3.0) -0.0162 0.0650 0.0687 0.92 -0.0708 0.2404 0.2918 0.93

r=0.5 β1(0.3) 0.0097 0.0776 0.0718 0.97 -0.0075 0.0892 0.0862 0.95

β2(0.5) 0.0102 0.0778 0.0851 0.97 -0.0084 0.0828 0.0824 0.94

γ(4.0) -0.0091 0.6433 0.6822 0.94 -0.0324 0.5269 0.5148 0.93

θ(0.5/3.0) -0.0061 0.0323 0.0354 0.91 -0.0208 0.0728 0.0802 0.94

r=1 β1(0.3) -0.0066 0.0747 0.0759 0.97 0.0105 0.3088 0.3151 0.94

β2(0.5) -0.0097 0.0736 0.0724 0.96 0.0101 0.3144 0.3048 0.95

γ(4.0) 0.0577 0.6441 0.6577 0.94 0.0365 0.8568 0.8294 0.94

θ(0.5/3.0) 0.0021 0.0447 0.0545 0.94 -0.0241 0.2460 0.2732 0.97

m = 400

r=0 β1(0.3) 0.0039 0.0945 0.0939 0.95 -0.0023 0.1329 0.1412 0.93

β2(0.5) -0.0016 0.0984 0.1005 0.95 0.0015 0.1366 0.1342 0.95

γ(4.0) 0.0276 0.5581 0.5360 0.93 0.0475 0.7970 0.7845 0.91

θ(0.5/3.0) -0.0107 0.0447 0.0446 0.94 -0.0978 0.1993 0.2119 0.93

r=0.5 β1(0.3) -0.0017 0.0701 0.0775 0.97 -0.0056 0.0583 0.0616 0.96

β2(0.5) 0.0053 0.0770 0.0721 0.96 -0.0019 0.0764 0.0741 0.95

γ(4.0) -0.0359 0.6011 0.5882 0.95 0.0443 0.5334 0.5283 0.94

θ(0.5/3.0) -0.0051 0.2808 0.2543 0.94 -0.0137 0.1560 0.1639 0.92

r=1 β1(0.3) -0.0033 0.2092 0.2121 0.95 -0.0059 0.2157 0.2321 0.93

β2(0.5) 0.0011 0.2160 0.2110 0.95 0.0061 0.2198 0.2137 0.95

γ(4.0) 0.0584 0.8225 0.8393 0.97 0.0259 0.7110 0.6514 0.96

θ(0.5/3.0) -0.0047 0.0650 0.0730 0.96 -0.0159 0.1865 0.2003 0.93

1 Censoring percentage is about 65%.

2 The standard deviation is based on the bootstrap sampling.

3 This is the Monte Carlo standard error based on the simulations.

4 CP stands for the 95% coverage probability.
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demonstrated the inadequacy of normal distribution for MCLs and showed that MCLs

were distributed differently among various sub-populations of different age groups,

but the impact of age on TTP was not investigated. Similar to previous work, we

categorize age into four groups (19-25, 26-30, 31-35 and 36-41) and aim to evaluate

the influence of aging effects on both MCLs and TTP as well as to determine the

relationship between MCLs and TTP.

Table 2 presents the results from the MSSWOW data analysis including the

parameter estimates as well as their bootstrapped standard errors. With different

marginal distributions for menstrual lengths (proportional hazards model and pro-

portional odds model etc.), the results indicate that there exists a significant age effect

on the distribution of MCLs. Specifically, the first three groups are not significantly

different in terms of the distributions of MCLs and they are significantly different

from the older age group 36-41. The size of the effects gets larger as women get

younger in reference to the oldest age group (36-41). The estimated association pa-

rameter θ̂ (Kendall’s tau τ̂=0.136,0.152, and 0.232 in different models, respectively)

was found to be significantly greater than zero, indicating a modest correlation was

observed among MCLs from the same woman.

The estimated scaling parameter γ̂ is negative and is significantly different from

zero in all three marginal models (r=0,0.5,1), implying the effect of MCLs is signifi-

cantly associated with TTP through underlying aging effects. In other words, the risk

of getting pregnant stochastically decreases with the increasing of the MCLs. This

means that with the increasing of a woman’s age, we would observe longer MCLs

and lower probability of getting pregnant. Adjusting for the impact of MCLs, women

between 19 and 25 have the highest chance of getting pregnant, followed by those

between 26 and 30 and those between 31 and 35. The women in age group 36 to

41 have the lowest pregnancy rate. The status of unprotected sex is found to have

significant influence on the higher risk of getting pregnant. (Although all eligible
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women reported having unprotected sex in the previous three months at entry to the

study, not all women had unprotected sex during each menstrual cycle.)

To evaluate the fitted models, we compare the Akaike Information Criterion (AIC)

across the models, which shows that the joint model based on the Clayton-Oakes

model with a marginal proportional odds model (AIC=23477.50) is preferable to the

other two models (AIC=24484.71 for proportional hazards model and AIC=23850.31

for transformation model with r = 0.5).

In particular, one can expect that the impact of age on MCLs reduces over time

when women reach a certain age. For the proportional odds model, the covariate

effects are specified as a multiplicative factor on the baseline odds function (Bennett,

1983), which indicates that the difference in hazards by covariates diminishes over

time. That is, the covariate effects diminish with time. This property of the pro-

portional odds model seems intuitively reasonable compared to proportional hazards

model for interpreting the age effects on menstrual lengths. Furthermore, we plotted

the estimated odds of survival function of the log menstrual lengths based on the

Kaplan-Meier estimator (See Figure 1) and it is shown that the curves of the odds of

survival functions are approximately parallel to each other. This also demonstrates

the appropriateness of the proportional odds model for MCLs, while other plots (not

presented here) also agree with this conclusion.

3.6 Discussion

In this Chapter, we proposed a joint modeling framework for the analysis of mul-

tivariate random length data where the multiple measurements were modeled via a

Clayton-Oakes model and the random length was a discrete survival time with a

complementary log-log link hazard function. Particularly, we specified a general class

of semiparametric transformational models for the marginal models in the Clayton-

Oakes part of the joint model. Under the joint modeling assumptions, an approximate
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Table 3.2. Estimation of Joint Model Based on the Clayton-Oakes Model
and Complementary Log-log Model for MSSWOW Data (m=470)

Model Effects1 Estimates SE P-value

Joint Models: r = 0 Age group 19-25 β11 -0.386 0.040 <.001

Age group 26-30 β12 -0.349 0.034 <.001

Age group 31-35 β13 -0.244 0.041 0.011

Age group 36-41 - - - -

Scaling parameter γ -1.414 0.282 <.001

Unsafe Sex β2 0.079 0.011 <.001

Association among Association θ 0.315 0.015 <.001

MCL Kendall’s tau τ 0.136 - -

Joint Models: r = 0.5 Age group 19-25 β11 -0.483 0.067 <.001

Age group 26-30 β12 -0.302 0.011 <.001

Age group 31-35 β13 -0.194 0.066 0.003

Age group 36-41 - - - -

Scaling parameter γ -1.033 0.249 0.036

Unsafe Sex β2 0.079 0.010 <.001

Association among Association θ 0.359 0.013 <.001

MCL Kendall’s tau τ 0.152 - -

Joint Models: r = 1 Age group 19-25 β11 -0.979 0.112 <.001

Age group 26-30 β12 -0.674 0.088 <.001

Age group 31-35 β13 -0.377 0.086 <.001

Age group 36-41 - - - -

Scaling parameter γ -0.496 0.220 0.024

Unsafe Sex β2 0.079 0.010 <.001

Association among Association θ 0.623 0.055 <.001

MCL Kendall’s tau τ 0.232 - -

1 The estimates for parameters associated with baseline hazard of TTP are given as 1) for model r = 0,

≤ 2: α1 = −3.440(0.107), 3 ∼ 8: α2 = −3.568(0.091), = 9: α3 = −4.798(0.425), 10 ∼ 12: α4 =

−3.195(0.102), and ≥ 13: α5 = −3.948(0.094); 2) for model r = 0.5, ≤ 2: α1 = −3.610(0.161),

3 ∼ 8: α2 = −3.733(0.158), = 9: α3 = −4.955(0.268), 10 ∼ 12: α4 = −3.370(0.155), and ≥ 13:

α5 = −4.104(0.130); and 3) for model r = 1, ≤ 2: α1 = −3.305(0.548), 3 ∼ 8: α2 = −3.435(0.539),

= 9: α3 = −4.674(0.730), 10 ∼ 12: α4 = −3.065(0.538), and ≥ 13: α5 = −3.835(0.494).
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Figure 3.1. Plot of Estimated Log Odds of Survival Function of log(MCL) vs.
log(MCL) (Survival functions are estimated by Kaplan-Meier estimators.)

EM algorithm based on gamma frailty model was developed to derive the likelihood

inferences for parameters.

Our proposed method provide a flexible modeling framework to analyze two re-

lated outcomes jointly. First, our joint model can appropriately handle missing out-

comes and censoring and truncation issues of the random vector length. Second, we

use semiparametric transformation models for MCLs which include the commonly

used proportional hazards model and the proportional odds model as special cases.

Third, the estimation procedure has been developed to obtain generalized maximum

likelihood estimators of all the model parameters including the regression coefficients

in the joint model, dependence parameter and the unknown baseline function in the

transformation model. AIC is used to assess the global goodness-of-fit for the joint

model, however, more work is needed in determining the goodness-of-fit of these

models.

MSSWOW study was conducted in a prospective manner and hence has several
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advantages with regards to the analysis of TTP (Scheike and Keiding, 2006). Ret-

rospectively collected data may be biased by the outcome, which is known by the

woman when reporting TTP. In addition, it is more difficult to recall accurately

whether unprotected intercourse occurred during each of the menstrual cycles. Be-

cause approximately 50% of pregnancies in the United States are unintended, the

MSSWOW population is more likely to represent the population at risk of pregnancy

than a retrospective study where women who may have terminated a pregnancy are

excluded. For prospectively collected TTP data, TTP is observed as a waiting time

that can be any positive number. Therefore, conditional on initiation time and co-

variates, TTP can be modeled via the conditional distribution as Pr{N = n|N ≥ n}.

That is, the hazard of TTP given covariates can be directly observed. For retro-

spective study, we only observe the sample from a certain period [0, T ] instead of

the entire timeline. In this case, TTP is both right and left-truncated conditional

on initiation time. TTP from retrospective sample has a conditional distribution of

Pr{N = n|0 ≤ N ≤ T}. Extensive details about the analysis of TTP using prospec-

tive and retrospective methods can be found in Scheike and Keiding’s paper (2006).

Our joint model proposed here is designed for the analysis of prospectively collected

TTP data.
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Chapter 4

A Two-Stage Estimation Approach

4.1 Introduction

Many medical and epidemiological studies involve with multivariate failure time data

when an event can occur multiple times for a subject or the event times in a cluster

are correlated. When the number of multiple measurements or the cluster size is an

outcome of interest (a random variable), we observe multivariate random length data

(Barnhart and Sampson, 1995; Barnhart et al., 1999). For these types of studies, there

are two outcomes of interest: the multiple measurements and the random length. In

addition, both of the outcomes may depend on common underlying covariates. For

example, in the Mount Sinai Study of Women Office Workers (MSSWOW), multiple

measurements of menstrual cycle lengths (MCLs) for each subject were collected and

time-to-pregnancy (TTP) was calculated as the number of menstrual cycles taken to

conceive (not including the conception cycle). It is natural to view MSSWOW data

as a vector of multiple measures of MCLs with the random vector length equal to

TTP. Both MCLs and TTP are important indicators of reproductive health. There

is an extensive literature devoted to analyzing the separately but little literature

on analyzing both outcomes simultaneously (Harlow and Zeger, 1991; Scheike and

Jensen, 1997; Dunson et al., 2002; Guo et al., 2006; Small et al., 2006).

Barnhart et al. (1995; 1999) introduced a multiple population model to analyze
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multivariate random length data where normality was assumed for the multiple mea-

sures. Motivated by MSSWOW study, Liu et al. (unpublished, 2014) proposed to use

a semiparametric joint modeling approach where the multiple measurements are mod-

eled via a special type of copula model known as the Clayton-Oakes model and the

random length is assumed to follow a semiparametric discrete survival model. Their

method provides a flexible modeling framework to analyze two correlated outcomes

simultaneously and at the same time can handle missing, censoring and truncation

issues. They specified semiparametric transformation models as the marginal distri-

butions of the Clayton-Oakes model, which appropriately addresses the issue of right

skewness of the distribution of menstrual cycle lengths. For parameter estimation of

the joint model, Liu et al. (unpublished, 2014) developed an EM algorithm in the

spirit of the estimation for gamma frailty model and the standard errors of the esti-

mates were obtained via a bootstrapping procedure. This method is computationally

intensive and sensitive to the form of the copula model.

In this manuscript, our goal is to provide a computationally simple approach for

obtaining parameter estimates in the model proposed by Liu et al. (unpublished,

2014). The method can be implemented by using existing statistical software pack-

ages, and therefore it is feasible for epidemiologists to apply in practice. To this end,

we propose a “two-stage” method for statistical inference for the joint model. In

the first stage, estimators of the marginal parameters for the joint model are derived

under the working-independence assumption, i.e., under working assumption of that

repeated measurements are independent. In the second stage, the marginal param-

eters in the copula model are replaced by the estimators obtained in the first stage.

Then a pseudo-likelihood approach is used for estimating the dependence parameter.

This method is applicable to general copula models such as Clayton-Oakes models

and positive stable models. Asymptotic theory for the estimators can be established

as well.
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Specifically, we provide a comprehensive analysis of MSSWOW data by consid-

ering a general form of copula models. Marginal models of the copula model for

the repeated measurements (e.g., MCLs) are modeled via a semiparametric trans-

formation model. In addition, we model the random length (e.g., TTP) using two

different discrete models, including (a) complementary log-log link model and (b)

proportional odds model. The dissertation is organized as follows. In Section 2, we

describe the joint model for the multivariate random length data. Section 3 provides

the “two-stage” estimation procedure for both marginal parameters and the associa-

tion parameter. In Section 4, the performance of the proposed method is evaluated by

a wide range of simulation studies. In Section 5, the proposed model and estimation

approach are applied to the MSSWOW data.

4.2 Model Specifications

Suppose that we have a total of m subjects. Let i index the subject and j index the

measurement for each subject. Let Yi represent a vector of multiple measurements

on a response where the vector has a random length of Ni, i = 1, ...,m. In addition,

a p-dimensional covariate vector Xi, such as age group, BMI, smoking status, and

number of unprotected sex in MSSWOW study, is collected for each subject which

can affect both the repeatedly measured response as well as the random length.

We propose a joint model for the multiple measurements and the random length,

denoted by a vector as (Yi, Ni), that has a form of

Pr(Yi1 > yi1, ..., Yini > yini , Ni = ni|Xi)

= C (S(yi1|Xi), ..., S(yini |Xi)|Ni = ni) Pr{Ni = ni|Xi}. (4.1)

where π denotes the vector of parameters to estimate. In the first part of the

joint model, C(·) is a copula distribution function conditional on that Ni = ni and

S(yij|Xi) denotes the marginal distribution of Yij given Xi. The second part of the
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model is a probability density function of the random length Ni.

4.2.1 Marginal models for repeated measurements

We consider a class of semiparametric transformation models as the marginal distribu-

tions for each Yij in the copula model. Under the transformation model assumption,

Yij depends on the covariates Xi via an unknown function q(·) as

q(yij|Xi;β) = −Xiβ + εij, (4.2)

where q(·) is a completely unspecified and strictly increasing function and εij is a

random error with a known distribution function denoted by Fε. Let Sε = 1− Fε be

the survivor function for ε. Then the marginal survival function of Yij given Xi can

be written as

S(yij|Xi;β) = Pr(Yij > yij|Xi;β) = Sε(q(yij) + Xiβ). (4.3)

There are different choices for Sε to provide different marginal models. A gen-

eral form for Sε can be written as the class of logarithmic transformations Sε(s) =

[1 + r exp(s)]−
1
r , r ≥ 0 (Dabrowska and Doksum, 1988; Chen and Yu, 2012), which

include proportional hazards model and proportional odds model as two special cases.

When r = 0, Sε follows the extreme value distribution as Sε(s) = exp(− exp(s)) and

model (4.2) becomes the proportional hazards model. If r = 1, εij has a standard

logistic distribution of Sε(s) = 1/(1 + exp(s)), model (4.2) is the proportional odds

model.

4.2.2 Different copula models

The joint distribution of the vector of multiple measurements Yi is modeled via

copula models. Conditional on Ni = ni, we assume that Yi = (Yi1, Yi2, ..., Yini)
′ has a

multivariate survival distribution that follows a copula model as

Pr{Yi1 > yi1, ..., Yini > yini |Ni = ni,Xi;β, θ} = C (S(yi1|Xi;β), ..., S(yini |Xi;β)|Ni = ni, ; θ)
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where C(·) and S(Yij|Xi;β) are defined as before. β is a p × 1 vector of unknown

regression parameters associated with Xi; and θ depicts the within-subject depen-

dence. Many copula families are available for constructing statistical models such as

Gaussian copulas and Archimedean copulas. Particularly, we focus on Archimedean

copulas, which has been explored by statisticians for analyzing multivariate survival

data (Genest and Mackay, 1986). Archimedean copulas have a form of

C (S(yi1|Xi;β), ..., S(yini |Xi;β)|Ni = ni, ; θ)

= ϕ−1{ϕ(S(yi1|Xi;β)) + · · ·+ ϕ(S(yini |Xi;β))|Ni = ni, ; θ} (4.4)

where ϕ : [0, 1]→ [0,+∞] is called the generator of the copula which is a decreasing

and convex function such that ϕ(0) =∞ and ϕ(1) = 0.

Examples of Archimedean copulas include Clayton copula, Gumbel copula, Frank

copula, Gumbel-Hougaard copula etc. In this Chapter, we consider the Clayton-Oakes

model from the Clayton copula family (Clayton, 1978; Oakes, 1982) and positive sta-

ble frailty model belonging to the Gumbel-Hougaard copula family.

Clayton-Oakes model:

For the Clayton-Oakes model, the generator ϕ is defined as the Laplace transfor-

mation of a gamma distribution (the Laplace transformation for a function f(x) is

defined as ϕ(s) =
∫∞

0
e−sxf(x)dx, x ≥ 0). Then the Clayton-Oakes model is obtained

as

C (S(yi1|Xi;β), ..., S(yini |Xi;β)|Ni = ni, ; θ)

=
[
S(yi1|Xi;β)−θ + · · ·+ S(yini |Xi;β)−θ|Ni = ni, ; θ

]− 1
θ

where θ > 0 is the dependence parameter that depicts the correlation among Yij’s for

the same subject. As θ approaches 0, the observations within the same subject become

independent, and the joint survival function is simply the product of the marginal

survival functions. When θ goes to +∞, the joint survival function converges to its
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upper Frechet bound and SJ(yi|Ni = ni,Xi) = min{S(yij|Xi), j = 1, ..., ni}. The de-

pendence parameter θ is related to Kendall’s (1962) coefficient of concordance known

as the Kendall’s τ which can be expressed as τ = θ/(θ + 2).

Positive stable model:

When ϕ(·) is defined as the Laplace transformation of a positive stable distri-

bution, the joint survival function takes the form of a positive stable frailty model

as

C (S(yi1|Xi;β), ..., S(yini |Xi;β)|Ni = ni, ; θ)

= exp

{
−
[
(− logS(yi1|Xi;β))

1
θ + · · ·+ (− logS(yini |Xi;β))

1
θ

]θ}
where θ is the dependence parameter and is also associated with Kendall’s τ where

τ = 1− θ.

4.2.3 Discrete model for the random length

For random length Ni, we focus on the case where Ni is a discrete survival time in

this dissertation, but the modeling approach can be easily extended to other discrete

distributions. We assume that Ni follows a discrete distribution with a general form

of

Pr{Ni = ni|Xi; γ,β,α} = ν(αni + γXiβ), ni = 0, 1, ...,M,

where ν(·) is a probability density function, M > 0 is a known positive integer, and

αni is associated the baseline probability density. β is a vector of parameters that

shared by the copula model and the discrete survival model. γ is a scaling parameter

that evaluates the effects on the distribution of Ni due to the shift or change in the

distribution of Yi with respect to covariates Xi. This means that the association

between Yi and Ni is induced by the covariates Xi. In other words, the covariates

Xi can affect the distribution of the repeated measurements Yi and these effects are

73



modified by the scaling parameter γ to influence the distribution of the random length

Ni. The parameterization also allows the two models contain different covariates.

Hazard rate is commonly used to describe the distribution of a survival time in

literature. In particular, we use a complementary log-log (CLL) link function to

model the hazard rate of Ni, denoted by λ(j|Xi; γ,β,α) (Scheike and Jensen, 1997;

Kalbfleish and Prentice, 2002). This CLL link model has an interpretation of a

discrete version of the continuous time proportional hazards model which has the

following form of

λ(j|Xi; γ,β,α) = 1− exp(− exp(αj + γXiβ)). (4.5)

In this model, αj is associated with the baseline hazard when all Xi = 0. The

parameters β and γ are as defined as before.

An alternative method of modeling Ni is to use the proportional odds model (Chen

et al., unpublished, 2014), which models the discrete log odds of the cumulative prob-

ability instead of discrete hazards. Compared to the traditional discrete relative risk

model, the proportional odds model provides a different interpretation with respect

to assessing the impact of risk factors on the survival time Ni. For MSSWOW data,

the proportional hazards model is used to investigate the probability of getting preg-

nant at a certain cycle given that the subject has not been pregnant before then.

Alternatively, the proportional odds model describes the time-to-pregnancy in terms

of the probability of getting pregnant within a certain number of menstrual cycles.

Under the proportional odds model assumption, the ratio of the hazard rates in dif-

ferent sub-populations or with different risk factors converges to unity as time goes

to infinity (Bennett, 1983; Yang and Prentice, 1999; Chen et al., unpublished, 2014).

We specify the discrete proportional odds model in following way

logit (Pr{Ni ≤ j|Xi; γ,β, ξ}) = ξj + γXiβ, j = 1, ..., J, (4.6)

where ξj represents the baseline log odds function with regards to a subject having
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an event less than or equal to j, and J is the maximum value of observed Ni. γ and

β are defined similarly in the CLL model.

4.3 Parameter Estimation Procedure

We consider a two-stage approach to derive the parameter estimates for the joint

model (4.1). In the first stage, we estimate the marginal parameters (β, γ,α(ξ))

under the independence working assumption that the multiple observations from the

same subjects are assumed to be independent. In the second stage, a pseudo likelihood

for the dependence parameter θ is constructed by replacing the marginal parameters

in the full likelihood by the estimators obtained in the first stage. Large sample prop-

erties for the two-stage estimators can be established by following the previous work

(Spiekerman and Lin, 1998; Glidden, 1999; Chen et al., 2002; Lu, 2005).

4.3.1 First stage: estimation parameters under working in-

dependence assumption

Based on the form of the joint model, the likelihood is composed of two parts including

the likelihood contribution from the multiple measurements given the random length

and the other part from the random length.

First, let us consider the likelihood contribution from the multiple measurements

Yi given Ni = ni. Under the assumption of working independence, the joint density

function of Yi for the i-th subject is simply the product of the marginal density

functions. Therefore, we write the hazard of Yij given Xi, denoted by h(yij|Xi;β), as

h(yij|Xi;β) = φ(yij) exp(Xiβ)h0(exp(Xiβ)Φ(yij)), j = 1, ..., ni, i = 1, ...,m (4.7)

where Φ(y) = exp(q(y)) is a strictly increasing positive function with Φ(0) = 0 and

limy→∞Φ(y) = ∞ and φ(y) = Φ′(y). h0(·) is the hazard associated with exp(ε).

Model (4.7) is taken as the basic model for the intensity of the associated counting

75



process. Let CY
ij be the censoring time and Ỹij represent the observed value of Yij

where Ỹij = min(Yij, C
Y
ij ). Denote the censoring indicator by δij = I(Yij ≤ CY

ij ).

Assuming the working independence of Yij on the same subject, a total of M(M =∑m
i=1 ni) i.i.d. counting processes, which represent the multiple measurements of

survival times with independent censoring, are observed. In other words, we have

an M -dimensional counting process of all subjects, denoted by Nij(y) = δijI(Ỹij ≤

y), j = 1, ..., ni; i = 1, ...,m, with intensity Kij(y)h(yij|Xi;β) where Kij(y) = I(Ỹij ≥

y) is the at-risk process. Let Mij(y) denote the associated martingale process, then

the martingale decomposition of dN·(y) is

dN·(y) = Γ0(y,β,Φ)dΦ(y) + dM·(y),

where Γ0(y,β,Φ) =
∑m

i=1

∑ni
j=1 Kij(y) exp(Xiβ)h0(exp(Xiβ)Φ(y−)). Based on this

decomposition and keeping β fixed, Φ(y) can be estimated by a Breslow-type estima-

tor

Φ̂(y,β) =

∫ y

0

1

Γ0(u,β, Φ̂)
dN·(u) (4.8)

where Φ̂(y,β) can be solved iteratively by using the fact that Φ̂(0,β) = 0.

By replacing Φ(y) with Φ̂(y,β) and dΦ(y) with dΦ̂(y,β), the likelihood contribu-

tion from Yi for estimating β can be written as

m∏
i=1

ni∏
j=1

∏
y≥0

[
Kij(y) exp(Xiβ)dΦ̂(y,β)h0(exp(Xiβ)Φ̂(y−,β))

]dNij(y)

. (4.9)

Second, we derive the likelihood function of the random length Ni. As a discrete

time-to-event variable, the random length Ni involves left truncation and right cen-

soring issues. Let Li denote the left truncation variable and CN
i be the right censoring

time, which is assumed to be independent of Ni. Conditioning on that Ni ≥ Li, the

observed data on the discrete time-to-event process Ni for the i-th subject consists of

(Ñi,∆i), where Ñi = min(Ni, C
N
i ), and ∆i = I(Ni ≤ CN

i ) is the censoring indicator.
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Assuming that a subject enters the study after time li, i.e., the left truncation Li = li,

the likelihood contribution from the i-th subject for Ni is

m∏
i=1

Pr{Ni = ni|Ni > li,Xi; γ,β,α(ξ)}]∆i Pr{Ni > ni|Ni > li,Xi; γ,β,α(ξ)}1−∆i

(4.10)

When Ni is assumed to follow a CLL (4.4), it is easy to calculate that

Pr{Ni = ni|Ni > li,Xi; γ,β,α} = λ(ni|Xi; γ,β,α)

ni−1∏
j=li+1

(1− λ(j|Xi; γ,β,α)) ;

Pr{Ni > ni|Ni > li,Xi; γ,β,α} =

ni∏
j=li+1

(1− λ(j|Xi; γ,β,α)) .

Given the left truncation Li = li and covariates Xi, the likelihood contribution from

Ni taking into account the left truncation and right censoring can be written as

m∏
i=1

ni∏
j=li+1

(
λ(j|Xi; γ,β,α)

1− λ(j|Xi; γ,β,α)

)ηij
(1− λ(j|Xi; γ,β,α))

where ηij is the longitudinal censoring indicator for Ni. That is, ηij = 1 if an event

occurs at the the j -th time for the i -th individual, and ηij = 0 otherwise.

In the scenario where the discrete model for Ni is defined as a proportional odds

model (4.5), we can obtain that

Pr{Ni = ni|Xi; γ,β} = 1/(1 + exp(−ξni − γXiβ))− 1/(1 + exp(−ξni−1 − γXiβ));

Pr{Ni > ni|Xi; γ,β} = 1− 1/(1 + exp(−ξni−1 − γXiβ)).

where ξ0 is defined as −∞ and ξJ is assumed to be ∞. Based on the two quantities

above, the likelihood function of Ni for the discrete proportional odds model has a

form of

m∏
i=1

[
1

1 + exp(−ξni − γXiβ)
− 1

1 + exp(−ξni−1 − γXiβ)

]∆i
[
1− 1

1 + exp(−ξni−1 − γXiβ)

]1−∆i

Combining the likelihood contribution (4.9) from Yi given Ni = ni and the like-
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lihood contribution (4.10) from Ni yields the likelihood for the joint model

m∏
i=1

ni∏
j=1

∏
y≥0

[
Kij(y) exp(Xiβ)dΦ̂(y,β)h0(exp(Xiβ)Φ̂(y−,β))

]dNij(y)

·
m∏
i=1

Pr{Ni = ni|Ni > li,Xi; γ,β}∆i Pr{Ni > ni|Ni > li,Xi; γ,β}1−∆i (4.11)

Estimating equations for the marginal parameters (β, γ,α(ξ)) are derived by tak-

ing the first derivative of the logarithm of the likelihood function (4.11). Under the

regularity conditions, the consistency and asymptotic normality of (β̂, γ̂, α̂(ξ̂)) as well

as the weak convergence of Φ̂(y,β) can be established (See Appendix I).

4.3.2 Second stage: estimation of association parameter

In the second stage, (β, γ,α(ξ)) and φ(yij) are replaced by (β̂, γ̂, α̂(ξ̂)) and φ̂(yij, β̂)

obtained in the first stage in the full log-likelihood function, which produces the

pseudo log-likelihood for estimating θ as

lm(θ) = c
(
Ŝ(yi1|Xi; β̂), ..., Ŝ(yini |Xi; β̂)|Ni = ni, ; θ

)
where c(·) is the density function associated with the copula function C(·) in model

(4.1) and Ŝ(yij|Xi; β̂) is the estimated marginal survival function. For example, if we

have a Clayton-Oakes model, the pseudo-likelihood for θ is

lm(θ) =
m∑
i=1

Di∑
j=1

log ((j − 1)θ + 1)−
m∑
i=1

ni∑
j=1

θδij log
(
Ŝ(yij|Xi; β̂)

)
−

m∑
i=1

(
1

θ
+Di

)
log

(
ni∑
j=1

Ŝ(yij|Xi; β̂)−θ − ni + 1

)
(4.12)

where Di =
∑ni

j=1 δij. When the multivariate survival model has a form of positive

stable model, the pseudo-likelihood for estimating θ becomes

lm(θ) ∝
m∑
i=1

ni∑
j=1

δij

(
1

θ
− 1

)
log (− logS(yij)) +

m∑
i=1

[
Di(θ − 1) logSi + log J (Di, Si)− Sθi

]
(4.13)
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where Di =
∑ni

j=1 δij, Si =
∑ni

j=1 (− logS(yij))
1
θ , and J(Di, Si) is a function of Di and

Si that has a form of

J(Di, Si) =

Di−1∑
k=0

ΞDi,kS
−kθ
i .

Here ΞDi,k is a polynomial of degree k and can be calculated recursively by the

following equations ΞDi,0 = 1, ΞDi,k = ΞDi−1,k + ΞDi−1,k−1[(Di− 1)/θ− (Di− k)]; k =

1, ..., Di − 2, and ΞDi,Di−1 = θ1−DiΓ(Di − θ)/Γ(1− θ).

The pseudo log-likelihood for θis continuous in θ and is defined at zero and for

negative values close to zero. The estimator of θ is the root of the pseudo score equa-

tion, i.e., the derivative of (4.12) or (4.13) with respective to θ, which can be solved

by Newton-Raphson method. The large sample properties of θ̂ can be derived based

on the asymptotic results for β̂ (See Appendix II).

4.4 Simulation Studies

Simulation studies are carried out to evaluate the performance of the two-stage es-

timators. 500 simulations are conducted with different sample sizes (200,400,600)

under joint model (4.6). We first generate the discrete random length variable Ni

from the complementary-log-log model

λ(j|Xi; γ,β) = 1− exp[− exp(αj + γ(β1Xi1 + β2Xi2))] (4.14)

where αj represents the baseline hazard rate associated with j and Xi1 and Xi2

correspond to the first two levels of a categorical covariate that has three groups (the

third group is set as the reference level). According to this model, Ni is assumed

to follow a multinomial distribution that take values from 1 to J∗ with probability

p = (p1, ..., p12, pJ∗)
T and

∑J∗

j=1 pj = 1 where J∗ > 0 is an unknown positive integer.
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The pj’s are obtained as

Pr{Ni = 1|Xi; γ,β} = λ(1|Xi; γ,β);

Pr{Ni = j|Xi; γ,β} = λ(j|Xi; γ,β)

j−1∏
k=1

(1− λ(j|Xi; γ,β)), j = 2, ..., J ;

Pr{Ni > J |Xi; γ,β} =
J∏
j=1

(1− λ(j|Xi; γ,β,α)) .

where J is the maximum value of observed Ni and λ(j|Xi) is defined in model (4.14).

To reduce the dimension of parameters, we only assume four baseline parameters for

the random length denoted by (α1, α2, α3, α4). In other words, restrictions are posed

for baseline parameters.

Alternatively, we generate the discrete random length Ni from the proportional

odds model

logit (Pr{Ni ≤ j|Xi; γ,β}) = ξj + γ(β1Xi1 + β2Xi2), j = 1, ..., J, (4.15)

where J is the maximum value of observed Ni, ξj is associated with baseline log

odds for random length equal to j, and Xi1 and Xi2 are defined as in model (4.14).

Similarly, we assume that Ni is generated from a multinomial distribution that take

values from 1 to J∗ ≥ J with probability p = (p1, ..., pJ , ..., pJ∗)
T and

∑J∗

j=1 pj = 1

where pj the is probability of having an event at the j the length defined as

Pr(Ni = 1|Xi; γ,β) =
1

1 + exp(−ξ1 − γ(β1Xi1 + β2Xi2))
;

Pr(Ni = j|Xi; γ,β) =
1

1 + exp(−ξj − γ(β1Xi1 + β2Xi2))
−

1

1 + exp(−ξj−1 − γ(β1Xi1 + β2Xi2))
, j = 2, ..., J − 1;

Pr(Ni ≥ J |Xi; γ,β) = 1−
1

1 + exp(−ξJ−1 − γ(β1Xi1 + β2Xi2))
.

As in the complementary-log-log model (4.14), we pose restrictions to the base-

line parameters δj’s so that only four baseline parameters need to be estimated. In

addition, the vectors (α1, α2, α3, α4) and (ξ1, ξ2, ξ3, ξ4) are carefully chosen so that

the underlying probability of having an event at each j in model (4.14) and model
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(4.15) are close. In this way, we can legitimately compare the estimators from the

two models.

Since the random length is also a discrete survival time, we assume an independent

censoring random variable Ci for Ni, where Ci follows a discrete uniform distribution

as Unif[a, b], where a and b are chosen to give censoring percentages for Ni. Here, we

choose a = 0 and b = 12. That is, the maximum observation of Ni is 12 (i.e., J = 12).

GivenNi = ni, the observations of the vector of multiple measurements Yi are sim-

ulated from the copula model (4.1) with a marginal transformation model (4.2). First,

we generate a vector of observed survival function (S(yi1|Xi;β), ..., S(yini |Xi;β))T

from a copula model for the i -th subject and Yij’s from the same subject i will have

a common association parameter θ. From model (4.2), the baseline survival function

S0(yij) can be expressed as a function of S(yij|Xi;β). If we assume the baseline sur-

vival follows a Weibull distribution, we can solve the equation to obtain the observed

menstrual cycle lengths Yij.

Table 1-Table 3 summarize the results from the simulation for each case. Bias

along with the associated percentage of bias, standard deviation and average standard

error, as well as the 95% coverage probability for each parameter are presented.

Each table corresponds to different sample sizes and two different marginal models

(complementary-log-log model and proportional odds model) for random length Ni

are compared.

The results show that biases of β and α(ξ) are relatively small. The bias of

the scaling parameter γ and association parameter θ is slightly larger in the scenario

where sample size is small (m = 200) and the association parameter is large (θ = 3.0).

When sample size increases, the estimates for all the parameters are very close to the

true values with quite small percentages of bias. It can be seen that the estimated

standard deviations agree well with the average standard errors calculated based on

the simulations. In addition, the standard errors of the parameter estimators decrease
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with the increasing of sample size. The 95% coverage probabilities also demonstrate

that the two-stage method performs very well. Most of the coverage probabilities are

controlled and close to 95% except for a few cases due to the relatively large bias in

the parameter estimates. Also, it is worth noticing that the estimates of β, γ and θ

are similar under different model specifications. That is, when we compare different

transformation model for Yi or different discrete survival model for Ni, the estimation

procedure can perform equally well.

To evaluate the efficiency loss due to using a working independence assumption,

the parameter estimators from the two-stage method are compared with those from

the EM algorithm proposed by Liu et al. (unpublished, 2014). Specifically, standard

deviations are obtained for each method, denoted by SDEM and SDTS, and the

relative efficiency is calculated as SDEM/SDTS. The results are displayed in Table

4. From Table 4, it can be seen that the estimates based on EM algorithm have

smaller standard deviations than those from the two-stage approach, but the efficiency

loss of the two-stage estimators is less than 5% compared to the EM algorithm. A

similar phenomenon has been observed in previous literature (Glidden, 2000) where

the random length is treated as a fixed number. Therefore, although we lose a small

amount of efficiency, the computational burden is notably reduced by using the two-

stage estimation procedure.

4.5 Application to MSSWOW Data

We apply the two-stage approach for the joint model with a marginal transformation

model to the MSSWOW data. In this joint model, the repeatedly measured menstrual

cycle lengths for each woman are assumed to follow a copula model (the Clayton-

Oakes or the positive stable model) and TTP has a discrete distribution in terms of

the complementary log-log model or the proportional odds model. For the copula

model part, the marginal survival function has a form of model with the logarithmic
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Table 4.1. Simulation Results for Two-Stage Methods-Clayton-Oakes model
and r = 0

r = 0 and CLL Model r = 0 and PO Model

True Bias(%) SD SE CP Bias(%) SD SE CP

θ = 0.5 and n = 200

γ 4.0 0.219(5.5) 0.724 0.719 0.92 0.155(3.9) 0.794 0.804 0.93

β1 0.3 -0.001(0.4) 0.104 0.105 0.95 0.001(0.3) 0.104 0.106 0.96

β2 0.5 0.006(1.2) 0.134 0.132 0.95 0.005(0.9) 0.125 0.131 0.94

θ 0.5 -0.023(4.6) 0.067 0.065 0.93 -0.018(3.7) 0.066 0.067 0.94

θ = 0.5 and n = 400

γ 4.0 0.086(2.2) 0.534 0.536 0.93 0.109(2.7) 0.537 0.534 0.93

β1 0.3 0.002(0.6) 0.073 0.074 0.94 -0.004(1.4) 0.077 0.078 0.94

β2 0.5 0.007(1.3) 0.093 0.096 0.96 0.004(0.8) 0.095 0.096 0.95

θ 0.5 -0.013(2.6) 0.049 0.051 0.94 -0.012(2.3) 0.049 0.050 0.94

θ = 0.5 and n = 600

γ 4.0 0.064(1.6) 0.404 0.418 0.95 0.038(1.0) 0.405 0.407 0.94

β1 0.3 0.002(0.6) 0.061 0.060 0.96 0.003(0.8) 0.061 0.062 0.96

β2 0.5 0.005(1.0) 0.079 0.079 0.95 0.006(1.1) 0.077 0.080 0.94

θ 0.5 -0.008(1.6) 0.040 0.042 0.94 -0.009(1.8) 0.042 0.042 0.93

θ = 3.0 and n = 200

γ 4.0 0.226(5.7) 0.733 0.738 0.94 0.207(5.2) 0.789 0.790 0.93

β1 0.3 0.008(2.8) 0.153 0.148 0.95 0.011(3.7) 0.165 0.161 0.94

β2 0.5 0.024(4.9) 0.186 0.185 0.94 0.026(5.1) 0.188 0.185 0.93

θ 3.0 -0.158(5.3) 0.227 0.249 0.93 -0.175(5.8) 0.275 0.275 0.91

θ = 3.0 and n = 400

γ 4.0 0.099(2.5) 0.531 0.528 0.94 0.099(2.5) 0.577 0.597 0.94

β1 0.3 0.007(2.3) 0.101 0.105 0.94 0.002(0.7) 0.113 0.111 0.95

β2 0.5 0.014(2.8) 0.132 0.135 0.95 0.011(2.2) 0.133 0.132 0.94

θ 3.0 -0.089(3.0) 0.206 0.202 0.93 -0.093(3.1) 0.195 0.194 0.93

θ = 3.0 and n = 600

γ 4.0 0.057(1.4) 0.495 0.475 0.94 0.054(1.3) 0.494 0.487 0.93

β1 0.3 0.002(0.8) 0.081 0.083 0.95 -0.003(0.9) 0.090 0.094 0.95

β2 0.5 -0.004(0.9) 0.107 0.109 0.95 0.005(1.0) 0.113 0.119 0.94

θ 3.0 -0.062(2.1) 0.171 0.168 0.94 -0.064(2.1) 0.165 0.169 0.93
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Table 4.2. Simulation Results for Two-Stage Methods-Clayton-Oakes model
r = 0.5

r = 0.5 and CLL Model r = 0.5 and PO Model

True Bias(%) SD SE CP Bias(%) SD SE CP

θ = 0.5 and n = 200

γ 4.0 -0.085(2.1) 0.674 0.693 0.95 -0.141(3.5) 0.869 0.839 0.95

β1 0.3 0.011(3.5) 0.108 0.111 0.96 0.009(2.9) 0.127 0.123 0.95

β2 0.5 0.027(5.5) 0.134 0.135 0.94 0.025(4.9) 0.151 0.139 0.95

θ 0.5 -0.007(1.4) 0.074 0.072 0.94 -0.009(1.7) 0.070 0.068 0.96

θ = 0.5 and n = 400

γ 4.0 -0.087(2.2) 0.524 0.489 0.96 -0.126(3.2) 0.589 0.547 0.96

β1 0.3 0.004(1.2) 0.076 0.071 0.96 0.006(2.1) 0.089 0.081 0.96

β2 0.5 0.016(3.2) 0.093 0.088 0.95 0.012(2.4) 0.100 0.112 0.94

θ 0.5 0.004(0.7) 0.056 0.053 0.96 -0.011(2.1) 0.050 0.052 0.96

θ = 0.5 and n = 600

γ 4.0 -0.065(1.6) 0.421 0.443 0.95 -0.053(1.3) 0.505 0.510 0.95

β1 0.3 0.006(1.8) 0.058 0.065 0.96 0.005(1.7) 0.065 0.070 0.96

β2 0.5 0.013(2.5) 0.075 0.078 0.96 0.006(1.2) 0.083 0.084 0.96

θ 0.5 -0.003(0.6) 0.045 0.044 0.95 -0.006(1.2) 0.033 0.029 0.95

θ = 3.0 and n = 200

γ 4.0 -0.238(6.0) 0.852 0.853 0.94 -0.168(4.2) 1.062 1.074 0.95

β1 0.3 0.023(7.7) 0.144 0.140 0.93 0.028(9.4) 0.179 0.183 0.96

β2 0.5 0.047(9.3) 0.172 0.177 0.93 0.047(9.4) 0.210 0.243 0.93

θ 3.0 -0.204(6.8) 0.277 0.275 0.95 -0.133(4.4) 0.276 0.220 0.93

θ = 3.0 and n = 400

γ 4.0 -0.087(2.2) 0.639 0.648 0.94 -0.150(3.7) 0.756 0.757 0.94

β1 0.3 0.011(3.8) 0.099 0.103 0.94 0.017(5.7) 0.121 0.124 0.93

β2 0.5 0.024(4.9) 0.123 0.127 0.95 0.026(5.1) 0.143 0.136 0.94

θ 3.0 -0.120(3.9) 0.194 0.205 0.95 -0.139(4.6) 0.198 0.183 0.94

θ = 3.0 and n = 600

γ 4.0 -0.054(1.3) 0.567 0.508 0.93 -0.092(2.3) 0.563 0.558 0.94

β1 0.3 0.008(2.5) 0.080 0.078 0.95 0.007(2.3) 0.096 0.097 0.93

β2 0.5 0.015(3.0) 0.103 0.096 0.94 0.012(2.4) 0.112 0.105 0.94

θ 3.0 -0.083(2.8) 0.167 0.165 0.95 -0.098(3.3) 0.141 0.145 0.95
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Table 4.3. Simulation Results for Two-Stage Methods-Clayton-Oakes model
and r = 1

r = 1 and CLL Model r = 1 and PO Model

True Bias(%) SD SE CP Bias(%) SD SE CP

θ = 0.5 and n = 200

γ 4.0 -0.080(2.0) 0.551 0.540 0.95 -0.170(4.2) 0.806 0.880 0.94

β1 0.3 0.015(4.9) 0.110 0.107 0.95 0.023(7.7) 0.127 0.132 0.95

β2 0.5 0.025(5.0) 0.123 0.124 0.94 0.041(8.3) 0.157 0.160 0.94

θ 0.5 -0.006(1.2) 0.074 0.078 0.96 -0.005(0.9) 0.077 0.072 0.95

θ = 0.5 and n = 400

γ 4.0 -0.069(1.7) 0.391 0.424 0.95 -0.122(3.1) 0.618 0.606 0.95

β1 0.3 0.011(3.6) 0.069 0.079 0.96 0.013(4.4) 0.083 0.088 0.95

β2 0.5 0.019(3.7) 0.082 0.094 0.95 0.027(5.3) 0.109 0.109 0.95

θ 0.5 -0.005(0.9) 0.054 0.056 0.95 -0.001(0.2) 0.054 0.054 0.96

θ = 0.5 and n = 600

γ 4.0 -0.021(0.5) 0.240 0.227 0.95 -0.071(1.8) 0.505 0.528 0.96

β1 0.3 0.007(2.3) 0.036 0.038 0.96 0.008(2.6) 0.065 0.069 0.95

β2 0.5 0.006(1.2) 0.063 0.065 0.95 0.014(2.8) 0.084 0.092 0.96

θ 0.5 -0.003(0.6) 0.049 0.044 0.96 -0.005(1.0) 0.042 0.044 0.94

θ = 3.0 and n = 200

γ 4.0 -0.176(4.4) 0.705 0.719 0.94 -0.282(7.0) 1.056 0.975 0.93

β1 0.3 0.028(9.2) 0.148 0.156 0.94 0.026(8.6) 0.168 0.179 0.93

β2 0.5 0.041(8.2) 0.177 0.186 0.96 0.033(6.7) 0.225 0.224 0.95

θ 3.0 -0.197(6.6) 0.289 0.284 0.93 -0.183(6.1) 0.284 0.275 0.92

θ = 3.0 and n = 400

γ 4.0 -0.093(2.3) 0.529 0.519 0.93 -0.209(5.2) 0.843 0.858 0.94

β1 0.3 0.010(3.2) 0.099 0.092 0.95 0.023(7.7) 0.123 0.142 0.94

β2 0.5 0.024(4.8) 0.121 0.115 0.95 0.028(5.6) 0.167 0.183 0.94

θ 3.0 -0.098(3.3) 0.210 0.199 0.95 -0.102(3.4) 0.205 0.207 0.95

θ = 3.0 and n = 600

γ 4.0 -0.044(1.1) 0.395 0.461 0.94 -0.146(3.7) 0.472 0.499 0.95

β1 0.3 0.003(0.8) 0.075 0.085 0.95 0.010(3.3) 0.042 0.039 0.95

β2 0.5 0.015(3.1) 0.090 0.101 0.96 0.013(2.6) 0.055 0.059 0.93

θ 3.0 -0.074(2.5) 0.174 0.164 0.95 -0.007(1.4) 0.162 0.174 0.95
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Table 4.4. Relative Efficiency of the EM Algo-
rithm and Two-Stage Method(n = 400)

Models Parameters SDEM SDTS RE

r=0 γ(4.0) 0.523 0.546 0.958

β1(0.3) 0.095 0.097 0.979

β2(0.5) 0.098 0.102 0.961

θ(0.5) 0.051 0.053 0.962

r=0.5 γ(4.0) 0.578 0.591 0.978

β1(0.3) 0.077 0.079 0.975

β2(0.5) 0.084 0.088 0.954

θ(0.5) 0.052 0.054 0.963

r=1 γ(4.0) 0.842 0.866 0.972

β1(0.3) 0.197 0.207 0.952

β2(0.5) 0.210 0.218 0.963

θ(0.5) 0.062 0.064 0.969

transformations as Sε(s) = [1 + r exp(s)]−
1
r , r ≥ 0 and we consider r = 0, 0.5 and 1,

respectively.

The model fitting results are summarized in Table 5, Table 6 and Table 7. Each

model indicates that there exists a significant age effect on the distribution of men-

strual cycle lengths. The size of the effect gets larger as women get younger compared

to the oldest age group (36-41). All of the covariates are significant with regards to

TTP. The scaling parameter γ̂ is significantly lower than zero in all three models,

indicating that menstrual cycle lengths and TTP are significantly associated through

underlying aging effects. This implies that with the increasing of a woman’s age, we
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observe longer menstrual cycle and lower probability of getting pregnant. Adjusting

for the impact of menstrual cycle lengths, women between 19 and 25 have the highest

risk of getting pregnant, followed by those between 26 and 30 and those between 31

and 35. The women in age group 36 to 41 have the lowest pregnancy rate. Smoking

was also a significant factor associated with menstrual lengths and TTP. Specifically,

being a smoker is likely to increase the menstrual cycle length and reduce the proba-

bility of getting pregnant. There is no evidence showing a significant impact of BMI

on both outcomes. In addition, the frequency of unprotected sex during each cycle

is quite influential on TTP. The estimated association parameter θ̂ was found to be

significantly greater than zero in both Clayton-Oakes model and the positive stable

model, implying a modest correlation was found among menstrual cycle lengths from

the same woman.

By comparing the model-based and the Kaplan-Meier survival curves of Yij (see

Appendix III), it can be shown that the joint model where the copula model part has

a marginal proportional odds model fits the data better than other marginal models.

4.6 Discussion

This chapter proposed a flexible joint modeling approach for multivariate random

length data and applied the two-stage estimation method to obtain parameter es-

timators. Our proposed method can appropriately handle data complications such

censoring, truncation and missingness and at the same time can allow specifying dif-

ferent marginal models as well as copula models to accommodate different situations.

Furthermore, we showed that the two-stage estimators are consistent and asymptot-

ically normal and obtained the variance of the parameter estimators.

First, we specified a semiparametric linear transformation model for the multiple

measures, which relaxed the parametric assumption for analyzing menstrual cycle

lengths in MSSWOW study. Second, for the discrete survival time, a relative risk
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Table 4.5. Analysis of MSSWOW Data-r = 0 (m=470)

Model Effects Estimates SE P-Value

CLL model for TTP Age group 19-25 β11 -0.502 0.104 < .001

Age group 26-30 β12 -0.361 0.094 < .001

Age group 31-35 β13 -0.263 0.091 0.004

Age group 36-41 - - - -

BMI β2 -0.007 0.006 0.243

Smoking: Yes β3 0.174 0.068 0.011

Scaling parameter γ -1.130 0.516 0.028

Unsafe Sex β4 0.079 0.011 < .001

Association among Association-CO3 θ 0.338 0.034 < .001

cycle length Kendall’s tau-CO τ 0.145 0.012 < .001

Association-PS3 θ1 0.797 0.058 < .001

Kendall’s tau-PS τ1 0.203 0.058 < .001

PO model for TTP Age group 19-25 β11 -0.495 0.105 < .001

Age group 26-30 β12 -0.358 0.098 < .001

Age group 31-35 β13 -0.267 0.091 0.003

Age group 36-41 - - - -

BMI β2 -0.005 0.006 0.405

Smoking Status β3 0.177 0.071 0.013

Scaling parameter γ -0.774 0.305 0.011

Unsafe Sex β4 0.191 0.011 < .001

Association among Association-CO θ 0.337 0.033 < .001

cycle length Kendall’s tau-CO τ 0.144 0.012 < .001

Association-PS θ1 0.793 0.058 < .001

Kendall’s tau-PS τ1 0.207 0.058 < .001

1 The baseline parameters for the CLL model are α1=-3.424(SE:0.185), α2=-3.557(SE:0.137),

α3=-4.787(SE:0.521), α4=-3.197(SE:0.181), α5=-3.943(SE:0.119).

2 The baseline parameters for the proportional odds model are ξ1=-4.075(SE:0.485), ξ2=-

1.873(SE:0.355), ξ3=-1.702(SE:0.363), ξ4=-1.170(SE:0.361), ξ5=-1.015(SE:0.339).

3 CO stands for Clayton-Oakes model and PS stands for Positive Stable copula model.
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Table 4.6. Analysis of MSSWOW Data-r = 0.5 (m=470)

Model Effects Estimates SE P-Value

Joint Model: Age group 19-25 β11 -0.651 0.106 < .001

CLL model for TTP Age group 26-30 β12 -0.411 0.066 < .001

Age group 31-35 β13 -0.278 0.075 < .001

Age group 36-41 - - - -

BMI β2 -0.004 0.003 0.182

Smoking: Yes β3 0.347 0.094 < .001

Scaling parameter γ -0.792 0.293 0.007

Unsafe Sex β4 0.078 0.011 < .001

Association among Association-CO3 θ 0.357 0.073 < .001

cycle length Kendall’s tau-CO τ 0.151 0.026 < .001

Association-PS3 θ1 0.798 0.056 < .001

Kendall’s tau-PS τ1 0.202 0.056 < .001

Joint model: Age group 19-25 β11 -0.640 0.108 < .001

PO model for TTP Age group 26-30 β12 -0.407 0.067 < .001

Age group 31-35 β13 -0.261 0.072 < .001

Age group 36-41 - - - -

BMI β2 -0.003 0.003 0.317

Smoking Status β3 0.339 0.098 0.001

Scaling parameter γ -0.619 0.237 0.009

Unsafe Sex β4 0.193 0.010 < .001

Association among Association-CO θ 0.357 0.067 < .001

cycle length Kendall’s tau-CO τ 0.151 0.024 < .001

Association-PS θ1 0.798 0.057 < .001

Kendall’s tau-PS τ1 0.202 0.057 < .001

1 The baseline parameters for the CLL model are α1=-3.281(SE:0.181), α2=-3.415(SE:0.143),

α3=-4.645(SE:0.591), α4=-3.051(SE:0.186), α5=-3.787(SE:0.120).

2 The baseline parameters for the proportional odds model are ξ1=-3.922(SE:0.489), ξ2=-

1.796(SE:0.362), ξ3=-1.642(SE:0.349), ξ4=-1.152(SE:0.341), ξ5=-0.913(SE:0.315).

3 CO stands for Clayton-Oakes model and PS stands for Positive Stable copula model.
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Table 4.7. Analysis of MSSWOW Data-r = 1 (m=470)

Model Effects Estimates SE P-Value

Joint model: Age group 19-25 β11 -0.989 0.133 < .001

CLL model for TTP Age group 26-30 β12 -0.671 0.100 < .001

Age group 31-35 β13 -0.501 0.092 < .001

Age group 36-41 - - - -

BMI β2 -0.003 0.004 0.453

Smoking: Yes β3 0.334 0.080 < .001

Scaling parameter γ -0.482 0.209 0.021

Unsafe Sex β4 0.079 0.011 < .001

Association among Association-CO3 θ 0.367 0.091 < .001

cycle length Kendall’s tau-CO τ 0.155 0.032 < .001

Association-PS3 θ1 0.801 0.056 < .001

Kendall’s tau-PS τ1 0.199 0.056 < .001

Joint model: Age group 19-25 β11 -0.953 0.137 < .001

PO model for TTP Age group 26-30 β12 -0.616 0.104 < .001

Age group 31-35 β13 -0.430 0.096 < .001

Age group 36-41 - - - -

BMI β2 -0.007 0.006 0.243

Smoking Status β3 0.344 0.079 < .001

Scaling parameter γ -0.363 0.159 0.022

Unsafe Sex β4 0.194 0.010 < .001

Association among Association-CO θ 0.368 0.073 < .001

cycle length Kendall’s tau-CO τ 0.155 0.026 < .001

Association-PS θ1 0.800 0.055 < .001

Kendall’s tau-PS τ1 0.200 0.055 < .001

1 The baseline parameters for the CLL model are α1=-3.357(SE:0.174), α2=-3.491(SE:0.188),

α3=-4.719(SE:0.595), α4=-3.121(SE:0.196), α5=-3.853(SE:0.123).

2 The baseline parameters for the proportional odds model are ξ1=-3.972(SE:0.485), ξ2=-

1.727(SE:0.355), ξ3=-1.657(SE:0.363), ξ4=-1.221(SE:0.361), ξ5=-0.936(SE:0.339).

3 CO stands for Clayton-Oakes model and PS stands for Positive Stable copula model.
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model and a proportional odds model were proposed, which illustrates that our joint

model can be applied to different scenarios where the covariate effects on the hazard

rates of the discrete time may vary. Third, the two-stage estimation procedure was

developed to obtain the parameter estimators. Compared to the EM algorithm (Liu

et al., unpublished, 2014), the two-stage approach is computationally simple and ef-

ficiency loss is small. In particular, a nice feature of the two-stage method is that

the procedure can be easily implemented using existing software packages such as

SAS and R. This feature would be attractive to many epidemiologists and medical

scientists especially when one is interested in performing data analysis in cases where

the data structure is similar to MSSWOW study.
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Appendix I

Theorem 1: Under some regularity conditions, the limiting distribution of the pa-

rameter estimators π̂ = (β̂, γ̂, α̂(ξ̂)) is

√
(n)(π̂ − π0)

D−→ N
(
0,A−1Σ(A−1)T

)
as n→ +∞. π0 is the vector of true parameters. The matrices A and Σ are defined

as below.

A = n−1 · I(π) = n−1 ·
[
−∂U(π)

∂π

]

= n−1 · −


∂U(β)
∂β

∂U(β)
∂γ

∂U(β)
∂α

∂U(β)
∂γ

∂U(γ)
∂γ

∂U(γ)
∂α

∂U(β)
∂α

∂U(γ)
∂α

∂U(α)
∂α


where U(β), U(γ), and U(α) are the score functions based on the likelihood (4.12)

for β, γ, and α, respectively. That is, β̂, γ̂, and α̂ are the roots of those score

functions that satisfy U(β) = 0, U(γ) = 0, and U(α) = 0.

Let A11 = ∂U(β)/∂β, A12 = A21 = ∂U(β)/∂γ, A13 = A31 = ∂U(β)/∂α,

A22 = ∂U(γ)/∂γ, A23 = A32 = ∂U(γ)/∂α, and A33 = ∂U(α)/∂α. Then we can

express these quantities as

A11 = lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

∫ ω

0

[Xi − u(y)] XT
i ∂hε(q(y) + Xiβ)/∂βKij(y)dq(y)

+ ηij
∂2λ(j|Xi;β, γ,α)/∂β2 · λ(j|Xi;β, γ,α)− (∂λ(j|Xi;β, γ,α)/∂β)2

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β2)(1− λ(j|Xi;β, γ,α)) + (∂λ(j|Xi;β, γ,α)/∂β)2

(1− λ(j|Xi;β, γ,α))2

A12 = A21 =

lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

ηij
∂2λ(j|Xi;β, γ,α)/∂β∂γ · λ(j|Xi;β, γ,α)− ∂λ(j|Xi;β, γ,α)/∂β · ∂λ(j|Xi;β, γ,α)/∂γ

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β∂γ · (1− λ(j|Xi;β, γ,α)) + ∂λ(j|Xi;β, γ,α)/∂β · ∂λ(j|Xi;β, γ,α)/∂γ

(1− λ(j|Xi;β, γ,α))2
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A13 = A31 =

lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

ηij
∂2λ(j|Xi;β, γ,α)/∂β∂α · λ(j|Xi;β, γ,α)− ∂λ(j|Xi;β, γ,α)/∂β · ∂λ(j|Xi;β, γ,α)/∂α

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β∂α · (1− λ(j|Xi;β, γ,α)) + ∂λ(j|Xi;β, γ,α)/∂β · ∂λ(j|Xi;β, γ,α)/∂α

(1− λ(j|Xi;β, γ,α))2

A22 = lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

ηijηij
∂2λ(j|Xi;β, γ,α)/∂β2 · λ(j|Xi;β, γ,α)− (∂λ(j|Xi;β, γ,α)/∂β)2

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β2)(1− λ(j|Xi;β, γ,α)) + (∂λ(j|Xi;β, γ,α)/∂β)2

(1− λ(j|Xi;β, γ,α))2

A23 = A32 =

lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

ηij
∂2λ(j|Xi;β, γ,α)/∂γ∂α · λ(j|Xi;β, γ,α)− ∂λ(j|Xi;β, γ,α)/∂γ · ∂λ(j|Xi;β, γ,α)/∂α

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂γ∂α · (1− λ(j|Xi;β, γ,α)) + ∂λ(j|Xi;β, γ,α)/∂γ · ∂λ(j|Xi;β, γ,α)/∂α

(1− λ(j|Xi;β, γ,α))2

A33 = lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

ηijηij
∂2λ(j|Xi;β, γ,α)/∂α2 · λ(j|Xi;β, γ,α)− (∂λ(j|Xi;β, γ,α)/∂α)2

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂α2)(1− λ(j|Xi;β, γ,α)) + (∂λ(j|Xi;β, γ,α)/∂α)2

(1− λ(j|Xi;β, γ,α))2

Σ = lim
n→+∞

1

n

m∑
i=1


∑ni
j=1

∫ ω
0 [Xi − u(y)] dMij(y) + ηij

∂λ(j|Xi;β,γ,α)/∂β
λ(j|Xi;β,γ,α)

− (1− ηij) ∂λ(j|Xi;β,γ,α)/∂β
1−λ(j|Xi;β,γ,α)∑ni

j=1 ηij
∂λ(j|Xi;β,γ,α)/∂γ
λ(j|Xi;β,γ,α)

− (1− ηij) ∂λ(j|Xi;β,γ,α)/∂γ
1−λ(j|Xi;β,γ,α)∑ni

j=1 ηij
∂λ(j|Xi;β,γ,α)/∂α
λ(j|Xi;β,γ,α)

− (1− ηij) ∂λ(j|Xi;β,γ,α)/∂α
1−λ(j|Xi;β,γ,α)


⊗

2

where

u(y) =
limn→+∞

1
n

∑m
i=1

∑ni
j=1 Xihε{Xiβ + q(yij)}Kij(y)B(y, ỹij)

B2(y)

B2(y) = lim
n→+∞

1

n

m∑
i=1

ni∑
j=1

hε{Xiβ + q(yij)}Kij(y)

B(y, ỹij) = exp

{∫ y

ỹij

limn→+∞
1
n

∑m
i=1

∑ni
j=1 ∂hε{Xiβ + q(u)}/∂β ·Kij(u)

B2(u)
dq(u)

}
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A and Σ can be consistently estimated by substituting (β, γ,α, q(·)) with their esti-

mators (β̂, γ̂, α̂, ˆq(·)).

Proof:) Let q̂(·) = q̂(·;β0) where β0 is the true value of β. We first need to

show that q̂(·) is consistent. Define h∗(q(y)) = B(y, a) and H∗(q(y)) =
∫ y
b
h∗(q(u))du

where a > 0 and b are fixed finite numbers such that h∗ and H∗ are finite for all y.

Following Lu (2005), we have

H∗{q̂(y)} −H∗{q0(y)} =
1

n

m∑
i=1

ni∑
j=1

∫ y

0

h∗(q(u))

B2(u)
dMij(u;β0, q0) + op(n

− 1
2 )

∂q̂(y,β)

∂β

∣∣∣∣∣
β=β0

= B(y) + op(1)

By Law of Large Numbers, we can derive that

1

n
· −∂U(β)

∂β

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= − 1

n

m∑
i=1

ni∑
j=1

∫ ω

0

Xi
∂hε{Xiβ + q(yij)}/∂β
hε{Xiβ + q(yij)}

Kij(u)
∂hε{Xiβ + q(yij)}

∂β
XT
i dq0(u)

− 1

n

m∑
i=1

ni∑
j=1

∫ ω

0

C1(u)Kij(u)
∂hε{Xiβ + q(yij)}

∂β
XT
i dq0(u)

+
1

n

m∑
i=1

ni∑
j=1

∫ ω

0

C2(u)Kij(u)
∂hε{Xiβ + q(yij)}

∂β
XT
i dq0(u)

+
1

n

m∑
i=1

ni∑
j=1

ηij
∂2λ(j|Xi;β, γ,α)/∂β2 · λ(j|Xi;β, γ,α)− (∂λ(j|Xi;β, γ,α)/∂β)2

λ(j|Xi;β, γ,α)2

− 1

n

m∑
i=1

ni∑
j=1

(1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β2 · (1− λ(j|Xi;β, γ,α)) + (∂λ(j|Xi;β, γ,α)/∂β)2

(1− λ(j|Xi;β, γ,α))2

=
1

n

m∑
i=1

ni∑
j=1

C3ij + op(1)
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where

C1(u) =
1
n

∑m
i=1

∑ni
j=1 δijXiQ{Xiβ + q(yij)}Kij(u)B(u, ỹij)

B2(u)

C2(u) =
1
n

∑m
i=1

∑ni
j=1 δijXi · ∂hε{Xiβ + q(yij)}/∂β ·Kij(u)B(u, ỹij)

B2(u)

Q{Xiβ + q(yij)} =
hε{Xiβ + q(yij)} · ∂h2

ε{Xiβ + q(yij)}/∂β2 − (∂hε{Xiβ + q(yij)}/∂β)2

hε{Xiβ + q(yij)}2

C3ij =

∫ ω

0

[
Xi

∂hε{Xiβ + q(yij)}/∂β
hε{Xiβ + q(yij)}

− (C2(y)− C1(y))

]
Kij(y)

∂hε{Xiβ + q(yij)}
∂β

Xidq0(u)

+ ηij
∂2λ(j|Xi;β, γ,α)/∂β2 · λ(j|Xi;β, γ,α)− (∂λ(j|Xi;β, γ,α)/∂β)2

λ(j|Xi;β, γ,α)2

− (1− ηij)
∂2λ(j|Xi;β, γ,α)/∂β2 · (1− λ(j|Xi;β, γ,α)) + (∂λ(j|Xi;β, γ,α)/∂β)2

(1− λ(j|Xi;β, γ,α))2

Thus, using the fact that u(y) = C2(y) − C1(y) and applying the Law of Large

Numbers, we have that

1

n
· −∂U(β)

∂β

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A11 + op(1)

By straightforward calculation, we can obtain the following equation as

1

n
U(β0) =

1

n

m∑
i=1

ni∑
j=1

C4ij + op(1)

where

C4ij =

∫ ω

0

Xi
∂hε{Xiβ + q(yij)}/∂β
hε{Xiβ + q(yij)}

dMij(y,β0, q0)

+ δijXi

[
∂hε{Xiβ + q̂(yij)}/∂β
hε{Xiβ + q̂(yij)}

− ∂hε{Xiβ + q0(yij)}/∂β
hε{Xiβ + q0(yij)}

]
−Xi [hε{Xiβ + q̂(yij)} − hε{Xiβ + q0(yij)}]

+ ηij
∂λ(j|Xi;β, γ,α)/∂β

λ(j|Xi;β, γ,α)
− (1− ηij)

∂λ(j|Xi;β, γ,α)/∂β

(1− λ(j|Xi;β, γ,α))

Again, by Law of Large Numbers, we can show that

1

n
U(β0) =

1

n

m∑
i=1

Wi + op(1)

where Wi =
∑ni

j=1

∫ ω
0

(Xi−u(y))dMij(y)+ηij
∂λ(j|Xi;β,γ,α)/∂β
λ(j|Xi;β,γ,α)

−(1−ηij)∂λ(j|Xi;β,γ,α)/∂β
(1−λ(j|Xi;β,γ,α))

.
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Similarly, we can show that the following equations are true.

1

n
· −∂U(γ)

∂γ

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A22 + op(1)

1

n
· −∂U(α)

∂α

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A33 + op(1)

1

n
· −∂U(β)

∂γ

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A12(A21) + op(1)

1

n
· −∂U(β)

∂α

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A13(A31) + op(1)

1

n
· −∂U(γ)

∂α

∣∣∣∣∣
β=β0,γ=γ0,α=α0,q=q0

= A23(A32) + op(1)

Hence, if we apply the Central Limit Theorem for those summations of i.i.d.

random vectors with zero mean and finite variance, it follows that

√
n(π̂ − π0) =

1√
n

m∑
i=1

ni∑
j=1

A−1νij

with a Taylor approximation. That is,

√
n(π̂ − π0)

D−→ N
(
0,A−1Σ(A−1)T

)
where π̂ = (β̂, γ̂, α̂) and π0 = (β0, γ0,α0). The consistency of π̂ is therefore straight-

forward.
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Appendix II

Theorem 2: Under some regularity conditions, the estimator θ̂ obtained by the 2nd

stage is consistent and

√
nθ̂ − θ0)

D−→ N
(
0, σ2

θ

)
as n→ +∞,

where σ2
θ = I−1(θ0)σ2

ψI
−1(θ0), which is defined in details below.

I(θ0) = lim
n→+∞

− 1

n

∂2l(θ,β0, q0)

∂θ2

∣∣∣∣∣
θ=θ0

Ω̃(y) =
1

n

{
m∑
i=1

ni∑
j=1

θ−1
0

exp{θ0Hε(Xiβ0 + q(yij))}∑
j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1

− (θ−1
0 +Ni·(ω))

exp{θ0Hε(Xiβ0 + q(yij))}(1 + θ0Hε(Xiβ0 + q(yij)))∑
j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1

+ (1 + θ0Ni·(ω))
exp{θ0Hε(Xiβ0 + q(yij))}

[∑
j Hε(Xiβ + q0(yij)) exp{θ0Hε(Xiβ0 + q(yij))}

]
[∑

j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1
]2

+Nij(ω)

}
hε(Xiβ0 + q(yij))Kij(y)

ψi(θ0) =

ni∑
j=1

Nij(ω)Hε(Xiβ + q0(yij)) +

∫ ω

0

Ni·(u−)

θ0Ni·(u−) + 1
dNi·(u)

+ θ−2
0 log

 ni∑
j=1

exp(θ0Hε(Xiβ + q0(yij)))− ni + 1


− (θ−1

0 +Ni·(ω))

∑ni
j=1Hε(Xiβ0 + q(yij)) exp{θ0Hε(Xiβ0 + q(yij))}∑

j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1
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F̃ =
1

n

m∑
i=1

ni∑
j=1

{
m∑
i=1

ni∑
j=1

θ−1
0

exp{θ0Hε(Xiβ0 + q(yij))}∑
j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1

− (θ−1
0 +Ni·(ω))

exp{θ0Hε(Xiβ0 + q(yij))}(1 + θ0Hε(Xiβ0 + q(yij)))∑
j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1

+ (1 + θ0Ni·(ω))
exp{θ0Hε(Xiβ0 + q(yij))}

[∑
j Hε(Xiβ + q0(yij)) exp{θ0Hε(Xiβ0 + q(yij))}

]
[∑

j exp{θ0Hε(Xiβ0 + q(yij))} − ni + 1
]2

+Nij(ω)

}
hε(Xiβ0 + q(yij))Xi

σ2
ψ = E(Ψ2

1) = E

(
ψ1(θ0) +

∫ ω

0

Ω̃(y)dζ1(y) + F̃A−1Wi

)
where Ψi(θ) = ψi(θ) +

∫ ω
0

Ω̃(y)dζi(y) + F̃A−1Wi and

ζi(y) = B(y)A−1Wi +
∑ni

j=1
B(u,y)
B2(u)

dMij(y; β̂, q̂). The quantities B(y), B2(y), A−1

and Wi are as defined in Appendix I but with (β, q(·)) being substituted by their

estimators (β̂, q̂(·)).

Proof:) Based on the pseudo log-likelihood function in (4.12), we can obtain the

pseudo score function as

Ŝn(θ) =
m∑
i=1

ni∑
j=1

Nij(ω)Hε(Xiβ̂ + q(yij)) +
m∑
i=1

∫ ω

0

Ni·(u−)

θNi·(u−) + 1
dNi·(u)

+
m∑
i=1

θ−2 log

[
ni∑
j=1

exp{θHε(Xiβ̂ + q(yij))} − ni + 1

]

−
m∑
i=1

(θ−1 +Ni·(ω))

∑
j Hε(Xiβ̂ + q(yij)) exp{θ0Hε(Xiβ̂ + q(yij))}∑

j exp{θ0Hε(Xiβ̂ + q(yij))} − ni + 1

By appling a von Mises expansion of 1
n
Ŝn(θ) around the true values (β0, q0(·)), we

have

1√
n
Ŝn(θ0) =

1√
n
Sn(θ0) +

∫ ω

0

Ω̃(y)d
√
n
[
q̂(y, β̂)− q0(y)

]
+ F̃ ·

√
n(β̂ − β0) + op(1)

In Appendix I, we have shown that
√
n
(
β̂ − β0

)
= 1√

n

∑m
i=1 A−1Wi+op(1) and that

√
n
(
q̂(y; β̂)− q0(y)

)
= 1√

n

∑m
i=1 ζi(y) + op(1). Therefore,

1√
n
Ŝn(θ0) =

1

n

m∑
i=1

Ψi(θ0) + op(1)
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By Central Limit Theorem, the above result implies that

√
n
(
θ̂ − θ0

)
= I−1(θ0) · 1√

n
Ŝn(θ0) + op(1)

That is,
√
n
(
θ̂ − θ0

)
D−→ N (0, σ2

θ) as n → +∞ where σ2
θ = I−1(θ0)σ2

ψI
−1(θ0). The

consistency of θ̂ follows.
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Appendix III

Figure 4.1. Plot of Estimated Log Odds of Survival Function vs. Log(Y)(Survival
functions are estimated by Kaplan-Meier estimators.)

Figure 4.2. Plot of Estimated Log Odds of Survival Function vs. Log(Y)(Survival
functions are estimated by Kaplan-Meier estimators.)
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Chapter 5

Nonparametric Test for the

Conditional Independence between

a Biomarker and Time-to-Event

Data

5.1 Introduction

Investigation of biomarkers that predict the onset of disease has become an important

topic in medical research. Often, multiple measurements of a quantitative biomarker

are available and testing the association between the biomarker and the onset or

progression of disease is of interest. A typical biomarker analysis involves modeling

the repeatedly measured biomarker in terms of a linear mixed-effects model (Laird

and Ware, 1982; Lindstrom and Bates, 1990; Pearson et al., 1994; Morrell et al., 1995;

Slate and Turnbull, 2000) and conditional on the random effects, a survival model for

the time to event is assumed. The most commonly used model for the time-to-event

process is the Cox proportional hazard model (DeGruttola and Tu, 1994; Hogan and

Laird, 1997; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Wang and Taylor,

2001; Xu and Zeger, 2001; Ibrahim et al., 2004; Chi and Ibrahim, 2006; Diggle et

al., 2008; Rizopoulos and Ghosh, 2011). In some cases accelerated failure time model

is also considered (Tseng et al., 2005). This type of analysis is generally referred as
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a joint modeling of longitudinal and survival outcomes (Tsiatis and Davidian, 2004;

Ibrahim et al., 2010; Rizopoulos, 2013; Sousa, 2011).

Model-based inference via an Expectation-Maximization (Dempster et al., 1977)

algorithm has been proposed by many authors (Wulfsohn and Tsiatis, 1997; Hender-

son et al., 2000; Lin et al., 2002; Hsieh et al., 2006; Elashoff et al., 2008), and the

corresponding score test is used to test the null hypothesis that there is no association

between the biomarker and the onset of the disease. Jacqmin-Gadda et al. (2010)

developed a score test based on a joint model with latent classes and shared random

effects for testing the conditional independence of a longitudinal quantitative outcome

and a time to event. The null hypothesis assumes that the biomarker and the time

to event are independent given the latent classes while under the alternative hypoth-

esis, random effects from the mixed model have significant influence on the time to

event process. Concerns of the score test may arise with regards to the sensitivity to

model misspecifications (Lagakos and Schoenfeld, 1984; Andersen et al., 1993; Li et

al., 1996; DiRienzo and Lagakos, 2001). For example, Lagakos and Schoenfeld (1984)

and Lagakos (1988) investigated the loss of efficiency of the score test for testing the

regression coefficient in the proportional hazards model when the model is misspeci-

fied. Li et al. (1996) showed that the score test may perform poorly by inflating the

size and power when the model assumption is violated and the sample size is small.

DiRienzo and Lagakos (2001) suggested that the asymptotic distribution of the score

test under null hypothesis is not centered at zero when the proportional hazard model

is not correctly specified and the tests of treatment effects can be severely biased.

In this Chapter, our goal is to propose a nonparametric testing procedure that

is not sensitive to the semiparametric assumption (e.g., the proportional hazards or

accelerated failure time assumption) for the time to event model. In order to test the

hypothesis whether the biomarker is associated with the time to event, one may not

necessarily need to assume a semiparametric model such as the proportional hazards
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model for the time-to-event process. Our proposed approach involves two stages. We

first estimate the random effects from the biomarker model (Laird and Ware, 1982;

Robinson, 1991). Next we propose to consider all possible choices of cutoff points

of the predicted random effects by integrating the two-sample nonparametric test

statistic over all of the possible dichotomizations. We develop a nonparametric test

statistic that does not impose any model assumption on the survival data and at

the same time can utilize all the information provided by the random effects. Peng

and Fine (2008) introduced a nonparametric test statistic which can be considered

a generalization of the log-rank test for testing the regression coefficient associated

with a continuous covariate in a survival model. If the random effects are known, our

test statistic is the same as the one suggested by Peng and Fine (2008).

To obtain the asymptotic distribution of the proposed test statistic, we write

the dichotomized statistic in terms of independent and identically distributed (i.i.d.)

quantities. Under certain assumptions, we are able to show the normality of the pro-

posed test statistic under null and alternative hypotheses. In particular, we assume

that the random effects that characterize the longitudinal process are normally dis-

tributed and this distribution is identical at all event times (Wulfsohn and Tsiatis,

1997). That is, we assume that whether a subject drops out from the study due to

an event or censoring does not have influence on the distribution of random effects.

Specifically, this Chapter is organized as follows. In Section 2, we describe the

general framework for jointly modeling a longitudinal outcome and a time-to-event

process. In Section 3, we first introduce a model-based score test statistic under semi-

parametric model assumption. We formulate the testing problem of interest and the

propose a nonparametric testing procedure in Section 4. The details of asymptotic

properties of the test statistic are provided in the Appendix. In Section 5, simulation

studies are conducted to assess the performance of the proposed nonparametric test

including Type I error and power as well as comparison to model-based methods. We
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apply the proposed method to a real data from an epidemiological study in Section

6. Conclusions and remarks are given in Section 6.

5.2 The Joint Modeling Framework

Suppose that we have n subjects. For each subject, two outcomes are collected in-

cluding repeated measurements of a biomarker and time-to-event data. The repeated

measures for the i-th subject are denoted by the vector Yi = (Yi1, Yi2, ..., Yimi)
′, i =

1, ..., n; j = 1, ...,mi, where mi is the number of repeated measurements for the sub-

ject. We assume that Yij follows a linear mixed-effects model (Laird and Ware, 1982)

as

Yij = β0 + Xijβ + b0i + εij (5.1)

where β0 is the fixed intercept and β is the regression coefficients vector associated

with fixed effects Xij. b0i represents the random intercept for the i-th subject. The

error term is denoted by εij. Covariates in Xij can be time dependent. For the linear

mixed model (5.1), we assume that (i) b0i is normally distribution as N(0, σ2
b ); (ii) εij

has a normal distribution as N(0, σ2
e); (iii) εi′j′ is independent of each other, denoted

by εi′j′⊥εij for any i, j, i′, j′ (hereafter, the ’⊥’ is used to indicate that two variables

are independent); and (iv) b0i⊥εij, for any i, j.

In addition to the observations for the biomarker, a time-to-event process is also

observed for each subject, denoted by Ti, i = 1, ..., n. Let Q(t) be the survival function

of Ti without conditioning on the random effects. Our objective is to determine

whether Yi and Ti are independent conditional on the random effects b0i, i.e., whether

Q(t) depends on b0i. If the form of the model for Ti and b0i is completely unspecified,

the null hypothesis for the independence of Yi and Ti conditional on b0i is represented

by

H0 : Q(t|b0i ∈ B) = Q(t),∀B ∈ B (5.2)
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where Q(t|b0i ∈ B) denotes the survival function conditional on the random effects

and B is the support of b0i. If H0 is true, the survival function of Ti is not affected

by b0i, and therefore the biomarker and time to event are not associated.

In the literature, a typical assumption for time to event is the proportional haz-

ards model. The relationship between the repeated measures and the time to event

can be specified via shared random effects as λ(ti|b0i,Yi) = λ0(ti) exp(ηb0i) where

λ(·) is the hazard at ti, λ0(·) is the baseline hazard function, and b0i is the shared

random effects for both repeated measurements of biomarker and time-to-event pro-

cess. Another commonly used model assumption for time to event is the accelerated

failure time model that has a form of log Ti = ηb0i + εi where εi is the random error

with an unspecified distribution. However, there are many cases where these semi-

parametric assumptions do not hold and the corresponding model-based score test

is not valid. In Section 4, we will use simulation studies to show that our proposed

non-parametric testing procedure is more robust than the score test against the model

misspecifications.

Note that in this manuscript, our goal is to describe the relationship between the

risk of the event and the change of biomarker over time preceding the event, and

therefore, we only focus on the case where measurements of the biomarker after the

event are excluded. That is, we do not consider the scenarios where Ti is a time to

dropout (Jacqmin-Gadda et al., 2010). In addition, we assume that the censoring

and the random effects are independent, which is true in many cases of clinical trials.

5.3 Model Based Score Test

As described in the last section, we can assume that the time to event Ti follows some

parametric or semiparametric models. For example, a commonly used semiparametric
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survival model is Cox proportional hazards model that has a form of

λ(ti|b0i) = λ0(ti) exp(ηb0i)

Under the assumption of shared random effects joint model, the null and alternative

hypotheses for the conditional independence of the longitudinal process and the time

to event given the random effects are represented by

H0 : η = 0 vs. Ha : η 6= 0.

A score test can be derived for testing the above null hypothesis H0. First, the

likelihood function for (Yi, Ti) from all the subjects is written as

L(η, β; Yi, Ti) =
n∏
i=1

∫ [ mi∏
j=1

f(yij|b0i)

]
λ(ti|b0i)

δiS(ti|b0i)f(b0i)db0i

where λ(ti|b0i) = λ0(ti) exp(η0b0i) and S(ti|b0i) is the corresponding survival function

for Ti conditional on b0i and δi is the censoring indicator. Then the score function

can be obtained by taking the derivative of the logarithm of the likelihood function,

denoted by U(η, β) = ∂ logL(η,β;Yi,Ti)
∂η

=
∑n

i=1
1
Li

∂Li
∂η

. By simple calculations, we can

obtain that

∂Li(η, β; Yi, Ti)

∂η
=

∫ [ mi∏
j=1

f(yij|b0i)

]
λ(ti|b0i)

δiS(ti|b0i) [δi − Λ(ti|b0i)] b0if(b0i)db0i

where Λ(ti|b0i) is the cumulative hazard function associated with Ti conditional on

b0i. Finally, the score test statistic is derived by evaluating the score function U(η, β)

at η = 0 as

U(0, β) =
n∑
i=1

1∫
[
∏mi

j=1 f(yij|b0i)]f(b0i)db0i

[δi − Λ(ti)]

∫ [ mi∏
j=1

f(yij|b0i)

]
f(b0i)b0idb0i

=
n∑
i=1

[δi − Λ(ti)] · E(b0i|Yi)

where Λ(ti) is the cumulative hazard function of Ti when η = 0 and E(b0i|Yi) is the

posterior expectation of b0i given the observed longitudinal data. The asymptotic
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variance of the score test statistic is calculated as the second derivative of the log

likelihood function. To perform the testing procedure, the score test statistic and its

variance are calculated by replacing β by β̂ and Λ(ti) by Λ̂(ti) obtained under H0.

5.4 Nonparametric Testing Procedure

We propose to construct a nonparametric test statistic for the null hypothesis (5.2)

without imposing a regression model assumption for Q(t) and b0i. The rationale be-

hind our proposed method is as follows. If the null hypothesis is true, then for any

given cutoff point b of the random effects b0i, the survival distribution conditional on

b0i ≥ b and b0i < b should be equal, denoted by Q+(t|b) and Q−(t|b), respectively.

Testing the null hypothesis is equivalent to assessing the difference between Q+(t|b)

and Q−(t|b) uniformly over the support of b.

5.4.1 Derivation of the nonparametric test statistic

Since Q(t|b) and the random effects b0i can not be observed, the test statistic is es-

tablished based on the estimator of Q(t|b). Let bE0i denote the best linear unbiased

predictor (BLUP) of the random effects that is obtained using the Bayesian approach

(Henderson, 1975; Robinson, 1991) where the superscript E indicates that the empiri-

cal predicted random effects are used. Define Ȳi = 1
mi

∑mi
j=1 Yij and X̄i = 1

mi

∑mi
j=1 Xij.

An empirical BLUP for bE0i has a form of

bE0i =
miσ̂

2
b

miσ̂2
b + σ̂2

e

(Ȳi − β̂0 − X̄iβ̂) (5.3)

where (β̂0, β̂, σ̂
2
b , σ̂

2
e) are consistent estimators for (β0,β, σ

2
b , σ

2
e).

Let Q̂E
+(t|b) and Q̂E

−(t|b) represent the nonparametric estimators (i.e., Kaplan-

Meier estimator) for the conditional survival function based on that bE0i ≥ b and

bE0i < b. Instead of choosing an arbitrary cutoff point, we propose to integrate across

all possible cutoff points of b0i in order to combine all the information provided by
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the random effects. Therefore, the test statistic can be expressed as

TEn =
√
n

∫ b̂U

b̂L

∫ tU

tL

ŵE(t, b)
{
Q̂E

+(t|b)− Q̂E
−(t|b)

}
dtdb. (5.4)

where b̂U and b̂L are the empirical upper and lower limits of bE0i and the quantities

in the formula are defined as ŵE(t, b) =
ĈE+ (t|b)ĈE− (t|b)

p̂E+Ĉ
E
+ (t|b)+p̂E−ĈE− (t|b) , Q̂

E
+(t|b) = Q̂(t|bE0i ≥ b),

Q̂E
−(t|b) = Q̂(t|bE0i < b), p̂E+ = Pr{bE0i ≥ b}, and p̂E− = Pr{bE0i < b}. In particular,

p̂E+ and p̂E− are the empirical proportions of the stratification of bE0i ≥ b and bE0i < b.

ĈE
+ (t|b) and ĈE

− (t|b) are the Kaplan-Meier estimators of the censoring distribution

based on the bE0i ≥ b and bE0i < b. Formula (5.4) shows that the test statistic is calcu-

lated as the sum of the difference between the survival functions at each stratification

of bE0i ≥ b and bE0i < b weighted by a non-negative weight function. When random

effects b0i are known, the test statistic of (5.4) will be reduced to the one proposed

by Peng and Fine (2008).

5.4.2 Asymptotic property of the nonparametric test statis-

tic

In this section, we study the asymptotic properties of the proposed test statistic TEn

defined in (5.4). The main idea is provided as follows. First, it can be shown that the

BLUP of bE0i defined in formula (5.3) is asymptotically equivalent to υi(b0i+ ε̄i) where

υi =
miσ

2
b

miσ2
b+σ2

e
is a constant and ε̄i =

∑mi
j=1 εij is a random variable that is the average of

the random errors for each subject in the mixed model (5.1). Let Q̃(t|b) represent the

Kaplan-Meier estimator based on υi(b0i + ε̄i) and Q̂E(t|b) denote the plug-in Kaplan-

Meier estimator based on bE0i. We can show that the difference between Q̂E(t|b) and

Q̃(t|b) is asymptotically equal to zero. Next, we assume that the random error in the

mixed-effects model is independent of the time-to-event process, i.e., Ti ⊥ εij. Then

testing whether Q(t) is associated with υi(b0i + ε̄i) is equal to the test for whether

Q(t) depends b0i. Peng and Fine (2008) demonstrated that the test statistic based

on b0i converges to a normal distribution with mean zero and limited variance under
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the null hypothesis. By Slusky’s Theorem, we can establish that TEn based on the

plug-in Kaplan-Meier estimator Q̂E(t|b) also converges to a normal distribution with

a mean zero and some variance φ2
0 under H0. The results are stated in the following

theorem. The details of proof of the theorem can be found in the Appendix.

THEOREM: Given that φ2
0 < ∞, the test statistic TEn converges in distribution to

N(0, φ2
0) as n goes into infinity.

In order to carry out the proposed nonparametric testing procedure, we need to

derive the variance φ2
0 in the limiting distribution described in the above theorem.

When b0i are known, the corresponding variance of the test Tn, denoted by σ2
0, can

be estimated by

σ̂2
0 = n−1

n∑
i=1

[∫ bU

bL

∫ tU

tL

ŵ(t, b) {ι̂+,i(t|b)− ι̂−,i(t|b)} dtdb
]2

where ι̂+,i(t|b) is asymptotically equivalent to ι+,i(t|b) which is a function of the

Kaplan-Meier estimator based on b0i ≥ b and can be obtained by using influence

function. ι̂−,i(t|b) is defined similarly for b0i < b. However, there are some difficul-

ties due to the latent random effects. It is very complicated to derive the exact and

general form for ι̂E+,i(t|b) due to that it is conditioning on the estimated bE0i. Hence,

we suggest using a bootstrapping technique (Efron, 1994) to estimate the variance of

the test statistic TEn .

5.5 Simulation Studies

To evaluate the performance of the nonparametric testing procedure, we conduct

simulation studies in different settings. The simulation procedure is provided as

follows. First, we generate random observations for the random intercept from a

normal distribution with mean 0 and variance σ2
b where σ2

b is chosen to be 2, i.e., b0i ∼

N(0, 2), i = 1, ..., n. Conditional on b0i, the time-to-event process is generated from

a survival model. To evaluate the robustness of the proposed method against model
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misspecification, we consider the proportional hazards model that can be expressed

as

λ(ti|b0i,Yi) = λ0(ti) exp(η0b0i)

where the baseline hazard λ0(ti) is assumed to follow a Weibull distribution with a

scale of 2 and shape of 20. Another survival model we consider is the accelerated

failure time model that has a form of

log Ti = η0b0i + εi

where the error term is generated from a logistic distribution with a location pa-

rameter equal to 2 and a scale parameter of 0.5. That is, the proportional hazards

assumption does not hold under the accelerated failure model. The coefficient pa-

rameter η0 is set to be 0 under the null hypothesis and chosen to be 0.15 and 0.2 to

calculate the power of the test.

The censoring time for each subject, denoted by Ci, is generated from a Weibull

distribution, where the scale and shape parameters are chosen to given different cen-

soring percentages of 10%, 20%, and 30%. Then the observed time-to-event data are

T̃i = min(Ti, Ci).

Based on b0i, repeated measurements for the i-th subject are simulated from the

model

Yij = β0 + β1Xi + b0i + εij, j = 1, ...,mi

where (β0, β1) = (1, 1) and X1i is a random observation from uniform distribution

U [1, 10]. The error term εij is from a Normal distribution with mean 0 and variance

1. The number of repeated measures mi = 5 is fixed.

In particular, we propose to use a bootstrapping procedure to obtained the vari-

ance of the nonparametric test statistics based on the predicted random effects of b0i.

Bootstrapped samples are drawn randomly with replacement from (Yi, T̃i,∆i), i =

110



1, ..., n. We calculate TEn for each bootstrapped sample and variance estimator is

based on all the TEn from all bootstrapped samples (number of bootstrapping= 500).

For each setting, we generate 500 data sets with sample size n = 50, 100, and 200

and perform four tests, including (i) the score test based on proportional hazards as-

sumption using b0i (i.e., assuming that the underlying random effects are observed),

(ii) the score test based on proportional hazards assumption using the estimated

posterior expectation bE0i, (iii) the nonparametric test using b0i, and (iv) the nonpara-

metric test using bE0i. The size of test under null hypothesis and power of test under

alternative hypothesis are calculated as empirical proportions of rejection based on a

nominal significance level of 0.05. The simulation results are shown in Table 1.

Table 1 shows that when the survival model assumption is true, all the four

tests retain a type I error close to the nominal level of 0.05. Overall, the empirical

power increases with the increasing of sample size and effect size and decreasing of

censoring percentages. In all scenarios, the tests using b0i has more power compared

to the tests based on the estimated posterior expectation bE0i. When the proportional

hazards model is the true underlying survival model, the score test based on the

model assumption has larger power than the proposed nonparametric test. When

the underlying survival submodel has a nonproportional hazards form, both the score

test under the proportional hazards model assumption and nonparametric test are

still valid since the type I error is still close to nominal level of 0.05. However, the

nonparametric testing procedure is more powerful compared to the model-based score

test. In addition, the loss of power for score test is larger than that of nonparametric

test with the increasing of censoring percentage in the time to event. In conclusion,

the proposed nonparametric testing approach performs reasonably well compared to

the model-based score test. Particularly, if the model is not correctly specified, the

nonparametric test is more powerful than the score test.
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Table 5.1. Simulation Results for Continuous Time-to-Event and Longitudi-
nal Process

PH Submodel AFT Submodel

CP1 η0 n Ts
2 TEs Tn TEn Ts TEs Tn TEn

10% 0 50 0.062 0.066 0.066 0.072 0.046 0.054 0.076 0.078

100 0.050 0.054 0.058 0.064 0.052 0.056 0.066 0.076

200 0.052 0.054 0.058 0.062 0.050 0.052 0.060 0.062

0.15 50 0.292 0.256 0.270 0.200 0.362 0.306 0.368 0.310

100 0.496 0.420 0.430 0.414 0.546 0.502 0.592 0.540

200 0.768 0.716 0.690 0.644 0.704 0.668 0.862 0.808

0.2 50 0.450 0.400 0.420 0.366 0.498 0.460 0.512 0.472

100 0.748 0.668 0.628 0.578 0.770 0.694 0.790 0.732

200 0.958 0.906 0.918 0.876 0.980 0.946 0.982 0.972

20% 0 50 0.052 0.066 0.052 0.064 0.058 0.072 0.064 0.080

100 0.048 0.050 0.058 0.058 0.048 0.056 0.052 0.060

200 0.050 0.046 0.054 0.056 0.050 0.054 0.054 0.056

0.15 50 0.218 0.196 0.218 0.188 0.328 0.292 0.362 0.316

100 0.476 0.398 0.424 0.388 0.508 0.478 0.584 0.534

200 0.776 0.716 0.654 0.616 0.702 0.660 0.856 0.804

0.2 50 0.366 0.292 0.348 0.322 0.496 0.460 0.502 0.464

100 0.664 0.596 0.604 0.568 0.706 0.664 0.784 0.728

200 0.952 0.912 0.882 0.852 0.936 0.906 0.974 0.966

30% 0 50 0.054 0.060 0.068 0.076 0.062 0.068 0.070 0.076

100 0.048 0.052 0.052 0.058 0.054 0.058 0.056 0.056

200 0.048 0.050 0.046 0.050 0.052 0.054 0.054 0.066

0.15 50 0.224 0.166 0.206 0.174 0.308 0.272 0.354 0.312

100 0.416 0.376 0.368 0.346 0.502 0.472 0.584 0.532

200 0.698 0.650 0.624 0.564 0.696 0.652 0.852 0.790

0.2 50 0.330 0.290 0.336 0.296 0.484 0.442 0.488 0.426

100 0.648 0.558 0.548 0.518 0.680 0.626 0.782 0.700

200 0.910 0.874 0.844 0.804 0.906 0.874 0.970 0.952

1 CP: censoring percentages

2 Ts: the score test based on PH assumption using b0i

TEs : the score test based on PH assumption using BLUP bE0i

Tn: the nonparametric test using b0i

TEn : the nonparametric test using BLUP bE0i
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5.6 A Real Data Example

We consider a data set from a prospective cohort study known as the Michigan Poly-

brominated Biphenyl (PBB) Registry. In 1973, PBB, which is a man-made chemical

used as fire retardants in plastics, was accidentally mixed into livestock feed and con-

sumed by cattle, pigs, and chickens (Carter, 1976; Fries, 1985). Contaminated farm

products were sold throughout the state and residents across the state of Michigan

were exposed to PBB. Children who were born years later may also have been ex-

posed in the womb and through breastfeeding. Laboratory animal studies showed

that PBB exposure during pregnancy and early infancy could change the hormonal

signaling necessary in the developing fetus and neonate. Hence, there has been some

suspicion that PBB exposure may disrupt endocrine functions in humans. A study

is undertaken to investigate the relationship between PBB in utero and pubertal

development in females.

Specifically, if mothers participated in the Michigan PBB Registry, all female

offspring who were born during or after the Michigan PBB accident and who were

at least 5 years of age in 1997 were invited to take part in the study. Information

such as age at first menstrual period, whether breastfed, height, weight, and so on

was collected for the daughters. A self-report pubertal development was also included

using the Tanner stage schematic drawings of both breast and pubic hair development.

For mothers who were in PBB cohort, questions including breastfeeding duration,

farm chemical use, age at menarche, smoking status, alcohol consumption etc. were

asked. Finally, a total of 327 daughters between 524 years of age were eligible for the

menarche study (N = 327). Among the participants, 209 (63.9%) of them reached

menarche at the time of the study. The average age of the participants was 15 years

and the average age at menarche was 12.3 years. In addition, due to that limited

breast milk and maternal PBB measurements were available, PBB exposure in utero

was estimated using a maternal decay rate model (Blanck et al., 2000).
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Blanck et al. (2000) evaluated the effects of the initial PBB measurement of

mothers on the age to menarche of daughters. A Cox proportional hazards model was

utilized to analyze the pubertal development in daughters and PBB exposure. The

aim of our analysis is to evaluate the association between daughters’ age at menarche

and the repeated measurements of PBB level using the proposed nonparametric test.

First, a mixed model for PBB level is defined as

PBBij = β0 + β1 · (Timeij − Timei) + b0i + εij

with b0i ∼ N(0, σ2
b ) and εij ∼ N(0, σ2

e)

where PBBij is the PBB level in mothers, Timeij is defined as years before the date of

birth of daughters, Timei is the date of birth of daughters, b0i represents the random

intercept, and εij is the random error. Under this mixed effects model, the random

intercept has an interpretation of PBB level for each mother at time of giving birth

to the daughter (i.e., Timeij = Timei). The null hypothesis testing of interest is

H0 : Pr{T > t|b0i} = Pr{T > t}, where T stands for daughter’s age at menarche. In

other words, under null hypothesis, the longitudinal PBB exposure in mothers has

no impact on age at menarche in females.

Table 5.2. Testing PBB Exposure in Utero and Age at Menarche in Daugh-
ters

Scenarios Tests Test Statistic P-Values

Breastfed Nonparametric 4.0893 0.0432

& Mom’s age at menarche > 12.6 Score (PH) 5.1965 0.0226

Breastfed Nonparametric 2.5934 0.1073

& Mom’s age at menarche < 12.6 Score (PH) 1.6108 0.2044

Table 2 displays the results based on our proposed nonparametric test and model

based score tests using Cox proportional hazard (PH) model. For participants who
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were breastfed and whose mother’s age at menarche was less than 12.6 years, the rela-

tionship between PBB exposure at time of birth and risk of earlier age at menarche is

not significant using all three tests and p-values are 0.1776 and 0.1800, respectively. If

we adjust our analysis to those who were breastfed and whose mother’s age at menar-

che is greater than 12.6 years, PBB level at time of birth is significantly associated

with risk of reaching menarche with p-values from all three tests being less than 0.05.

5.7 Discussion

In this chapter, we developed a nonparametric testing procedure to investigate the

association between a longitudinal biomarker and a time to event process. For the re-

peatedly measured biomarker, we assume a linear mixed effects model (with random

intercept only). Based on the predicted random effects from the mixed model, we pro-

posed a nonparametric test statistic without imposing parametric or semiparametric

model assumptions for the time to event. We also established the asymptotic proper-

ties of the proposed test statistic and simulation studies were conducted to evaluate

its performance under finite sample size. The simulation results showed that the test

statistic has reasonable power to test the null hypothesis under different alternative

hypotheses including proportional hazards and accelerated failure time models. Fi-

nally, we applied the proposed method to Michigan PBB data. We found that PBB

exposure in mothers at time of giving birth and risk of earlier age at menarche in

daughters were significantly associated. Our proposed approach can be extended to

the case where random slope is also present in the linear mixed effects model. For

example, we have both random intercept and random slope as b0i+ b1itij in the linear

mixed model and we may be interested in testing the relationship between time to

event and b0i+b1itij (Wulfsohn and Tsiatis, 1997). With the assumption that (b0i, b1i)

is bivariate normal, the Bayes estimator of b0i + b1itij can be used to construct our

nonparametric test and the associated theory can be extended.

115



Appendix

I: Evaluation of asymptotic property of bE0i

In this manuscript, we consider using the empirical BLUP for bE0i that has a form of

bE0i = υ̂i(Ȳi − β̂0 − X̄iβ̂), i = 1, ..., n

where υ̂i =
miσ̂

2
b

miσ̂2
b+σ̂2

e
. For other estimators for b0i, the property can be derived similarly.

Based on mixed model (5.1), we have that Ȳi − β0 − X̄iβ̂ = b0i + ε̄i where ε̄i =

1
mi

∑mi
j=1 εij. Then we can write the difference between bE0i and υi(b0i + ε̄i) as

bE0i − υi(b0i + ε̄i) =
ωi√
n

(5.5)

where ωi√
n

= (υ̂i − υi)(b0i + ε̄i) − υ̂i(β̂0 − β0) − υ̂iX̄i(β̂ − β). Note that ωi’s are not

i.i.d. random variables.

If β̂0, β̂, σ̂2
b , and σ̂2

e are MLE (or REML) from the mixed model, we have β̂0
p→ β0,

β̂
p→ β, σ̂2

b

p→ σ2
b , and σ̂2

e

p→ σ2
e . By Slusky’s Theorem, we can obtain that υ̂i

p→ υi,

υ̂i(β̂0 − β0)
p→ 0, υ̂iX̄i(β̂ − β)

p→ 0, and (υ̂i − υi)(b0i + ε̄i)
p→ 0. Hence, β̂0 − β0 =

Op(1/
√
n), ‖β̂ − β‖ = Op(1/

√
n) and υ̂i − υ = Op(1/

√
n). Then with probability

1− γn, (β̂0 − β0) ≤ A
√

log n/n, ‖β̂ − β‖ ≤ B
√

log n/n and (υ̂i − υ) ≤ C
√

log n/n.

That is, β̂0 − β0, ‖β̂ − β‖ and υ̂i − υ are bounded by
√

log n/n.

We evaluate n−1
∑n

i=1 1{|ωi/
√
n| > αn} for some αn, such that αn → 0 and

αn
√
n/ log2 n→∞. Then with probability at least 1− γn,

n−1

n∑
i=1

1
{∣∣ωi/√n∣∣ > αn

}
= n−1

n∑
i=1

1
{∣∣∣(υ̂i − υi)(b0i + ε̄i)− υ̂i(β̂0 − β0)− υ̂iX̄i(β̂ − β)

∣∣∣ > αn

}
≤ sup
‖δ‖≤B,|η|<C

n−1

n∑
i=1

1
{∣∣∣η(b0i + ε̄i)− (υi + η

√
log n/n)δT X̄i

∣∣∣ > αn
√
n/
√

log n
}

Therefore, by Glivenko-Cantelli theorem, we have

sup
‖δ‖≤B,|η|<C

n−1

n∑
i=1

1
{∣∣∣η(b0i + ε̄i)− (υi + η

√
log n/n)δT X̄i

∣∣∣ > αn
√
n/
√

log n
}

p→ 0
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n−1

n∑
i=1

1{
∣∣ωi/√n∣∣ > αn}

p→ 0 (5.6)

II: Asymptotic equivalency of Q̂E(t|b) and Q̃(t|b)

We use Q̃(t|b) denote the stratified Kaplan-Meier estimator of QE(t|b) := Pr(T >

t|υi(b0i + ε̄i) > b), i = 1, ..., n. Following Peng and Fine (2008), we have

sup
0<t≤tU ,bL≤b≤bU

∣∣∣Q̃(t|b)−QE(t|b)
∣∣∣ p→ 0

Let Q̂E(t|b) denote the stratified Kaplan-Meier estimator based on b̂0i. If we can show

sup
0<t≤tU ,bL≤b≤bU

∣∣∣Q̂E(t|b)− Q̃(t|b)
∣∣∣ p→ 0, (5.7)

then we immediately obtain

sup
0<t≤tU ,bL≤b≤bU

∣∣∣Q̂E(t|b)−QE(t|b)
∣∣∣ p→ 0.

We denote υi(b0i + ε̄i) by Ui. Since

Q̂E(t|b)− Q̃(t|b) =
n∏
i=1

( ∑n
k=1 1{T̃k > T̃i, Ui + ωi/

√
n > b}∑n

k=1 1{T̃k > T̃i, Ui + ωi/
√
n > b}+ 1

)1{∆i=1,T̃i≤t,Ui+ωi/
√
n>b}

−
n∏
i=1

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)1{∆i=1,T̃i≤t,Ui>b}

,
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we have

log
(
Q̂E(t|b)

)
− log

(
Q̃(t|b)

)
=

n∑
i=1

1{∆i = 1, T̃i ≤ t, Ui + ωi/
√
n > b} log

( ∑n
k=1 1{T̃k > T̃i, Ui + ωi/

√
n > b}∑n

k=1 1{T̃k > T̃i, Ui + ωi/
√
n > b}+ 1

)

−
n∑
i=1

1{∆i = 1, T̃i ≤ t, Ui > b} log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)

=

n∑
i=1

1{∆i = 1, T̃i ≤ t, Ui + ωi/
√
n > b}×(

log

( ∑n
k=1 1{T̃k > T̃i, Ui + ωi/

√
n > b}∑n

k=1 1{T̃k > T̃i, Ui + ωi/
√
n > b}+ 1

)
− log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

))

+
n∑
i=1

(
1{∆i = 1, T̃i ≤ t, Ui + ωi/

√
n > b} − 1{∆i = 1, T̃i ≤ t, Ui > b}

)
×

log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)

:= I1 + I2

We consider I2 first,

|I2| ≤ n−1

n∑
i=1

(
1{∆i = 1, T̃i ≤ t, Ui + ωi/

√
n > b} − 1{∆i = 1, T̃i ≤ t, Ui > b}

)
× n max

1≤i≤n

∣∣∣∣∣log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)
1{T̃i ≤ t}

∣∣∣∣∣
:= I21 × I22
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For I21, we have

I21

≤ n−1
n∑
i=1

1{∆i = 1, T̃i ≤ t, |Ui − b| < |ωi/
√
n|}

≤ n−1
n∑
i=1

1{∆i = 1, T̃i ≤ t, |Ui − b| ≥ αn, |Ui − b| < |ωi/
√
n|}

+ n−1
n∑
i=1

1{∆i = 1, T̃i ≤ t, |Ui − b| < αn, |Ui − b| < |ωi/
√
n|}

≤ n−1
n∑
i=1

1{∆i = 1, T̃i ≤ t, αn < |ωi/
√
n|}+ n−1

n∑
i=1

1{∆i = 1, T̃i ≤ t, |Ui − b| < |αn|}

≤ n−1
n∑
i=1

1{αn < |ωi/
√
n|}+ n−1

n∑
i=1

1{|Ui − b| < |αn|}

By equation (5.6) and the property of the distribution of Ui (absolute continuous ),

we have

sup
t,b

n−1

∣∣∣∣∣
n∑
i=1

(
1{∆i = 1, T̃i ≤ t, Ui + ωi/

√
n > b} − 1{∆i = 1, T̃i ≤ t, Ui > b}

)∣∣∣∣∣ p→ 0(5.8)

It is straightforward to see that

n max
1≤i≤n

∣∣∣∣∣log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)
1{T̃i ≤ t}

∣∣∣∣∣
≤ n

∣∣∣∣∣log

( ∑n
k=1 1{T̃k > t, Ui > b}∑n

k=1 1{T̃k > t, Ui > b}+ 1

)∣∣∣∣∣ = n log

(
1− 1∑n

k=1 1{T̃k > t, Ui > b}+ 1

)

≤ 2n∑n
k=1 1{T̃k > t, Ui > b}+ 1

,

where the last inequality follows from that | log(1− t)| ≤ 2t for 0 < t < 1/2.

By Glivenko-Cantelli theorem, we have

sup
t,b

n max
1≤i≤n

∣∣∣∣∣log

( ∑n
k=1 1{T̃k > T̃i, Ui > b}∑n

k=1 1{T̃k > T̃i, Ui > b}+ 1

)
1{T̃i ≤ t}

∣∣∣∣∣ p

≤ 2/Pr(T̃ > tU , U > bU).

(5.9)

Combining (5.8) and (5.9) together yields supt,b |I2|
p→ 0. We can also show supt,b |I1|

p→

0 with similar arguments. Therefore, we can establish (5.7) and

sup
0<t≤tU ,bL≤b≤bU

∣∣∣Q̂E(t|b)−QE(t|b)
∣∣∣ p→ 0.
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follows. That is, the difference between the plug-in Kaplan-Meier estimator and the

corresponding true survival function is asymptotically zero. It is easy to see that,

given Ti ⊥ εij,

Ti ⊥ b0i ⇔ Ti ⊥ υi(b0i + ε̄i).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we focus our attention to method developments for the analysis of

a longitudinal outcome and a time-to-event process with the emphasis on modeling re-

peatedly measured menstrual lengths and time-to-pregnancy. The first four chapters

of this dissertation focus on the joint modeling approach for menstrual cycle lengths

and time-to-pregnancy from the MSSWOW data. Specifically, the multiple observa-

tions of the menstrual cycle lengths (MCLs) are modeled through a Clayton-Oakes

model and a discrete survival model is assumed for time-to-pregnancy (TTP) and a

share parameter is introduced to model the association between MCLs and TTP. For

marginal distribution in the Clayton-Oakes model, we consider both parametric and

semiparametric models.

In Chapter 2, we consider the joint model where marginal distributions are spec-

ified as Weibill distributions. We consider the maximum likelihood estimation and

the variance of parameters are obtained via deriving the corresponding information

matrix. In Chapter 3, we relax the parametric assumptions of Weibull distribution

by proposing a semiparametric linear transformation model, which includes the com-

monly used proportional hazards model and proportional odds model as two special

cases. The joint modeling framework is very flexible and is able to handle many
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complications raised by MSSWOW data such as truncation, censoring and missing-

ness. When semiparametric assumptions are imposed, EM algorithm is developed by

exploiting the equivalence of Clayton-Oakes models and gamma frailty models. In

Chapter 4, we propose a computationally simple two-stage estimating procedure with

the same joint model. Furthermore, we implement the two-stage method to provide

reasonable parameter estimations while allowing flexible, different copula models. We

also extend the model to other scenarios where (1) different dependence parameters

according to age groups in the Clayton-Oakes model; (2) discrete survival models for

TTP such as proportional odds model; and (3) alternative copula models including

positive stable models for the repeatedly measured MCLs.

We apply the proposed joint model to MSSWOW data. The data analysis re-

sults show that age group has significant impact on the distribution of MCL data.

Specifically, the older group is signicantly different and has shorter MCLs compared

to the other groups. The association among menstrual length is signicantly lower in

the oldest age group compared to other groups. In addition, smoking was a signifi-

cant risk factor associated with MCLs and frequency of unprotected intercourse has

significant influence on TTP. The association between MCL and TTP is significant.

Among different transformation models, proportional odds model appears to fit the

MCLs data better.

In Chapter 5, we develop nonparametric statistical testing tool to study whether

a repeatedly measured biomarker is a good predictor for the onset of disease. We

first assume a linear mixed model for the repeated measurements of the biomarker.

Based on the estimated random effects from the linear mixed model, we propose a

nonparametric test statistic for the null hypothesis that there is no association be-

tween the biomarker and time to event. That is, no parametric or semiparametric

model assumptions are imposed for the time-to-event process. We also examine the

asymptotic properties of the proposed test statistic and evaluate its finite sample
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performance using simulation studies. We show that the test statistic has reasonable

power to test the null hypothesis under different alternative hypotheses including pro-

portional hazards and accelerated failure time models. Finally, we demonstrate the

practical utility of the testing procedure by applying the method to Michigan PBB

data.

6.2 Future Work

In this section, we discuss several possible extensions and future work of this disser-

tation.

In the joint modeling approach, we introduce covariates on marginal distributions

of menstrual cycle lengths and the distribution of TTP and a common parameter

is introduced to model the dependence between the length and the TTP. How one

can select covariates for each distribution is unclear and needs further investigations.

Another related topic is the goodness-of-fit of the joint model including the Clayton-

Oakes model and the distribution of the TTP. With semiparamteric (transformation

model) specification of marginal distributions in the Clayton-Oakes model, obtaining

standard errors from the EM algorithm is challenging. Recent work (Xu et al., 2014)

may provide insight into obtaining proper standard errors.

In Chapter 5, to develop a nonparametric statistical test to study the association

of a repeatedly measured biomarker and the onset of disease, a linear mixed model

for the biomarker is assumed. It would be of interest to relax this assumption since

the biomarker may not necessarily follow a normal model.
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