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Abstract

On the Near-Field Reflector Problem and Optimal Transport
By Tobias Graf

In the near-field reflector problem, one is given a point source of light
with some radiation intensity and a target set at a finite distance. The de-
sign problem consists of constructing a reflector that reflects the rays emitted
from the source such that a given irradiance distribution is produced on the
target. In recent years, the optimal transport framework has been applied
successfully to various problems in the design of free-form lenses and re-
flectors. In this dissertation, the near-field problem is investigated in this
context. In particular, it is shown that the notion of a weak solution to the
near-field problem as an envelope of ellipsoids of revolution leads to a gener-
alized Legendre-Fenchel transform. Aside from some interesting properties
of this transform, it also gives rise to a variational problem that is naturally
associated with the near-field reflector problem. Furthermore, the resulting
variational problem resembles a generalized optimal transport problem and
exhibits interesting analogies to other optimal transport problems arising in
optical design and geometry, particularly to the far-field reflector problem
and the methods developed by Glimm, Oliker, and Wang. However, for the
near-field problem the solutions to the associated variational problem do not
solve the reflector problem in general. This situation is illustrated by a num-
ber of examples and numerical experiments and is in sharp contrast to the
problems that have been studied previously in the optimal transport frame-
work. Interestingly, a connection between the solutions to the near-field
problem and the variational problem can still be established. In particular,
for discrete target sets an approximation result is presented, which shows
that under a suitable choice of the admissible set the variational solution
produces an irradiance distribution arbitrarily close to the prescribed irra-
diance distribution from the design problem. The variational functional is
also compared to various functionals motivated by the geometric approach
to the near-field problem that was developed by Kochengin and Oliker.
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Chapter 1

Introduction

1.1 The Near-Field Reflector Problem

Consider a reflector system consisting of a non-isotropic point source of light

O, a perfectly reflecting surface (called the reflector) R intercepting the light

rays from O and redirecting them so that the reflected rays reach an object T

located at a finite distance from O and produce on T a prescribed in advance

irradiance distribution. This situation is illustrated in Figure 1.1.

In practical applications the position of the source and its radiation inten-

sity, as well as the target set T and the irradiance distribution on T are given,

and one needs to determine the reflector R. Usually, this problem is consid-

ered in the high frequency approximation when the geometric optics laws of
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O

target set T with irradiance distribution ν

surface normal to R

surface normal to R

surface normal to R

reflector R

S
2

Figure 1.1: An illustration of the near-field reflector problem in R
3. The

radiation intensity of the point source at the origin O is given by a non-

negative function I ∈ L1(S2). The design problem consists of finding the

reflector R such that the reflected rays produce the prescribed irradiance

distribution on the target set which is given by a Borel measure ν.
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propagation and energy conservation are applicable. This inverse problem

admits a rigorous mathematical formulation in Euclidean space R
n+1, n ≥ 1,

and can be stated analytically as a problem of solving a fully nonlinear equa-

tion of Monge-Ampère type on a spherical domain [23] (see also [24] where

this and other related problems are reviewed). Because the set T is located

at a finite distance from O, and only one reflector is present, the problem is

referred to as the near-field (single) reflector problem. A geometric approach

to the solution of this problem was developed by Sergey Kochengin and

Vladimir Oliker in [18], where the authors introduced the notion of a weak

solution and proved its existence under the necessary condition of the energy

balance between the radiation intensity of the source and the irradiance dis-

tribution on the target set T . It was also shown in [18] that this problem

has infinitely many solutions but under a natural additional requirement of

fixing a priori one point on the reflector uniqueness also holds. A provably

convergent algorithm for computing numerically a solution to this problem

was given by the same authors in [19]. Reflector design problems arise in

various applications such as illumination design, lithography, antennae de-

sign, and concentrating solar power. In recent years the Monge-Kantorovich

framework of optimal transport has been applied successfully to various op-
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tical design problems, starting with the papers by Glimm and Oliker [11] and

Wang [36] for the far-field reflector problem. In [11] and [36], the authors

showed that a weak solution to the far-field reflector problem, defined as

an envelope of confocal paraboloids of revolution (see [6]), can be obtained

as the solution of a variational problem that corresponds to a dual optimal

transport problem. An important implication for the development of numer-

ical methods is the observation that for discrete irradiance distributions the

reflector design problem can be formulated as a linear program.

This dissertation continues the investigation of the near-field reflector prob-

lem which began in [32], [18], [19]. In particular, the problem is investigated

in the context of the optimal transport approach which in recent years has

been applied successfully to various problems in geometry and optical design;

see for example [11], [12], [26], [13], [10]. The near-field reflector problem,

particularly the regularity of solutions, was also investigated in [15]. To make

our presentation reasonably self-contained, we recall first, in section 1.2, the

main definitions from [18] and also establish some new properties of reflec-

tors in the setting of the near-field reflector problem. This is part of joint

work with Vladimir Oliker. As it was noted in [18], in studying the near-field

reflector problem it suffices to consider reflectors which are closed, convex
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hypersurfaces and this is the case treated here. The case when the reflector

is a piece of a closed hypersurface reduces to this one; see [18], section 6. In

section 2.1 we consider a variant of the Legendre-Fenchel transform associ-

ated naturally with this problem and discuss its properties 1. Similarly to

the classical Legendre-Fenchel transform [29], [31], the new transform is a

duality relation between the radial and focal functions defining the reflector

(precise definitions are given in sections 1.2 and 2.1). A remarkable new

feature of this transform is that it defines the focal function implicitly. In

the framework of the Monge-Kantorovich optimal mass transport theory the

radial and focal functions are interpreted as the Kantorovich potentials, and

this new feature leads to a new type of a cost function depending on one of

the potentials and not just on the points in the domains where the given mass

densities are defined. To the best of the author’s knowledge, such phenomena

have not been observed in the classical and other forms of Legendre-Fenchel

1This generalized Legendre-Fenchel transform arises quite naturally from the notion

of a weak solution as an envelope of ellipsoids [18] in a way very similar to the optimal

transport problem associated with reflectors defined by envelopes of paraboloids in the

far-field case [6], [11], [36]. To the best of the author’s knowledge, this transform was first

mentioned by Vladimir Oliker at a conference in Oberwolfach in July of 2006 [25]; see also

[35].
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transforms considered previously in the Monge-Kantorovich optimal mass

transport theory and its applications [2], [11], [12], [36], [26], [34], [35].

Furthermore, in all previously studied cases known to the author, when the

dual pair of functions enters the transform explicitly it is possible to define

naturally primal and dual functionals whose optima provide solutions of the

associated mass transport problems. See, for example, [8], [34], or [35] for an

introduction to the primal and dual problems in optimal transport; in [14]

some of the economic motivations for the development of optimal transport

theory are discussed. In section 3.1 we present examples showing that the

solution of the variational problem associated with the near-field reflector

problem and defined with the new transform does not in general solve the

reflector problem itself. This situation is in sharp contrast, for example, to

the variational problem associated with the far-field reflector problem [6],

[11], [36], the refractor problem [13], and the two-reflector problems [12],

[10]. On the other hand, we also show that because of the above mentioned

non-uniqueness of solutions to the reflector problem, we can always choose

the set of admissible reflectors such that the optimum of the dual functional

is arbitrarily close to a solution of the reflector problem by choosing the

admissible reflectors sufficiently large.
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As an alternative to the mass transport theory approach, we present several

functionals, different from the one used in [18],[19], that can be used to

establish existence of weak solutions to the near-field reflector problem by the

method used in [18]. These functionals should be useful in the development

of algorithms for the numerical solution of this problem.

The results presented in this dissertation, especially the first two chapters

and the proof of the example in section 3.1.1, are part of joint work with

Vladimir Oliker.

1.2 Reflectors Defined by Families of Ellip-

soids

In Euclidean space R
n+1, n ≥ 1, fix a Cartesian coordinate system with the

origin at some point O. By S
n we denote the unit sphere with the center at

O. Let y ∈ R
n+1, y 6= O. Denote by E(y, p̃) an ellipsoid of revolution with

axis Oy, foci O and y and focal parameter p̃ ∈ (0,∞). Everywhere in the

following chapters the term ellipsoid refers to an ellipsoid of this kind with

one of the foci always at O. For convenience we often refer to O as the first

focus. Any such ellipsoid is uniquely defined by O,y and the focal parameter



8

p̃; its polar radius is given by

ρy(x) =
p̃

1 − ǫ(p̃)〈x, y〉 , where x ∈ S
n, y =

y

|y| , (1.1)

and

ǫ(p̃) =

√

1 +
p̃2

y2
− p̃

|y| (1.2)

is the eccentricity. Figure 1.2 illustrates these concepts for an ellipse in R
2.

It is convenient to consider also ellipsoids with p̃ = 0 or ∞. When p̃ = 0 the

ellipsoid reduces to the segment [O,y]. Such an ellipsoid is called degenerate.

When p̃ = ∞, ρy(x) ≡ ∞ and the ellipsoid is called improper. The closed,

convex subset of R
n+1 bounded by an ellipsoid E(y, p̃) is denoted by B(y, p̃).

In case of an improper ellipsoid, B(y,∞) ≡ R
n+1.

Definition 1.1 Let T be a compact subset of R
n+1 such that O /∈ T and

consider the family of ellipsoids

E(T, p̃) := {E(y, p̃(y)) | y ∈ T}

such that the following conditions hold:

p̃ : T → (0,∞], p̃ 6≡ ∞, (1.3)

inf
y∈T, x∈Sn

dist(ρy(x)x, T ) > 0. (1.4)
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y
O

x

p̃

E(y, p̃)

ρy(x)x

Figure 1.2: The focal parameter of an ellipsoid E(y, p̃) with foci O and y is

the distance from a focus to the ellipsoid along a ray perpendicular to the

axis O,y. The foci O, y and the focal parameter p̃ determine E completely.

Furthermore, we have E(y, p̃) = {ρy(x)x|x ∈ S
n}, where ρy denotes the

radial function defined in (1.1). If p̃ = 0 the ellipsoid degenerates to the

segment O,y. If the ellipsoid is improper, i.e. when p̃ = ∞, then ρy ≡ ∞

and B(y, p̃) ≡ R
n.
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The closed, convex hypersurface

R = ∂
( ⋂

E(T,p̃)

B(y, p̃(y))
)

(1.5)

is called a reflector (with the source O). The set of reflectors defined by an

arbitrary family of ellipsoids satisfying (1.3), (1.4) is denoted by Rn
E(T ). The

set bounded by a reflector R is denoted by B(R).

The ellipsoids in the family E(T, p̃) are often referred to as generating el-

lipsoids. Note that since p̃ 6≡ ∞, the family E(T, p̃) includes at least one

ellipsoid which is not improper. Also, by (1.4) the family E(T, p̃) contains no

degenerate ellipsoids. Therefore, the set B(R) is a compact, convex subset

of R
n+1 with the origin O ∈ intB(R), where int denotes the interior (relative

to the usual topology of R
n+1) of a set in R

n+1. Lemma 1.5 below shows that

for any compact set T ⊂ R
n+1, O /∈ T, one can always construct a family of

ellipsoids satisfying (1.3) and (1.4). Before stating this lemma, we note the

following important property of ellipsoids.

Proposition 1.2 Let E(y, p̃) be an ellipsoid with 0 < p̃ <∞. Consider the

ellipsoid given by

ρy(x) =
cp̃

1 − ǫ(cp̃)〈x, y〉 , ǫ(cp̃) =

√

1 +
c2p̃2

y2
− cp̃

|y| ,

where c > 0. Then the foci of this ellipsoid are the same as those of E(y, p̃).
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Proof. Note first that the axis of revolution of this ellipsoid is the same as

that of E(y, p̃). Next, the distance from O to the second focus of E(y, p̃) is

|y| and for the modified ellipsoid it is equal to

ρy(y) − ρy(−y) =
cp̃

1 − ǫ(cp̃)
− cp̃

1 + ǫ(cp̃)

=
cp̃(1 + ǫ(cp̃))

1 − ǫ2(cp̃)
− cp̃(1 − ǫ(cp̃))

1 − ǫ2(cp̃)

=
2cp̃ǫ(cp̃)

1 − ǫ2(cp̃)
.

Observe that

1 − ǫ2(cp̃) =
2c2p̃2

y2
− 2cp̃

|y|

√

1 +
c2p̃2

y2
.

And therefore, we obtain

ρy(y) − ρy(−y) =
2cp̃ǫ(cp̃)

1 − ǫ2(cp̃)

=
2cp̃ǫ(cp̃)

2cp̃

|y|

(√

1 + c2p̃2

y2 − cp̃

|y|

) .

Using again the definition of ǫ, we simplify the last expression to recover

ρy(y) − ρy(−y) =
2cp̃ǫ(cp̃)

2cp̃ǫ(cp̃) · 1
|y|

= |y|,

that is, the second focus of E(y, cp) is y. QED.
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Remark 1.3 Observe that because of the non-linearity of (1.2) in p̃, the

polar radius of E(y, cp̃) is not a rescaling of the polar radius of E(y, p̃).

For future reference, we recall from [18] the following behavior of the radial

function and the eccentricity with respect to the focal parameter.

Lemma 1.4 (See [18].) Fix y ∈ T and let p̃ ∈ (0,∞). Then the radial

function ρy(x) is strictly increasing as a function of p̃ for each fixed x and

the eccentricity ǫ(p̃) is strictly decreasing.

For convenience, we set M := maxy∈T |y| and we will use this notation

for the remainder of our discussion. So far, we have defined what we call a

reflector and we noted some properties of the generating ellipsoids. We will

see that the reflectors of interest to us can be characterized through the focal

parameters of the generating ellipsoids. The next lemma provides a set of

reflectors in Rn
E(T ) for a given target set T .

Lemma 1.5 Let T be a compact subset of R
n+1 such that O /∈ T . For any

given constant c ≥ 0 and any function p̃ : T → [2(M + c),∞] the family of

ellipsoids {E(y, p̃(y)), y ∈ T} satisfies (1.3), (1.4) and

inf
y∈T, x∈Sn

dist(ρy(x)x, T ) > c.
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Proof. Fix some q = const ≥ 2(M + c)/M and let ȳ ∈ T . Put p̄ = qM .

Then for the polar radius of the ellipsoid E(ȳ, p̄) we have

min
x∈Sn

ρȳ(x) = ρȳ(−ȳ) =
p̄

1 + ǫ(p̄)
>
p̄

2
=
qM

2
≥M + c.

Applying the same argument to any y ∈ T , we conclude that the intersection

⋂

y∈T B(y, qM) contains in its interior a closed ball of radius M + c with the

center at O. On the other hand, the set T is contained in a ball of radius M

with the center at O. QED.

We recall now the concept of a supporting ellipsoid introduced first in [18].

Definition 1.6 Let R ∈ Rn
E(T ). An ellipsoid E(y, p), y ∈ T, p > 0, is

called supporting to R if B(R) ⊂ B(y, p) and R ∩ E(y, p) 6= ∅.

Obviously, for a given R ∈ Rn
E(T ) at every point z ∈ R there exists at least

one ellipsoid from the family defining R which is supporting to R. However,

not every ellipsoid from such a family is necessarily supporting to R. A trivial

example of such a situation is a family of ellipsoids all of which are improper

except for one. On the other hand, at each point on a reflector we have at

least one supporting ellipsoid.

Proposition 1.7 Let R ∈ Rn
E(T ). Then for each y ∈ T there exists an

ellipsoid with foci O and y supporting to R.
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Proof. Since R is compact, we can apply Lemma 1.4 and choose an ellipsoid

E(y, p̃) with p̃ sufficiently large so that B(R) ⊂ B(y, p̃). Decreasing p̃ con-

tinuously and, taking into account Lemma 1.4, we arrive at a situation when

R ∩ E(y, p) 6= ∅ for some 0 < p <∞ while still B(R) ⊂ B(y, p). QED.

We define the focal function p : T → (0,∞) of a reflector R as the function

such that the ellipsoids E(y, p(y)) are supporting to R for each y ∈ T . We

also put

ER(T ) := {E(y, p(y)) | y ∈ T,E(y, p(y)) is supporting to R}.

It is important to note that in contrast to reflectors constructed from

paraboloids of revolution [6], two ellipsoids with different second foci sup-

porting to a reflector R ∈ Rn
E(T ) may be tangent to each other at the

point of contact with R. A simple example can be constructed as follows.

Let T = {y1,y2}, y1,y2 6= O, y1 6= y2, and consider the reflector R de-

fined by two ellipsoids E(yi, p̃i), i = 1, 2, with focal parameters such that

y1,y2 ∈ intB(y1, p̃1) ∩ B(y2, p̃2). Increase the focal parameter p̃1 to some

value λ so that E(y2, p̃2) ⊂ B(y1, λ) and then decrease λ so that E(y1, λ)

is supporting to E(y2, p̃2). Then E(y1, λ) is tangent to E(y2, p̃2). The

ray from O in direction x̄ ∈ S
n corresponding to the point of tangency
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zx̄ = ρy1
(x̄)x̄ = ρy2

(x̄)x̄ is reflected by both ellipsoids in the same direction

and the reflected ray must pass through the foci y1 and y2.

The following proposition provides a useful description of the intersection

of two ellipsoids with a common first focus.

Proposition 1.8 Let E(yi, p̃i), i = 1, 2, be two ellipsoids with the same first

focus and let C := E(y1, p̃1)∩E(y2, p̃2) 6= ∅. If n ≥ 2 then C consists of only

one connected component which may reduce to a point. If C is not a point

and E(y1, p̃1) 6= E(y2, p̃2) then C is homeomorphic to an (n−1)-dimensional

sphere. If n = 1 then C consists of either one point or two points, or the

ellipses coincide. When n ≥ 1 and C reduces to one point then this point

is ρ̃1(x̄)x̄ = ρ̃2(x̄)x̄, where ρ̃i(x), x ∈ S
n, i = 1, 2, are the polar radii of the

respective ellipsoids and

x̄ = sign(p̃2 − p̃1)
p̃2ǫ1y1 − p̃1ǫ2y2

|p̃2ǫ1y1 − p̃1ǫ2y2|
(6= O).

In addition, the two ellipsoids are tangent to each other at that point.

Proof. Let n ≥ 1. The radial projection U12 of C from O on S
n is given by

U12 := {x ∈ S
n | ρ̃1(x) = ρ̃2(x)}

=

{

x ∈ S
n | p̃1

1 − ǫ1〈x, y1〉
=

p̃2

1 − ǫ2〈x, y2〉

} (1.6)
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or

U12 = {x ∈ S
n | 〈p̃2ǫ1y1 − p̃1ǫ2y2, x〉 = p̃2 − p̃1} . (1.7)

If |p̃2ǫ1y1 − p̃1ǫ2y2| = 0 then y1 = y2 and p̃2 = p̃1 because of (1.7). In

this case, U12 = S
n and the ellipsoids E(y1, p̃1) and E(y2, p̃2) coincide. If

|p̃2ǫ1y1 − p̃1ǫ2y2| > 0 and n ≥ 2 then it follows from (1.7) that U12 is an

(n− 1)−dimensional sphere on S
n with center at

A12 =
p̃2ǫ1y1 − p̃1ǫ2y2

|p̃2ǫ1y1 − p̃1ǫ2y2|

(and at A21 = −A12). Obviously, C is homeomorphic to this sphere. If

n = 1 then U12 is either a point or two points. The remaining statements are

obvious. QED.

Recalling the physical interpretation of the near-field reflector problem in

the introduction, we note that the Proposition 1.7 implies that for any R ∈

Rn
E(T ) and any y ∈ T there exists at least one light ray originating at O

which is reflected by R so that the reflected ray reaches y.

Let R ∈ Rn
E(T ). Obviously, B(R) is star-shaped relative to O and we can

describe R as the graph of its radial function given by

ρ(x) = sup{λ ≥ 0 | λx ∈ B(R), x ∈ S
n}. (1.8)
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Here x is treated as a point on S
n and a unit vector in R

n+1. The position

vector of the reflector R is ρ(x)x, x ∈ S
n. It follows from the definition of R

that

ρ(x) = inf
y∈T

p(y)

1 − ǫ(p(y))〈x, y〉 , x ∈ S
n. (1.9)

Since for each y ∈ T the ellipsoid E(y, p(y)) is supporting to R, we have

p(y) = sup
x∈Sn

ρ(x)(1 − ǫ(p(y))〈x, y〉), y ∈ T. (1.10)

It follows from (1.9) and (1.10) that

log ρ(x) − log p(y) ≤ − log(1 − ǫ(p(y))〈x, y〉), ∀x ∈ S
n, y ∈ T, (1.11)

and for each x ∈ S
n the equality is achieved for some y ∈ T and for each

y ∈ T the equality is achieved for some x ∈ S
n.

Note that (1.8)–(1.11) hold actually for any reflector defined by (1.3) and

(1.5), regardless of the condition (1.4).

For R ∈ Rn
E(T ) the reflector map αR : S

n → T is the (possibly multivalued)

map given by

αR(x) = {y ∈ T | p(y) = ρ(x)(1 − ǫ(p(y))〈x, y〉)}, x ∈ S
n. (1.12)

In other words, the reflector map assigns each direction x ∈ S
n the second

foci y ∈ T of all the ellipsoids supporting to R in the point ρ(x)x. Clearly,
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αR maps S
n onto T . The inverse of the reflector map is

α−1
R (y) = {x ∈ S

n | p(y) = ρ(x)(1 − ǫ(p(y))〈x, y〉)}, y ∈ T. (1.13)

That is, the image of a point y in the target set is the set of all directions

x ∈ S
n in which the point y is visible (along a reflected ray) for the source.

For a subset ω ⊂ T the set

VR(ω) =
⋃

y∈ω

α−1
R (y)

is called the visibility set of ω. If T is contained in a hyperplane then it

follows from Lemmas 1 through 5 in [18] that for any Borel set ω ⊂ T the set

VR(ω) is measurable with respect to the standard n−dimensional Lebesgue

measure on S
n.

Remark 1.9 In [18] the cited results are proved for reflectors in R
3. The

same proofs are valid verbatim for reflectors in R
n+1.

A point X ∈ R is called singular if there is more than one supporting

ellipsoid at X. Clearly, the map αR(X/|X|) is multivalued at singular X.

Proposition 1.8 implies that, depending on the set T , a point X ∈ R may be

such that there exists a unique tangent hyperplane to R at X and still there

is more than one supporting ellipsoid at X. Such a situation cannot occur
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for reflectors defined by paraboloids as in the far-field problem [11], [36]. A

point of a reflector R at which two supporting ellipsoids are tangent to each

other will be called singular of tangential type.

Proposition 1.10 Let T be contained in a hyperplane Π. Then the set of

singular points of a reflector R has n-dimensional Lebesgue measure zero.

Proof. Clearly, if X ∈ R is a singular point on the reflector R and there are

at least two supporting ellipsoids at X that are not tangent to each other

then X is a singular point in the usual sense of convex surface theory [4]. By

a theorem due to Kurt Reidemeister ([28], and [4],§2) this set has measure

zero. On the other hand, if X is a singular point of tangential type then the

two corresponding second foci lie on a straight line through X. Hence, all

singular points of tangential type are contained in R ∩ Π and this set has

n-dimensional Lebesgue measure zero in R. QED.

The assumption in Proposition 1.10 can obviously be generalized to target

sets T that are contained in a countable union of hyperplanes. However, the

following remark gives an example of a target set for which the conclusion in

Proposition 1.10 does not hold.

Remark 1.11 If T is not contained in a hyperplane, the set of singular
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points of tangential type may have a positive measure. To see this, consider

the following example. Let T be the semicircle {y ∈ R
2 : |y| = 1, y1 ≥ 0},

where y1 denotes the first of the Cartesian coordinates of the point y. Let

ỹ = (1, 0) and p̃ = p(ỹ) ∈ R be large enough so that T is contained in

the interior of the convex body bounded by the ellipse Ẽ = E(ỹ, p̃). Then the

singular points of tangential type on the reflector R = Ẽ form a set of positive

measure. This can be seen by tracing back to O the rays terminating at ỹ and

passing through y ∈ T . The intersection of such a ray with the reflector is

a singular point of tangential type and the union of all these singular points

has positive measure in R. Using the rotational symmetry we can generalize

this example to n > 2.

For the rest of this work, unless stated otherwise, it is assumed that T is

contained in a hyperplane.

Let the intensity of the source O be a non-negative function I ∈ L1(Sn), I 6≡

0. Following [18] for each reflector R ∈ Rn
E(T ) we define a Borel measure on

T by setting

G(R,ω) =

∫

VR(ω)

I(x)dσ(x), (1.14)

where σ is the standard Lebesgue measure on S
n. It is useful to note that if
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we set

µ(U) =

∫

U

I(x)dσ(x), (1.15)

where U is any Borel set of S
n, then G is the push-forward of µ with the map

αR, that is

µ(α−1
R (ω)) = G(R,ω).

Remark 1.12 Observe that G(R, ·) may fail to be a measure if T is not

contained in a hyperplane. The example constructed in Remark 1.11 can

be used again to show that in this case, G is not σ-additive. Indeed, let T

and R be as in Remark 1.11. Decompose T into two disjoint Borel sets:

T = (T\ỹ) ∪ ỹ. Let Ω̄ ⊂ S
1 be the set of points corresponding to singular

points of tangential type on R. Put I(x) = 1 if x ∈ Ω̄ and I(x) = 0 if

x ∈ S
1 \ Ω̄, then

G(R, T ) =

∫

S1

I(x)dσ.

However, we see that

G(R, T\ỹ) +G(R, ỹ) =

∫

α−1

R
(T\ỹ)

I(x)dσ +

∫

α−1

R
(ỹ)

I(x)dσ

>

∫

S1

I(x)dσ.

Therefore, G(R, ·) is not (σ-)additive.
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In practical applications the most important case seems to be the one where

T is contained in a hyperplane. It is possible, however, to modify the def-

inition of G(R, ·) so that it becomes σ-additive even when T is a compact

subset of R
n+1 not necessarily contained in a hyperplane. For example, we

can introduce the notion of a strongly supporting ellipsoid as follows.

Definition 1.13 An ellipsoid E is called strongly supporting to a reflector

R in the point X ∈ R if the convex body bounded by E does not contain any

ellipsoids that are supporting to R in X in its interior.

Then the measure G is σ-additive even if T is not contained in the countable

union of hyperplanes if we replace supporting ellipsoids by strongly support-

ing ellipsoids in the definition of the reflector and visibility map. We plan to

return to this issue in a separate investigation.

For future reference, we recall the following lemma [18] providing a useful

result on the weak convergence of measures associated with a sequence of

reflectors. The Hausdorff metric is defined in appendix 6.1.

Lemma 1.14 (See [18]) Let Rs ∈ Rn
E(T ), s = 1, 2, ..., be a sequence of

convex reflectors Rs ∈ Rn
E(T ), s = 1, 2, ..., converging to a closed, convex

hypersurface R in the Hausdorff metric. Then the measures G(Rs, ·) converge

weakly to the G(R, ·).
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1.3 Weak Formulation of the Near-Field Re-

flector Problem

We recall now the weak formulation of the near-field reflector problem

[18].

Problem 1.15 (Near-Field Reflector Problem) For a given set T , a

non-negative function I ∈ L1(Sn) as above and a given Borel measure ν

on T , the near-field reflector problem consists of finding an R ∈ Rn
E(T ) such

that

G(R,ω) = ν(ω) for each Borel set ω ⊂ T. (1.16)

We refer to such R which satisfies (1.16) as a weak solution of the near-field

reflector problem.

The existence of weak solutions to Problem 1.15 was shown by Kochengin

and Oliker in [18]. Their approach is discussed briefly in section 5.1, and a

modified version of the existence result is stated in Theorem 2.8. Further-

more, the geometric approach developed in [18] was adapted by the same

authors in [19] to describe a provably convergent algorithm.
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Chapter 2

A Generalized

Legendre-Fenchel Transform

2.1 A Generalized Legendre-Fenchel Trans-

form and the Associated Variational Prob-

lem

The relations in (1.9) and (1.10) can be viewed as a variant of the Legendre-

Fenchel transform between the radial and focal functions of reflectors in

Rn
E(T ). In contrast to the classical Legendre-Fenchel transform (see, for

example, [29], [31], [34]) and other known transforms of this type ([3], [9],
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[5], [11], [36], [1]), the transform (1.10) defines the focal function p implicitly.

The following proposition shows that even in these circumstances we have

analogues of the usual duality properties typical for polar bodies [26], [29],

[31].

Proposition 2.1 Let T be a compact set in R
n+1\{O} and (ρ, p) ∈ C(Sn)×

C(T ) are continuous functions, respectively, on S
n and on T , satisfying (1.9)

– (1.10). Assume in addition that

min
Sn

ρ(x) > |y| ∀ y ∈ T. (2.1)

Then there exists a unique reflector R ∈ Rn
E(T ) with radial function ρ and

focal function p.

Proof. Let ρ, p be as in the proposition. It follows from (1.10) and (2.1)

that p(y) ≥ ρ(−y)[1 + ǫ(p(−y))] > |y| ∀y ∈ T . Hence, both functions are

positive, and, in addition, we may consider the family of ellipsoids

E(T, p) = {E(y, p(y)), y ∈ T}

and the convex hypersurface R defined by this family as in (1.5). Denote by

ρ′ the radial function of R. We need to show that ρ′(x) = ρ(x) for all x ∈ S
n.

It follows from (1.5) that ρ′(x) ≤ ρ(x) ∀x ∈ S
n. If for some x̄ the inequality
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is strict then at the point ρ′(x̄)x̄ ∈ R there is no supporting ellipsoid from

the family of ellipsoids defined by the function p. But this is impossible. On

the other hand, (1.10) implies that for any y ∈ T the supremum in (1.10) is

achieved at some x ∈ S
n. The condition (1.4) is satisfied because of (2.1).

QED.

Remark 2.2 The proof of Proposition 2.1 above is valid even if T is not as-

sumed to be contained in a hyperplane. For reflectors in R
3 this means that

T can, for example, be a cube. In such a situation, we have to redistribute

the source intensity, which is a function on S
2, on a three dimensional ob-

ject. Aside from the physical questions on transparency and blockage which

immediately come to mind in this context, we have already observed mathe-

matically that in this case the map G(R, ·) may fail to be a measure, as it

was noted in Remarks 1.11 and 1.12. The key observation in Remarks 1.11

and 1.12 was the existence of singular points of tangential type.

It is convenient to restate Proposition 2.1 as a sufficient condition on the

focal function.

Lemma 2.3 Suppose all the conditions of Proposition 2.1 are satisfied except
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for (2.1). Assume instead that

p(y) ≥ 2aM for some constant a ≥ 1 and all y ∈ T. (2.2)

Then there exists a unique reflector R ∈ Rn
E(T ) with focal function p and

radial function ρ satisfying the inequality

min
Sn

ρ(x) > aM. (2.3)

Proof. The inequality in (2.3) follows from Lemma 1.5 if we take c =

(a− 1)M and then apply Proposition 2.1. QED.

The geometric significance of the choice of the constant a is as follows.

We will see in Lemma 2.3 below that the radial function of an ellipsoid

E(y, p) is bounded from below by p

2
and from above by 2p. Therefore, the

condition (2.1) in Proposition 2.1 can be replaced by a lower bound on p

which ensures that the convex body B(y, p) contains a ball of radius at least

M = sup
ỹ∈T |ỹ| in its interior. This in turn implies that (2.1) holds. This

situation is illustrated for an ellipsoid in R
3 in Figure 2.1.

We define now a variational problem which arises naturally from the gener-

alized Legendre-Fenchel transform (1.9)–(1.10). Consequently, this problem

is also associated naturally with the near-field reflector problem.
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T

ρ(y)yyO

aM

E(y, p)

p = p(y)

−ρ(−y)y

Figure 2.1: The lower bound in (2.2) for the focal function in Lemma 2.5

ensures that the convex body B(y, p) bounded by the ellipsoid E(y, p) con-

tains a ball of radius aM around the origin O in its interior. Therefore T is

also contained in the interior of B(y, p).
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Let T be a compact subset in R
n+1 contained in some hyperplane and

O 6∈ T . Denote by ν a Borel measure on T satisfying the condition

µ(Sn) = ν(T ) 6= 0, (2.4)

and where the measure µ is defined by (1.15). Furthermore, we assume that

the support of the measure ν, denoted spt ν, does not reduce to a single

point. In other words, there is no ȳ ∈ T such that

spt ν = {ȳ}. (2.5)

For positive functions ρ on S
n and p on T we introduce for brevity the

following notation:

ρ̂(x) := log ρ(x),

p̂(y) := log p(y),

K̂(x, y, p) := − log[1 − ǫ(p(y))〈x, y〉]

for x ∈ S
n, y ∈ T .

For a fixed constant a ≥ 1 the set of admissible functions is defined as

Aa =
{

(ρ, p) ∈ C(Sn) × C(T ) such that

ρ(x) > 0 ∀x ∈ S
n, p(y) ≥ 2aM ∀y ∈ T, and (2.6)

ρ̂(x) − p̂(y) ≤ K̂(x, y, p), ∀(x,y) ∈ S
n × T

}

. (2.7)
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Put

Q[ρ, p] =

∫

Sn

ρ̂(x)I(x)dσ −
∫

T

p̂(y)dν. (2.8)

Fix some a ≥ 1 and consider the problem of finding a pair (ρmax, pmax) ∈ Aa

such that

Q[ρmax, pmax] = sup
Aa

Q[ρ, p]. (2.9)

Before we prove the existence of maximizers, we will make an important

observation relating the set of reflectors Rn
E(T ) to the set Aa. Every reflector

in Rn
E(T ) is naturally associated with the pair (ρ, p) ∈ Aa consisting of its

radial and focal function. On the other hand, with each pair (ρ, p) ∈ Aa such

that for each x ∈ S
n there exists a y ∈ T making (2.7) an equality and for

each y ∈ T there exists a x ∈ S
n making (2.7) an equality, we can associate

a reflector in Rn
E(T ) with radial and focal function ρ and p, respectively.

Therefore, we can identify the set of reflectors Rn
E(T ), described by the pairs

of radial and focal functions, with a subset of Aa, which we denote A∗
a.

To prove the existence of maximizers for Q, we will need the following two

lemmas.

Lemma 2.4 If the supremum of Q is achieved in Aa, then there exists a

reflector R̃ ∈ Rn
E(T ) such that supAa

Q[ρ, p] = Q[ρ̃, p̃], where ρ̃ and p̃ are the

radial and focal function, respectively, of R̃.
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In other words, Lemma 2.4 states that

sup
Aa

Q[ρ, p] = sup
A∗

a

Q[ρ, p].

Proof. Suppose (ρ, p) ∈ Aa and (ρ, p) /∈ A∗
a, i.e the functions ρ, p are not

the radial and focal function of a reflector. Then there exists some x ∈ S
n

such that

ρ̂(x) − p̂(y) < K̂(x, y, p(y)) ∀y ∈ T.

Consider the reflector R defined by the ellipsoids {E(y, p(y))}, y ∈ T . Its

radial function is

ρR(x) = inf
y∈T

p(y)

1 − ǫ(p(y))〈x, y〉 , x ∈ S
n.

Thus, for all x ∈ S
n we have ρ(x) ≤ ρR(x). This and (2.8) imply

Q[ρ, p] ≤ Q[ρR, p].

QED.

The following lemma is based on a result in [18].

Lemma 2.5 Fix a constant c ≥ 1. Let, as before, M := maxy∈T |y| and let

E(ỹ, p̃), ỹ ∈ T, be an ellipsoid with p̃ ≥ cM . Then the eccentricity of E

satisfies the inequality

ǫ(p̃) ≤
√
c2 + 1 − c, (2.10)
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and the radial function of E satisfies the inequalities

p̃

2
≤ ρỹ(x) ≤ p̃

1 + c−
√

1 + c2
< 2p̃ ∀x ∈ S

n. (2.11)

In particular, the inequality on the left is strict if p̃ > 0.

Proof. The inequality on the left of (2.11) follows from (1.1) and the fact

that 0 < ǫ(p̃) < 1. Now we prove (2.10). By (1.2) and because p̃ ≥ cM, |ỹ| ≤

M , we have

2cǫ(p̃)M

1 − [ǫ(p̃)]2
≤ 2p̃ǫ(p̃)

1 − [ǫ(p̃)]2
= |ỹ| ≤M.

This implies inequality (2.10) since

2cǫ

1 − ǫ2
≤ 1 ⇔ ǫ2 + 2cǫ− 1 ≤ 0.

Solving the quadratic equation above for 0 < ǫ < 1 we obtain the estimate

in (2.10). The first of the inequalities on the right of ρỹ(x) in (2.11) follows

from (2.10) and (1.1). Finally, note that 1
1+c−

√
1+c2

is strictly decreasing if

c ≥ 1 and 2−
√

2 > 1
2
. Therefore the second inequality on the right of ρỹ(x)

in (2.11) follows from the preceding inequality because c ≥ 1. QED.

The condition p ≥ aM on the focal function implies a bound on the radial

function of the admissable reflectors from below. In the following theorem,

we will bound the radial function also from above. This allows us to prove

the existence of a maximizer of Q.
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Theorem 2.6 Let a ≥ 1, M := maxy∈T |y|, P ∈ [2aM,∞) and

Aa,P :=
{

(ρ, p) ∈ Aa | inf
T
p ≤ P

}

.

The functional Q defined by (2.8) is uniformly bounded from above on Aa,P

and the supAa,P
Q is attained on some reflector R ∈ Rn

E(T ) with radial func-

tion ρ and focal function p such that (ρ, p) ∈ Aa,P . Furthermore, the diameter

of R is bounded by a constant depending only on P .

Proof. Because of Lemma 2.4 it suffices to prove the theorem by considering

Q only for reflectors in Rn
E(T ) such that the radial and focal functions satisfy

(ρ, p) ∈ Aa,P .

Consider such a reflector R. Let y1 be such that infT p(y) = p(y1). Since

p(y1) ≥ 2aM , Lemma 2.5 implies that ρy1
(x) < 2p(y1) ≤ 2P ∀x ∈ S

n.

If y ∈ T, y 6= y1, and p(y) ≥ 4P then Lemma 2.5 implies that ρy(x) ≥

2P ∀x ∈ S
n, that is, the ellipsoid E(y, p(y)) is not supporting to R. But this

is impossible, since p is the focal function of R. Therefore, the diameter of

R does not exceed 8P .

Each reflector R ∈ Rn
E(T ) is a bounded convex hypersurface with the

origin strictly in the interior of the compact convex body bounded by R.

By Blaschke’s selection theorem, the uniform bound on the diameters of
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reflectors such that (ρ, p) ∈ Aa,P implies that this set is compact. The

continuity of Q implies existence of a maximizer (and minimizer) of Q. QED.

Remark 2.7 A suitable statement of Blaschke’s selection theorem and ref-

erences can be found in appendix 6.2.

Next, we study the relations between the variational problem (2.9) and

the near-field reflector problem (1.16). Such relations are geometrically more

transparent in the case where ν is an atomic measure concentrated at a finite

number of points. The corresponding reflectors can be defined by a finite set

of parameters and form a class of E − polytopes [18].

2.2 E-Polytopes and Irradiance Distributions

Defined by Atomic Measures

In this section, the variational problem (2.9) is specialized to the case when

the target is a discrete set of the form T = {y1,y2, ...,yK}, K ∈ N, K ≥ 2,

where y1,y2, ...,yK are distinct points in R
n+1 and O /∈ T . In this case, a re-

flector is defined completely by anyK ellipsoids E(y1, p̃1), ..., E(yK , p̃K) satis-
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fying conditions (1.3) and (1.4). For a fixed set of points T = {y1,y2, ...,yK}

as above, we denote the corresponding set of reflectors by Rn
E,K(y1, ...,yK).

When there is no danger of confusion, we write Rn
E,K . The reflectors in Rn

E,K

are called E-polytopes. As before, M := maxi∈{1,...,K} |yi|.

The focal function of a reflector R ∈ Rn
E,K is completely defined by the

vector p = (p1, ..., pK) = (p(y1), ..., p(yK)) ∈ R
K
+ , where R

K
+ = {p ∈

R
K | p1, ..., pK > 0}.

The measure ν in this case is assumed to be atomic and given by

ν =
K∑

i=1

νiδyi
,

K∑

i=1

νi = µ(Sn), ν1, ..., νK > 0. (2.12)

The set of admissible functions is defined as

AK,a = {(ρ,p) | ρ ∈ C(Sn), p ∈ R
K
+ , ρ(x) > 0 on S

n,

min
i∈{1,...,K}

pi ≥ 2aM, and (2.13)

ρ̂(x) − p̂i ≤ K̂(x, yi, pi) ∀x ∈ S
n, i = 1, ..., K}, (2.14)

where a ≥ 1 is a fixed constant. As in the general case, we define the

functional

QK [ρ,p] =

∫

Sn

ρ̂(x)I(x)dσ −
K∑

i=1

p̂iνi. (2.15)

The variational problem in this case consists of finding a pair (ρmax,pmax) ∈
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AK,a such that

QK [ρmax,pmax] = sup
AK,a

QK [ρ,p]. (2.16)

For each a ≥ 1 define a subset of reflectors Rn
E,K,p1

(a) in Rn
E,K such that

p1 = 8aM, 2aM ≤ pi ≤ 32aM for all i ∈ {2, ..., K}. (2.17)

It follows from Lemma 2.5 that Rn
E,K,p1

(a) 6= ∅. Indeed, for the ellipsoids

E(yi, pi) with p1 = 8aM and pi = 32aM, i = 2, ..., K we have by (2.11) for

all x ∈ S
n:

4aM < ρy1
(x) < 16aM and 16aM < ρyi

(x) < 64aM when i = 2, ..., K.

Then, clearly, the reflector R̃ = {E(y1, p1), ..., E(yK , pK)} reduces toE(y1, p1)

and α−1

R̃
(y1) = S

n. Therefore, G(R̃,y1) = µ(Sn), while G(R̃,yi) = 0 ∀i =

2, ..., K, and thus R̃ ∈ Rn
E,K,p1

(a). It follows also from Lemma 1.5 that

reflectors in Rn
E,K,p1

(a) satisfy conditions (1.3), (1.4).

We give now a modified version of a result in [18](cf. Theorem 11 and 12

in [18]) that will be used in the following discussion.

Theorem 2.8 Suppose I ∈ L(Sn), I ≥ 0, I 6≡ 0 and T = {y1, ...,yK}, where

K ≥ 2 and the points in T are distinct. Let ν1, ..., νK ≥ 0 be such that

∫

Sn

I(x)dσ =
K∑

i=1

νi.
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Then for each a ≥ 1 there exists a reflector R ∈ Rn
E,K,p1

(a) solving the near-

field reflector problem, that is,

G(R,yi) = νi, i = 1, 2, ..., K. (2.18)

In addition, if I > 0 almost everywhere on S
n and a1 6= a2 the solutions

in Rn
E,K,p1

(a1) and Rn
E,K,p1

(a2) cannot be transformed into each other by a

homothety with respect to O.

Note that in [18] the radial functions of the admissible reflectors were

bounded by 2M from below and 32M from above since the focal param-

eters are restricted to p1 = 16M and 4M ≤ pi ≤ 64M . In the definition in

(2.17) of the admissible set Rn
E,K,p1

(a), we introduced the parameter a which

controls the bounds on the diameter of the admissible reflectors. Note that

for a = 2 we recover the situation in [18], while we obtain smaller reflectors

(with respect to the diameter) if 1 ≤ a < 2.

Proof. Following the ideas in [18], we actually restrict our attention to a

subset of Rn
E,K,p1

(a) by imposing the additional constraints

G(R,y1) ≥ ν1, (2.19)

G(R,yi) ≤ νi, ∀ i = 2, . . . , K. (2.20)
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Thus, we consider the set

R̂n
E,K,p1

(a) = {R ∈ Rn
E,K,p1

(a) | (2.19) and (2.20) hold}.

Note that E(y1, 8aM) = (8aM, 32aM, . . . , 32aM) ∈ R̂n
E,K,p1

(a) 6= ∅. Follow-

ing again [18], we claim that the reflector

R̃ =
K⋂

i=1

E(yi, p̃i),

where

p̃1 = 8aM,

p̃i = inf
R∈R̂n

E,K,p1
(a)
pi, i = 2, . . . , K,

solves the reflector problem. Assume it does not. Then there exists j 6= 1

such that G(R̃,yj) < νj. But this implies that there is also δ > 0 such that

G(Rδ,yj) ≤ νj, where

Rδ =
K⋂

i=1

E(yi, p
δ
i )

and

pδ
j = p̃j − δ,

pδ
i = p̃i, i = 1, . . . , K, i 6= j.

Moreover, it follows that Rδ ∈ R̂n
E,K,p1

(a) in contradiction to the definition

of R̃. QED.
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The following simple example illustrates why the uniqueness does not hold

in general. Suppose I ≡ 1 on S
n and consider a set T = {y1,y2} containing

only two distinct points 6= O. Assume also that ν1, ν2 > 0, ν1 + ν2 = µ(Sn),

where µ is defined in (1.15). Fix p1 = 16M . If we choose p2 = 64M then

B(y1, 16M) ⊂ B(y2, p2) and G(R,y1) = ν1 + ν2 and G(R,y2) = 0. Now,

decrease p2 until the ellipsoid E(y2, p2) becomes tangent to E(y1, p1) and

then continue to decrease p2. By Lemma 2.5, when p2 = 4M the ellipsoid

E(y2, 4M) ⊂ B(y1, 16M) and therefore G(R,y2) = ν1 + ν2 and G(R,y1) =

0. The function G(R,y2) increases continuously with decreasing p2 ([18],

Lemma 9) and therefore for some p2 we have G(R,yi) = νi for i = 1, 2. Thus,

we obtained one weak solution to the near-field reflector problem. To obtain

another solution, we may take any a ≥ 1 and repeat the same procedure

in Rn
E,K,p1

(a). Thus, it is possible to construct distinct solutions with an

arbitrary large diameter. Note that the same phenomenon occurs also in the

simpler case when T = {y}. In this case, any ellipsoid with foci at O and y is

a solution of the near-field reflector problem. However, in this case, any two

such solutions can be transformed into each other by a suitable rescaling of

the focal parameter of one of them. This is not true in general for a reflector

defined by more than one ellipsoid because the functions G(R,yi) may scale
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differently for different i and the reflector after such transformation will not

be a solution of the same near-field reflector problem.

We now continue with the study of the behavior of the functional QK in

the variational problem (2.16) relative to p. First we consider the case when

mini∈{1,...,K} pi is large.

Lemma 2.9 Let 1 ≤ a1 < a2 < ... < as < ..., as → ∞ as s ր ∞, and

let {Rs} be a sequence of solutions to the near-field reflector problems in

Rn
E,K,p1

(as). Denote by ρs, ps the radial and focal functions of the reflector

Rs. Then (ρs, ps) ∈ AK,as and QK [ρs, ps] → 0 as s→ ∞.

Proof. The claim (ρs, ps) ∈ AK,as is obvious. We prove now the second

claim. Each of the reflectors Rs defines a cover of S
n by closed visibility

sets V s
i = α−1

Rs (yi), i = 1, ..., K, such that σ(V s
i

⋂
V s

j ) = 0 for i 6= j and

αRs(V s
i ) = yi, G(Rs,yi) = νi. Furthermore, by (1.13) we have equality in

(1.11) on each V s
i . Therefore,

QK [ρs, ps] =

∫

Sn

ρ̂s(x)I(x)dσ −
K∑

i=1

p̂s
iνi

=
K∑

i=1

{

p̂s
i [G(Rs,yi) − νi] +

∫

V s
i

K̂(x, yi, p
s
i )I(x)dσ

}

.

(2.21)

Because the Rs satisfy (2.18), the first term under the sum vanishes for all i.

On the other hand, since ps
i ≥ 4asM for each i ∈ {1, ..., K}, it follows from
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(1.2) that ǫ(ps
i ) → 0 as s → ∞ and therefore K̂(x, yi, p

s
i ) → 0 for all i and

the proof of the lemma is now complete. QED.

We show next that the functional QK attains a maximum on every set of

reflectors for which a solution of the reflector problem was shown to exist

(see Theorem 2.8).

We define the following admissible set for a discrete target set; we put

AK,a,p1
= {(ρ,p) ∈ AK,a| p1 = 8aM,

2aM ≤ pi ≤ 32aM for all i = 2, 3, . . . , K}
(2.22)

and consider the analog of problem (2.16) on the set AK,p1
. As a conse-

quence of Theorem 2.6 we obtain the following statement on the existence of

a maximizer. Furthermore, the supremum is achieved in a reflector.

Lemma 2.10 Let a ≥ 1 and T, ν,QK ,AK,p1
be as in (2.12),(2.15),(2.22).

Then there exists an E-polytope Rmax ∈ R̂n
E,K,p1

(a) with radial function ρmax

and focal function pmax such that

QK [ρmax,pmax] = sup
AK,a,p1

QK [ρ,p] = sup
Rn

E,K,p1
(a)

QK [ρ,p]. (2.23)

Proof. The lemma is just a special case of Theorem 2.6. QED.

We recall that in the far-field case [11], [36] a weak solution of the reflec-

tor problem can be found by solving an optimal transport problem. More



42

precisely, the maximizing pair of the cost functional for the far-field problem

corresponds to a weak solution of the reflector problem. We will show that

this is not true in general for the near-field problem.
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Chapter 3

Examples and Numerical

Experiments

In this chapter we present examples which show that the admissible solu-

tion of the reflector problem is not in general the solution of the associated

variational problem. This situation is in sharp contrast to the far-field reflec-

tor problem where the solutions to the reflector and the variational problem

coincide. We also present some numerical experiments to illustrate the situ-

ation for the near-field problem.
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3.1 Solutions of the Variational Problem May

Not Solve the Reflector Problem

In this section we give two examples for which we prove that the admissi-

ble solution to the reflector problem does not coincide with the variational

solution.

3.1.1 First Example

In the following we discuss an example for which the weak solution of the

near-field reflector problem is not a maximizer of the Monge-Kantorovich

functional QK . First, we state the following

Lemma 3.1 For a fixed x ∈ S
n and y ∈ T the function K̂(x, y, p) evaluated

on ellipsoids E(y, p) is strictly increasing in p if 〈x, y〉 < 0 and strictly

decreasing in p if 〈x, y〉 > 0.

Proof. We have

∂

∂p
K̂(x, y, p) =

〈x, y〉
1 − ǫ(p)〈x, y〉

∂ǫ(p)

∂p
.

The statement of the lemma follows now from the fact that ∂ǫ(p)
∂p

< 0 ([18],

Lemma 6). QED.
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Consider the reflector R defined by the following two ellipsoids in R
n+1: E1

with foci O and y1 = (1, 0, ..., 0) and focal parameter p1 and E2 with foci

O and y2 = (−1, 0, ..., 0) and focal parameter p2. It follows from Lemma

2.5 that in order to satisfy (1.3) and (1.4) it suffices to fix p1 ≥ 4a for

some constant a ≥ 1. It will be convenient to take p1 = p2 = 4a and

consider the target set T = {y1,y2}. By Proposition 1.8 the visibility sets

Vi = α−1
R (yi), i = 1, 2, are given by

V1 = {x ∈ S
n | 〈x, x̄〉 ≤ 0}, V2 = {x ∈ S

n | 〈x,−x̄〉 ≤ 0},

where

x̄ =
p2ǫ1y1 − p1ǫ2y2

|p2ǫ1y1 − p1ǫ2y2|
= y1.

As usual, here ǫi, i = 1, 2, are the eccentricities of E1 and E2 which are equal

in the present case.

Assume that the intensity of the source at the origin is I ≡ 1 on S
n. Then

the irradiance distribution produced by R on T = {y1,y2} is given by the

atomic measure

ν = ν1δy1
+ ν2δy2

,

where ν1 = ν2 = m = 1
2
|Sn|. Thus R solves the near-field reflector problem for

such T , I and ν. The focal function of R is completely defined by the vector
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p = (p1, p2) = (4a, 4a). Figure 3.1 shows the reflector and the generating

ellipses. It follows from Theorem 2.8 that R is the only solution of the near-

field reflector problem with these data and fixed E1. We will show that the

functional Q2 is increasing at (ρ,p), where ρ is the radial function of R. The

needed variation is produced by increasing the focal parameter p2.

Let pt
2 be defined by log(pt

2) = log(p2)+ t for t ≥ 0. Note that p0
2 = p2 = p1.

Denote by Rt the reflector defined by the ellipsoid E1 as before and ellipsoid

Et
2 with foci O and y2 and focal parameter pt

2. Let the radial functions of

E1 and Et
2 with respect to O be referred to by ρ1 and ρt

2, respectively. Let

ρt(x) be the radial function of Rt and pt = (p1, p
t
2). Taking into account that

p0
2 = p1, we have

Q2[ρ
t,pt] =

∫

Sn

ρ̂t(x) dσ − 2p̂1m− tm. (3.1)

We denote by V t
1 = α−1

Rt (y1), V
t
2 = α−1

Rt (y2) the visibility sets of y1, y2 with

respect to the reflector Rt, respectively. Clearly, V t′

2 ⊂ V t
2 and V t

1 ⊂ V t′

1

when 0 ≤ t ≤ t′ with the inclusion being strict when t < t′. Therefore,

V1 ∩ V t
1 = V1 and V2 ∩ V t

2 = V t
2 , where Vi = V 0

i , i = 1, 2. Put V t
1,2 = V2 ∩ V t

1 .

For each t ≥ 0 the sets V1, V
t
2 and V t

1,2 form a cover of S
n, and furthermore,
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E1

R = ∂(B(y1, p1) ∩ B(y2, p2))

Oy2E2

p2 p1

y1

Figure 3.1: The reflector R generated by the ellipses E1 = E(y1, 4a) and

E2 = E(y2, 4a) redistributes the light emitted from a homogeneous source

evenly among the target points y1 and y2.
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they are disjoint except for a set of measure zero, that is

σ(V1 ∩ V t
2 ) = σ(V1 ∩ V t

1,2) = σ(V t
1,2 ∩ V t

2 ) = 0.

By (1.9), we have ρ̂t(x) = ρ̂1(x) when x ∈ V1 ∪ V t
1,2 and ρ̂t(x) = ρ̂t

2(x)

when x ∈ V t
2 . Using (1.9), (1.11), (3.1) and, again, taking into account that

ρ0 = ρ, p0
2 = p1, we obtain

Q2[ρ
0,p0] =

∫

V1

ρ̂1(x) dσ +

∫

V t
1,2

ρ̂2(x) dσ

+

∫

V t
2

ρ̂2(x) dσ − 2p̂1m

=

∫

V1

K̂(x, y1, p1)dσ +

∫

V t
1,2

K̂(x, y2, p2)dσ

+

∫

V t
2

K̂(x, y2, p2)dσ. (3.2)

If t > 0 and x ∈ intV t
1,2 then 〈x,y2〉 < 0 and by Lemma 3.1, K̂(x, y2, p2) <

K̂(x, y2, p
t
2). Furthermore, in this case K̂(x, y2, p

t
2) < 0 while K̂(x, y1, p

t
2) > 0.

Since pt
2 = p1 on V t

1,2, we obtain from the preceding observations and (3.2)

for t > 0

Q2[ρ
0,p0] <

∫

V1∪V t
1,2

K̂(x, y1, p1)dσ +

∫

V t
2

K̂(x, y2, p
t
2)dσ. (3.3)

Next, we apply the duality relation

ρ̂(x) − p̂(y) = K̂(x,y, p)
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on the visibility sets to recover the (logarithmic) radial and focal functions

from K̂ on the right-hand side of (3.3). Thus, we have the following estimate:

Q2[ρ
0,p0] <

∫

V1∪V t
1,2

ρ̂1(x)dσ − p̂1(m+ |V t
1,2|)

+

∫

V t
2

ρ̂t
2(x) dσ − p̂t

2|V t
2 |.

(3.4)

Using the fact that ρ̂t ≡ ρ̂1 on the set V1 ∪ V t
1,2 and the decomposition

V2 = V t
2 ∪ V t

1,2, we rewrite the right-hand side of (3.4) to find that

Q2[ρ
0,p0] <

∫

Sn

ρ̂t(x) dσ − (p̂1m+ p̂1|V t
1,2| + p̂t

2|V t
2 |)

=

∫

Sn

ρ̂t(x) dσ − (p̂1m+ p̂1|V t
1,2| + p̂t

2m− p̂t
2|V t

1,2|).
(3.5)

Recalling that p̂t
2 = p̂1 + t we obtain from (3.5) that

Q2[ρ
0,p0] <

∫

Sn

ρ̂t(x) dσ − (p̂1m+ p̂1|V t
1,2| + p̂1m+ tm

− p̂1|V t
1,2| − t|V t

1,2|)

=

∫

Sn

ρ̂t(x) dσ − (2p̂1m+ tm− t|V t
1,2|)

=

∫

Sn

ρ̂t(x) dσ − 2p̂1m− tm+ t|V t
1,2|). (3.6)

Finally, comparing the right-hand-side of (3.6) with (3.1) we conclude that

Q2[ρ
0,p0] < Q2[ρ

t,pt] + t|V t
1,2|. (3.7)

Since t|V t
1,2| = o(t), we conclude that Q2[ρ

t,pt] > Q2[ρ,p] for any sufficiently

small t > 0. In other words, the solution to the near-field reflector problem
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in the admissible set is not the maximizer of the functional Q2.

3.1.2 Second Example

Observe that in the example discussed in section 3.1.1, the target set T and

the source O are contained in the same hyperplane (this situation is excluded,

for example, in [19]). However, if we perturb one of the target points, say

y2, slightly, we can still construct an example where QK is increasing in the

solution to the reflector problem. To see this, consider the perturbed focus

y′
2 = (− cos(ψ), sin(ψ), 0, . . . , 0),

where 0 < ψ ≤ π
2
. Then the center of the visibility set of y′

2 is given by

x̄′ =
(1 + cos(ψ),− sin(ψ), 0, . . . , 0)
√

(1 + cos(ψ))2 + sin2(ψ)
.

Let V ′ be the component of S
n contained between the two hyperplanes with

normal vectors x̄′ and e1 = y1 = y1

|y1| , respectively. Now, we consider the

source intensity I : S
n → R defined by

I(x) =







1, if x ∈ S
n\V ′,

0, if x ∈ V ′.

Using the measure ν ′ = m′(δy1
+ δy′

2
) where m′ = (1/2)|Sn\V ′| on the target

set, we obtain again that QK is increasing in the solution to the reflector
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problem.

3.2 Numerical Experiments

In this section, we describe some numerical experiments related to the exam-

ples that we discussed previously in section 3.1.1 and 3.1.2 using a Graphical

User Interface (GUI) in Matlab.

3.2.1 First Experiment

We consider again the reflectors R(p1, p2) generated by the ellipse E1 with

focal points O, (1, 0) ∈ R
2 and fixed focal parameter p1 = 4 and the ellipse

E2 with focal points O, (−1, 0) ∈ R
2 and variable focal parameter p2. Let

the target measure be denoted ν = ν1δy1
+ ν2δy2

. In the following we use

Matlab to illustrate our analytical findings from Section 3.1 graphically in

the Euclidean plane. We already observed that if I ≡ 1 and ν1 = ν2 = 1
2
m,

where m =
∫

Sn I dσ, then the solution to the reflector problem is given by

the symmetric reflector R = (p1, p2) = (4, 4).
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Preliminaries

Since the focal parameter p2 of the second ellipse plays the role of a free

parameter, we establish a priori bounds that can be used to determine a

suitable range of p2 for numerical experiments.We are interested in the case

when both of the generating ellipses are also supporting to the reflector.

Otherwise the reflector simply coincides either with E1 or E2.

Proposition 3.2 (A priori bounds) Let R = R(p1, p2) = ∂
⋂

i=1,2B(Ei)

be a reflector generated by two ellipsoids with p1 = p fixed, y2 = −y1 6= O.

Assume furthermore that p ≥ 2|y| where |y| = |yi|, i = 1, 2. In order to

have

∀i = 1, 2∃x ∈ S
n : Ei is supporting to R at ρ(x)x,

where ρ is the radial function of R, it is necessary that

plow ≤ p2 ≤ pup.

Here the constants plow, pup are the (positive) solutions to the following equa-

tions in p2:

p(1 − ǫ(p2))

1 + ǫ(p)
− p2 = 0,

p(1 + ǫ(p2))

1 − ǫ(p)
− p2 = 0,
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respectively.

Proof. To assure that the free ellipsoid E2 is not contained strictly inside the

body bounded by E1 we need to enforce that minx∈Sn ρ̄1(x) ≤ maxx∈Sn ρ2(x).

Here ρi denotes the radial function of the ellipsoid Ei, i = 1, 2. Thus, we

obtain the constraint on the focal parameter of E2 that

p

1 + ǫ(p)
≤ p2

1 − ǫ(p2)
. (3.8)

Since the right-hand side of (3.8) is strictly increasing for p2 > 0 there exists

a unique positive solution to the equation

p

1 + ǫ(p)
=

p2

1 − ǫ(p2)
. (3.9)

Equivalently, we can find the positive solution to

p(1 − ǫ(p2))

1 + ǫ(p)
− p2 = 0

as a lower bound for the parameter p2.

Similarly, we require that the minimal radius of the variable ellipse is

smaller than the maximal radius of the fixed ellipse maxx∈Sn ρ1(x), that is

minx∈Sn ρ2(x) = p2

1+ǫ(p2)
≤ p

1−ǫ(p)
= maxx∈Sn ρ1(x). Hence, p2 is bounded from

above by the positive solution of

p2

1 + ǫ(p2)
=

p

1 − ǫ(p)
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or equivalently

p(1 + ǫ(p2))

1 − ǫ(p)
− p2 = 0.

QED.

Remark 3.3 Note that the above Proposition 3.2 holds for any dimension

n. However, the a priori bounds depend on the geometry of the target set.

To validate the numerical evaluation of the functional QK we prove the

following property.

Proposition 3.4 Let R = {ρ(x)x|x ∈ S
1} be the reflector generated by the

two ellipses E(y1, p), E(y2, p) where y2 = −y1 and p1 = p2 = p > 2|y1|.

Then

QK [ρ, (p, p)] < 0. (3.10)

Furthermore, we have limp→∞QK [ρ, (p, p)] = 0.

Proof. The proof is a straightforward computation using the symmetry of

the reflector. Recall that the center of the visibility set V2 = α−1(y2) is given

by A12 = pǫy1−pǫy2

|pǫy1−pǫy2| = y1 where ǫ = ǫ(p) denotes the eccentricity of E1 and
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E2.

QK [ρ,p] =

∫

Sn

log(ρ(x)) dσ(x) − log(p)m

= 2

(∫

V2

log(p) dσ(x) +

∫

V2

log(1 − ǫ〈x, y2〉) dσ(x)

)

− log(p)m

= 2

∫

V2

log(p) dσ(x) − 2

∫

V2

log(1 − ǫ〈x, y2〉) dσ(x) − log(p)m

= − 2

∫

α−1(y2)

log(1 − ǫ〈x, y2〉) dσ(x) < 0

since 1 ≤ 1− ǫ〈x, y2〉 < 2 and therefore log(1− ǫ〈x, y2〉) ≥ 0 for all x ∈ V2 =

α−1(y2). QED.

In the following we discuss some results that were obtained using Matlab.

The experiments were conducted using a GUI that displays two ellipsoids

in the plane with the first focus at the origin; furthermore, the generated

reflector is also displayed. The focal parameters (p1, p2) and second foci

(y1 and y2, sometimes also labeled Y1 and Y2) can be changed interactively

by the user, as well as the irradiance distribution on the target set, which

is given by the measure ν = ν1δY1
+ ν2δY2

. Moreover, the functional Q2 is

evaluated numerically, assuming a constant source intensity of I ≡ 1 on S
1.
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Numerical Investigation of the Functional QK

First we display the solution to the reflector problem for the following data:

p1 = 4,

Y1 = (−1, 0),

Y2 = (1, 0),

I ≡ 1,

ν1 = ν2 = π.







(3.11)

As discussed earlier, the solution to this reflector problem is described by

the focal parameters (p1, p2) = (4, 4); see Figure 3.2. Note that the negative

value of the functional Q in Figure 3.2 agrees with our result in Proposition

3.4. We give here a brief description of the functionalities of the GUI; see

Figure 3.2 for the corresponding panels. The display panel contains a display

that is used to plot two ellipsoids (one in red, one in blue) with first focus

at the origin (marked by a yellow dot), their second foci (marked by an up-

ward pointing triangle for the red ellipse and a downward pointing triangle

for the blue ellipse), and the reflector R = ∂ (B1 ∩B2) (plotted in green)

generated by the two ellipses in the plane. Besides the display panel the GUI

consists of a control panel and an output panel. The control panel allows
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the user to change the parameters of the two generating ellipses interactively.

The solution to the reflector problem (3.11) is given by the focal parameters

p1 = p2 = 4. Changing the parameters in the control panel results in an

updated graphical output in the display panel. The Discretization parame-

ter controls the number of points that are used to discretize the unit circle

S
1. These are then used for the computations, since both ellipses and the

reflector can be described completely through their radial functions. The

third panel of the GUI, referred to as output panel, displays the value of the

functional Q2 for the current geometry, as well as the actual values (second

column) and the proportions (third column) of the target measure (ν) and

the measure induced by the reflector map (G), respectively, on the target

set. The ratios for the atoms of the measure ν on the target set can also be

adjusted interactively by the user.

Figure 3.3 shows a perturbation of the solution to the reflector problem

(3.11) and the corresponding control panels. More precisely, the focal pa-

rameter of the second ellipse E2 has been increased slightly. Observe that by

increasing p2 the value of the functional QK has increased as well. This is in

accordance with our analytical results in section 3.1 where we showed that

the solution to the reflector problem does not solve the variational problem
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Figure 3.2: The solution to the reflector problem (3.11) and the corresponding

GUI panels. Top: display panel, bottom left: control panel, bottom right:

output panel
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(2.23).

Second, we run a script that evaluates the functional QK in a prescribed

range for the focal parameter p2 and plots the values of QK over p2 in one

display, as well as the values of G(Y1) and G(Y2) as functions of p2 in a second

display. Again, the results illustrate graphically our findings in section 3.1

that is, the solution to the reflector problem (again at p2 = 4) does not

maximize the functional; see Figure 3.4.

3.2.2 Second Experiment

We consider next the family of reflectors R(p1, p2) generated by the ellipse

E1 with focal points O, (
√

2,
√

2) ∈ R
2 and fixed focal parameter p1 = 4

and the ellipse E2 with focal points O, (
√

2,−
√

2) ∈ R
2 and variable focal

parameter p2. Let the target measure be denoted ν = ν1δy1
+ ν2δy2

. Again

we observe that if I ≡ 1 and ν1 = ν2 = 1
2
m, where m =

∫

Sn I dσ, then

the solution to the reflector problem is given by the symmetric reflector

R = (p1, p2) = (4, 4). For future reference, we summarize the data of the
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Figure 3.3: A perturbation of the solution to the reflector problem (3.11).

Note that the focal parameter of the second ellipse E2 (blue) has increased

compared to Figure 3.2while the value of the functional QK has increased

compared to Figure 3.2.
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Figure 3.4: The functional QK and the measures G(Y1), G(Y2) as functions

of p2.
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reflector problem as follows:

p1 = 4,

Y1 = (
√

2,
√

2),

Y2 = (
√

2,−
√

2),

I ≡ 1,

ν1 = ν2 = π.







(3.12)

The solution to the above reflector problem and the two generating ellipses

are shown in Figure 3.5, while Figure 3.6 shows a perturbation with higher

Q-value. The values of the functional QK and the measure G(Yi), i = 1, 2

over the focal parameter p2 are plotted in Figure 3.7. As previously, we see

that the solution to the reflector problem does not maximize QK .

3.3 Conclusions

We have seen in this chapter, that an admissible reflector which solves the

variational problem (2.23) does not in general solve the associated reflector

problem. However, in the numerical examples above, the variational solution

appears to be close to the solution of the reflector problem. It seems possible

that under certain assumptions one can obtain a priori estimates on how well

the variational solution approximates the desired solution to the reflector
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Figure 3.5: The solution to the reflector problem (3.12).
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Figure 3.6: A perturbation of the solution to the reflector problem (3.12).

The focal parameter of the ellipse E(Y2, p2) has been increased. Note that

the value of the functional Q has also increased.
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of p− 2 for configuration of O, Y1, Y2 in general position.
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problem. We have also seen in the previous sections, that obtaining good

estimates can be a complicated task as one may need to take into account

the geometry of the target set T and the particular distribution of the source

intensity, as well as the target measure ν. We will come back to some of

these issues in the following chapters.
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Chapter 4

Large Variational Solutions as

Approximate Solutions to the

Near-Field Single Reflector

Problem

4.1 An Approximation Theorem

The example in section 3.1 shows that the maximizer of problem (2.23) is not

in general a solution to the near-field reflector problem. However, we will see

in this section that for even dimensions n the maximizer is arbitrarily close
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to a solution of the reflector problem if the parameter a is sufficiently large.

This includes the case n = 2 of reflector surfaces in R
3, which is the most

interesting one for practical applications. We recall here briefly that the

parameter a controls the radius of a sphere centered at O that is contained

inside the convex bodies bounded by the admissible reflectors; see Figure 2.1.

In this chapter, we will prove the following statement.

Theorem 4.1 Let n be a positive, even integer. Furthermore, let T =

{y1, . . . ,yK}, I ∈ L1(Sn) and ν =
∑K

i=1 νiδyi
be as before, that is, T is

contained in a hyperplane, O /∈ T and
∫

Sn I(x) dσ(x) =
∑K

i=1 νi. Then the

following holds.

(i) For any γ > 0 there exists a ≥ 1 such that for the maximizer Rmax ∈

Rn
E,K,p1

(a) of the functional QK we have

|G(Rmax,yi) − νi| ≤ γ for all i ∈ {1, . . . , K}. (4.1)

(ii) For any γ > 0 there exists a ≥ 1 and a reflector R ∈ Rn
E,K,p1

(a) which

is a solution of the near-field reflector problem and

|QK [ρ, p] −QK [ρmax, pmax]| ≤ γ, (4.2)

where ρ, p are the radial and focal functions, respectively, of the reflector R

and ρmax, pmax are the radial and focal functions, respectively, of the reflector
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Rmax on which the supRn
E,K,p1

(a)QK is attained.

Before we prove Theorem 4.1, we note an important property of the cost

function K̂.

Proposition 4.2 For any γ > 0 there exists p̃ > 0 such that for any p ≥ p̃

∣
∣
∣
∣
p
∂

∂p
K̂(x,y, p)

∣
∣
∣
∣
< γ. (4.3)

Proof. The above property follows from the observation made in [18] that

the derivative of ǫ with respect to p is given by

ǫ′(p) =
ǫ(1 − ǫ2)

p(1 + ǫ2)
.

Hence, we obtain

lim
p→∞

(

p
∂

∂p
K̂(x,y, p)

)

= lim
p→∞

(

p
ǫ(1 − ǫ2)

p(1 + ǫ2)
· 〈x, y〉
1 − ǫ〈x, y〉

)

= 0. (4.4)

This proves the proposition. QED.

4.2 Lipschitz Property of the Measure G

We recall and extend an estimate on the rate of change of the visibility sets

that was proven in [19], Theorem 4, for n = 2.
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Theorem 4.3 Let y1,y2 ∈ T be two distinct points, p1, p2, p2 + ∆p2 ∈

[2aM, 32aM ], and let R = (p1, p2) denote the reflector generated by the two

ellipsoids E1 = E(p1,y1) and E2 = E(p2,y2). Furthermore, assume that

I(x) ≤ Imax < ∞ for almost all x ∈ S
n. If n = 2k, k ∈ N\{0} then for any

a ≥ 1 the measure G((p1, p2),y2) satisfies the Lipschitz condition

|G((p1, p2 + ∆p2),y2) −G((p1, p2),y2)| ≤ C|∆p2| (4.5)

with respect to p2 for some positive constant C.

Proof. Denote by Cn−1r
n−1 the (n − 1)-dimensional volume of a (n − 1)-

sphere with radius r. Furthermore, denote by r(p2) = r(p1, p2) the geodesic

radius of the intersection of the visibility sets C = α−1
(p1,p2)(y1) ∩ α−1

(p1,p2)(y2).

Similarly, r(p2 +∆p2) = r(p1, p2 +∆p2) denotes the geodesic radius of C∆ =

α−1
(p1,p2+∆p2)(y1) ∩ α−1

(p1,p2+∆p2)(y2). Assume for now that I ≡ 1. Then

G((p1, p2 + ∆p2),y2) −G((p1, p2),y2) =

∫ r(p1,p2+∆p2)

0

Cn−1 sinn−1(θ) dθ

−
∫ r(p1,p2)

0

Cn−1 sinn−1(θ) dθ

= Cn−1

(
∫ r(p1,p2+∆p2)

r(p1,p2)

sinn−1(θ) dθ

)

= Cn−1 (q(r(p2 + ∆p2)) − q(r(p2))) ,
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where q(θ) is a polynomial in sin(θ), cos(θ) and, if n − 1 is even, θ. More

precisely, q is determined by the recursion

∫

sinm(x) dx = − 1

m
cos(x) sinm−1(x) +

m− 1

m

∫

sinm−2(x) dx (4.6)

for any m ≥ 2.

(i) For n = 2 (see also [18]), the function q is simply the cosine. Further-

more, by Proposition 1.8 we have that

cos r(p1, p2) =
p2 − p1

|p2ǫ1y1 − p1ǫ2y2|
. (4.7)

Since the right-hand side of (4.7) is continuously differentiable with respect

to p2, G is as well and (4.5) holds. (See also [18], Theorem 4.) If I is not

constant, then

|G((p1, p2 + ∆p2),y2) −G((p1, p2),y2)| ≤ Cn−1Imax|q(r(p2 + ∆p2)) − q(r(p2))|

(ii) We make the following observations. Let n > 2, and assume again that

I ≡ 1. Then q contains terms of the form

cos r(p1, p2) sinm r(p1, p2)

and possibly a term in r(p1, p2). Note that for 0 ≤ r(p1, p2) ≤ π,

sin r(p1, p2) =
√

1 − cos2 r(p1, p2). (4.8)
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Hence, we obtain

∂

∂p2

sin r(p1, p2) = − cos r(p1, p2)
√

1 − cos2 r(p1, p2)
· ∂ cos r(p1, p2)

∂p2

= − cos r(p1, p2)

sin r(p1, p2)
· ∂ cos r(p1, p2)

∂p2

,

(4.9)

and it follows that the right-hand side of (4.9) does not exist if cos2 r(p1, p2) =

1. The latter equality holds exactly if r(p1, p2) = 0 or r(p1, p2) = π, i.e. if

one visibility set shrinks to a single point.

(iii) If m is odd, then

q(r(p1, p2)) = − Am−1 cos r(p1, p2) sinm−1 r(p1, p2)

− Am−3 cos r(p1, p2) sinm−3 r(p1, p2)

− · · · −A2 cos r(p1, p2) sin2 r(p1, p2) − A0 cos r(p1, p2),

(4.10)

where the coefficients {Al} are constants depending only on m. Furthermore,

it follows from (4.7) and (4.8) that the derivative of sin2 r(p1, p2) with respect

to p2 exists and is given by

∂

∂p2

sin2 r(p1, p2) = −2 cos r(p1, p2)
∂ cos r(p1, p2)

∂p2

. (4.11)

Therefore, ∂
∂p2

q(r(p1, p2)) exists since (4.10) contains only even powers of

sin r. Since ∂ cos r(p1,p2)
∂p2

is bounded, ∂
∂p2

q(r(p1, p2)) is as well, andG is Lipschitz

with respect to p2. If I is not constant, then the Lipschitz property follows

as in (i). This proves the theorem. QED.
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In Theorem 4.3 we exclude the case of odd dimensions for n. If we look

back at the proof for even dimensions, we observe that if m = n− 1 in (4.6)

is even, then it follows from (4.7), (4.9) and (4.11) that ∂q(r(p1,p2))
∂p2

exists as

long as 0 < r < π. Note that

r(p1, p2) = arccos
p2 − p1

|p2ǫ1y1 − p1ǫ2y2|

is not differentiable when p2−p1

|p2ǫ1y1−p1ǫ2y2| = ±1, i.e. when r(p1, p2) = 0 or

r(p1, p2) = π. These latter equalities hold, when one of the visibility sets

shrinks to a point. Hence, at p2 = p0 or p2 = pπ such that r(p1, p0) = 0 or

r(p1, pπ) = π, respectively, the graph of G as a function of p2 has a vertical

tangent, and therefore G is not Lipschitz with respect to p2. Moreover, we

conclude that if I is not constant and there exists c > 0 such that I ≥ c

almost everywhere, then

G((p1, p2 + ∆p2),y2) −G((p1, p2),y2) ≥ Cn−1c (q(r(p2 + ∆p2)) − q(r(p2))) ,

where we use again r(p2) = r(p1, p2) for brevity. Therefore G is not Lipschitz.

The observations made above imply the following.

Theorem 4.4 If n = 2k + 1, k ≥ 1 and I(x) ≥ c > 0 almost everywhere

on S
n then there exists 2aM < d < D < 32aM such that the measure
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G((p1, p2),y2) satisfies the Lipschitz condition (4.5) with respect to p2 on

[d,D] but not necessarily on [2aM, 32aM ].

Remark 4.5 Note that the values of interest for p2 are the ones for which

one of the two generating ellipsoids is contained inside the other one. We

could use these values to impose stricter a priori bounds on the range of the

free focal parameters in our admissible set. However, this approach is not

very practical, since these bounds depend on the geometry of the target set.

The important case for applications, namely n = 2, falls within the scope

of Theorem 4.3. In the case of even dimensions for n we want to investigate

the relationship between critical points of the functional QK and solutions

to the reflector problem. Next we will show that QK achieves its maximum

in an interior point if the parameter a is sufficiently large.

We assume for the remainder of this chapter that n is a positive, even

integer.

4.3 Large Maximizers Are Interior Points

We will show in this section that for a sufficiently large choice of the pa-

rameter a, the focal parameters of the maximizing reflector are not on the
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boundary of the admissible range.

Lemma 4.6 There exists a ≥ 1 such that Rmax ∈ int(Rn
E,K,p1

(a)) where

Rmax is the reflector on which the supRn
E,K,p1

(a)QK is attained.

The idea of the proof is to show that for sufficiently large parameters a the

maximum of QK is not achieved on the boundary of the admissible set. The

boundary consists of all the reflectors for which at least one of the inequalities

in (2.17) becomes an equality.

Proof. For a ≥ 1 the set of admissible reflectors Rn
E,K,p1

(a) is characterized

by the conditions on the focal parameter vector p introduced in (2.17). Let

us show that QK does not achieve its maximum in a boundary point, i.e. in

a reflector where pk = 2aM or pk = 32aM for some k ∈ {2, . . . , K}.

Let R be a reflector and ρ,p the corresponding radial and focal function,

respectively. We define the variations Rt, ρt,pt as follows: Fix j ∈ {2, . . . , K}

and set

p̂t
i = p̂i, i 6= j,

p̂t
j = p̂j + t,

ρ̂t(x) = mini∈{1,...,K}(p̂
t
i + K̂(x,yi, p

t
i)),

Rt = {ρt(x)x|x ∈ S
n}.







(4.12)
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We need to investigate the change in QK with respect to t, and therefore

we consider the term

∫

Sn

ρ̂tI dσ −
∫

Sn

ρ̂I dσ =

∫

Sn

(ρ̂t − ρ̂)I dσ. (4.13)

By Proposition 4.2 there exists ã ≥ 1 such that for all a > ã and all

j = 1, . . . , K we have
∣
∣
∣

∫

Vj
pj

∂K̂
∂p

(x,yj, pj)I dσ
∣
∣
∣ < min( ν1

K−1
, ν2, . . . , νj) > 0.

Assume a > ã.

Case 1: Let R = (ρ,p) be a reflector and assume first that there exists

k ∈ {2, . . . , K} such that pk = 2aM . Then G(R,y1) = 0 and by the energy

conservation there exists j ∈ {2, . . . , K} such that G(R,yj) ≥ νj + ν1

K−1
. We

consider variations of R defined in (4.12) for t > 0.

Since t > 0 we have

V t
j ⊂ Vj and Vi ⊂ V t

i for all i 6= j. (4.14)

Then we can decompose (4.13) using visibility sets, and we obtain the fol-

lowing:

∫

Sn

(ρ̂t − ρ̂)I dσ =

∫

V t
j

ρ̂tI dσ −
∫

Vj

ρ̂I dσ

+
∑

i6=j

(
∫

V t
i

ρ̂tI dσ −
∫

Vi

ρ̂I dσ

)

.

(4.15)
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Next we rewrite the right-hand side in (4.15) to obtain

∫

Sn

(ρ̂t − ρ̂)I dσ =

∫

V t
j

(ρ̂t − ρ̂)I dσ

︸ ︷︷ ︸

(i)

+

∫

V t
j

ρ̂I dσ −
∫

Vj

ρ̂I dσ

︸ ︷︷ ︸

(ii)

+
∑

i6=j

∫

Vi

(ρ̂t − ρ̂)I dσ

︸ ︷︷ ︸

(iii)

+
∑

i6=j

(
∫

V t
i

ρ̂tI dσ −
∫

Vi

ρ̂tI dσ

)

︸ ︷︷ ︸

(iv)

.

(4.16)

Recalling the inclusions in (4.14) and the duality relation in (4.12) we can

simplify expression (i) and (iii).

For term (i) we obtain

∫

V t
j

(ρ̂t − ρ̂)I dσ =

∫

V t
j

(p̂t
j − p̂0

j)I dσ

+

∫

V t
j

(K̂(x,yj, p
t
j) − K̂(x,yj, pj))I dσ

= t

∫

V t
j

I dσ + t

∫

V t
j

∂pt
j

∂t
∣
∣

t=0

∂K̂
∂p

(x,yj, pj)I dσ + o(t),

=

(
∫

V t
j

I dσ +

∫

V t
j

pj

∂K̂
∂p

(x,yj, pj)I dσ

)

· t+ o(t), (4.17)
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and for term (iii) we find

∑

i6=j

∫

Vi

(ρ̂t − ρ̂)I dσ =
∑

i6=j

∫

Vi

(p̂t
i − p̂0

i )I dσ

+

∫

Vi

(K̂(x,yi, p
t
i) − K̂(x,yi, p

0
i ))I dσ

= 0 (4.18)

since pt
i = pi according to (4.12).

Before we continue with terms (ii) and (iv), note that because of the con-

servation of the total energy we have

∫

V t
j

I dσ −
∫

Vj

I dσ =
∑

i6=j

(−1) ·
(
∫

V t
i

I dσ −
∫

Vi

I dσ

)

. (4.19)

Furthermore, we find for term (ii) that

∫

V t
j

ρ̂I dσ −
∫

Vj

ρ̂I dσ = (−1) ·
∫

Vj\V t
j

ρ̂I dσ

=
∑

i6=j

(−1)

∫

Vj∩V t
i

ρ̂I dσ

=
∑

i6=j

(−1)ρ̂(x∗i )

∫

Vj∩V t
i

I dσ (4.20)

for some x∗i ∈ Vj ∩ V t
i , i 6= j. Similarly, we have for term (iv) the equality

∑

i6=j

(
∫

V t
i

ρ̂tI dσ −
∫

Vi

ρ̂tI dσ

)

=
∑

i6=j

ρ̂t(x∗∗i )

∫

Vj∩V t
i

I dσ (4.21)



79

for some x∗∗i ∈ Vj ∩ V t
i , i 6= j. Adding the right-hand sides in (4.20) and

(4.21) we conclude that

(ii) + (iv) =
∑

i6=j

(ρ̂t(x∗∗i ) − ρ̂(x∗i ))

∫

Vj∩V t
i

I dσ. (4.22)

Note that ρ̂t → ρ and σ(Vj ∩V t
i ) → 0 as t→ 0, and therefore, we can choose

the x∗∗i such that x∗∗i → x∗i as t→ 0 for all i 6= j.

It was shown for even dimensions n in Theorem 4.3 that in this case the

measure G is Lipschitz in the components of p. Furthermore, for variations

of the form Rt = (ρ, p1, . . . , pje
t, . . . , pK) as defined in (4.12) we have the

estimate

|G(Rt,yj) −G(R,yj)| =

∣
∣
∣
∣
∣

∫

V t
j

I dσ −
∫

Vj

I dσ

∣
∣
∣
∣
∣
≤ Cpje

t|t| (4.23)

for some finite constant C. Hence,

∣
∣
∣
∣

G(Rt,yj) −G(R,yj)

t

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

1

t

(
∫

V t
j

I dσ −
∫

Vj

I dσ

)∣
∣
∣
∣
∣
≤ Cpje

t <∞, (4.24)

and therefore, we obtain the following limit from (4.22);

lim
t→0

1

t
·
(
∑

i6=j

(ρ̂t(x∗∗i ) − ρ̂(x∗i ))

∫

Vj∩V t
i

I dσ

)

= 0. (4.25)

Combining (4.16), (4.17), (4.18) and (4.25), we conclude that the first vari-

ation of QK with respect to t in R is given by

δQK [ρt,pt]∣∣
t=0

=

∫

Vj

I dσ − νj +

∫

Vj

pj

∂K̂
∂p

(x,yj, pj)I dσ. (4.26)
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Since G(R,yj) ≥ νj + ν1

K−1
the expression (4.26) is strictly positive. Fur-

thermore, we can assume that j=k, where pk was the focal parameter on the

boundary of the admissible set, and therefore (4.26) is strictly positive and

QK does not achieve its maximum when pk is on the boundary.

Case 2: Let us consider now a reflector R where pj = 32aM for some

j ∈ {2, . . . , K}. Then G(R,yj) = 0. Again, we consider variations of the

form defined in (4.12), this time for t < 0. We obtain the following relations

between the visibility sets of R and Rt:

Vj ⊂ V t
j and V t

i ⊂ Vi for all i 6= j. (4.27)

Using the inclusions in (4.27), we decompose S
n and use this decomposition

to rewrite the integral over S
n as follows.

∫

Sn

(ρ̂t − ρ̂)I dσ =

∫

V t
j

ρ̂tI dσ −
∫

Vj

ρ̂I dσ

+
∑

i6=j

(
∫

V t
i

ρ̂tI dσ −
∫

Vi

ρ̂I dσ

)

.

(4.28)

Next, we use again the relations between the visibility set stated in (4.27) to

rewrite the right-hand side of (4.28).
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From (4.28), we obtain the following expression for the integral:

∫

Sn

(ρ̂t − ρ̂)I dσ =

∫

Vj

(ρ̂t − ρ̂)I dσ

︸ ︷︷ ︸

(i)

+

∫

V t
j

ρ̂tI dσ −
∫

Vj

ρ̂tI dσ

︸ ︷︷ ︸

(ii)

+
∑

i6=j

∫

V t
i

(ρ̂t − ρ̂)I dσ

︸ ︷︷ ︸

(iii)

+
∑

i6=j

(
∫

V t
i

ρ̂I dσ −
∫

Vi

ρ̂I dσ

)

︸ ︷︷ ︸

(iv)

.

(4.29)

Using similar arguments for the terms (i) – (iv) in (4.29) as in the first case

for (4.16), we obtain

δQK [ρ,p]∣∣
t=0

=

∫

Vj

I dσ − νj +

∫

Vj

pj

∂K̂
∂p

(x,yj, pj)I dσ

= − νj +

∫

Vj

pj

∂K̂
∂p

(x,yj, pj)I dσ

(4.30)

since G(R,yj) = 0. By our hypothesis a > ã, and we have

∣
∣
∣
∣
∣

∫

Vj

pj

∂K̂
∂p

(x,yj, pj)I dσ

∣
∣
∣
∣
∣
< νj

for all j 6= 1. Therefore, the expression in (4.30) is strictly negative. Hence,

QK is strictly decreasing in R with respect to pj and does not achieve its

maximum when pj is on the boundary. QED.
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4.4 Large Maximizers Illuminate the Whole

Target Set

The following theorem tells us more about the properties of the maximizer

of QK if the parameter a is sufficiently large. In particular, it says that every

point in the target set will be illuminated, though it may not receive the

energy prescribed by the measure ν.

Theorem 4.7 Let I ∈ L1(Sn), I > 0 a.e., and ν =
∑K

i=1 νiδyi
be as before.

For any γ > 0 there exists a ≥ 1 such that for the maximizer Rmax ∈

Rn
E,K,p1

(a) of the functional QK we have

G(Rmax,yi) > 0 for all i ∈ {1, . . . , K}. (4.31)

Proof. The proof is almost verbatim the proof of Lemma 4.6. Let R be the

maximizing reflector. We only have to make the observation, that for any

i 6= 1 we have G(R,yi) = 0 if the ellipsoid E(yi, p
∗
i ) is only supporting to

R in a set of measure zero with respect to σ. In other words, there exist

p∗i such that for any pi > p∗i the ellipsoid E(yi, p
∗
i ) is not supporting to R.

But then the same arguments that we used to show that for large enough
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maximizers the focal parameters cannot be on the boundary of the admissible

set (Lemma 4.6) imply that pi < p∗i for i 6= 1. Furthermore, we obtain a lower

bound on the pi as well since E(y1, p1) has to be supporting to R in a set of

positive measure as well. QED.

4.5 Proof of Theorem 4.1

After the preparations in the previous sections, the goal of this section is to

complete the proof Theorem 4.1.

Proof.[Theorem 4.1] By Lemma 4.6 there exists any γ > 0 a ã such that

Rmax ∈ int(Rn
E,K,p1

(a)) and

∣
∣
∣
∣
∣

∫

Sn

pj

∂K̂
∂p

(x,yj, pj)I dσ

∣
∣
∣
∣
∣
≤ γ

K − 1
, j = 2, . . . , K

for all a > ã. Fix j ∈ {2, . . . , K} and denote by ρt,pt variations of ρmax,pmax

of the form (4.12).

As in the proof of Lemma 4.6, we obtain

δQK [ρmax,pmax]∣∣
t=0

=

∫

Vj

I dσ − νj +

∫

Vj

pj

∂K̂
∂p

(x,yj, pj)I dσ. (4.32)

Hence, we obtain from (4.32)

|G(Rmax,yj) − νj| ≤
γ

K − 1
≤ γ
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for all j ∈ {2, . . . , K}. Furthermore, we conclude that

|G(Rmax,y1) − ν1| =

∣
∣
∣
∣
∣

K∑

j=2

(G(R,yj) − νj)

∣
∣
∣
∣
∣
≤ γ.

We conclude that (4.1) holds.

If I > 0 almost everywhere then there is a unique solution R of the reflector

problem in Rn
E,K,p1

(a). Since |G(Rmax, ω) −G(R,ω)| → 0 as a→ ∞ for any

Borel set ω ∈ T (by (4.1)), we conclude that (4.2) holds. If S = sptI 6= S
n

define for every m ∈ N the L1 function

Im(x) =







I(x) − 1
m

σ(O)
σ(S)

, x ∈ S = S
n\O,

1
m
, x ∈ O,

(4.33)

where O is the complement of sptI in S
n. Obviously, sptIm = S

n and

limm→∞ Im(x) = I(x) for all x ∈ S
n. Let Rm

max and Rm denote the cor-

responding maximizing reflector and solution to the reflector problem, re-

spectively. Then Rm
max → Rmax and Rm → R as m→ ∞. It follows from the

previous argument that (4.2) holds. QED.
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Chapter 5

Alternative Functionals: Weak

Solutions as Extrema of

Variational Problems

In this chapter we discuss alternatives to the functional QK for a discrete

target set T = {y1, . . . ,yK} (as before) which have the property that under

appropriate constraints on the admissible set a weak solution to the reflector

problem is attained in an extremum of the functionals.
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5.1 The Functional of Kochengin and Oliker

In [18] and [19] S. Kochengin and V. Oliker discussed existence and unique-

ness of weak solutions to the near-field reflector problem and described an

algorithm to find solutions numerically. The main observation is that weak

solutions are minimizers of the functional

QKO[p] =
K∑

i=1

pi (5.1)

on the admissible set R̂n
E,K,p1

(a) ⊂ Rn
E,K,p1

(a) defined by

R̂n
E,K,p1

(a) = {R ∈ Rn
E,K,p1

(a) | G(R,y1) ≥ ν1,

G(R,yj) ≤ νj, ∀j = 2, . . . , K}.
(5.2)

Note that this is the admissible set that we used in the proof of Theorem

2.8. The main idea in the proof was to show that the reflector

R̃ =
K⋂

i=1

E(yi, p̃i),

where

p̃1 = 8aM,

p̃i = inf
R∈R̂n

E,K,p1
(a)
pi, i = 2, . . . , K,

solves the reflector problem. Obviously, the reflector R̃ minimizes QKO in

R̂n
E,K,p1

(a).
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5.2 The Sum of the Logarithmic Focal Func-

tions

Recall that we introduced the functions ρ̂ := log(ρ) and p̂ := log(p) to

obtain an additive duality relation between the functionals. This suggests to

consider a functional defined by

Q1[p] =
K∑

i=1

log(pi)νi (5.3)

or, similarly,

Q2[p] = −
K∑

i=1

log(pi)νi. (5.4)

Using the same admissible set R̂n
E,K,p1

(a) as in (5.2), we obtain a weak so-

lution of the near-field reflector problem as a maximizer or minimizer of the

functionals in (5.3) or (5.4), respectively. Since the logarithm is monotone

increasing, the reflector

R̃ =
K⋂

i=1

E(yi, p̃i),

where

p̃1 = 8aM,

p̃i = inf
R∈R̂n

E,K,p1
(a)
pi, i = 2, . . . , K,

minimizes Q1 and maximizes Q2 in the admissible set.
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5.3 The Integral of the (Logarithmic) Radial

Function

Observe that the functionals defined in (5.3) and (5.4) correspond to the

second term of the functional QK as defined in (2.15). This motivates the

consideration of the following functional which corresponds to the first term

in (2.15). We set

Q3[ρ] =

∫

Sn

log(ρ)Idσ =
K∑

i=1

∫

α−1(yi)

log(ρ(x))I(x)dσ(x) (5.5)

and consider again the admissible set R̂n
E,K,p1

(a) defined in (5.2). Similarly,

we can consider

Q4[ρ] =

∫

Sn

ρIdσ =
K∑

i=1

∫

α−1(yi)

ρ(x)I(x)dσ(x). (5.6)

Since the radial function ρy of an ellipsoid E(y, py) is strictly increasing with

respect to py, it follows from Sections 5.1 and 5.2 that the minimizer is again

a solution to the reflector problem given by

R̃ =
K⋂

i=1

E(yi, p̃i),
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where

p̃1 = 8aM,

p̃i = inf
R∈R̂n

E,K,p1
(a)
pi, i = 2, . . . , K.

5.4 Conclusions

We have seen in this chapter that there are several ways to obtain weak

solutions for the reflector design problem by finding an extremum of one of

the functionals discussed above. Observe that we obtain a solution to the

reflector problem as a maximizer of Q2, while we obtain the same solution as

a minimizer of Q3. Since QK [ρ,p] = Q3[ρ]+Q2[p] as defined in (2.15), (5.4),

(5.5) , we cannot, in general, expect the solution of the reflector problem R̄

to be a maximizer of QK .
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Appendix

6.1 The Hausdorff Metric

We give a definition for the Hausdorff metric dH on the collection H of

nonempty, closed, and bounded subsets of a metric space (X, d). LetK1, K2 ∈

H and δ > 0. The δ-neighborhood of Ki, i = 1, 2 is defined by

U(Ki, δ) =
⋃

x∈Ki

B(x, δ),

where B(x, δ) is a ball in (X, d) with center x and radius δ. Then the Haus-

dorff distance between K1 and K2 is defined as

dH(K1, K2) = inf{δ > 0|K1 ⊂ U(K2, δ) and K2 ⊂ U(K1, δ)}.

Equivalently, one can define the Hausdorff metric by

dH(K1, K2) = max

{

sup
x∈K1

inf
y∈K2

d(x, y), sup
x∈K2

inf
y∈K1

d(x, y)

}

.

For more information, we refer to [21], [33] and [31].
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6.2 Blaschke’s Selection Theorem

In the following, we state a version of Blaschke’s selection theorem that is

convenient for our arguments in the proof of Theorem 2.6. See, for example,

[33] or [31] for more details.

Recall that a hypersurface S ⊂ R
n+1 is called a closed, convex hypersurface

if it is the boundary of a compact, convex body B with nonempty interior, i.e.

S = ∂B (see, for example, [4]). We refer to [31] for a proof of the following

version of Blaschke’s selection theorem.

Theorem 6.1 From each bounded sequence of convex bodies one can select

a subsequence converging to a convex body.

We restate the theorem in a slightly modified form that is more convenient

for our purposes.

Theorem 6.2 Let {Sn}n∈N be a sequence of closed, convex hypersurfaces in

R
n+1 and denote by Bn the convex body bounded by Sn. Suppose there exist

0 < r < R < ∞ and two balls Kr and KR with radii r and R, respectively,

such that Kr is contained strictly inside Bn and Bn is contained inside KR

for all n ∈ N. Then {Sn}n∈N contains a subsequences that converges to a

closed, convex hypersurface with respect to the Hausdorff metric.
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