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ABSTRACT 

 

BEE FORAGING PATTERNS: NEW STATISTICAL METHODS AND THE EFFECT 

OF SPECIES RICHNESS AND SUB-LETHAL PESTICIDE EXPOSURE 
 

By Carolyn Anne Ayers 
 
 

My dissertation consists of two distinct components, each represented by two 

chapters. In the first component, I develop new statistical techniques to quantify and test 

the significance of trapline foraging, a behavior in which foragers repeatedly visit 

spatially fixed resources in a predictable sequence. Though traplining is taxonomically 

widespread, the few metrics and null models that exist to statistically test traplining have 

substantial drawbacks. In my first chapter, I present a modified version of determinism 

from recurrence quantification analysis as a standard metric for quantifying traplines. 

Using empirical data to compare metrics, I find that determinism offers an improvement 

over other metrics since it does not depend on the arrangement of resources or 

experimental design, which allows for comparisons between differing environments. In 

my second chapter, I present a spatially explicit, individual-based null model designed to 

test whether resource layouts and realistic forager movements alone can account for 

suspected traplines. Using empirical data, I find that my null model is less prone to Type 

I or II statistical error relative to existing models.  

In the second component, I use a foraging enclosure with artificial flowers to 

examine the effects of bee species richness and sub-lethal neonicotinoid pesticide 

exposure on functionally important bee foraging behaviors. Pollinator diversity is 

declining worldwide, yet it is relatively unknown how species losses will affect plant 

pollination services. In my third chapter, I examine how bee species richness drives 

patterns of bee specialization, which is important for conspecific pollen transfer. I find 

that species-level specialization and complementarity increase with bee species richness. 

The focus of my fourth chapter is exposure to neonicotinoid pesticides, which have been 

implicated as a potential driver of bee declines and have been shown to affect bee 

foraging behaviors at low concentrations. I examine how field-realistic neonicotinoid 

exposure interacts with lost bee diversity to affect bee behaviors important for bee fitness. 

I find that neonicotinoid exposure decreases total flower visits and bee energy gains in a 

multiple species context. These findings indicate that neonicotinoid exposure and bee 

species losses may negatively affect bee and plant fitness more greatly than previously 

anticipated. 
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INTRODUCTION 

 

Bees and other pollinators are important for pollination in agriculture and natural 

ecosystems. Pollinators are critically important for global food production, with 

approximately 2/3 of our food crops and 1/3 of calories depending on pollinators (Klein 

et al. 2007). The widespread loss of managed and wild pollinators is therefore a great 

challenge for global food security and the conservation of natural ecosystems (Biesmeijer 

et al. 2012, Potts et al. 2010). My dissertation is focused on factors affecting bee foraging 

patterns which can have direct implications for plant pollination. 

My dissertation consists of two distinct components, in which I examine bee 

foraging patterns using a statistical and an experimental approach. In the first component 

of my dissertation (Chapters 1-2), I develop new statistical techniques to quantify and test 

the significance of suspected traplines, which will be discussed in greater detail in the 

next section. In the second component of my dissertation (Chapters 3-4), I use an 

experimental approach to examine the effects of bee species richness and sub-lethal 

neonicotinoid pesticide exposure on bee foraging patterns important for both plant and 

bee fitness. 

 

TRAPLINING 

Trapline foraging is a behavior where animals repeatedly visit spatially fixed, 

replenishable resources in a predictable order (Thomson et al. 1997). Traplining is a 

taxonomically widespread foraging strategy which has been observed in a variety of bee 

taxa (Ackerman et al. 1982); hummingbirds (Gill 1988); vultures (Deygout et al. 2009); 

bats (Woodsworth et al. 1981); and other mammals including rats, opossums, and 
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primates (Garber 1988). The widespread use of traplining may be in part because it 

increases foraging efficiency by allowing foragers to minimize travel and search times 

between resources (Ohashi et al. 2007, Lihoreau et al. 2011, Saleh and Chittka 2007). 

Increased foraging efficiency due to traplining has been shown to offer a competitive 

advantage to traplining foragers (Ohashi et al. 2008).  

Due to the prevalence of the traplining in pollinators including bees and 

hummingbirds, traplining is frequently studied in terms of its functional implications for 

plant pollination. For example, traplines incorporating conspecific flowers may enhance 

conspecific pollen transfer (Ohashi and Thompson 2009). Traplining is also commonly 

used as a system for studying the role of spatial memory in solving complex routing 

problems (Lihoreau et al. 2011, Lihoreau et al. 2012), since complex cognitive processes, 

including spatial reference memory and iterative learning heuristics, are proposed 

mechanisms of trapline foraging behavior (Saleh and Chittka 2007, Reynolds et al. 2013). 

Despite its importance, the difficulty of quantifying imperfect or highly variable 

traplines has generally prevented comparisons between traplining studies. Existing 

metrics have many shortcomings which make it difficult to compare traplining across 

multiple environments, including sensitivity to the number and spatial arrangement of 

resources. An appropriate metric for traplining is needed to quantify and compare the 

level of predictability in traplining sequences regardless of the resource layout or 

experimental design.  

There are also very few null models for testing the significance of suspected 

traplines, which has led many traplining studies (e.g. Thomson et al. 1997) to only 

compare different foragers (i.e. is one forager traplining more than another?) rather than 
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asking the question of interest: is a particular forager traplining? A null model, or a 

pattern-generating models based on randomization of data or random sampling from a 

specified distribution, can be used to answer this question by deliberately excluding the 

mechanism of interest (Gotelli and Graves 1996). In the case of traplining, null models 

that exclude the use of spatial memory may be used to test the statistical significance of 

memory-driven traplining behavior observed in empirical data. An appropriate null 

model for traplining will be especially important for explicitly testing the role of 

individual learning and decision-making versus the role of non-cognitive factors (e.g. the 

spatial geometry of resources) or cognitive processes of lesser interest (e.g. the type of 

random walk used by the forager).  

 

BIODIVERSITY ECOSYSTEM FUNCTIONING RELATIONSHIPS 

One of the key findings in ecology over the past 25 years, is the discovery that 

greater biodiversity leads to greater ecosystem functioning and stability. Biodiversity 

ecosystem functioning (BEF) relationships are also important for people since 

ecosystems provide an invaluable suite of services, including cleaning air and water, 

cycling nutrients, preventing floods, and pollinating crops (Egoh et al. 2007). With bee 

species diversity declining worldwide, understanding BEF relationships will be vitally 

important for predicting how bee species losses will affect plant pollination services. 

One of the primary mechanisms that drive BEF relationships is complementarity 

(i.e. niche partitioning), where different species specialize on different resources (Loreau 

et al. 2001). Complementarity provides ecosystem stability by promoting greater overall 

resource use in a community (Hooper et al. 2005). Traditional studies of BEF have 
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focused on fixed traits in plants (Tilman et al. 1997) and assume that the fundamental 

niche (the total breadth of resources a species can use) always equals the realized niche 

(the breadth of resources actually used by a species).   

However, this assumption is not necessarily valid in plant pollinator systems, 

since pollinators can rapidly change their foraging patterns in response to competition 

over ecological timescales (Pimm 1985, Rosenzweig et al. 1991, Bolnick et al. 2010). In 

other words, when phenotypic plasticity is present, as is the case with pollinators, the 

realized niche does not always equal the fundamental niche. These dynamic (i.e. plastic) 

behavioral traits, while little studied in a BEF framework, can have direct consequences 

for plant pollination and reproduction.  

Previous studies have shown that interspecific and intraspecific competition have 

opposing effects on specialization, where interspecific competition increases niche 

breadth while intraspecific competition decreases niche breadth (e.g. Rosenzweig 1991). 

For example, bees become more specialized in the presence of interspecific competition 

(Inouye 1978, Fontaine et al. 2005), whereas they become less specialized following 

release from interspecific competition (Brosi & Briggs 2013).  

It is not well understood, however, how phenotypic plasticity (whether 

morphological or behavioral) can change BEF relationships. If species tend to specialize 

on resources they are most efficient at utilizing in the presence of competition, I predict 

that phenotypic plasticity will lead to greater ecosystem productivity than previous 

predicted by studies examining fixed traits.  
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POLLINATORS AS A STUDY SYSTEM FOR BEF 

Pollinators are an excellent study system for examining BEF relationships 

mediated by phenotypic plasticity. Pollinators have been shown to rapidly change their 

behavior in response to competition (Inouye 1978, Fontaine et al. 2005, Brosi & Briggs 

2013), and their behaviors have direct functional impacts on plant pollination. 

Pollinator behaviors are important for plant pollination at individual, species, and 

community levels (Brosi 2016). At the individual level, specialization and floral fidelity 

are both important for transferring conspecific pollen (Morales & Traveset 2008, 

Flanagan et al. 2009, Waser 1986, Chittka et al. 1999, Brosi & Briggs 2013). Conspecific 

pollen transfer, or the transfer of pollen between flowers of the same species, is important 

for plant reproductive success, while heterospecific pollen, or pollen transferred between 

flowers of different species, does not benefit plant reproduction. The term 

“specialization” refers to a foraging pattern where bees visit a high proportion of one 

flower type, whereas floral fidelity refers to when bees regularly transition between 

flowers of the same species. Floral fidelity in particular leads to greater plant 

reproductive success, as bees visit flowers in an order that allows for great conspecific 

pollen transfer (Morales & Traveset 2008, Flanagan et al. 2009, Waser 1986, Chittka et 

al. 1999, Brosi & Briggs 2013). 

Specialization at the species level, where individuals of a particular bee species 

tend to specialize on the same plant (Brosi 2016), has also been shown to aid in 

conspecific pollen transfer and seed set (Fründ et al. 2013). Species-level specialization 

can be decoupled from individual-level specialization (Bolnick et al. 2010). For instance, 
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species-level specialization increases as niche overlap between individuals decreases, 

even if the average niche width of individuals remains constant (Brosi 2016). Finally, 

pollinator complementarity (i.e. niche differentiation at the community level), where 

different bee species specialize on different plant species (Brosi 2016), is associated with 

greater recruitment of diverse plant communities (Fontaine et al. 2005). Both species-

level specialization and community-level complementarity could enhance functioning if 

particular pollinator species specialize on the plant species for which they have a 

relatively high pollination efficiency. 

There is a small but growing BEF literature using pollinators (Fontaine et al. 

2005, Greenleaf & Kremen 2006, Brittain et al. 2013, Brosi & Briggs 2013). One 

common finding is that the identities of the plant species have a large effect on the degree 

of complementarity, particularly because pollinator species vary in their ability to interact 

with different pollination syndromes (Fenster et al. 2004). For example, pollinators have 

been shown to prefer and be more efficient at utilizing flowers with a similar corolla 

length as their proboscis (Inouye 1980). One remaining challenge in the field is to 

determine the role of species richness per se in driving bee foraging patterns independent 

from the confounding effects of bee and plant functional groups. Additionally, most 

previous studies are also focused on a single hierarchical level, whereas there are bee 

behaviors important for pollination across the individual, species, and community level. 

 

NEONICOTINOID PESTICIDES 

Neonicotinoid pesticides have been implicated as one possible cause for bee 

species declines (Godfray et al. 2014). Neonicotinoids were introduced in the mid-1990’s 
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and have become the most widely-used class of insecticides worldwide (Goulson 2013; 

Van der Sluijs et al. 2013). Neonicotinoids are systemic and are incorporated into plant 

tissues, including plant pollen and nectar which are consumed by bees. Sub-lethal 

neonicotinoid exposure at field-realistic concentrations has been shown to have 

detrimental effects on bee cognitive processes (Mommaerts et al. 2010). Low doses of 

pesticides have been shown to impair foraging behaviors including navigation (Henry et 

al. 2012), the ability to learn how to handle flowers efficiently (Stanley and Raine 2016), 

and the ability to collect pollen (Feltham 2014). Changes in pollen foraging due to sub-

lethal neonicotinoid exposure has also been shown to negatively affect plant reproduction 

(Stanley et al. 2015). 

Though it is well established that field-realistic exposure to neonicotinoid 

pesticides alters bee behavior, there is very little understanding of how sub-lethal 

exposure affects bee behaviors important for bee and plant fitness in a multiple versus 

single species context. Previous laboratory studies have primarily examined the effect of 

neonicotinoid exposure in single-species contexts (Morandin and Winston 2003, 

Schneider et al. 2012). In field studies, which likely contained multiple species, no one 

has specifically tested for the role of species diversity. Since environmental complexity 

(e.g. species richness) may increase the difficulty of learning and processing 

environmental cues (Dukas and Real 1993, Laverty 1994, Naug and Arathi 2007), 

neonicotinoid exposure will likely differentially affect foraging in single versus multiple 

species contexts. This could have important implications for how bees respond to 

pesticide exposure in complex natural environments where multiple species are present. 
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OVERVIEW OF DISSERTATION 

My dissertation is focused on factors influencing bee foraging patterns important 

for bee or plant fitness. Bee foraging behavior is of great interest for conservation, since 

many bee behaviors play a vital role in promoting plant pollination and reproduction. Bee 

foraging is also an important study system in the behavioral and cognitive sciences, since 

bees are well-known for their resource optimization strategies and for solving complex 

routing problems. In this dissertation, I make new contributions to our knowledge of bee 

foraging by (1) developing new methods for statistically testing traplining, a common bee 

foraging strategy; and (2) examining how two key conservation threats for bees (bee 

species losses and sub-lethal neonicotinoid exposure) can alter bee foraging behaviors 

important for both plant and bee fitness. 

My dissertation consists of two distinct components, in which I examine bee 

foraging patterns using a statistical and an experimental approach. In the first component 

of my dissertation (Chapters 1-2), I develop new statistical techniques to quantify and test 

the significance of trapline foraging, a taxonomically widespread behavior in which 

foragers visit spatially fixed resources in a repeated sequence. In the second component 

of my dissertation (Chapters 3-4), I use a foraging enclosure with artificial flowers and 

four total bee species to examine the effects of bee species richness and sub-lethal 

neonicotinoid pesticide exposure on bee foraging patterns important for both plant and 

bee fitness.  

Each of my four chapters also serves as an independent unit. Chapter 1 is 

published in a peer-reviewed journal, Chapter 2 is in review, and Chapters 3-4 are in 

preparation for submission to peer-reviewed journals. I am the lead author on all four 
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papers, and I have also worked with collaborators who offered invaluable input and 

support for each chapter. 

In my first chapter, I present a standard metric to quantify traplining using a 

modified version of determinism (DET) from recurrence quantification analysis. I find 

that DET offers an advancement over other metrics for sequential behaviors, including 

traplining, since it allows for comparisons between differing environments in a range of 

ecologically important contexts. Determinism can also be used to analyze other 

sequential behaviors, including bird mating dances or insect grooming sequences. I co-

authored this paper with Paul Armsworth and Berry Brosi. Brosi, Armsworth, and I 

together conceived and designed the study. I executed the study and wrote the manuscript 

with input from Brosi and Armsworth. The chapter is now published in Behavioral 

Ecology and Sociobiology (69(8): 1395-1404, August, 2015; reprinted with permission of 

Springer).  

In my second chapter, I present a spatially explicit, individual-based null model 

designed to test whether realistic forager movements and the spatial layout of resources 

alone can account for suspected traplines. Using two sources of empirical data, I compare 

my spatially explicit model with two existing models: a completely random model and a 

sample randomization model. I find that my null model is less prone to Type I error 

relative to a random null model, and less prone to Type II statistical error relative to a 

sample randomization model. This type of null model may be useful for many other 

spatially explicit and individual-based processes, which are currently at the forefront in 

the field of ecology. I co-authored this work with Paul Armsworth and Berry Brosi. 
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Similarly as in Chapter 1, Brosi, Armsworth, and I conceived and designed the study. I 

executed the study and wrote the manuscript with input from Brosi and Armsworth. 

In my third dissertation chapter, I examine how bee species richness drives bee 

foraging patterns important for plant pollination at the individual, species, and 

community level. I find that increasing bee species richness leads to greater specialization 

at the species level and greater niche partitioning at the community level. I co-authored 

this work with Emily Dobbs, Anna Mayrand, and Berry Brosi. Brosi and I conceived of 

and designed the study. I took the lead role in writing the paper and analyzing the data, 

with input from Brosi. Dobbs, Mayrand, and I all collaborated on collecting trials. Dobbs 

was instrumental in obtaining and maintaining bee stocks in the lab. Dobbs and Mayrand 

maintained the foraging enclosure. 

In my fourth chapter, I examine how sub-lethal neonicotinoid exposure interacts 

with species richness to affect bumble bee (Bombus impatiens) behaviors important for 

bee fitness. I found that neonicotinoid exposure increases the number of flower visits and 

bee energy gains in a single-species context. However, exposure decreases total flower 

visits and bee energy gains in a multiple species context, which is more representative of 

real-world bee communities. This finding indicates that neonicotinoid exposure may have 

a greater effect on bee fitness than previously predicted by single-species experiments. I 

co-authored this work with Emily Dobbs, Anna Mayrand, and Berry Brosi. Brosi and I 

conceived of the study. I collaborated with Brosi, Dobbs, and Mayrand to design the 

study and plan trials, and I collaborated with Dobbs and Mayrand to run the trials. I took 

the lead role in writing and analysis with input from Brosi. 
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Chapter 1. 

DETERMINISM AS A STATISTICAL METRIC FOR ECOLOGICALLY 

IMPORTANT RECURRENT BEHAVIORS WITH TRAPLINE FORAGING AS A 

CASE STUDY 

Ayers, Carolyn A., Paul R. Armsworth, and Berry J. Brosi. Behavioral Ecology and 

Sociobiology 69, no. 8 (2015): 1395-1404. Reprinted with Permission from Singer. 

 

 

ABSTRACT 

Patterns of discrete behaviors tied together in specific sequences are essential for 

the formation of complex behavioral phenomena. Such behavioral sequences can be of 

critical ecological importance, for example relating to resource acquisition, predator 

evasion, and sexual selection. The role of sequential behaviors in ecology, however, is 

understudied, in substantial part due to the difficulty of quantifying complex sequences. 

Here we present a modified version of determinism (DET) from recurrence quantification 

analysis (RQA) as a standard metric for quantifying sequential behaviors. We focus on a 

case study of trapline foraging, a taxonomically widespread behavioral strategy in which 

animals repeatedly visit spatially fixed resources in a predictable order. Using a bumble 

bee movement dataset, we demonstrate how to calculate DET and create and interpret 

recurrence plots, which visually demonstrate patterns in foraging sequences. We show a 

new method for statistical comparisons of DET scores, and assess the sensitivity of DET 

to resource density using simulated foraging sequences. We find that DET complements 

and offers distinct advantages over previously available methods for many questions and 

datasets since it does not depend on any particular resource arrangement or experimental 
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setup and is relatively insensitive to resource density. These features make DET a 

powerful tool for comparing sequential behaviors between differing environments in a 

range of ecologically important contexts. 

 

INTRODUCTION 

Patterns of discrete sequential behaviors are essential for the formation of 

complex behavioral phenomena. Such sequential behaviors can be of key importance for 

ecological or evolutionary processes, including host-parasite and predator-prey 

interactions, optimal foraging, and sexual selection. For host-parasite and predator prey 

interactions, these behaviors may include sequential grooming behaviors (Fentress and 

Stilwell 1973; Berridge et al. 2005; Kristan 2014) and patterns of time allocation to 

foraging versus scanning for predators in birds and mice (Caraco 1982; Maubourguet et 

al. 2008). Sequential behaviors are also important for establishing daily foraging patterns 

(Champion et al. 1994), including foraging on different prey or resource types, for 

example, pollen- versus nectar-focused foraging in bumble bees (Vaudo et al. 2014). 

Sequential behaviors which drive sexual selection may include the establishment of 

social dominance (Chase 1982) and complex courtship dances (Barske et al. 2011). 

Innate sequential behaviors have long been studied in the context of fixed action patterns, 

where a series of behaviors are completed in response to a distinct stimulus. A classic 

example is the greylag goose, which uses a series of egg rolling motions to return an egg 

to the nest when an egg is displaced, and performs the entire behavioral sequence even 

when the egg is removed (Lorenz and Tinbergen 1970). Many sequential behaviors, 
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however, are learned plastic behaviors that form in response to environmental stimuli and 

may greatly vary between individuals. 

While a substantial body of work is devoted to the examination of the 

neurological process of learning sequential behaviors (e.g. Melamed et al. 2004; Rhodes 

et al. 2004; Jin et al. 2014), their role in ecology is understudied. This is due in large part 

to the difficulty of quantifying ordered patterns from a time series of behaviors. Though 

sequential behavioral data have been recorded at set time intervals to examine time 

budgets, a method in use for decades (Wiens et al 1970), these data are nearly always 

analyzed as the proportion of time spent on each activity (Williams et al. 1997; Sabine et 

al. 2008), which may obscure important temporal patterns. Other studies examining 

repetitive behavioral sequences only measure the rate of sequence initiation, without 

quantifying the degree of variation between sequences (e.g. Berridge et al. 2005). From 

these analyses, it is impossible to statistically test whether a particular sequence order is 

important for the outcome of the behavior, as opposed to the presence of all the 

behavioral elements in a random order.  

An ideal standard metric of temporal behavioral sequencing should have several 

features. It should be able to detect imperfect repeats in sequence data, such that the 

omission or addition of a particular sequence point would not entirely disguise an 

otherwise perfect sequence. It should be capable of detecting long sequence repeats, 

rather than only examining very short subsets of sequences, in order to distinguish 

between long and short sequential behaviors. An ideal standard metric should also be able 

to distinguish between forward and reverse-order sequence repeats, since in some cases 

behavioral sequences can be executed in either “forward” or “backward” directions. 
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Finally, an ideal metric should be broadly applicable to different types of behavioral 

sequences, beyond a single study system or experimental design. In order to facilitate 

comparisons across studies, it should be able to quantify sequence predictability without 

relying on a specific reference sequence. To our knowledge, no widely applied metric for 

behavioral sequences meets all of these criteria for an ideal standard metric. However, it 

is important to note that, while these features are important for a standard metric, they 

may not be desirable for all specific questions and datasets, in which case multiple 

metrics may be used. 

Here we address the lack of standard metric by altering and assessing a new metric 

for behavioral sequencing. We propose determinism (DET), adapted from recurrence 

quantification analysis (RQA), as a new standard metric, and recurrence plots as a tool 

for sequence data visualization (Zbilut 1992; Trulla et al. 1996; Marwan et al. 2007). 

Determinism (DET) is a metric adapted from recurrence quantification analysis (RQA), 

which was originally developed to investigate nonlinear dynamical systems, and has been 

applied to many fields including engineering, chemistry, astrophysics, and climatology 

(Marwan et al. 2007).  

Though determinism has many of the required characteristics of an ideal standard 

behavioral sequencing metric described above, to our knowledge it has not been 

previously applied to any animal behavior. DET is broadly applicable to many 

ecologically important sequential behaviors, and we assess DET using the case study of 

traplining, a foraging strategy where animals foraging on replenishing, spatially-fixed 

resources visit resources repeatedly in a predictable order (Thomson et al. 1997). 

Traplining is important ecologically since it allows foragers to minimize distance 
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travelled between resources, reduce search times, and improve overall foraging efficiency 

(Ohashi et al. 2007; Saleh and Chittka 2007; Ohashi et al. 2008; Lihoreau et al. 2011; 

Lihoreau et al. 2012a; Lihoreau et al. 2012b). Trapline foraging is also taxonomically 

widespread, occurring in a variety of bee taxa (Ackerman et al. 1982), as well as in 

butterflies (Gilbert and Singer 1975), hummingbirds (Gill 1988; Garrison 1999; Gass and 

Garrison 1999; Temeles et al. 2006; Tello-Ramos et al. 2015), vultures (Deygout et al. 

2009) and many mammals including bats (Gould 1978; Woodsworth et al. 1981; Lemke 

1989), opossums (Wooller 1999), rats and primates (Garber 1988).  Traplining behavior 

is thought to be driven by complex cognitive processes, including spatial reference 

memory and iterative learning heuristics (Saleh and Chittka 2007, Reynolds et al. 2013). 

Traplining represents an ideal case study for quantitative assessment of behavioral 

sequences because the sequence order is of critical importance, and is therefore often 

recorded in data collection efforts of traplining in contrast to many other behavioral 

sequence data. Because traplining is sequence dependent, researchers have also 

considered a number of different metrics for quantifying traplining behavior (Table 1), 

but as with other behavioral sequences, no metrics have been proposed that meet all the 

criteria we outline in the previous paragraph. 

In this paper, we demonstrate how RQA can be adapted for studying traplining 

and other sequential behaviors in ecology. We use a publicly available dataset of bumble 

bee (Hymenoptera: Apidae: Bombus) foraging movements (Lihoreau et al. 2012a) to 

demonstrate how to calculate DET and create and interpret recurrence plots, which 

visually demonstrate foraging sequence patterns. Using simulated sequences, we 
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demonstrate a new method for statistical comparisons of DET scores, and we assess the 

sensitivity of DET to resource density.  

 

METHODS 

Case study system 

Traplining, a foraging strategy where animals repeatedly visit replenishing, 

spatially-fixed resources in a predictable order, is particularly important in two areas of 

behavioral and ecological research. First, since traplining behavior is thought to be driven 

by complex cognitive processes, it is commonly used as a model system to study spatial 

memory and foraging decision-making (Saleh and Chitka 2007, Reynolds et al. 2013). 

Second, due to the prevalence of the behavior in pollinators such as bees and 

hummingbirds, traplining is often studied in the context of its functional implications for 

plant pollination because traplines incorporating flowers of the same species may 

enhance conspecific pollen transfer and plant reproduction (Ohashi and Thompson 2009). 

As with other types of behavioral sequence data, few tools exist to quantitatively 

assess traplining. While existing traplining metrics (Table 1) can be used to detect basic 

patterns in foraging movements, none of these metrics satisfies all of the aforementioned 

criteria of an ideal standard metric. Several of these measures, such as the asymmetry 

index (Sokal 1991, Thomson et al. 1997), examine bias in the direction of transitions 

between pairs of flowers, which cannot be used to distinguish between long and short 

traplines, or to detect traplines that may occur in reverse order. Another measure, the 

variation in return cycle (Ackerman 1982, Gill 1988, Thomson et al. 1997), is based on 

variability in the time required for foragers to complete a trapline. This may be practical 
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to measure in field studies but does not contain any information on the sequence of 

resources visited. Thus, very different sequences with similar completion times would be 

indistinguishable. Other metrics, including sequence similarity indices (Thomson et al. 

1997, Lihoreau et al. 2010), are designed to test the self-similarity of a foraging sequence, 

but are sensitive to which resource is selected as the start and end of the trapline. In terms 

of behavioral sequences more generally, it may be challenging to select a starting or 

ending behavior for a grooming sequence or mating dance. Similarity indices also require 

a previously specified sequence for comparison. One common approach is to compare the 

similarity of consecutive foraging bouts, but this does not allow for detection of repeated 

sequences between nonconsecutive bouts. Many metrics may only be used to compare 

foraging sequences from identical resource layouts, for instance, metrics which quantify 

the number of different routes taken. Finally, several metrics are specific to particular 

experimental designs, including the spatial geometry of routes (Thomson et al. 1997, 

Lihoreau et al. 2010). These often require resources not to replenish during a foraging 

bout or foragers to return to a home base at the start and end of each trapline. Many other 

traditional metrics of bee foraging, such as average rank (Ohashi et al. 2006), are not 

easily adapted to quantifying traplines since they do not depend on the identity of flowers 

visited in the sequence. Determinism (see Description and Calculation below), however, 

has all the aforementioned properties of an ideal standard metric for behavioral 

sequencing, and offers many distinct advantages over existing metrics. 

 

Description and calculation of determinism and recurrence plots 
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Originally developed for non-linear systems, RQA also has many biological 

applications, including detection of physiological patterns in heart rate variability 

(Marwan et al. 2002; Zbilut et al. 2002b), respiratory data (Webber and Zbilut 1996), and 

brain electrical activity (Thomasson et al. 2001), as well as analyzing amino acid 

sequences (Zbilut et al. 1998; Zbilut et al. 2002a; Porrello et al. 2004; Yang et al. 2009). 

Despite its applications in many different fields, to our knowledge RQA has not been 

used to analyze animal behavior. 

Determinism (DET) measures sequence predictability by quantifying the number and 

length of recurrences and series of recurrences. A recurrence refers to any time a system 

returns to an area of phase space which it has previously visited (Marwan et al. 2007). 

For behavioral sequencing applications, a recurrence occurs when a discrete behavioral 

action (e.g. a single step in a grooming or courtship sequence) is repeated anywhere in 

the behavioral sequence. In the case of trapline foraging, a recurrence occurs whenever a 

forager revisits a resource. A recurrent series occurs when sequence elements are 

repeated in the same order (in either forward or reverse directions) in different parts of 

the sequence. DET is based on the proportion of recurrences (i.e. revisited behavioral 

actions) that belong to a recurrent series of a minimum designated length. In the case of 

traplining, DET represents the proportion of revisited resources which were visited in the 

same continuous order in multiple parts of the visitation sequence. 

Determinism may be best understood graphically using recurrence plots, which 

visually depict the behavior of a dynamical system (Eckmann et al. 1987; Marwan et al. 

2007). To construct a recurrence plot for traplining, we first assign a unique identification 

number to each individual resource (e.g. a flower). A resource visitation sequence is then 
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constructed by recording the unique number of each resource in the order of visitation by 

the forager. We construct the plot by placing the resource visitation sequence on both the 

horizontal and vertical axes, such that xi and yi both represent the ith resource visited (on 

the x and y axes, respectively). A point is placed each time xi = yj , where i and j are the ith 

and jth resources visited in the sequence. Since the same sequence is placed on both axes, 

points always appear on the main diagonal, where i = j, and the plots are necessarily 

symmetrical across this diagonal. Points not on the main diagonal represent a revisit to a 

resource at a different time in the visitation sequence. 

Determinism may be calculated directly using a recurrence plot, as follows:  

 

𝐷𝐸𝑇 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 
𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑎 𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ ≥  𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑏𝑜𝑣𝑒 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
 

 

Where ‘l’ indicates the minimum length (measured in number of contiguous points) 

of a recurrent series in order to be included in the numerator of the DET formula. Since 

recurrence plots are symmetrical across the main diagonal, we propose calculating DET 

only for the top half of each recurrence plot. This restriction, which departs from 

traditional forms of DET, is important for constructing a conservative statistical test of 

DET using generalized linear models (GLMs) with binomial errors (see “Statistical 

Analysis” section). 

For example, in Figure 1, the hypothetical forager visited resources numbered: 

 

1  2  3  8  9  10  2  3  4  5  7  3  8  9  10  7  5  4  8 

 

eqn 1 
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beginning with “1” and ending with “8”. Each repeated number represents a revisit to a 

particular resource (e.g. resource number ‘8’ was visited three times by the forager). We 

first construct the recurrence plot by placing this sequence on both the x and y axes. A 

point is placed each time the resource identification number on the x axis equals the 

number on the y axis. Again, since recurrence plots are symmetrical, points on or below 

the main diagonal are not considered in our calculation of DET (light gray points in 

Figure 1). Points above the main diagonal which belong to unbroken diagonals of length 

≥ l are included in the numerator of the DET formula (blue points in Figure 1). The 

denominator of the formula equals the total number of points above (but not including) 

the main diagonal.  

Increasing the minimum length of a recurrence (l) typically decreases DET as it 

excludes points belonging to shorter diagonals, as demonstrated in Figure 1. When l = 3 

(Figure 1A) the numerator of the DET calculation includes one diagonal of consisting of 

four points and one diagonal of three points:  

𝐷𝐸𝑇𝑙=3 =
4(1) + 3(1)

12
 =

7

12
= 0.58 

 

DET is dependent on the minimum sequence length, however, and when l = 4 (Figure 

1B), the numerator of the DET calculation only consists of only one diagonal of four 

points:  

𝐷𝐸𝑇𝑙=4 =
4(1)

12
 =

4

12
= 0.33 

 

The structure of lines in a recurrence plot indicates when and how often the system 

returns to the same phase space. Vertical or horizontal lines indicate the system remains 
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fixed in space, such as when a forager repeatedly visits the same resource. Vertical or 

horizontal lines may be especially important for grooming sequences or mating dances 

where animals repeat behaviors multiple times in a row before advancing to the next 

behavior. Diagonal lines indicate repeats in the trajectory of the system, such as when a 

forager visits resources in a predictable order (i.e. traplining). Perpendicular diagonals 

indicate a reversal in the order of resources visited in a trapline. Such reverse sequences 

may be biologically relevant in the formation of optimal traplines, since the optimal route 

may be used in either clockwise or counterclockwise directions. However, such reverse 

sequences may not be relevant to all recurrent behaviors, in which case DET may be 

calculated without including perpendicular diagonals in the numerator of the determinism 

calculation (see Appendix 1). Exclusion of perpendicular diagonals may lead to lower 

estimates of DET, so it is important for users of determinism to document their inclusion 

or exclusion of perpendicular diagonals in order to facilitate comparisons across studies. 

Here, perpendicular diagonals are included unless otherwise stated. 

 

STATISTICAL ANALYSIS OF DETERMINISM 

Analysis of determinism with GLMs 

To statistically compare the degree of traplining between two or more resource 

visitation sequences using DET, we propose the use of generalized linear models (GLMs) 

with binomial errors. DET values are typically not normally distributed, but instead more 

closely follow a binomial distribution since each point on a recurrence plot is either a 

“success” (belonging to a recurrent sequence) or “failure” (not belonging to a recurrent 

sequence). The use of a GLM with binomial errors allows for modeling nonlinear 
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responses of DET to differing levels of traplining (Figure 2). Since the statistical power 

of a binomial GLM depends on the number of counts (or points on a recurrence plot), we 

have modified traditional DET to only include the top halves of recurrence plots, which 

are symmetrical across the main diagonal, in order to maintain a conservative statistical 

test. We should emphasize that the GLM approach is for comparing traplining between 

two or more samples. To test whether or not individuals are “significantly” traplining 

requires an appropriate null model (e.g. Ohashi et al. 2007), which is beyond the scope of 

this paper, though DET could be used were such a model available. 

To better understand how DET responds to varying levels of traplining, we 

analyzed DET values calculated from 1,044 simulated foraging sequences (See Appendix 

1) with varying levels of predictability (Figure 2). To generate simulated sequences, we 

set a fixed probability that a forager would repeat a past transition, using a short sequence 

as a reference. To repeat a previous transition, the forager would repeat its behavior from 

the reference sequence. If the forager failed to repeat the transition, another resource was 

chosen at random, excluding the current resource and the one which would have led to a 

repeat transition. As expected, we found a highly significant positive relationship 

between DET and sequence predictability (Table 2). 

 

Sensitivity to resource abundance 

One potential issue in the analysis of behavioral recurrence data is that 

determinism could be sensitive to the number of potential discrete behaviors in a 

sequence, such that it might be inappropriate to compare behavioral sequences of 

differing complexity. In the context of traplining, sensitivity of determinism to the 
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number of possible resources would likely prevent comparisons across environments with 

different resource densities. To explore this issue, we analyzed DET values for 

hypothetical sequences with varying resource abundance (Figure 2). Using five resources 

as our baseline, we found that that DET was able to clearly distinguish variation in 

traplining despite a four-fold increase in resource abundance. This range of resource 

densities is applicable to the majority of traplining studies, which typically occur in 

controlled laboratory settings with a small number of resources (e.g. 6 resource points as 

in Lihoreau et al. 2012a, and up to 16 resources points as in Ohashi et al. 2008). 

Comparisons between extremely large numbers of possible sequence elements (e.g. 50 to 

500 resources) may significantly impact DET (See Appendix 1), however such large 

numbers of possible elements are not likely to be required for the majority of ecological 

or behavioral applications. In rare cases where DET is likely to be sensitive to resource 

abundance, comparisons across studies are still possible after performing a sensitivity 

analysis of the effect of resource abundance on DET (See Appendix 1). 

 

WORKED EXAMPLES 

Here, we demonstrate how determinism and recurrence plots may be used to compare 

the behavior of one individual before and after gaining experience on a foraging array, or 

the foraging behavior of a number of different individuals. Recurrence plots were 

generated using the ‘fNonlinear’ package in R (Wuertz et al. 2013; R core team 2014). 

Calculations of DET were also performed in R, and the corresponding R code is provided 

in Appendix 1. 
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Recurrence plots were constructed using publicly available data from Lihoreau et al. 

(2012a). This dataset includes foraging data from eight individual bumble bees (Bombus 

terrestris) foraging in an enclosure containing six artificial flowers. Nectar rewards did 

not replenish and were calibrated such that bees typically visited all six flowers once per 

foraging bout, and the process was repeated until each bee performed 80 foraging bouts. 

The foraging data were processed to remove immediate revisits by a bee to a particular 

flower. 

Figure 3 shows recurrence plots of the foraging behavior of a bee (indiv. 1 from 

Lihoreau et al. 2012a) after first entering the foraging array, and after gaining experience 

on the array (following 360 floral visits or approximately 60 foraging bouts). The DET 

calculations for these foraging sequences, with l=5, are as follows:  

DETinexperienced = 
26

777
 = 0.03 

DETexperienced = 
517

784
 = 0.66 

Using a generalized linear mixed-effects model with binomial errors, we found that 

traplining significantly increases after bees gain experience on the foraging array (P = 

4.77 × 10-6; see Appendix 1 for full analysis).  

Recurrence plots are useful to visually compare qualitative differences in traplining. 

Longer diagonal lines indicate greater predictability in the foraging sequence, 

corresponding to more numerous and consistent traplines. For the inexperienced foraging 

trials, all diagonals in the recurrence plot are short, and very few points belong to a long 

diagonal (Figure 3A). However, after the forager gains experience, the number and 

lengths of diagonals in the recurrence plot increases, and most points belong to a long 

diagonal (Figure 3B). 
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In Figure 4, we use recurrence plots to compare the traplining behavior of four 

different bees (indiv. 2, 4, 5, and 6 from Lihoreau et al. 2012a) after gaining experience 

inside a foraging array. The first two foragers shown have very predictable foraging 

sequences and therefore have high DET values, while the last two foragers have much 

less predictable sequences and low DET values. Though the pairs of predictable and 

unpredictable foragers have similar DET values, the recurrence plots reveal qualitative 

differences in traplining patterns. The recurrence plot for forager three, for instance, has a 

higher prevalence of diagonals perpendicular to the main diagonal. The percent of points 

in a perpendicular diagonal (out of all points belonging to a diagonal of l=5) was 40% for 

forager three, and only approximately 2% for foragers one, two, and four. This pattern 

indicates forager three was more likely to reverse the direction of its traplines. If we do 

not classify perpendicular sequences as recurrent series, we find that DET is slightly 

reduced for individuals one, two, and four (a decrease of 0.02, 0.01, and 0.01 

respectively), and greatly reduced for forager 3 (a decrease of 0.12).  

 

FINAL REMARKS 

In this paper, we developed a modified version of determinism (DET) from 

recurrence quantification analysis (RQA) as a standard metric for quantifying sequential 

behaviors. We compared DET with existing metrics, and analyzed the sensitivity of DET 

to resource density using simulated foraging sequences in a case study of trapline 

foraging. 

We found that many of the properties of determinism make it a promising metric 

for comparing sequential behaviors between a range of study systems and experimental 
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designs, which would not have been possible with existing metrics. First, we found that 

DET is able to detect recurrent patterns over the entire length of a behavioral sequence 

without relying on comparisons of sequential pairs or other subsets of the behavioral 

sequence. Second, we found that determinism is relatively insensitive to the number of 

possible sequence elements, thus allowing for direct comparisons between studies with 

roughly similar numbers of possible behavioral elements. Third, determinism does not 

require a specific start or end point or a particular sequence of interest, as is often the case 

with similarity indices (Thomson et al. 1997, Lihoreau et al. 2010). Fourth, DET is able 

to detect recurrent sequences from incomplete sequence data, which are the norm in field 

settings. Determinism also offers additional advantages for particular types of recurrent 

behaviors, for instance, allowing for detection of sequence repeats in either forward or 

backward directions, and the ability to set the minimum length of a recurrent sequence. 

Recurrence quantification analysis (from which determinism is derived) also offers 

additional tools (Marwan et al. 2007) which may be useful for quantifying other 

properties of interest, such as the average length of recurrent behavioral sequences.  

One potential shortcoming of determinism, which is also prevalent among 

existing metrics, is that it may underestimate sequence predictability if there are many 

imperfections in otherwise consistent behavioral sequences. In such cases, DET can be 

extended by using modified DNA sequence alignment techniques to minimize the 

impacts of inserted or deleted elements in behavioral sequences (Waterman 1989; 

Thomson et al. 1997), a detailed discussion of which is beyond the scope of this 

manuscript.  
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Determinism may also need to be complemented with other metrics depending on 

the question of interest. For example, while DET can be used to detect the overall level of 

sequence similarity, it would not be used to directly compare an observed sequence with 

a specific reference sequence. In the case of trapline foraging, DET is useful to detect 

traplines following many different routes, but in some specific cases only one or two 

particular routes are of interest (Lihoreau et al 2012).  For these cases, DET may be 

combined well with sequence similarity indices, which are designed to detect sequence 

similarity to a particular route (Thomson et al. 1997; Lihoreau et al. 2010). When 

combined, the two metrics may be used to ask additional questions, such as the 

proportion of all strong trapliners which are following a particular route of interest. 

The straightforward application of determinism and other RQA-derived 

techniques will promote interest in the role of sequential behaviors important for 

ecological and evolutionary processes, including sexual selection (Barske et al. 2011), 

parasite-host interactions (Fentress and Stilwell 1973; Berridge et al. 2005; Kristan 

2014), and efficient resource gathering (Lihoreau et al. 2012a, Vaudo et al. 2014). 

Specifically, the wealth of techniques developed for RQA may be applied to quantifying 

grooming sequences, complex mating dances or social dominance displays, as well as 

sequential patterns of time allocation. The versatility of RQA will enhance the use of 

sequential behaviors in ecology since it allows for comparisons of sequential behavior 

between individuals and across multiple studies, taxonomic groups, and environments. 

For example, sequential behaviors may be used for comparing ecologically important 

factors, such as perceived predation risk (Caraco 1982) or foraging efficiency, across 

varying environments. One might also use RQA to test whether the order of sequential 
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behaviors is critically important for the outcome or efficacy of the behaviors, as may be 

the case for complex mating dances or trapline foraging. In contrast, other sequential 

behaviors may be equally effective as long as all elements appear in the sequence, as may 

be the case for sequential grooming patterns. In these cases, functionally similar 

behaviors may be packaged together in a particular sequence only as a memory tool to 

decrease the likelihood of forgetting any one behavior. Though sequential behaviors 

important for ecological process have been traditionally neglected due to the lack of an 

appropriate metric for many questions and datasets, the versatility of determinism and 

RQA will enhance their use and potentially lead to important innovations in behavioral 

ecology. 
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TABLES 

 

Table 1. Summary of existing metrics for trapline foraging 

 

Existing metrics for trapline foraging 

Name Description Advantage Disadvantage Citations 

Asymmetry 

index 

Measures bias in 

direction of 

transitions 

between pairs of 

flowers (first 

developed to test 

migration) 

Can detect 

basic patterns 

in bee 

movements 

between pairs 

of flowers 

Pairwise comparisons 

only; would not be useful 

whenever foragers repeat 

a trapline in reverse order 

Sokal 

1991, 

Thomson 

et al. 1997 

Skeleton 

diagrams 

Graphical 

depiction of 

asymmetrical 

transitions 

between pairs of 

flowers 

Good visual 

summary of 

foraging 

movements 

Pairwise comparisons 

only (very short repeats 

would be considered 

traplines) 

Thomson 

et al. 1997 

Variation 

of return 

cycle 

Measures the 

variance in time 

or number of 

flowers it takes 

for a bee to return 

to the same point 

Most practical 

measure when 

sequence data 

is difficult to 

collect 

No information on 

identity of flowers visited 

(two very different paths 

could be of similar 

lengths) 

Ackerman 

1982,  

Gill 1988,  

Thomson 

et al. 1997 

Sequence 

similarity 

indices 

Similarity of 

sequences 

starting and 

ending with a 

“terminal flower” 

Examines 

subsets of data 

longer than 

pairs of 

resources 

Targets individual pre-

specified trapline routes, 

so difficult to apply when 

there are many possible 

routes of interest; May be 

sensitive to the selection 

of the terminal flower 

Thomson 

et al. 

1997,  

Lihoreau 

et al. 2010 

Spatial 

geometry 

of routes 

Total number of 

different routes 

used by a forager 

between a 

specified start 

and end point 

(e.g. nest 

entrance) 

Simple to 

calculate if 

sequence data 

is known; 

does not rely 

on pairwise 

comparisons 

May only be used if 

resources are not 

replenishing and their 

spatial arrangement is 

fixed;  only examines 

whether sequences are 

completely identical, and 

cannot distinguish degree 

of similarity between 

sequences  

Thomson 

et al. 

1997,  

Lihoreau 

et al. 2010 
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Determinism in response to sequence predictability and abundance 
 

   Estimate Std. Error t value Pr(>|t|) 
Intercept -9.34 0.18 -51.234 < 2 x 10-16 
abundance 10 -0.29 0.33 -0.88 0.38 
abundance 20 0.5 0.41 1.23 0.22 
abundance 25 1.25 0.42 2.98 0.003 
percent 0.12 0.002 52.5 < 2 x 10-16 
abundance 10:percent 0.001 0.004 0.19 0.85 
abundance 20:percent -0.008 0.005 -1.5 0.13 
abundance 25:percent -0.02 0.005 -3.28 0.001 

 

Table 2. Statistical analysis of DET (l=5) in response to changes in the percent chance of 

repeating a past foraging transition (sequence predictability) and the level of resource abundance. 

We used a GLM with quasi-binomial errors, where the dispersion parameter was estimated as 

29.9. Resource abundance was treated as a factor, and an abundance of five resources was set as 

the reference group. As expected, there was a strongly significant effect of predictability on DET. 

Compared to an abundance of five resources, DET was significantly greater for 25 resources but 

not significantly different for 10 or 20 resources. There was a significant interaction between 

abundance and predictability only for the 25 resource case 
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FIGURES 

 

 

Figure 1. Recurrence plots for a hypothetical foraging sequence with a minimum 

recurrence length of A) 3 or B) 4 points. All points above (but not including) the main 

diagonal are included in the denominator of the determinism (DET) formula. Closed 

points, or those which belong to contiguous diagonals (recurrences) of at least the 

minimum length, are included in the numerator of the DET formula. All grey points are 

excluded from the calculation of DET, since the plot is symmetric across the main 

diagonal. DET= 7/12 = 0.58 and DET= 4/12 = 0.33 in parts A and B, respectively 
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Figure 2. Determinism (DET) values (l=5) from hypothetical foraging sequences with 

varying predictability and resource abundance. We generated 1,044 sequences with 100 

resource visits each while varying the probability of repeating a transition from an earlier 

stage of the foraging sequence. The lines of best fit and 95% CIs were calculated using 

GLMs with quasi-binomial errors to account for the nonlinear response of DET to 

sequence predictability. DET significantly increased with sequence predictability and was 

significantly higher for the case with 25 resources 
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Figure 3. (A) Recurrence plot of the foraging behavior of a bee after first entering a 

foraging array. (B) Recurrence plot of the foraging behavior of the same bee after gaining 

experience on the array (following 360 floral visits). Longer diagonal lines indicate 

greater predictability in the foraging sequence, corresponding to more numerous and 

consistent traplines (Data from indiv. 1 in Lihoreau et al. 2012a) 
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Figure 4. Recurrence plots of four individual bee foragers and the corresponding DET 

values. The plots show the last 100 flower visits after the bumble bees gained experience 

on a foraging array (data from Lihoreau et al. 2012a). Foragers 1-4 correspond to indiv. 

4, 2, 6, and 5 respectively from Lihoreau et al. 2012a. Longer diagonal lines indicate 

greater predictability in the foraging sequence and more consistent traplines (as in A and 

B). Many short diagonals or isolated points indicate less consistent traplines (as in C and 

D). Lines perpendicular to the main diagonal indicate a reverse in trapline direction (as is 

most prevalent in C). The corresponding DET values were calculated with l=5 
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Chapter 2. 

STATISTICALLY TESTING THE ROLE OF INDIVIDUAL LEARNING AND 

DECISION-MAKING IN TRAPLINE FORAGING BEHAVIOR: A SPATIALLY 

EXPLICIT, INDIVIDUAL-BASED NULL MODEL APPROACH 

Carolyn A. Ayers, Paul R. Armsworth, Berry J. Brosi 

 

ABSTRACT 

Trapline foraging, a behavior consisting of repeated visitation to spatially fixed 

resources in a predictable sequence, has been observed over diverse taxa and is important 

ecologically for efficient resource gathering. Despite this, few null models exist to test 

the significance of suspected traplines, particularly for studies interested in the role of 

individual decision-making in the formation of traplines versus the role of resource 

layouts and random movement patterns. Here we present a spatially explicit, individual-

based null model, which may be used to test whether resource layout and realistic forager 

movement may account for sequence repeats in suspected traplines. We compare our 

model with two existing null models—a completely random model and a sample 

randomization model—using both simulated and empirical foraging data. We found that 

relative to our model, a random model is more prone to Type I statistical error while a 

sample randomization model is more prone to Type II error. The type of model presented 

here may be useful for other spatially explicit and individual-based processes, which are 

currently at the forefront in the field of ecology. 
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INTRODUCTION 

Trapline foraging, where animals repeatedly visit spatially fixed, replenishable 

resources in a predictable order (Thomson et al. 1997) can increase foraging efficiency 

since it allows foragers to minimize travel and search times between resources (Ohashi et 

al. 2007, Lihoreau et al. 2011, Saleh and Chittka 2007). Such efficiency increases can 

confer an advantage to trapline foragers in competition with non-traplining foragers 

(Ohashi et al. 2008). These advantages are perhaps reflected in the taxonomically 

widespread adoption of traplining as a foraging strategy, in organisms including a variety 

of bee taxa (Ackerman et al. 1982); hummingbirds (Gill 1988), vultures (Deygout et al. 

2009); bats (Woodsworth et al. 1981); and other mammals including rats, opossums, and 

primates (Garber 1988). 

Complex cognitive processes, including spatial reference memory and iterative 

learning heuristics, are proposed drivers of trapline foraging behavior (Saleh and Chittka 

2007, Reynolds et al. 2013), which makes traplining a common system for studying 

spatial memory and learning heuristics for complex routing problems (Lihoreau et al. 

2011, Lihoreau et al. 2012). Due to the prevalence of the behavior in pollinators 

including bees and hummingbirds, traplining is also frequently studied in terms of its 

functional implications for plant pollination, since traplines incorporating conspecific 

flowers may enhance conspecific pollen transfer (Ohashi and Thompson 2009). 

Few statistical tools, however, are available for testing the statistical significance 

of suspected traplines. An appropriate null model for traplining is especially important 

for explicitly testing the role of individual learning and decision-making versus the role 
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of non-cognitive factors (e.g. the spatial geometry of resources) or cognitive processes of 

lesser interest (e.g. the type of random walk used by the forager). Null models (i.e. 

pattern-generating models based on randomization of data or random sampling from a 

specified distribution) are used to test the statistical significance of biological processes 

by deliberately excluding the mechanism of interest (Gotelli and Graves 1996). In the 

case of traplining, null models that exclude the use of spatial memory may be used to test 

the statistical significance of memory-driven traplining behavior observed in empirical 

data. In the past, the difficulty of creating a relevant null model has led many studies to 

only compare different foragers (i.e. is one forager traplining more than another?) rather 

than making comparisons against a null model (i.e. is a particular forager traplining?)(e.g. 

Thomson et al. 1997). 

The flexibility and specificity of pattern-generating null models can often make it 

difficult to select the most appropriate model (Harvey et al. 1983). Many null models 

contain hard-to-define parameters and can make model results susceptible to higher Type 

I (Wilson 1995) and Type II statistical errors (Grant and Abbot 1980). Type II error, or 

the failure to reject a false null hypothesis, may occur when the mechanism of interest is 

accidentally incorporated into the null model (Colwell and Winkler 1984, Gotelli 2001). 

Type I error, or the incorrect rejection of a true null hypothesis, may occur if alternate 

mechanisms other than the one being tested are not incorporated into the null model 

(Wilson 1995). An ideal null model for traplining should result in low Type I and Type II 

statistical errors when used to test the statistical significance of empirical data. 

Two types of null models currently exist for traplining: a completely random null 

model and a sample randomization null model. We hypothesize a completely random null 
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model will often lead to high Type I statistical error when used to test the significance of 

empirical data because the model assumes an equal probability of transitioning between 

any pair of resource points (Figure 1A). Since predictable patterns may emerge due to the 

spatial structure of resources and limitations of forager movement (i.e., foragers cannot 

teleport) this type of null model will be too easy to reject. Sample randomization null 

models do not suffer from these problems since they generate null sequences by 

randomizing observed distances and turning angles between resources from empirical 

data (Ohashi et al. 2007). However, since distributions of angles and distances are heavily 

influenced by the level of traplining itself, we hypothesize that these tests may lead to 

high Type II error by accidentally incorporating the mechanism of interest (Colwell and 

Winkler 1984, Gotelli 2001). For instance, a forager with a high level of traplining could 

have very low variability in travel distances and turning angles in regularly spaced 

resource configurations (see, for example, Figure 1B). Null sequences generated from 

such regular traplines would likely follow very similar or identical routes, which would 

make the null model very difficult to reject in cases where traplining behavior is most 

pronounced (i.e. high Type II error). This is particularly likely to happen in experimental 

arrays containing few resources, where most studies that carefully measure traplining 

occur.  

In this paper we address the main shortcomings in the statistical analysis of 

traplines by proposing and assessing a new null model for comparison with empirical 

foraging sequence data: a spatially explicit individual-based (IB) null model. In our IB 

model, we deliberately exclude spatial memory of the modeled “agents” to statistically 

test whether repeats in observed foraging sequences are driven by the spatial layout of 
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resources and realistic forager movements. We selected this as our null hypothesis since 

it is pertinent to the majority of traplining studies, which examine traplining as a model 

system for complex cognitive processes. We compare the proposed null model with 

existing methods for trapline foraging: a completely random null model and a sample 

randomization test (Ohashi et al. 2007) using both real empirical and hypothetical 

sequence data. Though there is no standard sequence predictability threshold required to 

definitively classify behavior as “traplining”, we were able to compare the likelihood of 

Type I or II statistical errors between the three null models. We hypothesize that the null 

model presented here will be less prone type I error compared to a purely random null 

and less susceptible to type II error compared to a sample randomization null model. We 

test the IB null model’s sensitivity to a range of different resource abundances, sensory 

inputs, and movement patterns. Finally, we assess the strengths and weaknesses of using 

IB models for testing the statistical significance of empirical data.  

The proposed approach of using an individual-based null model could be expanded to 

other ecological and behavioral questions, especially for spatially explicit and individual-

based processes. Few null models exist for spatial problems, though space plays an 

important role in maintenance of biodiversity, species invasions, host parasite interactions 

and disease dynamics (Tilman and Kareiva 1997), and many other ecological processes. 

There are also very few null models for questions in individual-based ecology, where 

aggregating at the population level can obscure the mechanism of interest. For example, 

variation in individual behavior may drive patterns of foraging specialization or niche 

complementarity (Bolnick et al. 2002, 2003, 2010, Heinrich 1976). We predict that 
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individual-based, spatially explicit null models such as the one proposed here will 

become more essential with the growth of these two emerging fields in ecology. 

 

METHODS 

Overview 

We describe the spatially explicit IB null model for trapline foraging we 

developed in NetLogo (Wilensky 1999; see online Supplementary Material). This null 

model is designed to test whether realistic limitations on forager movement and an 

explicit spatial structure of resources can drive predictability in foraging sequences. We 

use this null model to test statistical significance of traplining in: 1) novel foraging data; 

2) data from the literature; and 3) simulated data. We further compare the performance of 

our new null model for these three datasets with two alternative null models: a 

completely random null model and a sample randomization null model (Ohashi et al. 

2007). Finally, we test the sensitivity of the null model to several parameters including 

resource abundance, sight distance, and movement type. 

 

Netlogo Null Model Description 

The model is comprised of two agent types: foragers, which may travel throughout 

the field, and resource points, which are fixed in space. Resources are distributed 

according to the known locations of resources in empirical experiments of bee foraging. 

For our sensitivity analysis of resource density, resources are spatially distributed 

according to a random uniform distribution. We examine one forager per simulation. In 
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the model, space is unitless but may be assigned units for applications to specific study 

systems.  

Foragers (individual agents) make decisions using several rules, which operate in 

combination to create foraging sequences (Figure 1). First, foragers scan for a resource 

within their detection distance (Fig. 1, step 1), and evaluate whether any resources are 

within sight (step 2). If so, foragers evaluate whether the resource was one of the two 

most recently visited flowers (step 4).  If there are no resources (step 2) or all resources 

were recently visited (step 4), foragers move one step in the field according to a random 

or correlated random walk (step 3) and begin the process again by scanning for floral 

resources (step 1).  

If at step 2 there is only one resource available within sight that was not recently 

visited, that resource is chosen automatically. If multiple resources are available within 

sight, the forager must choose which to visit (step 5). In our base model, foragers select 

among multiple flowers in sight at random, but we evaluated other decisions rules in a 

sensitivity analysis (see Appendix 2 Figure 3). After the forager has chosen a resource, 

the forager travels directly to the resource in a straight line approach (step 6). The forager 

handles the resource in one time step (step 7) and begins the process again by searching 

for another resource (step 1).  

 

Sample Randomization Null Model Description 

Sample randomization tests generate null sequences using the distribution of 

travel distances and turning angles between resources in observed foraging sequences 

from empirical data (as in Ohashi et al. 2007). To create the null sequences, we randomly 
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selected distances and turning angles from observed distributions. We chose the next 

resource in the sequence based on the selected distance and turning angle. We assigned 

separate distributions to the center and edges of the field as in Ohashi et al. (2007), using 

the current position of the forager to determine which distribution to draw from. The 

model was created using the R statistical programming language (R Core Team 2014) 

and is available online (Appendix 2). 

 

Comparison with Empirical Data 

We tested the statistical significance of traplines in individual foraging sequences 

relative to all three null models using a permutation test (Figure 4). We used two different 

empirical datasets: (1) the publically available “Lihoreau” dataset, consisting of bumble 

bee (Hymenoptera: Apidae: Bombus terrestris) foraging sequences collected by Lihoreau 

et al. (2012), and (2) the “Emory” dataset, which consists of observations of Bombus 

impatiens from a laboratory foraging enclosure at Emory University (C. Ayers, B. Brosi, 

and E. Dobbs, unpublished; see the online Supplementary Material for foraging 

sequences).  

The “Lihoreau” dataset (Lihoreau et al. 2012), was collected in an artificial foraging 

enclosure designed to study the optimality of traplines. The data consist of observations 

from eight individual bees in a foraging enclosure with six artificial flowers and a nest 

box. Rewards were calibrated so that bees would return to the next box after 

approximately six visits. Each bee was observed for 80 foraging bouts, and artificial 

flowers were refilled at the end of each bout. For our analysis, we split the dataset into 
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the first and last 100 visits of each individual bee to examine inexperienced versus 

experienced foraging separately. 

For the “Emory” dataset, we measured the traplining behavior of B. impatiens in a 

laboratory foraging enclosure with 32 artificial flowers with four artificial flower 

“species” differing in sucrose molarity, color, and scent. Artificial flower species were 

distributed uniformly throughout the enclosure. Sucrose replenishment was computer-

controlled, and bee behavior was tracked automatically using RFID-tag technology. The 

dataset includes foraging sequences from 955 individual B. impatiens from 68 trials and 

ten different B. impatiens colonies. Trials were 75 minutes long and each consisted of 16 

B. impatiens from the same colony. Some individuals were used in multiple trials, so 

there is variation in foraging experience between individuals. For this analysis, we 

focused on the eight most active bees from the “Emory” dataset to match the number of 

observations in the “Lihoreau” dataset (see the online Supplementary Material for 

foraging sequences). We did not expect to find significant traplining from the “Emory” 

bees since the foraging setup was not conducive to traplining, particularly due to the 

close proximity, uniform distribution, and fast replenishment of resources. 

To compare the NetLogo model with empirical data, we incorporated the 

experimental resource layout for each dataset into the model. We ran the model until the 

number of visits equaled the mean number of visits for each set of observed bees. For all 

24 observed sequences, we ran each null model 999 times. We quantified traplining using 

Determinism (DET) with a minimum trapline length of four resource points (Ayers et al. 

2015), and we analyzed the sensitivity of the results to minimum trapline length (see 

Appendix 2 Table 2).  
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Comparison of models using simulated data 

We also estimated the probability of rejecting the null model using simulated foraging 

data with differing levels of predictability. We randomly generated trapline sequences by 

altering the probability of repeating a past transition based on a fixed trapline sequence. 

We created a short base sequence at the beginning of each generated sequence to set the 

initial transition pairs. For each additional visit, there was a set probability of repeating 

the last transition that occurred the previous time the forager visited the current resource. 

If a revisit did not occur, we a randomly selected one of the remaining resources. We 

created 100 simulated sequences with a length of 60 resource visits for all 17 levels of 

predictability between 20% and 100% probabilities of repeating a past transition. For 

each of the 1700 hypothetical sequences, we ran each of the three null model 99 times. 

Using a permutation test for significance, we calculated the probability of rejecting each 

null model at each level of predictability (Figure 3). Since we do not have an objective 

quantitative definition of what constitutes a trapline, we cannot precisely measure Type I 

and Type II statistical error. However, we are able to examine the relative propensity of 

each model to result in Type I or Type II error when compared with empirical data. 

 

Sensitivity Analysis 

We performed a sensitivity analysis for several parameters, including resource 

abundance, detection distance and movement type (random vs. correlated random walks). 

We also examined model output in the case where foragers are more likely to choose 

closer resources when multiple resources are in view (see Appendix 2 Figure 3).  
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We specifically examined the interaction of sight distance with movement type 

(Figure 5) using a minimum trapline length of six resource points for our DET metric 

(Ayers et al. 2015). We examine low, medium, and high sight distances (corresponding to 

model parameters of 10, 20, and 30 respectively). We utilized three different movement 

types: a random walk, a walk with low levels of correlation, and a high level of 

correlation (with model parameters of 0, 0.3, and 0.9 respectively). Foragers utilizing a 

correlated random walk will on average move farther from their initial starting point than 

foragers using a random walk (Kareiva and Shigesada 1983). In our model, foragers with 

a highly correlated random walk have a Mean Squared Displacement of 68.7 after 10 

movements, while foragers with no correlation will have a Mean Squared Displacement 

of 9.7 after 10 movements. 

For all sensitivity analysis, we used generalized linear models (GLMs) with binomial 

errors to statistically test the response of DET (e.g. the level of traplining) to changes in 

null model parameters (as in Ayers et al. 2015). Analyses were performed using R (R 

core team 2014). 

 

RESULTS 

Null model comparison using simulated sequence data  

We first compared the proposed null model with completely random and sample 

randomization null models using hypothetical foraging sequence data with varying levels 

of predictability. For each level of percent probability of repeating a past transition, we 

tested for significant traplining (where H0: absence of traplining behavior and H1: 

presence of traplining). We found that a completely random null model has a 95% 

probability of rejecting the null model with only a 62% chance of repeating a past 
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transition, corresponding to a determinism score of 0.25 (Figure 3), which by most 

criteria would not be considered a strong trapline. Our Netlogo model finds significant 

levels of traplining sequences at 69% probability of repeating a past transition (DET = 

0.39; Figure 3), while the sample randomization model would reject the null hypothesis 

for levels of sequence predictability greater than 72% (DET = 0.45; Figure 3). For 

intermediate levels of traplining, the sample randomization model is less likely to detect 

significant traplining than the proposed Netlogo model. Thus, relative to the proposed 

model, the random model may be susceptible to high Type I statistical error when 

identifying traplines, while the sample randomization null model may be susceptible to 

high Type II statistical error (Figure 3).  Sample randomization tests may be particularly 

prone to error when there are few resource points per quadrant (e.g. center, corner, or 

edge). Since most lab and field studies of traplining use only a small number of resource 

points, this problem is very likely to occur when applied to empirical sequence data.  

 

Null model comparison using empirical sequence data  

We compared null model output with two sources of empirical data (i.e. the 

“Lihoreau” and “Emory” datasets; see Methods). We divided foraging sequences from 

“Lihoreau” into experienced and inexperienced foraging using the first and last 100 visits 

of each bee. 

As with the hypothetical sequence data, we found that the proposed null model had an 

intermediate significance cut-off level compared to the random and sample 

randomization models (Figure 4A). For the dataset without suspected traplining (i.e. 

“Emory” in Figure 4A and B), we found that on average all three models correctly failed 
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to reject the null model. However, the completely random model rejected the null 

hypothesis for specific individuals (see Appendix 2 Table 3), which contradicted the 

findings of the Netlogo and sample randomization models. For the Lihoreau (2012) 

dataset with experienced bees, all three null models easily rejected the null hypothesis (P 

< .001; Figure 4). For the less experienced bees, with unknown levels of traplining, the 

sample randomization model found that 2 of the 8 bees did exhibit significant traplining, 

while the proposed spatially explicit model found that 5 out of 8 bees were traplining 

more than expected by realistic movements and resource layout alone (Figure 4).  

 

Sensitivity analysis of Netlogo null model  

We performed a sensitivity analysis of the Netlogo model by varying key 

parameters including sight distance and the degree of correlation in the random walk. We 

calculated significance cut-off levels and compared determinism levels with experienced 

or inexperienced foragers from empirical Bombus data (Lihoreau et al. 2012). We 

expected to find significant traplines for experienced bees, and less significant traplining 

for the inexperienced bees. 

 We found that the effect of sight distance on estimated determinism followed a 

sinusoid pattern that interacted heavily with the degree of correlation in the random walk 

(Figure 5A). For 5 out of 8 experienced bees, the model found significant traplines for all 

combinations of parameter values (compare Figure 5 A and B). Many combinations of 

parameter values resulted in finding significant traplining in the inexperienced bees, 

where we would expect lower levels of traplining. Using the intermediate parameter 

values for sight distance (sight = 20 in Figure 5) and the degree of correlated movement 
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(CRW = 0.3 in Figure 5), however, we found all but one experienced bee had significant 

traplining, while none of the inexperienced bees used significant traplining. 

 

DISCUSSION 

 While null models are increasingly used in the field of ecology, a knowledge gap 

still exists in statistical hypothesis testing at two of the field’s frontiers: spatially explicit 

and individual-based processes. Few null models exist for spatial problems, though space 

plays an important role in the maintenance of biodiversity and species distributions 

(O’Dwyer and Green 2010, Rahbek et al. 2007), species invasions (Cadenasso and 

Pickett 2001), food or oviposition site choices (Lancaster et al. 2003), as well as host-

parasite interactions and disease dynamics (Dion et al. 2011, Ramsey and Efford 2010). 

Existing null models for spatial problems are typically not spatially explicit, including 

models for migration patterns, species co-occurrences (Gotelli 2000), species ranges over 

an environmental gradient (Veech 2000, Sanderson 2004, Hofer et al. 1999), and 

maintenance of beta diversity (Rô Me Chave and Leigh 2002). 

There are also very few null models for individual-based processes, which are 

also at the forefront of ecology. Individual variation, whether through genotypic variation 

or differences in learning and experience, is an important mechanism in many ecological 

processes, including foraging specialization or niche complementarity (Bolnick et al. 

2002, 2003, 2010, Heinrich 1976). For example, individual niche widths in sticklebacks 

have been shown to respond differently to decreases in interspecific competition 

compared to population-level niche widths (Bolnick et al. 2010). In these cases, 
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aggregating at the population level can obscure the mechanism of interest, yet to our 

knowledge no IB null model has been used to test the significance of empirical data. 

In this paper, we address this knowledge gap in the statistical analysis of spatially 

explicit and individual-based problems by proposing a new individual-based null model 

for comparison with empirical data. Traplining is a good candidate for this type of null 

model, since it is both spatially explicit and individual-based, and it is a non-binary 

process with no objective quantitative definition of what constitutes a trapline. Using 

trapline foraging as a case study, we demonstrate how to use individual-based null 

models to test the significance of suspected traplines in empirical bumble bee foraging 

data, and we compare results with existing non-spatially explicit null models for 

traplining.  

We compared our proposed model with existing non-spatially explicit models by 

calculating the relative tendency of the models to result in type I or II statistical error. We 

found that the proposed null model shows lower tendency to Type I error compared with 

a purely random model, and lower tendency toward Type II error compared with a 

sample randomization model. In our analysis of empirical data, the completely random 

null model incorrectly rejected the null hypothesis (e.g. detected significant traplines; 

Figure 4) in sequences without suspected traplines, and the sample randomization null 

model failed to reject the null model for sequences from the less experienced bees (Figure 

4).  Although we would not expect to see traplining in completely naïve bees, our results 

show that “Lihoreau” bees achieved a moderate level of traplining within their first 100 

flower visits, which was more difficult to detect using the sample randomization null 
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model. Our use of an individual-based model for null model generation to compare 

against empirical data is, to our knowledge, a novel approach. 

We also demonstrate how to determine which parameters are most important for 

the formation of the null model by performing a sensitivity analysis of the model to 

several key parameters. We found the most important factor influencing the degree of 

sequence repeats in the proposed null model was resource abundance (Appendix 2 Figure 

1), which may be straightforward to quantify in laboratory set-ups but potentially difficult 

in field settings. Generally, sequence repeats were more prevalent in lower resource 

density settings compared to high-resource settings, though when sight distance was very 

small this relationship reversed (Appendix 2 Figure 1). The type of movement (e.g. 

random vs. correlated random walk) interacted with sight distance, such that a forager 

using a random walk had a greater sequence predictability at very high or very low sight 

distance ranges, while sequence predictability for foragers using a correlated random 

walk was highest with intermediate sight distance levels (Appendix 2 Figure 2). For 

parameters which are difficult to quantify and potentially influential, such as sight 

distance, it is possible to analyze the null model output over a range of possible 

parameters (as demonstrated in Figure 5). The relative ratio of parameters may also be 

important, for instance, in field settings with a large number of resources, foragers with 

low detection distances would only be able to view a small proportion of total available 

resources. We would therefore expect very few sequence repeats to occur by chance. 

Parameters that are particularly influential for a study system may also be targeted for 

further empirical investigation to narrow the range of possible values.  
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The null hypothesis tested here, that sequence repeats occur due to the spatial 

geometry of resources and realistic forager movement, is relevant to the majority of 

traplining studies, which are typically interested in complex learning and decision-

making processes. Such studies occur most frequently in low resource-abundance 

settings, particularly in artificial foraging enclosures, where we found resource layouts 

are most likely to drive the level of sequence repeats. A spatially explicit null model is 

therefore important to test whether observed traplines are due to the cognitive process of 

interest or the specific geometry of resources in the experimental design. 

The use of an individual-based, spatially explicit null model for evaluating 

empirical data is a novel approach to this problem, and may be applied to test the 

statistical significance of a wide range spatially explicit individual-based processes. For 

instance, the use of IB null model as presented here may be useful to test how innate or 

learned individual variation and space interact to influence processes including 

maintenance of biodiversity, species ranges, species invasion or migration, and disease 

spread. IB null models therefore may play an important role in advancing the emerging 

fields of spatial and individual ecology. 
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FIGURES 

 

 

Figure 1. Role of resource layout for testing the significance of spatial memory use in 

trapline foraging. (Points represent resources and arrows represent foraging movements.) 

(a) In a completely random null model, there is an equal probability of visiting any 

resource point (P1=P2=P3=P4=P5). However, more distant resources are less likely to be 

encountered by chance due to realistic forager movements (P3 < P1, P2, P4, P5). Null 

models which do not incorporate differential probabilities of resource visitation due to 

spatial layouts may lead to high type I error. (b) Null models which randomize travel 

distances and turn angles may lead to high type II error when foragers consistently utilize 

uniform traplines. Strong traplining may result in a decreased range of turning angles and 

travel distances, which may lead to a large number of sequence repeats in null model 

sequences 

 

 

 

 



73 
 

 

 

 

Figure 2. Model flowchart: (1) Look for a resource; (2) determine whether there are one 

or more resources in the detection distance; (3) move one unit of space according to a 

random or correlated random walk; (4) determine whether all of the resources in the 

detection distance are either the last or second to last flower visited; (5) randomly choose 

one resource which was not visited recently; (6) travel to flower using a straight line 

approach; (7) handle resource  
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Figure 3. Effect of sequence predictability on the probability of rejecting the null 

hypothesis (where H0: absence of traplining behavior and H1: presence of traplining) for 

the proposed Netlogo model and two existing null models. The determinism values (i.e. 

level of sequence predictability) corresponding to the percent chance of repeating a past 

transition are shown on the secondary x-axis. We found that the random model is more 

likely to reject the null hypothesis for low levels of traplining (Type I error), while the 

sample randomization model is more likely to fail to reject the null hypothesis for 

intermediate levels of traplining (potential Type II error) 
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Figure 4. (a) Minimum determinism (DET) levels required to reject the null model with 

95% confidence using a completely random null model, our spatially explicit null model, 

and a sample randomization null model. We used the models to analyze two sources of 

empirical Bombus foraging data, including experienced and inexperienced foraging 

sequences from Lihoreau et al. 2012. (Error bars are 95% binomial CI)  (b) The 

corresponding determinism level of empirical Bombus sequences (calculated with a 

minimum trapline length of 4 resources) 
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Figure 5. (a) Sensitivity analysis of the effect of forager sight distance and type of 

correlated random walk on the determinism (DET) level required to reject our spatially 

explicit null model with 95% confidence. (b) The corresponding DET levels of 

inexperienced or experienced Bombus terrestris foraging sequences from Lihoreau et al. 

2012 (calculated with a minimum trapline length of 6 resources) 
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Chapter 3. 

THE EFFECT OF BEE SPECIES RICHNESS ON COMPLEMENTARITY AND 

RESOURCE SPECIALIZATION ON THE INDIVIDUAL AND SPECIES LEVEL 

Carolyn A. Ayers, Emily K. Dobbs, and Berry J. Brosi 

 

ABSTRACT 

Given ongoing pollinator declines, it is increasingly important to understand how 

bee species losses affect plant pollination services. This is in essence a question about the 

relationship between biodiversity and ecosystem functioning. Traditionally, studies of 

biodiversity ecosystem functioning (BEF) have focused on fixed differences, particularly 

between plant species. However, many animals exhibit dynamic behaviors which can 

respond to the presence of other species. Though these behaviors can be important drivers 

of ecosystem function, they are rarely ever discussed in a BEF framework. This is 

particularly true for pollinator species, whose behaviors can have direct functional 

implications for plant reproduction. In this paper, we used tightly controlled laboratory 

behavioral experiments with standardized artificial flowers to better understand how 

species richness (i.e. one to four bee species) affects bee specialization at different 

organismal hierarchies. We found that greater bee species richness (1) had differential 

effects on specialization at the individual level across species; (2) increased specialization 

at the species level for all four species tested; and (3) increased complementarity (i.e. 

species niche partitioning) at the community level. These results show a direct link 
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between species richness and bee specialization and complementarity, which are 

important behaviors for plant pollination and plant-pollinator ecosystem stability. 

 

INTRODUCTION 

With global declines in bee species diversity and abundance (Biesmeijer 2006, Potts 

et al. 2010), there is increasing interest in how bee species losses will affect plant 

pollination services and ecosystem stability. This problem is essentially a question about 

the relationship between biodiversity (e.g. the number of bee species) and ecosystem 

functioning (e.g. plant pollination services). Classic biodiversity-ecosystem functioning 

(BEF) studies have focused on plants (Tilman et al. 1997), where resource differentiation 

is often assumed to occur through natural selection for fixed traits (e.g. the ability to fix 

nitrogen or utilize other resources). However, this assumption is not necessarily valid in 

plant pollinator systems, since pollinators can rapidly change their foraging patterns in 

response to competition over ecological timescales (Pimm 1985, Rosenzweig et al. 1991, 

Bolnick et al. 2010). These dynamic (i.e. plastic) behavioral traits, while little studied in a 

BEF framework, can have direct consequences for plant pollination and reproduction. 

Therefore, exploring BEF relationships driven via phenotypic plasticity is a key area of 

research for BEF generally, and is particularly important for plant pollinators. 

Traditional studies of BEF focus on three potential mechanisms. First, niche 

complementarity, where different species focus on different resources (Loreau et al. 

2001), can increase ecosystem productivity (Hooper et al. 2005). Specifically, ecological 

communities with high complementarity (i.e. low niche overlap) are predicted to have 

greater total resource acquisition across the community compared to communities with 
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low complementarity, or high niche overlap. Second, diversity can also promote greater 

overall resource use through facilitation between species, where one species benefits 

from the presence of another (Cardinale et al. 2002). Third, BEF can be driven by a 

sampling effect, where greater numbers of species improves the probability of having a 

small number of important species which are responsible for driving ecosystem function 

(Loreau et al. 2001, Hooper et al. 2005). In this paper, we specifically focus on the first 

mechanism, complementarity, since it stresses overall species numbers rather than the 

functional importance of specific species.  

While traditional complementarity studies have focused on fixed differences in 

resource use, resource differentiation can also be driven by plastic phenotypic shifts in 

resource use (including those driven behaviorally). For example, plants with overlapping 

resource use have been shown to increase their uptake of particular nitrogen chemical 

forms in response to interspecific competition (Ashton et al. 2010). In a predator-prey 

system, one study found that a greater diversity of natural predators improves suppression 

of an aphid prey species, with important implications for pest control in agriculture 

(Cardinale et al. 2003). In Cardinale et al. (2003), suppression of the target pest species 

occurred after mixed groups of predators sufficiently suppressed a parasitoid’s typical 

host population, causing the parasitoid to switch to the target pest species.  

Research on this topic is limited but growing, and may be relevant to a range of 

animal-mediated ecosystem functions, particularly for plant pollinators, whose foraging 

patterns can have direct functional consequences for plant pollination and reproduction. 

Plastic behavioral shifts in response to interspecific competition can impact ecosystem 

functioning at three hierarchical levels: individual insects; species; and entire pollinator 
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communities. At the individual level, pollinator transitions between flowers of the same 

species (floral fidelity) are important for plant reproduction given plant requirements for 

conspecific pollen transfer (Morales & Traveset 2008, Flanagan et al. 2009, Waser 1986, 

Chittka et al. 1999, Brosi & Briggs 2013). Specialization at the species level, where 

individuals of a particular bee species tend to specialize on the same plant (Brosi 2016), 

has also been shown to aid in conspecific pollen transfer and seed set (Fründ et al. 2013). 

Finally, pollinator complementarity (i.e. niche differentiation at the community level), 

where different bee species specialize on different plant species (Brosi 2016), is 

associated with greater recruitment of diverse plant communities (Fontaine et al. 2005). 

Both species-level specialization and community-level complementarity could enhance 

functioning if particular pollinator species specialize on the plant species for which they 

have a relatively high pollination efficiency. 

Several studies have examined the role of species richness in shaping functionally 

important pollinator behaviors in an ecosystem functioning context. For instance, one 

study found that the removal of the most abundant pollinator species led to lower plant 

seed count via reductions in pollinator floral fidelity (Brosi & Briggs 2013). In addition, 

interspecific competition between bee and syrphid fly pollinators has been shown to lead 

to more efficient pollination in mixed-plant communities, via increased pollinator 

functional group specialization on their target plant group (Fontaine et al. 2005). Honey 

bees have also been shown to have increased pollination efficiency on sunflower 

(Greenleaf & Kremen 2006) and almonds (Brittain et al. 2013) when wild bee species are 

present. In Greenleaf & Kremen (2006) direct interference from wild pollinators forced 

honey bees to switch more frequently between male and female flowers, which led to 
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greater sunflower pollination. In almond orchards, where movement between trees of 

different genotypes (typically planted in different rows) is necessary for nut production, 

few direct interactions between Apis and non-Apis pollinators were observed. The 

presence of non-Apis pollinators, however, caused Apis to switch between almond rows 

more frequently (most likely due to exploitation competition), which led to greater 

pollination and nut crop production (Brittain et al. 2013). 

There is, however, an incomplete understanding of how species richness enforces 

bee behaviors important for plant pollination. This is in part because all of the 

aforementioned studies were highly dependent on the identity of plant species present in 

the experiment. Since pollinator species vary in their ability to interact with different 

pollination syndromes (Fenster et al. 2004), plant-pollinator species identities can drive 

experimental outcomes. In several studies, pollinator functional diversity (and how well it 

matched the plant community), rather than species richness per se, was the primary driver 

of plant seed set (Fontaine 2005, Hoehn et al. 2008). These findings underscore the 

difficulty of determining the role of species richness in driving bee foraging patterns, 

independent from the confounding effects of bee and plant functional groups. 

Previous studies have shown that interspecific and intraspecific competition have 

opposing effects on specialization (e.g. Rosenzweig 1991). Interspecific competition 

decreases niche breadth (i.e. increasing specialization) while intraspecific competition 

increases niche breadth (i.e. decreasing specialization). When foragers of the same 

species compete, individuals distribute themselves amongst patches in proportion with 

patch quality (Fretwell & Lucas 1969, Fontaine et al. 2008). However, in the case of two 

competing species where one is competitively dominant, studies have shown that the less 
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dominant species may choose to exclusively utilize a less rewarding resource to reduce 

competition with the dominant species (e.g. Pimm et al. 1985). For example, in the 

presence of interspecific competition, bumble bees have been shown to increase 

specialization on flower species with corolla lengths more closely matching their 

proboscis length (Inouye 1978). When competing species were removed, the bees utilized 

both flower types. Resource partitioning can also occur temporally or spatially rather than 

by plant species or functional group (Morse 1977, Hubbell and Johnson 1978, Walther‐

Hellwig & Frankl 2000). 

In this study, we sought to understand general drivers of pollinator species richness 

on functionally important behavior through the use of tightly controlled laboratory 

behavioral experiments with standardized artificial flowers, thus removing plant species 

identity as a potential confounder of the patterns we observed. While this level of 

experimental control offers a number of advantages, it comes with the trade-off of not 

allowing measurement of direct functional outcomes (especially plant reproduction). We 

thus focused on functionally relevant pollinator behavior, i.e. behavioral patterns that 

typically correlate with greater pollination function.  

In this paper we merged the experimental approach of BEF experiments, in which 

species richness is manipulated, with the experimental approach of phenotypic plasticity 

studies where plastic responses are measured in different environmental conditions. In 

contrast to the typical abiotic focus in reaction norm experiments, we explicitly created 

“reaction norms” of functionally-relevant behavior in response to variation in the biotic 

environment, particularly species richness. We tested bee behavior in a laboratory 

artificial foraging enclosure across a species richness gradient of one to four bee species. 
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We tested bee foraging specialization on four artificial flower “species” differing only in 

color, scent, and sucrose molarity. Again, our use of standardized artificial flowers helps 

to disentangle the effects of competition from the identity of plant species. 

We specifically tested how interspecific competition affects bee specialization at the 

individual, species, and community level. We hypothesized that with greater species 

richness, we would observe (1) greater individual-level specialization; (2) greater 

species-level specialization, driven by reduced variation between individuals; and (3) 

greater complementarity (i.e. resource partitioning at the community level) driven by 

increased sorting of pollinator species onto different artificial flower types.   

 

METHODS 

Overview 

We examined the effect of increasing bee species richness on bee foraging behavior 

using a laboratory foraging enclosure with artificial flowers. All trials consisted of 16 bee 

individuals, and we tested all combinations of one to four bee species. 

 

Bee species 

We ran experiments with four bee species, including two social (Bombus impatiens 

and Apis mellifera) and two solitary species (Osmia lignaria and Megachile rotundata). 

We maintained multiple Bombus colonies, each in their own training enclosure, to avoid 

colony-level effects. We had access to only one Apis colony, but we maintained multiple 

Apis brood frames from that colony in separate training enclosures. For our two solitary 

bee species, we randomly sorted individuals into one of several training enclosures 
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assigned to each species. We alternated the spatial position of enclosures and the bee 

species assigned to them in order to reduce training enclosure-level effects.  

 

Foraging chamber 

We examined bee foraging behavior using a laboratory foraging enclosure with 

artificial flowers. We used RFID technology to precisely track bee foraging behaviors 

and automatically control energetic rewards. RFID tag readers were embedded inside 

artificial flowers, which detected RFID tags glued to each bee’s thorax. Each time a bee 

entered a flower and was detected by the reader, the bee and flower identity was 

automatically recorded. RFID tag readers also triggered automatic computer-controlled 

sucrose rewards, which were fed to bees inside flowers through a vertical pipette tip 

located beneath the RFID tag readers. 

The laboratory foraging enclosure contained 32 total artificial flowers in four 

rows of eight, including four species of artificial flower “species”.  Flower “species” 

differed in sucrose concentrations (2.0 M, 1.5 M, 1.0 M, and 0.5 M), and were 

distinguishable by color (blue, white, yellow, pink) and scent (clove, wintergreen, 

spearmint, and lemongrass respectively). The enclosure was approximately 0.74 m deep 

by 2.27 m wide by 0.75 m tall. Flower “species” were distributed uniformly inside the 

chamber. We used incandescent lamps to hold lighting and temperature (28° C) constant 

across trials.  

We automatically tracked bees using mic3-TAG RFID 16 kbit tags (Microsensys 

GmbH, Erfurt, Germany) which are 1.9 x 1.6 x 0.5 mm and weigh 5.5 mg. We attached 

tags to the bees’ thorax using nontoxic glue (Elmer's Glue-All multi-purpose, Elmer's 
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Products, Inc, Westerville, Ohio). These tags are commonly used in bee foraging 

experiments (e.g. Decourtye et al. 2011, Schneider et al. 2012) and do not interfere with 

bee movement or flight. We used RFID tag readers embedded in each artificial flower to 

record the timing and identity of each bee visitor. 

Whenever a bee was detected in a flower by the RFID tag reader, software 

(Processing language) determined whether a reward should be released, and if so, the size 

of the reward to be dispensed. Reward dispensation was effected through interface with 

Arduino MEGA 2560 R3 hardware (Arduino LLC), which controlled solenoid valves that 

in turn released sucrose solution from reservoirs located outside the foraging chamber. 

Once a valve was opened (in microbursts), the sucrose solution was gravity-fed through 

plastic tubing into the corresponding artificial flower, and the sucrose was dispensed as a 

droplet at the end of a vertical pipette tip at the bottom of each artificial flower. Solenoid 

valves released 10 µl of sucrose solution automatically after a bee was detected in a 

flower unless a bee had been recorded in that flower in the last 30 seconds. 

 

Experimental procedure 

Bees trained on flowers with an identical appearance, scent, and sucrose molarity 

to those in the experimental enclosure inside separate training enclosures. Artificial 

flowers in the training enclosure, however, were not computer controlled, and instead 

delivered sucrose solution through wicks embedded in a sucrose reservoir. 

At the beginning of each trial, we randomly selected bees from the desired colony 

from their training enclosures and chilled the bees for one hour to temporarily immobilize 

them. We then attached RFID tags to their thorax, recorded their tag numbers, and fasted 
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bees for one hour. Before transferring bees to the primary foraging enclosure, we wiped 

the chamber with ethyl alcohol to remove bee scent markers remaining from the previous 

trial. Trials lasted for 75 minutes. We returned bees to their original training enclosures 

following each trial.  

While we could not avoid reusing bees from previous trials (approximately 

50.17% of bees tested were used in a previous experiment), we held the proportion of 

experienced bees essentially constant across the species richness gradient (varying only 

from 47.7% to 51.6% of experienced bees). We found that experience did increase the 

number of total flower visits (P = 8.401e-05), but there was no significant interaction 

with bee species richness (P = 0.763) or species identity (P = 0.512; GLM with quasi-

Poisson errors). 

 

Statistical analysis 

We used the R statistical programming language (R Core Team 2014) for all 

statistical analyses. We used the “bipartite” package (Dormann et al. 2008) to calculate 

measures of specialization, specifically the “H2fun” function (Dormann et al. 2009) for 

complementarity (H2’) and the “dfun” function for d’ (Dormann 2011).  

First, we tested the level of specialization at the individual level by applying the 

d’ metric (i.e. the standardized Kullback-Leibler distance) to the foraging specialization 

of individuals within each trial. For d’, a value of zero represents an absolute generalist 

and one represents an absolute specialist (Blüthgen et al. 2006). We used linear models to 

test the effect of bee species richness on species-level specialization (d’). Before running 

the model, we log-transformed d’ to normalize its distribution. 
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We also measured floral fidelity by calculating the proportion of transitions 

between flowers of the same “species”. Floral fidelity is a special case of species-level 

specialization, where bees visit flowers of the same type in a sequential order. We used a 

generalized linear model (GLM) with quasi-binomial errors to test the effect of species 

richness and species identity on floral fidelity. In our GLM, we counted a transition 

between flowers of the same type as a “success” and a transition between flowers of 

different types as a “failure”. 

Next, we tested how bee species richness affects species-level specialization 

(using d’) by pooling individuals within each species. As with individual-level richness, 

we used linear models with log-transformed d’ to estimate the effects of species richness 

and species identity. 

We tested the effect of species richness on complementarity, or the degree of 

niche partitioning at the community level. We measured complementarity using H2’, an 

index which is commonly applied to plant-pollinator networks (Blüthgen et al. 2006). 

H2’ measures the degree of niche partitioning or sorting of pollinator species onto plant 

species. H2’ ranges from zero to one, where a value of one represents a community 

where all species are entirely specialized on different species, and a value of zero 

represents a community where all species interact at the rate predicted by their relative 

number of total visits (Blüthgen et al. 2006). We used linear models to test the effect of 

bee species richness on complementarity (H2’). Before running the model, we log-

transformed H2’ to normalize its distribution.  

Finally, we used a GLM with quasi-Poisson errors to test the per bee number of 

flower visits by bee species identity and by bee species richness. We have not yet 
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compared our multi-species trials with low density Bombus trials to analyze the effects of 

intraspecific versus interspecific competition, but this analysis is planned for the future.  

 

RESULTS 

 We ran a total of 176 trials with 2,816 bees. We ran 63 single-species trials, 53 

two-species trials, 35 three-species trials, and 25 four-species trials.  

First, we found no significant overall trend for individual-level specialization with 

respect to richness (P= 0.117; Table 1). However, we found a significant interaction 

between species richness and species identity (P= 1.580E-04; Table 1), where individual 

specialization decreased with species richness for Megachile and Apis, remained 

relatively constant for Osmia, and increased for Bombus (Figure 1). There were highly 

significant species differences in individual foraging specialization (P= < 2.2E-16) where 

Bombus individuals were the least specialized on average and Megachile individuals 

were the most specialized (Figure 1). We also tested the level of floral fidelity, but did 

not find any significant differences in fidelity with species identity or species richness 

(Table 2). We found that the number of flower visits increased with species richness for 

all four bee species (P = 0.0003055; Table 2). 

Second, we found that species-level specialization (d’) increases with species 

richness for all four bee species tested (Table 1; P= 4.07E-05). We also found significant 

differences between species (P= < 2.2e-16), following the same order as above. The most 

specialized species was Megachile, followed by Apis, Osmia, and Bombus (Figure 2). 

The number of total flower visits followed the reverse trend, where Bombus was the most 
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active species, followed by Osmia, Apis, and Megachile across all four species richness 

levels (Figure 3).  

Finally, we found that complementarity increased with greater species richness 

(Table 3; Figure 4; P= 0.009), indicating that bee species diversity drives resource 

partitioning at the community level. There were several outlying trials with high 

complementarity, but we could not identify any common feature shared by the majority 

of outlying trials. 

 

DISCUSSION 

With worldwide declines in bee species diversity (Biesmeijer et al. 2006, Potts et al. 

2010), it is important to understand how bee species losses will affect plant pollination 

services. This question can be informed by existing studies on the relationship between 

biodiversity and ecosystem functioning.  However, BEF studies have traditionally 

focused on fixed differences between species, while pollinators are able to rapidly change 

their foraging patterns in response to competition from other species. The role of 

interspecific competition in driving ecosystem functioning via changes in plastic 

behaviors is an understudied area in the field of BEF. In this paper, we address this 

knowledge gap by examining the effect of bee species richness on bee foraging behaviors 

important for plant pollination. 

Using a laboratory foraging enclosure with standardized artificial flowers, we were 

able to test how changes in bee diversity affect bee specialization at individual, species, 

and community levels. We found that (1) bee species richness differentially affected 

individual specialization according to species identity; (2) floral fidelity did not change 
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with species richness; (3) species-level specialization increased with richness for all four 

species tested; and (4) complementarity (i.e. resource partitioning at the community 

level) increased with greater species richness. 

First, we found that the effect of species richness on individual specialization was 

highly species-dependent. We found both a significant main effect of species identity and 

a significant interaction between species identity and richness. Individual specialization 

increased with species richness for Bombus individuals, remained relatively constant for 

Osmia individuals, and decreased with species richness for Megachile and Apis. The 

decrease in specialization for Megachile and Apis may have occurred since the number of 

flower visits also increased with species richness. The measure of specialization that we 

used (d’) is typically not sensitive to the number of interactions in a network, however d’ 

does increase when the number of interactions is very low (Blüthgen et al. 2006). This 

can occur since bees with very few visits could by chance only visit a particular flower 

type, while this is unlikely to occur by chance for bees with very many visits. Since 

Megachile and Apis were our least active species, their estimated specialization levels 

may be vulnerable to the sensitivity of d’ to low flower visit numbers. Given the high 

foraging activity of Bombus, the increase in d’ we observed in trials with greater species 

richness most likely represents a meaningful increase in specialization. 

We were not able to detect any changes in floral fidelity across the species richness 

gradient (P = 0.383), in contrast to a previous field study that documented reductions in 

fidelity following single-species removal manipulations (Brosi & Briggs 2013). The lack 

of significant differences in floral fidelity may have been driven by the fact that our 

artificial flowers did not differ in shape or handling procedure, so there was no learning 
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cost associated with switching between flower “species” in our experimental design, 

which is a commonly proposed mechanism for floral fidelity (Waser 1986, Chittka et al. 

1999).  

Second, we found that all four species had increased species-level specialization with 

greater species richness. Since the number of visits increased with species richness for all 

four bee species, this pattern cannot be explained by the sensitivity of d’ to low numbers 

of flower visits. Therefore, we find that species-level specialization increases with greater 

bee diversity. This result is consistent with the findings of Fründ et al. (2013), where d’ 

increased in a multiple-species context. However, in Fründ et al. (2013), specialization 

increased from one to two species, but did not continue to increase from two to four 

species, whereas we found a consistent increase in specialization. The effect of species 

richness on specialization differed between the individual and species level for two of the 

four bee species. For Megachile and Apis, the level of specialization increased with 

richness at the species level but decreased at the individual level. This type of decoupling 

between individual and population-level niche width can occur due to differences in 

within versus between-individual specialization (Bolnick et al. 2010, Brosi 2016). For 

Megachile and Apis, the niche breadth of individuals increased with species richness (i.e. 

specialization decreased), however differences between individuals decreased. Since 

between-individual variation was lower in a multiple-species context, we saw a reduction 

in species-level niche breadth, where all individuals were pooled together.  

We also found that, when pooled across the species richness gradient, individuals of 

each species converged more on the same resource within a trial, leading to greater 

species-level specialization. The relative rank of each species in terms of specialization at 
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both the individual and the species levels was inversely related with the mean number of 

visits for each species. Since two of the bee species had relatively few flower visits, we 

cannot exclude the possibility that these species rankings for specialization may have 

been driven by the total number of visits. 

Finally, we found that complementarity increased with greater species richness. This 

indicates that as species-level specialization increased, each species specialized on 

different flower types within a trial. We detected very low levels of complementarity 

overall (Figures 3-4). However, our use of standardized artificial flowers with no 

differences in shape or required handling procedures was a very conservative test for bee 

specialization, since the cost of learning to handle new flowers is often cited as a 

mechanism driving floral fidelity in bees (Waser 1986, Chittka et al. 1999). We also 

found that the flower type chosen by each species varied between trials, indicating that 

social information (i.e. intraspecific copying), rather than inherent preference, may be 

driving specialization in this context. Our results demonstrate that differences in flower 

color, scent, and sucrose molarity are sufficient to drive changes in niche partitioning 

across a species-richness gradient. These findings stress the importance of diversity as a 

driver of complementarity and specialization across plant-pollinator networks (Blüthgen 

& Klein 2011). 

One limitation in our experimental setup was the high variation among species in 

their foraging activity in the foraging chamber, which resulted in variation in the number 

of total visits. While d’ and H2’ were designed to account for differences in species 

abundance and number of visits, d’ in particular increases rapidly at very low numbers of 

visits (Blüthgen et al. 2006). An additional limitation was that intraspecific competition 
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increased as species decreased, since we held the total number of bees constant. Since 

decreasing intraspecific competition usually decreases niche width (increasing 

specialization), release from intraspecific competition could partially drive some of the 

results found here. This may be an important mechanism for Bombus, our most active 

species, which likely experienced a greater degree of intraspecific competition relative to 

the other species. Further analyses are planned to disentangle the effects of intraspecific 

versus interspecific competition in driving Bombus specialization.  

In future studies, altering competition via decreasing the level of rewards or 

increasing the number of bees could potentially allow us to better understand the roles of 

interference versus exploitative competition in driving bee specialization and niche 

partitioning in response to interspecific competition. Additionally, altering handling 

procedures between flower types (e.g. by changing flower structure using three-

dimensional printing) could be useful for establishing the mechanisms underlying floral 

fidelity, and it could better enable us to examine the role of bee species richness in 

driving floral fidelity. 

These results show a direct link between species richness and bee specialization 

and complementarity, which are important for pollination function, plant reproduction, 

and ecosystem stability. Since we tested specialization using standardized artificial 

flowers, our results indicate that the previously observed relationship between species 

richness and specialization and complementarity does not solely depend on the identities 

of plant species present in the experiment. With global declines in bee species diversity 

of growing concern (Biesmeijer et al. 2006, Potts et al. 2010), our findings indicate that 

species losses will lead to decreasing specialization and complementarity, with 
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potentially negative consequences for ecosystem function and stability. Our findings also 

demonstrate that plastic behaviors driven by interspecific interactions, which are not 

traditionally studied in BEF contexts, are excellent candidates for future research on 

drivers of biodiversity-ecosystem functioning relationships.  
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TABLES 

  

Individual-level specialization 

ln(d') 

Species-level specialization 

ln(d') 

  
Df Sum Sq F value P value Sum Sq 

F 

value 
P value 

Species identity 
3 529.700 157.658 < 2.2E-16 114.390 32.107 < 2.2e-16 

Species richness 
3 2.700 2.447 0.118 20.420 17.198 4.07E-05 

Species identity * 

Species richness 
9 22.6 6.739 1.580E-04 6.57 1.843 0.139 

 

Table 1. ANOVA results for linear models (specialization at species and individual 

levels). For all models, we used species identity and species richness as explanatory 

variables. We ran the models using log-transformed data for d’. 
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  Floral Fidelity Total visits 

  Df Chi-sq. P value Chi-sq. P value 

Species identity 
3 7.401 0.060 405.25 < 2.2E-16 

Species richness 
3 0.154 0.695 13.04 3.055E-04 

Species identity * 

Species richness 
9 3.056 0.383 0.75 0.861 

 

Table 2. ANOVA results for a generalized linear model with quasi-binomial errors 

(floral fidelity), plus ANOVA results for a generalized linear model with quasi-Poisson 

errors (total visits). 
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Complementarity 

ln( H2' ) 

  Coef SE P value 

Intercept 
-3.315 0.307 < 2E-16 

Species richness 
0.282 0.106 0.009 

 

Table 3. Summary of linear model results testing the effect of species richness on 

complementarity, or niche partitioning at the community level. We used H2’ as a metric 

for complementarity and ran the model using log-transformed data. 
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FIGURES 

 

Figure 1. The effect of species richness on individual level specialization (measured 

using d’). The lines of best fit were determined using a linear model with log transformed 

d’ data. Points represent the specialization of individual bees. We found a significant 

interaction between species richness and species identity (P= 1.580E-04), where 

individual specialization decreased with species richness for Megachile and Apis, 

remained relatively constant for Osmia, and increased for Bombus. We found significant 

species differences (P= < 2.2E-16), where Bombus had the lowest level of individual of 

specialization and Megachile had the greatest level of individual specialization.  
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Figure 2. The role of species richness in species-level specialization (d’). The lines of 

best fit were determined using a linear model, with log-transformed data. Individual 

points represent the specialization of a particular species within a foraging trial. We 

found that d’ increased with increasing species richness for all four bee species. Bombus 

had the lowest level of specialization, while Megachile had the greatest level of 

specialization. 
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Figure 3. Number of per-bee visits to four artificial flower “species” pooled across 

experiments containing either one, two, three, or four bee species. Since the most 

commonly used flower type differed between trials, we ranked each flower species as 

most visited, second-most, third-most, or fourth-most visited to examine changes in 

specialization. 
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Figure 4. Effect of bee species richness on complementarity (H2’). The line of best fit 

was determined using a linear model with log-transformed H2’ data. We back-

transformed the data and the line of best fit before plotting here. Each point represents a 

single foraging trial. We found that complementarity increases with greater species 

richness (P= 0.009).  
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Chapter 4. 

THE EFFECT OF SUB-LETHAL NEONICOTINOID PESTICIDE EXPOSURE 

ON FUNCTIONALLY-RELEVANT BEE FORAGING BEHAVIORS IN A 

SINGLE VERSUS MULTIPLE SPECIES CONTEXT 

Carolyn A. Ayers, Emily K. Dobbs, Anna Mayrand, and Berry J. Brosi 

 

ABSTRACT 

Exposure to neonicotinoid pesticides has been identified as a contributing factor 

to global pollinator declines. Many studies have shown that sub-lethal exposure to field 

realistic levels of pesticides negatively affects bee behaviors important for survival. Yet 

to our knowledge no one has specifically tested how a multiple-species context can alter 

the effects of exposure on bee behaviors important for bee fitness. Here we show that 

sub-lethal neonicotinoid exposure interacts with species richness to negatively affect bee 

foraging behaviors relevant for bee fitness and plant pollination. We found that a field-

realistic dose of neonicotinoid pesticide decreases total visits, decreases bee energy gains, 

and increases energy expenditures in a multiple species context. We found the opposite in 

a single-species context, where neonicotinoid exposure increases total flower visits and 

energy gains. Such a strong interaction between neonicotinoid exposure and species 

richness indicates that pesticide exposure may negatively affect bee and plant fitness 

more greatly than previously anticipated by single-species experiments.  
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INTRODUCTION 

Neonicotinoid pesticides have been implicated as one potential factor driving global 

pollinator declines (Godfray et al. 2014). Neonicotinoids, which are the most commonly 

used class of insecticides worldwide (Goulson 2013; Van der Sluijs et al. 2013), are 

systemic pesticides that may be incorporated into the nectar and pollen of plants where 

they are consumed by pollinators. They target acetylcholine receptors in the insect 

nervous system, and can have detrimental effects on bees even at very low exposure 

levels (Mommaerts et al. 2010). For instance, at levels of neonicotinoid exposure 

commonly found in agricultural fields, several bee species (e.g. Apis and Bombus) have 

increased worker mortality (Gill et al. 2012, Henry et al. 2012), reduced colony weight 

(Whitehorn et al. 2012), and lower worker and queen production (Laycock et al. 2012, 

Whitehorn et al. 2012). Low levels of pesticides may also impair foraging behaviors 

including navigation (Henry et al. 2012), ability to learn how to handle flowers efficiently 

(Stanley and Raine 2016), and ability to collect pollen (Feltham 2014). Furthermore, 

changes in pollen foraging due to sub-lethal neonicotinoid exposure has been shown to 

have negative consequences for plant reproduction (Stanley et al. 2015).  

There is, however, very little understanding of how field-realistic neonicotinoid 

pesticide exposure affects bee behaviors important for bee and plant fitness in a single 

versus multiple species context. Many laboratory studies have examined the effects of 

disturbances on foraging behavior amongst individuals of the same species (Morandin 

and Winston 2003, Schneider et al. 2012), however no study to our knowledge has 

examined changes in behavior in a multiple-species context. While field studies 
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presumably have multiple species present, no study known to us has specifically 

examined the interaction between cognitive disturbances and species richness.  

We expect that exposure to neonicotinoid pesticides will differentially affect foraging 

in single versus multiple species contexts, since environmental complexity may increase 

the difficulty of learning and processing environmental cues (Dukas and Real 1993, 

Laverty 1994, Naug and Arathi 2007). For instance, a forager in a multiple species 

context may need to sample a greater number of resources to determine the most 

rewarding resource, and would need to frequently resample resources to detect changes in 

the reward landscape (Keasar et al. 2002, Naug and Arathi 2007). There is also some 

evidence of potential trade-offs in cognitive processes used to store versus process 

information. For instance, the rate of learning in bumble bees has been shown to decrease 

when presented with greater numbers of rewarding flower types (Dukas and Real 1993). 

There is evidence that bees and other insects modify their behavior in the presence of 

other bee species, which can have important fitness consequences as well as broader 

ecological implications (Fründ et al. 2013, Greenleaf & Kremen 2006, Brittain et al. 

2013, Brosi & Briggs 2013, Cardinale et al. 2003). For example, pollinator species 

diversity has been shown to drive short-term foraging specialization, a behavior that 

promotes conspecific pollen transfer which is required for plant reproduction (Brosi and 

Briggs 2013, Flanagan et al. 2009, Morales and Traveset 2008, Arceo-Gomez and 

Ashman 2011). Similarly, a greater diversity of natural enemies can interact to suppress a 

prey species, with implications for pest control in agriculture (Cardinale et al. 2003). 

However, there is little understanding of how exposure to pesticides will disrupt these 

behavioral responses to competition. 
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In this paper we tested the effect of field-realistic neonicotinoid pesticide exposure 

and species richness on bee foraging behaviors important for both bee and plant fitness. 

We tested bee behavior in a laboratory artificial foraging enclosure using RFID 

technology to precisely track bee movements and energetic rewards. We examined the 

effect of exposure on the foraging behavior of Bombus impatiens across a species 

richness gradient of one to four bee species. We also examined Bombus foraging 

behavior at low densities in the absence of other bee species to evaluate the confounding 

effects of interspecific and intraspecific competition. The design of this study is unique in 

that it allows us to tightly control species abundance, species richness, and neonicotinoid 

exposure to examine the relative importance of each of these factors for functionally 

important bee behaviors.  

We specifically test how sub-lethal neonicotinoid exposure and interspecific 

competition interact to affect (1) total bee activity, (2) foraging efficiency (energy gains 

per flower visit) and total energy gains, and (3) travel distances and flower handlings 

times. We hypothesize that (1) bees exposed to a field-realistic dose of neonicotinoid 

pesticides in a multiple species context will have reduced flower visits, (2) reduced 

energy gains, and (3) increased handling times and distances travelled. These questions 

will improve our understanding of the mechanisms underlying behavioral responses to 

competition and how neurological disruptions act on these mechanisms to influence 

functionally important behaviors. 

 

 

 



111 
 

METHODS 

Overview 

We examined bee foraging behavior in response to sub-lethal neonicotinoid 

exposure and bee species richness using a laboratory foraging enclosure at Emory 

University. We examined four total bee species, including two social bee species 

(Bombus impatiens and Apis mellifera) and two solitary taxa (Osmia lignaria and 

Megachile rotundata). We examined all combinations of one to four bee species 

containing Bombus while holding total bee density constant at 16 bees. We maintained 

multiple colonies of B. impatiens and multiple enclosures of O. lignaria, M. rotundata, 

and A. mellifera to account for colony-level and enclosure-level effects. We ran trials 

with either all exposed bees or all control bees, mimicking exposure in landscapes with 

seed treatment or spray pesticide treatments.  

We held bee density constant at 16 bees for multispecies trials, using eight 

Bombus individuals for two-species trials, either five or six Bombus for three-species 

trials, and four Bombus for four-species trials. We also performed single-species Bombus 

trials with densities of sixteen, eight, or four Bombus individuals in the absence of 

interspecific competitors to quantify the effects of intraspecific competition. 

 

Pesticide exposure 

Bees in the treatment group were exposed to thiamethoxam (C8H10ClN5O3S, 

Sigma Aldrich), a neonicotinoid pesticide applied to a wide range of row crops in the US 

(Maienfisch et al. 2001). Bees from the treatment group fed ad libitum on sucrose 

solutions with a field-realistic pesticide concentration of 10 ug/L (Blacquiere et al. 2012) 
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inside their training enclosures. Bees from the control group fed ad libitum on sucrose 

solutions not containing pesticides. No pesticides were introduced to the primary foraging 

enclosure or to control bee training enclosures.  

We used serial dilutions to reach a thiamethoxam concentration of 10 ug/L (10 

ppb).  We measured 10 mg of dry thiamethoxam with a microbalance and dissolved the 

dry pesticide into 1 L of water at 60° C using a magnetic stirrer and hotplate for 

approximately 15 minutes. Once dissolved the solution was placed in an ice bath. We 

then added 0.5 mL to 499.5 mL of sucrose solution to reach a desired concentration of 10 

ug/L. We made new pesticide and control sucrose solutions every two weeks and stored 

solutions under refrigeration. 

 

Foraging chamber 

The laboratory foraging enclosure contained a foraging array with four artificial 

flower species differing by color (blue, white, yellow, pink), scent, and sucrose 

concentrations (2.0 M, 1.5 M, 1.0 M, and 0.5 M). There were 32 total flowers in four 

rows of 8. The different flower types were distributed uniformly throughout the chamber. 

The enclosure was approximately 0.74 m deep by 2.27 m wide by 0.75 m tall. 

Incandescent lamps were used for lighting and to maintain a temperature of 28° C.  

The foraging enclosure enabled automatic tracking of bees using mic3-TAG 

RFID 16 kbit tags (Microsensys GmbH, Erfurt, Germany). Tags were 1.9 x 1.6 x 0.5 mm, 

and weighed 5.5 mg. We used nontoxic glue (Elmer's Glue-All multi-purpose, Elmer's 

Products, Inc) to attach tags to each bee’s thorax, and we ensured that tags did not 

interfere with bee movement or flight. These tags are commonly used in bee foraging 
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experiments (Morandin and Winston 2003, Schneider et al. 2012). RFID tag readers 

embedded in each artificial flower record the presence of a bee and activate automatic 

computer-controlled rewards. 

Whenever the RFID tag reader detected a bee, computer-controlled solenoid 

valves released the sucrose solution from reservoirs located outside the foraging chamber. 

When a valve was opened, the sucrose solution was gravity-fed into the chamber into 

artificial flowers. Sucrose was dispensed from a pipette tip embedded in the artificial 

flower, which was taken up by the bee’s proboscis through capillary action. This system 

allowed us to accurately estimate the amount of energy received by a bee. 

We used Arduino MEGA 2560 R3 hardware (Arduino LLC) and Processing 

software to automatically control sucrose rewards and record flower visits. Whenever a 

bee entered a flower, a 10 µl reward would be automatically released unless a bee had 

been recorded in that flower in the last 30 seconds. Otherwise, there was no depletion of 

resources throughout the trial. 

 

Experimental procedure 

We maintained bees in training enclosures, where they trained on flowers with an 

identical appearance, scent, and sucrose molarity to those in the experimental enclosure. 

Artificial flowers in the training enclosure, however, differed in the mechanism of 

sucrose delivery. Training flowers were not computer controlled, and instead used wicks 

embedded in a sucrose reservoir to deliver the sucrose solution. 

Before each trial, we captured bees at random from their training enclosures and 

chilled them for one hour before attaching RFID tags and recording their tag numbers. 



114 
 

We wiped clean the foraging chamber using ethyl alcohol to remove any bee scent 

markers remaining from previous trials. We fasted bees for one hour before transferring 

them to the primary foraging enclosure. We recorded their foraging behavior for 75 

minutes before ending each trial. We then recaptured bees and returned them to their 

original training enclosures. Wherever possible we did not use previously tagged bees, 

however approximately 58% of bees tested had been used in a previous trial. 

 

Statistical analysis 

We used the R statistical programming language (R Core Team 2014) for all 

analyses. We used linear models to test the effect of bee species richness and pesticide 

exposure on total bee energy gains and energy gains per flower. We used generalized 

linear models with Poisson errors to examine the effect of exposure and bee species 

richness on the number of flower visits. When comparing single versus multiple species 

contexts, we pooled trials with two, three, and four bee species. 

We used mixed-effect models to test the effect of exposure and bee species 

richness on handling times and distances travelled. We used exposure and species 

richness as fixed effects, and bee identity as a random intercept. We tested for both the 

main effects and interactions between species richness and pesticide exposure. We were 

able to calculate handling times, or the amount of time a bee spent in a flower, by 

subtracting the time the bee exited a flower from the time it entered, which were both 

recorded by our RFID tag reader system.   

We also compared our multi-species trials with low density Bombus trials to 

analyze the effects of intraspecific versus interspecific competition. Since we held total 
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bee density constant, the density of intraspecific competitors decreased with greater 

species richness. Since decreasing intraspecific abundance might affect bee foraging 

behavior in qualitatively similar ways as increasing species richness, we compared our 

multi-species trials with low density single-species trials in order to disentangle these two 

mechanisms. We specifically chose to examine Bombus foraging behavior at low 

densities, since Bombus was the most active species and was therefore the most likely to 

be disproportionately affected by intraspecific competition. For our two-species trials, 

which contain eight Bombus individuals out of 16 total bees, we compared bee foraging 

behavior with trials containing a total of eight Bombus individuals, with no interspecific 

competitors present. Similarly, for three-species trials, we compared foraging behavior 

with low density single-species trials containing the same number of Bombus (either five 

or six bees). Finally, for our four-species trials, which contain four Bombus individuals, 

we compared the observed foraging behavior with low-density Bombus trials containing 

only 4 individuals. 

 

RESULTS 

Sub-lethal neonicotinoid exposure decreases total bee activity in a multi-species context 

We ran 137 trials with 2192 bees from April 2015 to September 2015. We ran 83 

control trials with 1328 bees, and 54 treatment trials with 864 bees. We tested 13 

different Bombus colonies. To test for the role of intraspecific competition, we ran 67 

additional trials with four colonies and 612 B. impatiens individuals over three different 

bee densities (23 trials with four bees, 23 trials with eight bees, and 21 trials with 16 

bees), which took place from February to March 2016.  
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First, we measured the mean number of visits per bee per trial across a species 

richness gradient of one to four bee species. We found a significant interaction between 

neonicotinoid exposure and bee species richness (P= 0.00169; Table 1), where total 

activity increased slightly with greater bee species richness for control bees, while in 

exposed bees the mean number of flower visits decreased with species richness (Figure 

1A). We also found that the effect of exposure on the number of total visits was opposite 

in a single versus multiple species context. In a single-species context, exposed bees had 

increased total activity relative to control bees, while in a multi-species context (i.e. trials 

containing two or more bee species) exposed bees had reduced total activity (Figure 1A). 

We compared these results with low-density Bombus trials to examine the 

confounding effects of decreasing intraspecific competition as species richness increased. 

We found that release from intraspecific competition was responsible for driving the 

increased number of flower visits with species richness for control bees. For bees 

exposed to neonicotinoid pesticides, species richness had no effect on the number of 

flower visits in the absence of interspecific competitors. (Figure 1B). Therefore, release 

from intraspecific competition alone was not sufficient to explain the decrease in total 

bee visits for treated bees as species richness increased. 

 

Exposure decreases total bee energy gains and energy gains per flower visit 

Second, we measured the effect of species richness and neonicotinoid treatment 

on the mean energy gained per bee per trial (Figure 2A). We found that neonicotinoid 

exposure decreases the per-bee energy intake (P = 0.0183).  We found a significant 

interaction between exposure and species richness, where energy gains increased with 
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species richness for control bees, but decreased with species richness for exposed bees (P 

=0.000112). In our comparison with Bombus only trials, we found that the increase in 

energy for control bees occurred due to release from intraspecific competition as species 

richness increased, while reduced intraspecific competition was not sufficient to explain 

the decrease in energy gains for exposed bees (Figure 3).  

To determine whether the difference in energy gains was entirely driven by 

differences in total visits, we examined the mean energy gained per bee per flower visit 

(Figure 2B). We found a significant interaction between exposure and species richness, 

where the energy gained per flower by treated bees decreased with bee species richness 

relative to control bees (P= 0.0348). This indicates that, in addition to visiting fewer 

flowers, treated bees visited flowers with lower energetic rewards than control bees.  

 

Exposure interacts with species richness to increase flower handling times 

Though our dataset does not include information on the mode of bee movement 

(flying vs. crawling) or their exact travel paths required to precisely calculate energy 

expenditures, we can examine relevant factors such as the distance traveled between 

flower visits and the average handling time (i.e. the length of time a bee spends inside a 

flower). We found that there was a significant interaction between species richness and 

exposure affecting handling times (P= 0.00091). As species richness increased, handling 

times decreased for control bees and increased for exposed bees (Figure 4). However, we 

did not find any significant effect of bee species richness or exposure on distance 

travelled between pairs of flowers. Since exposed bees had significantly greater handling 
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times than control bees with high species richness, they would likely have greater total 

energy expenditures.  

 

DISCUSSION 

With neonicotinoid pesticides as a potential driver of bee declines, it is important to 

understand how neonicotinoid exposure can affect functionally-relevant bee foraging 

behaviors in multi-species environments. Behavioral responses to interspecific 

competition can be important for individual fitness, and may have ecological 

consequences. For example, important ecosystem services, including plant pollination 

and inhibition of agricultural pests are dependent on behaviors driven by interactions 

between multiple species (Fründ et al. 2013, Greenleaf & Kremen 2006, Brittain et al. 

2013, Brosi & Briggs 2013, Cardinale et al. 2003). However, the differential effects of 

neonicotinoid pesticides on functionally-relevant bee foraging behaviors in a single 

versus multiple-species context are poorly understood. 

Using a laboratory foraging enclosure, we determined the effect of sub-lethal 

neonicotinoid pesticide exposure on bee foraging behavior in a single versus multiple 

species context. We found that (1) neonicotinoid exposure increased total visits in a 

single species context, but decreased the total number of flower visits in a multiple 

species context; (2) exposure decreased energy gains for neonicotinoid exposed bees, 

which was mediated by reduced flower visits and visits to less rewarding flowers; and (3) 

pesticide exposure interacted with species richness to increase handling times in exposed 

bees, while there was no effect on travel distances. Decreased energy gains and lowered 

foraging efficiency in a multiple species context would likely have negative implications 
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for bee fitness, and the strong interaction with species richness indicates that the 

consequences of pesticide exposure will be especially severe for diverse plant-pollinator 

communities. 

In our analysis of the total number of flower visits per bee, we found a significant 

interaction between pesticide exposure and species richness affecting total visits (P= 

0.00169). We found that the number of total visits increased with species richness for 

control bees, and decreased for neonicotinoid-exposed bees (Figure 1A). In our 

comparison with low density Bombus only trials, we found that the increase in number of 

visits for control bees was primarily driven by release from intraspecific competition. 

This may have occurred since Bombus was the most active of the 4 species tested, so the 

interspecific competitors may not have been sufficiently active to alter Bombus foraging 

patterns. This pattern may have also occurred if Bombus avoided flowers recently visited 

by conspecific competitors (but not from interspecific competitors) through the use of 

chemical cues. For instance, previous research has shown that bees avoid recently 

depleted flowers using scent markers (Goulson and et al. 1998, Stout and Goulson 2001). 

For exposed bees, we found that the decrease in total visits was not fully explained by 

intraspecific competition alone (Figure 1B), indicating that neonicotinoid exposed bees 

may be less able to compete with interspecific competitors relative to control bees. 

In our analysis of bee energy gains, we found that neonicotinoid exposure decreased 

bee energy gains overall relative to control bees. However, in a single species context, 

exposed bees gained more energy than control bees. We found that energy gains 

increased along with species richness for control bees, while exposure greatly reduced the 

level of energy gained by exposed bees as species richness increased (Figure 2). We 
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found that the trend for control bees was driven by release from intraspecific competition 

similarly as described above for the total number of visits. However, release from 

intraspecific competition did not fully explain the decreased energy gains in exposed bees 

(Figure 3), implying that exposed bees were not able to compete as effectively with 

interspecific species compared to unexposed controls. We also tested whether the quality 

of bee visits differed between exposed and control bees, and found a significant decrease 

in energy gain per flower in exposed bees as species richness increased. Therefore, 

exposed bees not only visited fewer flowers, they also visited lower quality flowers in 

terms of their energy rewards. 

Our tracking system allows us to know which flowers bees visited, but not the 

method of movement between flowers, so we cannot precisely calculate energy 

expenditures. However, we were able to evaluate behaviors which require energy 

expenditures, including distances travelled between flowers and mean flower handling 

times. We found a significant interaction between species richness and exposure affecting 

handling times, where handling time increased with species richness for exposed bees, 

but decreased for control bees (Figure 4; P= 0.00091). We did not find a difference in 

travel distances in control vs. neonicotinoid treated bees or in a single vs. multiple species 

context. These findings indicate that energy expenditures are higher for exposed bees 

relative to controls at high species richness levels. Thus, the difference in net energy 

gains between exposed and control bees in a multiple species context is likely to be 

greater than the difference estimated by energy gains alone. 

Our results stress the importance of examining the community context rather than 

drawing inferences from single-species experiments. We found that exposure to 
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neonicotinoids, which acts as a stimulant, increased total flower visits and energy gains 

of bees in a single-species context. This finding is consistent with other studies on the 

effect of neonicotinoid exposure in a single species context (Stanley and Raine 2016). 

However, this relationship reversed in a multiple-species context, where exposed bees 

were less able to adapt their behavior to competition from other species. Multiple bee 

species are present and play an important functional role even in areas of intense 

agriculture (Greenleaf and Kremen 2006), so it is important to understand how 

neonicotinoid exposure affects behavior in the presence of competing species. 

 One limitation in the statistical analysis of our data was the lower number of four-

species trials, which were limited in number due to a short overlap in the seasonality of 

the four bee species. Another limitation in our dataset was that foraging activity differed 

greatly between species. Bombus had a very large number of visits, which led us to focus 

our analysis on Bombus behavior, while Apis and Megachile did not readily learn how to 

use the artificial flowers and had very few visits.  

Future studies are needed to better understand how community context interacts with 

a broader range of cognitive disturbances. For instance, different types of neonicotinoid 

pesticides have been shown to differentially affect the insect nervous system with 

different physiological outcomes (Moffat et al. 2016). Future studies could also test 

whether the source of environmental complexity changes the observed outcome. For 

instance, one could examine whether increasing plant species richness or complexity in 

rewards also interacts with pesticide exposure to alter pollination-relevant bee foraging 

behaviors. 
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Future studies are also need to improve our understanding of how neurological 

disturbances can alter interspecific interactions more generally. Neurological 

disturbances are globally widespread and can be naturally occurring or anthropogenic. 

For instance, pathogens and parasites (Klein 2003, Hurd 2003, Gegear et al. 2006) and 

plant secondary compounds including caffeine and nicotine (Städler 1992, Brenner 2003, 

Wright et al. 2013, Köhler et al. 2012) have all been shown to drive behavioral changes 

in insects. Ethanol produced by a diversity of nectar microbes has also been shown to 

affect the behavior of pollinating wasps (Ehlers and Olesen 1997). With the high 

prevalence of community-wide cognitive disturbances, potential effects on interspecific 

interactions could have important implications for many study systems. 

With worldwide declines in pollinator species richness (Biesmeijer et al 2006), it will 

become increasingly important to understand how multiple-species contexts and 

neonicotinoid exposure interact to influence ecologically-important behaviors. Our 

findings indicate that field-realistic exposure to neonicotinoid pesticides decreases the 

number of flower visits and bee energy gains in a multiple-species context. A decrease in 

energy gains would likely have important effects on bee fitness, while lowered flower 

visits could potentially harm plant reproduction in pollen-limited environments. This 

paper is amongst the first to address how species richness and neonicotinoid exposure 

interact to disrupt important behavioral responses to competition, and the potential 

implications for bee fitness and plant pollination. 
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TABLES 

 

    energy gains 

 total visits total energy energy per visit 

Fixed 

Effects 
Coef SE P value Coef SE P value Coef SE P value 

Exposure 0.414 0.124 0.816 0.580 0.128 0.018 0.040 0.031 0.235 

Species 

Richness 
0.095 0.043 0.224 0.121 0.046 0.844 0.022 0.011 0.380 

Exposure * 

Richness 

-

0.220 
0.071 0.002 -0.279 0.072 1.120E-04 -0.037 0.017 0.035 

          

 energy expenditures    

 distance travelled handling time    

Fixed 

Effects 
Coef SE P value Coef SE P value 

   

Exposure 0.074 0.040 0.166 -0.400 0.148 0.639    

Species 

Richness 

-

0.002 
0.014 0.170 -0.086 0.053 0.549 

   

Exposure * 

Richness 

-

0.031 
0.023 0.164 0.278 0.084 9.100E-04 

   

 

Table 1. Results of a generalized linear model with binomial errors (total visits), 

linear models (total energy gain and energy gain per visit), and mixed-effects models 

(distances and handling times). All P-values were calculated using an ANOVA. 
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FIGURES 

 

Figure 1. (A) Effect of species richness and sub-lethal pesticide exposure on the 

number of flower visits by Bombus impatiens. The lines of best fit for control (red) and 

bees exposed to neonicotinoids (blue) were determined using generalized linear models 

with Poisson errors. Each point represents the number of flowers visited for an individual 

bee. We found a significant interaction between neonicotinoid exposure and bee species 

richness affecting total visits (P= 0.00169). (B) Effect of interspecific competition on 

total visits relative to intraspecific controls. Points and error bars indicate the mean 

number of visits with Poisson 95% confidence intervals. The lines of best fit were 

determined using generalized linear models with Poisson errors. We found that 

interspecific competition (rather than intraspecific competition) drives the decrease in 

flower visits for treated bees as species richness increases. 
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Figure 2. Effect of species richness and sub-lethal pesticide exposure on (A) energy 

gains (kJ) per bee per trial and (B) energy gains per flower visit. The lines of best fit for 

control bees (solid line) and bees exposed to neonicotinoids (dashed line) were calculated 

using linear models. Points represent the energy gains of individual bees. In A, we found 

a significant main effect of exposure on energy gains per bee (P = 0.0183), and a 

significant interaction between neonicotinoid exposure and bee species richness (P = 

0.000112). In B, we found a significant interaction between exposure and species 

richness (P= 0.0348). 
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Figure 3. Effect of interspecific competition on energy gains per bee relative to 

intraspecific controls. Points and error bars indicate the mean number of visits with 95% 

CI. We determined the lines of best fit using a linear model. We found that intraspecific 

competition drives the increase in energy gains with species richness for control bees, 

while interspecific competition primarily drives the decrease in energy gains for treated 

bees. 
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Figure 4. Effect of sub-lethal pesticide exposure and species richness on the mean 

handling time per flower visit (in minutes). We determined the lines of best fit using a 

mixed-effects model with random intercepts for each bee. Points represent the mean 

handling time of individual bees. We found a significant interaction between pesticide 

exposure and species richness affecting handling times (P= 0.00091). 
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CONCLUSION 

In this dissertation, I use both a statistical and experimental approach to study 

important bee foraging behaviors. First, I developed new statistical techniques to quantify 

and test the significance of trapline foraging, a behavior in which foragers repeatedly visit 

spatially fixed resources in a predictable sequence. Using empirical data to compare 

metrics, I found that my proposed metric, determinism, offers an improvement over other 

metrics since it does not depend on the arrangement of resources or experimental design, 

which allows for comparisons between differing environments. I found that the spatially 

explicit individual-based null model I developed is less prone to Type I or II statistical 

error relative to existing models. The type of model proposed here may also be useful for 

other ecologically important spatially explicit and individual-based processes.  

Second, I used a foraging enclosure with artificial flowers to examine the effects 

of bee species richness and sub-lethal neonicotinoid pesticide exposure on functionally 

important bee foraging behaviors. I found that species-level specialization and 

complementarity increase with bee species richness. I also found that neonicotinoid 

exposure decreases total flower visits and bee energy gains in a multiple species context. 

These findings are important for better understanding how ongoing pollinator species 

losses and exposure to neonicotinoid pesticides, the most widely used insecticide 

worldwide, can affect bee fitness and the stability of plant pollination services to both 

agricultural and natural ecosystems. 

My first two dissertation chapters, in which I propose a new metric and an individual-

based spatially explicit null model, are both important for testing the statistical 
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significance of suspected traplines. A metric for traplining, as presented in Chapter 1, is 

required for quantifying the degree of traplining, which allows for comparisons across 

studies and against a null distribution. The spatially explicit individual-based null model 

presented in Chapter 2 builds on Chapter 1, as it demonstrates a method for building a 

null distribution for testing the significance of traplines by purposefully excluding the 

mechanism of interest (e.g. spatial memory). There are currently no widely used metrics 

or null models which can be used to easily compare between differing studies and 

environments. The methods presented in these two chapters offer an improvement over 

existing methods, since they allow for easy comparisons across different resource 

densities or spatial arrangements. 

The third and fourth chapters both address changes in bee behavior as the result of 

increasing species richness. Chapter 4 adds an additional layer of complexity to Chapter 3 

by testing how a cognitive disturbance (i.e. neonicotinoid pesticide exposure) alters bee 

behavioral responses to species richness. Together, these chapters test how species losses 

and sub-lethal exposure to neonicotinoid pesticide might interact to affect bee foraging 

behaviors important for bee and plant fitness. Both of these chapters are vitally important 

for understanding how bee species losses will affect bee foraging behaviors with potential 

negative consequences for plant reproduction.  

The statistical component of this dissertation can also inform the metrics used for 

specialization in the experimental component. Specifically, in Chapter 3, d’ (a commonly 

used metric for species-level specialization) was sensitive to the number of visits at very 

low visitation numbers. This occurs since a forager visiting few flowers has a greater 

probability of visiting all flowers from the same species compared to a forager who 
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visited a very large number of flowers. A null model as presented in Chapter 2 could 

address this problem by controlling for the probability of visiting the same flower 

species. A spatially-explicit null model would be especially useful, since it would account 

for the spatial layout of flowers in determining the probability of transitioning between 

flowers of the same species. 

Future laboratory studies could focus on the mechanisms underlying the results 

observed in the experiments presented here. For instance, one could alter the level of 

competition via decreasing the level of rewards or increasing the number of bees to better 

understand the roles of interference versus exploitative competition in driving bee 

specialization and niche partitioning in response to interspecific competition. 

Additionally, altering handling procedures between flower types (e.g. by changing flower 

structure using three-dimensional printing) could be useful for establishing the 

mechanisms underlying floral fidelity, and it could better enable us to examine the role of 

bee species richness in driving floral fidelity. Future studies are also needed to better 

understand how community context interacts with a broader range of cognitive 

disturbances, including different types of insecticides or environmental contaminants. 

Additionally, future studies could also test whether the source of environmental 

complexity changes the observed outcome. For instance, one could also examine whether 

increasing plant species richness or complexity in rewards also interacts with pesticide 

exposure to alter pollination-relevant bee foraging behaviors. The experiments could also 

be repeated with a different set of bees to test whether the identities of the bees chosen 

for the experiment alters the outcome. 
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The effect of species diversity and cognitive disturbances on bee foraging behaviors 

important for plant reproduction could also be tested in a greenhouse or field setting. In 

controlled greenhouse experiments, one could directly measure the effects of sub-lethal 

neonicotinoid pesticide exposure on the reproductive fitness of plants mediated via 

changes in pollinator behavior. In a field setting, one could temporarily remove bee 

species in or near agricultural areas treated or not treated with neonicotinoid pesticides to 

examine whether the remaining species respond differently to species removals. 

My dissertation has broader implications for statistical methods in ecology, as well as 

for conservation and sustainable agriculture. The statistical methods presented in the first 

component of my dissertation (Chapters 1-2) offer an improvement over existing 

methods for traplining. These methods may be applied to many other spatially explicit 

and individual-based processes, which are currently at the forefront of ecology. To our 

knowledge, we are the first to propose a spatially explicit individual-based null model 

specifically designed to test the statistical significance of empirical data.  

The second component of my dissertation (Chapters 3-4) has important implications 

for BEF and for pollinator conservation. My results show that phenotypic plasticity, as 

opposed to fixed traits, can be an important mediator of BEF relationships. This indicates 

that bee species losses may alter bee behavior more greatly than predicted by studies 

based on fixed-traits. We also found evidence of complementarity in the absence of 

pollinator trait matching, which may have been mediated by the use of social 

information. Finally, we found that sub-lethal exposure to neonicotinoid pesticides may 

alter bee behavior more greatly in complex multi-species environments than would have 

been predicted by experiments in single species environments, where the majority of 
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studies take place. Together, these studies indicate that bee species losses and exposure to 

pesticides may have greater negative implications for bee fitness and plant pollination in 

natural and agricultural systems than previously anticipated. 
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Appendix 1.  

Carolyn A. Ayers, Paul R. Armsworth, Berry J. Brosi 

 

SUMMARY 

Appendix 1 contains four components: (1) calculation of determinism (DET) with 

and without including reverse sequences (i.e. perpendicular diagonals on recurrence 

plots)  or immediate repeats of behavior (i.e. horizontal/vertical lines on recurrence plots) 

in the numerator of DET, (2) R code for calculating the prevalence of reverse sequences, 

(3) R code for generating random sequences, (4) a sensitivity analysis of DET with 

regard to resource abundance and minimum trapline length for high resource densities, 

and (5) a statistical analysis of the effect of experience on the degree of traplining (with 

and without inclusion of reverse sequences in the DET calculation). 

 

CALCULATION OF DETERMINISM 

Determinism may be calculated using the contour map tool from the ‘spatstat’ 

statistical package in R. First, we created a matrix resembling a recurrence plot, where a 0 

or 1 was placed to represent the absence or presence of a recurrence, respectively. We set 

all values on the main diagonal to 0 so these would not be included in calculations of 

determinism. One half of the sum of the entire matrix gives the denominator in our 

calculation of DET. The ‘spatstat’ package may be used to assign unique numbers to each 

contiguous set of 1s in the matrix. This package, which was created for designing contour 

maps, assigns a unique number to all contiguous sets of points. We created a table to 

identify the number of points in each contiguous set, and restricted the table to only 
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include sets larger than the required minimum length. Half of the sum of the table 

represents the numerator in our calculation of DET.  

The R package ‘fNonlinear’ may also be used to quickly create recurrence plots. 

 
#===========================================================# 

#-This R code contains a function to calculate Determinism--# 

#-and create recurrence plots using the fNonlinear package--# 

#===========================================================# 

 

#Load required packages 

library(fNonlinear) 

library(spatstat) 

 

#===========================================================# 

#------Begin function to calculate Determinism--------------# 

#===========================================================# 

 

#x is a vector of numbered resource visits/behaviors 

#minl is the minimum length of a diagonal to be considered in the  

#numerator of the determinism calculation 

 

determinism <- function(x, minl){ 

 

#Depending on the dataset it may be desirable to filter out consecutive 

visits  

#to the same flower. See function below and delete ‘#’ in the line 

below to use 

#x = filterout(Ldata = x) 

 

#-----set up matrix resembling a recurrence plot, where a 1 indicates a 

repeat  

#-----visit and 0 indicates the absence of a repeat. 

 

det1 = matrix(cbind(rep(x,length(x))),nrow=length(x)) 

tdet = t(det1) 

det = ((det1 - tdet) == 0) * 1 

 

#set the main diagonal equal to zero so it won't be included in the 

calculation 

 

diag(det) = 0 

 

#Use spatstat package to create a 'countour map' of the matrix, 

#which assigns all sets of contiguous 1's a unique number 

yi <- as.im(det) 

ycOut <- connected(yi, background = 0) 

 yc <- ycOut$v 

  

#Depending on the dataset it may be desirable to filter out diagonals 

perpendicular to #the main diagonal. Code is provided for the 

‘removeperpdiag’ function below. 

#Delete “#” from the line below to filter out perpendicular diagonals 
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#yc = removeperpdiag(yc,minl) 

 

#Note: this code may take several minutes to run for very long 

sequences 

 

#---- filter out short repeats: a ‘trapline’ should include more unique 

resources 

#---- than the minimum cutoff (minl) 

 

#make an alternative DET matrix that contains the resource IDs 

det2 = matrix(rep(x,nrow(det)),nrow=nrow(det),byrow=TRUE)*det 

#make a dataframe with the number of times each resource appears in a 

diagonal 

listofseq = data.frame(group = yc[1:length(yc)], 

seq=det2[1:length(det2)]) 

#how many unique resources are in the diagonal 

uniquevisits = rowSums((table(listofseq)>0)*1) 

#only count diagonals with at least ‘minl’ number of unique resources 

longenough = (uniquevisits >= minl)*table(yc) 

#find the numerator: 

#(remember this still includes both the top and bottom halves of the 

matrix) 

 

contig = sum(longenough) 

 

denominator= sum(det) 

 

#This also still includes top and bottom halves of the matrix 

 

 

#------------------- total DET score 

#divide the numerator and denominator in half before calculating DET 

for just 

#the top half of the matrix 

 

print((contig/2)/(denominator/2)) 

}  

 

#===========================================================# 

#---optional function to filter out visits to same flower in a row  

#===========================================================# 

 

filterout <- function(Ldata){ 

for (i in 2:length(Ldata)){ 

if(Ldata[i] == Ldata[i-1] ){Ldata[i - 1]= NA} 

} 

Ldata=Ldata[!is.na(Ldata)] 

Ldata 

} 

 

 

#===========================================================# 

#---optional function to filter out perpendicular diagonals  

#===========================================================# 

 

removeperpdiag = function(yc,minl){ 
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#first, remove observations that are too short to save time 

remove = names(table(yc)[table(yc)< minl]) 

for (i in remove){ 

yc[ yc == i ] = NA 

} 

 

#Only do these steps if there are perpendicular diagonals longer than 

minl 

if(sum(!is.na(yc))!= 0){ 

 

#-------remove sequences perpendicular to the main diagonal 

#save list of levels (aka groups of continuous points) that weren't 

removed in the previous step 

newlevels= levels(droplevels(yc)) 

#use a loop to go through each level and remove all that are not 

parallel 

for (i in 1:length(newlevels)){ 

 

#only look at matrix positions of current contiguous group 

set = which(yc == newlevels[i]) 

 

#make a list of all possible parallel points 

pardiag=c(seq(set[1], length(yc), (nrow(yc) +1))[-1],seq(set[1], 0, -

(nrow(yc) +1))[-1]) 

 

for(i in 1:length(set)){ 

pardiag = c(pardiag,c(seq(set[i], length(yc), (nrow(yc) +1))[-

1],seq(set[i], 0, -(nrow(yc) +1))[-1])) 

} 

 

#remove points that don't fall in these positions 

keepers = set[set %in% pardiag] 

toberemoved = setdiff(set,keepers) 

 

if (length(toberemoved) > 0){ yc[toberemoved] = NA }  

}} 

yc 

} 

 

 

#===========================================================# 

#------Example DET calculation------------------------------# 

#===========================================================# 

 

x= c(1,2,3,8,9,10,2,3,4,5,7,3,8,9,10,7,5,4,8) 

determinism(x, 3) 

 

 

#===========================================================# 

#------Make recurrence plot---------------------------------# 

#===========================================================# 

 

recurrencePlot(x, m=1, d=0, eps = 1, nt = 1,end.time = 800, pch = 16, 

cex = .1) 
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CALCULATING THE PREVALENCE OF REVERSE SEQUENCES 

 

In this code, we quantify the prevalence of reverse sequences, which appear as 

diagonals perpendicular to the main diagonal on recurrence plots. We quantify the 

number of recurrences which belong to a perpendicular diagonal, out of the total number 

recurrences which belong to a recurrent series of any type (all diagonals, and 

vertical/horizontal lines when applicable). In other words, we examine what proportion of 

recurrence points included in the numerator of the DET calculation are removed if we do 

not include perpendicular diagonals. 

 
#load required package 

library(spatstat) 

 

propperp <- function(x, minl){ 

 

#This function outputs the proportion of recurrence points which are 

removed from the #numerator of the DET calculation if perpendicular 

diagonals are not included  

#Note that this code requires the ‘removeperpdiag’ function provided 

above 

#This code may take several minutes to run for very long sequences 

 

#optional: use function to filter out immediate repeats if needed 

#x = filterout(Ldata = x) 

 

det1 = matrix(cbind(rep(x,length(x))),nrow=length(x)) 

det2 = t(det1) 

det = ((det1 - det2) == 0) * 1 

 

diag(det) = 0 

rr = sum(det)  + nrow(det)   #diagonal + other 1's 

 

det 

 

yi <- as.im(det) 

ycOut <- connected(yi, background = 0) 

 yc <- ycOut$v 

 yc  

 

#------ calculate the numerator of DET first for matrix with 

perpendicular diagonals 

det2 = matrix(rep(x,nrow(det)),nrow=nrow(det),byrow=TRUE)*det 

listofseq = data.frame(group = yc[1:length(yc)], 

seq=det2[1:length(det2)]) 

uniquevisits = rowSums((table(listofseq)>0)*1) 

 

longenough = (uniquevisits >= minl)*table(yc) 

contig = sum(longenough) 

 

#------------ now calculate the numerator of DET again without 

perpendicular diagonals 

#use the function provided above in part 1 to remove perpendicular 

diagonals 

 

yc2 = removeperpdiag(yc,minl) 
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det2 = matrix(rep(x,nrow(det)),nrow=nrow(det),byrow=TRUE)*det 

listofseq2 = data.frame(group = yc2[1:length(yc2)], 

seq=det2[1:length(det2)]) 

uniquevisits2 = rowSums((table(listofseq2)>0)*1) 

 

longenough2 = (uniquevisits2 >= minl)*table(yc2) 

contig2 = sum(longenough2) 

 

#------------------- total proportion 

 

#optional:  

#uncomment the line below to also print out additional information 

related to DET 

#print(c(contig,contig2,nrow(det), rr)) 

 

#print the proportion only 

print((contig - contig2)/contig) 

 

} 

 

CALCULATION OF SIMULATED SEQUENCES 
 
R code to generate foraging sequences: 

#=================================================# 

#------This R code may be used to generate hypothetical foraging 

sequences 

#------with varying levels of predictability 

#==================================================# 

#p is used to set the probability of repeating the last transition 

#s is used to set the abundance 

# a short sequence is created to be used as a reference of past 

transitions 

generate_seq = function(p,s){ 

starter = c(1:s,1) 

hypseq= starter 

a=1:(length(starter) - 1) 

i=length(starter)  

#where i is the ith visit in the sequence 

#set the length of sequences to be generated here. It is currently set 

at 100 

while(i < 100){ 

#what is the current position? 

current = which(starter == hypseq[i])[1] 

#We use the sample function to determine if the forager succeeded in 

#repeating the past transition 

#according to the probability ‘p’ 

#If successful, set the next entry in the sequence to the past 

transition 

#made in the reference sequence 

#if not successful, choose a different resource 

if(sample(1:100,1) <= p){hypseq[i+1]=starter[current + 1]} 

else {hypseq[i+1]=sample(a[- c(starter[current],starter[current + 

1])],1)} 

#update i to move to the next item in the sequence 

i = i + 1} 
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#find the determinism---  

#comment the next line out to output the sequence instead 

#remember to set a minl value below 

b = determinism(hypseq,minl) 

} 

 

SENSITIVITY ANALYSIS:  

THE EFFECT OF RESOURCE ABUNDANCE ON DETERMINISM 

 

Sensitivity of DET to Resource Abundance for High Resource Densities 

 

 We repeated the analysis in Chapter 1 Figure 2 and Table 2 with an increase in 

resource abundances by one order of magnitude. Specifically, we used a reference group 

of 50 resources, and compared with 100, 250, or 500 resources. As in Chapter 1 Figure 2, 

we simulated 1,044 sequences each with a length of 1000 resource visits. To better fit the 

generalized linear model, we simulated a greater number of sequences with intermediate 

and high levels of sequence predictability. For the range of 40% to 50% chance of 

repeating a prior transition, we simulated sequences at intervals of 0.5%. For the range of 

50.25% to 90% percent chance of repeating a past transition, we simulated sequences at 

intervals of 0.25%. For the range of 90.125% to 100%, we generated sequences at 

intervals of 0.125%. 

We found significant effects of abundance and significant interactions between 

abundance and sequence predictability (Table 1). Thus, corrections for resource 

abundance would be required to compare DET across studies with large numbers of 

resources. We also found very little sensitivity to resource abundance at very high levels 

of traplining, with the greatest sensitivity occurring at intermediate values of traplining. 

Comparisons across studies with large differences in resource density are still 

possible after correcting for resource abundance, which may be facilitated by sensitivity 
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analyses such as the one presented here (Figure 1). In these analyses, GLMs are used to 

determine the predicted DET values for sequences with a given level of predictability but 

different resource densities. Conversions between resource densities may then be 

performed using the underlying predictability level. For example, sequences with 50 

resources and a mean DET of 0.5 occurred when there was a 79% chance of repeating a 

previous transition. For the same sequence predictability (i.e. a 79% chance of repeating a 

past transition) and 250 resources, the mean DET was equal to 0.61. Therefore, a DET 

value of 0.5 for 50 resources may be converted to 0.61 for comparison with sequences 

observed for 250 resources. 

 

Sensitivity analysis of minimum length ‘l’ 

We calculated the mean determinism (DET) values for simulated sequences with 

five, 10 and 50 resources, with different minimum required trapline lengths (Table 2). We 

found that DET decreased as the minimum required trapline length increased. 

 

 

THE EFFECT OF BEE FORAGING EXPERIENCE ON THE DEGREE OF 

TRAPLINING 

 

We used a mixed effects model with binomial errors to test the effect of bee 

foraging experience on the degree of traplining. Specifically, we compared the first and 

last quarter of flower visits for each bee. Since repeated measures were obtained from 

individual bees (before and after gaining experience on a foraging array), we included a 

random effects for both the slope and intercept.  

We calculated the results when reverse sequences (perpendicular diagonals on 

recurrence plots) were included in the calculation of DET (Table 3, Figure 2), and the 
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results when reverse sequences were excluded from the calculation of DET (Table 4, 

Figure 3). Overall, we found that 27.1% of all recurrences in a recurrent series belonged 

to a perpendicular diagonal (i.e. a reverse sequence). Despite the high prevalence of 

reverse sequences, the results of our above analysis were not very sensitive to the 

exclusion of these sequences from the DET calculation.  
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TABLES 

 

 

 Estimate Std. Error t value Pr(>|t|) 
Intercept -10.48 0.14 -72.77 < 2E-16 
factor(abundance)100 0.62 0.24 2.6 0.00965 
factor(abundance)250 2.25 0.29 7.71 4.46E-14 
factor(abundance)500 3.12 0.39 8.09 2.71E-15 
percent 0.13 0.002 73.96 < 2E-16 
factor(abundance)100:percent -0.01 0.003 -2 0.04587 
factor(abundance)250:percent -0.02 0.004 -6.2 9.81E-10 
factor(abundance)500:percent -0.03 0.005 -5.61 2.90E-08 
     
Null deviance: 2047821  on 683  degrees of freedom 
Residual deviance:  54218  on 676  degrees of freedom 
Dispersion parameter for quasi-binomial family taken to be 71.2 

 
Table 1. The effect of sequence predictability and abundance on determinism for 50, 100, 

250, and 500 resources. 
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Sensitivity Analysis of DET by Minimum Trapline length ‘l’ 
Abundance: 5 

 Percent chance of repeating transition  

 0% 25% 50% 75% 100% 

l = 3 0.35 0.32 0.42 0.73 1 

l = 5 0.02 0.01 0.05 0.47 1 

 

Abundance: 10 

Percent chance of repeating transition 
 0% 25% 50% 75% 100% 

l = 3 0.06 0.1 0.3 0.64 1 

l = 5 0.001 0.01 0.05 0.36 1 

 

Abundance: 50 

 Percent chance of repeating transition  
 0% 25% 50% 75% 100% 

l = 3 0 0.07 0.43 0.71 1 

l = 5 0 0.02 0.13 0.56 1 

l = 10 0 0 0 0.21 1 

 

Table 2. Mean determinism (DET) values for simulated sequences with five, 10 and 50 

resources, with different minimum trapline lengths. 
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Statistical Model: 
cbind(success, failure) ~ experience + (1 + experience | as.factor(Bee.ID)) 

 
Random effects: 
Groups Name Variance Std. Dev. Corr. 
Bee ID Intercept 1.0196    1.0098  
 Experience 0.1799    0.4242    -0.93 

Number of observations: 16, groups:  Bee ID, 8 
 

Fixed effects: 
    z     Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.1807     0.3621  -8.784  < 2e-16 
experience    0.6905     0.1509   4.575 4.77e-06 

 
Table 3. Effect of bee experience on DET: Mixed-effects model with binomial errors 

(written in R syntax using the lme4 package) and a summary of model results. Reverse 

sequences were included in the numerator of DET. 
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Statistical Model: 
cbind(success, failure) ~ experience + (1 + experience | as.factor(Bee.ID)) 

 
Random effects: 
Groups Name Variance Std. Dev. Corr. 
Bee ID Intercept 0.9093 0.9536  
 Experience 0.1856 0.4308 -0.89 

Number of observations: 16, groups:  Bee ID, 8 
 

Fixed effects: 
    z     Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -3.7251   0.3451 -10.795  < 2e-16 
experience    0.7635   0.1537   4.969 6.74e-07 

 
Table 4. Mixed-effects model with binomial errors (written in R syntax using the lme4 

package) and a summary of model results. Here, reverse sequences were not included in 

the numerator calculation of DET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



152 
 

 

 

 

FIGURES 

 
Figure 1. Determinism (DET) values from hypothetical foraging sequences varying in 

sequence predictability and resource abundance. The line of best fit and 95% CI were 

calculated using GLM’s with quasi-binomial errors. 
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Figure 2. Observed DET values for the first and last quarter of flower visits for eight 

individual bumble bees. Foraging intervals were each comprised of approximately 110 

flower visits. Reverse sequences were included in the numerator of DET. 
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Figure 3. Observed DET values for the first and last quarter of flower visits for eight 

individual bumble bees. Foraging intervals are each comprised of approximately 110 

flower visits. Reverse sequences were not included in the numerator of DET. 
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Appendix 2.  

Carolyn A. Ayers, Paul R. Armsworth, Berry J. Brosi 

 

SENSITIVITY ANALYSIS OF RESOURCE DENSITY, DETECTION 

DISTANCE, AND MOVEMENT TYPE 

We tested the sensitivity of the null model to a range of resource abundances, 

forager movement patterns, and sensory perception distances. We hypothesize that, first, 

traplines emerge more frequently at low resource abundances, since forager movements 

are more predictable and repeatable where fewer choices are available. Second, for 

forager movement, we hypothesize that a random walk will result in less traplining than a 

correlated random walk. Since a random walk resembles a more localized search pattern, 

there is a greater probability a forager will visit the same resource each time it enters a 

specific region of the field. For a correlated random walk, the resources visited will 

depend highly on the initial direction of travel. Third, for sight distance, we hypothesized 

that medium distances will result in the highest frequency of sequence repeats. Foragers 

with low sight ranges are more likely to bypass nearby flowers, while foragers with high 

sight distances have very many resources to choose from. In both cases, it may be 

difficult to predict which resources will be visited, resulting in fewer sequence repeats 

relative to foragers with medium sight distances. 

 

Interaction of sight distance and resource abundance 

 We tested the effect of sight distance on the frequency of traplining in our 

proposed null model, and tested for interactions with resource abundance. We found that 

foragers with medium sight distances had the greatest level of traplining for all resource 
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abundances, while foragers with low or high sight distances had relatively low levels of 

traplining.  

In general, the level of traplining decreased with increased resource abundances 

(Figure 1). However, when the sight distance was small, the relationship reversed. A 

forager with low sight range was more likely to repeat sequences in a high resource 

abundance setting. This interaction between abundance and sight range was statistically 

significant (<2e-16, See Table 1). 

 

Interaction between sight distance, resource abundance, and movement type 

We examined the effect of movement type (a random or correlated random walk) 

on the frequency of traplines, and tested for interactions with resource abundance and 

sight distance.We found that sequence repeats occurred at all resource abundances, 

detection distances, and different movement types. However, very few sequence repeats 

emerged at low resource abundance with low sight distance with a correlated random 

walk, or at high resource abundance with high sight distance. 

When sight distance was low, sequence repeats occurred more frequently for 

foragers with a random walk relative to a correlated random walk for all abundance levels 

(Figure 2). For medium sight distances, a random walk increased the frequency of 

sequence repeats relative to a correlated random walk, but only at low resource 

abundances. When the sight distance was high, type of movement had very little effect. 

This interaction between movement type and sight distance was statistically significant 

(<2e-16, see Table 1). 



157 
 

This pattern may occur since the resources visited by a forager using a correlated 

random walk depend highly on the initial direction of travel. As a result, this type of 

forager is much less likely to revisit the same resource from a given position compared to 

a forager using a random walk. 

 

DECISION RULES FOR SELECTING AMONGST MULTIPLE RESOURCES 

The observed decrease in traplining at high detection distances may be 

dependent on the decision rules a forager uses to choose the next resource. In cases where 

foragers are very predictable in their choices (such as always choosing the nearest 

neighbor resource) traplining may remain high even at high sight distances. However, 

foragers exclusively following nearest neighbor rules would be more representative of a 

medium or low sight distance forager since more-distant flowers would never be 

considered or visited. Since many species preferentially visit closer resources, we ran a 

sensitivity analysis to compare the effect of foragers using random versus distance-

dependent decision rules to select resources. 

We quantified sequence predictability in simulations where the probability of a 

forager choosing a resource was inversely correlated with the resource distance (Figure 

3). We found that determinism was elevated only for cases with high sight distance and 

low-medium resource abundance, and where distance was heavily weighted:  

 

Probability of choosing floweri = 1 - (distance of floweri ) 3 / sum((distance 
of each flower in sight) 3) 

 

There was no difference in determinism when less weight was given to flower distance: 
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Probability of choosing floweri = 1 - (distance of floweri ) / sum((distance of 
each flower in sight) ) 

 

 

R CODE: SAMPLE RANDOMIZATION NULL MODEL 

#--------------------- Sample randomization model 

# First, we need to know distances and angles between resources 

 

#required packages 

 library(stats) 

 library(reshape2) 

 library(dplyr) 

 

 

#distance matrix 

 #first calculate the distances between resources 

#use this to calculate the distances from the "Lihoreau" 

dataset 

 

 sim.pos = data.frame(x= 0, y= 0) 

 sim.pos[1,]=c( -12, 11) 

 sim.pos[2,]=c( -11, -8) 

 sim.pos[3,]=c( -5, -8) 

 sim.pos[4,]=c( 9, -12) 

 sim.pos[5,]=c( -5, 4) 

 sim.pos[6,]=c( 4, 4) 

 

 

d = dist(sim.pos, method = "euclidean", diag = FALSE, upper 

= TRUE, p = 2) 

 

sim.distmat <- melt(as.matrix(d), varnames = c("row", 

"col")) 

 

 

#For a given sequence, we need to know the distance travelled 

 

distancefunction = function(sim.seq){ 

 

  

 #let's save the x positions to a vector 

 sim.x = sim.seq 

 sim.x[sim.seq == "1"] = -12 

 sim.x[sim.seq == "2"] = -11 

 sim.x[sim.seq == "3"] = -5 

 sim.x[sim.seq == "4"] = 9 

 sim.x[sim.seq == "5"] = -5 

 sim.x[sim.seq == "6"] = 4 

 

 #let's save the y positions to a vector 
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 sim.y = sim.seq 

 sim.y[sim.seq == "1"] = 1 

 sim.y[sim.seq == "2"] = -8 

 sim.y[sim.seq == "3"] = -8 

 sim.y[sim.seq == "4"] = -12 

 sim.y[sim.seq == "5"] = 4 

 sim.y[sim.seq == "6"] = 4 

 

 

#find x and y differences 

sim.x.diff = sim.x  

sim.x.diff = c(NA,diff(sim.x)) 

 

sim.y.diff = sim.y 

sim.y.diff = c(NA,diff(sim.y)) 

 

sim.dist = sqrt(sim.x.diff^2 + sim.y.diff^2) 

sim.dist 

} 

 

#-------------Find the angles of movement 

 

#short function to find the angle between three points 

anglefunction = function(a,b,c){ 

 

a.dist= sim.distmat[sim.distmat$row == a & sim.distmat$col 

== b,3] 

b.dist= sim.distmat[sim.distmat$row == a & sim.distmat$col 

== c,3] 

c.dist= sim.distmat[sim.distmat$row == b & sim.distmat$col 

== c,3] 

 

angle = acos((a.dist^2 + c.dist^2 - 

b.dist^2)/(2*a.dist*c.dist)) 

if (!is.na(angle)) {if(angle == 0){angle = pi}} 

if(is.na(angle)){angle = 0} 

angle 

} 

 

#now find the angles of movement used in the sequence 

 

sim.angle.function = function(sim.seq){ 

 

sim.angle=sim.seq 

 

for (i in 2:(length(sim.seq)-1)){ 

a= sim.seq[i - 1] 

b= sim.seq[i] 

c=sim.seq[i + 1] 

sim.angle[i] = anglefunction(a,b,c) 

 

} 
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sim.angle[c(1,length(sim.angle))]= NA 

sim.angle 

} 

 

#now make a function to define outside and center regions 

#--- 1's are outsides 

#2's are insides 

 

fieldfunction = function(sim.seq){ 

 

sim.field = sim.seq 

sim.field[sim.field == 1 | sim.field == 2 | sim.field == 4] 

= 1 

sim.field[sim.field == 3 | sim.field == 5 | sim.field == 6] 

= 2 

 

sim.field 

} 

 

#we also need to save a general key for which resource  

#is in which region 

fieldfunction2 = function(sim.seq){ 

 

sim.field = sim.seq 

sim.field[sim.field == 1 | sim.field == 2 | sim.field == 4] 

= 1 

sim.field[sim.field == 3 | sim.field == 5 | sim.field == 6] 

= 2 

 

field.mat = data.frame(row = 1:6, field = c(1,1,2,1,2,2)) 

field.mat 

} 

 

 

#------------------ Sample randomization function 

 

sampleran = function(sim.seq){ 

 

myseq=t(data.frame(sim.seq)) 

mydist = distancefunction(sim.seq) 

myangle = sim.angle.function(sim.seq) 

sim.field = fieldfunction(sim.seq) 

field.mat = fieldfunction2(sim.seq) 

 

start = sample(1:ncol(myseq) , 1, replace = TRUE, prob = 

NULL) 

sr.seq= as.numeric(myseq[start]) 

 

startquad= sim.field[start] 

newdist = sample(na.omit(mydist[sim.field == startquad]) , 

1, replace = TRUE, prob = NULL) 
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nextup= as.numeric(which(abs(newdist - 

sim.distmat[sim.distmat$row == as.numeric(myseq[start]),3]) 

== min(abs(newdist - sim.distmat[sim.distmat$row == 

as.numeric(myseq[start]),3])))) 

sr.seq =c(sr.seq, nextup) 

sr.dist = c(NA, sim.distmat[sim.distmat$row == 

as.numeric(myseq[start]),3][1]) 

 

#for the rest of the sequence elements, it's possible to 

start 

#using turning angles as well 

for (i in 3:length(sim.seq)){ 

nextup = tail(sr.seq,1) 

newfield = field.mat[field.mat$row == nextup,2] 

newdist = sample(na.omit(mydist[sim.field == 

newfield]) , 1, replace = TRUE, prob = NULL) 

 

pool = abs(newdist - sim.distmat[sim.distmat$row == 

as.numeric(myseq[start]),3]) 

 

#remove current and second from last flower from the 

pool of choices 

pool[tail(sr.seq,2)[1]] = NA 

pool[tail(sr.seq,1)] = NA 

 

#arbitary cutoff for which resources are  

#close enough in distance 

#to start considering turning angles 

nextup= na.omit(which(pool < 3)) 

 

if(length(nextup) > 1){ 

 newangle = sample(na.omit(myangle[sim.field == 

newfield]) , 1, replace = TRUE, prob = NULL) 

 

  anglepool=data.frame(id = nextup, angle=0) 

  for (a in 1:length(anglepool)){ 

  anglepool$angle[a]= 

abs(anglefunction(tail(sr.seq,2)[1],tail(sr.seq,1),nex

tup[a]) - newangle) 

  }  

nextup = anglepool[anglepool$angle == 

min(anglepool$angle),1] 

 

} else {nextup=which(pool == min(na.omit(pool)))} 

 

 

sr.seq =c(sr.seq, nextup) 

 

} 

sr.seq #print out new randomized sequence 

 

} #-----end of function 
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NETLOGO CODE: NULL MODEL FOR TESTING THE STATISTICAL 

SIGNIFICANCE OF TRAPLINES 

See the online resource “nullmodel_Lihoreau.nlogo” for the NetLogo code using 

the Lihoreau dataset resource layout. 

BEE FORAGING SEQUENCES FROM “EMORY” DATASET 

See “the online resource Emorysequences.csv” for the foraging sequences of the 

eight most active bees from the Emory dataset. 

SENSITIVITY OF DETERMINISM TO MINIMUM TRAPLINE LENGTH 

 In the determinism metric (DET), the parameter ‘minl’ sets the minimum number 

of consecutive sequence repeats required to be considered part of a trapline. We found 

that as the minimum length required increased, determinism decreased (Table 2).  
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TABLES 

 

 Estimate Std. Error t value Pr(>|t|) 

Intercept -0.5477741 0.08281 -6.615 3.82E-11 

abundance -0.0102044 0.0044303 -2.303 0.021271 

sight 0.0780247 0.0131812 5.919 3.29E-09 

movement type (CRW) -0.4763253 0.1232837 -3.864 0.000112 

abundance:sight -0.0059355 0.0007609 -7.8 6.51E-15 

abundance:movement type (CRW) 0.0173798 0.0066384 2.618 0.00885 

sight:movement type (CRW) 0.0407735 0.0192464 2.119 0.034146 

abundance:sight:movement type 

(CRW) 

-0.0015469 0.0011167 -1.385 0.166005 

 

Table 1. An analysis of the effect of null model parameters on the predictability of 

sequences (DET) using a generalized linear model with quasi-binomial errors. Movement 

type was treated as a factor. All variables and two-way interactions were statistically 

significant. The three-way interaction, however, was not statistically significant 
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 Determinism 

Source minl = 3 minl = 4 minl = 5 minl = 6 

Lihoreau inexperienced 0.314028 0.131274 0.033462 0.020592 

Lihoreau inexperienced 0.446429 0.247449 0.118622 0.090561 

Lihoreau inexperienced 0.577922 0.353247 0.224675 0.090909 

Lihoreau inexperienced 0.355696 0.153165 0.046835 0.011392 

Lihoreau inexperienced 0.4083 0.186078 0.064257 0.028112 

Lihoreau inexperienced 0.37766 0.168883 0.05984 0.046543 

Lihoreau inexperienced 0.353508 0.184319 0.081155 0.028886 

Lihoreau inexperienced 0.392265 0.167127 0.085635 0.017956 

Lihoreau experienced 0.91199 0.659439 0.659439 0.646684 

Lihoreau experienced 0.895086 0.742364 0.60425 0.557769 

Lihoreau experienced 0.7023 0.441137 0.359946 0.311231 

Lihoreau experienced 0.839286 0.728316 0.598214 0.553571 

Lihoreau experienced 0.493911 0.313938 0.216509 0.154263 

Lihoreau experienced 0.673582 0.401107 0.280775 0.239281 

Lihoreau experienced 0.732713 0.452128 0.324468 0.301862 

Lihoreau experienced 0.550532 0.375 0.111702 0.111702 

Emory 0 0 0 0 

Emory 0.014035 0 0 0 

Emory 0.065574 0 0 0 

Emory 0.035714 0 0 0 

Emory 0.031949 0.01278 0 0 

Emory 0.051852 0 0 0 

Emory 0.026087 0 0 0 

Emory 0.065574 0.016393 0 0 

 

Table 2 Determinism of individual foraging sequences across different minimum trapline 

lengths. 
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Table of determinism for individual foraging sequences and null model output 

Model Source Individual 
Number 

Determinism Total visits 

sample randomization Lihoreau inexperienced 1 0.322277221 100 

sample randomization Lihoreau inexperienced 2 0.216507082 100 

sample randomization Lihoreau inexperienced 3 0.258898825 100 

sample randomization Lihoreau inexperienced 4 0.218344696 100 

sample randomization Lihoreau inexperienced 5 0.203913063 100 

sample randomization Lihoreau inexperienced 6 0.212007328 100 

sample randomization Lihoreau inexperienced 7 0.187288213 100 

sample randomization Lihoreau inexperienced 8 0.208517162 100 

sample randomization Lihoreau experienced 9 0.322348399 100 

sample randomization Lihoreau experienced 10 0.301463737 100 

sample randomization Lihoreau experienced 11 0.231262352 100 

sample randomization Lihoreau experienced 12 0.230043487 100 

sample randomization Lihoreau experienced 13 0.188573482 100 

sample randomization Lihoreau experienced 14 0.194406322 100 

sample randomization Lihoreau experienced 15 0.19711342 100 

sample randomization Lihoreau experienced 16 0.210526316 100 

observed Lihoreau inexperienced 1 0.131274131 100 

observed Lihoreau inexperienced 2 0.24744898 100 

observed Lihoreau inexperienced 3 0.353246753 100 

observed Lihoreau inexperienced 4 0.153164557 100 

observed Lihoreau inexperienced 5 0.186077644 100 

observed Lihoreau inexperienced 6 0.168882979 100 

observed Lihoreau inexperienced 7 0.18431912 100 

observed Lihoreau inexperienced 8 0.167127072 100 

observed Lihoreau experienced 9 0.659438776 100 

observed Lihoreau experienced 10 0.742363878 100 

observed Lihoreau experienced 11 0.441136671 100 

observed Lihoreau experienced 12 0.728316327 100 

observed Lihoreau experienced 13 0.313937754 100 

observed Lihoreau experienced 14 0.401106501 100 

observed Lihoreau experienced 15 0.45212766 100 

observed Lihoreau experienced 16 0.375 100 

random Lihoreau inexperienced 1 0.071343734 100 

random Lihoreau inexperienced 2 0.075981549 100 

random Lihoreau inexperienced 3 0.07064459 100 

random Lihoreau inexperienced 4 0.072557749 100 
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random Lihoreau inexperienced 5 0.075473029 100 

random Lihoreau inexperienced 6 0.073487233 100 

random Lihoreau inexperienced 7 0.072929396 100 

random Lihoreau inexperienced 8 0.074040127 100 

random Lihoreau experienced 9 0.074967158 100 

random Lihoreau experienced 10 0.072117947 100 

random Lihoreau experienced 11 0.071914998 100 

random Lihoreau experienced 12 0.074486781 100 

random Lihoreau experienced 13 0.072110401 100 

random Lihoreau experienced 14 0.070984922 100 

random Lihoreau experienced 15 0.072490706 100 

random Lihoreau experienced 16 0.07493502 100 

netlogo Lihoreau inexperienced 1 0.156968877 100 

netlogo Lihoreau inexperienced 2 0.149282976 100 

netlogo Lihoreau inexperienced 3 0.15093688 100 

netlogo Lihoreau inexperienced 4 0.151821527 100 

netlogo Lihoreau inexperienced 5 0.151634916 100 

netlogo Lihoreau inexperienced 6 0.144343303 100 

netlogo Lihoreau inexperienced 7 0.15156038 100 

netlogo Lihoreau inexperienced 8 0.156291391 100 

netlogo Lihoreau experienced 9 0.156968877 100 

netlogo Lihoreau experienced 10 0.149282976 100 

netlogo Lihoreau experienced 11 0.15093688 100 

netlogo Lihoreau experienced 12 0.151821527 100 

netlogo Lihoreau experienced 13 0.151634916 100 

netlogo Lihoreau experienced 14 0.144343303 100 

netlogo Lihoreau experienced 15 0.15156038 100 

netlogo Lihoreau experienced 16 0.156291391 100 

sample randomization Emory 17 0.303854521 95 

sample randomization Emory 18 0.199109491 109 

sample randomization Emory 19 0.174757263 100 

sample randomization Emory 20 0.209172686 119 

sample randomization Emory 21 0.181631572 95 

sample randomization Emory 22 0.146362892 111 

sample randomization Emory 23 0.212266686 112 

sample randomization Emory 24 0.21523394 97 

observed Emory 17 0 95 

observed Emory 18 0 109 

observed Emory 19 0 100 

observed Emory 20 0 119 

observed Emory 21 0.012779553 95 
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observed Emory 22 0 111 

observed Emory 23 0 112 

observed Emory 24 0.016393443 97 

random Emory 17 0.000157046 95 

random Emory 18 0.000595637 109 

random Emory 19 0.001664018 100 

random Emory 20 0.000313198 119 

random Emory 21 0.0012197 95 

random Emory 22 0.000614494 111 

random Emory 23 0.000255986 112 

random Emory 24 0.000604202 97 

netlogo Emory 17 0.094664168 95 

netlogo Emory 18 0.096223216 109 

netlogo Emory 19 0.096334602 100 

netlogo Emory 20 0.096230438 119 

netlogo Emory 21 0.095470299 95 

netlogo Emory 22 0.097676433 111 

netlogo Emory 23 0.095420956 112 

netlogo Emory 24 0.093865991 97 

 

Table 3. Determinism values of observed foraging sequences and model outcomes for 

individual bees. 
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FIGURES 

 

Figure 1. Degree of traplining by resource abundance and sight distance. There is a 

statistically significant interaction between resource abundance and detection 

distance. (Error bars are 95% quasi-binomial CI) 
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Figure 2. Frequency of sequence repeats (Determinism) by resource abundance and 

movement type with: (A) high sight distance, (B) medium sight distance, and (C) low 

sight distance. (Error bars are 95% quasi-binomial CI) 
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Figure 3. The level of sequence predictability when (A) foragers choose resources at 

random versus (B) when foragers choose resources according to a probability inversely 

related to resource distance. We analyzed the interaction of resource density with three 

sight distance levels: low (red lines), medium (green lines), and high (blue lines). 

 

 


