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Abstract

Beyond Audio: Advancing Speaker Diarization with Text-based Methodologies and
Comprehensive Evaluation

By Peilin Wu

This thesis introduces a novel approach to Speaker Diarization (SD), diverging from the
traditional reliance on audio signals by exclusively leveraging text-based methodologies.
It includes comprehensive evaluation methods tailored to textual data. By employing
the T5-3B model within both the Single Prediction Model (SPM) and Multiple
Prediction Model (MPM) frameworks, and incorporating data processing pipelines
designed to enhance the model’s performance on transcripts generated by Automatic
Speech Recognition (ASR) models, this study assesses the feasibility and effectiveness
of text-based SD in distinguishing ”who speaks what” across various two-speaker
dialogues via sentence-level Speaker Change Detection and aggregation mechanism.
Furthermore, this research proposes and validates two new evaluation metrics: the
Text-based Diarization Error Rate (TDER) and Diarization F1 (DF1). These metrics
are specifically tailored to address the unique challenges of text-based SD and the
joint assessment of ASR and SD errors. Alongside these metrics, we also propose a
sequence alignment algorithm designed to align different transcripts effectively and
efficiently, particularly in situations with overlapping speech.
Experiments conducted on a curated dataset, which encompasses 7 open-domain
conversational contexts, demonstrate that text-based methods can perform com-
parably to—and, notably, for short conversations under 15 minutes, even outper-
form—traditional audio-based diarization systems by 2.5% to 10%. The newly pro-
posed text-based metrics, tested on the CallHome dataset through both manual
inspection and error type analysis, show an enhanced ability to accurately assess
the performance of text-based SD and joint ASR and SD systems in providing infor-
mative transcription results. Moreover, the proposed multiple sequence alignment
algorithm achieves better alignment results (0.99 accuracy) compared to previous
dynamic programming-based methods (0.92 accuracy). These findings not only chal-
lenge existing paradigms within the field of SD but also pave the way for further
advancements in conversational analysis and AI, highlighting the untapped potential
of textual information in SD tasks.
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Chapter 1

Introduction

Speaker Diarization (SD), a crucial task in audio processing, is aimed at identifying

”who speaks when” by segmenting and attributing portions of audio to individual

speakers [33]. This capability is important in a variety of applications, from transcribing

meeting minutes to generating accurate medical records, facilitating easier indexing,

search, and analysis of audio recordings. As conversational AI systems evolve, the

integration of SD in joint Automatic Speech Recognition (ASR) and SD tasks becomes

increasingly significant. This integration focuses on the ”who speaks what” problem,

which is essential for preparing and evaluating training data for conversational AI

systems. Given the rapid consumption of publicly available data by large language

models (LLMs), there’s an urgent need for innovative methods to generate and refine

conversational datasets.

Historically, SD has been approached through two main methodologies: a modular

approach, which involves segmentation followed by clustering of audio segments

based on speaker characteristics, and End-to-End Neural Diarization (EEND), which

leverages deep learning to perform diarization in a supervised and more holistic way.

For the modular approach, the audio is first cut into short segments either according

to voice activity [19] or change of speaker [4, 38]. Then, speaker-related features are

1
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extracted from each segment [45, 9, 22], and grouped together via various clustering

algorithms [48, 37]. For the end-to-end approach, the clustering and potentially

feature extraction stage is replaced with an one-stage supervised neural network-based

model [34, 47]. Despite their advances, both approaches primarily rely on audio

features, which introduce several challenges. For instance, different speakers with

similar voice characteristics can confuse SD systems, and the quality of the recording

can significantly impact the performance of diarization models. Moreover, from the

perspective of evaluation, traditional metrics for SD, such as the Diarization Error

Rate (DER) [11] and the Jaccard Error Rate (JER) [42], are not well-suited for

text-based SD, failing to account for the discrete and structured nature of textual

data.

Recent research has explored the use of semantic features to enhance SD perfor-

mance [32, 35]. By incorporating contextual information from speech, these attempts

aim to overcome the limitations posed by purely audio-based features, including direct

usage of text-based features for clustering or classification [13], and indirect usage

that leverages language model as a error correction mechanism [36, 49]. Evaluation

metrics have also evolved, with the introduction of the Word Diarization Error Rate

(WDER) [32, 43] to assess text-based SD performance. However, existing approaches

to incorporating semantic features have faced significant limitations. The direct usage

of text features has not leveraged the latest advancements in language models, thereby

failing to utilize the full potential of semantic features for SD. The indirect approaches

did use state-of-the-art language models, but merely as a post-processing step, without

directly integrating semantic information into the diarization process. Furthermore,

there has been a lack of exploration into using text as the sole input for SD to discover

the limit of text-based approach. An all-in-one metric for comprehensive evaluation is

also needed since the WDER lacks full coverage of types of text-based SD and joint

ASR and SD errors.



3

To address the aforementioned problems and challenges, this thesis proposes a

novel text-based SD approach using only the dialogue transcript as input. Our

approach is compared with multiple recent audio-only SD models on a curated

dataset, demonstrating superior performance in short conversations and comparable

effectiveness in longer dialogues. Additionally, for comprehensive evaluation, this

thesis introduce the Text-based Diarization Error Rate (TDER) and Diarization F1

(DF1) as new evaluation metrics tailored for text-based SD tasks. These metrics are

complemented by the development of align4d, a tool for multi-sequence alignment on

conversational data, facilitating accurate and efficient metric calculation.

The main contribution in this thesis includes:

1. A data processing pipeline specifically designed for SD based on ASR results,

providing a practical method for generating and refining datasets suitable for

text-based diarization analysis.

2. Text-based SD approach tailored for two-speaker dialogues, which leverages

dialogue transcripts as the sole input, with competitive performance compared

to other audio-based models and comprehensive error analysis.

3. The establishment of TDER and DF1 metrics for comprehensive evaluation of

text-based SD and joint ASR and SD tasks, accompanied by development and

implementation of a multiple sequence alignment algorithm tool.

The remaining part of this thesis is organized as follows: Chapter 2 provides an

literature review on recent SD systems and evaluation metrics. Chapter 3 introduces

the text-based approach for SD based on sentence-level Speaker Change Detection

(SCD) and the data processing pipeline. Chapter 4 introduces the TDER and DF1

metrics, the complementary multiple sequence alignment algorithm, and visualization

tool. Chapter 5 presents the experiment on text-based SD compared with recent
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audio-based model as well as the analysis of the result. Finally, Chapter 6 presents the

experiment and analysis on TDER and DF1 metrics with multiple sequence alignment.

1.1 Thesis and Research Questions

The thesis for this work is: We can achieve Speaker Change Detection and Diarization

with textual data as the only input with a Large Language Model (LLM) based

approach and correctly demonstrate its performance on text.

To achieve this thesis, here are two research questions that are need to be answered:

1. Can we train a model that detects the change of speakers with LLM-based

model?

2. Can we correctly and accurately show the performance of the text-based model

and compare it with audio-based models?



Chapter 2

Background

This chapter primarily introduces recent audio-based SD systems, two approaches

for utilizing text-based features to enhance SD results, text-based or multimodal

SD systems, speaker change detection, and the development of evaluation metrics.

In addition to systems for speech processing and evaluation, sequence alignment

algorithms, which are necessary for data processing and evaluation as introduced in

Section 3.4, are also discussed.

2.1 Audio-based Systems

The modular approach has been the first and mainstream way of tackling SD since

this task was established. For segmentation, the first stage of modular SD, Voice

Activity Detection (VAD) modules like MarbleNet [19] are often used to find the silent

points for segmenting within the whole audio. To avoid producing segments that are

too short for subsequent processing, Speaker Change Detection (SCD) models are also

sometimes used for more precise segmentation, as introduced in Section 2.3.

After segmentation, each segment of audio is required to be transformed into a

vector containing speech or speaker-related information. For general speech information

extraction, the relationship between frequency and power of sound waves is considered.

5
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Based on that, to focus specially on speaker-related features, such relationship and

relative conversion needs to be suitable for human hearing ability, known as Mel

Frequency Cepstral Coefficient (MFCC) [1]. Besides MFCC, machine learning-based

methods such as x-vector [45], d-vector [46], ECAPA-TDNN [9], and TitaNet [22], are

widely used for more robust and efficient speaker-related feature extraction. Recently,

with the development of Transformer models, particularly word embedding models

like BERT, similar ideas have been adopted to the speech processing, resulting in

Transformer-based feature extraction models like Wav2Vec2 [2] and HuBERT [17].

As the final stage, clustering groups the extracted feature vectors according to

different speakers. At this stage, multiple clustering algorithms can be used including

K-Means [29] and Gaussian Mixture Model [41]. To address the problem of clustering

audio with an unknown number of speakers, Spectral Clustering [48] and Agglomerative

Hierarchical Clustering [37] are more frequently used than other algorithms.

In addition to clustering, supervised models have also been developed as alternatives,

taking advantage of the newly developed large neural networks. For such a classification

model, it is important to train the model in a permutation-invariant manner, meaning

that changing the sequence of output speaker labels should not alter the final diarization

result as long as the grouping of segments remains unchanged. Typical permutation-

invariance is achieved by arranging speaker labels according to their sequence of

occurrence, referred to as Discriminative Neural Clustering (DNC) [27], or by training

with a specially designed permutation-invariant objective function, which is often

used in End-to-end Neural Diarization (EEND) [16, 25]. With the development of

end-to-end systems and neural networks, hybrid systems that combine unsupervised

and supervised models, such as the Multi-scale Diarization Decoder (MSDD) [34] or

the Two-stage OverLap-aware Diarization framework (TOLD) [47], have also been

proposed, achieving new state-of-the-art results.
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2.2 Utilization of Text-based Features

Text-based features, mainly word choice, semantic features, and logistical cues among

sentences, can be used as supplementary or even the sole features for SD. One way

to utilize text features is by directly incorporating them into the SD process. In

this way, text features helped normal SD system in better identifying speaker role

information or characteristics. This is extremely useful in task-oriented or domain-

specific conversations like Air Traffic Control (ATC) communications and psychological

treatments. Specifically, the ATC scenario was tested with BERTraffic [51], wherein

text-based Speaker Role Detection (SRD) and SD were treated as a token-level

segmentation and classification task, performed by a finetuned BERT-base-uncased

model. In the medical domain, SRD was achieved either through a pretrained n-gram

language model as a feature extractor for clustering [13] or via a finetuned BERT-

base-uncased model to impose constraints on clustering [12]. This approach, involving

the direct use of text-based features, though theoretically promising and successful in

some fields of study, still requires much more experimentation across a wider range of

conversational topics and with newly developed language models.

With the development of language models and their applications in various Natural

Language Understanding tasks, an approach has emerged that identifies and corrects

unreasonable points in the diarization results from audio-based systems. This is

mainly aimed at fixing issues that arise during the process of aligning audio-based

SD results to transcripts, or similar issues occurring during segmentation, where the

beginning or end of sentences is aligned with incorrect speakers. Various language

models, especially Transformer-based models such as RoBERTa-base [36], a GPT-like

structured model with 2B parameters [35], and PaLM2 [49], have been tested with this

approach, achieving significant improvements over the audio-based systems to which

they were compared. Although this approach does utilize the latest advancements

in language models and a larger, more diverse range of data, the participation of
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text-based features is not as pronounced as in the direct usage approach, thus not

fully unleashing the potential of language models in utilizing text-based features.

2.3 Speaker Change Detection

Based on the previous sections, it is clear that segmentation plays an important role

in both audio-only and multimodal SD systems, positioning the Speaker Change

Detection (SCD) task as vital for SD. Furthermore, SCD itself is also beneficial for

understanding conversations and can be considered an SD system if the conversation

consists of only two speakers. Thus, it is necessary to review the past works on SCD,

especially text-based approaches.

Similar to SD, SCD has been dominated by audio-based approaches due to the

clear advantages of audio features, with the exception of Li et al., who leveraged text

information along with uniform segmentation and GMM clustering [28]. Text-based

SCD began with Meng et al., who introduced a sentence-level attention layer and a

hierarchical RNN network [30]. After that, although audio-based systems continued to

be the mainstream solution, text-dependent approaches began to draw attention with

the development of both sequence-to-sequence neural networks and word embedding

models. A multimodal model that adopted an encoder-decoder architecture with early

fusion of text and audio embeddings was also proposed, achieving new state-of-the-art

results [50]. However, fully text-based SCD approaches, such as those by Meng et al.,

still lack sufficient study.

2.4 Metrics

For the evaluation of SD, the Diarization Error Rate (DER) [11] is the standard metric

reported in previous studies. It evaluates SD system performance by considering the

fraction of time duration of incorrect speaker labels (the lower the DER score, the
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better the performance). To better understand the specific types of errors in SD

systems, DER can be broken down into four components: (a) Speaker Error Espk: the

fraction of time during which an incorrect speaker label is provided, compared to the

ground truth label. (b) False Alarm Efa: fraction of duration that a speaker label

is given when there is no speech at all. (c) Missed Speech Ems: fraction of duration

that no speaker label is given when there is speech. (d) Overlap Eoverlap: the fraction

of time during which multiple speakers appear in the same segment and are not all

correctly identified. The total DER score can be computed as:

DER = Espk + Efa + Ems + Eoverlap (2.1)

Note that, by convention, Eoverlap is often counted as Ems or directly ignored, as

correctly identifying overlap is generally considered a challenging task for SD systems.

These four separate parts can also be computed together by the following equation:

DER =

∑S
s=1 dur(s) · [max(Nref (s), Nhypo(s))−Ncorrect(s)]∑S

s=1 dur(s)Nref (s)
(2.2)

where S represents the total number of segments included in the calculation, dur(s)

denotes the time duration of a single segment s, Nref(s) is the number of speakers

in the ground truth transcript for the segment s, Nhypo(s) represents the number of

speakers predicted by the SD system for the segment s, and Ncorrect(s) is the number

of speakers accurately predicted by the SD system for the segment s.

To evaluate SD on text transcripts, the Word Diarization Error Rate (WDER)

[32, 43] was proposed to measure inaccuracies of joint ASR and SD systems at the

word level. The WDER can be calculated as follows:

WDER =
SIS + CIS

S + C
(2.3)
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where S and C are the number of ASR substitutions and correct words, SIS and CIS

are the portions with incorrect speaker labels for S and C. It is important to note,

as suggested by El Shafey et al. [43], that the standard ASR-specific metric, the

Word Error Rate (WER) [21], is also required when evaluating WDER, since WDER

does not account for insertion and deletion errors from ASR systems. The WER is

calculated as:

WER =
S +D + I

N
(2.4)

where S represents the number of word substitutions, D represents the number of

deletions, I represents the number of insertions, and N represents the number of total

words in reference (ground truth) transcript.

2.5 Sequence Alignment Algorithm

The sequence alignment problem is a common task in the realm of bioinformatics,

where sequences of DNA, RNA, and amino acids must be aligned to determine their

similarities in order to analyze their functional or evolutionary relationships. In speech

and conversational data processing, due to differences between reference (ground truth)

and hypothesis (model-generated) data, token-level alignment is also necessary for

similarity detection, label matching, and semantic analysis. The analogous needs for

alignment tasks in bioinformatics and computer science make it useful to review and

examine the algorithms used in both fields.

In the field of bioinformatics, sequence alignment is often performed using dynamic

programming-based algorithms with heuristics. Needleman-Wunsch algorithm [31]

and Smith-Waterman algorithm [44] are two methods often used in alignment based

on dynamic programming. Specifically, the Needleman-Wunsch algorithm adopts

a method similar to the dynamic programming solution for the Longest Common

Subsequence (LCS) problem. A two-dimensional table is first populated based on the
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best-aligned solution for each sequence position, using a predefined scoring function as

heuristics. Then, a backtracking algorithm is employed to follow the highest-scoring

path and reconstruct the optimal global alignment. Compared to the Needleman-

Wunsch algorithm, the Smith-Waterman algorithm changes the scoring rules by setting

the lower limit of any cell in the scoring table to 0. In this way, Smith-Waterman

shifted the focus from global alignment to local alignment.

Beyond bioinformatics, algorithms related to sequence alignment are also explored

within the field of Natural Language Processing, particularly in monolingual word

alignment. Rather than focusing solely on the actual content of the sentence, this task

emphasizes aligning words with high semantic similarities. In contrast to dynamic

programming, neural network-based models are used to gain a better understanding

of word-level semantics. Although only a few studies have been conducted on this

specific task, Jiang et al. [20] and Lan et al. [24] proposed hybrid neural network

and Conditional Random Field (CRF) models to address it. They formulated word

alignment as token classification tasks, achieving state-of-the-art results and providing

corresponding datasets for training and evaluation.



Chapter 3

Text-based Speaker Diarization

In this chapter, the model and data processing pipeline for text-based SD is introduced.

Specifically, two models, the Single Prediction Model (SPM) in Section 3.2 and Multiple

Prediction Model (MPM) in Section 3.3, as well as the data processing pipeline for

preparing specialized data for doing SD on ASR-generated transcript in Section 3.4

are discussed.

3.1 Task Overview

This thesis focuses on the task of text-based SD for two-speaker conversations specifi-

cally. These conversations are not only prevalent but also carry practical importance,

serving as a basis to showcase the effectiveness of the text-based SD approach. Ad-

ditionally, the strategies developed for handling conversations between two speakers

can be readily adapted for scenarios involving multiple speakers, requiring only minor

modifications. This adaptability is further elaborated in the Appendix.

To solve for two-speaker conversation SD, this thesis employ a strategy that

centers on Speaker Change Detection (SCD) at the sentence level. This sentence-level

approach is chosen over a word-level one, unlike most of the previous works introduced

in Chapter 2, due to its ability to capture richer contextual information, which

12
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significantly enhances the accuracy of SD. Moreover, this finer level of granularity

effectively mitigates the issue of label imbalance often encountered in word-level

diarization, where most labels will be ’unchanged,’ as a single sentence typically

contains multiple words. This approach provides a more evenly distributed dataset

for both training and evaluating the model.

3.2 Single Prediction Model

In order to predict the speaker changes, the model needs to take the sentences before

and after the point of prediction as the input. The model can then be trained with a

binary classification objective about ”change” or ”unchange”. In this way, the task can

be formally defined as: Consider a sequence of sentences within a dialogue, denoted as

S = {s1, s2, ..., sn}, comprising n individual sentences. The goal is to assign a binary

label yi to every adjacent pair of sentences (si, si+1) within this sequence. Here, yi = 1

signifies that there is a change in the speaker from sentence si to sentence si+1, whereas

yi = 0 indicates that the speaker remains the same. Consequently, the outcome of

this prediction task is represented as a sequence of binary labels R = {y1, y2, ..., yn−1},

corresponding to speaker changes across the sequence. This sequence of predictions,

R, facilitates the reconstruction of the dialogue’s speaker structure.

To achieve such a task, the model should be able to take a sequence of word or

sentence embeddings as input and provide a binary output as a prediction. Arbitrary

number of sentences can be used as the input as long as the point of prediction is

within the sentences and labeled with special token. Formally, if the point of change

is between the pair of sentences (si, si+1), the input has h sentences preceding and k

sentences following the sentence si+1 to create a context set Ci. This set for the i-th

prediction comprises {si−h+1, si−h+2, ..., si, si+1, ..., si+k+1}. The binary prediction yi

for each sentence pair is generated through the function f , utilizing the context Ci and
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model parameters θ, where f can be any suitable model designed to process sequential

data and output a binary decision. The training objective is to reduce the binary

cross-entropy loss L across all instances of yi, optimizing the model’s performance in

accurately predicting speaker changes.

L(θ) = − 1

n− 1

n−1∑
i=1

[yi log(f(Ci, θ)) + (1− yi) log(1− f(Ci, θ))] (3.1)

In real time prediction, the SPM acts like a sliding window that sweeps through

the entire transcript from begin to end, with the first sentence set to si and shift one

sentence forward every time until si+1 becomes the last sentence. At the beginning

and the end of conversation, the number of historical and future sentences may not

be enough to meet the parameter for h and k, which is acceptable in order to make

sure each point of prediction is covered. To deal with insufficient sentences within

the segment of {si−h+1, si−h+2, ..., si} and {si+2, ..., si+k+1}, the model must be trained

with data under these situations.RoBERTa Decoding

• {s1, s2, s3, s4, s5, s6}
• {s1, s2, s3, s4, s5, s6}
• {s1, s2, s3, s4, s5, s6}
• {s1, s2, s3, s4, s5, s6}
• {s1, s2, s3, s4, s5, s6}

• SCD prediction: 1
• SCD prediction: 1, 0
• SCD prediction: 1, 0, 1
• SCD prediction: 1, 0, 1, 0
• SCD prediction: 1, 0, 1, 0, 1

• history sentence
• current sentence
• future sentence

Figure 3.1: Demonstration of SPM prediction on a conversation with 6 sentences. The
parameters in this demonstration are set to h = 4 and k = 1.
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3.3 Multiple Prediction Model

Using sentence-level SCD for two-speaker SD requires significant amount of robustness

for each prediction of speaker change. One incorrect prediction of changing speakers

may cause the entire trailing predictions of speakers to be flipped.

• SPM SCD prediction: 1, 0, 1, 0, 1

• Correct result: 1, 0, 1, 1, 1

• Correct speaker label: A, B, B, A, B, A

• Predicted speaker label: A, B, B, A, A, B

While straightforward, the SPM approach is error-prone due to its reliance on a

limited contextual window with only one prediction at each point. Even if only one

speaker change is indirectly predicted, the whole sub-sequence of speaker labels after

the incorrect change prediction is completely incorrect. To enhance the robustness of

SCD, leveraging the flexible output format of sequence-to-sequence models, this thesis

also introduces the Multiple Prediction Model (MPM).

Compared with SPM, MPM also makes predictions on different subsequence of

input, but produces multiple predictions of speaker change for every point of change.

This is achieved by training the model to produce predictions between every adjacent

sentence pair. For the whole conversation, a sliding window technique that shifts

through the sequence of sentences with certain amount of overlap produces different

subsequences from begin to end. Finally, all predictions are aggregated together via

specific aggregation mechanism.

ConsiderW = {w1, w2, ..., wm} to represent a series of segments, with each segment

wj containing a subset of sentences from the sequence S, and m indicating the total

count of such segments spanning the entire conversation. These segments are designed

to partially overlap with both their preceding and succeeding segments. The aim is to
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generate a series of binary predictions yi for each segment wj, where every prediction

within yi indicates a potential change in speaker occurring between two successive

sentences within the segment wj . The prediction associated with a specific segment wj

is computed as yj = g(wj, ϕ), where the function g operates similarly to f , designed

for processing sequences to yield binary outcomes, and ϕ is the parameters tailored

for this multiple prediction scenario. The training process focuses on minimizing

an adjusted loss function L′, which accommodates the nuances of making multiple

predictions within each segment.

L′(ϕ) = − 1∑m
j=1 |wj| − 1

m∑
j=1

|wj |−1∑
i=1

[yji log(g(wj, ϕ)i)+(1−yji) log(1−g(wj, ϕ)i)] (3.2)

where each yji is the i-th binary label within the set yj , and g(wj, ϕ)i denotes the i-th

binary label produced by the function g for the segment wj.

Through producing predictions for every adjacent sentence pair in each single

subsequence and allow overlapping among different subsequences, there are multiple

predictions for the same point of change that is generated with different input context.

An aggregation strategy can be used to utilize these predictions to enhance the

robustness of final predictions of speaker change. For any prospective speaker change

point p, the final outcome Yp can be deduced by using predictions from all input

containing point p as follows:

Yp = Aggregate({g(wj, ϕ)p|p ∈ wj}) (3.3)

Under most of the circumstances, the majority vote can be used as an effective strategy

to produce robust results. For more complex situations, such vote can also be enhanced

with weighted average, using the confidence score from the last hidden layer or other

equivalent scores.



17T5 Multiple Prediction Decoding

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

• {s1, s2, s3, s4, s5, s6}

Aggregation:

• SCD: 1

• SCD: 1, 1

• SCD: 1, 0, 1

• SCD: X, 0, 1, 1

• SCD: X, X, 1, 1, 1

• SCD: X, X, X, 1, 1

• SCD: X, X, X, X, 0

• SCD: 1, 0, 1, 1, 1

• Window of prediction

Figure 3.2: Demonstration of MPM prediction on a conversation with 6 sentences.
The maximum window size is 4 sentences, with 1 sentence shift each time. In this
demonstration, the majority voting is used for aggregation.

• MPM SCD prediction: 1, 0, 1, 1, 1

• Correct result: 1, 0, 1, 1, 1

• Correct speaker label: A, B, B, A, B, A

• Predicted speaker label: A, B, B, A, B, A

In real world predictions, similar to SPM, MPM also works in a sliding window way.

To maximize the information utilized in each input and aggregation mechanism, both

the length of each window and the overlap between windows should be maximized.

The begin and end windows are also required to make predictions under conditions

that number of sentences is lower than the maximum as SPM and need to be trained

specifically. In Figure 3.2, the aggregation mechanism (majority voting) successfully

corrects the errors at second and fourth position of change predictions.

3.4 Data Processing

To prepare data well-suited for the model, it is vital to focus on the primary situations

in which the model will operate. As stated in Chapter 1 about the increasing need
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for joint ASR and SD tasks, it is most realistic to train the model on datasets that

contains characteristics of ASR-generated scripts.

To mimic such environment, the transcripts used for training and evaluation

should also come from ASR systems, but with ground truth labels for each word in the

generated transcript so that text-based evaluation can be done. This can be achieved

by aligning the ASR-generated transcript with the reference transcript, which has

ground truth speaker labels, thereby creating optimal one-to-one mappings for each

word in the transcript. By doing so, the ground truth speaker labels are mapped

to the ASR-generated transcript, creating the new training and evaluation data for

text-based model. Such mapping can be done with sequence alignment algorithm like

Needleman-Wunsch algorithm or Smith-Waterman algorithm introduced in Section

2.5.

Figure 3.3: Data processing pipeline utilizing ground truth transcripts and ASR-
generated hypothesis transcript to obtain training and evaluation data with ASR
discrepancies.

However, considering the potential errors brought by ASR in overlapping speech

segments, where words spoken by different speakers might blend together, neither

of the aforementioned algorithm can accommodate such condition. To achieve cross

alignment while also considering other common types of ASR errors (i.e. insertion,

deletion, and substitution), a novel dynamic programming-based multiple sequence

alignment algorithm is used. The detail about this algorithm is introduced in Section
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4.2.

Other than using alignment algorithms that can handle ASR errors, the ASR

system itself is also required to be the state-of-the-art to minimize the amount of

errors. This usually involves systems with sequence-to-sequence models, such as

OpenAI Whisper [39] or Meta SeamlessM4T [8], which are prone to hallucination with

unclear input audio. Therefore, detection and correction mechanisms are necessary as

a post-processing stage for ASR systems.

Besides audio processing, the reference (ground truth) transcript may also need

adjustments. For old datasets with non-standardized coding of files, the reference tran-

script itself might lose its punctuation, making evaluation and alignment challenging.

To solve this, all transcripts that are missing the whole or partial of the punctuation

are fixed with LLM, as LLM are trained on massive datasets with correct grammar

and are good at detecting grammatical errors with producing relative fixes.

Finally, after alignment with punctuation-fixed reference transcripts and ASR-

generated non-hallucinated hypothesis transcripts, the aligned transcripts are seg-

mented on the sentence-level to provide enough semantic features for the model.

Through this process, the transcripts with ASR discrepancies and ground truth

speaker labels are produced for both training and evaluation.



Chapter 4

Text-based Speaker Diarization

Evaluation

This Chapter introduces the development of Text-based Diarization Error Rate (TDER)

and Diarization F1 (DF1) as two comprehensive metrics for evaluating text-based

SD as well as joint ASR and SD tasks. The Multiple Sequence Alignment (MSA)

algorithm that is required for evaluation and calculating metrics are also introduced.

The main content of this section has been published at [14]. The text-based metrics

and MSA algorithm were developed in collaboration with Chen Gong.

4.1 Text-based Metrics

The audio-based metrics introduced in Section 2.4 exhibit the following drawbacks

when evaluating text-based SD and joint ASR and SD tasks:

1. Audio-based metrics like DER are not designed to be compatible with textual

data since the basis of audio data is continuous in terms of time, whereas the

textual data is discrete with the minimal unit of word, token, or character.

2. Current text-based metrics like WER and WDER do not account for all types

20
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of possible errors that may occur in text-based SD or joint ASR and SD tasks.

Specifically, WER as a metric for evaluating ASR systems did not contain terms

for SD errors; WDER, though designed to evaluate SD on textual data, did not

consider the insertion and deletion errors from ASR systems, which may also

affect the SD performance.

Based on these considerations, we propose two metrics designed to comprehensively

evaluate text-based SD and joint ASR and SD tasks, aiming to address the identified

issues.

4.1.1 Text-based Diarization Error Rate

To evaluate the SD systems on transcripts while maintaining a similar behavior as the

previous wide-adopted DER metric, and for convenient comparison between audio-

based SD systems and text-based SD systems on the same transcript, the Text-based

Diarization Error Rate (TDER) is proposed as an adaptation of the original DER to

textual data. This adaptation is achieved by changing the duration’s basis from time

to the portion of the transcript, with the word serving as the unit. The TDER can be

expressed as:

TDER =

∑U
u=1 len(u) · [max(Nref (u), Nhypo(u))−Ncorrect(u)]∑U

u=1 len(u)Nref (u)
(4.1)

where U is the transcript consisting of a series of utterance u, len(u) is the number of

words in utterance u, Nref (u) is the number of speakers in the ground truth transcript

for the utterance u, Nhypo(u) is the number of speakers predicted by the SD system for

the utterance u, and Ncorrect(u) is the number of speakers predicted correctly by the

SD system for the utterance u. Since the change only affects the method of calculating

the fraction and duration, TDER can be divided into four components (Espk, Efa, Ems,
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Eoverlap) and calculated in the same manner as Equation 2.1:

TDER = Espk + Efa + Ems + Eoverlap (4.2)

with the fraction of duration calculated as the fraction of words.

Compare to the original DER, the TDER remains its behavior because of its

unchanged way of calculation, as the duration in terms of words is analogous to

duration in terms of time. Therefore, TDER can be directly used for audio-based

SD systems with simple mapping performed with timestamp provided by the ASR

system or the ground truth transcript for performance comparison, which provides

convenience for comparing text-based approaches to audio-based approaches. It is

also worth noting that TDER can be seen as a generalization of WDER as WDER

only considers errors from incorrect speakers, meaning that

WDER = Espk (4.3)

This also means that TDER and WDER can be used interchangeably if every word in

hypothesis and reference transcripts has a speaker label, meaning that the portion of

Efa, Ems, and Eoverlap are 0.

4.1.2 Diarization F1

While TDER resolves the problem for making convenient comparisons with respect to

the same transcript, for joint ASR and SD task, it is also required to make comparisons

based on different ASR-generated transcripts, which is unachievable by modifying

the previous metrics. To comprehensively evaluate ’who speaks what’ outcomes, we

propose the Diarization F1 (DF1) metric. DF1 consists of two parts, the precision



23

and recall, calculated as follows:

Precision =
align speakers(Thypo, Tref )

len(Thypo)
(4.4)

Recall =
align speakers(Thypo, Tref )

len(Tref )
(4.5)

DF1 =
2 ·Precision ·Recall

Precision+Recall
(4.6)

where Thypo is the hypothesis transcript from ASR, Tref is the reference transcript with

ground truth labels, align speakers() is the function providing alignment between

two input transcripts and return the number of aligned words with same speaker labels.

In this way, the Precision represents the fraction of words with correctly predicted

speaker label to the hypothesis transcript, with the Recall representing the fraction

of words with correctly predicted speaker label to the reference transcript. Finally, the

DF1 is calculated as the harmonic mean of Precision and Recall like the usual F1-

score. Through aligning transcripts, a fair and comprehensive performance comparison

between the result from a joint system of ASR and SD can be compared with the

ground truth transcripts by locating the words without ASR errors through alignment

at first, and further locating the words free from SD errors through comparing speaker

labels.

4.2 Aligning Transcripts

4.2.1 Current Alignment Limitations

Due to the nature of conversational transcripts and ASR system, which should faithfully

convert every possible words sequentially, the alignment between the hypothesis and

reference transcript is required to be one-to-one and the majority of words at the same

position in both hypothesis and reference transcripts are largely the same in terms
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of spelling. As introduced in Section 2.5, both the dynamic programming-based and

machine learning-based approaches can be used in aligning sequences of transcripts.

Between these two approaches, the machine learning based one, though might have the

advantage in aligning according to the actual meaning of words, failed to utilize the

high spelling and positional similarity of the words. Furthermore, aligning just with

semantic meanings may introduce correct but unwanted non-one-to-one mappings,

which over complicates the problem.

The dynamic programming based approach, on the contrary, considering only the

position and the spelling of the words for one-to-one alignment, is a better approach

in the task of aligning ASR generated transcripts and ground truth transcript for

comparing speaker labels. However, the flexibility of dynamic programming-based

approaches is uncomparable to the machine learning-based approaches, especially in

handling overlapping situations where the words from different speakers are mixed

together. In addition, the original dynamic programming algorithms are designed to

align on the character-level, such as the four types of nucleotide in DNA sequence

and twenty types of amino acids in protein. This characteristic makes it challenging

for dynamic programming algorithms to accommodate minor spelling mistakes in

single words during ASR transduction. Such minor mistakes might still be classified

as correct in mapping, given their often tolerable nature.

Reference Transcript

A: You’re going to go to uh Emory.

B: Indeed, indeed.

Hypothesis Transcript

A: You’re gonna to go to indeed indeed Emory.

Figure 4.1: An example of normal transcript that need to be aligned together.

To increase the flexibility of original dynamic programming based algorithms, this
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Pairwise alignment:

A: You’re going to go to uh Emory. B: Indeed, indeed.

A: You’re gonna to go to indeed indeed Emory.

Deletion

Insertion

Match

Partial Match

Mismatch\Substitution                   

Figure 4.2: Transcripts aligned with pairwise alignment (original Needleman-Wunsch
algorithm). The 2 dimensional alignment cannot handle the overlapping situation in
dialogue. The character-based alignment also cannot do partial matching between
words with different spelling but same position.

Multiple sequence alignment:

A: You’re going to go to uh Emory. 

B:                                         Indeed, indeed.

A: You’re gonna to go to      indeed indeed Emory.
Deletion

Insertion    

Match

Partial Match  

Mismatch\Substitution                  

Figure 4.3: Transcripts aligned with multiple sequence alignment. The 3 dimensional
alignment considers the overlapping situation. The token-based alignment matches
between words with different spelling with Levenshtein Distance.
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thesis proposes a Multiple Sequence Alignment (MSA) algorithm based on the original

Needleman-Wunsch algorithm. Our improvements are in two parts: (a) Extending the

Needleman-Wunsch algorithm to handle more than two sequence to provide correct

alignment in overlapping segments. (b) Introducing Levenshtein Distance as the

criterion for populating scoring table in the MSA to make the algorithm tolarate the

minor spelling mistakes. The main content of this chapter has been published at [14].

4.2.2 Scoring Matrix Population

Our MSA remains the same two-stage structure as the Needleman-Wunsch algorithm.

The MSA requires the reference transcript to be separated into multiple sequences

according to the speaker label. Formally, denote X = [x1, . . . , xℓ] as a sequence

that is formulated by enumerating every word within the hypothesis transcript,

without consideration for any division into segments. For each speaker j, define

Yj = [yj1, . . . , yjm] as a sequence enumerating the tokens associated with Speaker Yj

in the reference transcript. Given a set E = [X, Y1, . . . , Yn], the initial step of the

algorithm involves constructing a scoring matrix F . This matrix is a multidimensional

array, with its dimensions shaped by the lengths of the input sequences, and initially,

all entries of this matrix are set to zero. The pseudocode for the population of scoring

table is in Algorithm 1.

Algorithm 1: Populating Scoring Matrix

Input :E = {X, Y1, . . . , Yn}
Output :Matrix F

1 Create F ∈ R(|X|+1)×(|Y1|+1)×···×(|Yn|+1);
2 C ← [γ ⊂ {0, 1, . . . , n}] \∅;
3 foreach γ ∈ C do
4 foreach ψ ∈ index perm(γ,E) do
5 Fψ ← score(ψ,E, F );
6 end

7 end
8 return F ;
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Once the scoring matrix is declared and initialized with zero (L1), a list including

all combinations of {0, .., n} expect for the empty set (L2) is then generated with the

ascending order of the number of elements in the combination and the number itself.

It is important to keep such ascending order as the computation for higher number

combinations requires the result from lower number combinations. For example, for a

conversation with 2 speakers, the list is first filled with all the combinations with only

1 element

[{0}, {1}, {2}]

then filled with all the combinations with 2 elements

[{0, 1}, {0, 2}, {1, 2}]

finally filled with all the combinations with 3 elements

[{0, 1, 2}]

In the context of a combination, the numerals symbolize the input sequences, with 0

signifying X and any i, where i > 0, denoting Yi. For each distinct combination γ,

alongside E, they are input into the index perm function. This function outputs a

collection of index tuples (L3-4). These tuples are formulated such that they contain

indices corresponding to the relevant sequences, while indices for the remaining

sequences are maintained at 0. In the case of 2-speaker conversation, the results for

index perm function are shown in Table 4.1.

For each tuple ψ = (i, j, . . . , k) indicating the indices of each sequence, where i

signifies the position of xi within X, j represents the position of y1j in Y1, and k the

position of ynk in Yn, the score function evaluates the scores from all preceding cells
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γ index perm(γ,E) Size

{0} [(1, 0, 0), .., (|X|, 0, 0)] |X|
{1} [(0, 1, 0), .., (0, |Y1|, 0)] |Y1|
{2} [(0, 0, 1), .., (0, 0, |Y2|)] |Y2|
{0, 1} [(1, 1, 0), .., (|X|, |Y1|, 0)] |X| · |Y1|
{0, 2} [(1, 0, 1), .., (|X|, 0, |Y2|)] |X| · |Y2|
{1, 2} [(0, 1, 1), .., (0, |Y1|, |Y2|)] |Y1| · |Y2|
{0, 1, 2} [(1, 1, 1), .., (|X|, |Y1|, |Y2|)] |X| · |Y1| · |Y2|

Table 4.1: Permutations of index tuples as the result for index perm function in the
case of 2-speaker conversation. The sequence is from top to bottom which cannot be
violated in order to keep the correctness of MSA algorithm.

directly adjacent to xi, including:

{(i− 1, j, .., k), (i, j − 1, .., k), . . . , (i, j, .., k − 1)}

as well as those diagonally prior to xi, such as:

{(i− 1, j − 1, .., k), . . . , (i− 1, j, .., k − 1)}

Based on this, it calculates the score for Fψ by considering the aforementioned positions

(L5).

Fi,j,..,k ← max(G(E,F, (i, j, .., k)))

G(E,F, ψ) ←



Fi−1,j,..,k +match(xi)

Fi,j−1,..,k +match(y1j)

...

Fi,j,..,k−1 +match(ynk)

Fi−1,j−1,..,k +match(xi, y1j)

...

Fi−1,j,..,k−1 +match(xi, ynk)

(4.7)
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where the match function represents the heuristics for each single alignment between

words. The match function considers four possibilities, fully match, partially match,

mismatch, and gap, with the scores given in a descending order, meaning that the

score of fully match must be greater or equal to partially match, and the score of

partially match must be greater or equal to mismatch. The match function can be

formally written as:

match(x, y)←



Sfm if LD(x, y) = 0 (fully match)

Spm if LD(x, y) ≤ d (partial match)

Smm if LD(x, y) > d (mismatch)

Sgap if only one word is given (gap)

where Sfm, Spm, Smm, Sgap represent the score for fully match, partially match, mis-

match, and gap. The scores must be given in a descending order, meaning that

Sfm ≥ Spm ≥ Smm ≥ Sgap. If two words were given as the input, the match function

will calculate the Levenshtein Distance (String Edit Distance) between them with

function LD(x, y). The greater the Levenshtein Distance, the larger the difference

between two words, with 0 distance be exactly same spelling. To tolerate minor

spelling mistakes, if the Levenshtein Distance is below certain boundary d, it may be

counted as partially match, which will be rewarded with a higher score than mismatch.

4.2.3 Backtracking

After population of scoring matrix, the MSA algorithm then reconstructs the optimal

alignment through backtracking from the very last cell of the matrix by tracing the

highest score adjacent to the current cell with the direction towards the very first cell.

The pseudo code for backtracking is shown in Algorithm 2.

This backtracking algorithm accepts the list of input sequences E and the scoring
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Algorithm 2: Backtracking Scoring Matrix

Input :E = {X, Y1, . . . , Yn},
the scoring matrix F .

Output :The alignment matrix A
1 Create A ∈ R|E|×ρ;
2 ψ ← (|X|, |Y1|, . . . , |Yn|);
3 while ψ ̸= (0, 0, . . . , 0) do
4 (ψ′, α)← argmax(G(E,F, ψ));
5 Append α to A accordingly;
6 ψ ← ψ′;

7 end
8 return A;

matrix F returned by Algorithm 1 as the input, and returns the alignment matrix

A as the output. The algorithm constructs A, where the 0’th row is populated with

tokens from X and the i’th rows with tokens from Yi or with gap tokens (L1). The

exact count of ρ, which represents the total number of columns, remains indeterminate

at this phase due to the unpredictable quantity of gap tokens required for optimal

alignment, a detail that only becomes clear upon the conclusion of the backtracking

process. Therefore, ρ = max(|X|+ gx, |Yi|+ gi : ∀i) signifies the number of columns,

where gx and gi represent the count of gap tokens introduced to achieve the optimal

alignment between X and each Yi. This backtracking operation initiates at the

matrix’s final cell, marked by ψ (L2). Following this, it selects a cell (L4) through

the argmax function, which identifies the index tuple ψ′ and the sequence of tokens α

that elevate the alignment score to its peak (|α| = |E|). Within α, the 0|i’th element

corresponds to either the current token in X|Yi or a gap symbol ‘−’. An example that

the backtracking determines that the last sequence of Y should be a gap will look like:

A0 ← A0 ⊕ [xi]

A1 ← A1 ⊕ [y1j]

...

A2 ← An ⊕ [−]
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After appending the words or gap, it moves to the subsequent cell identified by ψ′

(L6). This step is repeated, moving backwards through the cells, until it arrives at the

initial cell (L3). Figure 4.4 depicts the backtracking of a 2-speaker conversation case

by Algorithm 2.
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Figure 4.4: The backtracking example using Algorithm 2

4.2.4 Optimization of Matrix Population

Although effective, the current MSA becomes time and resource-intensive as the

number of speakers and conversation length increase. This is because the time and

space complexity for populating the matrix is O(Ln+1), where L represents the longest
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sequence among E = [X, Y1, . . . , Yn], and n is the number of speakers. In order to

reduce memory usage, in real world implementation, the MSA imports segmentation

mechanism by detecting absolutely fully aligned segments as anchors or barriers.

Then, the whole transcript is separated at the mid point of each anchor and perform

alignment for each segment separately. The final alignment result is the concatenation

of each segment’s alignment result. In this way, the increase in memory usage for

storing the gigantic scoring matrix and the computation for populating the matrix is

controlled by reducing the length of the transcript.



Chapter 5

Experiments Setup

This chapter introduces the specific setups and parameters used in evaluating the

text-based SD model and evaluation metrics. Section 5.1 introduces the data used for

both parts of experiments.

5.1 Datasets

In order to accurately evaluate the performance of our text-based models and the

behavior of the proposed metrics, this thesis uses a curated dataset consisting of

7 widely-adopted conversational corpora that include both audio and ground truth

transcripts with speaker labels. The accompanied audio files allow us to compare

our model with recent audio-based SD models. All 7 datasets are focused on daily

conversational topics, which rules out the influence of domain-specific knowledge

requirements for language models.

For training and evaluation of the text-based SD model in Chapter 3, the portion

of the dataset featuring conversations with 2 speakers is used. The dataset is split

into train, development, and test set with a ratio of 80:10:10. To prevent data leakage

among three different sets, such splitting is done on the conversation level.

For text-based SD metrics evaluation, which requires in-depth examination of

33
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Corpus Hour # of Dialogue

AMI Corpus [7] 100 171
CallFriend [5] 20 41

CallHome English [6] 20 176
CHiME-5 [3] 50 20
DailyTalk [26] 20 2541

ICSI Corpus [18] 72 75
SBCSAE [10] 23 60

Table 5.1: Corpora used for the curated dataset.

individual examples rather than quantity, only the CallHome English [6] dataset is

used. Specifically, 10 conversations are selected for checking alignment effectiveness,

and the entire corpus is used for metrics evaluation.

5.2 Text-based SD Approach Experiments

5.2.1 Data Processing

For introducing ASR specific discrepancies, the Whisper [39] model from OpenAI is

used because of its superior speech-to-text performance up to the time of conducting

this experiment. In terms of hallucination, Whisper mainly experiences two types of

errors, which mainly happen at the audio segments with low fidelity or low loudness,

especially for the segments in long audio:

1. The model repeats the last sentence before the low quality segments for multiple

times.

2. The model transcribes the speech to languages other than English. This is often

happened together with repetition of incorrectly transcribed sentences.

These errors can be easily detected through basic coding or through a Large Language

Model (LLM). To avoid hallucination in re-transcribing audio, both the Whisper

large-v2 and medium.en model are used in transcribing audio as they have similar
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transcribing performance [39] but with different behavior of hallucination in terms

of positions of segments. Despite switching models, tuning inference parameters,

including temperature, number of beams for beam search, as well as fixing decoding

languages, are also used to mitigate hallucinations. On the audio side, loudness

normalization and separate transcription for difficult segments with low loudness

and low quality. Through these techniques, all the audios are able to be transcribed

successfully.

For aligning transcripts, the self-implemented align4d package is used, which is

described in Section 5.3.3. OpenAI GPT-41 and spaCy2 are used for fixing punctuation

in ground truth transcript and for sentence segmentation after transcript alignment.

5.2.2 Model

In the experiments for both SPM and MPM, we utilize the T5-3B model [40] due to

its adaptability regarding the format of inputs and outputs because of the nature of a

sequence-to-sequence model. Besides, the bi-directional attention in the encoder part

of T5 model makes it possible to utilize semantic features before and after the point of

prediction simultaneously. Though there are a wide range of model size for choosing,

the 3B parameter model is chosen for achieving balance between its performance

capabilities and efficiency considering our training devices (Nvidia H100 GPU). The

choice of the standard T5 model over its more specifically fine-tuned counterparts

like FLAN-T5 is made because non of the tasks further fine-tuned on is similar to

SD or SCD. As such, our approach does not incorporate instruction fine-tuning. We

employ a majority voting mechanism as our aggregation method also for its balance

in effectiveness and simplicity.

For the audio-based counterparts, both the recent modular and End-to-end Neural

Diarization (EEND) approaches are involved in this experiment. The specific names

1https://chat.openai.com/
2https://spacy.io/
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and types of approaches are listed in Table 5.2:

Model Type Models

pyannote [4, 38], x-vector+SC [45, 48],
Modular Approach x-vector+AHC [45, 37], ECAPA+SC [9, 48],

ECAPA+AHC [9, 37], NeMo-TitaNet [22]

End-to-End Neural Diarization NeMo-MSDD [34], TOLD [47]

Table 5.2: Categorization of models based on their approach to speaker diarization. In
this table, SC means spectral clustering and AHC means agglomerative hierarchical
clustering.

5.2.3 Model Evaluation

To evaluate the audio-based SD system on transcripts, the speaker label for each

word in the transcript is attributed according to aligning the audio-based model

output, which are segments about speaker labels and time period, with the sentence-

level timestamp provided by Whisper, which matches the behavior of our text-based

sentence-level prediction. Then, all the audio-based SD systems are evaluated on the

same ASR-generated transcript, which is also used for text-based SD prediction.

Under the aforementioned evaluation setup, our TDER and WDER are inter-

changeable as suggested by Equation 4.3. This is because all portion of Efa, Ems,

and Eoverlap are eliminated in time alignment for audio-based SD systems, and our

text-based SD systems do not produce such errors as they always assign a speaker

label for every sentence. Under this case, the DF1 score is also just 1 - TDER

because of the same reason. For simplicity, the WDER is used as the name of our

evaluation metric for the rest of SD approach evaluation results and analysis. Other

than normal WDER, which is calculated as the average of all single WDER score

for each conversation, we also introduce WDER-S, which is the weighted average of

WDER using the number of sentences in each transcript as weight, as a supplemental

metric, in order to accommodate the difference in length of conversations within our
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dataset. Compared with normal WDER, WDER-S reflects the performance on long

conversation more accurately.

5.3 Text-based Metrics Experiments

5.3.1 Metrics Behavior

In order to experiment the behavior of metrics on text-based SD and joint ASR and

SD systems, Amazon Transcribe3 and Rev AI4, two popular speech-to-text systems

with speaker label provided are tested with both traditional metrics (DER, WER,

WDER) and newly proposed TDER and DF1 metrics. Before calculating the metrics,

the hypothesis and reference speaker labels are first applied Hungarian algorithm [23]

to find optimal assignment to ensure that the upper limit of the performance is shown.

After speaker label assignment, the hypothesis transcripts are evaluated both on the

percentage of each type of joint ASR and SD errors (substitution, insertion, deletion,

overlapping) and manually inspected to determine the behavior or each joint ASR

and SD system. Finally, these systems’ behavior are compared with the metrics to

see if the metrics behavior correctly reflecting the systems’ behavior. For audio-based

metrics (DER), the duration in terms of time is extracted from the speaker and time

labeled transcript for both hypothesis and reference transcript.

5.3.2 Alignment Efficacy Experiment Setup

To evaluate the effectiveness of our MSA algorithm with other dynamic programming-

based alignment algorithms, two baseline approaches are added to the comparison.

The first baseline is the original Needleman-Wunsch algorithm. For this approach the

algorithm works as pairwise alignment (only two sequences) on the character-level.

3https://aws.amazon.com/cn/transcribe/
4https://www.rev.ai/
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The Microsoft Genalog [15] is used as the actual implementation for this approach. The

second approach is pairwise alignment on the token-level, which is accomplished with

align4d package described in 5.3.3 by merging reference transcript into one sequence

according to the token-level timestamp. All alignment approaches are evaluated with

the accuracy of alignment, which is the portion of words in the reference transcript that

have correct mapping to hypothesis transcript. All the ideal mapping are manually

generated.

5.3.3 Alignment Package: align4d

As introduced in Section 4.2, our proposed MSA algorithm requires heavy computation

for accessing and manipulating large matrices with high dimensions. In order to

maximize the computational efficiency of the alignment process, our align4d is

written in C++20, utilizing only the standard template library, which offers top-tier

performance in memory access. On the other hand, considering the usability of such a

program, anticipated to have a wide range of uses in evaluating other conversational

perspectives, the align4d also includes an adaptation layer, enabling easy compilation

as a CPython extension and installation as a Python package. This implementation

allows for the adjustment of the Levenshtein Distance criterion to determine a full

match, partial match, and mismatch, as well as the maximum length of each segment

between anchors and the length of the anchor itself, as introduced in Section 4.2. For

simplicity and to prevent number overflow in actual computation, in this experiment,

the heuristics for scoring function and the Levenshtein Distance criterion d are set as
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follows:

match(x, y)←



Sfm = 2 if LD(x, y) = 0 (fully match)

Spm = 1 if LD(x, y) ≤ 2 (partial match)

Smm = −1 if LD(x, y) > 2 (mismatch)

Sgap = −1 if only one word is given (gap)

The length of anchor and maximum length of each segment are set to 6 words and

120 words.

The align4d is publicly available at https://github.com/emorynlp/align4d.

https://github.com/emorynlp/align4d


Chapter 6

Results and Analysis

6.1 Model Performance

6.1.1 Conversational Length-based Analysis

Both of our SPM and MPMmodels are compared with 7 recent audio-based SD systems,

including both modular and end-to-end approaches. The results are separated into

three groups according to the length of the conversation, with the first two groups

containing only a subset of the dataset that meets the length limitation: below and

including 15 minutes, above 15 minutes, and no limit.

From Table 6.1, our MPM model’s performance is superior than any other SD

systems in the experiment for short conversations and comparable to the best audio-

based system for the complete dataset. Based on this general comparison, we also

compare the best of text-based approach (MPM) with the best of audio-based approach

(TOLD) for a more fine-grained analysis on conversational length.

From Figure 6.1, the audio-based system’s error rate decreases monotonically as

the conversational length increasing, which is potentially because of too less audio

information for the system to identify same group of speakers. That of text-based

model, on the contrary, generally increases as the conversational length increasing,

40
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Model
≤ 15 Min. > 15 Min. Overall

WDER WDER-S WDER WDER-S WDER WDER-S

pyannote 0.269 0.233 0.137 0.127 0.225 0.187
x-vector+SC 0.378 0.339 0.150 0.175 0.302 0.184
x-vector+AHC 0.298 0.269 0.241 0.268 0.279 0.258
ECAPA+SC 0.402 0.371 0.199 0.152 0.334 0.278
ECAPA+AHC 0.291 0.256 0.166 0.267 0.249 0.239
NeMo-TitaNet 0.233 0.177 0.103 0.088 0.189 0.127
NeMo-MSDD 0.230 0.175 0.085 0.078 0.181 0.123

TOLD 0.206 0.129 0.080 0.069 0.164 0.099

T5-3B SPM 0.312 0.334 0.528 0.563 0.384 0.440
T5-3B MPM 0.049 0.055 0.114 0.129 0.101 0.104

Table 6.1: Performance comparison in terms of WDER and WDER-S with audio-based
SD systems (the lower the better) with respect to time.
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Figure 6.1: Average WDER with respect to conversation length for best audio and
text-based SD systems with 5 minute as the interval.
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suggesting that while MPM’s performance is largely improved over SPM according to

Table 6.1, the long-term performance still suffers from speaker label flipping caused

by incorrect change predictions, like the example in Section 3.3.

6.1.2 Input Length-based Analysis

Input Sentence
T5-3B SPM T5-3B MPM

WDER WDER-S WDER WDER-S

4 0.428 0.475 0.073 0.277
6 0.388 0.429 0.056 0.165
8 0.384 0.440 0.101 0.104

Table 6.2: Performance comparison in WDER and WDER-S of SPM and MPM with
respect to number of maximum input sentences for each sliding window.

In order to assess the influence of amount of information on the performance, as

well as the ability of the model to utilize the information, the text-based models are

tested with different length of input for each sliding window. The number of sentences

are set to even for avoiding tie situation in majority voting. Also, to fully utilize

the pre-training of T5, the total input length should be shorter than the maximum

length of T5 pre-training data (512 tokens, which is about 10 sentences). Therefore,

we measure the performance on {4, 6, 8} input sentences.

As Table 6.2 shows, the performance of SPM increases marginally and remains

unusable. However, for MPM, though the overall performance shown by WDER does

not have a general trend of change, the weighted average WDER-S drops consistently,

indicating significant performance improvement as the length of input increases.

6.1.3 Text-based Error Types

In order to further determine the types of input where the text-based model makes

mistakes, 50 single inputs with at least 1 incorrect prediction and unable to be
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Figure 6.2: Percentage of three error types in the 50 randomly selected input samples.
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recovered after aggregation were randomly selected and manually inspected. Three

major types of error-prone input are concluded from this inspection:

1. Different speakers contained in the segment of input have similar roles conversa-

tionally or socially.

• Dialogue:

s1: They just said it was gonna be recorded whatever.
s2: So how’s it going?
s3: Everything’s going cool.
s4: When I first got here, things were kind of messed up, but I got your
email.

• Model Prediction: [A, A, B, B]

• Correct Label: [A, B, A, A]

The distinction between s1, s2 and s3, s4 goes unnoticed by the model due to

the speakers being teenage students with shared experiences, resulting in similar

patterns of speech.

2. Each speaker’s utterance within the segment of input is too short to extract

enough useful information.

• Dialogue:

s1: Wow.
s2: What time is it there?
s3: What time is it?
s4: It’s 3:40.

• Model Prediction: [A, B, B, A]

• Correct Label: [A, B, A, A]

The model is unable to distinguish between s2 and s3 due to the brevity of

the sentences, which lack sufficient logical or linguistic cues to differentiate two

speakers in the dialogue.
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3. Input sentences contains grammatical errors.

• Dialogue:

s1: How things with you busy?
s2: I guess I sent you an email, but I suppose you haven’t gotten it.

• Model Prediction: [A, B]

• Correct Label: [A, A]

The transition from s1 to s2 is not detected by the model due to grammatical

inaccuracies present in s1. This grammatical error in s1 is likely because the

error from ASR system.

Figure 6.2 shows the percentage of each type of error in the 50 selected inputs. Note

that one input may contain multiple incorrect predictions and more than once types

of error can happen on one incorrect prediction. Also, the criterion for determining

these types or errors, especially the similar roles, can be subjective and hard to be

counted in a wide range of examples.

6.2 Text-based Metrics

This section introduces the result and analysis for the behavior of text-based metrics

in Section 6.2.1 and the efficacy and performance of MSA algorithm in Section 6.2.2.

The main content of this section has been published at [14]. The experiments were

conducted in collaboration with Chen Gong.

6.2.1 Metrics Behavior Analysis

As described in Section 5.3.1, the behavior of Amazon Transcribe and Rev AI’s

transcription with diarization is first analyzed.

Based on Table 6.3, Amazon Transcribe primarily ignores words, while Rev AI has

a more even distribution of error types. The manual inspection confirms with Table
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Transcriber Deletion Insertion Substitution Overlap
∑

Amazon Transcribe 0.068 0.015 0.028 0 0.111
Rev AI 0.051 0.027 0.031 0.005 0.114

Table 6.3: Average percentages of the four types of errors over all tokens.

6.3 that Amazon Transcribe tends to directly drop the words when the audio segments

suffering from low quality or low loudness. Rev AI, on the other hand, tries to recover

as much words as possible under the same situation. This behavior, though results

in higher error rate other than word deletion, often provides more useful transcript

afterwards, and should be shown in performance metrics.

The results of traditional audio and test based metrics as well as the newly proposed

TDER and DF1 are shown in Table 6.4.

Transcriber DER WDER WER TDER DF1 P R

Amazon Transcribe 0.24 0.15 0.34 0.53 0.79 0.87 0.73
Rev AI 0.26 0.20 0.29 0.50 0.84 0.88 0.81

Table 6.4: Comparing the traditional metrics (DER, WDER, WER) with our new
evaluation metrics (TDER, DF1). For DF1 the precision (P) and recall (R) score
are also shown. For TDER, lower score means higher performance; For DF1, higher
score means higher performance.

From Table 6.4, it is clear that while DER and WDER are more favor of Amazon

Transcribe, WER and our text-based metrics TDER and DF1 are all lean towards

Rev AI. Based on the traditional metrics (DER, WDER, WER), we can know that

Amazon Transcribe does a better job in SD as it has lower DER and WDER score

than Rev AI, but not as good as Rev AI in ASR part due to higher WER score.

Through Table 6.3 and manual inspection, we reveal that this is likely because of

Amazon Transcribe’s tendency in directly dropping words, which, though decreasing

the ASR performance scoring, does not affect the audio-based SD-related scoring as the

sentence-level timestamp remains. This type of behavior that causes information lost

should also be considered and shown in comprehensive evaluation metrics. Both text-
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based metrics, especially the DF1 metric, correctly considers the ASR-related errors

and give lower scores to Rev AI. For the recall portion of DF1, with same denominator

(len(Tref )), Rev AI’s recall is much higher than that of Amazon Transcribe because of

higher number of aligned words with correct speaker label, which can only be caused

by having more words in hypothesis transcript in general, given that Rev AI’s pure

audio-based SD performance is weaker. This further proves that the DF1 correctly

shows that Rev AI is a better joint ASR and SD system by considering the amount of

total useful information provided.

6.2.2 Alignment Algorithm Analysis

By comparing the two baseline approaches (pairwise + character-level, pairwise +

word-level) described in 5.3.2, we calculate the alignment accuracy as shown in Table

6.5.

Algorithm Accuracy

Character-level (original NW) 0.92
Token-level w/o Multi-Seq. Support 0.93

Token-level with Multi-Seq. Support (MSA) 0.99

Table 6.5: Performance comparison on three types of alignment algorithms on Amazon
Transcribe and Rev AI transcripts on CallHome dataset using alignment accuracy.

Based on the accuracy reported in Table 6.5, it is clear that our MSA achieves

large improvements over the pairwise alignment algorithms for both character-level

(original Needleman-Wunsch algorithm) and token-level (with Levenshtein Distance for

fuzzy matching). The improvement brought by token-level matching is marginal (0.92

to 0.93), showing that separating the reference transcript for addressing overlapping

issues is the main part that contributes to the overall improvement. This is likely

because that the ASR systems generally provide a good quality transcript, especially in

terms of spelling errors. Besides, the fundamental mechanism for Needleman-Wunsch

algorithm is sufficient for recovering some alignment even if the spelling error occurs.
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Conclusion

This work marks a significant step forward in the exploration of text-based Speaker

Diarization (SD), demonstrating the potential of leveraging dialogue transcripts for

identifying ”who speaks what.” Through the deployment of the T5-3B model within

Single Prediction Model (SPM) and Multiple Prediction Model (MPM) frameworks,

this research has shown that text-based approaches can effectively perform SD, chal-

lenging the dependence on audio features. The development and validation of new

evaluation metrics, namely Text-based Diarization Error Rate (TDER) and Diarization

F1 (DF1), further demonstrate the thesis’s contributions to advancing SD method-

ologies in evaluation. The findings indicate that text-based SD, particularly using

the models developed in this study, performs comparably to traditional audio-based

methods, especially in short conversations involving two speakers. This not only

suggests the viability of text-based diarization as an alternative but also opens up

new avenues for research and application in the broader field of conversational AI.

This thesis acknowledges several limitations that highlight areas for further inquiry

and improvement. The focus on two-speaker interactions represents a controlled

starting point, which already makes substantial progress. However, it limits the

generalizability of the findings to more complex, multi-speaker dialogues, which is

48
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often the case in meeting minutes. The heavy reliance on advanced language models

and substantial computational resources also poses challenges for scalability and

broader application, such as mobile computing. Furthermore, the effectiveness of the

alignment tool developed here may vary when encountering highly informal or dialectal

speech, indicating a need for ongoing refinement. The efficiency of the alignment

algorithm, which has exponential time and space complexity, is still not ideal for long

transcripts.

Building on this foundation, future research should aim to extend the methodolo-

gies to accommodate multi-speaker conversations, which would significantly broaden

the applicability of text-based SD. Exploring more efficient language models could

help mitigate computational constraints, making these technologies more accessible.

Additionally, enhancing the alignment algorithm to more adeptly handle diverse forms

of speech will be crucial for improving the robustness and utility of text-based diariza-

tion. Integrating insights from linguistics could also enrich the models, offering more

nuanced analyses of speaker dynamics. This can be achieved by reintroducing the

machine learning-based approach with consideration for the spelling of words.
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Petr Motĺıcek, Karel Ondrej, Oliver Ohneiser, and Hartmut Helmke. Bertraffic:

Bert-based joint speaker role and speaker change detection for air traffic control

communications. 2022 IEEE Spoken Language Technology Workshop (SLT),

pages 633–640, 2021. URL https://api.semanticscholar.org/CorpusID:

247839114.

https://api.semanticscholar.org/CorpusID:247839114
https://api.semanticscholar.org/CorpusID:247839114

	Introduction
	Thesis and Research Questions

	Background
	Audio-based Systems
	Utilization of Text-based Features
	Speaker Change Detection
	Metrics
	Sequence Alignment Algorithm

	Text-based Speaker Diarization
	Task Overview
	Single Prediction Model
	Multiple Prediction Model
	Data Processing

	Text-based Speaker Diarization Evaluation
	Text-based Metrics
	Text-based Diarization Error Rate
	Diarization F1

	Aligning Transcripts
	Current Alignment Limitations
	Scoring Matrix Population
	Backtracking
	Optimization of Matrix Population


	Experiments Setup
	Datasets
	Text-based SD Approach Experiments
	Data Processing
	Model
	Model Evaluation

	Text-based Metrics Experiments
	Metrics Behavior
	Alignment Efficacy Experiment Setup
	Alignment Package: align4d


	Results and Analysis
	Model Performance
	Conversational Length-based Analysis
	Input Length-based Analysis
	Text-based Error Types

	Text-based Metrics
	Metrics Behavior Analysis
	Alignment Algorithm Analysis


	Conclusion
	Bibliography

